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MATHEMATICAL MODELLING   MAT 610 

COURSE INFORMATION 

The present self-learning material “MATHEMATICAL MODELLING” has 

been designed for M.Sc. (Fourth Semester) learners of Uttarakhand Open 

University, Haldwani. This course is divided into 14 units of study.  This Self 

Learning Material is a Mixture of Four Block.  

First block is Mathematical Modelling - I, in this block Introduction of 

Mathematical Modelling, Linear – Non-Linear Growth –Decay Model, 

Mathematical Modelling in Population Dynamics & Mathematical Modelling of 

Epidemics defined Clearly. 

 

Second block is Mathematical Modelling - II, in this block Mathematical 

Modelling Through Difference Equations, Linear Models, Non-Linear Models 

& Continuous Models Using Ordinary Differential Equations defined clearly.  

 

Third block is Mathematical Modelling - III, in this block Spatial Models 

Using Partial Differential Equations, Modeling with Delay Differential 

Equations, Modeling with Stochastic Differential Equations & Mathematical 

Modelling through Graph are defined. 

Fourth block is Mathematical Modelling - IV, in this block Mathematical 

Modelling through Calculus of Variation & Mathematical Modelling through 

Dynamic Programming are defined. 

Adequate number of illustrative examples and exercises have also been included 

to enable the leaners to grasp the subject easily. 
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UNIT 1:  

INTRODUCTION OF 

MATHEMATICAL MODELLING 

 

CONTENTS: 

 
1.1 Introduction 

1.2 Objectives 

1.3 Why mathematical modelling needed? 

1.3.1 Simple situations requiring mathematical 

Modelling 

1.3.2 The technique  of mathematical modelling 

1.3.3 Classification of mathematical models 

1.4 Challenges and Limitations of mathematical  

              modelling 

1.5 Solved examples 

1.6 Summary 

1.7 Glossary 

1.8 References 

1.9 Suggested readings 

1.10 Terminal questions 

1.11 Answers 

 

1.1 INTRODUCTION 

 

         A mathematical model is an abstract description of a  

particular system using mathematical and linguistic concepts. The 

process of designing a mathematical model is called, 

Mathematical modelling. In this unit   our main focus on explain 

the need, techniques, classifications and simple illustrations of 

Mathematical modelling. Simply in other words in mathematical 

modelling, we select a real-world problem and formulate a 

equivalent mathematical problem. We then solve the mathematical 

problem, and explain its solution in terms of the real-world 

problem. After this we feel to what extent the solution is valid in 

the sense of the real-world problem. So, the stages involved in  

mathematical modelling are formulation, solution, interpretation 

and validation So if we will just go for this importance of 
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mathematical modeling, why we do need mathematics to represent 

our system is it going to help us out? Well, the 

Alexander Wilhelm 

von Brill 

Born: 

20,September 1842, 

Darmstadt, Germany 

Died: 

8 June 1935 

Tübingen, Germany 

Summary:  

Alexander von 

Brill was a German 

mathematician who 

worked in algebraic 

geometry. He also made 

mathematical models 

and was interested in the 

history of mathematics. 
 

 

 
Fig 1.1 

Ref: 

https://mathshistory.st-

andrews.ac.uk/Biographies/Brill/ 

 

answer is yes, since the mathematical model plays a vital role in 

mathematics and other subjects the system can be divided into two 

types, one you can just say it is abstract model, another one it is like 

a real experimental model, so in the abstract model we can just 

simulate or we can just try to find this solution in two forms, either 

we can have a like physical model, another one we can just say it is 

a mathematical model, and if we will have a mathematical model 

then we can just find the solution of the system in two forms, so that 

is either analytical solution or a simulated result. If we will have a 

simulated result then we can just compare this simulated result with 

the actual system whether the system is preserving the actual 

behavior or nature of the system or not. So especially if we will just 

do the simulation on models rather experiments on actual system. So 

if the models can be constructed so then we can just try to 

understand the actual or the physical behavior of the system in a 

concrete sense, so sometimes it is necessary to find the economic 

way for the measurements or control on parameters or allow us to 

predict that future nature which have not seen so far.  

Suppose if we will see a population level, so the total 

population size it depends on like the birth rate and death rate at that 

time level, so if learner just construct like the mathematical model 

based on this population birth rate or death rate which is 

proportional to the total population size, so we have to consider the 

past data to verify the model, and based on that past data we can just 

https://mathshistory.st-andrews.ac.uk/Biographies/Brill/
https://mathshistory.st-andrews.ac.uk/Biographies/Brill/
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to say that how the future model will be, so this can be predictor or 

it can be made through mathematical modeling only, so this is our 

last point that allow us to predict future nature which have not been 

seen so far. 

 

1.2 OBJECTIVES 

 

         After studying this unit, learner will be able to  

 

i. Described the concept of simple situations requiring   

mathematical modelling. 

ii. Explained the technique of mathematical modelling 

iii. Define the classification of mathematical models. 

iv. Analyze the mathematical modelling through geometry, 

algebra, trigonometry and calculus. 

v. Justify the limitations of mathematical modelling.  

 

1.3 WHY MATHEMATICAL MODELLING IS 

NEEDED 

 

Model : The dictionary meaning of model is to represent something. 

Thus modelling is a process or way of representation. Thus  

Mathematical modelling is a process  of representation of system 

with the help of mathematical formulas and model is the structure 

obtained. 

A model is an object or concept that is used to represent 

something else. It is reality scaled down and converted to a form we 

can comprehend. For example, a model airplane, made of wood, 

plastic, and glue, is a model of a real airplane. Another example is 

the idea that, in politics, public opinion is like a pendulum because it 

changes periodically from left- to right-wing ideas then back again 

in a way which reminds us of a pendulum swinging back and forth. 

In our terminology we would say that a pendulum is a model for 

public opinion. A model airplane and pendulum are physical 

objects; so they are not mathematical models. A mathematical 

model is a model whose parts are mathematical concepts, such as 

constants, variables, functions, equations, inequalities, etc. 
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1.3.1 SIMPLE SITUATIONS REQUIRING  

        MATHEMATICAL MODELLING 

 

Suppose we have a problem that without climbing find the 

height of a tower. For solving it we try to express the height of the 

river in terms of some distances and angles which can be measured 

on the ground. 

For solve a given physical, biological or social problem, we 

first develop a mathematical model for it, then solve the model and 

finally interpret the solution in terms of the original problem. 

Whenever we want to find the value of an entity which cannot be 

measured directly, we introduce symbols 𝑥, 𝑦, 𝑧, … … .. to represent 

the entity and some others which vary with it, then we appeal to 

laws of physics, chemistry, biology or economics and use whatever 

information is available to us to get relations between these 

variables, some of which can be measured or are known and others 

which cannot be directly measured and have to be found out.  

We use the mathematical relations developed to solve for the 

substance which cannot be measured directly in terms of those 

substance whose values can be measured or are known.  

The mathematical relations we get may be in terms of 

algebraic, transcendental, differential, difference, integral, integro-

differential, differential-difference equations or even in terms of in 

equalities. 

 

          Simple Ram travelled 432 kilometers on 48 litres of petrol in his   

          car. Ram  have to go by his car to a place which is 180 km away.  

           How much petrol do Ram need? 

Step 1 :  

Petrol needed for travelling 432 km = 48 litres 

Petrol needed for travelling 180 km = ? 

Mathematical Description : Let  

                      x = distance Ram travel  

                      y = petrol Ram need  

y varies directly with x. 

 So, y = kx, where k is a constant. 

Ram can travel 432 kilometers with 48 litres of petrol.  

So, y = 48, x = 432. 

Therefore 𝑘 =
𝑦

𝑥
=

48

432
=

1

9
 

Since y = kx, therefore, 𝑦 =
1

9
𝑥 ……………….(1) 

Equation or Formula (1) describes the relationship between 

the petrol needed and distance travelled. 
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Step 2: Solution : Ram want to find the petrol Ram need to travel 

180 kilometers; so, Ram have to find the value of y when x = 180. 

Putting x = 180 in (1), Ram have 

𝑦 =
180

9
= 20 

Step 3: Interpretation : Since y = 20, Ram need 20 litres of petrol 

to travel 180 kilometers. Did it occur to Ram that Ram may not be 

able to use the formula (1) in all situations? For example, suppose 

the 432 kilometers route is through mountains and the 180 

kilometers route is through flat plains. The car will use up petrol at a 

faster rate in the first route, so we cannot use the same rate for the 

180 kilometers route, where the petrol will be used up at a slower 

rate. So the formula works if all such conditions that affect the rate 

at which petrol is used are the same in both the trips. Or, if there is a 

difference in conditions, the effect of the difference on the amount 

of petrol needed for the car should be very small. The petrol used 

will vary directly with the distance travelled only in such a situation.  

 

1.3.2 THE TECHNIQUE OF  

MATHEMATICAL MODELLING 

 

The technique in mathematical modelling is first we select a 

real-world problem and analyze about the problem and formulate a 

equivalent mathematical problem. We then solve the mathematical 

problem, and do interpretation of mathematical problem in simple 

words. After this we check the validation of interpretation, if it is 

correct and we feel that the mathematical problem is possible. Then 

our mathematical model exists. If validation of interpretation, is not 

correct and we feel that the mathematical problem is not possible 

then again create mathematical formulation (Remove the fault) and 

apply the same procedure. 

In other words, we can divide the modelling process into 

three main steps: formulation, finding solution and interpretation 

and evaluation. 

 

1. Formulation: Formulation can, in turn, be divided into three steps 

i. Stating the question:  
Understanding natural phenomena requires explaining them. A clear 

explanation can answer questions like:  

How long will it take?  How fast?  How loud?  And so on. 

But the questions we start with shouldn't be vague or too difficult. F

or real world problems, this should be done by explaining  

the problem definition and then putting the problem in context. 
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ii. Identifying relevant factors: Decide which quantities and 

relationships are important for your question and which are 

unimportant for your question and can be neglected. The 

unimportant quantities are those that have very little or no 

effect on the process. For example, in studying the motion of a 

falling body, its colour is usually of little interest.  

iii. Mathematical description: Each important quantity should be 

represented by a suitable mathematical entity e.g. a variable, a 

function, a geometric figure etc. Each relationship should be 

represented by an equation, inequality, or other suitable 

mathematical assumption. 

Real World Problems 

Mathematical Formulation 

Mathematical Solution 

Interpretation 

Check the Validation 

Satisfied Not Satisfied 

Stop (Correct) Again Create 

Mathematical formulation 

(Remove the fault) and 

apply the same procedure 
Fig 1.2 

LAY OUT OF MATHEMATICAL MODELLING 
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iv. Finding the Solution: The mathematical formulation rarely 

gives us answers directly. We usually have .to do some 

operations. This may   involve a calculation, solving an 

equation, proving a theorem etc. 

v. Evaluation: Since a model is a simplified representation of a 

real problem, by its very nature, has built-in assumptions and 

approximations. Obviously, the most important question is to 

decide whether our model is a good one or not i.e., when the 

obtained results are interpreted physically whether or not the 

model gives reasonable answers. If a model is not accurate 

enough, we try to identify the sources of the shortcomings. It 

may happen that we need a new formulation, new 

mathematical manipulation and hence a new Modelling 

evaluation. 

The following twelve – point procedure for solving problems 

through mathematical modelling: 

i. Be clear about the real world situation to be investigated. 

ii. Think about all the physical, chemical, biological, social, 

economic laws that may be relevant to the situation. 

iii. Formulate the problem in program language (PL). 

iv. Think about all the variables 𝑥1, 𝑥2 … … … 𝑥𝑛 and 

𝑎1, 𝑎2 … … … 𝑎𝑛 involved. Classify these into known and 

unknown ones. 

v. Think of the most appropriate mathematical model and 

translate the problem suitably into mathematical language 

(ML) in the form 

𝑓𝑖 (𝑥𝑖, 𝑎ℎ ,
𝜕

𝜕𝑥𝑖
, ∫ … … 𝑑𝑥𝑖, 𝑑) ≤ 0…………..(2) 

𝑖. 𝑒., in terms of algebraic, transcendental, differential,   

difference, integral, integro-differential, differential- 

difference equations or inequations. 

vi. Think of all possible ways of solving  the equations of the 

model. 

vii. If a reasonable change in the assumptions makes analytical 

solution possible, investigate the possibility. 

viii. Make an error analysis of the method used. If the error is not 

within acceptable limits, change the method of solution. 

ix. Translate the final solution into P.L. 

x. If the agreement is not good, examine the assumptions and 

approximations and change them in the light of the 

discrepancies observed and proceed as before. 

xi. Continue the process till a satisfactory model is obtained which 

explains all earlier data and observations. 

xii. Deduce conclusions from your model and test these 

conclusions against earlier data and additional data that may be 

collected and see if the agreement still continues to be good. 
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We can use geometry, algebra, trigonometry and calculus for 

mathematical modelling. 

 

1.3.3 CLSSIFICATION OF MATHEMATICAL   

       MODELS 

 

a. May be classified according to the subject matter of the models. 

Thus we have mathematical method in Physics, mathematical 

method in Chemistry, mathematical method in Biology, 

mathematical method in  Medicine, mathematical method in 

Economics, mathematical method in Sociology, mathematical 

method in Engineering and so on. For mathematical modelling the 

two aspects are essential first theoretical, mathematical, statistical 

and computer – based and other of which is empirical, 

experimental and observational. 

b. May also classify Mathematical models according to the  

mathematical techniques used in solving them. Thus we have 

mathematical modelling through classical algebra, mathematical 

modelling linear algebra and matrices, mathematical model 

through ordinary and partial difference equation, mathematical 

model through functional equations, mathematical model through 

graphs, Mathematical models through mathematical programming, 

Mathematical models through maximum principle and so on. 

c. Mathematical Models may also be classified according to the 

purpose, we have for the model. Thus we have Mathematical 

Models for description, Mathematical Models for prediction, 

Mathematical Models for optimization, Mathematical Model for 

Control and Mathematical Model for action. 

d. Mathematical Models may also be classified according to their 

Nature: 

 

i. Linear or Non-Linear Models: A function or an operator is called 

linear if it follows the principle of superposition i.e. 

𝑇(𝑎𝑥 + 𝑏𝑦) = 𝑎𝑇(𝑥) + 𝑏𝑇(𝑦) 
If all the functions and operators involved in the model are 

linear, then it’s called a linear model otherwise a non - linear 

models. Linear models are relatively simple to analyze as compare 

to the non-linear. In order to analyze the non-linear models, some 

times linearization techniques are used to convert it into equivalent 

linear model. 

 

Example: 𝑥𝑛+1 = 𝑘𝑥𝑛 is a linear equation and  𝑥𝑛+1 = 𝑘𝑥𝑛(1 −
𝑥𝑛) is a non linear equation where 𝑘 is any constant. 
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a. Static or Dynamic Static systems (models) accounts 

only for steady state i.e. system in an equilibrium state 

and hence it is the time in-variant. Dynamic models deal 

with time – dependent changes in the state of system. 

They are typically represented by difference or 

differential equations. 

Example :  A person sitting beside you in static with respect to you 

while dynamic with respect to earth. 2𝑦 = 𝑥 is a static system while 

𝑦 = 𝑥(𝑡) is dynamic. 

b. Discrete or Continuous Discrete time model treats 

object at countable time steps example 𝑥𝑛+1 = 𝑘𝑥𝑛. 

Continuous time model deals for continuous time 

example 𝑑𝑦 𝑑𝑡 = 𝑦.⁄  

c. Deterministic or Stochastic  If every variable state 

involved in system can be uniquely determined by 

parameters in the model, it’s termed as deterministic. 

 

Example. The length of hypotenuse can be determined from length 

of base and perpendicular in an right angled triangle. If any one of 

the variable state shows random nature than unique, then this model 

is called stochastic. 

 

        Example. Prediction for raining in next month. 

d. Autonomous and Non – Autonomous Models: 

Any autonomous model is one in which system of ODE’s 

does not explicitly depend on independent variable. When variable 

is time, the model is also referred as time-invariant model.  

          Example. 
𝑑𝑦

𝑑𝑡
= 𝑦. 

Any autonomous system can be transformed into dynamical 

system and vice – versa (with a very weak assumption). A system 

which is not autonomous is called non-autonomous. 

 

        Example. 
𝑑𝑦

𝑑𝑡
= 𝑠𝑖𝑛(𝑦𝑡). 

e. Analytical model 

An analytical model is a mathematical model that uses a 

closed-form solution to represent a system's changes. 

 

Example. The computation of the mass of the system from the mass 

of it’s parts, or the computation of the static geometric properties of 

a system, such as its length or volume. The mass or geometric 

relationships may vary with time, but the computation is given for a 

single point in time. 
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Simulation. Simulation is used to evaluate a new design, diagnose 

problems with an existing design, and test a system under conditions 

that are hard to reproduce in an actual system. 
 

Example. Car manufacturing: Simulations can help car 

manufacturers virtually crash test new vehicles to see how they 

might perform in different accidents. This can help determine if the 

car is safe to drive without having to physically crash dozens of cars. 

 

1.4 CHALLENGES AND LIMITATIONS OF  

       MATHEMATICAL   MODELLING 

 

While mathematical modeling is a powerful tool, it comes 

with challenges and limitations: 

i. Data Availability: Models heavily rely on data, and their accuracy 

is limited by the quality and quantity of available data. In some 

cases, data may be scarce or unreliable. 

ii. Assumption Sensitivity: Models are built on assumptions, and 

their results can be highly sensitive to these assumptions. Small 

changes in assumptions can lead to significantly different 

outcomes. 

iii. Complexity: Real-world systems are often highly complex, and 

simplifications are necessary for modelling. However, overly 

simplistic models may not capture important nuances. 

iv. Uncertainty: Models cannot eliminate uncertainty entirely, 

especially in stochastic systems. They can only provide estimates 

of probabilities and outcomes. 

v. Computational Resources: Some models, particularly those 

involving large-scale simulations, require significant 

computational resources, which can be expensive and time-

consuming. 

 

 

1.5  SOLVED  EXAMPLES 

 

          Example 1.  How would you rnodel speed and velocity? 

 

Solution.  We can say the definition of 𝑠𝑝𝑒𝑒𝑑 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦⁄  is equal to 

the rate of change of distance travelled. Since speed is a scalar, we 

model it as 𝐿 𝑇⁄  where 𝐿 is the distance travelled and 𝑇 is the time 

required to travel. While modelling velocity, the direction too should 

be specified and hence, the model for velocity is 𝑣 = 𝐿 𝑇⁄  where the 

velocity is the vector quantity. Using Calculus, the model can be 
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further improved by writing the elementary distance as 𝑑𝑠 =

 (𝑑𝑥, 𝑑𝑦, 𝑑𝑧), so that 𝑣 =
𝑑𝑠

𝑑𝑡
. 

 

Example 2. Finding the width of a river or a canal (without crossing 

it). 

 

        Solution.  

 
Fig 1.1 

For this we try to express the width of river or canal in term 

of some distance and angle which can be measured from one side of 

the river. From the Figure 1.1 consider 𝐵 and 𝐷are two points on the 

bank of the river. 𝐴 is any point on the other side of the river. 𝐴𝐵 is 

perpendicular at 𝐵𝐷 line. Again 𝐶 is any fix point and we draw 

perpendicular from  𝐶 to 𝐵𝐷 line and measure an angle between 

𝐶𝐷 and 𝐴𝐶. 𝐴𝐶 line  crosses the lines 𝐴𝐵 and 𝐶𝐷 passes from point 

𝑂. Hence ∆𝐶𝑂𝐷 and ∆𝐴𝑂𝐵 are congruent therefore 𝐶𝐷 will be the 

breadth of the river 𝐴𝐵. 
 

          Example 3.  Estimate the population of a fish in a pond. 

 

Solution. Let 𝑥(𝑡) be the population of fish in a pond at time  𝑡 and 

𝑥(𝑡 + ∆𝑡) be the population after time (𝑡 + ∆𝑡). Again "𝑏" be the 

birth per individual per unit time and  "𝑑" be the death per individual 

per unit time. Then population after time 𝑡 + ∆𝑡 is, 

𝑥(𝑡 + ∆𝑡) = 𝑥(𝑡) + 𝑏. 𝑥. ∆𝑡 − 𝑑. 𝑥. ∆𝑡 + 0(∆𝑡) 

𝑥(𝑡 + ∆𝑡) − 𝑥(𝑡) = (𝑏 − 𝑑)𝑥(𝑡). ∆𝑡 + 0(∆𝑡) 
𝑥(𝑡 + ∆𝑡) − 𝑥(𝑡)

∆𝑡
= (𝑏 − 𝑑)𝑥(𝑡) + 0(∆𝑡) 

as ∆𝑡 → 0 and let 𝑏 − 𝑑 = 𝑎 

𝑥′(𝑡) = 𝑎𝑥(𝑡) 
𝑥′(𝑡)

𝑥(𝑡)
= 𝑎 

On integration,    log 𝑥(𝑡) = 𝑎𝑡 + 𝑙𝑜𝑔𝑐,𝑥(𝑡) = 𝑐𝑒𝑎𝑡 

Let  𝑡 = 0, 𝑥(0) = 𝑐𝑒0. It implies that ,𝑥(0) = 𝑐, 𝑥(𝑡) =
𝑥(0) 𝑒𝑎𝑡,where  𝑎 = 𝑏 − 𝑑. 
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1.6   SUMMARY 

 

  In this unit we have explain the following main points. 

a) Mathematical models transform real life  problems  into 

mathematical explanations. Trying to understand and solve real 

world problems  can be  risky  and  expensive  sometimes 

testing is not possible. In this case, mathematical modelling 

is the only  solution and can be very cheap if we can represent 

and solve   real problems with appropriate equations. 

b) The mathematical modeling process has three main steps: desig

n, problem solving, interpretation, and evaluation. 

c) Mathematical models can be divided into linear/nonlinear, stati

c/dynamic, discrete/continuous, and deterministic/stochastic.  

d) Many types of modeling require one or more of these during 

     design or problem solving. 

e) One thing to keep in mind in mathematics is that when interpre

ting real world  problems  in mathematical terms,  many  

     simplifications are needed. Everyone who is  learner should  

     know this. 

 

1.7  GLOSSARY 

 

i. Variables: In mathematical modelling, variables 

are symbols that represent quantities that can change, 

such as time, distance, temperature, or population 

size. They are used to describe real quantitative 

situations by writing mathematical expressions in place 

of words. Variables can be independent or dependent. 

ii. Equations: The equations in mathematical model 

contain variables, which are values to input into the 

equation, and parameters, which are constants whose 

value depends on the particular model and situation. 

iii. Constraints: In mathematical modelling, constraints 

are the conditions that a solution to an optimization 

problem must satisfy. They represent restrictions or 

limitations on the variables used in equations that depict 

real-world scenarios. Constraints are essential to ensure 

that the mathematical model accurately reflects the 

situation. 

iv. Objective function: In mathematical modelling, an 

objective function is defined as a linear equation that 

characterizes and addresses optimization problems. It is 

a function dependent on decision variables, which can 
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be selected to either maximize or minimize the 

objective. Typically, the objective function is expressed 

in the form 𝑍 =  𝑎𝑥 +  𝑏𝑦, where (𝑎) and (𝑏) are 

constants, while (𝑥) and (𝑦) are the variables that need 

to be optimized. Additional constraints, such as (𝑥 >
 0) or (𝑦 >  0),  may also impose limits on the 

objective. 

CHECK YOUR PROGRESS 

1. Which system/model applies deductive reasoning of 

mathematical theory to solve a model:- 

a. Dynamic Model 

b. Static Model 

c. Analytical Model 

d. Numerical Model 

2. Which model follows the changes over time that 

results from the system activities:- 

(a) Dynamic Model 

(b) Static Model 

(c) Analytical Model 

(d) Numerical Model 

3. ……………………………. is considered to be a 

numerical computation technique used in 

conjunction with dynamic mathematical models. 

(a) Analysis 

(b) System simulation 

(c) Dynamic computation 

(d) None of the above. 

4. Which system/model applies computational 

procedures to solve equations:- 

(a) Dynamic Model 

(b) Static Model 

(c) Analytical Model 

(d) Numerical Model 

5. Which model  can any show the values that system 

attributes takes when the system is in balance:- 

(a) Dynamic Model 

(b) Static Model 

(c) Analytical Model 

(d) Numerical Model 
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1. E.A. Bender (1978) An Introduction to Mathematical 

Modeling, New York, John Wiley and Sons. 

2. W.E. Boyce  (1981) Case Studies in Mathematical Modeling, 

Boston, Pitman. 

3. A. Friedman and W. Littman, (1994) Industrial Mathematics: 

A Course in Solving Real World Problems, Philadelphia, 

SIAM. 

4. F.R. Giordano and M.D. Weir (1985). A First Course in 

Mathematical Modeling, Monterey, Brooks/Cole. 

 

1.10 TERMINAL QUESTIONS 

 

  TQ 1:  Formulate the model for estimating the population of lions     

  in  a  forest. 

   TQ2: How would you model acceleration of a particle? 

 

1.11 ANSWERS 

        

           CHECK YOUR PROGRESS 

1. c. 

2. a. 

3.  b. 

4.  d. 

5.  b. 

https://archive.nptel.ac.in/courses/111/107/111107113/
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UNIT 2 LINEAR - NON LINEAR 

GROETH –DECAY MODEL 

 

CONTENTS: 
2.1  Introduction 
2.2 Objectives 
2.3 Linear growth and decay models 

2.3.1 Population growth models 
2.4 Non-linear growth and decay models 

2.4.1 Logistic law of population growth 

2.5 Solved examples 
2.6 Summary 
2.7 Glossary 
2.8 References 
2.9 Suggested readings 
2.10 Terminal questions 
2.11 Answers 

 

2.1 INTRODUCTION 

 

In previous unit we have discussed why mathematical 

modelling needed? Simple situations requiring mathematical 

modelling, The technique of mathematical modelling, 

Classification of mathematical models and challenges and 

limitations of mathematical modelling. In present unit we are 

discussing about mathematical modelling in terms of differential 

equations arises when the situation modeled involves some 

continuous variable (s) and we have some reasonable hypothesis 

about the rate of change of dependent variable (s) with respect to 

independent variables (s). When we have one dependent variable  

x (say population size) depending on one independent variable (say 

time t), we get a mathematical model in terms of an ordinary 

differential equation of the first order, if the hypothesis is about the 

rate of change 𝑑𝑥 𝑑𝑡.⁄  If there are a number of dependent 

continuous variables and only one independent variable, the 

hypothesis may give a mathematical model in terms of a system of 

first or higher order ordinary differential equations. If there is one 

dependent continuous variable (say velocity of fluid 𝑢) and a 

number of independent continuous variables (say space 

coordinates 𝑥, 𝑦, 𝑧 and time 𝑡 ), we get a mathematical model in 
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terms of a partial differential equation. If there are a number of 

dependent continuous variables and a number of independent 

continuous variables, we can get a mathematical model in terms of 

systems of partial differential equations. 

 

2.2 OBJECTIVES 

 

After studying this unit, learner will be able to  

 

i. Described the concept of Linear growth and  
             decay models 

ii. Explained the Population growth models 
iii. Define the Non-linear growth and decay models 
iv. Analyze the Logistic law of population growth 
v. Justify the limitations of Population growth  

            models and Logistic law of population growth 

 

2.3 LINEAR GROWTH AND DECAY 

MODELS 

 

 

2.3.1 POPULATIONAL GROWTH MODELS 

 

Population growth models are mathematical representations 

of how a population's size changes over time.  

Let 𝑥(𝑡) be the population size at time 𝑡 and let 𝑏 and 𝑑 be 

the birth and death rates, i.e., the number of individuals born or 

dying per individual per unit time then in time interval (𝑡, 𝑡 + ∆𝑡), 
the numbers of births and deaths would be 𝑏𝑥∆𝑡 + 0(∆𝑡) and 

𝑑𝑥∆𝑡 + 0(∆𝑡), where 0(∆𝑡)is an infinitesimal which approaches 

zero, so that 

 𝑥(𝑡 + ∆𝑡) − 𝑥(𝑡) = (𝑏𝑥(𝑡) − 𝑑𝑥(𝑡))∆𝑡 +
0∆𝑡 …………(1) 

so that dividing by ∆𝑡 and proceeding to the limit as ∆𝑡 →
0, we get 

𝑑𝑥

𝑑𝑡
= (𝑏 − 𝑑)𝑥 = 𝑎𝑥 ……………… . . (2) 

Integrating equation (2), we get 

𝑥(𝑡) = 𝑥(0) exp(𝑎𝑡)………………… . . (3) 
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The population grows exponentially if 𝑎 > 0, decays 

exponentially if  𝑎 < 0 and remains constant if 𝑎 = 0. 
i. If 𝑎 > 0, the population will become double its present  

size at time 𝑇, where 

 

 
 

 

2𝑥(0) = 𝑥(0)exp(𝑎𝑇) or exp(𝑎𝑇) = 2 

Or  

𝑇 =
1

𝑎
ln 2  = (0.69314118)𝑎−1….(4) 

𝑇 is called the doubling period of the population and it may 

be noted that this doubling period is independent of 𝑥(0). It 

depends only on 𝑎 (i.e., greater the difference between birth and 

death rates), the smaller is the doubling period. 

ii. If 𝑎 < 0, the population will become half its present  size in 

time 𝑇′, when 
1

2
𝑥(0) = 𝑥(0) exp(𝑎𝑇′) or exp(𝑎𝑇′) =

1

2
 

or 

𝑇′ =
1

𝑎
ln 

1

2
=−(0.69314118)𝑎−1….(5) 

 

 

a>0 

t 

X(0) 

X(t) 

Fig  2.3.1 
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It may be noted that 𝑇′ is also independent of 𝑥(0) and 

since 𝑎 < 0, 𝑇′ > 0. 𝑇′ may be called the half – life (period) of the 

population and it decreases as the excess of death rate over birth 

rate increases. 

 

 

 

 

a=0 
t 

x(t) 

x(0) 

Fig 2.3.3 

a<0 

𝑥(0) 

t 

X(t) 

Fig  2.3.2 
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2.4 NON LINEAR GROWTH AND DECAY 

MODELS 

 

 

2.4.1 LOGISTIC LAW OF POPULATION  

        GROWTH MODELS 

 

Logistic growth describes a pattern of data whose growth rate 

gets smaller and smaller as the population approaches a certain 

maximum - often referred to as the carrying capacity. The graph of 

logistic growth is a sigmoid curve. As population increases, due to 

overcrowding and imitations of resources the birth rate 𝑏 decreases 

and death rate 𝑑 increases with the population size 𝑥. 
We are taking an assumption: 

𝑏 = 𝑏1 − 𝑏2𝑥, 𝑑 = 𝑑1 + 𝑑2𝑥, 𝑏1, 𝑏2, 𝑑1, 𝑑2 > 0………(6) 
equation (2) becomes  

𝑑𝑥

𝑑𝑡
= ((𝑏1 − 𝑑1) − (𝑏2 + 𝑑2)𝑥) = 𝑥(𝑎 − 𝑏𝑥),𝑎 > 0, 𝑏

> 0…… . . (7) 
Integrating equation (7), we get 

𝑥(𝑡)

𝑎 − 𝑏𝑥(𝑡)
= 

𝑥(0)

𝑎 − 𝑏𝑥(0)
𝑒𝑎𝑡 ………… . . (8) 

Equations (7) and (8) show that 

i. 𝑥(0) < 𝑎 𝑏 ⇒ 𝑑𝑥 𝑑𝑡 > 0 ⟹ 𝑥(𝑡)⁄⁄   is a monotonic 

increasing function of 𝑡 which approaches 𝑎 𝑏⁄  as 𝑡 →
∞ 

ii. 𝑥(0) > 𝑎 𝑏 ⇒ 𝑥(𝑡) >⁄ 𝑎 𝑏 ⇒ 𝑑𝑥 𝑑𝑡 < 0 ⟹ 𝑥(𝑡)⁄⁄  is a 

monotonic decreasing function of 𝑡 which approaches 

𝑎 𝑏⁄  as 𝑡 → ∞. 
Now from (7) 

𝑑2𝑥

𝑑𝑡2
= 𝑎 − 2𝑏𝑥…………(9) 

So that 
𝑑2𝑥

𝑑𝑡2
⋚ 0 according as ⋚ 𝑎 2𝑏⁄ . 

Thus in case (i) the growth curve is convex if 𝑥 < 𝑎 2𝑏⁄  

and is concave if 𝑥 > 𝑎 2𝑏⁄   and it has a point of inflexion at 𝑥 =
𝑎 2𝑏.⁄   Thus the graph of 𝑥(𝑡) against 𝑡 is as given in 

below𝑥(0) < 𝑎 𝑏 ⇒ 𝑑𝑥 𝑑𝑡 > 0 ⟹ 𝑥(𝑡)⁄⁄   is a monotonic 

increasing function of 𝑡 which approaches 𝑎 𝑏⁄  as 𝑡 → ∞ 𝑥(0) >
𝑎 𝑏 ⇒ 𝑥(𝑡) >⁄ 𝑎 𝑏 ⇒ 𝑑𝑥 𝑑𝑡 < 0 ⟹ 𝑥(𝑡)⁄⁄  is a monotonic 

decreasing function of 𝑡 which approaches 𝑎 𝑏⁄  as 𝑡 → ∞. If 

𝑥(0) > 𝑎 𝑏, 𝑥(𝑡)⁄  is always equal to 𝑎 𝑏⁄ . If 𝑥(0) > 𝑎 𝑏, 𝑥(𝑡)⁄  
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decreases at decreasing absolute rate and approaches 𝑎 𝑏,⁄  as 𝑡 →
∞. 

 

 
 

 

𝑎

2𝑏
< 𝑥(0) <

𝑎

𝑏
 

𝑡 

𝑥(0) 

𝑎 𝑏⁄  

𝑥(𝑡) 

Fig 2.4.2 

Concave 

Convex 

X(0) 

𝑎 2𝑏⁄  

𝑎 𝑏⁄  

𝑥(0) < 𝑎 2𝑏⁄  

𝑡 

𝑥(𝑡) 

Fig.2.4.1 
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MOTIVATING QUESTION 

 

 How can we use differential equations to realistically model 

the growth of a population? 

 How can we assess the accuracy of our models? 

 

2.5 PROBLEM 

 

           Application: Radioactive Decay: 

 

Application areas include Physics, Biology and Nuclear 

Engineering. 

 

Question 1: If the half – life of a particular radioactive substance 

is known to be 10 days and there are 25 miligrams initially, how 

much is present after 8 days? 

 To answer this question we use our five step procedure. 

Step 1: Understand the Concepts in the Application Area 

Where the Questions are Asked: 

We first describe the phenomenon to be modeled, including the 

laws it must follow (e.g., that are imposed by nature, by an 

entrepreneurial environment or by the modeler). To understand 

radioactive decay, we consider the following empirical physical 

law. 

Physical Law: From physical experiments, it is found that 

radioactive substances decay at a rate that is proportional to the 

amount present. It is useful to draw a sketch to help visualize the 

process being modeled. Try to visualize the radioactive substance 

𝑥(0) > 𝑎 𝑏⁄  

𝑥(𝑡) 

𝑡 

𝑎 𝑏⁄  

x(0) 

Fig 2.4.3 
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on a table radiating out into the room. That is, the room is a sink. 

The amount of substance on the table is constantly decreasing. 

(Obviously, in a physics lab, safety precautions must be taken to 

protect against personal injury and pollution.) Now let us consider 

the sentence "Radio active substances decay at a rate which is 

proportional to the amount present." Rate means time rate of 

change which implies derivative with respect to time. Thus our 

model will include a first order ODE that is a rate equation. (This 

is a special one-dimensional or scalar version of our quintessential 

model.)Always make a list of the variables and parameters you 

use. In an engineering research paper, this is called the 

nomenclature section. Begin with those stated in the problem. If 

we need a variable not given, choose one that is appropriate and 

helps us to remember what it stands for.  

           We begin our list: 

            Nomenclature:  

𝑄 = quantity of the radioactive substance (state variable). 

𝑡 = time (independent variable) 

To understand the concept of half life, we must first  

develop and solve the model. 

 

Step 2: Understand the Needed Concepts in Mathematics: 

iii. High School Algebra. 

iv. Calculus. 

v. Solution techniques in this part of the notes. 

 

          Step 3: Develop the Mathematical Model: 

If the problem is not complicated, a general model  may be 

developed. By this we mean that arbitrary constants (parameters) 

are used instead of specific data. This general model may then be 

used for any specific problem where the modeling assumptions 

used to obtain the general model are satisfied. If the assumptions 

are changed, a new model must be formulated. If a general model 

can be developed and solved, the results can be recorded and used 

for any specific data. However, you may wish to redevelop the 

same model for different specific data in order to develop your 

modeling skills. Let us more carefully analyze the sentence "Radio 

active substances decay at a rate which is proportional to the 

amount present." Rate means time rate of change which implies 

derivative with respect to time. Decay implies that the derivative is 

negative. Proportional means multiply the quantity by a 

proportionality constant, say k. Hence this sentence means the 

appropriate rate equation (first order ODE) to model radioactive 

decay is 
𝑑𝑄

𝑑𝑡
=−𝑘𝑄,𝑘 > 0………..(1) 
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For this model we have followed the standard convention 

of putting in the minus sign explicitly since we know that the 

substance is always decaying (i.e., its time derivative is negative). 

This is not necessary, but forces the physical constant k to be 

positive. Physical constants are normally listed in reference books 

as positive quantities. We can and should check that the value you 

obtain for k in a specific problem is positive. If not, we can check 

our computations to find our mistake.  Also, k > 0 makes the 

model more intuitive. We emphasize that the equation is a rate 

equation with units of mass per unit time (M/T e.g. grams per 

second, gm/sec). Thus it can be viewed as a conservation law. We 

only have a sink so that the rate of change is equal to the rate out. 

To determine the amount present at all times, we must also know 

the amount present initially (or at some time). Since no initial 

condition is given, we assume an arbitrary value, say 𝑄0as a 

parameter. We add k and 𝑄0  to our nomenclature list. 

          

       NOMENCALTURE: 

 

𝑄 = quantity of the radioactive substance (state variable). 

𝑡 = time (independent variable) 

𝑘 = positive constant of proportionality (parameter). 

𝑄0 = initial amount of the radioactive substance      

(parameter). 

 

        The IVP that models radioactive decay is: 

           

      MATHEMATICAL MODEL: 

 

Radio active decay  

Ordinary differential equation  
𝑑𝑄

𝑑𝑡
= −𝑘𝑄…….(2) 

Initial condition 

𝑄(0) = 𝑄0 ………… . (3) 
 

Note that the model is “general” in that we have not 

explicitly given the proportionality constant 𝑘 or the initial amount  

𝑄0 of the substance. The parameter can be given or found using 

specific (e.g., experimental data). However, we do not need to 

know the values of 𝑘 and 𝑄0 to solve the model. 

           

         Step 4: Solve the Mathematical Model: 

Once the model is developed, it is not necessary that the 

solver of the model understand any of the application concepts in 

order to solve the model. What is required now is not an 
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understanding of the physics, but an understanding of the 

mathematics. To solve the ODE in this model, we note that it is 

both linear and separable. We choose to solve it as a separable 

problem, but recall that since it is linear, we can (and must) solve 

for Q explicitly. Separating variables we obtain the sequence of 

equivalent equations 
𝑑𝑄

𝑄
= −𝑘𝑑𝑡, 

∫
𝑑𝑄

𝑄
= −𝑘∫𝑑𝑡, 

𝑙𝑛|𝑄| = −𝐾𝑡 + 𝑐, 
|𝑄| = 𝑒−𝐾𝑡+𝑐 =𝑒𝑐𝑒−𝑘𝑡 . 

Letting 𝐴 = ±𝑒𝑐(+𝑒𝑐 𝑖𝑓𝑄 > 0,−𝑒𝑐𝑖𝑓𝑄 < 0) we obtain 

𝑄 = 𝐴𝑒𝑘𝑡. Although the physics implies 𝑄 ≥ 0, the mathematics 

does not require this in order for a unique solution to the IVP to 

exist. Applying the initial condition 𝑄(0) = 𝑄0, we obtain 𝑄0 = 𝐴. 
Hence the unique solution to the IVP is   

𝑄 = 𝑄0𝑒
𝑘𝑡 ……………(4) 

It is the solution to the general model for radioactive decay 

for 𝑄0 ≥ 0. Radioactive substances are said to experience 

exponential decay.  

The formula (4) is found in physics and biology texts. 

There are two constants (parameters) to be determined and we 

need further data to evaluate them. Known values of the constant k 

( with units 1/T e.g. 1/days) or its (multiplicative) inverse 1/k 

(which is referred to as a time constant since it has units of time) 

for specific substances could be given in reference books. (Usually 

half lives are given instead as explained below. The existence and 

uniqueness theory says that exactly one solution exists for the IVP 

given by (2) and (3) and that the interval of validity is R. If we 

have any doubts that we have found it, we can check that it 

satisfies both the IC and the ODE for all 𝑥 ∈ ℝ. 

 

Step 5: Interpret the Results. Although interpretation of 

results can involve different things, in the context of this course it 

means "After you have solved the model (IVP) in whatever 

generality is appropriate, apply the specific data given to answer 

the questions that motivated our study”. This may require 

additional solution of algebraic equations (e.g. the formula that you 

have derived for the general solution of the model). The term 

general solution is used since arbitrary values of k and Q0 are used. 

(Recall that the term general solution is also used to indicate the 

family of functions which are solutions to an ODE before an initial 

condition is imposed. We could argue that since the initial 

condition is arbitrary, we really have not imposed an initial 
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condition, but again, general here means not only an arbitrary 

initial condition, but also an arbitrary value of k.) This brings us to 

the concept of half life. For an arbitrary value of 𝑄0, let thl be the 

time when only half of 𝑄0  is left. From (4) we obtain the sequence 

of equivalent scalar equations: 

(1 2⁄ )𝑄0 = 𝑄0𝑒
−𝑘𝑡ℎ , (1 2⁄ ) = 𝑒−𝑘𝑡𝑛 , 𝑙𝑛(1 2⁄ ) = −𝑘𝑡𝑛 , 𝑡ℎ

= −
𝑙𝑛(1 2⁄ )

𝑘
 

First note that the half life depends only on the value of 𝑘 

and not on 𝑄0. In fact there is a one to one correspondence 

between values for k and values for 𝑡ℎ𝑙. Thus we also have, 

𝑘 = −
𝑙𝑛(1 2⁄ )

𝑡ℎ
. 

Note that although it may appear that k is negative, in fact 

𝑙𝑛(1 2⁄ )is negative and 

𝑘 = −
𝑙𝑛(2)

𝑡ℎ
………… . (6) 

Reference books generally give half lives. The value of k 

can then be computed using (6). 

 

APPLICATION TO SPECIFIC DATA  

 

Once a general model has been formulated and solved, it 

can be applied to specific data. Alternately, the model can be 

written in terms of the specific data and then solved (again). If a 

general solution of the model has been obtained, this is redundant. 

However, resolving the model provides practice in the process of 

formulating and solving models and hence is useful in preparing 

for exams. Solutions of general models are not normally given on 

exams and are usually not memorized. Also specific data may 

simplify the process and the formulas obtained.  

 

Suppose that the following specific information is given: 

 

SPECIFIC DATA.  

 

If the half-life (the time required for a given amount to 

decrease to half that amount) of a particular radioactive substance 

is known to be 10 days and there are 25 milligrams initially, then 

find the amount present after 8 days. We develop a data chart so 

that the specific data and the questions to be answered are at our 

finger tips. 
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Data Chart: 

 

𝑡 𝑡0
= 0 

𝑡1 = 0 𝑡ℎ
= 10 

𝑄 𝑄0
= 25 

𝑄1 =? 𝑄ℎ = 1 2⁄ 𝑄0 

 

All of the information in the sentence is now contained in 

the data chart for easy access. Recall that the "general" solution of 

the model (IVP) is given by 𝑄 = 𝑄0𝑒
𝑘𝑡. We need to apply the 

information in the data chart to obtain specific values for the 

constants (parameters) 𝑄0  and 𝑘, thus completing the model for 

this specific data. It is certainly acceptable (and indeed desirable 

since it gives practice in formulating and solving models) to 

formulate and solve the model using this specific data.. The 

advantage of formulating and solving a model in a general context 

is that the solutions can be recorded in textbooks in physics, 

biology, etc. (and programmed on personal computers) for those 

not interested in learning to solve differential equations. However, 

if the model assumptions change, a new model must be formulated 

and solved. Practice in formulating and solving specific models 

will help you to know when a different model is needed and in 

what generality a model can reasonably be developed. General 

models are useful when their results can be easily recorded (or can 

be programmed). On the other hand, trying to use the results of a 

complicated model can unduly complicate a simple problem. 

Applying the data in the data chart we obtain: 

 

At  𝑡 = 0,𝑄 = 25 ⇒ 𝑄0 = 25. 

At 𝑡 = 10,𝑄 =
1

2
𝑄0 =

1

2
(25) = 𝑄0𝑒

−𝑘(10) = 25𝑒−𝑘(10). 

Hence ln (
1

2
) = −𝑘(10). 

Note that this result is independent of the value 𝑄0.  So that, 

𝑘 =
ln(2)

10
. Hence, 𝑄 = 25𝑒−

ln(2)

10
𝑡 = 25exp (−

𝑙𝑛2

10
𝑡). 

Thus after 8 days 

𝑄 = 25𝑒−
ln(2)
10

8 = 25 exp (−
𝑙𝑛2

10
8)

= 25 exp(2−(4 5⁄ )) = 25 (24 5⁄ )⁄ =
25

√16
5 . 
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          Application:  Continuous Compounding 

   

         Application Areas include Business and Economics. 

 

          Question2.  If $1000 is invested at 6% annually compounded  

         continuously how much will the investment be worth in 6 years.  

          How long before the investment doubles? 

 

We again apply our four step procedure to solve this applied math 

or  application problem: 

 

Step 1: Understand the concepts in the application area where the 

questions are asked. This we describe the phenomenon to be 

modeled, including the laws it must follow. We consider the 

following “economic definition” for continuous compounding and 

develop a general model (IVP) that governs this process with no 

deposits or withdrawals after the initial investment. 

 

Economic Definition Continuous compounding means that the 

time rate of change of the total investment (principle plus interest) 

is increasing in proportion to the amount present. (Money grows 

like rabbits. The more there is, the faster it grows.)Unfortunately 

(in terms of understanding continuous compounding, but not in 

terms of understanding bank accounts) most people already have 

some understanding of discrete compounding. Boyce and Diprima 

develops discrete as well as continuous compounding and 

compares them. As a first effort at trying to understand continuous 

compounding, it is probably better not to worry about discrete 

compounding (what banks do) and just focus on the model of 

continuous compounding as described in the above “economic 

definition”. We note however that continuous compounding is in 

fact the limit of discrete compounding as the interval of 

compounding (i.e., ∆𝑡) is allowed to go to zero. 

 
 

Fig 2.5.1 
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Step 2: Understand the Needed Concepts in Mathematics. 1. High 

School Algebra, 2. Calculus, 3. Solution Techniques covered in 

this Part of the Notes. 

 

Step3: Develop the Mathematical Model. If the problem is not 

complicated, a "general" model may be developed and solved 

first. This "general" model may then be used for any specific 

problem where the modeling assumptions used to obtain the 

"general " model are satisfied. If they are not, a new model must be 

formulated and solved. To develop a model, let us analyze the 

sentence. "Continuous compounding means the time rate of change 

of the total investment (principle plus interest) is increasing in 

proportion to the amount present." This is just like radioactive 

decay, except that the rate is increasing, instead of decreasing. 

Hence we omit the minus sign and obtain 
𝑑𝑆

𝑑𝑡
= 𝑘𝑆, 𝑘 > 0. 

Where 𝑆 =Total investment (Principle plus interest). 

𝑡 = time 

𝑘 =positive constant of proportionality (text uses 𝑟). 

Always make a list of the variables and parameters you use. 

Begin with those stated in the problem. If you need a variable not 

given, choose one that is appropriate and helps you to remember 

what it stands for. Note that this rate equation has units of money 

per unit time (e.g. dollars per year, $𝑝𝑒𝑟𝑦𝑒𝑎𝑟). To determine the 

amount present at all times, we must also know the amount present 

initially (or at some time). Since no initial condition is given, we 

assume an arbitrary value, say𝑆0.  

           

          Hence the IVP that models this phenomenon is given by: 

 

MATHEMATICAL MODEL: Continuous Compounding. 

ODE    
𝑑𝑆

𝑑𝑡
= 𝑘𝑆, 

IVP   IC  𝑆(0) = 𝑆0 

Note that the model is "general" in that we have not 

explicitly given the proportionality constant k or the initial 

investment S0. These will have to be given or found using data. 

More needs to be said about the proportionality constant k. Unlike 

radioactive substances whose decay rates are set by nature, growth 

rates for money are set by bankers or the government). By looking 

at the definition of interest rates for discrete compounding and 

taking the limit as the time interval for compounding goes to zero 

(or simply by assuming this as a definition of continuous 

compounding) we agree that the constant k expressed as a fraction 

(e.g. 6% = 0.06) is the rate of interest. It is the (multiplicative) 
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inverse of a time constant and has units of fractional portion (from 

the percentage rate) per unit time (1/T, e.g. one over years, 

1/yrs).Since it is a "rate of interest", we now replace k by r. 

           

         Step 4: Solve the Mathematical Model. 

To solve the ODE, we note that it is essentially the same 

equation as for radioactive decay with )-k replaced by r. Hence the 

solution is given by 

𝑆 = 𝑆0𝑒
𝑟𝑡. 

There are two constants (parameters) to be determined and we 

need data to evaluate them. If the assumptions of the model are 

violated (e.g. if we add  the additional assumption that we are 

adding to the original investment or withdrawing money on a 

continuous basis) the model must be reformulated and resolved. 

 

Step 5: Interpret the Results. Although interpretation of results 

can involve a number of things, in the context of this course it 

usually means "After you have formulated and solved the 

"general" model (IVP) for the conditions presented, use your 

results and the specific data given to answer the specific questions 

asked". This may require additional solution of algebraic equations 

obtained in solving the model (IVP), for example, the equation 

obtained as the "general" solution of the model. The term "general" 

solution is used here since arbitrary values of 𝑟 and 𝑆0 are used. 

(Recall that the term general solution is also used to indicate the 

family of functions which are solutions to an ODE before an initial 

condition is imposed. We could argue that since the initial 

condition is arbitrary, we really have not imposed an initial 

condition, but again, "general" here means not only an arbitrary 

initial condition, but also an arbitrary value of r.) 

            

          APPLICATION OF SPECIFIC DATA  

 

Once a general model has been formulated and solved, it 

can be applied using specific data. Alternately, the model can be 

written in terms of the specific data and resolved. Although 

redundant, this resolving of the model provides much needed 

practice in the process of formulating and solving models. This is 

useful in preparation for exams since solutions of general models 

are not normally given on exams and are usually not memorized. 

Also specific data may simplify the process and the formulas 

obtained. Suppose that the following specific information is given: 
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SPECIFIC DATA. If $1000 is invested at 6% annually 

compounded continuously how much will the investment be worth 

in 6 years. How long before the investment doubles? 

We develop a data chart for: r = 6% = 0.06 

 

𝑡 𝑡0 = 0 𝑡1 = 6 𝑡𝑑 =? 
𝑆 𝑆0

= 1000 

𝑆1 =? 𝑆𝑑
= 2𝑆0 

 

All of the information in the sentence except r = 6% = 0.06 

is now contained in the data chart for easy access. Recall that the 

"general" solution of the model (IVP) is given by 𝑆 = 𝑆0𝑒
−𝑟𝑡 .We 

need to apply the information in the data chart to obtain values for 

the ?'s in the chart. It is certainly acceptable to include computation 

of 𝑆0  (i.e. writing the formula with the value given) as part of the 

solution process with Step 2, but normally Step 2 involves the 

solution of the model (IVP) in the most general form that is 

reasonable.) Letting r = 6% = 0.06 and applying the data in the 

data chart we obtain: 

At t = 0, S = 1000 which implies 𝑆0 = 1000. Hence S = 1000 

𝑒0.06𝑡 . Hence at t = 6 years, S = 1000𝑒0.06(6) = ($ 1433.33 using a 

calculator). At t = 𝑡𝑑  , S = 2 𝑆0  = 2000 =𝑆0  𝑒0.06𝑡  = 1000 𝑒0.06𝑡  so 

that 2 2 = 𝑒0.06𝑡𝑑and hence 0.06 𝑡𝑑  = Rn(2). Thus𝑡𝑑  = (100/6)Rn(2) 

( ≈11.55 years using a calculator). Similar to half life, the doubling 

time for the initial investment (or the doubling time for rabbits) is 

not dependent on value of the initial investment (or the initial 

number of rabbits). It is important to emphasize that if the 

modeling assumptions are changed, the result (i.e. formula for the 

solution) derived for the above model in Steps 1 and 2 and applied 

in Step 3, is not valid. The model must be reformulated and re-

solved. 

 

2.6 SUMMARY 

 

In this unit we have explained linear growth and decay 

models, Population growth models, Non-linear growth and decay 

models and Logistic law of population growth models. 

Demographers developed an array of models to measure 

population growth; of these models are usually utilized. A 

population growing arithmetically would increase by a constant 

number of people in each period. 
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2.7  GLOSSARY 

 

i. Variables: In mathematical modelling, variables 

are symbols that represent quantities that can change, such 

as time, distance, temperature, or population size. They are 

used to describe real quantitative situations by writing 

mathematical expressions in place of words. Variables can 

be independent or dependent. 

ii. Equations: The equations in mathematical model contain 

variables, which are values to input into the equation, and 

parameters, which are constants whose value depends on 

the particular model and situation. 

iii. Constraints: In mathematical modelling, constraints are 

the conditions that a solution to an optimization problem 

must satisfy. They represent restrictions or limitations on 

the variables used in equations that depict real-world 

scenarios. Constraints are essential to ensure that the 

mathematical model accurately reflects the situation. 

iv. Objective function: In mathematical modelling, an 

objective function is defined as a linear equation that 

characterizes and addresses optimization problems. It is a 

function dependent on decision variables, which can be 

selected to either maximize or minimize the objective. 

Typically, the objective function is expressed in the form 

𝑍 = 𝑎𝑥 + 𝑏𝑦,where (𝑎) and (𝑏) are constants, while (𝑥) 
and (𝑦) are the variables that need to be optimized. 

Additional constraints, such as (𝑥 > 0) or (𝑦 > 0),  may 

also impose limits on the objective. 

 

CHECK YOUR PROGRESS 

True/False Questions 

 

i. Logistic growth describes a pattern of data whose 

growth rate gets smaller and smaller as the population 

approaches a certain maximum - often referred to as the 

carrying capacity. The graph of logistic growth is a 

sigmoid curve. True/False.  

ii. Population models can be used to determine whether 

alterations in reproductive rates, mortality rates, or 

length of time needed to mature resulting from 

exposure to environmental pollutants will significantly 

alter the ability of a population to sustain itself over 

time. True/False. 
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iii. A population model is not a type of mathematical 

model that is applied to the study of population 

dynamics. True/False. 

iv. Ecological population modelling is not concerned with 

the changes in parameters such as population 

size and age distribution within a 

population. True/False.  

v. Logistic growth model Used in agriculture to model 

crop response to changes in growth factors. The model 

can be used to describe positive or negative growth 

curves. True/False.  
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2.10 TERMINAL QUESTIONS 

 

TQ1. Suppose a tank initially has 10 pounds of salt dissolved in 

100 gallons of water. If brine at a concentration of 1/4 pound of 

salt per gallon is entering the tank at the rate of 3 gallons per 

https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Population_dynamics
https://en.wikipedia.org/wiki/Population_dynamics
https://en.wikipedia.org/wiki/Ecological
https://en.wikipedia.org/wiki/Population_size
https://en.wikipedia.org/wiki/Population_size
https://en.wikipedia.org/wiki/Age_distribution
https://archive.nptel.ac.in/courses/111/107/111107113/
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minute and the well stirred mixture leaves the tank at the same 

rate, how much salt is left in the tank after 30 minutes? What is the 

maximum amount of salt which accumulates in the tank? 

 

TQ2.A body with mass 5 grams falls from rest in a medium 

offering resistance proportional to the square of the velocity. If the 

limiting velocity is 2 centimeters per second, find the velocity v as 

a function of time t. 

 

TQ3. The rate of change of a culture of bacteria is proportional to the 

population itself when 𝑡 = 0, there are 100 bacteria. Two minutes 

later, at 𝑡 = 2, there are 300 bacteria. How many bacteria are there at 

4 minutes? 

 

          TQ4. A population of rabbits has a rate of change of 

 
where t is a measure in years. 

 

i. What is the size of the population of rabbits at four years? 

ii. How many rabbits will there be at 10 years? 

iii. When will the rabbit population reach 400? 

 

2.11 ANSWERS 

 

TQ1.  As 𝑡 → ∞ the amount of salt in the tank approaches 25 lbs. 

This is called the steady-state. 

          TQ2: 𝑘 ≈ 34.1 gr/cm. 

           TQ3: Therefore, at 4 minutes, the bacteria population is 900. 
TQ4: i.  After four years, the rabbit population will be about 117. 

ii. After 10 years, the rabbit population will be about 146. 

iii. the rabbit population about 55.5 years to reach a  

population of 400. 

 
      CHECK YOUR PROGRESS 

 

CYP1. True. 

CYP2. True. 

CYP3. False. 

CYP4. False. 

CYP5. True. 
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UNIT 3:  MATHEMATICAL MODELLING 

IN POPULATION DYNAMICS 

 

CONTENTS: 

 
3.1 Introduction 
3.2 Objectives 
3.3 Prey-Predator Models 
3.4 Competition Models 
3.5 Solved examples 
3.6 Limitations  
3.7 Summary 
3.8 Glossary 
3.9 References 
3.10 Suggested readings 
3.11 Terminal questions 
3.12 Answers 

 

3.1 INTRODUCTION 

 

In previous unit we have discussed Linear growth and decay 

models: Population growth models and Non-linear growth and decay 

models: Logistic law of population growth. In present unit we explained 

mathematical modelling in population dynamics. Mathematical modeling 

is a useful tool for studying population dynamics, which is the study of 

how populations change over time.  The study of the dynamics of 

populations is a tool of fundamental importance in this area, notably in 

Genetics, Ecology, and Epidemiology, to name just a few. In general, 

deterministic models in this field concern global or averaged features of 

the population, typically the size of certain sub-populations, or the 

proportion of individuals sharing certain characteristics. That is, the 

features of the population are averaged and the model aims at depicting 

the evolution of those averaged quantities as time passes. They are based 

on the implicit assumption that, roughly speaking, all individuals in a 

given sub-population behave essentially the same. Dynamics are usually 

modeled in discrete times through some difference equations, and through 

differential equations in continuous times. 
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3.2 OBJECTIVES 

 

After studying this unit, learner will be able to  

i. Described the concept of Prey-Predator Models. 

ii. Explained the technique of Competition Models. 

iii. Identify different types of interactions between the populations 

of two species.  

 

3.3 PREY-PREDATOR MODELS 

 

Alfred Lotka, an American biophysicist who studied the predator-

prey model in 1920 and published his findings in his 1925 book Elements 

of Physical Biology and Vito Volterra, an Italian mathematician who 

developed the predator-prey model in 1926. The model is based on several 

assumptions, including: 

 Predators can eat without limit. 

 The food supply for prey depends on the prey population size. 

 The rate of population change is directly related to the population size. 

 The environment is constant. 

 There are no genetic adaptations for either species. 

 The prey has an unlimited food supply. 

 Let 𝑥(𝑡), 𝑦(𝑡) be the populations of the prey and predator species at 

time 𝑡. We assume that 

i. If there are no predators, the prey species will grow at a rate 

proportional to the population of the prey species. 

ii. If there are no prey, the predator species will decline at a rate 

proportional to the population of the predator species. 

iii. The presence of both predators and preys is beneficial to growth of 

predator species and is harmful to growth of prey species. More 

specifically the predator species increases and the prey species 

decreases at rates proportional to the product of the two 

populations. 

These assumptions give the systems of non-linear first order ordinary 

differential equations: 

𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑏𝑥𝑦 = 𝑥(𝑎 − 𝑏𝑦), 𝑎, 𝑏 > 0 … … … … … … . (1) 

𝑑𝑦

𝑑𝑡
= −𝑝𝑦 + 𝑞𝑥𝑦 =  −𝑦(𝑝 − 𝑞𝑥), 𝑝, 𝑞 > 0 … … … … … … . (2) 

Now, 
𝑑𝑥

𝑑𝑡
 and 

𝑑𝑦

𝑑𝑡
 both vanish if, 
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𝑥 = 𝑥𝑒 =
𝑝

𝑞
, 𝑦 = 𝑦𝑒 =

𝑎

𝑏
… … … … … … (3) 

If the initial populations of prey and predator species are 
𝑝

𝑞
 and 

𝑎

𝑏
 

respectively, the populations will not change with time. These are the 

equilibrium sizes of the populations of the two species. Of course 𝑥 =
0, 𝑦 = 0 also gives another equilibrium position. 

From equation (1) and (2), 
𝑑𝑦

𝑑𝑥
= −

𝑦(𝑝−𝑞𝑥)

𝑥(𝑎−𝑏𝑦)
… … … . (4) 

Or 

𝑎 − 𝑏𝑦

𝑦
𝑑𝑦 = −

𝑝 − 𝑞𝑥

𝑥
𝑑𝑥; 𝑥0 = 𝑥(0), 𝑦0 = 𝑦(0), … … … … … (5) 

Integrating, 

𝑎𝑙𝑛
𝑦

𝑦0
+ 𝑝𝑙𝑛

𝑥

𝑥0
= 𝑏(𝑦 − 𝑦0) + 𝑞(𝑥 − 𝑥0) … … … … … … . (6) 

𝑙𝑛
𝑦

𝑦0

𝑎

+ 𝑙𝑛
𝑥

𝑥0

𝑝

= 𝑏(𝑦 − 𝑦0) + 𝑞(𝑥 − 𝑥0) … … … . (6 − 𝑎) 

𝑦

𝑦0

𝑎 𝑥

𝑥0

𝑝

= 𝑒𝑏(𝑦−𝑦0)+𝑞(𝑥−𝑥0) 

𝑥𝑝𝑦

𝑥0𝑦0

𝑎

= 𝑒𝑏(𝑦−𝑦0)+𝑞(𝑥−𝑥0) 

𝑥𝑝𝑦

𝑥0𝑦0

𝑎

= 𝑒𝑏𝑦𝑒𝑞𝑥𝑒−(𝑥0+𝑦0) 

𝑦𝑎𝑥𝑝

𝑒𝑏𝑦𝑒𝑞𝑥
= 𝑥0𝑦0𝑒−(𝑥0+𝑦0 ) 

𝑦𝑎

𝑒𝑏𝑦

𝑥𝑝

𝑒𝑞𝑥 = 𝑘1……………………………….(6-b) 

 

 

 

 

 

 

 

 

 

A critical point of the system of equations 
𝑑𝑥

𝑑𝑡
= 𝐹(𝑥, 𝑦), 

𝑑𝑦

𝑑𝑡
=

𝐺(𝑥, 𝑦) is a point (𝑥∗, 𝑦∗) such that 𝐹(𝑥∗, 𝑦∗) = 𝐺(𝑥∗, 𝑦∗) = 0. 

Also then the constant valued functions 𝑥(𝑡) = 𝑥∗, 𝑦(𝑡) = 𝑦∗ 

satisfying the system is called an equilibrium solution. 
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Thus Eqn.(6-b) which represents a family of closed curves gives the 

solution of system of Eqn (1).Thus through every point of the first 

quadrant of the 𝑥 − 𝑦 plane, there is a unique trajectory. No two 

trajectories can intersect, since intersection will imply two different slopes 

at the same point. If we start with (0,0) or (
𝑝

𝑞
,

𝑎

𝑏
), we get point trajectories.  

If we start with 𝑥 = 𝑥0, 𝑦 = 0, from equations (1) and (2), we find 

that 𝑥 increases while 𝑦 remains zero. Similarly if we start with 𝑥 =
0, 𝑦 = 𝑦0, we find that 𝑥 remains zero while 𝑦 decreases.Thus positive 

axes of 𝑥 and 𝑦 give two trajectories. 

 

Fig 3.3.1 

Since no two trajectories intersect, no trajectory starting from a 

point situated within the first quadrant will intersect   the 𝑥 − axis and 

𝑦 −axis trajectories. Thus all trajectories corresponding to positive initial 

populations will lie strictly within the first quadrant. Thus if the initial 

populations are positive, the population will be always positive. If the 

population of one (or both) species is initially zero, it will always remain 

zero.The lines through (
𝑝

𝑞
,

𝑎

𝑏
) parallel to the axes of coordinates divide the 

first quadrant  into four parts I,II,III and IV. Using (1), (2), we find that 

in I dx/dt<0 dy/dt>0 dy/dx<0 

in II dx/dt>0 dy/dt<0 dy/dx>0 

in III dx/dt>0 dy/dt<0 dy/dx<0 

in IV dx/dt>0 dy/dt>0 dy/dx>0 
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This gives the direction field at all points as shown in figure 3.3.1. Each 

trajectory is a closed convex curve. These trajectories appear relatively 

cramped near the axes. In I and II, prey species decreases and in III and 

IV, it increases. Similarly in IV and I, predator species increases and in II 

and III, it decreases. After a certain period, both species return to their 

original sizes and thus both species sizes vary periodically with time. 

Stability 

To check the stability of the critical point 𝑃 (
𝑝

𝑞
,

𝑎

𝑏
)  and get an idea of 

the' pattern of the orbits near the critical point, i.e. whether the orbits are 

moving towards the critical point or moving away from it or exhibiting 

some other type of behaviour, we use the perturbation technique. The 

basic idea of this technique is to perturb or disturb the equilibrium slightly 

and then to see whether the system remains in the neighbourhood of the 

equilibrium or deviates far away from it. Mathematically, we change the 

equilibrium values of x and y slightly by adding to them very small 

quantities, 

Let 𝑥 =
𝑝

𝑞
(1 + 𝑢), 𝑦 =

𝑎

𝑏
(1 + 𝑣) 

………………………………………………….(a) 

where u, v are very small quantities. This transformation indicates small 

departure from the equilibrium point (
𝑝

𝑞
,

𝑎

𝑏
). 

From equation (1) and (a), 
𝑑𝑢

𝑑𝑡
= 𝑎𝑢 − 𝑎𝑢𝑣 

𝑑𝑣

𝑑𝑡
= 𝑝𝑢 + 𝑝𝑢𝑣 

……………………………………………………………(b) 

Clearly the system of Equations. (b) is almost linear system and has (0, 0) 

as the critical point corresponding to the critical point (
𝑝

𝑞
,

𝑎

𝑏
)of the system 

of eqns. (1). In order to check the nature, and stability of the critical point 

of system (a) we consider the related linear system, 
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𝑑𝑢

𝑑𝑡
= −𝑎𝑣 

𝑑𝑣

𝑑𝑡
= 𝑝𝑢 

|𝐴 − 𝜆𝐼| = 0, Where 𝐴 = (
0 −𝑎
𝑝 0

). 

|
−𝜆 −𝑎
𝑝 −𝜆

| = 0 

This implies that 𝜆2 + 𝑎𝑝 = 0 

𝜆 = ±𝑖√𝑎𝑝 

𝑑2𝑢

𝑑𝑡2
= −𝑎

𝑑𝑣

𝑑𝑡
= −𝑎𝑝𝑢 

𝑑2𝑣

𝑑𝑡2
= 𝑝

𝑑𝑢

𝑑𝑡
= −𝑎𝑝𝑣 

𝑇 =
2𝜋

(𝑎𝑝)
1

2⁄
 

𝑝𝑢𝑑𝑢 + 𝑎𝑣𝑑𝑣 = 0 

On integration,                        𝑝𝑢2 + 𝑎𝑣2 = 𝜆 

𝑢2

𝜆
𝑝⁄

+
𝑣2

𝜆
𝑎⁄

= 1 

where 𝜆 is an arbitrary non negative constant of integration. Thus the 

trajectories of the system'(b) are ellipses around the critical point (0,0). 

Some of these ellipses are shown in Fig. 3.3.1.We have shown that the 

critical point (0, 0) is a stable center of the linear system (b). We now need 

to assess its character for the almost linear system ('7). Here as we know, 

our theory for almost linear systems. The effect of the nonlinear terms 

may be to change the center into a stable spiral point, or into an unstable 

spiral point, or it may  remain as a stable center. Fortunately, in this case 

we have actually solved the nonlinear Eqns.(l) and seen, what happens. 

We have shown in Fig. 3.3.1. that the graph of this equation for a fixed 

value of C in Eqn. (5) is a closed curve enclosing the critical point (
𝑝

𝑞
,

𝑎

𝑏
). 

Thus the predator and prey have a cyclic variation about the critical point 

(
𝑝

𝑞
,

𝑎

𝑏
) and the critical point (0,0) is also the center of the system (1). 

 

3.4 COMPETITION  MODELS 

 

Competition models in mathematical modeling are used to study 

the interactions between competing species or entities: 

 Species competition: When two species compete, the growth of one 

species reduces the resources available to the other. A mathematical 
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model for species competition can include parameters to account for 

the unknown impact of each species on the other. 

 Competitive environments : Mathematical models can be used to 

analyze competitive environments, such as tournaments.  For 

example, a model can include success gates that promote the winner 

to the next level, and failure gates that either deny the winner or 

promote the loser.  

 Bio-mathematical models: A bio-mathematical model for 

competition between two species can include factors such as 

consumption, population density, and birth and death 

rates. Mathematical models are used to generate answers to questions 

about complex systems and processes that can't be answered through 

observation.  The answers can then be used to help understand, 

manage, and predict future behavior.  

Let 𝑥(𝑡), 𝑦(𝑡) be the populations of two species competing for the 

same resources, then each species grows in the absence of the other 

species, and the rate of growth of each species decreases due to the 

presence of the other species.  

This gives the system of differential equations 

𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑏𝑥𝑦 = 𝑏𝑥 (

𝑎

𝑏
− 𝑦) ; 𝑎 > 0, 𝑏 > 0 … … . . (7) 

𝑑𝑦

𝑑𝑡
= 𝑝𝑥 − 𝑞𝑥𝑦 = 𝑦(𝑝 − 𝑞𝑥) = 𝑞𝑦 (

𝑝

𝑞
− 𝑥) ; 𝑝 > 0, 𝑞 > 0 … … . . (8) 

There are two equilibrium positions viz. (0,0) and (
𝑝

𝑞
,

𝑎

𝑏
).  

There are two point trajectories viz. (0,0) and (
𝑝

𝑞
,

𝑎

𝑏
) and there are two line 

trajectories viz. 𝑥 = 0 and 𝑦 = 0. 

in I dx/dt<0 dy/dt<0 dy/dx>0 (9) 

in II dx/dt<0 dy/dt<0 dy/dx<0 

in III dx/dt>0 dy/dt>0 dy/dx>0 

in IV dx/dt>0 dy/dt<0 dy/dx<0 (10) 

 

This gives the direction field as shown in Fig.3.3.2. From equations (7) 

and (8), 
𝑑𝑦

𝑑𝑥
=

𝑦(𝑝−𝑞𝑥)

𝑥(𝑎−𝑏𝑦)
 𝑜𝑟 

𝑎−𝑏𝑦

𝑦
𝑑𝑦 =

𝑝−𝑞𝑥

𝑥
𝑑𝑥…………………..(11) 

Integrating 

𝑎𝑙𝑛
𝑦

𝑦0
− 𝑏(𝑦 − 𝑦0) = 𝑝𝑙𝑛

𝑥

𝑥0
− 𝑞(𝑥 − 𝑥0) … … … … . (12) 
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Fig.3.3.2 

If the initial populations correspond to the point 𝐴, ultimately the 

first species dies out and the second species increases in size to infinity.  

If the initial populations correspond to the point 𝐵, then ultimately 

the second species dies out and the first species tends to infinity.  

Similar if the initial populations correspond to point 𝐶, the first 

species dies out and the second species goes to infinity and if the initial 

populations correspond to point 𝐷, the second species dies out and the first 

species goes to infinity. 

If the initial populations correspond to the point 𝐸 or 𝐹, the species 

populations converge to equilibrium populations 𝑝 𝑞, 𝑎 𝑏⁄⁄  and if the 

initial populations correspond to point 𝐺, 𝐻, the first and second species 

die out respectively. 

Thus except when the initial populations correspond to points on 

curve 𝑂′𝐸 and 𝑂′𝐹, only one species will survive in the competition 

process and the species can coexist only when the initial population sizes 

correspond to point on the curve 𝐸 𝐹. 

It is also interesting to note that while the initial populations 

corresponding to 𝐴, 𝐸, 𝐵 are quite closer to one another, the ultimate 

behavior of these populations are drastically different. For populations 

starting at 𝐴,  the second species  alone survives, for populations starting 

at 𝐵, the first species alone survives, while for population starting at 𝐸, 
both species can coexist.  

Thus a slight change in the initial population sizes can have a 

catastrophic effect on the ultimate behaviour. 

It may also be noted that for both prey-predator and competition 

models, we have obtained a great deal of insight into the models without 

using the solution of these equations (1),(2),(7) and (8).  
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By using numerical methods of integration with the help of 

computers, we can draw some typical trajectories in both cases an can get 

additional insight into the behaviour of these models.  

Stability: 

We now examine the stability of the steady state (𝑥∗, 𝑦∗)by using the 

perturbation technique 
Let 𝑥 = 𝑥∗(1 + 𝑢), 𝑦 = 𝑦∗(1 + 𝑣) 

………………………………………………….(13) 

where u and v are very said and indicate small deviations from the 

equilibrium. 

 

From equation (7), (8) and (13), 
𝑑𝑢

𝑑𝑡
= −𝑎𝑣 − 𝑎𝑢𝑣 

𝑑𝑣

𝑑𝑡
= −𝑝𝑢 − 𝑝𝑢𝑣 

……………………………………………………………(14) 

System of Equations. (14) is almost linear system and has (0, 0) as the 

critical point corresponding to the critical point (
𝑝

𝑞
,

𝑎

𝑏
)of the system of 

eqns. (7) and (8).  

To examine the stability of the critical point (0,0) of the system (14) we 

consider the related linear system, 
𝑑𝑢

𝑑𝑡
= −𝑎𝑣 

𝑑𝑣

𝑑𝑡
= −𝑝𝑢 

……………………………………………………………(15) 

|𝐴 − 𝜆𝐼| = 0, Where 𝐴 = (
0 −𝑎

−𝑝 0
). 

|
−𝜆 −𝑎
−𝑝 −𝜆

| = 0 

This implies that 𝜆2 − 𝑎𝑝 = 0 

𝜆 = ±√𝑎𝑝 

𝑑2𝑢

𝑑𝑡2
= −𝑎

𝑑𝑣

𝑑𝑡
= 𝑎𝑝𝑢 

𝑑2𝑣

𝑑𝑡2
= −𝑝

𝑑𝑢

𝑑𝑡
= 𝑎𝑝𝑣 

……………………………………………………….(16) 

The general solution of equations (15) and (16), 

𝑢 = 𝑐1𝑒√(𝑎𝑝)𝑡 + 𝑐2𝑒√(𝑎𝑝)𝑡 

where 𝑐1 and 𝑐2 are arbitrary constants. 

We thus and that 𝑢 → ∞ 𝑎𝑠 𝑡 → ∞.  
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Similarly, on solving Eqn.(16), we find that 𝑣 → ∞ 𝑎𝑠 𝑡 → ∞. 
Thus critical point (0, 0) is unstable saddle point of system (16) and hence 

of the system (15). 

It is, therefore, clear that the steady state  (𝑥∗, 𝑦∗) of the system 

(14) is unstable. The point (𝑥∗, 𝑦∗)  moves on to either x-axis or y-axis in 

the (𝑥, 𝑦) -plane, depending on the initial conditions. We may be 

wondering in this case why we did not solve the system of Eqns.(16) 

analytically like we did for the prey-predator model. Yes! we can solve the 

system (14) and find its analytical solution in this case also. 

 

3.5 SOLVED EXAMPLES 

 

Example 1: For the system of equations: 
𝑑𝑥

𝑑𝑡
= 𝑥 − 𝑦 + 𝑥𝑦 

𝑑𝑦

𝑑𝑡
= 3𝑥 − 2𝑦 − 𝑥𝑦 

             ……………………………………(13) 

verify that (0,0) is a critical point. Show that the system is almost linear 

and discuss the type and stability of the critical point (0,0). 
 

Solution: Clearly (0,0) is a critical point of the system (13) can be written 

in the form, 
𝑑𝑥

𝑑𝑡
= 𝑥 − 𝑦 + 𝑓(𝑥, 𝑦) 

𝑑𝑦

𝑑𝑡
= 3𝑥 − 2𝑦 + 𝑔(𝑥, 𝑦) 

where  𝑓(𝑥, 𝑦) = 𝑥𝑦 and 𝑔(𝑥, 𝑦) = −𝑥𝑦 

For checking the condition for almost linear system it is convenient to use 

polar coordinates by letting 𝑥 = 𝑟𝑐𝑜𝑠𝜃, 𝑦 = 𝑟𝑠𝑖𝑛𝜃. 

Now 
𝑓(𝑥,𝑦)

𝑟
=

𝑟2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃

𝑟
= 𝑟𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 → 0 as 𝑟 → 0. 

Also 
𝑔(𝑥,𝑦)

𝑟
= −

𝑟2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃

𝑟
= −𝑟𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 → 0 as 𝑟 → 0. 

Thus system (13) is almost linear. The related linear system in the 

neighbourhood of (0,0) is: 
𝑑

𝑑𝑡
(

𝑥

𝑦
) = (

1 −1
3 2

) (
𝑥

𝑦
) 

…………………………………………………..(14) 

Eigenvalues of (15) are the roots of the equation 

|1 − 𝜆 −1
3 −2 − 𝜆

| = 0 

 

This implies that 𝜆2 + 𝜆 + 1 = 0 …………………….(15) 
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𝑜𝑟 𝜆 =
−1±𝑖√3

2
. 

Therefore, 

𝜆1 =
−1 + 𝑖√3

2
, 𝜆2 =

−1 − 𝑖√3

2
.  

Since the eigenvalues are conjugate complex of the form 𝜆 ± 𝑖𝜇, 𝜆, 𝜇 real. 

Critical point (0,0) of the system (14) is a spiral. 

Also since 𝜆 < 0, it is asymptotically stable point. Since the system (14) is 

almost linear, critical point (0,0) of the system is also asymptotically 

stable spiral point. 

 

Example 2: For the system of equations: 
𝑑𝑥

𝑑𝑡
= 𝑥 

𝑑𝑦

𝑑𝑡
= −𝑥 + 2𝑦 

             ……………………………………(16) 

Find the critical point of the system. Discuss the type and stability of the 

critical point. Write down the general solution of the system (16) and 

sketch the graph of its trajectories. 

 

Solution: Clearly (0,0) is a critical point of the system (16). 

Eigenvalues of (16) are the roots of the equation 

|1 − 𝜆 −0
−1 −2 − 𝜆

| = 0 

 

This implies that 𝜆2 − 3𝜆 + 2 = 0  
Therefore, 

𝜆1 = 1, 𝜆2 = 2.  
Eigenvalues are real, distinct and of the same sign so the critical point is a 

mode. Also since 𝜆1 > 0, 𝜆2 > 0 it is unstable. 

To find the general solution of the system (16), we find the eigenvectors 

corresponding to the eigenvalues 𝜆1 = 1  and 𝜆2 = 2. 
Eigenvector corresponding to the eigenvalue 𝜆1 = 1  is the solution of the 

equation 

(
0 0

−1 1
) (

𝑥

𝑦
) = (

0

0
) 

We see that (1
1
) is one possible eigenvector. Similarly (0

1
) is one possible 

eigenvector corresponding to the eigenvalue 𝜆2 = 2. 
Then the general solution of the system  (16) can be written as, 

(
𝑥

𝑦
) = 𝑐1 (

1

1
) 𝑒𝑡 + 𝑐2 (

0

1
) 𝑒2𝑡 

 

It implies that   𝑥 = 𝑐1𝑒𝑡  

𝑥 = 𝑐1𝑒𝑡 + 𝑐2𝑒2𝑡……………………….(17) 
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where 𝑐1, 𝑐2 are arbitrary  constants. 

For 𝑐1 = 0, 𝑥 = 0 and 𝑥 = 𝑐2𝑒2𝑡 . In this case the trajectory is positive 𝑦 

axis when 𝑐2 > 0 and it is negative 𝑦 axis when 𝑐2 < 0 and also since 𝑦 →
∞ 𝑎𝑠 𝑡 → ∞, each path approaches ∞ as 𝑡 → ∞. 
For 𝑐2 = 0, 𝑥 =  𝑐1𝑒𝑡; 𝑦 =  𝑐1𝑒𝑡.  This trajectory is half line 𝑦 = 𝑥, 𝑥 > 0  

when 𝑐1 > 0 and the half line  𝑦 = 𝑥, 𝑥 < 0, when 𝑐1 < 0  and again both 

paths→ ∞  as 𝑡 → ∞. 
When both 𝑐1 and 𝑐2 are ≠ 0, the trajectories are parabolas 

𝑦 = 𝑥 + (𝑐2 𝑐1
2⁄ )𝑥2 

which passes through the origin with slope 1. Each of these trajectories 

also approach ∞  as 𝑡 → ∞. 
The sketch of the trajectories is shown, 

 
 

Fig 3.5.1 

Example 3:  Determine the type and stability of the critical point (0,0) of 

the almost linear system  
𝑑𝑥

𝑑𝑡
= 4𝑥 + 2𝑦 + 2𝑥2 − 3𝑦2 

𝑑𝑦

𝑑𝑡
= 4𝑥 − 3𝑦 + 7𝑥𝑦 

             ……………………………………(18) 

Find the general solution of the corresponding linear system and sketch 

it’s trajectories. 

 

Solution : The auxiliary equation of the associated linear system 
𝑑𝑥

𝑑𝑡
= 4𝑥 + 2𝑦 

𝑑𝑦

𝑑𝑡
= 4𝑥 − 3𝑦 

………………………………………………………..(19) 

is  (4 − 𝜆)(−3 − 𝜆) − 8 = (𝜆 − 5)(𝜆 + 4) = 0. 
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The roots 𝜆1 = −4  and 𝜆2 = 5 are real unequal and have opposite sign. 

So the critical point (0,0) is an unstable saddle point of the system (19) 

and hence of the system (18). 

Eigenvector corresponding to the eigenvalue 𝜆1 = −4  is the solution of 

the equation  ( 1
−4

) and the corresponding to the eigenvalue 𝜆2 = 5  is (2
1
). 

So the general solution of (19) can be written as, 

𝑥 = 𝑐1𝑒−4𝑡 + 2 𝑐2𝑒5𝑡 

𝑥 = −4𝑐1𝑒−4𝑡 + 𝑐2𝑒5𝑡……………………….(20) 

where 𝑐1, 𝑐2 are arbitrary  constants. 

For 𝑐1 = 0, 𝑥 = 2𝑐2𝑒5𝑡 , 𝑦 = 𝑐2𝑒5𝑡 .  

This trajectory is the half line 𝑦 =
𝑥

2
, 𝑥 > 0 when 𝑐2 > 0 and half line 𝑦 =

𝑥

2
, 𝑥 > 0 when 𝑐2 < 0.  

Also x→ ∞ , 𝑦 → ∞, as 𝑡 → ∞. 
For 𝑐2 = 0, 𝑥 =  𝑐1𝑒𝑡; 𝑦 =  −4𝑐1𝑒−4𝑡 .   
This, trajectory is half line 𝑦 = −4𝑥, 𝑥 > 0  when 𝑐1 > 0 and the half line  

𝑦 = −4𝑥, 𝑥 < 0, when 𝑐1 < 0.   
Both the trajectories approach and enter the origin as 𝑡 → ∞. 𝑐1 and 𝑐2 are 

≠  0, the trajectories are parabolas 

𝑦 = 𝑥 + (𝑐2 𝑐1
2⁄ )𝑥2 

which passes through the origin with slope 1.  

Each of these trajectories also approach ∞  as 𝑡 → ∞. If 𝑐1 ≠  0, 𝑐2 ≠  0, 
solution (20) represents curved trajectories none of which approaches 
(0,0) as  𝑡 → ∞. 
The sketch of the trajectories is shown, 

 
Fig 3.5.2 

 

3.6 LIMITATIONS 

 

Prey-Predator Models: 
From the above discussion it is clear that there is no strategy for the Volter

ra system to maintain its trivial state.As can be seen from Figure 3.3.1, for

 a small change in the control phase the prey predator system changes 

from one orbit to another. In mathematical terms, we explain the behavior 

 of these systems by saying that Volterra orbits have no "roughness". We 

also observed that 
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i.  in the absence of predators, the prey population grow, 

unbounded exponentially and 

ii. in the absence of prey, the predator population goes' to 

extinction due to lack of food. 

These phenomena arc not found to occur in reality.  

In the absence of predators, the prey population is expected to increase 

rapidly to start with; after considerable increase in its size, its growth must 

be retarded due to crowding effects and ultimately, it cannot increase 

beyond a limiting level.  

On the other hand, when prey (food) is not available, the predator 

population is expected to decrease rapidly in the beginning; after some 

time, the predators are likely to adjust themselves with the situation by 

finding alternative sources of food. So far we discussed mathematical 

model for two 'species in which one species preyed upon the other. In 

contrast to this, we shall now consider two species. Which compete with 

each other for the food available in their common environment. 

 

Competition models 
The major limitation of this model lies in the extreme outcome that 

one species may be such a strong conipetitor that it, may force the other 

species to go extinct. In the natural environment, however populations are 

distributed over space, and space is strongly inhomogeneous. A species 

that is completely out-competed by another species, may find various 

refuges where it can continue to survive, at least in small numbers. 

It is also found in natural environment that two species competing 

for a common resource for their survival coexist. This model fails to 

exhibit such coexistence of two competing species.  

Another limitation of the model lies in the observation that each 

species grows unbounded in the absence of the other. This can never 

happen in reality -.there must be carrying capacity for the growing species. 

 

3.7 SUMMARY 

 

In the present unit we explain the prey – predator model In briefly 

the predator-prey equations is an ecological system. Two linked equations 

model the two species which depend on each other: One is the prey, which 

provides food for the other, the predator. Both prey and predator 

populations grow if conditions are right.  

We also explain competition  models relates the population density 

and carrying capacity of two species to each other and includes their 

overall effect on each other. 
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 3.8 GLOSSARY 

i. Population dynamics: The population dynamics is a description 

(and prediction) of the size and age composition of a group of 

individuals of one particular species, and how the number and age 

composition of individuals in a population change over time.  

ii. Predators in mathematics:  A boundary – value problem for a 

system of two non-linear differential equations in partial 

derivatives. A stationary state stability is studied. A variational 

method is used to build a numerical solution. 

iii. Trajectory: A trajectory is a path taken up by a moving object that 

is following through space as a function of time. Mathematically, a 

trajectory is described as a position of an object over a particular 

time.  

iv. Variables: In mathematical modelling, variables are symbols that 

represent quantities that can change, such as time, distance, 

temperature, or population size. They are used to describe real 

quantitative situations by writing mathematical expressions in 

place of words. Variables can be independent or dependent. 

v. Equations: The equations in mathematical model contain 

variables, which are values to input into the equation, and 

parameters, which are constants whose value depends on the 

particular model and situation. 

vi. Constraints: In mathematical modelling, constraints are the 

conditions that a solution to an optimization problem must satisfy. 

They represent restrictions or limitations on the variables used in 

equations that depict real-world scenarios. Constraints are essential 

to ensure that the mathematical model accurately reflects the 

situation. 

CHECK YOUR PROGRESS 

1. Fill in the blanks: 

i. Assumptions in the predator-prey model, including: 

a. Predators can eat ……. 

b. The environment is………….. 

ii. Competition models in mathematical modelling are used to 

study the interactions between ………………….. 

2. True/False 

i. In predator-prey model we assume that there are no predators, 

the prey species will grow at a rate proportional to the 

population of the prey species. True\False. 
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ii. In competition model if  there is populations of two species 

competing for the same resources, then each species grows in the 

absence of the other species, and the rate of growth of each species 

increases due to the presence of the other species. True\False. 

 

3. This Question consist of two statements – Assertion (A) and Reason 

(R). Answer these questions selecting the appropriate option given 

below: 

 

Assertion (A): In the absence of a predator, the prey population  

growth will always be exponential. 

 

Reason (R): Exponential growth is when the resources and the 

environment allow an organism to realise fully its innate potential to 

grow in numbers. 
 

 

i. Both A and R are true and R is the correct explanation of A. 

ii. Both A and R are true and R is not the correct explanation of 

A. 

iii. A is true but R is false. 

iv. A is False but R is true. 
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3.11  TERMINAL QUESTIONS 

TQ1: If each of the following problems, verify that (0, 0) is a critical 

point, show that the system is almost linear, arid discuss the type and 

stability of the critical point (0, 0). 

 
TQ2: Find the critical point of the system 

 
and discuss its nature and stability. Find the general solution of the system 

and sketch its trajectories. 

 

3.12  ANSWERS 

TQ1 a) Spiral point, unstable b) Saddle point, unstable 

 

TQ2 Critical point (0, 0) is a center. General solut.ion of the system is 

 
 So x(t) and  y(t) are periodic and, each trajectory is a closed curve 

surrounding the origin. Also we have from given system 
𝑑𝑦

𝑑𝑥
= −

𝑥

𝑦
 whose 

general solution 𝑥2 + 𝑦2 = 𝑐2 this yields all the curve which are circles. 

Also from the differential equations, from the region x>0, y>0 we see that 
𝑑𝑥

𝑑𝑡
< 0, means 𝑥 decreases with 𝑡, 

𝑑𝑦

𝑑𝑡
> 0 means 𝑦 increases with 𝑡. This 

the  trajectories  are anticlockwise the circle.  
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Fig 3.12.1 

   
CHECK YOUR PROGRESS 

 

CHQ1.  ia) without limit.  ib) constant. ii competing species. 

 

CHQ2.   i) True. ii False. 

 

CHQ3. i. Both A and R are true and R is the correct explanation of A. 
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UNIT 4:  MATHEMATICAL 

MODELLING OF EPIDEMICS 

 

CONTENTS: 

 
4.1 Introduction 
4.2 Objectives 
4.3 Susceptible –Infective Model 

4.4 Susceptible-Infected-Susceptible (SIS) Model 
4.5 Susceptible-Infected-Recovered (SIR) Model 
4.6 Susceptible-Infected-Removed-Susceptible  
            (SIRS) Model 

4.7 Limitations  
4.8 Summary 
4.9 Glossary 
4.10 References 
4.11 Suggested readings 
4.12 Terminal questions 
4.13 Answers 

 

4.1    INTRODUCTION 

 

In previous units we have discussed about why 

mathematical modelling needed and what is a role of linear - Non-

linear growth and decay models. We have discussed in previous 

unit mathematical modelling in population dynamics. 

This unit is a presentation of epidemic model. 

Epidemiology is a discipline, which deals with the study of 

infectious diseases in a population. It is concerned with all aspects 

of epidemic, e.g. spread, control, vaccination strategy etc.  

 

          What is epidemic principle? 

 

Epidemic refers to an increase, often sudden, in the number 

of cases of a disease above what is normally expected in that 

population in that area. Outbreak carries the same definition of 

epidemic, but is often used for a more limited geographic area. 
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The aim of epidemic modeling is to understand and if 

possible control the spread of the disease. In this context following 

questions may arise: 

 How fast the disease spreads? 

 How much of the total population is infected or will    

             be infected? 

 Control measures! 

 Effects of Migration/ Environment/ Ecology, etc.  

             Persistence of the disease. 

 

             Infectious diseases are basically of two types: 

 

Acute (Fast Infectious): Stay for a short period (days/weeks) e.g. 

Inuenza, Chickenpox etc. 

 

Chronic Infectious Disease: Stay for larger period (month/year) 

e.g. hepatitis. 

 

In general the spread of an infectious disease depends upon: 

 Susceptible population, 

 Infective population, 

 The immune class, and the mode of transmission. 

          

Assumptions: 

We shall make some general assumptions, which are 

common to all the models and then look at some simple models 

before taking specific problems. 

 The disease is transmitted by contact (direct or indirect) 

between an infected individual and a susceptible individual. 

 There is no latent period for the disease, i.e., the disease is 

transmitted instantaneously when the contact takes place. 

 All susceptible individuals are equally susceptible and all 

infected ones are equally infectious. 

 The population size is large enough to take care of the 

fluctuations in the spread of the disease, so a deterministic 

model is considered. 

 The population, under consideration is closed, i.e.  has a 

fixed size. 
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4.2 OBJECTIVES 

 

After studying this unit, learner will be able to  

 

i. Explain the Susceptible-Infected (SI) Epidemic Model. 

ii. Describe the Susceptible-Infected-Susceptible (SIS) Model. 

iii. Define the SIS Model with constant number of carriers. 

iv. Analyze the Simple epidence model with carriers and other 

models. 

 

4.3 SUSCEPTIBLE – INFECTIVE (SI) 

EPIDEMIC MODEL 

 

Let 𝑆(𝑡) be the number of susceptible (i.e., those who can 

get a disease) and  𝐼(𝑡) infected persons (i.e., those who have 

already got the disease) and recovered class, denoted by 𝑅(𝑡)(i.e., 

persons who have recovered from the disease). 

 

The steps we are following here: 

 

 Construct ODE (Ordinary Differential Equation) models 

  Relationship between the diagram and the equations 

 Alter models to include other factors. 

 

ODEs deal with populations, not Individuals. We assume the 

population is well-mixed. We keep track of the inflow and the 

outflow. 

Initially let there be 𝑛 susceptible and one infected  person 

in the system, so that, 

𝑆(𝑡) + 𝐼(𝑡) = 𝑛 + 1, 𝑆(0) = 𝑛,   𝐼(0) = 1 … … … … . (1) 

A susceptible person gets infected when he comes in 

contact with an infected one. Mathematically, we can say that the 

rate of increase of the infected class is proportional to the product 

of the susceptible and infected persons. Hence, the susceptible 

class also decreases at the same rate. 

So that we get the system of differential equations: 
𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼,

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 … … … . . (2) 

Where 𝛽 > 0. 
So that, 

𝑑𝑆

𝑑𝑡
+ 

𝑑𝐼

𝑑𝑡
= 0, 
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𝑆(𝑡) + 𝐼(𝑡) = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑆(0) + 𝐼(0) = 𝑛 + 1 
 

  ⇒ 𝑆(𝑡) + 𝐼(𝑡) = 𝑛 + 1 … … … … (3) 

 

And    
𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼(𝑛 + 1 − 𝑆), 

𝑑𝐼

𝑑𝑡
= 𝛽𝐼(𝑛 + 1 − 𝐼) … . (4) 

 

Integrating, the differential equation we obtain 

 

∫
𝑑𝑆

𝑆(𝑛 + 1 − 𝑆)
=  −𝛽𝑑𝑡 ⇒

1

𝑛 + 1
∫ [

1

𝑛 + 1 − 𝑆
+

1

𝑆
] 𝑑𝑠

= − ∫ 𝛽𝑑𝑡, 

This implies 

  − ln(𝑛 + 1 − 𝑆) + ln(𝑆) = −(𝑛 + 1)𝛽𝑡 +    𝐴(constant). 

At 𝑡 = 0, 𝑆(0) = 𝑛.  
This implies 𝐴 = ln(𝑛). 

⇒ 𝑙𝑛 [
𝑆

𝑛(𝑛+1−𝑆)
] =  −(𝑛 + 1)𝛽𝑡 ⇒

𝑆

𝑛(𝑛+1−𝑆)
= 𝑒−(𝑛+1)𝛽𝑡, 

 

𝑆(𝑡) =
𝑛(𝑛 + 1)

𝑛 + 𝑒(𝑛+1)𝛽𝑡
, 

𝐼(𝑡) = (𝑛 + 1) − 𝑆(𝑡) = 𝑛 + 1 −
𝑛(𝑛 + 1)

𝑛 + 𝑒(𝑛+1)𝛽𝑡
 

                            =  
𝑛 + 1

1 + 𝑛𝑒−(𝑛+1)𝛽𝑡
 

𝐼(𝑡) =
𝑛 + 1

1 + 𝑛𝑒−(𝑛+1)𝛽𝑡
 

     …………………………….(5) 

 

so that 

lim
𝑛→∞

𝑆(𝑡) = 0,  lim
𝑛→∞

𝐼(𝑡) = 𝑛 + 1 ...................(6) 

 

Therefore, we conclude that as time increases, all the   

susceptible persons will become infected.  
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Example. If the contact rate (𝛽) be 0.001 and the number of 

susceptiles (𝑛) be 2000 initially, determine: 

 

a. The number of susceptible left after 3 weeks; 

b. The density of susceptible when the rate of appearance of 

new cases is maximum; 

c. The time (in weeks) at which the rate of appearance of new 

cases is a maximum. 

d. The maximum rate of appearance of new cases and  

e. The epidemic curve. 

 

             Solution: 

a) The number of susceptible left after 3 weeks is:   

𝑥 =
𝑛 + 1

1 + 𝑛𝑒−(𝑛+1)𝛽𝑡
 

 

𝑥 =
2000 + 1

1 + 2000𝑒−(2000+1)0.001×3
=

2001

1 + 2000𝑒−2001×0.001×3
 

=
2001

1+2000𝑒−6.003 = 
2000×2001

2000+𝑒−6.003 ≈ 1664. 

 

b) When the rate of appearance of new cases is maximum, the 

density of susceptibles is 

𝑥 =
𝑛 + 1

2
=  

2001

2
= 1000.5 ≈ 1001 

c) The time at which the rate of appearance of new cases is a 

       maximum is 

  

𝑡 =
ln 𝑛

𝛽(𝑛+1)
=  

ln 2000

(.001)(2001)
=  

𝑙𝑛2000

2.001
= 1.6 weeks 

d) The maximum rate of appearance of new cases is  

−
𝑑𝑥

𝑑𝑡
= 𝛽 (

𝑛+1

2
)

2

= (. 001)(1000.5)2 ≈ 1001 

The epidemic curve is obtained by plotting −
𝑑𝑥

𝑑𝑡
 against 𝑡 in the 

relation  

𝑥 =
𝑛 + 1

1 + 𝑛𝑒−(𝑛+1)𝛽𝑡
 

 

 −
𝑑𝑥

𝑑𝑡
=

𝛽(𝑛+1)2𝑛𝑒(𝑛+1)𝛽𝑡

{1+𝑛𝑒−(𝑛+1)𝛽𝑡}
2  

 

We plot −
𝑑𝑥

𝑑𝑡
 against 𝑡 using the values  𝛽 = 0.001, 𝑛 = 200 

and  𝑡 = 1,2,3,4,5,6,7,8,9,10. 
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Fig 4.5.1 

 

 

4.4. SUSCEPTIBLE  -  INFECTED  

SUSCEPTIBLE (SIS) MODEL 

 

We model such a system by dividing a population into 

three distinct groups: susceptible ( ), -infected ( ) and -infected ( ), 

based on the Susceptible-Infectious-Susceptible (SIS) model. Once 

the individuals in the -infected group recover from the disease, 

they gain no permanent immunity.  

The SIS (Susceptible – Infectious  - Susceptible) Model 

was introduced by Weiss and Dishon to study infections in a 

closed population of n individuals, infections that do not confer 

any long lasting immunity (gonorrhea, or the common cold, for 

example). 
Here, a susceptible person can become infected at a rate 

proportional to 𝑆𝐼 and an infected person can recover and become 

susceptible again at a rate 𝛾𝐼. 
 

So that, 
𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼 +  𝛾𝐼, 

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛾𝐼,……………………(7) 

 

which gives 

 
𝑑𝐼

𝑑𝑡
= (𝛽(𝑛 + 1) − 𝛾)𝐼 − 𝛽𝐼2…………………………….(8) 
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Recovery rate α =
1

Infectious period
 is taken to be constant 

though infection period (the time spent in the infectious class) is 

distributed about a mean value & can be estimated from the 

clinical data. In the above model, it is assumed that the whole 

population is divided into two classes susceptible and infective; 

and that if one is infected then it remains in that class. However, 

this is not the case, as an infected person may recover from the 

disease. 
 

 

 
 

 
 

Fig.4.3.1 
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The above figures show the dynamics of epidemic models. 

a) SI model with 𝛽 = 0.001, 𝐼(0) = 1, 
b) SIS model with 𝛽 = 0.001, 𝛼 = 0.4, 

𝑆(0) = 2000, 𝐼(0) = 1. 
 

𝑑𝑆

𝑑𝑡
+ 

𝑑𝐼

𝑑𝑡
= 0,   

 

𝑆(𝑡) + 𝐼(𝑡) = 𝐾 (constant). 

This implies that  

𝐾 = 𝑆(0) + 𝐼(0) = 𝑛 + 1 ⇒ 𝑆(𝑡) + 𝐼(𝑡) = 𝑛 + 1. 
𝑑𝑆

𝑑𝑡
= −[(𝑛 + 1)𝛽 + 𝛼]𝑆 + 𝛽𝑆2 + (𝑛 + 1)𝛼, 

𝑑𝐼

𝑑𝑡
= [(𝑛 + 1)𝛽 −  𝛼]𝐼 −  𝛽𝐼2 = 𝑐𝐼 − 𝛽𝐼2,  

where  𝑐 = (𝑛 + 1)𝛽 − 𝛼. 

⇒
𝑑𝐼

𝐼 (1 −
𝛽
𝑐 𝐼)

= 𝑐𝑑𝑡 ⇒

𝑐
𝛽 𝑑𝐼

𝐼 (
𝑐
𝛽 − 𝐼)

= 𝑐𝑑𝑡 

⇒ [
1

𝐼
+

1
𝑐
𝛽 − 𝐼

] = 𝑐𝑑𝑡. 

Integrating we obtain, 

ln(𝐼) − 𝑙𝑛 (
𝑐

𝛽
− 𝐼) = 𝑐𝑡 + 𝐵(𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡). 

Now, 𝐼(0) = 1 ⇒ 𝐵 

= 𝑙𝑛(𝐼) − ln (
𝑐

𝛽
− 𝐼) + 𝑙𝑛 (

𝑐

𝛽
− 𝐼) = 𝑐𝑡 ⟹

𝐼(
𝑐

𝛽
−𝐼)

(
𝑐

𝛽
−𝐼)

 = 𝑒𝑐𝑡,  

This implies that  

𝐼(𝑡) =

𝑐
𝛽

1 + (
𝑐
𝛽

− 1) 𝑒−𝑐𝑡
 

=
(𝑛 + 1) −

𝛼
𝛽

1 + (𝑛 + 1 −
𝑐
𝛽 − 1) 𝑒−[(𝑛+1)𝛽−𝛼]𝑡

. 

𝑆(𝑡) = 𝑛 + 1 − 𝐼(𝑡)

= 𝑛 + 1 −
(𝑛 + 1) −

𝛼
𝛽

1 + (𝑛 + 1 −
𝑐
𝛽 − 1) 𝑒−[(𝑛+1)𝛽−𝛼]𝑡

, 
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⇒ 𝑆(𝑡) =
(𝑛 + 1) (𝑛 + 1 −

𝛼
𝛽 − 1) 𝑒−[(𝑛+1)𝛽−𝛼]𝑡 +

𝛼
𝛽

1 + (𝑛 + 1 −
𝛼
𝛽 − 1) 𝑒−[(𝑛+1)𝛽−𝛼]𝑡

 

As 𝑡 → ∞, 𝑆 →
𝛼

𝛽
 and 𝐼 → 𝑛 + 1 −

𝛼

𝛽
; 

provided (𝑛 + 1)𝛼 − 𝛽 > 0. 
 

Hence in this case, a fraction of susceptible persons 

will be there, which have not been  infected or a fraction of 

infected persons have recovered and becomes susceptible 

again. 

 

4.5. SUSCEPTIBLE  -  INFECTED – 

RECOVERED  (SIR) MODEL 

 

This model was developed by Kermack and McKendrick 

and is given by the set of differential equations as follows: 

 
𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼, 

 

   
𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛼𝐼, 

 
𝑑𝐼

𝑑𝑡
= 𝛼𝐼, (𝛼, 𝛽 > 0). 

 

It Is assumed that the susceptible become infected when they come 

in contact with one another (𝛽𝑆𝐼)  and a fraction of the infected 

class (𝛼𝐼) recovers from the disease and moves to the   recovered 

class. Now, 

 
𝑑𝑆

𝑑𝑅
=  

𝑑𝑆

𝑑𝑡
.

𝑑𝑡

𝑑𝑅
=

−𝛽𝑆𝐼

𝛼𝐼
=  

−𝛽

𝛼
𝑆, 

 

⇒
𝑑𝑆

𝑆
=

−𝛽

𝛼
𝑑𝑅 ⇒ 𝑙𝑛(𝑆) =

−𝛽

𝛼
𝑅 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = ln(𝑛). 

Initially,  
𝑑𝐼

𝑑𝑆
=  

𝑑𝐼

𝑑𝑡
.
𝑑𝑡

𝑑𝑆
=

𝛽𝑆𝐼 − 𝛼𝐼

−𝛽𝑆𝐼
=  −1 +

𝛼

𝛽
𝑙𝑛(𝑆) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

            Initially at 𝑡 = 0, 

𝑆(0) = 𝑛, 𝐼(0) = 1 ⇒ 1 + 𝑛 − 
𝛼

𝛽
ln(𝑛). 
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⇒ 𝐼(𝑡) = −𝑆 +
𝛼

𝛽
𝑙𝑛(𝑆) + 𝑛 + 1 −

𝛼

𝛽
𝑙𝑛(𝑛)

= 𝑛 + 1 − 𝑆 +
𝛼

𝛽
𝑙𝑛 (

𝑆

𝑛
). 

Since 𝑆 = 𝑛𝑒
−𝛽

𝛼
𝑹, we have, 

This implies that 
𝑑𝑅

𝑑𝑡
=  𝛼 [𝑛 + 1 − 𝑛 (𝑒−

𝛽

𝛼
𝑅) − 𝑅], 

⇒
𝑑𝑅

𝑑𝑡
= 𝛼 [𝑛 + 1 − 𝑛 (1 −

𝛽

𝛼
𝑅 +

𝛽𝟐

𝟐𝛼𝟐
) − 𝑅], 

(Assuming 
𝑅
𝛼

𝛽

 is small), 

⇒
𝑑𝑅

𝑑𝑡
= 𝛼 [1 − 𝑛

𝛽𝟐

2𝛼𝟐
{𝑅2 −

2𝛼𝟐

𝑛𝛽𝟐
(

𝑛𝛽

 𝛼
− 1)} 𝑅], 

= 𝛼 [1 − 𝑛
𝛽𝟐

2𝛼𝟐
{𝑅 −

𝛼𝟐

𝑛𝛽𝟐
(

𝑛𝛽

 𝛼
− 1)}

2

] +
𝛼𝟐

2𝑛𝛽𝟐
(

𝑛𝛽

 𝛼
− 1)

2

, 

=
𝑛𝛽𝟐

2𝛼𝟐
[
2𝛼𝟐

𝑛𝛽𝟐
+

𝛼𝟒

𝑛2𝛽𝟒
(

𝑛𝛽

 𝛼
− 1)

2

− {𝑅 −
𝛼𝟐

𝑛𝛽𝟐
(

𝑛𝛽

 𝛼
− 1)}

2

, ] 

=
𝑛𝛽𝟐

2𝛼𝟐
[𝐵2 − (𝑅 − 𝐴)2] where 𝐴 =

𝛼𝟐

𝑛𝛽𝟐 (
𝑛𝛽

 𝛼
− 1),  and 

𝐵2 = 
2𝛼𝟐

𝑛𝛽𝟐 +
𝛼𝟒

𝑛2𝛽𝟒 (
𝑛𝛽

 𝛼
− 1)

2

. Integrating we get, 

∫
𝑑𝑅

𝐵2 − (𝑅 − 𝐴)2
= ∫ 𝑛

𝛽𝟐

2𝛼
𝑑𝑡 ⇒

1

𝐵
𝑡𝑎𝑛ℎ−1 (

𝑅 − 𝐴

𝐵
)

= 𝑛
𝛽𝟐

2𝛼
𝑡 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

Initially at 𝑡 = 0, 𝑅(0) = 0. 

This implies constant = 
1

𝐵
𝑡𝑎𝑛ℎ−1 (

−𝐴

𝐵
) = −

1

𝐵
𝑡𝑎𝑛ℎ−1 (

𝐴

𝐵
). 

⇒
1

𝐵
𝑡𝑎𝑛ℎ−1 (

𝑅 − 𝐴

𝐵
) =

𝑛𝛽𝟐

2𝛼
𝑡 −

1

𝐵
𝑡𝑎𝑛ℎ−1 (

𝐴

𝐵
). 

𝑅 − 𝐴

𝐵
=  tanh [𝐵

𝑛𝛽𝟐

2𝛼
𝑡 −

1

𝐵
𝑡𝑎𝑛ℎ−1 (

𝐴

𝐵
)] , 

This implies that  

 

𝑅(𝑡) = 𝐴 + 𝐵 tanh [𝐵
𝑛𝛽𝟐

2𝛼
𝑡 −

1

𝐵
𝑡𝑎𝑛ℎ−1 (

𝐴

𝐵
)] . 

Therefore, 

𝑆(𝑡) = 𝑛𝑒
−

𝛽 
𝛼

[𝐴+𝐵 tanh[𝐵
𝑛𝛽𝟐

2𝛼
𝑡−

1
𝐵

𝑡𝑎𝑛ℎ−1(
𝐴
𝐵

)],]
 

and 

𝐼(𝑡) = 𝑛 + 1 − 𝑆(𝑡) − 𝑅(𝑡). 
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The numerical solution of the model shows that both susceptible 

and infected goes to zero and there is a full recovery. 

 

 

 

4.6 SUSCEPTIBLE  -  INFECTED – RECOVERED - 

SUSCEPTIBLE  (SIRS) MODEL 

 

A refinement of the SIR model can be made by assuming that 

the recovered person becomes susceptible again due to loss of 

immunity at a rate proportional to the population in recovery class 

𝑅, with proportionality constant 𝛾. The following differential 

equations describe the model: 

 
𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼 + 𝛾𝑅, 

 

   
𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛼𝐼, 

𝑑𝐼

𝑑𝑡
= 𝛼𝐼 − 𝛾𝑅, (𝛼, 𝛽, 𝛾 > 0). 

 

 
Fig 4.6.1 
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Fig 4.6.2 

 

 

Figure 4.6.2 shows the dynamics of SIRS model for 𝛽 = 0.001, 
𝛼 = 0.4 and 𝛾 = 0.01. 
 

The figures show the dynamics of epidemic models. 

 

(a) SIR model with 𝛽 = 0.001, 𝛼 = 0.4, 𝑆(0) = 2000, 𝐼(0) =
1, 𝑅(0) = 0. 
 

(b) SIRS model with 𝛽 = 0.001, 𝛼 = 0.4, 𝑆(0) = 2000, 𝐼(0) =
1, 𝑅(0) = 0. 
 

We can use the SIRS model to capture the dynamics of 

COVID-19. The Susceptible population becomes infected by 

COVID-19 at a rate 𝛽 (per-capita Effective contact rate), which is 

the number of effective contacts made by a given individual per 

unit time. We are trying to minimize the value of 𝛽 by practicing 

social distancing. Once infected, the susceptible population (𝛽 

moves to the infected class. The infected class recovers from the 

virus by hard immunity of individual (since no vaccine is 

available) but have the chance to reinfection. 

 

 

4.4 LIMITATIONS 

The limitations of above methods are as following: 

i. The accuracy of a model is dependent on the assumptions 

it's based on.   

ii. Some models are too simple to explain all types of 

epidemics.  

iii. Some models work well for certain diseases, but not for 

others. 

iv. Different models are needed to account for different ways 

diseases spread, such as through water or by a vector like 

a mosquito 
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4.5 SUMMARY 

 

In the present unit we explain the following models 

 

i. Susceptible – Infective (SI) Model: The SI model is a 

simple mathematical model that describes the spread of an 

infectious disease through a population that is divided into 

two groups: susceptible and infected. 

ii. Susceptible – Infected - Susceptible (SIS) Model: The 

SIS (Susceptible-Infectious-Susceptible) model is a 

mathematical model that describes how infectious diseases 

spread through a population. It's a fundamental tool in 

epidemiology that helps predict the spread of disease and 

assess public health interventions. 

iii. Susceptible - Infected-Recovered (SIR) Model: In a 

standard SIR model, the host population is divided into 

susceptible, infected and recovered individuals, denoted by 

S(t), I(t) and R(t), respectively. 
iv. Susceptible – Infected – Removed - Susceptible (SIRS) 

Model: The improve form of the SIR model can be made 

by assuming that the recovered person becomes susceptible 

again due to loss of immunity at a rate proportional to the 

population in recovery class , with proportionality constant. 

 

4.6 GLOSSARY 

 

i. Population dynamics: The population dynamics is a 

description (and prediction) of the size and age composition 

of a group of individuals of one particular species, and how 

the number and age composition of individuals in a 

population change over time.  

ii. Predators in mathematics:  A boundary – value problem 

for a system of two non-linear differential equations in 

partial derivatives. A stationary state stability is studied. A 

variational method is used to build a numerical solution. 
iii. Trajectory: A trajectory is a path taken up by a moving 

object that is following through space as a function of time. 

Mathematically, a trajectory is described as a position of an 

object over a particular time.  

iv. Variables: In mathematical modelling, variables 

are symbols that represent quantities that can change, such 

as time, distance, temperature, or population size. They are 
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used to describe real quantitative situations by writing 

mathematical expressions in place of words. Variables can 

be independent or dependent. 

v. Equations: The equations in mathematical model contain 

variables, which are values to input into the equation, and 

parameters, which are constants whose value depends on 

the particular model and situation. 

vi. Constraints: In mathematical modelling, constraints are 

the conditions that a solution to an optimization problem 

must satisfy. They represent restrictions or limitations on 

the variables used in equations that depict real-world 

scenarios. Constraints are essential to ensure that the 

mathematical model accurately reflects the situation. 

 

CHECK YOUR PROGRESS 

 

1. In susceptible – infective epidemic model (SI)  the rate of 

increase of the infected class is ………….. to the product of 

the susceptible and infected persons. Hence, the susceptible 

class also ………… at the same rate. 

2. The SIS (Susceptible – Infectious  - Susceptible) Model is to 

study infections in a …………… of n individuals, infections 

that do not confer any long lasting immunity. 

3. The numerical solution of the Susceptible - Infected–

Recovered  (SIR) Model 

 shows that both susceptible and infected goes to ……. and 

there is a full recovery. 

4. In Susceptible - Infected–Recovered- Susceptible  (SIRS) 

model the recovered person becomes ……… again due to loss 

of immunity at a rate ……….. to the population in recovery 

class 𝑅, with proportionality constant 𝛾. 
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4.9  TERMINAL QUESTIONS 

 

1. What is an epidemic model? 

....................................................... 

2. What are the different types of epidemic models? 

........................................................ 

3. What is epidemic principle? 

.......................................................... 

4. Explain SI and SIS epidemic model? 

............................................. 

5. Explain the SIR and SIRS models? 

 

https://archive.nptel.ac.in/courses/111/107/111107113/
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4.10  ANSWERS 

 

           

CHECK YOUR PROGRESS 

 

CYP1. Proportional, decreases 

CYP2. Closed Population. 

CYP3. Zero. 

CYP4. Susceptible, Proportional. 
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UNIT 5:  MATHEMATICAL 

MODELLING THROUGH 

DIFFERENCE EQUATIONS 

 

 

CONTENTS: 

 
5.1 Introduction  

5.2 Objectives 

5.3 Linear Difference Equation with Constant  

            Coefficients 

5.4 Solution of Homogeneous Equations 

5.5 Examples 

5.6 Difference Equations: Equilibria and Stability 

5.6.1 Linear Difference Equations 

5.6.2 Examples  

5.6.3 System of Linear Difference  

Equations 

5.6.4 Theorems 

5.6.5 Examples 

5.6.6 Non-Linear Difference Equations 

5.6.7 Theorems 

5.6.8 Examples 

5.7 Summary 

5.8 Glossary 

5.9 References 

5.10 Suggested readings 

5.11 Terminal questions 

5.12 Answers 

 

5.1 INTRODUCTION 

 

In the previous unit we explain the Susceptible – Infective 

Model, Susceptible – Infected - Susceptible (SIS) Model, 

Susceptible – Infected - Recovered (SIR) Model and Susceptible-

Infected - Removed-Susceptible (SIRS) Model. Present unit is the 

explanation of mathematical modelling through difference 

equations. In using of modelling with difference equations we may 
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avoid modelling through differential equations. The biological and 

social scientist who do not know calculus and transcendental 

number like 𝑒 can still work with difference equation models and 

some important consequences of these models can be deduced with 

the help of calculators by even high school students. 

 

What is the meaning of difference equation? 

  

A difference equation is an equation involving differences. 

One can define a difference equation as a sequence of numbers that 

are generated recursively using a rule to the previous numbers in 

the sequence the difference equation 𝑇𝑛+1 = 𝑇𝑛 + (𝑛 + 1), with 

𝑇0 = 0 is a sequence of triangular numbers 0, 1, 3, 6, 10, 15, 21, …. 
where 𝑛 = 0,1,2,3,4,5.6 ….One can also define difference equation 

as an iterated map 𝑥𝑛+1 = 𝑓𝑥𝑛 . 
 

5.2 OBJECTIVES 

 

After studying this unit, learner will be able to  

 

i. Explain the mathematical modelling through difference 

equation. 

ii. Describe the basic theory of linear difference equations 

with constant coefficients. 

iii. Evaluate the Solution of Homogeneous Equations 

iv. Analyze Difference Equations: Equilibria and Stability 

v. Discuss Linear Difference Equations 

vi. Identify System of Linear Difference  
 

 

5.3 LINEAR DIFFERENCE EQUATION 

WITH CONSTANT COEFFICIENTS 

 

Consider the linear difference equation of the form: 

 

𝑐0𝑢𝑛 + 𝑐1𝑢𝑛−1 + 𝑐2𝑢𝑛−2 = 𝑓(𝑛) … … … . . (1) 

 

The difference equation is homogeneous if  𝑓(𝑛) = 0, 
otherwise it is non-homogeneous. The order of the difference 

equation is the difference between the largest (𝑛) and smallest 
(𝑛 − 2) arguments appearing in the difference equation with unit 

interval. Thus, the order of the equation (1) is 2.  Equation (1) is a 
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linear difference equation with constant coefficients as the 

coefficients of the successive differences are constants and the 

differences of successive orders are of the first degree. 

5.4 SOLUTION  OF  HOMOGENEOUS 

EQUATIONS 

          

a. Consider the first – order homogeneous linear difference 

equation 

 

𝑢𝑛 − 𝑘(𝑢𝑛−1) = 0………..(2) 

               Putting 𝑛 = 1,2,3 …. 
𝑢1 = 𝑘𝑢0, 

𝑢2 = 𝑘𝑢1 = 𝑘(𝑘𝑢0) =  𝑘2𝑢0, 
𝑢3 = 𝑘𝑢𝑛−1 =  𝑘𝑛𝑢0, 

              ………………………………………………………….. 

              Therefore,  
               𝑢𝑛 = 𝑐 𝑘𝑛 , (𝑐 is an arbitrary constant) is a general  

                solution of (2). 

 

b. Consider the first – order homogeneous linear difference 

equation 

𝑢𝑛 = 𝑎𝑢𝑛−1 + 𝑏 = 0 (𝑛 = 1,2 … . . ), 

 

              where 𝑎 and 𝑏 are constants. Now, 

              

      𝑢𝑛 = 𝑎(𝑢𝑛−1 + 𝑏) + 𝑏 = 𝑎2(𝑢𝑛−1) + 𝑏(𝑎 + 1)        

           = 𝑎2(𝑢𝑛−3 + 𝑏) + 𝑏(𝑎 + 1) = 𝑎3𝑢𝑛−3 + 𝑏(𝑎2 + 𝑎 + 1)  

           = .............................................................................. 

           = 𝑎𝑛𝑢0 + 𝑏(𝑎𝑛−1 + 𝑎𝑛−2 + ⋯ 𝑎2 + 𝑎 + 1) 

           = 𝑎𝑛𝑢0 + 𝑏 (
1−𝑎𝑛

1−𝑎
)(if 𝑎 < 1), 

           = 𝑎𝑛𝑢0 + 𝑛𝑏(if 𝑎 = 1), 

which is  the required solution of the first-order linear difference 

equation, 𝑢𝑛 = 𝑎𝑢𝑛−1 + 𝑏. 
 

c. Consider the second – order homogeneous linear difference 

equation 

𝑎0𝑢𝑛 + 𝑎1𝑢𝑛−1 + 𝑎𝑢𝑛−2 = 0 … . . (3) 

 

Let the solution of (3) be of the form   𝑢𝑛 = 𝑐𝑘𝑛(𝑐 ≠ 0). 
Substituting it in (3), we obtain  

𝑎0  𝑐𝑘𝑛 + 𝑎1 𝑐𝑘𝑛−1 + 𝑎2 𝑐𝑘𝑛−1 = 0. 

 

This implies 𝑎0𝑘2 + 𝑎1𝑘 + 𝑎2 = 0, 



MATHEMATICAL MODELLING                                                     MAT 610 

 

Department of Mathematics  
Uttarakhand Open University Page 73 
 

              

Which is called the auxiliary equation. 

 

 

i. If the auxiliary equation has two distinct real roots, 𝑚1 and 

𝑚2 then, 𝑐1 𝑚1
𝑛 + 𝑐2 𝑚2

𝑛is the general solution of (3), 𝑐1 

and 𝑐2 are arbitrary constants. 

If the roots of the auxiliary equation are real and equal, 

𝑚1= 𝑚2 = 𝑚, then,  (𝑐1 + 𝑐2𝑛) 𝑚𝑛is the general solution 

of (3), 𝑐1 and 𝑐2 are arbitrary constants. 

 

ii. If the auxiliary equation has imaginary  roots (which occur 

in conjugate pairs),  𝛼 + 𝑖𝛽 and  𝛼 − 𝑖𝛽, then 

 𝑟𝑛(𝑐1 cos 𝑛𝜃 +  𝑐1 sin 𝑛𝜃) is the general solution of (3), 

𝑟 = √𝛼2 + 𝛽2 and 𝜃 = 𝑡𝑎𝑛−1 (
𝛽

𝛼
) , 𝑐1 and 𝑐2 are arbitrary 

constants. 

 

5.5 EXAMPLES 

 

Example 5.5.1. Obtain the difference equation by eliminating the 

arbitrary constants from 𝑢𝑛 = 𝐴2𝑛 + 𝐵(−3)𝑛 . 
 

Solution: Given, 𝑢𝑛 = 𝐴2𝑛 + 𝐵(−3)𝑛 . 
This implies that 𝑢𝑛+1 = 𝐴2𝑛+1 + 𝐵(−3)𝑛+1. 

⇒ 𝑢𝑛+2 = 𝐴2𝑛+2 + 𝐵(−3)𝑛+2. 
Therefore, 𝑢𝑛+1 = 2𝐴2𝑛 − 3𝐵(−3)𝑛 . 

𝑢𝑛+2 = 4𝐴2𝑛 + 9𝐵(−3)𝑛 . 
 

Solving, we get 

         𝐴 =
3𝑢𝑛+1+𝑢𝑛+2

102𝑛  and 𝐵 =
𝑢𝑛+2−2𝑢𝑛+1

15(−3)𝑛 . 

Hence, the required difference equation is, 

 

𝑢𝑛 =
3𝑢𝑛+1 + 𝑢𝑛+2

10
+

𝑢𝑛+2 − 2𝑢𝑛+1

15
, 

 

𝑢𝑛+2 + 𝑢𝑛+1 − 6𝑢𝑛 = 0. 
 

             Example 5.5.2.  Find 𝑢𝑛 if 𝑢1 = 1 and  𝑢𝑛+2 + 16𝑢𝑛 = 0. 
               

              Solution:  Let 𝑢𝑛 = 𝑐𝑘𝑛(𝑐 ≠ 0) be a solution of 

𝑢𝑛+2 + 16𝑢𝑛 = 0, 
               Then the required auxiliary equation is 

 𝑘2 + 16 = 0 ⇒ 𝑘 = ±4𝑖. 
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The general solution is 

𝑢𝑛 = 𝑐1(4𝑖)𝑛 + 𝑐2(−4𝑖)𝑛 , 
= 4𝑛[𝑐1𝑒𝑖𝑛𝜋 2⁄ + 𝑐2𝑒 −𝑖𝑛𝜋 2⁄ ], 

𝑢𝑛 = 4𝑛[𝐴1𝑐𝑜𝑠(𝑛𝜋 2⁄ ) + 𝐴2𝑠𝑖𝑛(𝑛𝜋 2⁄ )], 
Where 𝐴1 and 𝐴2 are arbitrary constants. 

Now, 𝑢0 = 0 and 𝑢1 = 1 implies 𝐴1 = 0 and 𝐴2 =
1

4
. 

Therefore, 

𝑢𝑛 = 4𝑛−1[𝑠𝑖𝑛(𝑛𝜋 2⁄ )] is the required solution. 

 
 

Fig 5.5.1 

𝑘 > 1 
 

 
Fig 5.5.2 

0< 𝑘 < 1 
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Fig 5.5.3 

−1 < 𝑘 < 0 
 

  
Fig 5.5.4 

𝑘 < −1 
 

             The solutions of homogeneous linear difference equations 

with Constant coefficients are composed of linear combinations of 

the basic expressions of the form 𝑢𝑛 = 𝑐𝑘𝑛 . The qualitative 

behavior of the basic solution will depend on the real values of 𝑘 

namely, on the four possible ranges: 

𝑘 ≥ 1, 𝑘 ≤ −1, 0 < 𝑘 < 1, −1 < 𝑘 < 0 

For 𝑘 > 1, the solution 𝑢𝑛 = 𝑐𝑘𝑛 becomes unbounded as 𝑛 

increases (Fig 5.5.1.) For 0 < 𝑘 < 1, 𝑘𝑛 goes to zero as 𝑛 

increases, hence 𝑢𝑛 decreases (Fig 5.5.2) for −1 < 𝑘 < 0 

𝑘𝑛 oscillates between positive and negative values, with 

diminishing magnitude to zero (Fig 5.5.3) and for 𝑘 < −1, 𝑘𝑛 

oscillates between positive and negative values with increasing 

magnitude (Fig 5.5.4). 
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The marginal points  𝑘 = 1, 𝑘 = 0 and  𝑘 = −1 correspond to   

constant solution (𝑢𝑛 = 𝑐), zero solution (𝑢𝑛 = 0) and an 

oscillatory solution between – 𝑐 and +𝑐 respectively. Fig 5.5.1. 

illustrates different behaviors of the solution for different ranges of 

𝑘. 
 

           Example 5.5.3.  Solve 𝑥𝑛+1 =
𝑥𝑛

4
+ 𝑦𝑛 , 𝑦𝑛+1 = 3

𝑥𝑛

16
−

𝑦𝑛

4
.               

             

           Solution:  𝑥𝑛+1 =
𝑥𝑛

4
+ 𝑦𝑛 ⇒ 𝑦𝑛 = 𝑥𝑛+1 −

𝑥𝑛

4
 

⟹ 𝑦𝑛+1 = 𝑥𝑛+2 −
𝑥𝑛+1

4
 

Eliminating 𝑦𝑛+1 from both the equations, we get, 

4𝑥𝑛+2 − 𝑥𝑛 = 0. 
Let 𝑥𝑛 = 𝑐𝑘𝑛(𝑐 ≠ 0) be a solution of 4𝑥𝑛+2 − 𝑥𝑛 = 0.  
The required auxiliary equation is  

4𝑘2 − 1 = 0 ⇒ 𝑘 = ±
1

2
. 

The general solution is  𝑥𝑛 = 𝑐1 (
1

2
)

𝑛

+ 𝑐2 (−
1

2
)

𝑛

, 

where  𝑐1 and 𝑐2 are arbitrary constants. Similarly, it can be shown 

𝑦𝑛 = 𝑑1 (
1

2
)

𝑛

+ 𝑑2 (
−1

2
)

𝑛

 

where 𝑑1 and 𝑑2 are arbitrary constants. 

 

 

5.6 DIFFERENCE EQUATIONS: 

EQUILIBRIA AND STABLITY 

 

5.6.1 LINEAR DIFFERENCE EQUATIONS 

 

We consider an autonomous linear discrete equation of the form: 

𝑢𝑛 = 𝑎𝑢𝑛−1 + 𝑏(𝑎 ≠ 1). 
By equilibrium point (or fixed points or steady-state solutions),  it 

is meant that there is no change from generation (𝑛 − 1) to 

generation 𝑛. If  𝑢∗ be the equilibrium solution of the model, then 

 

𝑢𝑛 = 𝑢𝑛−1 = 𝑢∗ ⇒ 𝑎𝑢∗ + 𝑏 = 𝑢∗ ⇒
𝑏

1 − 𝑎
. 

 

 

The equilibrium point 𝑢∗ is said to be stable if all the solutions of  
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𝑢𝑛 = 𝑎𝑢𝑛−1 + 𝑏 approach 𝑢∗ =
𝑏

1−𝑎
 as 𝑛 → ∞ ( as 𝑛 becomes 

large). The equilibrium point 𝑢∗ is unstable if all solutions (if 

exists) diverges from 𝑢∗ to ±∞. 
 

 The stability of the equilibrium point 𝑢∗ depends on 𝑎. The 

fixed point (equilibrium point) 𝑢∗of the autonomous discrete 

equation 𝑢𝑛 = 𝑎𝑢𝑛−1 + 𝑏 is  

 

i. stable if |𝑎| < 1.  
ii. Unstable if |𝑎| > 1 and 

iii. If 𝑎 = ±1, the case is ambiguous. 

 

 

Note: If 𝑎 > 0, the solutions converge monotonically to 𝑢∗ 

and if 𝑎 < 0,  the solutions converges to 𝑢∗ with 

oscillations. 

 

5.6.2 EXAMPLES 

 

Example 5.6.2.1:  Find the equilibrium point of  

𝑥𝑛+1 = 𝑎(𝑥𝑛 − 1) 

            For 𝑎 =
4

5
 and determine its stability. Explain the dynamics when  

𝑎 = −
4

5
,
5

4
, −

5

4
. 

Solution:  

i. If  𝑥∗ be the equilibrium point of   

𝑥𝑛+1 =
4

5
(𝑥𝑛 − 1),  

then, 

𝑥𝑛+1 = 𝑥𝑛 = 𝑥∗, 
This implies 

𝑥∗ =
4

5
(𝑥∗ − 1), 

 

This implies  
𝑥∗ = −4. 

The given equation of the form 

 

𝑥𝑛+1 = 𝑎𝑥𝑛 + 𝑏, 
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Fig 5.6.2.1 

 

(𝑎) 𝑎 =
4

5
> 0, |𝑎| < 1, 𝑏 =

−4

5
 

 
Fig 5.6.2.2 

 

(𝑎) 𝑎 =
−4

5
< 0, |𝑎| < 1, 𝑏 =

4

5
 

 

*The above figures show the plot of  𝑥𝑛+1 = 𝑎𝑥𝑛 + 𝑏 for different 

values of 𝑎 and 𝑏 with 𝑎0 = 6.The solution converges 

monotonically  to 𝑥∗ = −4 The solution converges with 

oscillations to 𝑥∗ = 0.444. 
 

where  |𝑎| =  |
4

5
| =

4

5
< 1. 

  

Therefore, the equilibrium point is stable.Since, 𝑎 > 0, the solution 

with converge monotonically. ( Fig 5.6.2.1) 
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(ii) For 𝑎 =
−4

5
, the equilibrium point is given by 

𝑥∗ =
−4

5
(𝑥∗ − 1). 

 

This implies 𝑥∗ =
4

9
= 0.444. 

          The given equation is of the form 

𝑥𝑛+1 = 𝑎𝑥𝑛 + 𝑏, 
     

where  |𝑎| =  |
−4

5
| =

4

5
< 1. 

Therefore, the equilibrium point is stable. Since, 𝑎 < 0, the 

solution with converge  to 𝑥∗ oscillations.( Fig 5.6.2.2) 

 

(iii) For 𝑎 =
5

4
, the equilibrium point is given by 

𝑥∗ =
5

4
(𝑥∗ − 1). 

 

This implies 𝑥∗ = .5. 
          The given equation is of the form 

𝑥𝑛+1 = 𝑎𝑥𝑛 + 𝑏, 
     

where  |𝑎| =  |
5

4
| =

5

4
> 1. 

Therefore, the equilibrium point is unstable. 

 
Fig 5.6.2.3 

(𝑎) 𝑎 =
5

4
> 0, |𝑎| > 1, 𝑏 =

−5

4
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Fig 5.6.2.4 

 

(𝑎) 𝑎 =
−5

4
< 0, |𝑎| > 1, 𝑏 =

5

4
. 

*The above figures show the plot of  𝑥𝑛+1 = 𝑎𝑥𝑛 + 𝑏 for different 

values of 𝑎 and 𝑏 with 𝑎0 = 6. The solution converges 

monotonically to 𝑥∗ = 5 and  The solution converges with 

oscillations to 𝑥∗ = 0.556. 
 

Since, 𝑎 < 0, the solution diverges monotonically from 𝑥∗. 

( Fig 5.6.2.3) 

 

(iii) For 𝑎 = −
5

4
, the equilibrium point is given by 

𝑥∗ =
−5

4
(𝑥∗ − 1). 

 

This implies 𝑥∗ =
5

9
= 0.556. 

          The given equation is of the form 

𝑥𝑛+1 = 𝑎𝑥𝑛 + 𝑏, 
     

where  |𝑎| =  |−
5

4
| =

5

4
> 1. 

Therefore, the equilibrium point is unstable. Since, 𝑎 < 0, the 

solution diverges  from 𝑥∗ with oscillation.( Fig 5.6.2.4) 

 

 

5.6.3 SYSTEM OF LINEAR DIFFERENCE 

EQUATIONS 



MATHEMATICAL MODELLING                                                     MAT 610 

 

Department of Mathematics  
Uttarakhand Open University Page 81 
 

For a system of difference equations, it is possible to 

determine the stability of the system using eigenvalues. We 

consider the linear homogeneous system, 

 

𝑢𝑛+1 = 𝛼𝑢𝑛 + 𝛽𝑣𝑛 

𝑣𝑛+1 = 𝛾𝑢𝑛 + 𝛿𝑣𝑛 

… … … … … … … … … (4) 
which can be expressed in the matrix form as 

(
𝑢𝑛+1

𝑣𝑛+1
) =  (

𝛼 𝛽
𝛾 𝛿

) (
𝑢𝑛

𝑣𝑛
) 

 

This implies that 

𝑤𝑛+1 = 𝐴𝑤𝑛 , 
 

where  𝑤𝑛 = (
𝑢𝑛

𝑣𝑛
) and 𝐴 = (

𝛼 𝛽
𝛾 𝛿

). 

Clearly (0,0) is the equilibrium point of the homogeneous system. 

 

 

5.6.4 THEOREMS 

 

Theorem 5.6.4.1. Let  𝜆1 and 𝜆2 be two real distinct eigenvalues 

of the coefficient matrix 𝐴  of the homogeneous linear system (6). 

Then, the equilibrium point (0,0) is, 

i. stable if both |𝜆1| < 1 and |𝜆2| < 1, 

ii. unstable if both |𝜆1| > 1 and |𝜆2| > 1, 

iii. saddle if |𝜆1| < 1 and |𝜆2| > 1 or if  |𝜆1| > 1 and |𝜆2| < 1.  
 
 

Theorem 5.6.4.2. Let  𝜆1  = 𝜆2 = 𝜆∗ be  real and equal 

eigenvalues of the coefficient matrix 𝐴  of the homogeneous linear 

system (6). Then, the equilibrium point (0,0) is, 

i. stable if both |𝜆∗| < 1  

ii. unstable if both |𝜆∗| > 1 .  
Note: 𝜆1 = 𝜆2 = 1 is a rare borderline case and will not be 

considered here. 

 
 

 

Theorem 5.6.4.2. Let 𝑎 + 𝑖𝑏 and  𝑎 − 𝑖𝑏  be the complex 

conjugate eigenvalues of the coefficient matrix  𝐴 of a 

homogeneous linear system, then the equilibrium point (0,0) is 

i. stable  focus or spiral if |𝑎 ± 𝑖𝑏| < 1, 
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ii. unstable focus or spiral or spiral if |𝑎 ± 𝑖𝑏| > 1. 
 

           Consider a non-homogeneous linear system of the form 
𝑤𝑛+1 = 𝐴𝑤𝑛 + 𝑏 

 where 𝑤𝑛 = (
𝑢𝑛

𝑣𝑛
) and 𝐴 = (

𝛼 𝛽
𝛾 𝛿

) and 𝑏 = (
𝑘1

𝑘2
). 

The equilibrium solution 𝑤∗ = (𝑢∗, 𝑣∗)𝑇 of the system is obtained 

by solving 

 

            𝑢∗ = 𝛼𝑢∗ + 𝛽𝑢∗ + 𝑘1  and    𝑢∗ = 𝛾𝑢∗ + 𝛿𝑣∗ + 𝑘2…….(6) 

 This implies, 

             𝑢∗ =
𝛽𝑘2−(𝛿−1)𝑘1

(𝛼−1)(𝛿−1)−𝛽𝛾
,             𝑣∗ =

𝛾𝑘1−(𝛼−1)𝑘2

(𝛼−1)(𝛿−1)−𝛽𝛾
 

For stability, the same results hold as for the homogeneous 

system. This is due to the fact that the non-homogeneous system, 

with a unique equilibrium point, can be converted to a 

homogeneous system. The system (6) can be written as 

            𝑤∗ = 𝐴 𝑤∗ + 𝑏 ⇒ 𝐴 𝑤∗ −   𝑤∗ + 𝑏 = 0(null matrix) 

 

          𝑧𝑛+1 +  𝑤∗ = 𝐴( 𝑧𝑛 + 𝑤∗) + 𝑏 

                                                𝑧𝑛+1   ⇒ 𝐴𝑧𝑛 + 𝐴 𝑤∗ −   𝑤∗ + 𝑏 
 we get, 

                      𝑧𝑛+1   ⇒ 𝐴𝑧𝑛 (since 𝐴 𝑤∗ −   𝑤∗ + 𝑏 = 0). 

 

Which is a linear homogeneous system, whose stability has already 

been discussed. 

 

 

5.6.5 EXAMPLES 

 

Example 5.6.5.1. Find the equilibrium point of the linear 

homogeneous system 

𝑥𝑛+1   ⇒ −𝑥𝑛 − 4𝑦𝑛 ,   
𝑦𝑛+1   ⇒ 𝑥𝑛 − 𝑦𝑛 , 
and check its stability.  

 

Solution: If  (𝑥∗, 𝑦∗) be the equilibrium solution, it is obtained by 

solving, 

𝑥∗ =  −  𝑥∗ −  4𝑦∗ ⇒   𝑥∗+2𝑦∗ = 0, 
𝑦∗ =    𝑥∗ −  𝑦∗ ⇒   𝑥∗−2𝑦∗ = 0. 

Clearly, (0, 0) is the only solution of the system as the coefficient 

matrix  (
1 2
1 −2

)  is non-singular, that is, |
1 2
1 −2

| = −4 ≠ 0. 
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The coefficient matrix of the linear homogeneous system is 

(
1 2
1 −2

), whose eigenvalues are obtained by solving 

 |
1 − 𝜆 2

1 −2 − 𝜆
| = 0. 

 

This implies 𝜆 = −1 ± 2𝑖, and  |−1 ± 2𝑖| = √1 + 4 = √5 > 1. 
Hence the equilibrium point (0, 0) is unstable. 

 

Example 5.6.5.2. Find the equilibrium point of the linear 

homogeneous system 

𝑥𝑛+1   ⇒ 𝛼𝑥𝑛 + 0.12 𝑦𝑛 ,   
𝑦𝑛+1   ⇒ 3𝑥𝑛 + 𝛼 𝑦𝑛 . 
Find all the real values of 𝛼 for which the equilibrium point is 

stable. 

 

Solution: Clearly (0, 0) is the equilibrium point 

 the coefficient matrix of the linear homogeneous system is  

(
𝛼 0.12
3 𝛼

)  whose eigenvalues are obtained by solving 

 |
𝛼 − 𝜆 0.12

3 𝛼 − 𝜆
| = 0. 

 

This implies (𝛼 − 𝜆)2 = 0.36,  𝜆 = 𝛼 ± 0.6. 

 

The equilibrium point  (0, 0) will be stable if 
|𝛼 + 0.6| < 1 and |𝛼 − 0.6| < 1. 
|𝛼 + 0.6| < 1  this implies −1 < 𝛼 + 0.6 < 1. 
 

This implies  

−1.6 < 𝛼 < 0.4. 
Similarly combining we obtain  

−0.4 < 𝛼 < 0.4. 
(common region of the two inequalities), which gives all the real 

values of 𝛼 for which the equilibrium point is stable. (Fig 5.6.5.1) 
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Fig 5.6.5.1 Stable dynamics 

 

 

 

 

  

 
 

Fig 5.6.5.2 Unstable dynamics(saddle) 

Example 5.6.5.1. Find the equilibrium point of the linear non-

homogeneous system 

𝑥𝑛+1   ⇒ 0.75𝑥𝑛 − 𝑦𝑛 + 1000,   
𝑦𝑛+1   ⇒ −0.5𝑥𝑛 + 0.25 𝑦𝑛 + 1500 

and check its stability.  

 

Solution: If (𝑥∗, 𝑦∗) be the equilibrium  solution of the given 

non- homogeneous system, it is  obtained by solving 

𝑥∗   ⇒ 0.75𝑥∗ − 𝑦∗ + 1000. This implies 0.75𝑥∗ − 𝑦∗ = 1000, 
𝑦∗   ⇒ −0.5𝑥∗ + 0.25 𝑦∗ + 1500. This implies  0.5𝑥∗ + 0.75 

𝑦∗ = 1500. 
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Solving, we get (𝑥∗, 𝑦∗) = (2400, 400) as the unique solution of 

the system 

|
0.75 −1
−0.5 0.25

|. 

Whose eigenvalues are obtained by solving 

|0.75 − 𝜆 −1
−0.5 0.25 − 𝜆

| = 0. 

 

 

This implies 𝜆1 = 1.25 and 𝜆1 = −0.25. 
Now |𝜆1| = 1.25 > 1 and |𝜆2| = 0.25 < 1. 
Hence, the equilibrium point (2400, 400) is a saddle.  

(Fig 5.6.5.2) 

 

5.6.6 NON-LINEAR DIFFERENCE EQUATIONS 

Non-linear difference equations are to be handled with 

special techniques and cannot be solved by simply setting 𝑢𝑛 =
𝑐𝑘𝑛. Here, we shall not discuss about the solutions of non-linear 

difference equations but focus on the qualitative behaviors, 

namely, equilibrium solution (fixed point or steady state), stability, 

cycles, bifurcations and chaos. 

In the context of difference equations, 𝑥∗ is the steady-state 

solution (equilibrium solution) of the non-linear difference 

equation 

 𝑥𝑛+1 =  𝑓𝑥𝑛 if 𝑥𝑛+1 = 𝑥𝑛 =  𝑥∗ 

That is, there is no change from generation 𝑛 to 

generation    (𝑛 + 1). 
By definition the steady-state solution is stable if for ∈>

0, ∃ 𝑎 𝛿 > 0 such that |𝑥0 − 𝑥∗| <  𝛿 implies that for all 𝑛 > 0, 
|𝑓𝑛(𝑥0) − 𝑥∗| <∈. The steady – state solution is asymptotically 

stable if, in addition, lim
𝑛→∞

𝑥𝑛 = 𝑥∗ holds. 

 

After obtaining the equilibrium solution, we look into its stability, 

that is, given some value 𝑥𝑛 close to 𝑥∗, does 𝑥𝑛 tends towards 𝑥∗ 

or move away from it? To address this issue, we give a small 

perturbation to the system about the 

steady state 𝑥∗. Mathematically, this means replacing 𝑥𝑛 by 𝑥∗ 

+∈𝑛, where ∈𝑛 is small. Then, 
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……………(7) 

 

The solution of equation (7) will decrease 

 
and  the solution of equation (7) will increase 

 if |𝑓′(𝑥∗)| > 1.  
 

 

 

 

 

 

5.6.7 THEOREMS 

 

Theorem 5.6.7.1. 

 
 

 

 

 
 

Theorem 5.6.7.2. 

 

 

 
 

5.6.8 EXAMPLE 

 

Example 5.6.8.1 
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Fig 5.6.8.1 

 

  
 

 
is  stable. The interval of the existence of the equilibrium point is, 
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Example 5.6.8.1. 

 

 

 

 

 
Hence, the equilibrium point (5, 1.4) is stable. 

 

 

5.7 SUMMARY 

 

Present unit is a presentation of mathematical modelling 

through difference equations. In this unit Linear Difference 

Equation with Constant Coefficients, Solution of Homogeneous 

Equations, Difference Equations: Equilibria and Stability, Linear 

Difference Equations, System of Linear Difference  Equations, 

Theorems, Non-Linear difference equations explained in a easy 

manner. 

 

 

5.8 GLOSSARY 

 

i. Variables: In mathematical modelling, variables 

are symbols that represent quantities that can change, such 

as time, distance, temperature, or population size. They are 
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used to describe real quantitative situations by writing 

mathematical expressions in place of words. Variables can 

be independent or dependent. 

ii. Equations: The equations in mathematical model contain 

variables, which are values to input into the equation, and 

parameters, which are constants whose value depends on 

the particular model and situation. 

iii. Constraints: In mathematical modelling, constraints are 

the conditions that a solution to an optimization problem 

must satisfy. They represent restrictions or limitations on 

the variables used in equations that depict real-world 

scenarios. Constraints are essential to ensure that the 

mathematical model accurately reflects the situation. 

iv. Difference equation: A difference equation is an equation 

involving differences. One can define a difference equation 

as a sequence of numbers that are generated recursively 

using a rule to the previous numbers in the sequence the 

difference equation  

v. Homogeneous Difference Equation and Non-

Homogeneous Difference Equation: The difference 

equation is homogeneous if  𝑓(𝑛) = 0, otherwise it is non-

homogeneous.  

vi. Order: The order of the difference equation is the 

difference between the largest (𝑛) and smallest (𝑛 − 2) 

arguments appearing in the difference equation with unit 

interval. 

vii. Stable: The equilibrium point 𝑢∗ is said to be stable if all 

the solutions of  𝑢𝑛 = 𝑎𝑢𝑛−1 + 𝑏 approach 𝑢∗ =
𝑏

1−𝑎
 as 

𝑛 → ∞ (as 𝑛 becomes large).  

viii. Unstable: The equilibrium point 𝑢∗ is unstable if all 

solutions (if exists) diverges from 𝑢∗ to ±∞. 
 

CHECK YOUR PROGRESS 

 

1. The recurrence relation 
𝑥𝑘

𝑥𝑘−1
= 2𝑘  has order.................. 

2. The difference equation 𝑆𝑖𝑛𝑥𝑘 − 𝑥𝑘−1 = 5𝑐𝑜𝑠𝑥𝑘+2 has 

order..... 

3. The difference equation  𝑆𝑖𝑛𝑥𝑘 − 𝑥𝑘−1 = 5𝑐𝑜𝑠𝑥𝑘+2 is linear 

difference equation. True/False 

4. The difference equation  𝑥𝑘+1 − 2𝑥𝑘 +  2𝑥𝑘−1 = 2𝑘 − 1 is non 

linear difference equation. True/False 

5. The difference equation is homogeneous if  … … … … … . ., 
otherwise it is non-homogeneous.  
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6. The order of the difference equation is the difference between 

the …………………appearing in the difference equation with 

unit interval. 

7. equilibrium point (or fixed points or steady-state solutions),  it 

is meant that there is no change from ………………….. to 

………………………….. 
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5.11 TERMINAL QUESTIONS 

 

Classify the following difference equations: 

TQ1. 2𝑦𝑛+3 − 𝑛𝑦𝑛 = 0. 

TQ2. 𝑦𝑛𝑦𝑛+3 − 2𝑦3
𝑛−2

= 𝑛2. 

TQ3. 𝑛2𝑦𝑛+5 + 𝑛! 𝑦𝑛−4 = 5. 
TQ4. 𝑦𝑛+2 − 2𝑦𝑛+1 + 3𝑦𝑛 = 2𝑛2. 

https://archive.nptel.ac.in/courses/111/107/111107113/
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5.12 ANSWERS 

 

TERMINAL QUESTIONS 

 
          TQ1. (i) Zero order (ii) Linear difference equation (iii) 

                    Homogeneous Equation  

          TQ2. (i) 4th order (ii) Non- Linear difference equation  

                   (iii) Non - Homogeneous Equation 

          TQ3.  (i) 9th order (ii) Linear difference equation (iii) 

         Non - Homogeneous Equation 

          TQ4. (i) zero order (ii) Linear difference equation (iii) 

         Non - Homogeneous Equation 

 

CHECK YOUR PROGRESS 
 

CYP1.  1. 

CYP2.   3. 

CYP3.   False. 

CYP4.   False. 

CYP5.  𝑓(𝑛) = 0. 

CYP6.  largest (𝑛) and smallest (𝑛 − 2) arguments.  

CYP7. generation (𝑛 − 1) generation 𝑛. 
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UNIT 6:  LINEAR MODELS 

 

CONTENTS: 
6.1 Introduction  

6.2 Objectives 

6.3 Discrete Models 

6.4 Linear Models 

6.4.1 Newton’s Law of Cooling 

6.4.2 Example 

6.4.3 Bank Account Problem 

6.4.4 Example 

6.4.5 Drug Delivery Problem 

6.4.6 Example 

6.4.7 Harrod Model (Economic Model) 

6.4.8 Arms Race Model 

6.4.9 Lanchester’s Combat Model 

6.5 Summary 

6.6 Glossary 

6.7 References 

6.8 Suggested readings 

6.9 Terminal questions 

6.10 Answers 

 

6.1 INTRODUCTION 

 

In previous unit we have defined Linear Difference 

Equation with Constant Coefficients, Solution of Homogeneous 

Equations, Difference Equations: Equilibria and Stability, Linear 

Difference Equations System of Linear Difference Equations,  

Non-Linear Difference Equations. 

 

6.2 OBJECTIVES 

After studying this unit, learner will be able to  

i. Explain the Discrete Models 

ii. Describe the Newton’s Law of Cooling 

iii. Analyze the Bank Account Problem 

iv. Discuss the Drug Delivery Problem 

v. Identify Harrod Model (Economic Model) 

vi. Defined Arms Race Model 
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6.3 DISCRETE MODELS 

 

In discrete models, the state variables change only at  a 

countable number of points in time. These points in time are the 

ones at which the event occurs/changes in state.  

Thus, indiscrete-time modelling, there is a state transition 

function which computes the state at the next time instant given the 

current state and input. In many situations, the changes are really 

discrete which occur at well defined time intervals. Moreover, in 

many cases, the data are usually discrete rather than continuous.  

Hence, due to the limitations of the available data, we may be 

compelled to work with the discrete model, even though the 

underlying model is continuous. 

 

 
 

Fig 6.3.1 

 

The figure shows that the system approaches the stable 

equilibrium solution (𝑥∗, 𝑦∗) = (5, 1.4). 
 

 

CHECK YOUR PROGRESS 

 

1. Define discrete models    ………………………………….. 

………………………………………………………………………

………………………………………………………………………

………………………………………………………………………

………………………………………………………………………

……………………………………………………………………… 
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6.4 LINEAR MODELS 

 

6.4.1  NEWTON’S LAW OF COOLING 

 

Suppose a cup of coffee, initially at a temperature of 

190°𝐹◦ is placed in a room, which is held at a constant temperature 

of 70°𝐹 . After 1 minute, the coffee has cooled to 180°𝐹. If we 

need to find the temperature of the coffee after 15 minutes, we will 

use Newton’s law of cooling, which states that the rate of change 

of the temperature of an object is proportional to the difference 

between its own temperature and the ambient temperature (that is, 

the temperature of its surroundings). Mathematically, this means 

 

𝑡𝑛+1 − 𝑡𝑛 = 𝑘(𝑆 − 𝑡𝑛), 
where  𝑡𝑛 is the temeperature of the coffee after 𝑛 minutes, 𝑆 is the 

temeprature of the room, and 𝑘 is the constant of proportionality. 

 

We first make use of the information given about the change in the 

temperature of the coffee during the first minute to determine the    

value of the constant of proportionality 𝑘 . Thus, 

 

 

 

                   
 

                    

                          
This is of the form 𝑢𝑛 =  𝑎𝑢𝑛−1 + 𝑏. 
Whose solution is given by, 
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Hence, after 15 minutes, the coffee has cooled to 102.54°𝐹. 
 

Since,          

 
the temperature of the coffee will approach the equilibrium 

temperature of 70°𝐹 (the room temperature) as 𝑛 increases. 

 

6.4.2  EXAMPLE 

 

Example. 6.4.2.1 A soda–can is taken out from the refrigerator,   

and its Temperature is recorded after 1 2⁄  an hour. After await of 

another  1 2⁄  hour, The temperature is recorded again. If the two 

readings are 45°𝐹 and 55°𝐹 respectively, what is the temperature 

inside the refrigerator (assume the room temperature to  be 70°𝐹)? 

 
                            Fig. 6.4.2.1 

 
Fig. 6.4.2.2 
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Fig 6.4.2.1 show that the cup of coffee initially at 190°𝐹 reaches 

the room temperature of 70°𝐹 as 𝑛 increases the Fig 6.4.2.2 the 

temperature inside the refrigerator is 28.33°𝐹. 
 

Solution: Let 𝑡0 be the temperature of the soda – can 1 2⁄  hour 

after it was removed the refrigerator (zero-time) and 𝑡1 be the 

temperature after waiting 1 2⁄  hour more. Then, 𝑡−1 will give the 

temperature when the soda – can was inside the refrigerator. Using 

Newton’s law of cooling, we get 

 

 

 

 

 

 
This is of the form 

𝑢𝑛 = 𝑎𝑢𝑛−1 + 𝑏, 
whose solution is given by, 

 

 

 

 

 
 Fig. 6.4.2.2  clearly express the temperature inside the refrigerator 

is 28.33°𝐹. 
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6.4.3 BANK ACCOUNT PROBLEM 

 

Suppose a savings account is opened that pays 4% interest  

Compounded yearly with an initial deposit of $10000, and a 

deposit of $5000 is made at the end of each year. For a savings 

account that is compounded yearly, the interest is added to the 

principal at the end of each year. If 𝑎𝑛 be the amount at the end of 

year n(n = 0, 1, 2, 3, ...),then  

 

 
 

…………………………………………………………………….. 

…………………………………………………………………….. 

 

 
where r is the rate of interest. Now, if a deposit of $5000 is made at 

the end of each year, the n the dynamic model which describes this 

scenario is given by 

 
Thus, the amount for three consecutive years will be 

 

 

 
 

and soon. Let us now consider a different scenario, where no 

deposits are made, but $2000 is withdrawn at the end of each year. 

We want to find out how much money be deposited initially, so 

that we never run out of cash. The model for this scenario is 

 
where we assume that the money is withdrawn after the interest 

from previous years has been added, and we are not penalized for 

withdrawing money each year. The equilibrium value is given by, 

 
Therefore, if the initial deposit in the account is $50000 and we 

withdraw $2000 each year, then the account will always have the 

same amount at the end of each year Fig. 6.4.3.1 
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Fig. 6.4.3.1 

 

 

 
If 𝑎0 < 5000, Fig 6.4.3.1 shows that if 𝑎0  is  less than50000, the 

amount in the account decreases to 0, and the amount grows 

without bound . 

 
Fig. 6.4.3.2 

               The figures show (a) different dynamics with different 

initial  deposits 𝑎0, (b) initial house loan amount 𝑃0,  = $189894 is 

repaid in 300 months. If 𝑎0 > 5000.Thus, the system approaches 

zero or increases without bound if 𝑎0 ≠ 5000, and therefore, this 

equilibrium value is unstable. 
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6.4.4 EXAMPLE 

 

Example 6.4.4.1 A couple like to purchase their first house with 

their combined annual income of $84000. They also have a savings 

of $40000, which they want to use as a down payment. For the 

rest, they can take a loan from the bank with12% annual interest 

paid monthly for 25 years. However, the bank will not allow their 

monthly installment to exceed 1/4 of their monthly income. (a) 

What is the maximum budget, the couple can afford for the house 

under these conditions? (b) To afford a house costs $290000; what 

would be their annual income? 
 

Solution. Let 𝑃𝑛 be the amount of loan to be paid after 𝑛 months, 

then 

 
where 𝑟 is the monthly rate of interest and 𝑑 is  the monthly 

installment to be paid. This is of the form (5.4 b), whose solution is 

given by 

 
where 𝑃0  is the initial amount of loan 

(a) The monthly income of the couple is: 

 
so their maximum repayment of the loan is: 

 
and 

 
After 25 years, that is, 300  months, the loan amount will be zero, 

which  implies 𝑃300 = 0 fig. 6.4.3.2. Therefore 

 
 

 

𝑃0 = 0 =189893.886 ≃  $189894. 
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Therefore, the maximum budget that the couple can afford for the 

house is $189894+$40000=$229894. 

(b) To afford a house which  costs $290000, the couple has to take 

a load  of (290000− 40000)=$250000 and their monthly 

instalment will be, 

 

 
Hence, the annual income of the couple is $2633 × 4 ×     

12=$126384. 

 

6.4.5 DRUG DELIVERY PROBLEM 

 

Suppose a patient is given a drug to treat some infection. 

He/she is given the same dose of the medicine at equally spaced 

time intervals. The body metabolizes some of the drugs so that, 

after sometime, only a portion r of the original amount of the drug 

remains. After each dose, the amount of the Drug in the body is 

equal to the amount of the given dose b, plus the amount of the 

drug remnant from the previous dose. The dynamic model which 

describes this scenario is given by: 

 
The equilibrium point is given by, 

 
     

 

 

 
the stable equilibrium point. 
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Suppose, the amount of drug in the patient’s blood stream 

decreases at the rate of 80% per hour (this means 20% of the drug 

remains in the body). To sustain the drug to a certain level ,an 

injection is given at the end of each hour that increases the amount 

of drug in the blood stream by 0.2  unit. The dynamic model which 

describes this scenario is given by 

 

 
where  𝑎𝑛 is the amount of drug in the blood at the end of 𝑛 hours. 

The equilibrium solution of this model is given by, 

 

 
The long-term behavior of the system will depend on the initial 

value 𝑎0. The figure shows that no matter what is the value of 𝑎0, 

the system always approaches the value of  
𝑏

1 − 𝑟
=

0.2

1 − 0.2
= 0.25, 

implying that 0.25 is a stable equilibrium point. 
 
 

 
 

Fig 6.4.5.1 
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(b) Ampicillin  in  mg. 

                                              Fig 6.4.5.2 
 

The figures show (a) the amount of drug in a patient’s 

blood stream always reaches the steady-state value 0.25, 

independent   of the initial value 𝑎0, implying a stable equilibrium, 

(b) ampicillin reaches steady-state value 176.47 mg. 

 

6.4.6 EXAMPLE 

 

Example 6.4.6.1.  A  person with an ear infection takes 150mg 

ampicillin tablet once every 4 hours. About15% of the drug in the 

body at the start of a four – hour period is still there at the end of 

that period. What quantity of  ampicillin is in the body (a) right 

after taking the third tablet? (b) at the steady – state level right 

after taking a tablet?(c) at the steady-state level right before taking 

a tablet? 

 

Solution:  

(a) The quantity of ampicillin right after taking the third tablet is 

 
 

(b) The quantity of ampicillin at the steady-state level right after 

taking a tablet is 
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(c) The quantity of ampicillin at the steady-state level right before 

taking a tablet is 

 
 

 

6.4.7 HARROD MODEL (ECONOMIC 

MODEL) 

 

In J.W.Nevile. research paper the Harrod model which was 

developed in the 1930s, gives some Insight into the dynamics of 

economic growth. The model aims to determine an equilibrium 

growth rate for the economy. Let 𝐺𝑛 be the Gross Domestic 

Product (GDP) on national income, which is one of the primary 

indicators to determine a country’s economy, and 𝑆(𝑛)  and I(𝑛)  

be the savings and investment of the people. The Harrod model 

assumed that in a country people’s savings depend on GDP or 

national income; that is, savings is a constant proportion of current 

income, which implies: 

……………….(6.4.7.1) 

where 𝑎 > 0   is a constant of proportionality. 

Harrod further assumed that the investment made by the 

people depends on the difference between the GDP of the current 

year and the last year, that is, 

 
                               ………………………(6.4.7.2) 

Finally, the Harrod model assumed that all the savings made by the 

people are invested, that is, 

 
                                          ……………………….(6.4.7.3) 

From (6.4.7.1), (6.4.7.2) and (6.4.7.3), we obtain, 
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whose  solution is 

 
Thus, Harrod’s model concludes that GDP or national income 

increases geometrically with time. 

 

6.4.8 ARMS RACE MODEL 

 

We consider two countries engaged in an arms race. We 

assume that the two countries have similar economic strengths and 

the same level of distrust for each other. Let 𝑇𝑛  be the total 

amount of money spent by the two countries on arms after 𝑛 years. 

Let 𝑔 > 0 measures the restraint of growth due to economic 

strength (or weakness) of the countries and 𝑑 > 0 the level of 

distrust between the two countries. Both the countries also spent a 

constant amount  (say 𝑘) of money for buying arms irrespective of 

involving in an arms race. Then, the dynamic discrete model for 

the total amount of money 𝑇𝑛 spent on arms by each country after  

            𝑛 years is given by: 

 
 The equilibrium solution is: 
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Thus, as time increases, the total amount of money spent on arms 

reaches a steady state, and both the countries have a “stable” arms 

race. 

 
 

Fig 6.4.8.1 

The amount of money spent by both the countries on arms 

reaches a steady-state value with increasing time. Parameter values 

g=0.6, d =0.1 and k=100. 

 

 

6.4.9 LANCHESTER’S COMBAT MODEL 

 

F.W. Lanchester, a British Engineer, developed one of the first 

mathematical models for analyzing combats, whose greatest 

strength lies in its simplicity. The models helped in better planning, 

prediction of battles and their possible outcomes. Consider two 

adversaries, namely, A-team and B-team. Let 𝐴𝑛 and 𝐵𝑛 be the 

number of units of A-team and B-team, respectively, remaining in 

the battle after time  𝑛. By units, we will mean fighter planes, 

ships, tanks, soldiers, etc., depending on the context of the battle. It 

is assumed that the combat loss rate of both the teams is 

proportional to the size of their respective enemies. Under this 

assumption, the discrete dynamical system is 
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where 𝛼 > 0 is the fighting effectiveness of 𝐴-team, 𝛽 > 0 is 

the fighting effectiveness of 𝐵 -team, 𝑟1 and 𝑟2 are the respective 

numbers of reinforcements for A-team and B-team, respectively 

for each time step. The equilibrium solution is given by (𝐴∗, 𝐵∗) =

(
𝑟2

𝛼
,

𝑟1

𝛽
).  

The Jacobian matrix of the system is 

 

 
whose eigen values are obtained by solving 

 

 
 

Clearly,  

 

 
 

This implies that the system is a saddle about the equilibrium 

point. 

 
Fig 6.4.9.1 
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Fig 6.4.9.2 

 

 

6.5. SUMMARY 

 

Present unit is a presentation of Discrete Models, Linear 

Models, Newton’s Law of Cooling, Bank Account Problem, Drug 

Delivery Problem, Harrod Model (Economic Model), Arms Race 

Model, Lanchester’s Combat Model. The examples are also 

presented here. 

 

6.6 GLOSSARY 

 

i. Variables: In mathematical modelling, variables 

are symbols that represent quantities that can change, such 

as time, distance, temperature, or population size. They are 

used to describe real quantitative situations by writing 

mathematical expressions in place of words. Variables can 

be independent or dependent. 

ii. Equations: The equations in mathematical model contain 

variables, which are values to input into the equation, and 

parameters, which are constants whose value depends on 

the particular model and situation. 

iii. Constraints: In mathematical modelling, constraints are 

the conditions that a solution to an optimization problem 
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must satisfy. They represent restrictions or limitations on 

the variables used in equations that depict real-world 

scenarios. Constraints are essential to ensure that the 

mathematical model accurately reflects the situation. 

iv. Difference equation: A difference equation is an equation 

involving differences. One can define a difference equation 

as a sequence of numbers that are generated recursively 

using a rule to the previous numbers in the sequence the 

difference equation  

v. Homogeneous Difference Equation and Non-

Homogeneous Difference Equation: The difference 

equation is homogeneous if  𝑓(𝑛) = 0, otherwise it is non-

homogeneous.  

vi. Order: The order of the difference equation is the 

difference between the largest (𝑛) and smallest (𝑛 − 2) 

arguments appearing in the difference equation with unit 

interval. 

vii. Stable: The equilibrium point 𝑢∗ is said to be stable if all 

the solutions of  𝑢𝑛 = 𝑎𝑢𝑛−1 + 𝑏 approach 𝑢∗ =
𝑏

1−𝑎
 as 

𝑛 → ∞ (as 𝑛 becomes large).  

viii. Unstable: The equilibrium point 𝑢∗ is unstable if all 

solutions (if exists) diverges from 𝑢∗ to ±∞. 
 

 

CHECK YOUR PROGRESS 

 

CYP2. Newton’s law of cooling, which states that the rate of 

change of the temperature of an object is …………………..to the 

difference between its own temperature and the ambient 

temperature. 

CYP3.Harrod model aims to determine an ……………..growth 

rate for the economy. 

CYP4.………………….helped in better planning, prediction of 

battles and their possible outcomes 
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6.9 TERMINAL QUESTIONS 

 

TQ1. Let 𝑡𝑛 be the temperature in degrees centigrade and 𝑛 be the 

number of meters above the ground. The air cools by about 0.02°𝐶  

for each meter rise above the ground level. 

i. Formulate a discrete dynamical system to model this 

situation. 

ii. If the current temperature at ground level is 30°𝐶, find 

the temperature 500 m above the ground. 

iii. Find the height above the ground level at which the 

temperature is 0°𝐹. 

 

https://archive.nptel.ac.in/courses/111/107/111107113/
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TQ2. A certain drug is effective in treating a disease if the 

concentration remains above 100 mg/L. The initial concentration is 

640 mg/L. It is known from laboratory experiments that the drug 

decays at the rate of 20% of the amount present each hour. 

i. Formulate a linear discrete system that models the 

concentration after each hour. 

ii. Find graphically at what hour the concentration reaches 

100 mg/L. 

iii. Modify your model to include a maintenance dose 

administered every        hour. 

iv. Check graphically or otherwise to determine the 

maintenance doses that will keep the concentration 

above the minimum effective level of 100 mg/L and 

below the maximum safe level of 800 mg/L. 

v. Working with the maintenance doses you found in 

vi. Try varying the initial concentration. What do you 

observe about the tendency to stay within the necessary 

bounds, as well as the long-term tendency? 

 

6.10 ANSWERS 

 
TERMINAL QUESTIONS 

 

TQ-1: 

 i.  𝑡𝑛 = 𝑡𝑛−1 − 0.02.  
 ii. 𝑡𝑛 = 𝑡0 − 0.02𝑛.  
iii. 1.5 𝑘𝑚 

                          

                          TQ-2:  

                          i. 𝐶𝑛 = (0.8)𝑛 × 640. 

                         ii. After  9 hours the concentration reaches 100
𝑚𝑔

𝐿
. 

 

CHECK YOUR PROGRESS 

 

CYP2. Proportional 

CYP3. Equilibrium 

CYP4. Combat models 
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UNIT 7:  NON-LINEAR MODELS 

 

CONTENTS: 
 

7.1 Introduction  

7.2 Objectives 

7.3 Non- Linear Models 

7.3.1 Density-Dependent Growth Models 

7.3.1.1  Richer’s Model 

7.3.2 The Learning Model 

7.3.3 Dynamics of Alcohol: A Mathematical 

Model 

7.3.4 Two Species Competition Model 

7.3.5 2-cycles 

7.3.6 Stabilityof2-cycles 

7.3.7 3-cycles 

7.4 Examples  

7.5 Summary 

7.6 Glossary 

7.7 References 

7.8 Suggested readings 

7.9 Terminal questions 

7.10 Answers 
 

7.1 INTRODUCTION 

 

In previous unit we explained the concept of Discrete 

Models, Linear Models, Newton’s Law of Cooling, Bank Account 

Problem, Drug Delivery Problem, Harrod Model (Economic 

Model), Arms Race Model, Lanchester’s Combat Model.  In this 

unit we are describing the concepts of Non- Linear Models, 

Density-Dependent Growth Models, Richer’s Model, The Learning 

Model, Dynamics of Alcohol: A Mathematical Model, Two 

Species Competition Model, 2-cycles, Stability of 2-cycles, 3-

cycles. 
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7.2 OBJECTIVES 

 

After studying this unit, learner will be able to  

i. Explains the Density-Dependent Growth     

            Models. 

ii. Describe the Richer’s Model and The Learning    

            Model. 

iii. Defined the Dynamics of Alcohol: Mathematical  

             Model. 

iv. Explained the Two Species Competition Model  

           and 2-cycles, Stability of 2-cycles and 3-cycles. 

 

7.3 NON-LINEAR MODELS 

 

Density dependence is not considered by linear models, 

which assume that the same growth characteristics are applied to 

the population regardless of their sizes. In the natural world, linear 

growths are seldom seen (except for bacteria and viruses). Non – 

linear models or density-dependent models are quite successful in 

this regard. The non-linear models success fully capture the density 

dependence and their varying effects, which is reflected in the 

qualitative behavior of the solutions of the models. 

 

7.3.1 DENSITY DEPENDENT GROWTH 

MODELS 

 

 

7.3.1.1 RICHER’S MODEL 

 

Richer’s model is another example for a density-dependent 

model for the population of a species after 𝑛 generations and is 

given by 

 
where 𝛼 represents the maximal growth rate of the organism and 𝛽  

is the inhibition of growth caused by over population. 

 

If 𝑥∗ be the equilibrium solution of Richer’s model, then 
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⇒ 0 < 𝛼 < 1(Since 𝛼 > 0).  implying that the equilibrium 

point 𝑥1
∗ = 0is stable if 𝛼 ∈ (0,1). 

The equilibrium point 

 
is stable if, 

 
Implying that the equilibrium point 

 
is stable,  

 

 

 

 

 

 
 

 

 

 

 

 

7.3.2.  THE LEARNING MODEL 

 

When we learn a new topic, the following principle may 

apply. If the present amount learned is  𝐿𝑛, then  𝐿𝑛+1 equals 𝐿𝑛, 

minus the fraction 𝑟, of the 𝐿𝑛 forgotten, plus the new amount 

learned, which we assume is inversely proportional to the amount 

already learned (∞, 1 𝐿𝑛⁄ ). We also assume that the person 

learning the new topic cannot forget the whole part of the topic 

learned (𝑟 ≠ 1). Under the following assumptions, the model is 

given by 

What is Richer’s 

Method? 
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where 𝑘 is the constant of proportionality. The steady-state 

solution is given by, 

 

 
For stability, we must have, 

 
Therefore, the system is stable if 0 < 𝑟 < 1 and unstable if 𝑟 > 1. 
 

 

 

 

 

 

 

 

 

 

 

7.3.3  DYNAMICS OF ALCOHOL: A  

MATHEMATICAL MODEL 

 

Some teenagers and young adults have made drinking as an 

integral part of their social life. They believe that the quality of 

their social life is enhanced by moderate drinking without 

understanding the risks involved in the consumption of alcohol. 

About 45-55 percent of road traffic deaths in India occur under the 

influence of alcohol. 

 

BAC or Blood alcohol content of 0.1 means1gram of 

alcohol is present in 100ml of blood. In India, the BAC legal limit 

is 0.03 percent per 100ml of blood or 30 mg of alcohol in 100ml of 

What is learning 

model? 
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blood. In the United States, BAC legal limit is 0.08 and in most 

European countries, it is 0.05. A standard alcoholic drink, which is 

equivalent to 350 ml of beer ,will raise the BAC of a 68kg adult 

male to approximately 20-22mg of alcohol in 100ml of blood 

(count is different in a female). The alcohol consumed is absorbed 

into the body primarily through the lining of the stomach and that 

is there as on why a blood alcohol content (BAC) peak is obtained 

within 20 minutes of the last drink. The main content of alcohol is 

ethanol (a chemical compound) and the body deals with this 

chemical in the blood stream in two ways. The first is the 

metabolism of ethanol by liver enzymes and the second is the 

filtration by the kidneys. The average rate alcohol leaves the body 

is 15mg per 100ml per hour (a standard alcoholic drink for men). 

Thus, if a person 75mg of ethanol in his body at the beginning of 

an hour, then the body will eliminate 15mg in the next hour. 

 

Let 𝑎𝑛 be the amount of alcohol in a person’s body at the 

beginning of hour 𝑛  and let the person average eliminates about 

15 percent of the alcohol from his/her body each hour, then the 

amount of alcohol eliminated during (𝑛 − 1)𝑡ℎ hour is 0.15𝑎𝑛−1  

where 𝑎𝑛−1 is the amount of alcohol in a person’s body at the 

beginning of hour  (𝑛 − 1).. Therefore, the amount of alcohol in a 

person’s body is modeled by the dynamical system 

 
where 𝑟 is  the fraction of alcohol filtrated by the kidneys 

during each time period and A is the amount of alcohol consumed 

in each time period (for alcohol 𝑟 = 0.15). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Examples?.......

...................... 
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7.3.4 TWO SPECIES COMPETITION MODEL  

 

In a certain forest, black bears and grizzly bears compete 

with each other for food. Suppose that in the absence of any 

competition or hunting, the black bear population will grow by 

𝛼1 per year, while the grizzly bear population will grow by 𝛼2.  

Each year the competition between the two types of bears leads to 

the death of a certain number of each type of bear (due to fighting 

and food shortages). The number of black bears that die is equal to 

the product of the black and grizzly bear populations at a rate 𝛽1. 
The number of grizzly bears that die is equal to the product of the 

black and grizzly populations at a rate 𝛽2. Let 𝐵𝑛 and 𝐺𝑛 be the 

population of black bears and grizzly bears at year n, respectively. 

under the following assumptions, the model is given by 

 
The equilibrium points are obtained by solving, 

 
This implies that, 

 
For stability, we calculate 

 
where, 

 

 
whose eigen values are 

 
and 

 

 
unstable at the origin. This means both the species will not become  

extinct simultaneously. 
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Since the model is unstable at both the equilibrium points, 

and we   modify it by adding a self-competition term in both the 

bear species. We assume that each bear species also compete for 

food among each other.  This will modify the model as 

 
The equilibrium points are obtained by solving 

 
 

For stability, we obtain the matrix 

 

 
At (0, 0), the system is unstable, 
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Fig.7.3.4 

 
Figure (a) shows that both the bears co-exist even though 

there is  intra - specific and inter - specific competition among 

them. Reducing the inter-specific competition parameter 𝛽1 to 

0.0025, it is observed from figure (b) that the black bear goes to 

extinction in approximately 5 years. From figure (c) with some 

proper choice of parameters, the extinction of grizzly bears is seen. 
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7.3.5   2-CYCLES 

 

Consider a non-linear difference equation 𝑥𝑛 = 𝑓(𝑥𝑛). A 

pair of distinct points 𝑥1 and 𝑥2 is called a 2-cycle of 𝑥𝑛+1 =
𝑓(𝑥𝑛) if, 

 
Each point is called a point of period 2 for 𝑓(𝑥). 

 

7.3.6  STABLITY OF 2-CYCLES 

 

Local stability of a 2-cycles of 𝑥𝑛 = 𝑓(𝑥𝑛+1) means each 

point of the Cycle is a stable fixed point of 𝑓(𝑓(𝑥)), otherwise the 

2-cycle is unstable. The Condition for stability is given by 

(Locally Stable) 

 
(Unstable) 

 
where 𝑥1 and 𝑥2 are two distinct points of 2-cycles of 𝑥𝑛+1 =
𝑓(𝑥𝑛) . 

 

7.3.7  3-CYCLES 

 

Consider a non-linear difference equation 

𝑥𝑛+1 = 𝑓(𝑥𝑛) 

A pair of three distinct points 𝑥1, 𝑥2 and 𝑥3 is called a 3-

cycle of 𝑥𝑛+1 = 𝑓(𝑥𝑛) if, 

 
Each point is called a point of period 3 for 𝑓(𝑥). 

 

 

 

This model is a simplification 
of real-world ecological 
systems and makes 
assumptions that may not 
always hold true.  
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7.4. EXAMPLES 

             

            Example 7.4.1. Find a 2-cycle of  

 

 
          and determine its stability. 

 

            Solution: 

 
   The equilibrium points are obtained by solving 

 

 

 
    We next compute 

 
   Now, any point of period 2 for 𝑓(𝑥) is actually a fixed 

point of  the composition 𝑓(𝑓(𝑥)) and we solve 
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    This implies that 2-cycle is stable.(Fig.7.3.4(a)). 

 

 

 

 

                                                                               (Fig.7.3.4(b)). 

 



MATHEMATICAL MODELLING                                                     MAT 610 

 

Department of Mathematics  
Uttarakhand Open University Page 122 
 

 

 
The figures show the dynamics of 2-cycles, (a) stable and 

(b)unstable. 

 

Example 7.4.2. 
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Example 7.4.3. 
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Example 7.4.4. 
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7.5 SUMMARY 

 

    This unit is a presentation of Non- Linear Models, 

Density-Dependent Growth Models, Richer’s Model, The Learning 

Model Dynamics of Alcohol: A Mathematical Model, Two Species 

Competition Model, 2-cycles, Stability of 2-cycles, 3-cycles. We 

have define different models in brief and some examples are also 

present. 

 

7.6        GLOSSARY 

 

i. Variables: In mathematical modelling, variables 

are symbols that represent quantities that can change, such 

as time, distance, temperature, or population size. They are 

used to describe real quantitative situations by writing 

mathematical expressions in place of words. Variables can 

be independent or dependent. 

ii. Equations: The equations in mathematical model contain 

variables, which are values to input into the equation, and 

parameters, which are constants whose value depends on 

the particular model and situation. 

iii. Constraints: In mathematical modelling, constraints are 

the conditions that a solution to an optimization problem 

must satisfy. They represent restrictions or limitations on 

the variables used in equations that depict real-world 

scenarios. Constraints are essential to ensure that the 

mathematical model accurately reflects the situation. 

iv. Difference equation: A difference equation is an equation 

involving differences. One can define a difference equation 

as a sequence of numbers that are generated recursively 

using a rule to the previous numbers in the sequence the 

difference equation  

v. Homogeneous Difference Equation and Non-

Homogeneous Difference Equation: The difference 

equation is homogeneous if  𝑓(𝑛) = 0, otherwise it is non-

homogeneous.  

vi. Order: The order of the difference equation is the 

difference between the largest (𝑛) and smallest (𝑛 − 2) 

arguments appearing in the difference equation with unit 

interval. 
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vii. Stable: The equilibrium point 𝑢∗ is said to be stable if all 

the solutions of  𝑢𝑛 = 𝑎𝑢𝑛−1 + 𝑏 approach 𝑢∗ =
𝑏

1−𝑎
 as 

𝑛 → ∞ (as 𝑛 becomes large).  

viii. Unstable: The equilibrium point 𝑢∗ is unstable if all 

solutions (if exists) diverges from 𝑢∗ to ±∞. 
 

CHECK YOUR PROGRESS 

 

i. Richer’s model is another example for a ……… for  

             the population of a species after 𝑛 generations.  
ii. In a certain forest, black bears and grizzly bears  
            compete with each other for food the model use  

             here is ………………... 
iii. Two Species Competition model is unstable at both  

             the …………... 

iv. Local stability of a 2-cycles of 𝑥𝑛 = 𝑓(𝑥𝑛+1) means  
             each point of the Cycle is a …..  
v. In 2-cycles each point is called a point of  

            period……. for 𝑓(𝑥). 
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7.9. TERMINAL QUESTIONS 

 

TQ1.  

 

 

 
 

7.10.  ANSWERS 

 

                  

TERMINAL QUESTIONS 

 

(i)  
(ii) From the graph we can see that after 9 hours, the 

Concentration reaches100mg/L. Thus, doses must 

be provided before this time for recovery. 

                 

CHECK YOUR PROGRESS 

i. density-dependent model. 

ii. Two species competition model. 

iii. equilibrium points. 

iv. stable fixed point of 𝑓(𝑓(𝑥)).  

v. 2. 



MATHEMATICAL MODELLING                                                     MAT 610 

 

Department of Mathematics  
Uttarakhand Open University Page 128 
 

UNIT 8: CONTINUOUS MODEL 

USING ORDINARY DIFFERENTIAL 

EQUATIONS 
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8.1 INTRODUCTION 

 

In previous unit we have defined Mathematical Modeling 

through Differential Equation, Linear Model Non-Linear Models. 

Now in this unit we defined continuous Models Using Ordinary 

Differential Equations, Steady State Solution, Stability, 

Linearization and Local stability Analysis, Lyapunov’s Direct 

Method etc. we also discussed about Arms Race Models ,Epidemic 

modes and Combat Models . 

 

8.2 OBJECTIVES 

 

After studying this unit, learner will be able to  

i. Explain the Continuous Model  

ii. Describe the continuous change of a system over time or 

space using ODEs. 

iii. Analyse the behaviour of a system with the help of ODEs. 

iv. Identify the optimal parameters or control strategies to 

achieve the desired outcome. 

 

8.3 INTRODUCTION TO CONTINUOUS 

MODELS 

 

Continuous models are mathematical representations of systems 

or phenomena that can be described using continuous variables and 

functions. A continuous model consists of a dependent continuous 

variable, varying with some other independent continuous variables. 

We use a first -order ordinary differential equations to model a 

continuous system if we have some information or assumption about 

the rate of change of the dependent variable(s) with respect to the 

independent variables. There are some types of Continuous Models 

 

1.Differential Equations: These models describe how a system 

changes over time or space using rates of change. 

2. Integral Equations: These models describe the accumulation of a 

quantity over a given interval. 

3.Optimization Models: These models describe the best solution to 

a problem given certain constraints. 
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8.4 STEADY STATE SOLUTION 

 

We consider a system of n  non linear, autonomous (does not 

explicitly depend on time, that is, time -invariant ) differential 

equations 
𝑑�̃�

𝑑𝑡
 = f(�̃�) 

𝑤ℎ𝑒𝑟𝑒 

 �̃� =(𝑥1, 𝑥2, . . . . . . . . . . 𝑥𝑛)𝑇𝑎𝑛𝑑 f(�̃�)= 𝑓1�̃�𝑓2  (�̃�)  , . . . . . . . . . 𝑓𝑛    (𝑥)̃𝑇 

A steady -state solution or equilibrium solution or critical point is a 

constant solution that is the value of �̃�does not change over time and 

is obtained by putting 
𝑑�̃�

𝑑𝑡
 = 0  

Note: In order for the value of �̅� to be the same (constant) over time, 

there must not be any change in�̅� implying 
𝑑�̃�

𝑑𝑡
  = 0. Therfore, the 

only value(s) of �̅� for which this can happens is f(�̅�) = 0 and so f(�̃�) 

=0 gives a steady state solution or an equlibrium solution or a fixed 

poinr. 

In short if we consider a nonlinear time invariant system  

 
𝑑�̃�

𝑑𝑡
 =f(�̃�) , �̃�(𝑡0) = 𝑥0̃where f : R →  𝑅, a point �̃�𝑒 is an equlibrium 

point or a steady state solution of the system if f (�̃�𝑒) =0 . 

 

 

8.5     STABILITY 

 

    In Layman’s language, we say that an equlibrium point or a 

steady state solution   �̃�𝑒  is locally stable, if all solution that start 

near  �̃�𝑒   (that is, the initial condition are in the neighborhood of   �̃�𝑒  

) remain near   �̃�𝑒   for all the time. Furthermore , if all the solutions 

startring near   �̃�𝑒  approch �̃�𝑒 

 t → ∞, we say that the equlibrium point or steady state solution �̃�𝑒    

is locally asymptotically stable . 

Consider the dynamical system satisfying  
𝑑�̃�

𝑑𝑡
 =f(�̃�) , �̃�(𝑡0) = 𝑥0̃where f : R →  𝑅, 
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8.5.1 LINEARIZATION AND LOCAL 

STABILITY ANALYSIS 

 

  This method is known as Lyapunov’s first method or reduced 

method, Where the stability analysis of a steady sate or equilibrium 

point is done by studding the stability of the corresponding 

linearized system in the neighborhood of the steady state. We 

consider the model of the form  
𝑑𝑦

𝑑𝑥
= f(x) 

𝑊ℎ𝑜𝑠𝑒 𝑙ocal stability analysis we want to perform about the 

equilibrium point x* (obtained by putting f(x) = 0). We give a small 

perturbation to the system about the equilibrium point x*. 

Mathematically this means we put x = X+ x* into the above 

equation and get 

 

 

8.5.2 LYAPUNOV’S DIRECT METHOD 

 

Lyapunov's direct method, also known as Lyapunov's second 

method, determines the stability of a system without explicitly 

integrating the differential equation 

𝑑�̃�

𝑑𝑡
= 𝑓(�̃�), �̃�(𝑡0) = 𝑥0̃, where 𝑓: R → R.  

The method is a generalization of the idea that if the potential energy 

has a relative minimum at the equilibrium point, then the 

equilibrium point is stable; otherwise, it is unstable. Russian 

mathematician Aleksandr Mikhailovich Lyapunov generalized this 

principle to obtain a method for studying the stability of the general 

autonomous system. 

 

8.5.2 LYAPUNOV’S CONDITION FOR 

LOCAL STABILITY  

 

Consider the autonomous system 

𝑑�̃�

𝑑𝑡
= 𝑓(�̃�), �̃�(𝑡0) = 𝑥0̃, f: R → R,                     . . . (1) 
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where having isolated critical point at the origin �̃� = 0 and 𝑓(�̃�) has 

continuous partial derivatives for all �̃�. Let 𝑉(�̃�) be a positive 

definite function in a neighborhood 𝐒 of the origin �̃� = 0 and the 

derivative �̇�(�̃�) of 𝑉(�̃�) with respect to the system (1) is negative 

semi-definite in the neighborhood S of the origin �̃� = 𝟎, then 𝑉(�̃�) 

is called a Lyapunov function for the System. Mathematically, 𝑉(�̃�) 

is called a Lyapunov function if 

 

(i) 𝑉(�̃�) > 0 in the nbd. of the origin �̃� = 0, 

 

(ii) 𝑉(𝟎) = 0 for all �̃� = 𝟎, 

 

(iii) �̇�(�̃�) ≤ 0 in the nbd. of the origin �̃� = 0, 

 

(iv) �̇�(𝟎) = 0 for all �̃� = 𝟎. 

If there exists a Lyapunov function 𝑉(�̃�) for the system (1) in the 

nbd. of the origin �̃� = 0, then the steady-state solution or the 

equilibrium point �̃� = 𝟎 is stable (locally). 

If the derivative �̇�(�̃�) of 𝑉(�̃�) is negative semi-definite in the 

neighborhood S of the origin �̃� = 𝟎, then the steady state solution or 

the equilibrium point �̃� = 𝟎 is locally asymptotically stable (LAS). 

Note:There is no general method for constructing a Lyapunov 

function, but if one can construct a Lyapunov function for the 

system (1), then one can directly obtain information about the steady 

state of the equilibrium point �̃� = 𝟎 and hence the name Lyapunov's 

direct method. 

8.6 CONTINUOUS MODELS  

 

A continuous model is a mathematical representation of a 

system or phenomenon that assumes the variables and functions 

involved are continuous, it means  they can take on any value within 

a given range or interval. There are some different types of models 

are formulated and discussed Below. 
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8.6 .1 CARBON DATING 

 
Carbon dating is method developed by W. F. Libby at the 

university of Chicago in 1947, that can be used to accurately date 

archaeological samples to determine the ages of the plant (wood 

Fossil) or any material. 

 

8.6 .2 Drug Distribution in the body 

 
The study of the movement of drugs in the body is called 

pharmacokinetics. Thescience of pharmacokinetics uses 

mathematical equations and utilizes them to describe the movement 

of the drug through the body. 

Now we study a simple problem in pharmacology, where we will be 

dealing with the dose-response relationship of a drug. In this 

problem, the drug present in the system follows certain laws. Let us 

assume that the rate of decrease of the concentration of the drug is 

directly proportional to the square of its amount present in the body 

and 𝐶0 be the initial dose of the drug given to the patient at time 𝑡 =
0. The mathematical model that captures these dynamics is given by 

𝑑𝐶(𝑡)

𝑑𝑡
= −𝑘𝐶2                                                    (1)                                        

where 𝑘 is a constant depending on the drug used and its value can 

be obtained from the experiment. Solving (1), we get 

𝐶(𝑡) =
𝐶0

1 + 𝐶0𝑘𝑡
, where 𝐶(0) = 𝐶0 

Let an equal dose of drug 𝐶0 be given to the body at equal time 

intervals, 𝑇. Then, immediately after the second dose, the 

concentration of the drug inside the body is 

𝐶1 = 𝐶0 +
𝐶0

1 + 𝐶0𝑘𝑇
 

Immediately after the third dose, the concentration of the drug inside 

the body is 

𝐶2 = 𝐶0 +
𝐶1

1 + 𝐶1𝑘𝑇
. 
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In a similar manner, we can conclude that 

𝐶𝑛 = 𝐶0 +
𝐶𝑛−1

1 + 𝐶𝑛−1𝑘𝑇
,           (2) 

which is a non-linear difference equation. Now, 

𝐶𝑛+1 − 𝐶𝑛 =
𝐶𝑛 − 𝐶𝑛−1

(1 + 𝑘𝑇𝐶𝑛)(1 + 𝑘𝑇𝐶𝑛−1)
 

From (2), we conclude that 𝐶𝑛 > 𝐶0, which implies 𝐶𝑛+1 − 𝐶𝑛 and 

𝐶𝑛 − 𝐶𝑛−1 have the same sign. Noting that 𝐶𝑛 is an increasing 

function of 𝑛, we attempt to find the limiting value of the 

concentration by taking limits on both sides of (2), that is,\ 

lim
𝑡 →∞

𝐶𝑛 = lim
𝑡→∞

(𝐶0 +
𝐶𝑛−1

1+𝐶𝑛−1𝑘𝑇
), 

lim
𝑡 →∞

𝐶𝑛=𝐶0 +
lim

𝑡 →∞
𝐶𝑛−1

1 +𝑘𝑇 lim
𝑡 →∞

𝐶𝑛−1
, 

 𝐶∞ = 𝐶0 +
𝐶∞

1 + 𝐶∞ 𝑘𝑇
 where 𝐶∞ = lim

𝑡 →∞
𝐶𝑛= lim

𝑡 →∞
𝐶𝑛−1’ 

 𝑘𝑇𝐶2
∞ - kT𝐶0𝐶∞ - 𝐶0 =0, 

 𝐶∞ = 
𝐶0

2
 +

𝑐0

2
√1 +

4

𝐶0𝑘𝑇
      taking positive sign only). 

 𝐶0 < 𝐶𝑛 < 𝐶∞ (Since 𝐶𝑛 is an increasing function), that is 

concentration is bounde. 

8.6.3 GROWTH AND DECAY OF CURRENT IN L-R 

CIRCUTT 

 

We consider an L-R circuit where 𝐿 is the inductance of the coil 

and 𝑅 is the resistance. The coil is connected to a battery of voltage 

𝑉 through a key 𝐾 in the given figure (1) 

In the 𝐎𝐍 position, the current flows through the coil. When the 

current 𝑖(𝑡) starts to flow, the negative lines of force move outward 

from the coil and an electromotive force (e.m.f.) will induce across 

L. According to the law of electromagnetic induction, this e.m.f. will 

oppose the voltage, as a result of 
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Figure (1) 

FIGURE 1: The inductance-resistance ( 𝐿 − 𝑅 ) circuit, connected 

to a battery of voltage 𝑉 through a key 𝐾. 

which there will be a voltage drop across 𝑅, which will also oppose 

the applied voltage. Let, at any time 𝑡, i be the current in the circuit 

increasing from 0 to a maximum value at a rate of increase 
𝑑𝑖

𝑑𝑡
. Now, 

the potential difference across the inductor is 𝑉1 = 𝐿
𝑑𝑖

𝑑𝑡
 and across 

the resistor is 𝑉2 = 𝑖𝑅. The differential equation modeling of this 

scenario is given by 

𝑉 = 𝐿
𝑑𝑖

𝑑𝑡
+ 𝑖𝑅 (since 𝑉 = 𝑉1 + 𝑉2)

⇒ ∫  
𝑖

0

 
𝑑𝑖

𝑖 −
𝑉
𝑅

= −
𝑅

𝐿
∫  

𝑡

0

 𝑑𝑡 ⇒ log𝑒 (𝑖 −
𝑖

𝑉/𝑅
) = −

𝑅

𝐿
𝑡

⇒ 𝑖(𝑡) =
𝑉

𝑅
(1 − 𝑒−

𝑅
𝐿

𝑡)

 

which shows that the current grows exponentially. As 𝑡 → ∞, 𝑖 →
𝑉

𝑅
= 𝐼 (say), a steady value (fig2). 
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Figure 2 

FIGURE 2 : Graphs showing the (a) growth and (b) decay of 

current, with 𝐿 = 50, 𝑅 = 1 and 𝑉 = 50. 

We now put the key in the OFF position. Initially, when the key was 

in the 𝐎𝐍 position, a steady current 𝐼 =
𝑉

𝑅
 was flowing. With no 

current flowing in the circuit, the flux will reduce gradually, 

resulting in a voltage drop 𝑖𝑅 across the resistance 𝑅 and the 

induced e.m.f. 𝐿
𝑑𝑖

𝑑𝑡
 across the inductance 𝐿. 

Now, since the key is OFF, the current becomes open, implying that 

the impressed voltage is zero. 

The differential equation showing this scenario is given by 

0 = 𝐿
𝑑𝑖

𝑑𝑡
+ 𝑖𝑅( since 𝑉 = 𝑉1 + 𝑉2 = 0)

⇒ ∫  
𝑖

𝐼

 
𝑑𝑖

𝑖
= − ∫  

𝑡

0

 
𝑅

𝐿
𝑑𝑡( since at 𝑡 = 0, 𝑖 = 𝐼)

ln (
𝑖

𝐼
) = −

𝑅

𝐿
𝑡 ⇒ 𝑖(𝑡) =

𝑉

𝑅
𝑒−

𝑅
𝐿

𝑡

 

Thus, the current decays exponentially as time increases and 

ultimately goes to zero. 

8.6.4 RECTILINEAR MOTION UNDER VARIABLE 

FORCE 

 

 

Figure 3 

FIGURE3  :A particle moving in a straight line towards the origin 

O (fixed) and acted upon by a force 𝐹 directed towards 𝑂. 
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Let a particle move in a straight line and be acted upon by a force 

𝐹 =
𝑚𝜇

𝑥
, 𝜇(> 0) being the constant of proportionality, which is 

always directed towards a fixed point 𝑂. Here, 𝑚 is the mass of the 

particle and 𝑃 is the position of the particle at any time 𝑡 such that 

𝑂𝑃 = 𝑥 (fig. 3). The equation of motion modeling the given 

scenario is given by 

𝑚𝑣
𝑑𝑣

𝑑𝑥
= −𝑚

𝜇

𝑥
 

where 𝑣
𝑑𝑣

𝑑𝑥
 is the acceleration of the particle of mass 𝑚. Since the 

force is attractive, the sign of right-hand side is negative. Integrating, 

we get, 

𝑣2

2
= −𝜇ln 𝑥 +  constant  

Initially, let the particle start from rest (from A) at a distance 𝑎 from 

the fixed point 𝑂 (origin), then at time 𝑡 = 0, 𝑥 = 𝑎, 𝑣 = 0, 

⇒  constant = 𝜇ln 𝑎 ⇒ 𝑣2 = 2𝜇ln (
𝑎

𝑥
). 

⇒ 𝑣 =
𝑑𝑥

𝑑𝑡
= −√2𝜇ln (

𝑎

𝑥
) (Negative sign as distance decreases with 

time). 

⇒ √2𝜇 ∫  
𝑇

0
𝑑𝑡 = − ∫  

0

𝑎

𝑑𝑥

√ln (
𝑎

𝑥
)

, where 𝑇 is the time taken by the 

particle 

to reach the origin. 

Therefore,

√2𝜇𝑇 = − ∫  
∞

0
 
𝑎𝑒−𝑦2

(−2𝑦)𝑑𝑦

𝑦
( Substitute ln (

𝑎

𝑥
) = 𝑦2)

= 2𝑎 ∫  
∞

0
  𝑒−𝑦2

𝑑𝑦 = 𝑎 ∫  
∞

0
 
𝑒−𝑧

√𝑧
𝑑𝑧( Put 𝑧 = 𝑦2)

= 𝑎 ∫  
∞

0
  𝑒−𝑧𝑧

1

2
−1𝑑𝑧 = 𝑎Γ (

1

2
) = 𝑎√𝜋 ⇒ 𝑇 = 𝑎√

𝜋

2𝜇

 

 

 

8.7 ARMS RACE MODELS 

 

The Arms Race model is a mathematical model used to describe the 

dynamics of an arms race between two or more countries. The 
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model is based on the idea that each country's military expenditure is 

influenced by the military expenditure of its opponents. 

We consider two neighboring countries 𝐴 and 𝐵 and let 𝑥(𝑡) and 

𝑦(𝑡) be the expenditures on arms respectively by these two countries 

in some standardized monetary unit. 

We construct a simple mathematical model by assuming the notion 

of mutual fear, that is, the more one country spends on arms, it 

encourages the other one to increase its expenditure on arms. Thus, 

we assume that each country spends on arms at a rate which is 

directly proportional to the existing expenditure of the other nation. 

Mathematically, we can write  

𝑑𝑥

𝑑𝑡
= 𝛼𝑦,

𝑑𝑦

𝑑𝑡
= 𝛽𝑥(𝛼, 𝛽 > 0) (1)

⇒
𝑑2𝑥

𝑑𝑡2
= 𝛼

𝑑𝑦

𝑑𝑡
= 𝛼𝛽𝑥

⇒ 𝑥 = 𝐴1𝑒√𝛼𝛽𝑡 + 𝐴2𝑒−√𝛼𝛽𝑡

 

 Similarly, we get, 𝑦 = 𝐵1𝑒√𝛼𝛽𝑡 + 𝐵2𝑒−√𝛼𝛽𝑡.  

Thus, 𝑥, 𝑦 → ∞ as 𝑡 → ∞ and we conclude that both the countries 𝐴 

and 𝐵 spend more and more money on arms with increasing time 

and no limits on the expenditure (fig.4). As the mathematical 

prediction of indefinitely large expenditure for both the countries is 

unrealistic, an improved model is desired. 

In the modified model, other than the mutual fear, we also assume 

that the rate of change of one country's expenditure on arms will also 

be directly proportional to its own expenditure as the excessive 

expenditure on the arms puts the country's economy in the 

compromising position. Accordingly, the model (1) is modified as  

𝑑𝑥

𝑑𝑡
= 𝛼𝑦 − 𝛾𝑥(𝛼, 𝛽, 𝛾, 𝛿 > 0)                                                           (2) 

Clearly, (0,0) is the only steady-state solution, provided 𝛾𝛿 − 𝛼𝛽 ≠
0. The characteristic equation is given by 

|
−𝛾 − 𝜆 𝛾

𝛽 −𝛿 − 𝜆
| = 0,

⇒ 𝜆2 − (−𝛿 − 𝛾)𝜆 + 𝛾𝛿 − 𝛼𝛽= 0
 

Hence, the system is stable if 𝛾𝛿 − 𝛼𝛽 > 0 ⇒ 𝛾𝛿 > 𝛼𝛽. 

This implies if the product of the rates of depreciation (𝛾𝛿) on the 
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expenditure of arms of both the countries 𝐴 and 𝐵 is greater than the 

product of rates of expenditure (𝛼𝛽) on arms of both the countries, 

the system will be stable and the countries will spend an allocated 

amount of money on arms, so that the economy of the country is not 

compromised. 

A simple refinement of the model was made by Lewis F. Richardson 

(1881-1953), popularly known as the Richardson Arms Race model , 

where he assumed that the cause of the rate of increase of a country's 

armament, not only depend on mutual stimulation but also on the 

permanent underlying grievances of each country against the other.  

𝑑𝑥

𝑑𝑡
= 𝛼𝑦 − 𝛾𝑥 + 𝑟 (3)

𝑑𝑦

𝑑𝑡
= 𝛽𝑥 − 𝛿𝑦 + 𝑠 (4)

 

where 𝛼, 𝛽, 𝛾, 𝛿 are positive (as before) and 𝑟, 𝑠 are constants which 

will be negative or positive, depending on the fact whether the 

country has overcome the grievance or not. The unique steady-state 

solution is obtained by solving 

𝛼𝑦∗ − 𝛾𝑥∗ + 𝑟 = 0 and 𝛽𝑥∗ − 𝛿𝑦∗ + 𝑠 = 0 

provided 𝛾𝛿 − 𝛼𝛽 ≠ 0. Solving, we obtain 

𝑥∗ =
𝑟𝛿 + 𝑠𝛼

𝛾𝛿 − 𝛼𝛽
 and 𝑦∗ =

𝑟𝛽 + 𝑠𝛾

𝛾𝛿 − 𝛼𝛽
. 
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Figure 4 

 

8.8 EPIDEMIC MODELS 

 

Mathematical epidemiology is the use of mathematical models to 

predict the course of infections disease and to compare the effects of 

different control strategies. In epidemic models, the population is 

divided into three main classes, namely, a susceptible class, denoted 

by S(t) (persons who are vulnerable to the disease or who can be 

easily infected by the disease), infected class denoted by I(t) 

(persons who already have the disease), and recovered class, denoted 

by R(t) (person who have recovered from the disease). One can 

defined more classes if the situation demands, for modification in 

the models. 

 

Susceptible – infective (SI) Model: Let us suppose a population 

consist of (n+1) persons of which n persons are in susceptible group 
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and only one is infected, so that S(t) + I(t) = n+1, S(0) = n, I(0) =1. 

A susceptible person gets infected when he comes in contact with an 

infected one. Mathematically we can say that the rate of increase of 

the infected class is proportional to the product of the susceptible 

and infected persons. Hence, the susceptible class also decreases at 

the same rate.  
𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼(𝛽 > 0).

 

 Now, 
𝑑𝑆

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
= 0 ⇒ 𝑆(𝑡) + 𝐼(𝑡) =  constant. 

⇒  constant = 𝑆(0) + 𝐼(0) = 𝑛 + 1 ⇒ 𝑆(𝑡) + 𝐼(𝑡) = 𝑛 + 1

⇒
𝑑𝑆

𝑑𝑡
= −𝛽𝑆(𝑛 + 1 − 𝑆) and 

𝑑𝐼

𝑑𝑡
= 𝛽𝐼(𝑛 + 1 − 𝐼)

 

Integrating the first differential equation, we obtain 

∫
𝑑𝑆

𝑆(𝑛 + 1 − 𝑆)
= − ∫ 𝛽𝑑𝑡 ⇒

1

𝑛 + 1
∫ [

1

𝑛 + 1 − 𝑆
+

1

𝑆
] 𝑑𝑆 = − ∫ 𝛽𝑑𝑡

⇒ −ln (𝑛 + 1 − 𝑆) + ln (𝑆) = −(𝑛 + 1)𝛽𝑡 + 𝐴 (constant). 

 At 𝑡 = 0, 𝑆(0) = 𝑛 ⇒ A = ln (𝑛)

⇒ ln [
𝑆

𝑛(𝑛 + 1 − 𝑆)
] = −(𝑛 + 1)𝛽𝑡 ⇒

𝑆

𝑛(𝑛 + 1 − 𝑆)
= 𝑒−(𝑛+1)𝛽𝑡

⇒ 𝑆(𝑡) =
𝑛(𝑛 + 1)

𝑛 + 𝑒(𝑛+1)𝛽𝑡
. Therefore 

𝐼(𝑡) = (𝑛 + 1) − 𝑆(𝑡) = (𝑛 + 1) −
𝑛(𝑛 + 1)

𝑛 + 𝑒(𝑛+1)𝛽𝑡
=

𝑛 + 1

1 + 𝑛𝑒−(𝑛+1)𝛽𝑡
.

 

As 𝑡 → ∞, 𝑆(𝑡) → 0 and 𝐼(𝑡) → (𝑛 + 1). Therefore, we conclude 

that as time increases, all the susceptible persons will become 

infected.  

Susceptible-Infective-Susceptible (SIS) Model: A simple 

refinement of the previous model has been made and named as the 

SIS model, where it is assumed that the infected person has the 

ability to recover and move to the susceptible class at a rate 𝛼 (say). 

Initially 𝑆(0) = 𝑛, 𝐼(0) = 1, then, we get the required model as 

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼 + 𝛼𝐼

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛼𝐼, (𝛽, 𝛼 > 0)
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Figure 5 

 

 

FIGURE 5: The figures show the dynamics of epidemic models. (a) 

SI model with 𝛽 = 0.001, 𝑆(0) = 2000, 𝐼(0) = 1, (b) SIS model 

with 𝛽 = 0.001, 𝛼 = 0.4, 𝑆(0) = 2000, 𝐼(0) = 1. 

 Now, 
𝑑𝑆

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
= 0 ⇒ 𝑆(𝑡) + 𝐼(𝑡) = 𝐾 (constant). 

⇒ 𝐾 = 𝑆(0) + 𝐼(0) = 𝑛 + 1 ⇒ 𝑆(𝑡) + 𝐼(𝑡) = 𝑛 + 1
𝑑𝑆

𝑑𝑡
= −[(𝑛 + 1)𝛽 + 𝛼]𝑆 + 𝛽𝑆2 + (𝑛 + 1)𝛼

𝑑𝐼

𝑑𝑡
= [(𝑛 + 1)𝛽 − 𝛼]𝐼 − 𝛽𝐼2 = 𝑐𝐼 − 𝛽𝐼2, where 𝑐 = (𝑛 + 1)𝛽 − 𝛼.

⇒
𝑑𝐼

𝐼 (1 −
𝛽
𝑐

𝐼)
= 𝑐𝑑𝑡 ⇒

𝑐
𝛽 𝑑𝐼

𝐼 (
𝑐
𝛽

− 𝐼)
= 𝑐𝑑𝑡 ⇒ [

1

𝐼
+

1
𝑐
𝛽

− 𝐼
] = 𝑐𝑑𝑡

 

Integrating we obtain, 



MATHEMATICAL MODELLING                                                     MAT 610 

 

Department of Mathematics  
Uttarakhand Open University Page 143 
 

ln (𝐼) − ln (
𝑐

𝛽
− 𝐼) = 𝑐𝑡 + 𝐵 (constant). Now, 𝐼(0) = 1 ⇒ 𝐵 = −ln (

𝑐

𝛽
− 1) .

⇒ ln (𝐼) − ln (
𝑐

𝛽
− 𝐼) + ln (

𝑐

𝛽
− 1) = 𝑐𝑡 ⇒

𝐼 (
𝑐
𝛽 − 1)

𝑐
𝛽 − 𝐼

= 𝑒𝑐𝑡

⇒ 𝐼(𝑡) =

𝑐
𝛽

1 + (
𝑐
𝛽

− 1) 𝑒−𝑐𝑡
=

(𝑛 + 1) −
𝛼
𝛽

1 + (𝑛 + 1 −
𝛼
𝛽

− 1) 𝑒−[(𝑛+1)𝛽−𝛼]𝑡
.

𝑆(𝑡) = 𝑛 + 1 − 𝐼(𝑡) = 𝑛 + 1 −
𝑛 + 1 −

𝛼
𝛽

1 + (𝑛 + 1 −
𝛼
𝛽 − 1) 𝑒−[(𝑛+1)𝛽−𝛼]𝑡

⇒ 𝑆(𝑡) =
(𝑛 + 1) (𝑛 + 1 −

𝛼
𝛽

− 1) 𝑒−[(𝑛+1)𝛽−𝛼]𝑡 +
𝛼
𝛽

1 + (𝑛 + 1 −
𝛼
𝛽 − 1) 𝑒−[(𝑛+1)𝛽−𝛼]𝑡

.

 

AS 𝑡 → ∞, 𝑆 →
𝛼

𝛽
 and 𝐼 → 𝑛 + 1 −

𝛼

𝛽
; provided(𝑛 + 1)𝛼 − 𝛽 > 0. 

Hence,in this case, a fraction of susceptible persons will be there, 

which have not been infected or a fraction of infected persons have 

recovered and becomes susceptible again (fig. 5(b)). 

Susceptible-Infective-Recovered (SIR) Model: This model was 

developed by Kermack and McKendrick and is given by the set of 

differential equations as follows  

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛼𝐼

𝑑𝑅

𝑑𝑡
= 𝛼𝐼, (𝛽, 𝛼 > 0)

 

It is assumed that the susceptibles become infected when they come 

in contact with one another (𝛽𝑆𝐼) and a fraction of the infected class 

(𝛼𝐼) recovers from the disease and moves to the recovered class. 

Now, 
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𝑑𝑆

𝑑𝑅
=

𝑑𝑆

𝑑𝑡

𝑑𝑡

𝑑𝑅
=

−𝛽𝑆𝐼

𝛼𝐼
= −

𝛽

𝛼
𝑆

⇒
𝑑𝑆

𝑆
= −

𝛽

𝛼
𝑑𝑅 ⇒ ln (𝑆) = −

𝛽

𝛼
𝑅 +  constant. 

 Initially, 𝑆(0) = 𝑛, 𝑅(0) = 0 ⇒  constant = ln (𝑛)

⇒ ln (𝑆) = −
𝛽

𝛼
𝑅 + ln (𝑛) ⇒ 𝑆 = 𝑛𝑒−

𝛽
𝛼

𝑅

 

Again, 

𝑑𝐼

𝑑𝑆
=

𝑑𝐼

𝑑𝑡

𝑑𝑡

𝑑𝑆
=

𝛽𝑆𝐼 − 𝛼𝐼

−𝛽𝑆𝐼
= −1 +

𝛼

𝛽

1

𝑆

⇒ ∫ 𝑑𝐼 = − ∫ 𝑑𝑆 +
𝛼

𝛽
∫

𝑑𝑆

𝑆
⇒ 𝐼(𝑡) = −𝑆 +

𝛼

𝛽
ln (𝑆) +  constant. 

 

Initially at 𝑡 = 0, 𝑆(0) = 𝑛, 𝐼(0) = 1 ⇒ constant = 1 + 𝑛 −
𝛼

𝛽
ln (𝑛). 

⇒ 𝐼(𝑡) = −𝑆 +
𝛼

𝛽
ln (𝑆) + 𝑛 + 1 −

𝛼

𝛽
ln (𝑛) = 𝑛 + 1 − 𝑆 +

𝛼

𝛽
ln (

𝑆

𝑛
). 

Since 𝑆 = 𝑛𝑒−
𝛽

𝛼
𝑅

, we have 

𝑑𝑅

𝑑𝑡
= 𝛼𝐼 = 𝛼(𝑛 + 1 − 𝑆 − 𝑅) = 𝛼 (𝑛 + 1 − 𝑛𝑒−

𝛽
𝛼

𝑅 − 𝑅)

⇒
𝑑𝑅

𝑑𝑡
= 𝛼 [𝑛 + 1 − 𝑛 (1 −

𝛽

𝛼
𝑅 +

𝛽2

2𝛼2
𝑅2) − 𝑅] , ( Assuming 

𝑅
𝛼
𝛽

 is small ) ,
 

⇒
𝑑𝑅

𝑑𝑡
= 𝛼 [1 −

𝑛𝛽2

2𝛼2
{𝑅2 −

2𝛼2

𝑛𝛽2
(

𝑛𝛽

𝛼
− 1) 𝑅}]

= 𝛼 [1 −
𝑛𝛽2

2𝛼2
{𝑅 −

𝛼2

𝑛𝛽2
(

𝑛𝛽

𝛼
− 1)}

2

+
𝛼2

2𝑛𝛽2
(

𝑛𝛽

𝛼
− 1)

2

]

=
𝑛𝛽2

2𝛼
[
2𝛼2

𝑛𝛽2
+

𝛼4

𝑛2𝛽4
(

𝑛𝛽

𝛼
− 1)

2

− {𝑅 −
𝛼2

𝑛𝛽2
(

𝑛𝛽

𝛼
− 1)}

2

] ,

=
𝑛𝛽2

2𝛼
[𝐵2 − (𝑅 − 𝐴)2] where 𝐴 =

𝛼2

𝑛𝛽2
(

𝑛𝛽

𝛼
− 1) , and 

𝐵2 =
2𝛼2

𝑛𝛽2
+

𝛼4

𝑛2𝛽4
(

𝑛𝛽

𝛼
− 1)

2

. Integrating we get, 

 

∫
𝑑𝑅

𝐵2 − (𝑅 − 𝐴)2
= ∫

𝑛𝛽2

2𝛼
𝑑𝑡 ⇒

1

𝐵
tanh−1 (

𝑅 − 𝐴

𝐵
) =

𝑛𝛽2

2𝛼
𝑡 +  constant.  
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Initially at 

 𝑡 = 0, 𝑅(0) = 0 ⇒ constant =
1

𝐵
tanh−1 (

−𝐴

𝐵
) = −

1

𝐵
tanh−1 (

𝐴

𝐵
). 

⇒
1

𝐵
tanh−1 (

𝑅 − 𝐴

𝐵
) =

𝑛𝛽2

2𝛼
𝑡 −

1

𝐵
tanh−1 (

𝐴

𝐵
) ,

⇒
𝑅 − 𝐴

𝐵
= tan h [

𝑛𝛽2

2𝛼
𝑡 −

1

𝐵
tanh−1 (

𝐴

𝐵
)]

⇒ 𝑅(𝑡) = 𝐴 + 𝐵 tanh [𝐵
𝑛𝛽2

2𝛼
𝑡 −

1

𝐵
tanh−1 (

𝐴

𝐵
)] . Therefore, 

𝑆(𝑡) = 𝑛𝑒
−

𝛽
𝛼

[𝐴+𝐵 tanh{𝐵
𝑛𝛽2

2𝛼
𝑡−

1
𝐵

tanh−1(
𝐴
𝐵

)}] and 

𝐼(𝑡) = 𝑛 + 1 − 𝑆(𝑡) − 𝑅(𝑡).

 

The numerical solution of the model shows that both susceptible and 

infected goes to zero and there is a full recovery (fig.6(a)). 

Susceptible-Infective-Removed-Susceptible (SIRS) Model: A refinement 

of the SIR model can be made by assuming that the recovered person 

becomes susceptible again due to loss of immunity at a rate proportional to 

the population in recovery class 𝑅, with proportionality constant 𝛾. The 

following differential equations describe the model, 

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼 + 𝛾𝑅

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛼𝐼

𝑑𝑅

𝑑𝑡
= 𝛼𝐼 − 𝛾𝑅, (𝛽, 𝛼, 𝛾 > 0)

 

Fig.6(b) shows the dynamics of SIRS model for 𝛽 = 0.001, 𝛼 = 0.4 and 

𝛾 = 0.01. 
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                                                       Figure 6 

FIGURE 6: The figures show the dynamics of epidemic models. 

 (a) SIR model with 𝛽 = 0.001, 𝛼 = 0.4, 𝑆(0) = 2000, 𝐼(0) =
1, 𝑅(0) = 0,(b) SIRS model with 𝛽 = 0.001, 𝛼 = 0.4, 𝛾 =
0.01, 𝑆(0) = 2000, 𝐼(0) = 1, 𝑅(0) = 0. 

We can use the SIRS model to capture the dynamics of COVID-19. 

The susceptible population becomes infected by COVID-19 at a rate 

𝛽 (per-capita effective contact rate), which is the number of 

effective contacts made by a given individual per unit time. We are 

trying to minimize the value of 𝛽 by practicing social distancing. 

Once infected, the susceptible population (𝛽𝑆𝐼) moves to the 

infected class. The infected class recovers from the virus by hard 

immunity of individual (since no vaccine is available) but have the 

chance to reinfection. Hence, from the infected class, 𝛼𝐼 has moved 

to the recovered class, and 𝛾𝑅 has moved to the susceptible class. 

We want the see the dynamics of the spread of COVID-19 with 𝛽 =
0.00002856, 𝛼 = 0.19819303, 𝛾 = 0.001and initial condition 

𝑆(0) = 15000, 𝐼(0) = 1, 𝑅(0) = 0. The figure shows that the initial 

spread is high, which then decays over time (fig. 7(a)). The 

susceptible as well as recovered class also show "ups and down" 

behavior before reaching a steady value (fig. 7 (b)). 

8.9 COMBAT MODELS 

 

The Combat Model is a mathematical model used to describe the 

dynamics of combat between two or more opposing forces. The 

model is based on the idea that the outcome of combat depends on 

the relative strengths and weaknesses of the opposing forces. 
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The Combat Model can be formulated mathematically using a 

system of differential equations. Let's consider a simple model with 

two opposing forces, A and B. 

Where x(t) = Number of units of force A at time t 

 y(t) = Number of units of force B at time t 

The system of differential equations can be written as: 

dx/dt = -a * x * y 

dy/dt = -b * x * y 

where a and b are parameter that represent the effectiveness of each 

force in destroying the other. 

 

Figure 7 

FIGURE 7: The figures show the dynamics of the spread of 

COVID-19 along with the dynamics of susceptible and recovered 

classes. 

were built on equations, very similar to the law of mass action: 

 rate of change =  rate in −  rate out,  

where rate in denotes the number of new troops supplied 

(reinforcement) and rate out denotes the number of troops not 

available to fight the battle, either due to attacks from the opposing 

army (combat loss) or other factors like desertion, sickness, etc. 

(operational loss). 
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8.9.1 CONVENTIONAL COMBAT MODELS 

 

Conventional Combat Models are mathematical models used to 

describe the dynamics of conventional warfare between two or more 

opposing forces. These models are based on the principles of 

military operations research and are used to analyze and predict the 

outcomes of battles and campaigns. 

Let 𝑥(𝑡) and 𝑦(𝑡) denote the number of troops or combatants for 

army A and army B, respectively. In conventional combat, the two 

opposite armies must directly interact with one another in the open, 

using conventional means (like knives, guns, etc.) with the exclusion 

of any chemical, biological and nuclear weapons. The following 

assumptions are made to formulate the model: 

 The operational losses are neglected. 

 There is no new supply of troops (no reinforcement). 

 The combat loss rate of a conventional army A is proportional to 

the size of the opposing army B. 

The system of differential equations describing the model is 

𝑑𝑥

𝑑𝑡
= −𝛼𝑦,

𝑑𝑦

𝑑𝑡
= −𝛽𝑥 

where 𝛼, 𝛽(> 0) are the fighting effectiveness coefficients of the 

armies B and A, respectively. Suppose, the initial number of troops 

for army A and army B are 𝑥0 and 𝑦0, respectively. Then, we have 

an initial value problem 

𝑑𝑥

𝑑𝑡
= −𝛼𝑦,

𝑑𝑦

𝑑𝑡
= −𝛽𝑥, 𝑥(0) = 𝑥0, 𝑦(0) = 𝑦0, 

which has a unique solution. 

8.9.2 GUERRILA COMBAT MODEL 

 
The Guerrilla Combat Model is a mathematical model used to 

describe the dynamics of guerrilla warfare, which is a type of 

asymmetric warfare characterized by small, mobile, and 

decentralized forces.Suppose 𝑥(𝑡) and 𝑦(𝑡) denote the number of 

troops or combatants for the army A and army B, respectively. In 

Guerrilla combat Model, troops are deployed in small groups that 
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are hidden (covert). If the troops are large, they are more likely to 

get caught. However, if the opposing army is large, they are more 

likely to find the guerrilla troops. The following assumptions are 

made to formulate the model: 

 The operational losses are neglected. 

 There is no new supply of troops (no reinforcement). 

 The combat loss rate of a guerrilla troop army is 

proportional to the product of the sizes of both the armies A 

and B . 

The system of differential equations describing the model is 

𝑑𝑥

𝑑𝑡
= −𝛼𝑥𝑦,

𝑑𝑦

𝑑𝑡
= −𝛽𝑥𝑦 

with initial conditions 

𝑥(0) = 𝑥0, 𝑦(0) = 𝑦0, 

where 𝛼, 𝛽(> 0) are fighting effectiveness coefficients of the forces 

B and A , respectively. 

8.9.3 MIXED COMBAT MODELS 

 

Suppose 𝑥(𝑡) and 𝑦(𝑡) denote the number of troops or combatants 

for a conventional army A and a guerrilla force B. The following 

assumptions are made to formulate the model: 

 The operational losses are neglected. 

 There is no new supply of troops (no reinforcement). 

 The combat loss rate for the conventional army A is 

proportional to the size of the opposing guerrilla force B and 

the combat loss rate for guerrilla force B is proportional to 

the product of the sizes of both the armies A and B. 

The system of differential equations describing the model is 

𝑑𝑥

𝑑𝑡
= −𝛼𝑦,

𝑑𝑦

𝑑𝑡
= −𝛽𝑥𝑦 

with initial conditions 
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𝑥(0) = 𝑥0, 𝑦(0) = 𝑦0, 

where 𝛼, 𝛽(> 0) are fighting effectiveness coefficient of the forces 

B and A , respectively. 

 

8.10 SUMMARY 

 

Present unit is a presentation of, 

 

Continuous Models: Continuous models describe systems that change 

smoothly over time. This model is often use differential equations. 

 

 Arms Race Models: The Arms Race model is a mathematical model 

used to describe the dynamics of an arms race between two or more 

countries. 

 

 Epidemic Models: Mathematical epidemiology is the use of 

mathematical models to predict the course of infectious disease and to 

compare the effects of different control strategies. 

 

Combat Models: The Combat Model is a mathematical model used to 

describe the dynamics of combat between two or more opposing forces. 

The model is based on the idea that the outcome of combat depends on 

the relative strengths and weaknesses of the opposing forces. 

 

 

8.11 GLOSSARY 

 

Ordinary Differential Equation (ODE): An equation that involves an 

unknown function and its derivatives. 

  

Derivative: A measure of how a function changes as its input changes. 

 

Differential: An infinitesimal change in a variable. 

 

Integral: The reverse operation of differentiation. 

 

Solution: A function that satisfies the ODE. 

 

Separation of Variables: A method for solving ODEs by separating the 

variables and integrating. 
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 Integrating Factor: A method for solving ODEs by multiplying the 

equation by an integrating factor. 

 

 Undetermined Coefficients: A method for solving ODEs by assuming 

a solution in the form of a polynomial or trigonometric function. 

 

 

CHECK YOUR PROGRESS 

 

CYP1 .. A continuous model consists of a ………..variable, varying 

with some other independent continuous variables.  

CYP2.The study of the movement of drugs in the body is called 

……….. 

CYP3.The ……….. helped in better planning, prediction of battles 

and their possible outcomes. 
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8.14 TERMINAL QUESTIONS 

 

1. What is continuous modelling approach? 

2. What is the difference between Arms Race Model and Epidemic 

Models. 

3. A fossil is found that has 20% C14  compared to the living 

sample. How old is the fossil, knowing that the C14 half – life is 

5730 years? 

4. Model the population growth of a city using the logistic 

equation, and solve for the population at time t. 

5. What is an Ordinary Differential Equation (ODE), and how is it 

used to model continuous systems? 

 

8.15 ANSWERS 

 
 

TERMINAL QUESTIONS 

 

TQ2. 13305 years. 

 

CHECK YOUR PROGRESS 

 

CYQ1. Dependent continuous  

CYQ2.Pharmacokinetics. 

CYQ3.  Combat Models 
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UNIT 9: SPATIAL MODELS USING 

PARTIAL DIFFERENTIAL 

EQUATIONS 

 

CONTENTS: 

 
9.1  Introduction 

9.2  Objectives 

9.3  The Advantage of Partial Differential Equation    

              Models 

9.4 Heat Flow Through a  Small Thin Rod  

9.5 Two-Dimensional Heat Equations  

9.6  Steady Heat Flow: Laplace Equation 

9.7 Laplace Equation with Dirichlet’s  Condition  

9.8 Laplace Equation with Neumann’s Boundary  

            Condition  

9.9 Vibrating  String 

9.10 Wave Equation 

9.11 Crime Model 

9.12 Summary  

9.13 Glossary  

9.14 References  

9.15 Suggested Reading  

9.16 Terminal Questions   

 

 

9.1 INTRODUCTION 

 

In previous unit we have defined continuous Models Using 

Ordinary Differential Equations, Steady State Solution, Stability, 

Linearization and Local stability Analysis, Lyapunov’s Direct 

Method etc. we also discussed about Arms Race Models, Epidemic 

modes and Combat Models and their examples. In this unit we 

discussed about spatial models using partial differential equations.  

Spatial modeling is a mathematical approach used to describe and 

analyze phenomena that vary over space and time. It involves using 

mathematical equations to model the behavior of systems that 

exhibit spatial heterogeneity, such as population growth, disease 

spread, and environmental changes.PDEs are particularly useful for 
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spatial modeling because they can capture the complex interactions 

between spatially distributed variables. 

 

 

9.2 OBJECTIVES 

 

After studying this unit, learner will be able to  

 

i. Describe and predict the evolution of phenomena that vary 

both spatially and temporally, 

ii. To predict the future behaviour of spatial-temporal systems, 

informing decision-making in fields like public health, 

environmental management, and urban planning. 

iii. To identify the most important factors influencing spatial-

temporal dynamics, such as diffusion rates, reaction rates, or 

boundary conditions. 

 

9.3 THE ADVANTAGE OF PARTIAL 

DIFFERENTIAL EQUATION MODELS 

 

The advantage of PDE models is that they include derivatives of 

at least two independent variables, and hence, they can describe the 

dynamical behavior of the problem of interest in terms of two or 

more variables at the same time. For example, if we consider the 

flow of heat in a metal bar, it would be inappropriate NOT to model 

it with partial differential equations, to compute the temperature 

distribution with respect to time as well as space.  

Let us consider a simple predator-prey model (Lotka-Volterra) 

𝑑𝑃1(𝑡)

𝑑𝑡
= 𝛼𝑃1(𝑡) − 𝛽𝑃1(𝑡)𝑃2(𝑡)

𝑑𝑃2(𝑡)

𝑑𝑡
= −𝛾𝑃2(𝑡) + 𝛿𝑃1(𝑡)𝑃2(𝑡)

 

where we have used one independent variable (namely, time) to 

study the dynamics of the system. But, one can consider the effect of 

movement of the prey and the predator by adding a diffusion term to 

the equations, thereby making it a PDE model as 
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𝜕𝑃1(𝑡, 𝑥, 𝑦)

𝜕𝑡
= 𝛼𝑃1(𝑡, 𝑥, 𝑦) − 𝛽𝑃1(𝑡, 𝑥, 𝑦)𝑃2(𝑡, 𝑥, 𝑦) + 𝐷1∇

2𝑃1(𝑡, 𝑥, 𝑦)

𝜕𝑃2(𝑡, 𝑥, 𝑦)

𝜕𝑡
= −𝛾𝑃2(𝑡, 𝑥, 𝑦) + 𝛿𝑃1(𝑡, 𝑥, 𝑦)𝑃2(𝑡, 𝑥, 𝑦) + 𝐷2∇

2𝑃2(𝑡, 𝑥, 𝑦)

 where ∇2≅
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2

 

This model is able to capture the spatial aspect of the model and can 

give a complete picture of the dynamics of the predator-prey system 

with respect to both time and space. 

The general solution of the partial differential equation involves as 

many arbitrary functions as the order of the equation (order of the 

highest partial differential coefficient in the equation). Certain 

conditions are required in order to find these arbitrary functions. The 

standard notation for the space variables in applications are 𝑥, 𝑦, 𝑧, 

etc., and a solution may be required in some region Ω of space. In 

such a case, there will be some conditions to be satisfied on the 

boundary 𝜕Ω, which are called boundary conditions (BCs). 

Similarly, in the case of the independent variables, one of them is 

generally taken as time (say, 𝑡 ), then there will be some initial 

conditions (ICs) to be satisfied. The conditions of partial differential 

equations are classified into two categories: 

(i) Initial value problem (IVP): A partial differential equation with 

initial conditions, that is, dependent variable and an appropriate 

number of its derivatives are prescribed at the initial point of domain 

is called an initial value problem. 

(ii)Boundary value problem (BVP): A partial differential with 

boundary conditions, that is, dependent variable and an appropriate 

number of its derivatives are prescribed at the boundary of domain is 

called a boundary value problem. 

There are four broad categories of boundary conditions: 

(a) Dirichlet boundary condition: On the boundary, the values of the 

dependent variable are specified. 

(b) Newmann boundary condition: On the boundary, the normal 

derivative of the dependent variable is specified. 

(c) Cauchy boundary condition: On the boundary, both the values of 

the dependent variable and its normal derivative are specified. 

(d) Robin boundary condition: On the boundary, a linear 

combination of the dependent variable and its normal derivatives are 

specified. 
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A second-order partial differential equations of the form 

𝐴𝑢𝑥𝑥 + 𝐵𝑢𝑥𝑦 + 𝐶𝑢𝑦𝑦 + 𝐷𝑢𝑥 + 𝐸𝑢𝑦 + 𝐹𝑢 = 0 

is elliptic, parabolic or hyperbolic when 𝐵2 − 4𝐴𝐶 is respectively 

less than, equal to or greater than zero. This classification gives a 

better understanding of the choice of initial or boundary conditions. 

To have a unique, stable solution, each class of PDEs requires a 

different class of boundary conditions. 

(i) Dirichlet or Neumann boundary conditions on a closed 

boundary surrounding the region of interest are the 

requirements to elliptic equations. Other boundary conditions 

are either insufficient to determine a unique solution, overly 

restrictive or lead to instabilities. 

(ii) Cauchy boundary conditions on an open surface are the 

requirements to elliptic equations. Other boundary conditions 

are either too restrictive for a solution to exist, or insufficient 

to determine a unique solution. 

(iii) Parabolic equations require Dirichlet or Neumann boundary         

conditions on an open surface. Other boundary conditions are 

too restrictive. 

Example 9.1.1 Initial value problem (IVP): 

𝜕2𝑢

𝜕𝑡2
−
𝜕2𝑢

𝜕𝑥2
= 0,0 ≤ 𝑥 ≤ 𝑙, 𝑡 > 0

𝐼𝐶𝑠: 𝑢(𝑥, 0) = 0,
𝜕𝑢(𝑥, 0)

𝜕𝑡
= 𝑥

 

Example 9.1.2 Boundary value problem (BVP): 

𝜕𝑢

𝜕𝑡
=
𝜕2𝑢

𝜕𝑥2
= 0,0 ≤ 𝑥 ≤ 𝐿, 𝑡 > 0 

(i) BCs: 𝑢(0, 𝑡) = 0, 𝑢(𝐿, 𝑡) = 0 (Dirichlet boundary condition). 

(ii) BCs: 
𝜕𝑢(0,𝑡)

𝜕𝑥
= 0,

𝜕𝑢(𝐿,𝑡)

𝜕𝑥
= 0 (Neumann boundary condition). 

(iii)𝐵𝐶𝑠: 𝑢(0, 𝑡) = 0,
𝜕𝑢(𝐿,𝑡)

𝜕𝑥
= 0 (Cauchy boundary condition). 

(iv)𝐵𝐶𝑠: 𝑢(0, 𝑡) = 1,
𝜕𝑢(𝐿,𝑡)

𝜕𝑥
+ 𝑢(𝐿, 𝑡) = 0 (Robin boundary 

condition). 

Example 9.1.3 Initial boundary value problem (IBVP): 
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𝐵𝐶𝑠: 𝑢(0, 𝑡) = 0
𝜕𝑢

𝜕𝑡
=
𝜕2𝑢

𝜕𝑥2
= 0,0 ≤ 𝑥 ≤ 𝑙, 𝑡 > 0, 𝑢(𝑙, 𝑡) = 0 

(Dirichlet boundary condition),𝐼𝐶𝑠: 𝑢(𝑥, 0) = 𝑥. 

9.4 HEAT FLOW THROUGH A SMALL THIN 

ROD (ONE DIMENSIONAL) 

 

We consider a thin rod of length 𝐿, made of homogenous 

material (material properties are translational invariant). We assume 

that the rod is perfectly insulated along its length so that heat can 

flow only through its ends (fig.9.1). 

 

FIGURE 9.1: A thin homogenous rod of length L, perfectly 

insulated along its length. 

Let 𝑢(𝑥, 𝑡) be the temperature of this homogenous thin rod at a 

distance 𝑥 at time 𝑡. We consider an infinitesimal piece from the rod 

with length [𝑥, 𝑥 +△ 𝑥]. Let 𝐴 be the cross-section of the rod, 𝜌 be 

the density of the material of the rod, then the infinitesimal volume 

is given by Δ𝑉 = 𝐴Δ𝑥 and the corresponding infinitesimal mass is 

Δ𝑚 = 𝜌𝐴Δ𝑥. The amount of heat for the volume element is 𝑄 =
𝜎Δ𝑚𝑢(𝑥, 𝑡), where 𝜎 is the specific heat of the material of the rod. 

At time 𝑡 + Δ𝑡, the amount of heat is 

𝑄1= 𝜎Δ𝑚𝑢(𝑥, 𝑡 + Δ𝑡)
 Change in heat = 𝑄1 −𝑄 = 𝜎Δ𝑚𝑢(𝑥, 𝑡 + Δ𝑡) − 𝜎Δ𝑚𝑢(𝑥, 𝑡)

= 𝜎𝜌𝐴[𝑢(𝑥, 𝑡 + Δ𝑡) − 𝑢(𝑥, 𝑡)]Δ𝑥
 

Now, by the Fourier law of heat conduction, the heat flow is 

proportional to the temperature gradient, that is, 𝑄 = −𝑘
𝜕𝑢

𝜕𝑥
=

−𝑘𝑢𝑥(𝑥, 𝑡) (in one dimension), where 𝑘 is the thermal conductivity 

of the solid and the negative sign denotes that the heat flux vector is 

in the direction of decreasing temperature. Therefore, the change in 
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heat must be equal to the heat flowing in at 𝑥, minus the heat 

flowing out at 𝑥 + Δ𝑥, during the time interval Δ𝑡, that is, 

𝜎𝜌𝐴[𝑢(𝑥, 𝑡 + Δ𝑡) − 𝑢(𝑥, 𝑡)]Δ𝑥 = [−𝑘𝑢𝑥(𝑥, 𝑡) − (−𝑘𝑢𝑥(𝑥 + Δ𝑥, 𝑡))]Δ𝑡,

𝑢(𝑥, 𝑡 + Δ𝑡) − 𝑢(𝑥, 𝑡)

Δ𝑡
= (

𝑘

𝜎𝜌𝐴
)
𝑢𝑥(𝑥 + Δ𝑥, 𝑡) − 𝑢𝑥(𝑥, 𝑡)

Δ𝑥

 

Taking Δ𝑥, Δ𝑡 → 0, we obtain 
𝜕𝑢

𝜕𝑡
= 𝑐2

𝜕2𝑢

𝜕𝑥2
, 

which gives the required heat equation determining the heat flow 

through a small thin rod. 𝑐2 =
𝑘

𝜎𝜌𝐴
 is called the diffusivity of the 

material of the rod. 

We use the separation of variables to solve the heat equation, which 

can also be termed as a one-dimensional diffusion equation. 

Let 𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡) be a solution of 
𝜕𝑢

𝜕𝑡
= 𝑐2

𝜕2𝑢

𝜕𝑥2
. Substituting, 

we get, 

𝑋(𝑥)𝑇′(𝑡) = 𝑐2𝑋′′(𝑥)𝑇(𝑡) ⇒
𝑋′′

𝑋
=

1

𝑐2
𝑇′

𝑇
= 𝜇 (a constant)  

Both functions must be equal to some constant as one of them is a 

function of 𝑥 only, and the other is a function of 𝑡. 

⇒ 𝑋′′ = 𝜇𝑋 and 𝑇′ = 𝜇𝑐2𝑇 (9.1) 

Case I: 𝜇 is positive ( = 𝜆2, say). From (9.1), we get 𝑋(𝑥) =

𝐴1cosh(𝜆𝑥) + 𝐴2sinh(𝜆𝑥) and 𝑇(𝑡) = 𝐴3𝑒
𝜆2𝑐2𝑡. Then, the solution 

of the heat equation is 

𝑢(𝑥, 𝑡) = [𝐶1cosh(𝜆𝑥) + 𝐶2sinh(𝜆𝑥)]𝑒
𝜆2𝑐2𝑡 , 𝐶1 = 𝐴1𝐴2, 𝐶2

= 𝐴2𝐴3. 

Case II: 𝜇 = 0. From (9.1), we get, 𝑋(𝑥) = 𝐴4𝑥 + 𝐴5 and 𝑇(𝑡) =
𝐴6. Then, the solution of the heat equation is 

𝑢(𝑥, 𝑡) = 𝐶3𝑥 + 𝐶4. 

Case III:𝜇 is negative ( = −𝜆2, say). From (9.1), we get 𝑋(𝑥) =

𝐴7cos(𝜆𝑥) + 𝐴8sin(𝜆𝑥) and 𝑇(𝑡) = 𝐴9𝑒
−𝜆2𝑐2𝑡. Then, the solution 

of the heat equation is 

𝑢(𝑥, 𝑡) = [𝐶5cos(𝜆𝑥) + 𝐶6sin(𝜆𝑥)]𝑒
−𝜆2𝑐2𝑡 
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Combining, we can write the general solution of the heat equation as 

𝑢(𝑥, 𝑡) = {

[𝐶1cosh(𝜆𝑥) + 𝐶2sinh(𝜆𝑥)]𝑒
𝜆2𝑐2𝑡 , 𝜇 = 𝜆2 > 0

𝐶3𝑥 + 𝐶4, 𝜇 = 0

[𝐶5cos(𝜆𝑥) + 𝐶6sin(𝜆𝑥)]𝑒
−𝜆2𝑐2𝑡 , 𝜇 = −𝜆2 < 0

 

Note: (i) All three solutions are not consistent . 

(ii) The first solution indicates 𝑡 → ∞, 𝑢 → ∞. So, it is reasonable to 

assume that 𝑢(𝑥, 𝑡) is bounded as 𝑡 → ∞, from a realistic physical 

Point of view. 

(iii) The consistency of the third solution is always there; however, 

the second solution is consistent in some cases along with the first. 

(iv) If the boundary conditions are of Dirichlet's type, homogeneous 

as well as periodic, that is, 𝑢(0, 𝑡) = 0, 𝑢(𝐿, 𝑡) = 0, third solution is 

the only solution is  

(v) If the boundary conditions are of Dirichlet's type, but non-

homogeneous or non-periodic, that is, 𝑢(0, 𝑡) = 𝛼, 𝑢(𝐿, 𝑡) = 𝛽, 

second and third solution are the general solution of the given 

problem. 

(vi) Second and third solutions constitute the general solution of the 

given problem, in the case of Neumann and Robin boundary 

conditions. 

Example 9.2.1𝐴 uniform rod of length 20 cm with diffusivity 𝐷 of 

the material of the rod, whose sides are insulated, is kept at initial 

temperature 𝑥, when 0 ≤ 𝑥 ≤ 10 and 20 − 𝑥, when 10 ≤ 𝑥 ≤ 20. 

Both ends of the rod are suddenly cooled at 0∘C and are kept at that 

temperature. 

(i) If 𝑢(𝑥, 𝑡) represents the temperature function at any point 𝑥 at 

time 𝑡, formulate a mathematical model of the given situation, 

stating clearly the boundary and initial conditions. 

(ii) Using the method of separation of variables, find the temperature 

function 𝑢(𝑥, 𝑡). Obtain the numerical solution of the problem for 

𝐷 = 0.475 and plot the graph. 

Solution: (i) The mathematical model of the given situation 

represents an initial boundary value problem of heat conduction and 

is given by 

𝜕𝑢

𝜕𝑡
= 𝐷

𝜕2𝑢

𝜕𝑥2
; 0 ≤ 𝑥 ≤ 20, 𝑡 > 0 (9.2) 
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Boundary Condition (BCs): 𝑢(0, 𝑡) = 0 = 𝑢(20, 𝑡); 𝑡 > 0 (since 

both ends of the rod are cooled suddenly at 0∘C ). 

Initial Condition (ICs): 𝑢(𝑥, 0) = {
𝑥, 0 ≤ 𝑥 ≤ 10,
20 − 𝑥, 10 ≤ 𝑥 ≤ 20.

 

(ii) Let 𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡) be a solution of 
𝜕𝑢

𝜕𝑡
= 𝐷

𝜕2𝑢

𝜕𝑥2
. Then, 

𝑋′′

𝑋
=
1

𝐷

𝑇′

𝑇
= −𝜆2( separation constant ) (9.3) 

Since the boundary conditions are periodic and homogenous in 𝑥, 

the periodic solution of (9.2) exists if the separation constant is 

negative. One can also consider the other two cases, that is, the 

separation constant to be positive and zero but will arrive at the 

same conclusion. Basically, a negative separation constant gives a 

physically acceptable general solution. Solving (9.3) we get, 

𝑋(𝑥) = 𝐴1cos(𝜆𝑥) + 𝐴2sin(𝜆𝑥) and 𝑇(𝑡) = 𝐴3𝑒
−𝜆2𝐷𝑡 . 

Therefore, the complete solution of (9.2) is given by 

𝑢(𝑥, 𝑡) = [𝐶1cos(𝜆𝑥) + 𝐶2sin(𝜆𝑥)]𝑒
−𝜆2𝐷𝑡, where 𝐶1 = 𝐴1𝐴2, 𝐶2 =

𝐴2𝐴3. 

Applying the boundary conditions 𝑢(0, 𝑡) = 0 = 𝑢(20, 𝑡), we obtain 

(𝐶1cos0 + 𝐶2sin0)𝑒
−𝜆2𝐷𝑡 = 0 and [𝐶1cos(20𝜆) + 𝐶2sin(20𝜆)]𝑒

−𝜆2𝐷𝑡 = 0,

⇒ 𝐶1 = 0 and 𝐶2sin(20𝜆) = 0,⇒ sin(20𝜆) = 0 ⇒ 𝜆 =
𝑛𝜋

20
, 𝑛 being 

 

an integer (for non-trivial solution 𝐶2 ≠ 0).Therefore, the required 

solution is of the form 

𝑢(𝑥, 𝑡) = 𝐶2sin(
𝑛𝜋

20
𝑥)𝑒

−𝑛2𝜋2𝐷
400

𝑡 . 

Noting that the heat conduction equation is linear, we use the 

principle of superposition to obtain its most general solution as 

𝑢(𝑥, 𝑡) = ∑  

∞

𝑛=1

𝐵𝑛sin(
𝑛𝜋

20
𝑥)𝑒

−𝑛2𝜋2𝐷
400

𝑡
 

Using the initial condition, we get 

𝑢(𝑥, 0) = ∑  

∞

𝑛=1

𝐵𝑛sin(
𝑛𝜋

20
𝑥) 
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which is a half-range Fourier series, where 

𝐵𝑛=
2

20
∫  
20

0

 𝑢(𝑥, 0)sin(
𝑛𝜋

20
𝑥)𝑑𝑥

=
2

20
∫  
10

0

 𝑥sin(
𝑛𝜋

20
𝑥)𝑑𝑥 +

2

20
∫  
20

10

  (20 − 𝑥)sin(
𝑛𝜋

20
𝑥)𝑑𝑥

=
80

𝑛2𝜋2
sin(

𝑛𝜋

2
) = {

0, if 𝑛 = 2𝑚 and 𝑚 = 1,2,3,…
80

(2𝑚 − 1)2𝜋2
,  if 𝑛 = 2𝑚 − 1 and 𝑚 = 1,2,3…

 

Hence, the temperature function is given by (fig. 9.2) 

𝑢(𝑥, 𝑡) = ∑  

∞

𝑛=1

80

(2𝑚 − 1)2𝜋2
sin(

(2𝑚 − 1)𝜋𝑥

20
) 𝑒

−(2𝑚−1)2𝜋2𝐷
400

𝑡. 

 

(a) Solution of u(x,t) at t = 1,9   (b) Three dimensional graph of u(x,t)  

 

FIGURE 9.2: The figures show the dynamics of heat flows with 

Dirichlet boundary conditions for 𝐷 = 0.475. (a) Heat flow between 

𝑥 = 0 and 𝑥 = 20, the value of 𝑢(𝑥, 𝑡) is zero at the boundaries. (b) 

Three-dimensional visualization of one-dimensional heat flow, 

which is smooth over time, even though the initial condition is a 

piecewise function. 

Example 9.2.2 Consider a laterally insulated rod of length 100 cm 

with diffusivity 𝐷 of the material of the rod, whose ends are also 

insulated. The initial temperature is 𝑥, when 0 ≤ 𝑥 ≤ 40 and 

100 −x, when 40 ≤ 𝑥 ≤ 100 

(i) If 𝑢(𝑥, 𝑡) represents the temperature function at any point 𝑥 at 

time 𝑡, formulate a mathematical model of the given situation, 

stating clearly the boundary and initial conditions. 

(ii) Using the method of separation of variables, find the temperature 
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function 𝑢(𝑥, 𝑡). Obtain the numerical solution of the problem for 

𝐷 = 0.475 and plot the graph. 

Solution: (i) The mathematical model of the given situation 

represents an initial boundary value problem of heat conduction and 

is given by 

𝜕𝑢

𝜕𝑡
= 𝐷

𝜕2𝑢

𝜕𝑥2
; 0 ≤ 𝑥 ≤ 100, 𝑡 > 0 (9.4) 

Boundary Condition (BCs): 
𝜕𝑢(0,𝑡)

𝜕𝑥
= 0,

𝜕𝑢(100,𝑡)

𝜕𝑥
= 0; 𝑡 > 0 (both 

ends of the rod are insulated). 

Initial Condition (ICs): 𝑢(𝑥, 0) = {
𝑥, 0 ≤ 𝑥 ≤ 40,
100 − 𝑥, 40 ≤ 𝑥 ≤ 100.

 

(ii) Let 𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡) be a solution of 
𝜕𝑢

𝜕𝑡
= 𝐷

𝜕2𝑢

𝜕𝑥2
. Then, 

𝑋′′

𝑋
=
1

𝐷

𝑇′

𝑇
= 𝜇 ⇒ 𝑋′′ − 𝜇𝑋 = 0 and 𝑇′ = 𝜇𝐷𝑇 (9.5) 

Case I: Let 𝜇 > 0 ( = 𝜆2 ). From (4.5), we get 𝑋(𝑥) = 𝐴1𝑒
𝜆𝑥 +

𝐴2𝑒
−𝜆𝑥 ⇒ 𝑋′(𝑥) = 𝐴1𝜆𝑒

𝜆𝑥 − 𝐴2𝜆𝑒
−𝜆𝑥  and 𝑇(𝑡) = 𝐴3𝑒

𝜆2𝐷𝑡. Using 

the given boundary conditions, we get 𝐴1 = 0,𝐴2 = 0, which gives 

trivial solution 𝑢(𝑥, 𝑡) = 0. Hence, we reject 𝜇 = 𝜆2. 

Case II: Let 𝜇 = 0. Then, the solution of (4.5) is 𝑋(𝑥) = 𝐴1𝑥 +
𝐴2 ⇒ 𝑋′(𝑥) = 𝐴1 and 𝑇(𝑡) = constant = 𝐴3 (say). Using the 

boundary conditions, we get 𝐴1 = 0, then 𝑋(𝑥) = 𝐴2. Therefore, 

corresponding to 𝜇 = 0, a solution to the boundary value problem is 

given by 

𝑢(𝑥, 𝑡) = 𝐴2 × 𝐴3 = 𝐵0( say ) (9.6) 

Case III:𝜇 < 0(= −𝜆2). From (4.5), we obtain 

𝑢(𝑥, 𝑡) = [𝐶1cos(𝜆𝑥) + 𝐶2sin(𝜆𝑥)]𝑒
−𝜆2𝐷𝑡

⇒
𝜕𝑢

𝜕𝑥
= [−𝐶1𝜆sin(𝜆𝑥) + 𝐶2𝜆cos(𝜆𝑥)]𝑒

−𝜆2𝐷𝑡
 

Applying the boundary conditions 𝑢𝑥(0, 𝑡) = 0 = 𝑢𝑥(100, 𝑡), we 

get 𝐶2 = 0 and −𝐶1𝜆sin(100𝜆) = 0 ⇒ sin(100𝜆) = 0 ⇒ 𝜆 =
𝑛𝜋

100
, 

𝑛being an integer (fornon-trivial solution 𝐶1 ≠ 0 ).Therefore, the 

required solution is of the form 𝑢(𝑥, 𝑡) = 𝐶1cos(
𝑛𝜋

100
𝑥)𝑒

−𝑛2𝜋2𝐷

10000
𝑡
. 
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Noting that the heat conduction equation is linear, we use the 

principle of superposition to obtain 

𝑢(𝑥, 𝑡) = ∑  

∞

𝑛=1

 𝐵𝑛cos(
𝑛𝜋

100
𝑥)𝑒

−𝑛2𝜋2𝐷
10000

𝑡 (9.7) 

Equations (9.6) and (9.7) constitute a set of infinite solutions of 

(9.4). To obtain a solution, which will satisfy the initial condition, 

we consider a linear combination of these two solutions. Hence, the 

complete solution of (9.4) is of the form 

𝑢(𝑥, 𝑡) = 𝐵0 +∑  

∞

𝑛=1

𝐵𝑛cos(
𝑛𝜋

100
𝑥)𝑒

−𝑛2𝜋2𝐷
10000

𝑡
 

Using the initial condition, we get 𝑢(𝑥, 0) =
𝐵0

2
+

∑  ∞
𝑛=1 𝐵𝑛cos(

𝑛𝜋

100
𝑥), which is a half-range Fourier series, where 

𝐵0 =
1

100
[∫  

40

0

 𝑥𝑑𝑥 + ∫  
100

40

  (100 − 𝑥)𝑑𝑥] = 25, and 

𝐵𝑛 =
2

100
∫  
100

0

 𝑢(𝑥, 0)cos(
𝑛𝜋

100
𝑥)𝑑𝑥 =

200

𝑛2𝜋2
[2cos(

𝑛𝜋

2
) − cos(𝑛𝜋) − 1] .

 

Hence, the temperature function is given by (fig. 4.3) 

𝑢(𝑥, 𝑡) = 25 +∑  

∞

𝑛=1

200

𝑛2𝜋2
[2cos(

𝑛𝜋

2
) − cos(𝑛𝜋)

− 1] cos(
𝑛𝜋𝑥

100
)𝑒

−𝑛2𝜋2𝐷
10000

𝑡
 

 

 

(a) Solution of u(x,t) at t =5,9. 



MATHEMATICAL MODELLING                                                     MAT 610 

 

Department of Mathematics  
Uttarakhand Open University Page 165 
 

 

 

(b) Three-dimensional graph of 𝑢(𝑥, 𝑡). 

FIGURE 9.3: The figures show the dynamics of heat flows with 

Neumann boundary conditions ( 𝐷 = 0.475 ).  

(a) Constant heat flow for 𝑡 = 5,9 in 0 ≤ 𝑥 ≤ 100.  

(b) Three-dimensional visualization of one-dimensional heat flow, 

shows constant increase. 

 

9.5 TWO-DIMENSIONAL HEAT EQUATIONS 

(DIFFUSION EQUATION) 

 

Consider a thin rectangular plate made of some thermally 

conductive material, whose dimensions are 𝑎 × 𝑏. The plate is 

heated in some way and then insulated along its top and bottom. Our 

aim is to mathematically model the movement of thermal energy 

through the plate. Let 𝑢(𝑥, 𝑦, 𝑡) be the temperature of the plate at 

position (𝑥, 𝑦) at time 𝑡. It can be shown that under ideal 

assumptions (say, uniform density, uniform specific heat, perfect 

insulation, no internal heat sources etc.), 𝑢(𝑥, 𝑦, 𝑡) satisfies the two-

dimensional heat equation 

𝜕𝑢

𝜕𝑡
= 𝑘 (

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
) , for 0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑦 ≤ 𝑏 (9.8) 

Suppose, the four edges of the plate 𝑥 = 0, 𝑥 = 𝑎, 𝑦 = 0, 𝑦 = 𝑏 are 

kept at zero temperature, which imposes some sort of boundary 

conditions, namely, 

𝑢(0, 𝑦, 𝑡) = 𝑢(𝑎, 𝑦, 𝑡) = 0, (9.9)
𝑢(𝑥, 0, 𝑡) = 𝑢(𝑥, 𝑏, 𝑡) = 0. (9.10)
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The way the plate is heated initially is given by the initial condition 

𝑢(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦), (𝑥, 𝑦) ∈ R, where R = [0, 𝑎] × [0, 𝑏]. (9.11) 

For a fixed 𝑡, the height of the surface 𝑧 = 𝑢(𝑥, 𝑦, 𝑡) gives the 

temperature of the plate at time 𝑡 and position (𝑥, 𝑦). Our aim is to 

obtain a solution to the heat equation (9.8) subject to the boundary 

conditions (9.9), (9.10) and, initial condition (9.11). As before, we 

separate variables to produce simple solutions to (9.8), (9.9) and 

(9.10) and then use the principle of superposition to build up a 

solution that satisfies (9.11) as well. 

Let 𝑢(𝑥, 𝑦, 𝑡) = 𝑋(𝑥)𝑌(𝑦)𝑇(𝑡) be a solution of (9.8). Substituting in 

(9.8), we obtain, 

𝑋′′

𝑋
+
𝑌′′

𝑌
=
𝑇′′

𝑘𝑇
. (9.12) 

Since 𝑥, 𝑦, 𝑡 are independent variables, (9.12) will hold if each term 

on each side is equal to same separation constant, that is, 

𝑋′

𝑋
= 𝜇1,

𝑌′

𝑌
= 𝜇2,

𝑇′

𝑘𝑇
= 𝜇1 + 𝜇2 

Let 
𝑋′

𝑋
= 𝜇1 ⇒ 𝑋′′ − 𝜇1𝑋 = 0. Using boundary conditions (9.9) and 

(9.10) we get, 

𝑋(0)𝑌(𝑦)𝑇(𝑡) = 0 and 𝑋(𝑎)𝑌(𝑦)𝑇(𝑡) = 0 

𝑌(𝑦) = 0 or 𝑇(𝑡) = 0 will lead to the trivial solution 𝑢 = 0, hence 

𝑌(𝑦) ≠ 0, 𝑇(𝑡) ≠ 0 and this implies 𝑋(0) = 0 and 𝑋(𝑎) = 0. 

Case I: If 𝜇1 = 0,𝑋(𝑥) = 𝐴1𝑋 + 𝐴2. Now, 𝑋(0) = 0 ⇒ 𝐴2 = 0 

and 𝑋(𝑎) = 0 ⇒ 𝐴1 = 0 ⇒ 𝑋(𝑥) = 0. This leads to 𝑢 = 0, which 

does not satisfy (9.11). So, we reject 𝜇1 = 0. 

Case II: If 𝜇1 > 0( say, 𝜆1
2 ), then 𝑋(𝑥) = 𝐴1𝑒

𝜆1𝑥 + 𝐴2𝑒
−𝜆1𝑥 . 

Using 𝑋(0) = 0,𝑋(𝑎) = 0, we get 𝐴1 + 𝐴2 = 0, 𝐴1𝑒
𝜆1𝑎 +

𝐴2𝑒
−𝜆1𝑎 = 0 ⇒ 𝐴1 = 0, 𝐴2 = 0, which again leads to 𝑢 = 0, and 

does not satisfy (9.11). So, we reject, 𝜇1 > 0. 

Case III: If 𝜇1 < 0 (say, −𝜆1
2 ), then 𝑋(𝑥) = 𝐴1cos𝜆1𝑥 +

𝐴2sin𝜆1𝑥. 𝑋(0) = 0 ⇒ 𝐴1 = 0 and 𝑋(𝑎) = 0 ⇒ 𝐴2sin(𝜆1𝑎) =
0 ⇒ sin(𝜆1𝑎) = 0(𝐴2 ≠ 0, otherwise 𝐴2 = 0 gives trivial solution, 
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not satisfying (9.11))⇒ 𝜆1 =
𝑛𝜋

𝑎
, 𝑛 = 1,2,3,…. Hence, the non-zero 

solution is given by 

𝑋(𝑥) = 𝐴2sin(
𝑚𝜋𝑥

𝑎
) ,𝑚 = 1,2,3,… 

In a similar manner, 

𝑌(𝑦) = 𝐵2sin(
𝑛𝜋𝑦

𝑏
) , 𝑛 = 1,2,3,… 

Now, 

𝑇′

𝑘𝑇
= 𝜇1 + 𝜇2 = −𝜆1

2 − 𝜆2
2 = −𝜋2 (

𝑚2

𝑎2
+
𝑛2

𝑏2
)

⇒ 𝑇′ = −𝜆𝑚𝑛
2 𝑇, where 𝜆𝑚𝑛

2 = 𝑘𝜋2 (
𝑚2

𝑎2
+
𝑛2

𝑏2
)

 

Solving we obtain, 

𝑇(𝑡) = 𝐶𝑒−𝜆𝑚𝑛
2 𝑡, 𝑚 = 1,2,… , 𝑛 = 1,2,…. 

We use the principle of superposition to obtain its most general 

solution as 

𝑢(𝑥, 𝑦, 𝑡) = ∑  

∞

𝑛=1

∑  

∞

𝑚=1

𝐴𝑚𝑛sin(
𝑚𝜋𝑥

𝑎
) sin(

𝑛𝜋𝑦

𝑏
)𝑒−𝜆𝑚𝑛

2 𝑡 

Putting 𝑡 = 0 and using the initial condition (4.11), we get, 

𝑓(𝑥, 𝑦) = ∑  

∞

𝑛=1

∑  

∞

𝑚=1

𝐴𝑚𝑛sin(
𝑚𝜋𝑥

𝑎
) sin(

𝑛𝜋𝑦

𝑏
) 

which is a double Fourier sine series, where 

𝐴𝑚𝑛 =
4

𝑎𝑏
∫  
𝑎

𝑥=0

∫  
𝑏

𝑦=0

𝑓(𝑥, 𝑦)sin(
𝑚𝜋𝑥

𝑎
) sin(

𝑛𝜋𝑦

𝑏
)𝑑𝑦𝑑𝑥. 

Example 9.3.1 The four edges of a thin rectangular plate of 

length a and breadth 𝒃 kept at zero temperature and the faces 

are perfectly insulated. If the initial temperature of the plate is 

𝒙𝒚(𝝅 − 𝒙)(𝝅 − 𝒚), find the temperature at any point in the 

plate. 
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Solution: Let 𝑢(𝑥, 𝑦, 𝑡) be the temperature of the plate at position ( 

𝑥, 𝑦 ) at time 𝑡. The model in the form of the initial boundary value 

problem is given by 

𝜕𝑢

𝜕𝑡
= 𝑘 (

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
) , for 0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑦 ≤ 𝑏 

Boundary Condition: u(0,y,t) = u (a,y,t) =0, u(x,0,t)= u(x,b,t)=0 

Initial Condition:𝑢(𝑥, 𝑦, 0) = 𝑥𝑦(𝜋 − 𝑥)(𝜋 − 𝑦). 

Proceeding as in section (9.3), we obtain the solution as 

𝑢(𝑥, 𝑦, 𝑡) = ∑  

∞

𝑛=1

  ∑  

∞

𝑚=1

 𝐴𝑚𝑛sin(
𝑚𝜋𝑥

𝑎
) sin(

𝑛𝜋𝑦

𝑏
)𝑒−𝜆𝑚𝑛

2 𝑡, where 

𝐴𝑚𝑛 =
4

𝑎𝑏
∫  
𝑎

𝑥=0

 ∫  
𝑏

𝑦=0

 𝑥𝑦(𝜋 − 𝑥)(𝜋 − 𝑦)sin(
𝑚𝜋𝑥

𝑎
) sin(

𝑛𝜋𝑦

𝑏
)𝑑𝑦𝑑𝑥

 and 𝜆𝑚𝑛
2 = 𝑘𝜋2 (

𝑚2

𝑎2
+
𝑛2

𝑏2
) ,𝑚 = 1,2,3,…, 𝑛 = 1,2,3,… .

 

Therefore, 

𝐴𝑚𝑛 =
4

𝑎𝑏
∫  
𝑎

𝑥=0

  (𝜋𝑥 − 𝑥2)sin(
𝑚𝜋𝑥

𝑎
)𝑑𝑥 × ∫  

𝑏

𝑦=0

  (𝜋𝑦 − 𝑦2)sin(
𝑛𝜋𝑦

𝑏
)𝑑𝑦

=
16𝑎2𝑏2

𝑚3𝑛3𝜋6
[1 − (−1)𝑚][1 − (−1)𝑛],

= {

0,  when 𝑚 = 2𝑝 or 𝑛 = 2𝑞( even ).

64𝑎3𝑏3

𝑚3𝑛3𝜋6
,  when 𝑚 = 2𝑝 − 1, 𝑛 = 2𝑞 − 1( odd ).

 

Hence, the required solution is (fig. 9.4) 

𝑢(𝑥, 𝑦, 𝑡) = ∑  

∞

𝑝=1

 ∑  

∞

𝑞=1

  [
64𝑎3𝑏3

𝜋3(2𝑝 − 1)3(2𝑞 − 1)3
×

sin
(2𝑝 − 1)𝜋𝑥

𝑎
sin

(2𝑞 − 1)𝜋𝑦

𝑏
𝑒
−𝑘𝜋2(

(2𝑝−1)2

𝑎2
+
(2𝑞−1)2

𝑏2
)𝑡
]
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FIGURE 9.4: The figures show the dynamics of heat flows with 

Dirichlet boundary conditions and initial condition 𝑢(𝑥, 𝑦, 0) =
𝑥𝑦(𝜋 − 𝑥)(𝜋 − 𝑦). 

 

9.6 STEADY HEAT FLOW: LAPLACE 

EQUATION 

 

In heat flow problems, sometimes, one has to deal with 

inhomogeneous boundary conditions, which require the study of 

steady heat flow (that is, time-independent solutions of the heat 

equation). These are called steady-state solutions, and they satisfy 
𝜕𝑢

𝜕𝑡
= 0. In one-dimensional case, the heat equation for steady state 

becomes 
𝜕2𝑢(𝑥)

𝜕𝑥2
= 0, whose solutions are straight lines. In a two-

dimensional case, the heat equation for steady state becomes 
𝜕2𝑢(𝑥,𝑦)

𝜕𝑥2
+

𝜕2𝑢(𝑥,𝑦)

𝜕𝑦2
= 0, which is the well-known Laplace equation. 

Solutions to the Laplace equation are called harmonic functions. 

 

9.7 LAPLACE EQUATION WITH 

DIRICHLET’S CONDITIOIN 

 

To obtain the steady-state solutions to the Laplace equation 

∇2𝑢 ≡
𝜕2𝑢(𝑥, 𝑦)

𝜕𝑥2
+
𝜕2𝑢(𝑥, 𝑦)

𝜕𝑦2
= 0 (9.13) 

with Dirichlet's boundary condition: 
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𝑢(0, 𝑦) = 𝑢(𝑎, 𝑦) = 0,0 ≤ 𝑦 ≤ 𝑏
𝑢(𝑥, 0) = 0,0 ≤ 𝑥 ≤ 𝑎

𝑢(𝑥, 𝑏) = 𝑓(𝑥),0 ≤ 𝑥 ≤ 𝑎
(9.14𝑐) 

we assume the solution of the form 

𝑢(𝑥, 𝑦) = 𝑋(𝑥)𝑌(𝑦) (9.15) 

Substituting we get, 

𝑋′′

𝑋
= −

𝑌′′

𝑌
= 𝜇( say ) ⇒ 𝑋′′ − 𝜇𝑋 = 0 (9.16𝑎)

𝑌′′ + 𝜇𝑌 = 0 (9.16𝑏)
 

(9.14a) and (9.15) gives 

𝑋(0)𝑌(0) = 0 and 𝑋(𝑎)𝑌(𝑦) = 0 ⇒ 𝑋(0) = 0 and 𝑋(𝑎) = 0

[𝑌(𝑦) ≠ 0 or else 𝑢 = 0, which does not satisfy (9.14𝑐)]
 

As before, 𝜇 = 0 and 𝜇 > 0 give trivial solution, which does not 

satisfy (9.14c), hence we reject both of them. For 𝜇 < 0(= −𝜆2), 
the solution of (9.16a) is 

𝑋(𝑥) = 𝐴1cos(𝜆𝑥) + 𝐴2sin(𝜆𝑥) 

Now, 𝑋(0) = 0 ⇒ 𝐴1 = 0 and 𝑋(𝑎) = 0 ⇒ 𝜆 =
𝑛𝜋

𝑎
, 𝑛 = 1,2,3,…. 

Hence, the non-zero solution of (9.16a) is given by 

𝑋(𝑥) = 𝐴2sin(
𝑛𝜋𝑥

𝑎
) 

From (9.16b), we get 

𝑌′′(𝑦) = 𝜆2𝑌 =
𝑛2𝜋2

𝑎2
𝑌 ⇒ 𝑌(𝑦) = 𝐵1𝑒

𝑛𝜋
𝑎
𝑦 + 𝐵2𝑒

−
𝑛𝜋
𝑎
𝑦

 

(9.14b) and (9.15) give 𝑢(𝑥, 0) = 𝑋(𝑥)𝑌(0) = 0 ⇒ 𝑌(0) =
0(𝑋(𝑥) ≠ 0 or else 𝑢(0) = 0, which does not satisfy (9.14c). 

𝑌(0) = 0 ⇒ 𝐵1 = −𝐵2 ⇒ 𝑌(𝑦) = 2𝐵1
𝑒
𝑛𝜋
𝑎
𝑦 − 𝑒−

𝑛𝜋
𝑎
𝑦

2

= 2𝐵1sinh(
𝑛𝜋𝑦

𝑎
) 

We use the principle of superposition to obtain the most general 

solution as 
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𝑢(𝑥, 𝑦) = ∑  

∞

𝑛=1

 𝐴𝑛sin(
𝑛𝜋𝑥

𝑎
) sinh(

𝑛𝜋𝑦

𝑎
) (9.17) 

The general solution (9.17) satisfies the Laplace equation (9.13) 

inside the rectangle, as well as the three homogeneous boundary 

conditions on three of its sides (left, right and bottom). We now use 

the boundary condition on the top of the rectangle to determine the 

values of 𝐴𝑛, which requires 

𝑢(𝑥, 𝑏) = 𝑓(𝑥) = ∑  

∞

𝑛=1

𝐴𝑛sin(
𝑛𝜋𝑥

𝑎
) sinh(

𝑛𝜋𝑏

𝑎
) 

This is a half range Fourier sine series of 𝑓(𝑥) in 0 ≤ 𝑥 ≤ 𝑎, where 

⇒ 𝐴𝑛 =
2

𝑎sinh(
𝑛𝜋𝑏
𝑎 )

∫  
𝑎

0

 𝑓(𝑥)sin(
𝑛𝜋𝑥

𝑎
)𝑑𝑥 (9.18) 

Therefore, the solution to the Laplace equation with Dirichlet's 

boundary conditions is (9.17), where 𝐴𝑛 is given by (9.18). 

 

 

 

(a) Three-dimensional plot of steady heat flow. 
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(b) Contour plot of the flow. 

FIGURE 9.5: The figures show a steady heat flow in a two-

dimensional rectangular plate with Dirichlet boundary condition. 

Example 9.4.1 Find the steady-state temperature distribution in 

a rectangular plate of sides 𝒂 and 𝒃, insulated at the lateral 

surface and satisfying the boundary conditions 

𝒖(𝟎, 𝒚) = 𝟎, 𝒖(𝝅, 𝒚) = 𝟎 for 𝟎 ≤ 𝒚 ≤ 𝝅

𝒖(𝒙, 𝟎) = 𝟎, and 𝒖(𝒙,𝝅) = 𝒙(𝝅 − 𝒙) for 𝟎 ≤ 𝒙 ≤ 𝝅
 

Solution: We proceed as in section(9.4.1), and calculate 

𝐴𝑛 =
2

𝜋sinh(𝑛𝜋)
∫  
𝜋

0

 𝑥(𝜋 − 𝑥)sin(𝜋𝑥)𝑑𝑥 =
2(2 − 2cos(𝑛𝜋) − 𝑛𝜋sin(𝑛𝜋))

𝑛3𝜋sinh(𝑛𝜋)

=
4

𝜋𝑛3
[1 − (−1)𝑛]cosh(𝑛𝜋) = {

0,  when 𝑛 = 2𝑚
8cosh((2𝑚 − 1)𝜋)

(2𝑚 − 1)3𝜋
,  when 𝑛 = 2𝑚 − 1.

 

Hence, the required steady temperature 𝑢(𝑥, 𝑦) is given by (fig. 9.5) 

𝑢(𝑥, 𝑦) = ∑  ∞
𝑚=1

8cosh(2𝑚−1)𝜋

𝜋(2𝑚−1)3
sin(2𝑚 − 1)𝑥sin(2𝑚 − 1)𝑦. 

 

 

9.8 LAPLACE EQUATION WITH NEUMANN’S 

BOUNDARY CONDITION  

To obtain the steady-state solution to the Laplace equation 

∇2𝑢 ≡
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
= 0 

with Neumann's boundary conditions: 

𝑢𝑥(0, 𝑦) = 0, 𝑢𝑥(𝑎, 𝑦) = 0,0 ≤ 𝑦 ≤ 𝑏,

𝑢𝑦(𝑥, 0) = 0, 𝑢𝑦(𝑥, 𝑏) = 𝑓(𝑥)0 ≤ 𝑥 ≤ 𝑎.
 

We assume the solution the solution of the form 𝑢(𝑥, 𝑦) =

𝑋(𝑥)𝑌(𝑦). Proceeding as in (9.4.1), we get 𝑋(𝑥) = 𝐴1cos(
𝑛𝜋𝑥

𝑎
) and 

𝑌(𝑦) = 2𝐵1cosh(
𝑛𝜋𝑦

𝑎
). Using the principle of superposition, the 

general solution can be written as 
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𝑢(𝑥, 𝑦) =∑  

𝑛

𝑖=1

 
𝑛𝜋

𝑎
𝐴𝑛cos(

𝑛𝜋𝑥

𝑎
) cosh(

𝑛𝜋𝑦

𝑎
) .

𝑢𝑦(𝑥, 𝑏) = 𝑓(𝑥) ⇒ 𝑓(𝑥) =∑  

𝑛

𝑖=1

 
𝑛𝜋

𝑎
sinh(

𝑛𝜋𝑏

𝑎
)𝐴𝑛cos(

𝑛𝜋𝑥

𝑎
) , 0 ≤ 𝑥 ≤ 𝑎

 

which is a Fourier Cosine series, where 

𝐴𝑛 =
2

𝑛𝜋sinh(
𝑛𝜋𝑏
𝑎 )

∫  
𝑎

0

𝑓(𝑥)cos(
𝑛𝜋𝑥

𝑎
)𝑑𝑥 

9.9 VIBRATING STRING 

We consider a homogenous flexible string of length 𝐿, which is 

stretched between two fixed points (0,0) and (𝐿, 0). Initially, the 

string is released from a position 𝑢 = 𝑓1(𝑥) with a velocity 𝑢𝑡 =
𝑓2(𝑥) parallel to the 𝑦-axis. 

Mathematically, we can formulate the model as follows: 

𝜕2𝑢

𝜕𝑡2
= 𝑐2

𝜕2𝑢

𝜕𝑥2
, 0 ≤ 𝑥 ≤ 𝐿, 𝑡 > 0 

Boundary Conditions (BCs): 𝑢(0, 𝑡) = 0, 𝑢(𝐿, 𝑡) = 0. 

Initial Conditions (ICs): 𝑢(𝑥, 0) = 𝑓1(𝑥),
𝜕𝑢(𝑥,0)

𝜕𝑡
= 𝑓2(𝑥). 

We use separation of variables to solve the given wave equation. Let 

𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡) be a solution of 
𝜕2𝑢

𝜕𝑡2
= 𝑐2

𝜕2𝑢

𝜕𝑥2
. Substituting, we 

obtain, 

𝑋′′

𝑋
=

𝑇′′

𝑐2𝑇
=  constant  

Since the boundary conditions are periodic and homogenous in 

𝑥, 𝑋(𝑥) must be periodic, which is only possible if the constant is 

negative (−𝜆2). 

Solving 
𝑋′′

𝑋
= −𝜆2 and 

𝑇′′

𝑐2𝑇
= −𝜆2, we obtain, 

𝑋(𝑥) = 𝐴1cos(𝜆𝑥) + 𝐴2sin(𝜆𝑥) and 𝑇(𝑡) = 𝐴3cos(𝑐𝜆𝑡) +
𝐴4sin(𝑐𝜆𝑡). 
Therefore, the general solution is given by 

𝑢(𝑥, 𝑡) = [𝐴1cos𝜆𝑥 + 𝐴2sin𝜆𝑥][(𝐴3cos(𝑐𝜆𝑡) + 𝐴4sin(𝑐𝜆𝑡)]. (9.20) 
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Using the boundary conditions 𝑢(0, 𝑡) = 0 = 𝑢(𝐿, 𝑡) we obtain 

𝐴1 = 0 and sin(𝜆𝐿) = 0(𝐴2 ≠ 0) ⇒ 𝜆 =
𝑛𝜋

𝐿
, 𝑛 being an integer. 

Therefore equation (9.20) becomes 

𝑢(𝑥, 𝑡) = 𝐴2sin
𝑛𝜋𝑥

𝐿
[𝐴3cos(

𝑐𝑛𝜋𝑡

𝐿
) + 𝐴4sin(

𝑐𝑛𝜋𝑡

𝐿
)]. 

Noting that the wave equation is linear, we use the principle of 

superposition to obtain its most general solution as 

𝑢(𝑥, 𝑡) = ∑  

∞

𝑛=1

[𝐴𝑛cos(
𝑐𝑛𝜋𝑡

𝐿
) + 𝐵𝑛sin(

𝑐𝑛𝜋𝑡

𝐿
)] sin(

𝑛𝜋𝑥

𝐿
). 

Using the initial condition we get, 

𝑢(𝑥, 0) = 𝑓1(𝑥) = ∑  

∞

𝑛=1

 𝐴𝑛sin(
𝑛𝜋𝑥

𝐿
) , and 

𝜕𝑢(𝑥, 0)

𝜕𝑡
= 𝑓2(𝑥) = ∑  

∞

𝑛=1

 
𝑐𝑛𝜋

𝐿
𝐵𝑛sin(

𝑛𝜋𝑥

𝐿
) .

 

Both are half-range Fourier sine series; therefore, we get, 

𝐴𝑛 =
2

𝐿
∫  
𝐿

0

 𝑓1(𝑥)sin(
𝑛𝜋𝑥

𝐿
)𝑑𝑥 (9.21)

𝑛𝜋𝑐

𝐿
𝐵𝑛 =

2

𝐿
∫  
𝐿

0

 𝑓2(𝑥)sin(
𝑛𝜋𝑥

𝐿
)𝑑𝑥 (9.21)

⇒ 𝐵𝑛 =
2

𝑛𝜋𝑐
∫  
𝐿

0

 𝑓2(𝑥)sin(
𝑛𝜋𝑥

𝐿
)𝑑𝑥 (9.22)

 

Hence, the displacement of the vibrating string is given by 

𝑢(𝑥, 𝑡) = ∑  

∞

𝑛=1

[𝐴𝑛cos(
𝑐𝑛𝜋𝑡

𝐿
) + 𝐵𝑛sin(

𝑐𝑛𝜋𝑡

𝐿
)] sin(

𝑛𝜋𝑥

𝐿
), 

where 𝐴𝑛 and 𝐵𝑛 are given by (9.21) and (9.22). 

Corollary 1: If the homogenous flexible string of length 𝐿, stretched 

between two fixed points (0,0) and (𝐿, 0), is initially released from 

rest from a position 𝑢 = 𝑓1(𝑥), then its initial velocity is zero, that 

is, 
𝜕𝑢(𝑥,0)

𝜕𝑡
= 0. The solution in that case will be of the form 
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𝑢(𝑥, 𝑡) = ∑  

∞

𝑛=1

 𝐴𝑛cos(
𝑐𝑛𝜋𝑡

𝐿
) sin(

𝑛𝜋𝑥

𝐿
) , where 

𝐴𝑛 =
2

𝐿
∫  
𝐿

0

 𝑓1(𝑥)sin(
𝑛𝜋𝑥

𝐿
)𝑑𝑥

 

Corollary 2: If the homogenous flexible string of length 𝐿, stretched 

between two fixed points (0,0) and (𝐿, 0), is initially released with 

velocity 𝑓2(𝑥), and the initial deflection of the string is zero, then 

𝑢(𝑥, 0) = 0. The solution in that case will be of the form 

𝑢(𝑥, 𝑡) = ∑  

∞

𝑛=1

 𝐵𝑛sin(
𝑐𝑛𝜋𝑡

𝐿
) sin(

𝑛𝜋𝑥

𝐿
) , where 

𝐵𝑛 =
2

𝑐𝑛𝜋
∫  
𝐿

0

 𝑓2(𝑥)sin(
𝑛𝜋𝑥

𝐿
)𝑑𝑥

 

Example 9.5.1 A homogenous flexible string in a guitar is stretched 

between two fixed points (0,0) and (𝐿, 0), the length of the string 

being 𝐿 units. The string of the guitar is initially plucked from rest 

from a position 𝜇𝑥(𝐿 − 𝑥). Find the displacement 𝑢(𝑥, 𝑡) of the 

string of the guitar at time 𝑡. 

Solution: Mathematically, we can formulate the model as follows: 

𝜕2𝑢

𝜕𝑡2
= 𝑐2

𝜕2𝑢

𝜕𝑥2
, 0 ≤ 𝑥 ≤ 𝐿, 𝑡 > 0 

Boundary conditions (BCs): 𝑢(0, 𝑡) = 0 = 𝑢(𝐿, 𝑡). 

Initial conditions (ICs): 𝑢(𝑥, 0) = 𝜇𝑥(𝐿 − 𝑥),
𝜕𝑢(𝑥,0)

𝜕𝑡
= 0. 

The solution is of the form 

𝑢(𝑥, 𝑡) = (𝐴1cos𝜆𝑥 + 𝐴2sin𝜆𝑥)[𝐴3cos(𝑐𝜆𝑡) + 𝐴4sin(𝑐𝜆𝑡)]. 

Applying boundary conditions, we get 𝐴1 = 0, 𝜆 =
𝑛𝜋

2
(𝐴2 ≠ 0, ), 𝑛 

being an integer. Using the principle of superposition, the possible 

solution is 

𝑢(𝑥, 𝑡) = ∑  ∞
𝑛=1 [𝐴𝑛cos(

𝑐𝑛𝜋𝑡

𝐿
) + 𝐵𝑛sin(

𝑐𝑛𝜋𝑡

𝐿
)] sin(

𝑛𝜋𝑥

𝐿
). 

Now, 
𝜕𝑢(𝑥,0)

𝜕𝑡
= 0 gives 𝐵𝑛 = 0 ⇒ 𝑢(𝑥, 𝑡) =

∑  ∞
𝑛=1 𝐴𝑛cos(

𝑐𝑛𝜋𝑡

𝐿
) sin(

𝑛𝜋𝑥

𝐿
). 

The initial condition gives 𝑢(𝑥, 0) = 𝜇𝑥(𝐿 − 𝑥) =
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∑  ∞
𝑛=1 𝐴𝑛sin(

𝑛𝜋𝑥

𝐿
), 

which is a half-range Fourier sine series, where 

𝐴𝑛 =
2

𝐿
∫  
𝐿

0

 𝜇𝑥(𝐿 − 𝑥)sin(
𝑛𝜋𝑥

𝐿
)𝑑𝑥 =

2𝜇

𝐿
[2 (

𝐿

𝑛𝜋
)
3

{1 − (−1)𝑛}]

= {
8𝜇𝐿2

𝑛3𝜋3
; 𝑛 =  odd 

0, 𝑛 =  even 

 

Therefore, the required solution is (fig. 9.7) 

𝑢(𝑥, 𝑡) = ∑  

∞

𝑛=1

8𝜇𝐿2

(2𝑛 − 1)3𝜋3
cos{

(2𝑛 − 1)𝑐𝜋𝑡

𝐿
} sin{

(2𝑛 − 1)𝜋𝑥

𝐿
} 

 

 

(a) Displacement 𝑢(𝑥, 𝑡) for 𝑡 = 5,9. 

 

 

 

(b) Three-dimensional view of 𝑢(𝑥, 𝑡). 

FIGURE 9.7: The figures show the displacement of the 

homogeneous string in a guitar dynamic between (0,0) and (10,0). 
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9.9 WAVE EQUATION 

 

The wave equation describes the propagation of oscillations and 

is represented by a linear second-order partial differential equation. 

Consider a homogeneous string of length 𝐿 is tied at both ends. We 

assume that the string offers no resistance due to bending; that is, it 

is thin and flexible; the tension in the string is much greater than the 

gravitational force, and hence, it can be neglected; the motion of the 

string takes place in the vertical plane only (fig. 9.6). 

Let 𝜌 be the linear density of the string, and 𝑃 and 𝑄 are two 

neighboring points on the string such that arc𝑃𝑄 = Δ𝑠. Let 𝑇1 and 

𝑇2 be the tensions at points 𝑃 and 𝑄, which make angles 𝛼 and 𝛽, 

respectively with the 𝑥-axis and let 𝑢(𝑥, 𝑡) be the displacement of 

the string at time 𝑡 from its equilibrium state. Then, the equations of 

motion are 

𝑇2cos𝛽 − 𝑇1cos𝛼 = 0 (along x-axis) (9.19)

(𝜌Δ𝑠)
𝜕2𝑢

𝜕𝑡2
= 𝑇2sin𝛽 − 𝑇1sin𝛼 (along y-axis) (9.19)

 

 

FIGURE 9.6: A homogeneous string of length L, tied at both ends 

such that the string offers no resistance due to bending. 

From (9.19), we obtain, 𝑇1cos𝛼 = 𝑇2cos𝛽 = 𝑇 (say), which implies 

(𝜌Δ𝑆)

𝑇

𝜕2𝑢

𝜕𝑡2
=
𝑇2sin𝛽

𝑇
−
𝑇1sin𝛼

𝑇
=
𝑇2sin𝛽

𝑇2cos𝛽
−
𝑇1sin𝛼

𝑇1cos𝛼
= tan𝛽 − tan𝛼. 

At the points 𝑃 and 𝑄, the slopes of the string are given by tan𝛼 =
𝜕𝑢

𝜕𝑥
|
𝑥1

 and tan𝛽 =
𝜕𝑢

𝜕𝑥
|
𝑥2

. Therefore, 
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(𝜌Δ𝑆)

𝑇

𝜕2𝑢

𝜕𝑡2
= 𝑢𝑥(𝑥2, 𝑡) − 𝑢𝑥(𝑥1, 𝑡) ⇒

𝜌

𝑇

Δ𝑆

Δ𝑥

𝜕2𝑢

𝜕𝑡2
=

𝑢𝑥(𝑥1+Δ𝑥,𝑡)−𝑢𝑥(𝑥1,𝑡)

Δ𝑥
. 

As Δ𝑥 → 0, Δ𝑠 → Δ𝑥 and we get 
𝜕2𝑢

𝜕𝑡2
= 𝑐2

𝜕2𝑢

𝜕𝑢2
, where 𝑐2 =

𝑇

𝜌
, 

which is the one-dimensional wave equation, 𝑐 being the speed of 

the propagation of the wave. 

 

 

9.10 CRIME MODEL 

 

Crime modeling with partial differential equations (PDEs) involves 

using mathematical equations to describe the spatial and temporal 

dynamics of crime patterns. 

Crime occurs in both urban and rural environments. Some areas are 

reasonably safe while other are dangerous, demonstrating that crime 

is not uniformly distributed.This model can help: 

1. Identify crime hotspots: PDE-based models can identify areas 

with high crime rates and predict future crime patterns. 

2. Understand crime diffusion: PDE-based models can capture 

how crime spreads from one location to another, helping to identify 

underlying factors driving crime. 

3. Evaluate crime prevention strategies: PDE-based models can 

simulate the impact of different crime prevention strategies, such as 

increased policing or community programs. 

 

Types of Crime Models using PDEs 

1. Reaction-Diffusion Models: These models describe how crime 

spreads from one location to another, taking into account factors like 

population density and policing. 

2. Wave Equation Models: These models describe how crime 

patterns propagate through space and time, capturing the dynamics 

of crime waves. 

3. Nonlinear Diffusion Models: These models capture the complex, 

nonlinear dynamics of crime patterns, including the impact of 

policing and community interventions. 

 

9.17 SUMMARY 

 

Spatial Modeling: Spatial modeling involves analyzing and 

predicting phenomena that vary over space and time. 
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Partial Differential Equations (PDEs): PDEs are mathematical 

equations that describe the behavior of spatial-temporal systems, 

capturing complex interactions between variables. 

Crime Models: Crime modeling with partial differential equations 

(PDEs) involves using mathematical equations to describe the 

spatial and temporal dynamics of crime patterns.  

 

 

 

 

9.18 GLOSSARY 

 

Partial Differential Equation (PDE): A mathematical equation that 

describes the behavior of a system that changes over space and time. 

Dependent Variable: A variable whose behaviour is being 

modelled, often denoted as u(x,t). 

 Independent Variables: Variables that describe the spatial and 

temporal coordinates, often denoted as x and t. 

 Boundary Conditions: Conditions that specify the behaviour of the 

dependent variable at the boundaries of the spatial domain. 

 Initial Conditions: Conditions that specify the initial state of the 

dependent variable. 

 Spatial Domain: The region in space where the PDE is defined. 

 Spatial Grid: A discrete representation of the spatial domain, used 

for numerical simulations. 

 Spatial Resolution: The level of detail at which the spatial domain 

is discretized. 

 Spatial Autocorrelation: The correlation between values of the 

dependent variable at different spatial locations. 

 

CHECK YOUR PROGRESS 

 

CYQ1. Spatial modeling is a mathematical approach used to 

describe and analyze phenomena that vary over …..and …... 

CYQ2.The advantage of PDE models is that they include 

derivatives of at least…….. 

CYQ3………….capture the complex, nonlinear dynamics of crime 

patterns, including the impact of policing and community 

interventions. 
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9.21 TERMINAL QUESTIONS 

1. What is continuous modelling approach? 

2. What is the difference between Arms Race Model and Epidemic 

Models. 

3. A fossil is found that has 20% C14  compared to the living 

sample. How old is the fossil, knowing that the C14 half – life is 

5730 years? 

4. Model the population growth of a city using the logistic 

equation, and solve for the population at time t. 

5. What is an Ordinary Differential Equation (ODE), and how is it 

used to model continuous systems? 

 

9.22 ANSWERS 

https://archive.nptel.ac.in/courses/111/107/111107113/
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TERMINAL QUESTIONS 

TQ1. What is meaning of PDE’s Models ? 

TQ2.A road of leanth l, whose side are insulated is kept, at uniform 

temperature u0, both ends of the road are suddenly cooled at 00c and are 

kept at that temperature. If u(x,t) represents the temperature function at 

any point x at time t, 

(i) Formulate a mathematical model of the given solution using 

PDE’s stating clearly the boundary and initial conditions. 

(ii) Using the method of separation of variable, find the 

temperature function u(x,t). 

TQ3. Find the traffic density 𝜌(𝑥, 𝑡). satisfying 
𝜕𝜌

𝜕𝑡
 + x sin(t) 

𝜕𝜌

𝜕𝑥
 = 0 

With initial condition 𝜌0(x) = 1 + 
1

𝑥2
 

ANSWERS  

CYQ1. Space and Time  

CYQ2.Two independent variables  

CYQ3. Nonlinear Diffusion Models 

TQ2. (ii) u (x,t) = ∑
𝑢𝑢0

(2𝑚−1)𝜋

∞
𝑚=1  sin 

(2𝑚−1)𝜋𝑥

𝐿
𝑒
−(2𝑚−1)2𝜋2𝑐2

𝐿 t. 

TQ3.𝜌0(x,t)= 1+
1

1+𝑥2𝑒−2+2𝑐𝑜𝑠(𝑡)
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UNIT 10:  MODELING WITH DELAY 

DIFFERENTIAL EQUATIONS  

 

CONTENTS: 

 
10.1     Introduction  

10.2    Objectives 

10.3    Different Models with Deley Differential equation 

10.3.1 Deley Protein degradation 

10.3.2 Football Team Performance Model 

10.3.3 Shower Problem  

10.3.4 Breathing Model 

10.3.5 Housefly Model 

10.3.6 Two Neuron System    

10.4     Immunotherapy With Interleukin-2, A Study Based on      

    Mathematical Modelling  

10.4.1 Background of the Problem 

10.4.2 The Model 

10.4.3 Positivity of the Solution 

10.5     Summary   

10.6     Glossary  

10.7     References 

10.8     Suggested readings 

10.9     Terminal questions 

10.10 Answers 

 

 

 

10. 1     INTRODUCTION 

 

In previous unit we have defined Mathematical Modeling 

through Differential Equation, Advantage of partial differential 

equation models, Laplace Equation with Dirichlet’s conditions, 

Laplace Equation with Neumann’s Boundary condition, wave 

equation and crime model. In this unit we discussed about different 

model with delay differential equations. 

 

When the learner start reading this chapter the first question that 

comes to mind, what are Delay Differential Equations (DDE),. A 
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delay differential equation (DDE) is a type of mathematical equation 

that describes the behavior of a system that changes over time, In 

layman's term, a DDE is a differential equation in which the 

derivatives of some unknown functions at the present time are 

dependent on the values of the functions at previous times. Let us 

consider a general DDE of the first order the form 

𝑑𝑥(𝑡)

𝑑𝑡
= 𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡 − 𝜏1), 𝑥(𝑡 − 𝜏2),… , 𝑥(𝑡 − 𝜏𝑛))           (10.1)  

where 𝜏𝑖 's are positive constants (fixed discrete delays). 

When we solve an ODE (initial value problem), we only need to 

specify the initial values of the state variables. However, while 

solving a DDE, we have to look back to the earlier values of 𝑥 at every 

time step. Assuming that we start at time 𝑡 = 0, we, therefore, need 

to specify an initial function, which gives the behavior of the system 

prior to time 𝑡 = 0. 

Consider a DDE with a single discrete delay, that is, 

𝑑𝑥(𝑡)

𝑑𝑡
= 𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡 − 𝜏))                                                    (10.2)  

where 𝑥(𝑡 − 𝜏) = {𝑥(𝜏): 𝜏 ≤ 𝑡} gives the trajectory of the solution in 

the past. Here, the function 𝑓 is a functional operator from R × R𝑛 ×
𝐶1 to R and x(t) ∈ R𝑛. For this DDE, the initial function would be a 

function 𝑥(𝑡) defined on the interval [−𝜏, 0]. The solution to (10.2) is 

a mapping from functions on the interval [𝑡 − 𝜏, 𝑡] into the functions 

on the interval [𝑡, 𝑡 + 𝜏]. Thus, the solution of (10.2) can be defined 

as a sequence of functions 𝑓0(𝑡), 𝑓1(𝑡), 𝑓2(𝑡),… defined over a set of 

adjacent time intervals of length 𝜏. The points 𝑡 = 0, 𝜏, 2𝜏, …, where 

the solution segments meet is called knots. 

Now for solving Delay differential equations, let us consider a simple 

DDE of the form 

𝑑𝑥

𝑑𝑡
= −𝑥(𝑡 − 𝜏), 𝑡 > 0 

Initial history: x(t) = 1,−𝜏 ≤ 𝑡 ≤ 0. Clearly, with 𝜏 = 0, 𝑥(𝑡) =
𝑥(0)𝑒−𝑡. However, the presence of 𝜏 makes the situation a bit tricky. 

Hence, in the interval 0 ≤ 𝑡 ≤ 𝜏, we have 
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𝑑𝑥

𝑑𝑡
= −𝑥(𝑡 − 𝜏) = −1

⇒ 𝑥(𝑡) = 𝑥(0) + ∫  
𝑡

0

  (−1)𝑑𝑠 = 1 − 𝑡, 0 ≤ 𝑡 ≤ 𝜏
 

In 𝜏 ≤ 𝑡 ≤ 2𝜏, we get, 0 ≤ 𝑡 − 𝜏 ≤ 𝜏 and so we have, 

𝑑𝑥(𝑡)

𝑑𝑡
= −𝑥(𝑡 − 𝜏) = −[1 − (𝑡 − 𝜏)]

⇒ 𝑥(𝑡) = 𝑥(𝜏) + ∫  
𝑡

𝜏

  [−{1 − (𝑠 − 𝜏)}]𝑑𝑠

⇒ 𝑥(𝑡) = 1 − 𝑡 +
(𝑡 − 𝜏)2

2
, 𝜏 ≤ 𝑡 ≤ 2𝜏

 

and so on. In general, it can be shown (use mathematical induction) 

that 

𝑥(𝑡) = 1 +∑  

𝑛

𝑘=1

(−1)𝑘
[𝑡 − 𝑘 − 1𝜏]𝑘

𝑘!
, (𝑛 − 1)𝜏 ≤ 𝑡 ≤ 𝑛𝜏, 𝑛 ≥ 1. 

The above method is known as a procedure of steps. 

 

10.2 OBJECTIVES 

   

   After studying this unit, learner will be able to  

1. Describe modeling Real-World Systems: 

2. Understand complex dynamics, such as oscillations, instability, 

and bifurcations, that arise from delayed responses. 

3. Analyze the stability of systems, identifying conditions under 

which the system will return to its equilibrium state. 

4. Identify bifurcations, sudden changes in system behaviour, that 

occur as parameters are varied. 

 

 

10.3 DIFFERENT MODELS WITH DELEY   

DIFFERENTIAL EQUATIONS  

 

10.3.1 DELEY PROTEIN DEGRADATION  
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Let 𝑃(𝑡) be the concentration of proteins at any time 𝑡 in a system, 

then the production of proteins at any time is given by  

𝑑𝑃(𝑡)

𝑑𝑡
= 𝛼 − 𝛽𝑃(𝑡) − 𝛾𝑃(𝑡 − 𝜏)                                                  (10.8)  

where 𝛼 is the constant rate of protein production, 𝛽 is the rate of non-

delayed protein degradation, and 𝛾 is the rate of delayed protein 

degradation. The discrete time delay 𝜏 is due to the fact that the 

protein degradation machine degrades the protein after a time 𝜏 after 

initiation. The equilibrium points of (10.8) is given by 

𝛼 − 𝛽𝑃∗ − 𝛾𝑃∗ = 0 ⇒ 𝑃∗ =
𝛼

𝛽 + 𝛾
 

Using the transformation 𝑃 = 𝑃′ + 𝑃∗ in (10.8), we obtain 

𝑑𝑃′(𝑡)

𝑑𝑡
= −𝛽𝑃′(𝑡) − 𝛾𝑃′(𝑡 − 𝜏)                                                (10.9)  

Putting 𝑃′ = 𝐴1𝑒
𝜆𝑡 in (10.9), we get the characteristic equation as 

𝜆 = −𝛽 − 𝛾𝑒−𝜆𝜏. Comparing with (10.2.1.1), we get 𝐴 + 𝐵 = −𝛽 −
𝛾 < 0. Since, −𝛾 > −𝛽 (assumed), the system (10.8) is 

asymptotically stable about 𝑃∗ =
𝛼

𝛽+𝛾
. Fig. 10.1 shows the 

degradation of protein for various parameter values,  

 

 

(a)𝛼 = 40, 𝛽 = 0.3, 𝛾 = 0.1, 𝜏 = 20. 

 

 

 

(b) 𝛼 = 100,𝛽 = 1.1, 𝛾 = 1, 𝜏 = 10. 
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FIGURE 10.1: The figures show delay-induced protein degradation. 

(a) Protein concentration delay with initial history 150. 

 (b) Oscillatory behavior of protein degradation with initial history 

20. 

 

10.3.2 FOOTBALL TEAM PERFORMANCE 

MODEL 

 

During the last 40 years R.B. Banks proposed a delay-induced 

mathematical model to analyze the performance of a National 

Football League (NFL) football team. The proposed model is 

𝑑𝑈

𝑑𝑡
= 𝑏 [

1

2
− 𝑈(𝑡 − 𝜏)]                                                                (10.10)  

where 𝑈(𝑡) is the fraction of games won by an NFL team during one 

season and it lies between 0 and 1, and 𝑏 is the growth rate. The 

computational formula for 𝑈(𝑡) is given by 

 

𝑈(𝑡) =
1× no. of games won +

1

2
× no. of games tied +0× no. of games lost 

 Total no. of games 
. 

 

 

 

(a)   𝜏 = 2years. 
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(b) 𝜏 = 3 years. 

FIGURE 10.2: The performance of an NFL team from 1960 to 1992, 

with parameter values 𝑏 = 0.785, 𝜏 = 2 years and initial history 0.4. 

The performance of the team shows  

(a) a periodic solution and 

(b) an unstable situation, which matches with data . 

Basically, the proposed model says that at the present time, the rate of 

change of 𝑈 is proportional to the difference between 𝑈 =
1

2
 (average 

values) and the values of 𝑈 at some previous time 𝑡 − 𝜏. The 

equilibrium points of (10.10) is given by 𝑏 [
1

2
− 𝑈∗] = 0 ⇒ 𝑈∗ =

1

2
. 

Using the transformation 𝑈 = 𝑈′ + 𝑈∗ in (10.10), we obtain 

𝑑𝑈′(𝑡)

𝑑𝑡
= −𝑏𝑈′(𝑡 − 𝜏)                                                                 (10.11)  

Putting 𝑈′ = 𝐴1𝑒
𝜆𝑡 in (5.11), we get the characteristic equation as 

𝜆 = −𝑏𝑒−𝜆𝜏 . Comparing with (5.2.1.1), we get 𝐴 + 𝐵 = −𝑏 < 0 and 

𝐵 < 𝐴. Hence, the system (5.10) is asymptotically stable about 𝑈∗ =
1

2
 for 0 < 𝜏 < 𝜏∗ and unstable for 𝜏 > 𝜏∗concluded from his model 

that the time delay 𝜏 plays an important role in the ups and downs of 

the football team. It experiences a simple periodicity (fig. 10.2(a)) and 

an unstable situation (fig. 𝟏𝟎. 𝟐( 𝐛) ). 

10.3.3     SHOWER PROBLEM 

     

People enjoy showering, especially when they are able to control the 

water temperature. The dynamics of human behavior while taking a 

shower when the water temperature is not comfortable is quite 

interesting. A simple DDE model is proposed to capture such 

dynamics. We assume that the speed of water is constant (uniform 

flow) from the faucet to the shower head, which takes the time 𝜏 
second (say)  
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           (𝑎)  𝛼 = 0.5                                      (b)     𝛼 = 1.1 

 

       (𝑐)  𝛼 = 1.5                                   (d)= 𝛼 = 1.8                                      

 

 

FIGURE 10.3: Varied temperatures of water for different values of 

𝛼. The parameter values are 𝑇𝑑 = 40
∘C, 𝜏 = 1 and initial history =

0.5. 

Let 𝑇(𝑡) denote the temperature of water at the faucet at time 𝑡, then 

the temperature evolution is given by 

𝑑𝑇

𝑑𝑡
= −𝛼[𝑇(𝑡 − 𝜏) − 𝑇𝑑]                                                              (10.12)  

where 𝑇𝑑 is the desired temperature and 𝛼 gives the measure of a 

person's reaction due to the wrong water temperature. One type of 

person might prefer a low value of 𝛼, whereas another type of 

person would choose a higher value. The equilibrium point of 

(10.12) is given by 𝑇∗ − 𝑇𝑑 = 0 ⇒ 𝑇∗ = 𝑇𝑑. Using the 

transformation 𝑇 = 𝑇′ + 𝑇∗ in (5.12), we obtain 

𝑑𝑇′(𝑡)

𝑑𝑡
= −𝛼𝑇′(𝑡 − 𝜏)                                                                 (10.13)  
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Putting 𝑇′ = 𝐴1𝑒
𝜆𝑡 in (10.13), we get the characteristic equation as 

𝜆 = −𝛼𝑒−𝜆𝜏. Comparing with (10.2.1.1), we get 𝐴 + 𝐵 = 0+
(−𝛼) = −𝛼 < 0 and 𝐵 < 𝐴. Hence, the system (10.12) is 

asymptotically stable about 𝑇∗ = 𝑇𝑑. 

For 𝛼 = 0.5, the temperature of the water goes to 40∘C, which is 

comfortable to the body and the person remains calm (fig. 10.3(a)). 

For 𝛼 = 1.1, after initial fluctuation, the temperature of the water 

goes to 40∘C. A person may show initial discomfort with the start of 

the shower (fig. 10.3(b)). One person may prefer the value of 𝛼 =
1.57 while showering (a bathroom singer?), which shows cyclic 

behavior of water temperature (fig. 10.3(c)). For 𝛼 = 1.8, the 

temperature of the water is erratic and unpleasant while taking 

shower (fig. 10.3(d)). 

 

       n=3                         n=6                       n=9 

 

FIGURE 10.4: The oscillatory behavior of carbon dioxide content 

for  

(a) 𝑛 = 3, (b) 𝑛 = 6, (c) 𝑛 = 9. The parameter values, are 𝜆 =
6, 𝛼 = 1.0, 𝑉max = 80, 𝜃 = 1, 𝜏 = 0.25 and initial history = 1.2. 

 

10.3.4 BREATHING MODEL 

 

The breathing model is a mathematical representation of the 

respiratory system, which includes the lungs, airways, and breathing 

muscles. The model uses DDEs to describe the dynamics of breathing, 

taking into account the delays between the neural signals and the 

mechanical responses. The arterial carbon dioxide level controls our 

rate of breathing. A mathematical model was first developed by 

Mackey and Glass, where they assumed that carbon dioxide is 

produced at a constant rate 𝜆 due to metabolic activity and its removal 

from the bloodstream is proportional to both the current carbon 
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dioxide concentration and to ventilation. Ventilation, which is the 

volume of gas exchanged by the lungs per unit of time, is controlled 

by the carbon dioxide level in the blood. The process is complex and 

involves the detection of carbon dioxide levels by receptors in the 

brain stem. This carbon dioxide detection and its subsequent 

adjustment to ventilation is not an instantaneous process; there is a 

time lag due to the fact that the blood transport from the lungs to the 

heart and then back to the brain requires time. Thus, if C is the 

concentration of the carbon dioxide, then the rate of change of 

concentration of carbon dioxide due to breathing is given by 

𝑑𝐶(𝑡)

𝑑𝑡
= 𝜆 − 𝛼𝑉max𝐶(𝑡)�̇�(𝑡 − 𝜏) 

where �̇�(𝑡) is the rate of ventilation and is assumed to follow the Hill 

function, that is �̇�(𝑡) =
(𝐶(𝑡))𝑛

𝜃𝑛+(𝐶(𝑡))𝑛
; 𝑉max , 𝜃, 𝑛, and 𝛼 are constants. 

Thus, the rate of change of concentration of carbon dioxide is given 

by 

𝑑𝐶(𝑡)

𝑑𝑡
= 𝜆 − 𝛼𝑉max𝐶(𝑡)

(𝐶(𝑡 − 𝜏))𝑛

𝜃𝑛 + (𝐶(𝑡 − 𝜏))𝑛
 

Fig. 10.4 shows the oscillatory solutions of the Mackey-Glass 

equation, representing the carbon dioxide content for 𝑛 = 3,6,9. As 𝑛 

increases, the amplitude of the oscillation also increases gradually. 

 

 

       (a) Oscillatory behaviour    𝜏 = 5       (b)  Logistic growth (𝜏 = 0) 

 

FIGURE 10.5: (a) The oscillatory behavior of the adult houseflies. 

Parameter value 𝑑1 = 0.147,𝛽 = 1.81, 𝑘 = 0.5107,𝑀 = 0.000226, 

initial history 100.  

(b) The adult houseflies follow a logistic growth for 𝜏 = 0. 
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10.3.5 HOUSEFLY MODEL 

 

The housefly model is a mathematical representation of the 

population dynamics of houseflies, which includes the delays between 

the different stages of their life cycle. The model uses DDEs to 

describe the dynamics of the housefly population, taking into account 

the delays between the egg, larval, and adult stages. 

Taylor and Sokal proposed a model to describe the behavior of the 

adult housefly Musca domestic in laboratory conditions. To capture 

the dynamics of the housefly, the model is represented using as 

𝑑𝐻

𝑑𝑡
= −𝑑1𝐻(𝑡) + 𝛽𝐻(𝑡 − 𝜏)[𝑘 − 𝛽𝑀𝐻(𝑡 − 𝜏)]. 

Here, 𝐻(𝑡) represents the number of adult houseflies at any time t, 𝑑1 

is the natural death of the houseflies, 𝜏(> 0) is the discrete time delay, 

which is the time from laying eggs until their emerging from the pupal 

case (oviposition and eclosion of adults), 𝛽 is the number of eggs laid 

per adult, and assuming the number of eggs laid is proportional to the 

number of adults, the number of new eggs at time 𝑡 − 𝜏 would be 

𝛽𝐻(𝑡 − 𝜏). The term 𝑘 − 𝛽𝑀𝐻(𝑡 − 𝜏) gives the egg-to-adult survival 

rate, 𝑘 and 𝑀 being the maximum egg-adult survival rate and 

reduction in survival for each egg, respectively. Fig. 10.5(a) shows 

periodic solution as observed in the behavior of adult houseflies in 

laboratory conditions. Please note that for 𝜏 = 0, the housefly 

population follows a logistic growth (fig. 10.5(b)). 

10.3.6 TWO NEURON SYSTEM 

A two-neuron system of self-existing neurons is given by  

𝑑𝑢1
𝑑𝑡

= −𝑢1(𝑡) + 𝑎1tanh [𝑢2(𝑡 − 𝜏21)],
𝑑𝑢2
𝑑𝑡

= −𝑢2(𝑡) + 𝑎2tanh [𝑢1(𝑡 − 𝜏12)] 

where 𝑢1(𝑡) and 𝑢2(𝑡) are the activities of the first and second 

neurons respectively, 𝜏21 is the delay in signal transmission between 

the second neuron and the first neuron ( 𝜏12 can be explained in a 

similar manner) and 𝑎1, 𝑎2 are the weights of the connection between 

the neurons. By taking 𝑎1 = 2, 𝑎2 = −1.5, 𝜏21 = 0.2, 𝜏12 = 0.5 such 
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that 𝜏21 + 𝜏12 < 0.8, numerically it has been shown that the model is 

asymptotically stable about the origin (fig. 5.6(a), fig. 10.6(b)). For 

𝜏21 = 0.4, 𝜏12 = 0.6 such that 𝜏21 + 𝜏12 > 0.8, a periodic solution 

bifurcates from the origin; that bifurcation is supercritical and the 

bifurcating periodic solution is orbitally asymptotically stable (fig. 

10.6(c), fig. 10.6( d)). Interested readers may look into Ruan et al, to 

learn more about the analytical calculations and restrictions on 𝜏21 

and 𝜏12. 

 

          (a) 𝜏21=  0.2,   𝜏12= 0.                              (b) Stable focus 

 

(c)    𝜏21=  0.4  𝜏21= 0.6                (d) Limit cycle 

                                              

FIGURE 10.6: The figures show the activities of two self-exiting 

neurons. Parameter values: 𝑎1 = 2, 𝑎2 = −1.5 with initial history 

(0.1,0.3). (a) Asymptotically stable, (b) stable focus, (c) periodic 

solution, (d) limit cycle. 

10.4   IMMUNOTHERAPY WITH 

INTERLEUKIN-2, A STUDY BASED ON 
MATHEMATICAL MODELING  

10.4.1 BACKGROUND OF THE PROBLEM 

The mechanism of establishment and destruction of cancer, one of the 

greatest killers in the world, is still a puzzle. Modern treatment 

involves surgery, chemotherapy, and radiotherapy, yet relapses occur. 
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Hence, the need for more successful treatment is clear. Developing 

schemes for immunotherapy or its combination with other therapy 

methods are the major focus at present and aim at reducing the tumor 

mass, heightening tumor immunogenicity, and removal of 

immunosuppression induced in an organism in the process of tumor 

growth. Recent progress has been achieved through immunotherapy, 

which refers to the use of cytokines (protein hormones that mediate 

both natural and specific immunities) usually together with adoptive 

cellular immunotherapy (ACI). 

The main cytokine responsible for lymphocyte activation, growth, 

and differentiation is interleukin-2 (IL-2), which is mainly produced 

by T helper cells (CD4+ T-cells) and in relatively small quantities by 

cytotoxic T-lymphocytes (CD8+ T-cells). CD4 lymphocytes 

differentiate into T-Helper 1 and T-Helper 2 functional subjects due 

to the immune response. IL-2 acts in an autocrine manner on T-Helper 

1 and also induces the growth of T-Helper 2 and CD8 lymphocytes in 

a paracrine manner. The T-lymphocytes themselves are stimulated by 

the tumor to induce further growth. Thus, the complete biological 

assumption of adoptive cellular immunotherapy is that the immune 

system is expanded in number artificially (ex vivo) in cell cultures by 

means of human recombinant interleukin-2. This can be done in two 

ways, either by (i) lymphokine-activated killer cell therapy, where the 

cells are obtained from the in vitro culturing of peripheral blood 

leukocytes removed from patients with a high concentration of IL-2, 

or (ii) tumor-infiltrating lymphocyte therapy (TIL), where the cells 

are obtained from lymphocytes recovered from the patient tumors, 

which are then incubated with high concentrations of IL-2 in vitro and 

are comprised of activated natural killer (NK) cells and cytotoxic T-

lymphocyte (CTL) cells. The TIL is then returned into the 

bloodstream, along with IL-2, where they can bind to and destroy the 

tumor cells. It has been established clinically that immunotherapy 

with IL-2 has enhanced CTL activity at different stages of the tumor 

[133,134,148]. Also, there is evidence of the restoration of the 

defective NK cell activity as well as enhancement of polyclonal 

expansion of CD4+ and CD8+ T cells. 

Kirschner and Panetta have studied the role of IL-2 in tumor 

dynamics, particularly long-term tumor recurrence and short-term 

oscillations, from mathematical perspective. The model proposed 

there deals with three populations, namely, the activated immune-

system cells (commonly called effector cells), such as cytotoxic T 

cells, macrophages, and NK cells that are cytotoxic to the tumor cells, 

the tumor cells and the concentration of IL-2. The important 

parameters in their study are antigenicity of tumor (c), a treatment 
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term that represents the external source of effector cells (𝑠1), and a 

treatment term that represents an external input of IL-2 into the system 
(𝑠2). Their results can be summarized as follows: (i) For non-

treatment cases (𝑠1 = 0, 𝑠2 = 0), the immune system has not been 

able to clear the tumor for low-antigenic tumors, while for highly 

antigenic tumors, reduction to a small dormant tumor is the best-case 

scenario. (ii) The effect of adoptive cellular immunotherapy (ACI) 
(𝑠1 > 0, 𝑠2 = 0) alone can yield a tumor-free state for tumors of 

almost any antigenicity, provided the treatment concentration is above 

a given critical level. However, for tumors with small antigenicity, 

early treatment is needed while the tumor is small, so that the tumor 

can be controlled. (iii) Treatment with IL-2 alone (𝑠1 = 0, 𝑠2 > 0) 
shows that if IL-2 administration is low, there is no tumor-free state. 

However, if IL-2 input is high, the tumor can be cleared, but the 

immune system grows without bounds, causing problems such as 

capillary leak syndrome. (iv) Finally, the combined treatment with 

ACI and IL-2 (𝑠1 > 0, 𝑠2 > 0) gives the combined effects obtained 

from the monotherapy regime. For any antigenicity, there is a region 

of tumor clearance. These results indicate that treatment with ACI 

may be a better option either as a monotherapy or in conjunction with 

IL-2. Here I have proposed a modification of the model studied by 

Kirschner and Panetta by adding a discrete time delay which exists 

when activated T-cells produce IL-2. 

 

10.4.2 THE MODEL 

 

   The proposed model is an extension of the Kirschner-Panetta 

ordinary differential equation model [83] 

𝑑𝐸

𝑑𝑡1
 = 𝑐𝑇 +

𝑝1𝐸𝐼𝐿
𝑔1 + 𝐼𝐿

− 𝜇2𝐸 + 𝑠1

𝑑𝑇

𝑑𝑡1
 = 𝑟2(1 − 𝑏𝑇)𝑇 −

𝑎𝐸𝑇

𝑔2 + 𝑇
𝑑𝐼𝐿
𝑑𝑡1
 =

𝑝2𝐸𝑇

𝑔3 + 𝑇
− 𝜇3𝐼𝐿 + 𝑠2

 

to a DDE model with proper biological justifications and is given by 



MATHEMATICAL MODELLING                                                     MAT 610 

 

Department of Mathematics  
Uttarakhand Open University Page 195 
 

𝑑𝐸

𝑑𝑡1
 = 𝑐𝑇 +

𝑝1𝐸(𝑡1 − 𝜏)𝐼𝐿(𝑡1 − 𝜏)

𝑔1 + 𝐼𝐿(𝑡1 − 𝜏)
− 𝜇2𝐸 + 𝑠1

𝑑𝑇

𝑑𝑡1
 = 𝑟2(1 − 𝑏𝑇)𝑇 −

𝑎𝐸𝑇

𝑔2 + 𝑇
𝑑𝐼𝐿
𝑑𝑡1
 =

𝑝2𝐸𝑇

𝑔3 + 𝑇
− 𝜇3𝐼𝐿 + 𝑠2

 

Using the following scaling 

𝑥 =
𝐸

𝐸0
, 𝑦 =

𝑇

𝑇0
, 𝑧 =

𝐼𝐿

𝐼𝐿0
, 𝑡 = 𝑡𝑠𝑡1;  𝑐‾ =

𝑐𝑇0

𝑡𝑠𝐸0
, 𝜌1 =

𝑝1

𝑡𝑠
, 

𝑔1 =
𝑔1

𝐼𝐿0
, 𝜇2 =

𝜇2

𝑡𝑠
, 𝑔2 =

𝑔2

𝑇0
, 𝑏‾ = 𝑏𝑇0, 𝑟2 =

𝑟2

𝑡𝑠
, 𝑎‾ =

𝑎𝐸0

𝑡𝑠𝑇0
, 

𝜇3 =
𝜇3

𝑡𝑠
, 𝑝2 =

𝑝2𝐸0

𝑡𝑠𝐼𝐿0
, 𝑔3 =

𝑔3

𝑇0
, 𝑠1 =

𝑠1

𝑡𝑠𝐸0
, 𝑠2 =

𝑠2

𝑡𝑠𝐼𝐿0
, 

the given system is non-dimensional zed, given by (after dropping the 

overbar notation for convenience) 

𝑑𝑥

𝑑𝑡
 = 𝑐𝑦 +

𝑝1𝑥(𝑡 − 𝜏)𝑧(𝑡 − 𝜏)

𝑔1 + 𝑧(𝑡 − 𝜏)
− 𝜇2𝑥 + 𝑠1

𝑑𝑧

𝑑𝑡
 =

𝑝2𝑥𝑦

𝑔3 + 𝑦
− 𝜇3𝑧 + 𝑠2

 

subject to the following initial conditions 

𝑥(𝜃) = 𝜓1(𝜃), 𝑦(𝜃) = 𝜓2(𝜃), 𝑧(𝜃) = 𝜓3(𝜃)

𝜓1(𝜃) ≥ 0,𝜓2(𝜃) ≥ 0,𝜓3(𝜃) ≥ 0; 𝜃 ∈ [−𝜏, 0]
𝜓1(0) > 0,𝜓2(0) > 0,𝜓3(0) > 0

(10.15) 

where 𝐶+ = (𝜓1(𝜃), 𝜓2(𝜃), 𝜓3(𝜃)) ∈ 𝐶([−𝜏, 0], 𝑅+0
3 ), the Banach 

space of continuous functions mapping the interval [−𝜏, 0] into 𝑅+0
3 , 

where 𝑅+0
3  is defined as 

𝑅+0
3  = ((𝑥, 𝑦, 𝑧): 𝑥, 𝑦, 𝑧 ≥ 0) and 𝑅+

3 , the interior of 𝑅+0
3  as 

𝑅+
3  = ((𝑥, 𝑦, 𝑧): 𝑥, 𝑦, 𝑧 > 0)

 

In the system described by (5.14), 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡), respectively, 

represent the effector cells, the tumor cells, and the concentration of 

IL-2 in the single site compartment. The first equation of the system 

(10.14) describes the rate of change for the effector cell population. 

The effector cells grow due to the direct presence of the tumor, given 

by the term 𝑐𝑦, where 𝑐 is the antigenicity of the tumor. It is also 

stimulated by IL-2 that is produced by effector cells in an autocrine 

and paracrine manner (the term 
𝑝1𝑥𝑧

𝑔1+𝑧
, where 𝑝1 is the rate at which 

effector cells grow, and 𝑔1 is the half-saturation constant). 
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Clinical trials show that there are immune stimulation effects from 

treatment with IL-2, and there is a time lag between the production of 

IL-2 by activated T-cells and the effector cell stimulation from 

treatment with IL-2. Hence, a discrete time delay is being added to 

the second term of the first equation of the system (10.14), which 

modifies to 
𝑝1𝑥(𝑡−𝜏)𝑧(𝑡−𝜏)

𝑔1+𝑧(𝑡−𝜏)
, where 𝜇2𝑥 gives the natural decay of the 

effector cells and 𝑠1 is the treatment term that represents the external 

source of the effector cells such as ACI. A similar type of term was 

introduced by Galach  in his model equation, where he 

Parameters Values 
Scales 

Values 

𝑐 (Antigenicity of tumor) 
0 ≤ 𝑐
≤ 0.05 

0 ≤ 𝑐
≤ 0.278 

𝑝1 (Growth rate of effector 

cells) 
0.1245 0.69167 

𝑔1 (Half saturation 

constant) 

2
× 107 

0.02 

𝜇2 (Natural decay rate of 

effector cells) 
0.03 0.1667 

𝑟2 (Growth rate of tumor 

cells) 
0.18 1 

𝑏 (1/carrying capacity of 

tumor cells) 
1.0 × 10−9 1 

𝑎 (decay rate of tumor) 1 5.5556 

𝑔2  (half saturation 

constant) 

1
× 105 

0.0001 

𝜇3 (natural decay rate of 

IL-2) 
10 55.556 

𝑝2 (growth rate of IL-2) 5 27.778 

𝑔3 (half saturation 

constant) 

1
× 103 

0.000001 
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TABLE 10.1 PARAMETRE VALUES USED 

FOR NUMERICAL RESULT 

Assumed that the source of the effector cells is the term 𝑥(𝑡 −
𝜏)𝑦(𝑡 − 𝜏), as the immune system needs some time to develop a 

suitable response. 

the second equation of the system (10.14) shows the rate of change of 

the tumor cells, which follows logistic growth (a type of limiting 

growth). due to tumor-effector cell interaction, there is a loss of tumor 

cells at the rate 𝑎 and which is modeled by michaelis menten kinetics 

to indicate the limited immune response to the tumor (the term 
𝑎𝑥𝑦

𝑔2+𝑦
, 

where 𝑔2 is a half-saturation constant). the third equation of the 

system (10.14) gives the rate of change for the concentration of il-2. 

its source is the effector cells that are stimulated by interaction with 

the tumor and also has michaelis menten kinetics to account for the 

self-limiting production of il-2 (the term 
𝑝2𝑥𝑦

𝑔3+𝑦
, where 𝑝2 is the rate of 

production of il-2 and 𝑔3 is a half-saturation constant), 𝜇3𝑧 is the 

natural decay of the il-2 concentration and 𝑠2 is a treatment term that 

represents an external input of il-2 into the system. 

proper scaling is needed as the system is numerically stiff, and 

numerical routines used to solve these equations will fail without 

scaling or inappropriate scaling (in this case, a proper choice of 

scaling is 𝐸0 = 𝑇0 = 𝐼𝐿0 = 1/𝑏 and 𝑡𝑠 = 𝑟2 . the parameter values 

have been obtained from [83], which is put in tabular form (table 5.1). 

the units of the parameters are in 𝑑𝑎𝑦−1, except for 𝑔1, 𝑔2, 𝑔3, and 𝑏, 

which are in volumes. 

the aim of this problem is to study this modified model and to explore 

any changes in the dynamics of the system that may occur when a 

discrete time delay has been added to the system and to compare with 

the results obtained by kirschner and panetta in . 

10.4.3   POSITIVITY OF THE SOLUTION 

The system of equations is now put in a vector form by setting 
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𝑋 = col(𝑀, 𝑁, 𝑍) ∈ 𝑅+0
3 ,

𝐹(𝑋) = (

𝐹1(𝑋)
𝐹2(𝑋)
𝐹3(𝑋)

) =

(

 
 
 
 
𝑐𝑦 +

𝑝1𝑥(𝑡 − 𝜏)𝑧(𝑡 − 𝜏)

𝑔1 + 𝑧(𝑡 − 𝜏)
− 𝜇2𝑥 + 𝑠1

𝑟2(1 − 𝑏𝑦)𝑦 −
𝑎𝑥𝑦

𝑔2 + 𝑦
𝑝2𝑥𝑦

𝑔3 + 𝑦
− 𝜇3𝑧 + 𝑠2 )

 
 
 
 

,
 

where 𝐹: 𝐶+ → 𝑅+0
3  and 𝐹 ∈ 𝐶∞(𝑅+0

3 ). Then system (5.14) becomes 

�̇� = 𝐹(𝑋𝑡) (10.16) 

where ⋅≡ 𝑑/𝑑𝑡 and with 𝑋𝑡(𝜃) = 𝑋(𝑡 + 𝜃), 𝜃 ∈ [−𝜏, 0] . It is easy to 

check in equation (10.16) that whenever we choose 𝑋(𝜃) ∈ 𝐶+such 

that 𝑋𝑖 = 0, then we obtain 𝐹𝑖(𝑋)|𝑋𝑖(𝑡)=0,𝑋𝑡∈𝐶+ ≥ 0, 𝑖 = 1,2,3. Due to 

the lemma, any solution of equation (10.16) with 𝑋(𝜃) ∈ 𝐶+, say, 

𝑋(𝑡) = 𝑋(𝑡, 𝑋(0)), is such that 𝑋(𝑡) ∈ 𝑅+0
3  for all 𝑡 > 0. 

 

10.5 SUMMARY 

      

Delay Differential Equations: DDEs are mathematical equations 

that describe the behavior of a system that changes over time, with a 

delay or lag in the response. 

Delay: The response of the system to changes in the input is delayed 

by a certain amount of time, τ. 

 Nonlocal: The behavior of the system at time t depends on the state 

of the system at previous times, specifically at time t-τ. 

 

 

10.6 GLOSSARY 

 

 Delay Differential Equation (DDE): A mathematical equation that 

describes the behavior of a system that changes over time, with a 

delay or lag in the response. 

 Delay: The time lag between the input and output of a system, 

denoted by τ. 

State Variable: A variable that describes the state of the system at a 

given time, denoted by y(t). 

Derivative: A measure of the rate of change of the state variable with 

respect to time, denoted by dy/dt. 

Analytical Method: A method for solving DDEs using mathematical 

techniques, such as Laplace transforms and Fourier analysis. 
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 Numerical Method: A method for solving DDEs using numerical 

algorithms, such as Euler's method and Runge-Kutta methods. 

 

CHECK YOUR PROGRESS 

 

1. What is the primary objective of delay differential equation? 

(a) Non linearity 

(b) Time varying coefficient 

(c) Deley response 

(d) Stochasticity  

2. Which of the following is common application of delay differential 

equation? 

(a) Image processing  

(b) Population Dynamics 

(c) Signal processing 

(d) Machine learning  

3. What is the purpose of the delay term in delay differential 

equation? 

(a)  To introduce nonlinearity 

(b) To model time-varying coefficients 

(c) To capture delayed responses 

(d) To add stochasticity 

4. Which numerical method is commonly used to solve DDEs? 

(a) Euler's method 

(b) Runge-Kutta method 

(c) Finite difference method 

(d) All of the above 
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10.8 SUGGESTED READINGS 

 

1. E.A. Bender (1978) An Introduction to Mathematical Modelling, 

New York, John Wiley and Sons. 

2. W.E. Boyce (1981) Case Studies in Mathematical Modelling, 

Boston, Pitman. 

3. A. Friedman and W. Littman, (1994) Industrial Mathematics: A 

Course in Solving Real World Problems, Philadelphia, SIAM. 

4. F.R. Giordano and M.D. Weir (1985). A First Course in 

Mathematical Modelling, Monterey, Brooks/Cole. 

 

10.9 TERMINAL QUESTIONS 

 

1. What is the difference between a Delay Differential Equation 

(DDE) and an Ordinary Differential Equation (ODE)? 

2. How do DDEs model real-world systems that exhibit delayed 

responses? 

3. What are the advantages and disadvantages of using numerical 

methods to solve DDEs? 

4. Discuss the role of delay differential equations in modeling 

population dynamics. Provide examples of how DDEs can be used 

to study the spread of diseases or the growth of populations. 

5. A population of rabbits is growing in a forest, with a delay of 2 

months between the birth of new rabbits and their ability to 

reproduce. Model this system using a DDE and discuss the 

implications of the delay on the population dynamics. 

 

10.10 ANSWERS 

 
CYQ1:  (c) 

CYQ2:  (b) 

CYQ3:  (c ) 
CYQ:4  (d) 
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11.1 INTRODUCTION 

 

In previous unit we have defined Modeling with delay Differential 

Equations, Breathing Model, Two Neuron System, House fly Model 

etc. In this unit we have discussed Modeling with Stochastic 

Differential Equation. Stochastic Differential Equations (SDEs) are 

mathematical equations that describe the behavior of systems that are 

subject to random fluctuations or uncertainty. They are used to model 

systems that exhibit randomness or noise, such as stock prices, 

population dynamics, or chemical reactions. These SDEs are used to 

model systems with continuous-time stochastic processes and used to 

model systems with continuous-time stochastic processes, but with a 

different interpretation of the stochastic integral. 

 

11.2 OBJECTIVES 

   

   After studying this unit, learner will be able to 

1. To describe Stochastic Differential Equation. 

2. Analyze the dynamic behaviour of systems over time, taking into 

account the interactions between the system's components and 

the random fluctuations with the help of SDE’s. 

 

 

 

11.3 INTRODUCTION OF STOCHASTIC 

DIFFERENTIAL EQUATION 

    Before starting this unit we discussed some terminology and definition  

 

11.3.1  RANDOM EXPERIMENT 

Whenever we perform an experiment under nearly identical 

conditions, we expect to obtain results that are essentially the same. 

However, there are experiments in which the results will not be 

essentially the same, even though the conditions may be nearly 

identical. For example, if we throw two coins simultaneously, the 

results are TT, TH, HT or HH. We form the set of all possible 

outcomes as {TT, HT, TH, HH}. Each time we perform this 

experiment, the outcome is uncertain, although it will be one of the 

elements of the set {TT, HT, TH, HH}. Such an experiment is called a 

random experiment, where the result depends on chance. 
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11.3.2 OUTCOME 

The results of the random experiment are known as the outcome. For 

example, in the random experiment of throwing two coins 

simultaneously, there are four possible outcomes, namely, TT, TH, 

HT or HH. 

11.3.3 EVENT 

Any phenomenon that occurs in a random experiment is called an 

event. An event can be elementary or composite. An elementary event 

corresponds to a single possible outcome, whereas a composite event 

corresponds to more than a single possible outcome. For example,  

When a dice is thrown, the event "multiple of 2 " is composite because 

it can be decomposed into elementary events 2,4,6. 

 

11.3.4 SAMPLE SPACE 

A sample space is a collection of all possible outcomes of a random 

experiment. In the random experiment of throwing two coins 

simultaneously, the sample space S = {TT, HT, TH, HH}. 

11.3.5 EVENT SPACE 

An event space (Σ) contains all possible events for a given random 

experiment. Sometimes, event space is confused with sample space. 

Consider "Toss" of a coin. Two possible outcomes are either head or 

tail; hence the sample space is S = {H, T}. However, event space is a 

little different. In a 'toss' of a coin, the possible events are 

(i) {𝐻} → flipping the coin and getting head 

(ii) {𝑇} → flipping the coin and getting tail 

(iii) {𝐻, 𝑇} → flipping the coin and getting either head or tail. 

Then, event space Σ = {{𝐻}, {𝑇}, {𝐻, 𝑇}}. 

 

11.3.6 AXIOMATIC DEFINITION OF 

PROBABILITY 

 

Let 𝐸 be a random experiment described by the event space 𝑆 and 𝐴 

be any event connected with 𝐸. Then the probability of event 𝐴, 

denoted by 𝑃(𝐴), is a real number that satisfies the following axioms 

(Kolmogorov’s axioms): 
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(a)  P(A) ≥ 0 

(b) P(S) = 1 (probability of a certain event is 1) 

(c) If 𝐴1, 𝐴2, …. be a finite or infinite sequence of pairwise mutually 

exclusive events (that is, 𝐴𝑖 ∩ 𝐴𝑗 = ∅, 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2, … ), then, 

𝑃(𝐴1 ∪ 𝐴2 ∪ … ) = 𝑃(𝐴1) + 𝑃(𝐴2) + ⋯ … …. 

11.3.7 PROBABILITY FUNCTION 

 

A probability function is a mapping, 𝑃: Σ → [0,1], that assigns 

probabilities to the events in Σ and satisfies Kolmogorov's axioms. 

11.3.8  PROBABILITY SPACE  

 

A three-tuple (𝑆, Σ, 𝑃) whose components are sample space (𝑆), event 

space (Σ) and probability function (𝑃) is called a probability space. 

 

11.3.9  RANDOM VARIABLE 

Let 𝑆 be a sample space of the random experiment 𝐸. A random 

variable (or a variate) is a function or mapping 𝑋: 𝑆 → 𝐑 (set of real 

numbers), which assigns to each element 𝜔 ∈ 𝑆, one and only one 

number 𝑋(𝜔) = 𝑎. The set of all values which 𝑋 takes, that is, the 

range of the function 𝑋, is called the spectrum of the random variable 

𝑋, which is a set of real numbers 𝐵 = {𝑎: 𝑎 = 𝑋(𝜔), 𝜔 ∈ 𝑆}. A 

random variable is called a discrete random variable if it takes on a 

finite or countably infinite number of values and it is called 

continuous random variable if it takes on a noncount ably infinite 

number of values. 

Consider two "tosses" of an unbiased coin. Then, the sample space is 

𝑆 = {𝜔1 = (𝐻𝐻), 𝜔2 = (𝐻𝑇), 𝜔3 = (𝑇𝐻), 𝜔4 = (𝑇𝑇)} 

We now define a function or a mapping 𝑋: 𝑆 → 𝐑 such that 𝑋(𝜔𝑖) =
𝜆𝑖, where 𝜆𝑖 is the number of heads, 𝑖 = 1,2,3,4, …. Then, 𝑋(𝜔1) = 

2, 𝑋(𝜔2) = 1, 𝑋(𝜔3) = 1, 𝑋(𝜔4) = 0. Here, 𝑋 is a random variable 

defined in the domain 𝑆. The spectrum of 𝑋 is {0,1,2}. Since, the 

spectrum is countable, 𝑋 is a discrete random variable. Consider the 

height of a group of high school students which lies between 155 cm 

and 185 cm. Here, 𝑆 = {𝜔: 155 < 𝜔 < 185}. Since, 𝑋 takes any 

positive real values between 155 and 185, 𝑋 is a continuous random 

variable. 

11.3.10  SIGMA MEASURE 
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A collection Σ of subsets of S is called 𝜎-algebra if 

(i) 𝜙 ∈ Σ,  

(ii)  𝐴 ∈ Σ ⇒ 𝐴𝑐 ∈ Σ 

(iii) If 𝐴1, 𝐴2, 𝐴3, … is a countable collection of subsets in Σ, then 

⋃  ∞
𝑖=1 𝐴𝑖 ∈ Σ. 

𝜎 - algebra is closed under countable union and countable 

intersection. Then 2 -tuple (𝑆, Σ) is called a measurable space 

 

11.3.11  MEASURE 

 

Let (𝑆, Σ) be a measurable space. A measure on (𝑆, Σ) is a function 

𝜇: Σ → [0, ∞) such that 

 (i) 𝜇(𝜙) = 0  

(ii) If {𝐴𝑖, 𝑖 ≥ 1} is a sequence of disjoint sets in Σ, then the measure 

of the union (of countably infinite disjoint sets) is equal to the sum of 

measures of individual sets, that is, 𝜇(⋃  ∞
𝑖=1  𝐴𝑖) = Σ𝑖=1

∞ 𝜇(𝐴𝑖). The 

triplet (𝑆, Σ, 𝜇) is called a measure space. 𝜇 is said to be a finite 

measure if 𝜇(𝑆) < ∞, otherwise 𝜇 is called infinite. 

 

11.3.12  PROBABILITY MEASURE 

A probability measure is a function 𝑃: Σ → [0,1] such that  

(i) 𝑃(𝜙) = 0  

(ii)  𝑃(𝑆) = 1  

(iii)  if {𝐴𝑖, 𝑖 ≥ 1} is a sequence of disjoint sets in Σ, then 

𝑃(⋃  ∞
𝑖=1  𝐴𝑖) = Σ𝑖=1

∞ 𝑃(𝐴𝑖). The triplet (𝑆, Σ, 𝑃) is called a 

probability space. 

 

 

11.3.13  MEAN AND VARIANCE 

 

The mean of the random variable X is defined as 

𝜇 = 𝐸(𝑋) = ∑  

∞

−∞

 𝑥𝑖𝑓𝑖 , for a discrete distribution 

𝜇 = 𝐸(𝑋) = ∫  
∞

−∞

 𝑥𝑓𝑋(𝑥)𝑑𝑥, for a continuous distribution. 

 

The mean gives a rough position of the bulk of the distribution, and 

hence called the measure of location. 
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The variance of the random variable 𝑋 is defined as 

𝜎2 = Var(𝑋) = 𝐸[(𝑋 − 𝜇)2] = 𝐸[𝑋2 + 𝜇2 − 2𝜇𝑋]
= 𝐸(𝑋2) − [𝐸(𝑋)]2. 

The variance is a characteristic which describes how widely the 

probability masses are spread about the mean. 

11.3.14  INDEPENDENT RANDOM 

VARIABLES 

 

The cumulative distribution function (CDF) of a random variable 𝑋 is 

defined as 

𝐹𝑋(𝑥) = 𝑃(−∞ < 𝑋 ≤ 𝑥) for all 𝑥 ∈ 𝐑 

The joint distribution function of two random variables 𝑋 and 𝑌 is 

defined by 

𝐹𝑋𝑌(𝑥, 𝑦) = 𝑃(−∞ < 𝑋 ≤ 𝑥, −∞ < 𝑌 ≤ 𝑦), for all 𝑥, 𝑦 ∈ 𝐑 

where the event (−∞ < 𝑋 ≤ 𝑥, −∞ < 𝑌 ≤ 𝑦) means the joint 

occurrence of the two events −∞ < 𝑋 ≤ 𝑥 and −∞ < 𝑌 ≤ 𝑦. If the 

events (−∞ < 𝑋 ≤ 𝑥) and (−∞ < 𝑌 ≤ 𝑦) are the independent for all 

𝑥, 𝑦, then 

𝑃(−∞ < 𝑋 ≤ 𝑥, −∞ < 𝑌 ≤ 𝑦) = 𝑃(−∞ < 𝑋 ≤ 𝑥)𝑃(−∞ < 𝑌 ≤ 𝑦)

 ⇒ 𝐹𝑋𝑌(𝑥, 𝑦) = 𝐹𝑋(𝑥)𝐹𝑌(𝑦)
 

Thus, the necessary and sufficient condition for the independence of 

the random variable 𝑋 and 𝑌 is that their joint distribution function 

𝐹𝑋𝑌(𝑥, 𝑦) can be written as the product of the marginal distribution 

functions. 

11.3.15  GAUSSIAN DISTRIBUTION 

(NORMAL DISTRIBUTION) 

 

A random variable X is said to be normally distributed with mean 𝜇 

and variance 𝜎2, if its probability density function (pdf) is 
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𝑓𝑋(𝑥) =
1

√2𝜋𝜎
𝑒

−
(𝑥−𝜇)2

2𝜎2 , −∞ < 𝑥 < ∞. 

Usually, the Gaussian or Normal distribution of 𝑋 is represented by 

𝑋 ∼ 𝑁(𝜇, 𝜎2) 

The probability density function (pdf) of the Gaussian or Normal 

distribution is a bell-shaped curve, symmetric about the mean 𝜇 

(attains its maximum value 
1

√2𝜋𝜎
 there) and is completely 

characterized by the two parameters, namely, 𝜇 (mean) and 𝜎2 

(variance). The mean 𝜇 is the centroid of the pdf, and in this case, it 

is also the point at which the pdf is maximum. The variance 𝜎2 gives 

the measure of the dispersion of the random variable around the mean. 

If 𝜇 = 0, 𝜎 = 1, then the random variable 𝑋 is said to follow Standard 

Normal Distribution. 

11.3.16  CHARACTERSTIC FUNCTION 

 

The characteristic function of the random variable 𝑋 is a complex-

valued function of a real variable 𝑡 and is defined as 

𝜙𝑋(𝑡) = 𝐸(𝑒𝑖𝑡𝑥) = 𝐸[cos (𝑡𝑋) + 𝑖sin (𝑡𝑋)] 

where 𝑖 = √−1 and 𝑡 is a real number. The characteristic function 

satisfies the following properties: 

(i) 𝜙𝑋(0) = 1  and |𝜙𝑋(𝑡)| ≤ 1, ∀𝑡 ∈ 𝐑. 

(ii) 𝐼𝑓 𝑌 = 𝑎𝑋 + 𝑏, then 𝜙𝑌(𝑡) = 𝑒𝑖𝑏𝑡𝜙𝑋(𝑎𝑡). 

(iii) If 𝑋 and 𝑌 are independent random variables and 𝑍 = 𝑋 + 𝑌, 

then, 𝜙𝑍(𝑡) = 𝜙𝑋(𝑡)𝜙𝑌(𝑡). 

11.3.17  CHARACTERSTIC FUNCTION OF 

GAUSSIAN DISTRIBUTION 

 

Let 𝑋 ∼ 𝑁(𝜇, 𝜎2), then probability density function of 𝑋 is 
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𝑓𝑋(𝑥) =
1

√2𝜋𝜎
𝑒

−
(𝑥−𝜇)2

2𝜎2 , −∞ < 𝑥 < ∞. Now, 

𝜙𝑋(𝑡) = 𝐸(𝑒𝑖𝑡𝑋) =
1

√2𝜋𝜎
∫  

∞

−∞

  𝑒𝑖𝑡𝑥𝑓𝑋(𝑥)𝑑𝑥 =
1

√2𝜋𝜎
∫  

∞

−∞

  𝑒
−

(𝑥−𝜇)2

2𝜎2 +𝑖𝑡𝑥
𝑑𝑥

 = 𝑒𝑖𝜇𝑡−
𝜎2𝑡2

2 ×
1

√2𝜋𝜎
∫  

∞

−∞

  𝑒
−

(𝑥−𝜇−𝑖𝑡)2

2𝜎2 𝑑𝑥 = 𝑒𝑖𝜇𝑡−
𝜎2𝑡2

2 × 1

 ⇒ 𝜙𝑋(𝑡) = 𝑒𝑖𝜇𝑡−
𝜎2𝑡2

2

 

11.3.18  INVERSION THEORUM 

 

Let 𝑋 be a continuous random variable, having probability density 

function 𝑓𝑋(𝑥), then the corresponding characteristic function is given 

by 

𝜓𝑋(𝑡) = ∫  
∞

−∞

𝑒𝑖𝑡𝑥𝑓𝑋(𝑥)𝑑𝑥 

Also, the probability density function 𝑓𝑋(𝑥) can be obtained from the 

characteristic function as 

𝑓𝑋 (𝑥) =
1

2𝜋
lim

𝑇→∞
 ∫  

+𝑇

−𝑇

𝑒−𝑖𝑡𝑥𝜓𝑋(𝑡)𝑑𝑡 

at every point where 𝑓𝑋(𝑥) is differentiable. Now, 

𝑓𝑋(𝑥) =
1

2𝜋
lim

𝑇→∞
 ∫  

𝑇

−𝑇

  𝑒−𝑖𝑡𝑥𝑒𝑖𝜇𝑡−
𝜎2𝑡2

2 𝑑𝑡

 =
1

2𝜋
𝑒

−
(𝑥−𝜇)2

2𝜎2 lim
𝑇→∞

 ∫  
+𝑇

−𝑇

  𝑒
−

𝜎2

2
(𝑡+𝑖

𝑥−𝜇
𝜎2 )

2

𝑑𝑡 =
1

√2𝜋𝜎
𝑒

−
(𝑥−𝜇)2

2𝜎2 .

 

11.3.19  CONVERGENCE OF RANDOM 

VARIABLES AND LIMIT THEOREMS 

 

Convergence in Probability: A sequence of random variables 

𝑋1, 𝑋2, … . , 𝑋𝑛 , …. converges to a random variable 𝑋 in probability, 

denoted by 𝑋𝑛 →
p 

𝑋, if for any 𝜖 > 0, 

lim
𝑛→∞

 𝑃{|𝑋𝑛 − 𝑋| < 𝜖} = 1 or lim
𝑛→∞

 𝑃{|𝑋𝑛 − 𝑋| ≥ 𝜖} = 0. 
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Almost Sure Convergence: Consider a sequence of random 

variables 𝑋1, 𝑋2, … … , 𝑋𝑛 , …, all defined on the same sample space 𝑆. 

For every 𝜔 ∈ 𝑆, we obtain sample sequence 

𝑋1(𝜔), 𝑋2(𝜔), … , 𝑋𝑛(𝜔), …. A sequence of random variables 

𝑋1, 𝑋2, … . , 𝑋𝑛 , …. converges to a random variable 𝑋 almost surely 

(also known as with probability 1), denoted by 𝑋𝑛 →
 a.s.  

𝑋, if 

𝑃 {𝜔: lim
𝑛→∞

 𝑋𝑛(𝜔) = 𝑋(𝜔)} = 1 

or equivalently, if for every 𝜖 > 0, 

lim
𝑛→∞

 𝑃{|𝑋𝑛 − 𝑋| < 𝜀 for every 𝑛 ≥ 𝑚} = 1 

Convergence in Mean Square: A sequence of random variables 

𝑋1, 𝑋2, … . , 𝑋𝑛 , …. converges to a random variable 𝑋 in mean square 

(m.s.), denoted by 𝑋𝑛 →
 m.s.  

𝑋, if 

lim
𝑛→∞

 𝐸[(𝑋𝑛 − 𝑋)2] = 0 

Converge in Distribution: A sequence of random variables 𝑋1, 𝑋2, 

… . . , 𝑋𝑛 , …. converges in distribution to a random variable 𝑋, denoted 

by 𝑋𝑛 →
 d 

𝑋, if 

lim
𝑛→∞

 𝐹𝑋𝑛
(𝑥) = 𝐹𝑋(𝑥), 

for every 𝑥 at which 𝐹𝑋(𝑥) is continuous. 

Notes: 

(i) Convergence in probability implies convergence in distribution but 

the converse is not true. However, convergence in distribution implies 

convergence in probability when the limiting random variable 𝑋 is a 

constant. 

(ii) Almost surely convergence implies convergence in probability 

and hence implies convergence in distribution (fig. 11.1). 

(iii) Convergence in mean square implies convergence in probability 

and hence implies convergence in distribution (fig. 11.1). 

(iv) Convergence in probability does not necessarily implies almost 

surely convergence or mean square convergence. Convergence in 

probability is weaker than both almost surely convergence and 

convergence in mean square.  

(v) Almost sure convergence does not imply convergence in mean 

square. Also, convergence in mean square does not imply almost sure 
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convergence. 

 

 

FIGURE 11.1: The figure shows the relationship between different 

types of convergences. 

Weak Law of Large Numbers (WLLN): Let 𝑋1, 𝑋2, … . . , 𝑋𝑛 , …. be 

independent and identically distributed random variables (each r.v. 

has the same probability distribution as the others and all are mutually 

independent) with finite variance. Then, for any 𝜖 > 0, 

lim
𝑛→∞

 𝑃(|𝑋‾ − 𝜇| ≥ 𝜀) = 0, where 𝑋‾ =
1

𝑛
∑  

𝑛

1

𝑋𝑖 

Thus, the weak law of large numbers says that the probability of the 

difference between the sample mean and the true mean by a fixed 

number 𝜖(> 0) become smaller and smaller, and converges to zweo 

as n goes to infinity. 

Central Limit Theorem: Let 𝑋1, 𝑋2, … . , 𝑋𝑛 , … be independent and 

identically distributed random variables with 𝐸(𝑋𝑖) = 𝜇 (finite) and 

Var(𝑋𝑖) = 𝜎2 (finite). Then, the random variable 

𝑍𝑛 =
𝑋‾ − 𝜇

𝜎/√𝑛
=

(𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛) − 𝑛𝜇

𝜎√𝑛
 

converges in distribution to the standard normal variable as 𝑛 goes to 

infinity, that is, 

lim
𝑛→∞

 𝑃(𝑍𝑛 ≤ 𝑥) = Φ(𝑥), for all 𝑥 ∈ ℝ 

where Φ(𝑥) is the standard normal distribution. 

Statistical methods like testing of hypothesis and construction of 

confidence intervals are used in data analysis and these methods 

assume that the population is normally distributed. According to 

central limit theorem, we can assume the sampling distribution of an 
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unknown or non-normal distribution as normal. This is the 

significance of central limit theorem. 

11.3.20  STOCHASTIC PROCESS 

 

A stochastic process is a collection of random variables {𝑋𝑡, 𝑡 ∈ 𝑇}, 

defined on some probability space (𝑆, Σ, 𝑃). We call the values of 𝑋𝑡 

as state space denoted by Ω. The index set 𝑇 from where 𝑡 takes its 

value is called a parameter set or a time set. A stochastic process may 

be discrete or continuous according to whether the index set 𝑇 is 

discrete or continuous. The range (possible values) of the random 

variables in a stochastic process is called the state space of the 

process. 

Example 11.3.1 𝐴 stochastic process {𝑋𝑛: 𝑛 = 0,1,2,3, ⋯ } with 

discrete index set {0,1,2,3, ⋯ } is a discrete time stochastic process. 

Example 11.3.2 𝐴 stochastic process {𝑋𝑡: 𝑡 ≥ 0} with continuous 

index set {𝑡: 𝑡 ≥ 0} is a continuous time stochastic process. 

Example 11.4.3 {𝑋𝑛: 𝑛 = 0,1,2,3, ⋯ }, where the state space of 𝑋𝑛 is 

{1,2}, which represents whether an electronic component is 

acceptable or defective, and time 𝑛 corresponds to the number of 

components produced. 

Example 11.5.4 {𝑋𝑡: 𝑡 ≥ 0}, where the state space of 𝑋𝑡 is {0,1,2, ⋯ }, 

which represents the number of cars parked in the parking 1 to 𝑡 in 

front of a movie theater and 𝑡 corresponds to hours. 

A filtration {Σ𝑡}𝑡≥0 is a family of sub-sigma algebras of some sigma-

algebra Σ with the property that 𝑠 < 𝑡, then Σ𝑠 ⊂ Σ𝑡. Thus, a 

stochastic process {𝑋𝑡: 0 ≤ 𝑡 < ∞} is adapted to {Σ𝑡}𝑡≥0 means that 

for any 𝑡, 𝑋𝑡 is Σ𝑡 is measurable. 

 

11.3.21  MARKOV PROCESS 

 

A Markov process is a stochastic process with the following 

properties: 

(i) It has a finite number of possible outcomes or states. 
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(ii) The outcome at any stage depends only on the outcome of the 

previous stage. 

(iii) Over time, the probabilities are constant. 

Mathematically, a Markov Process is a sequence of random variables 

𝑋1, 𝑋2, 𝑋3, … such that 

𝑃(𝑋𝑛 = 𝑥𝑛/𝑋𝑛−1 = 𝑥𝑛−1, … , 𝑋1 = 𝑥1)
= 𝑃(𝑋𝑛 = 𝑥𝑛/𝑋𝑛−1 = 𝑥𝑛−1) 

Let the initial state of the system be denoted by 𝑥0. Then, there is a 

matrix A, which gives the state of the system after one iteration by the 

vector 𝐴𝑥0. Thus, we obtain a chain of state vectors, namely, 

𝑥0, 𝐴𝑥0, 𝐴2𝑥0, …, where the state of the system after 𝑛 iterations is 

given by 𝐴𝑛𝑥0. Such a chain is called a Markov Chain and the matrix 

A is called a transition matrix. 

Example 11.1.5 A metro ride in a city was studied. After analyzing 

several years of data, it was found that 25% of the people who 

regularly ride on the metro in a given year do not prefer the metro 

rides in the next year. It was also observed 31% of the people who 

did not ride on the metro regularly in that year began to ride the metro 

regularly the next year. 

In a given year, 8000 people ride the metro and 9000 do not ride the 

metro. Of the persons who currently ride the metro, 75% of them will 

continue to do so and of the persons who do not ride the metro, 31% 

will start doing so. 

In order to find the distribution of metro riders/metro non-riders in the 

next year, we first obtain the number of people who will ride the metro 

next year. Therefore, the number of persons who will ride the metro 

next year = 𝑏1 = 0.75 × 8000 + 0.31 × 9000 = 8790. Similarly, 

the number of persons who will not ride the metro next year = 𝑏2 =
0.25 × 8000 + 0.69 × 9000 = 8210. 

This can be expressed in matrix notation as 𝐴𝑥 = 𝑏 where 

𝐴 = [0.75 0.31
0.25 0.69

] , 𝑥 = [
8000
9000

] , and 𝑏 = [
𝑏1

𝑏2
] = [

8790
8210

]. 

After two years, we use the same matrix 𝐴, but 𝑥 is replaced by 𝑏 and 

the 

distribution becomes 𝐴𝑏 = 𝐴2𝑥. Thus, 

𝐴2𝑥 = [
0.75 0.31
0.25 0.69

]
2

[
8000
9000

] = [
0.64 0.4464
0.36 0.5536

] [
8000
9000

] 
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= [
9137.6
7862.4

] 

After 2 years, the number of persons who will ride the metro is 9138 

and the number of persons who will not ride the metro is 7862. In 

general, the distribution is 𝐴𝑛𝑥 after 𝑛 years. 

11.3.22  GAUSSIAN PROCESS 

 

A Gaussian Process is a stochastic process such that the joint 

distribution of every finite subset of random variables is a multivariate 

normal distribution. Thus, a random process {𝑋(𝑡), 𝑡 ∈ 𝑇} is said to 

be a Gaussian (Normal) process if, for all 𝑡1, 𝑡2, … , 𝑡𝑛 ∈ 𝑇, the random 

variables 𝑋(𝑡1), 𝑋(𝑡2), … , 𝑋(𝑡𝑛) are jointly normal. 

 

11.3.23  WIENER PROCESS (BROWNIAN 

MOTION) 

 

A Wiener process or a Brownian motion is a zero-mean continuous 

process with independent Gaussian increments (by independent 

increments we mean a process 𝑋𝑡, where for every sequence 𝑡0 <
𝑡1 < ⋯ < 𝑡𝑛, the random variables 𝑋𝑡1

− 𝑋𝑡0
, 𝑋𝑡2

− 𝑋𝑡1
, ⋯ , 𝑋𝑡𝑛

−

𝑋𝑡𝑛−1
 are independent). 

Mathematically, we can say that a one-dimensional standard Wiener 

process or Brownian motion 𝐵(𝑡): 𝑅+ ⟶ 𝑅 is a real-valued stochastic 

process on some probability space (𝑆, Σ, 𝑃) adapted to {Σ𝑡} with the 

following properties:  

(i) B (0) =0 (with probability 1). 

(ii) B(t) is continuous for all t (with probability 1). 

(iii) B(t) has independent increment. 

(iv) 𝐵(𝑡) − 𝐵(𝑠) has a Gaussian or Normal distribution with mean 

zero and variance 𝑡 − 𝑠 for every 𝑡 > 𝑠 ≥ 0. The density 

function of the random variable is given by 

𝑓(𝑥; 𝑡, 𝑠) =
1

√2𝜋(𝑡 − 𝑠)
𝑒

−
𝑥2

2(𝑡−𝑠). 

     The consequences of this definition are  
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(i) The process {W(t)} is Gaussian. 

 (ii) 𝐸[𝑊(𝑡)] = 0 and 𝐸[𝑊(𝑠)𝑊(𝑡)] = min(𝑠, 𝑡), for all 𝑠, 𝑡 ≥ 0 

and in particular, 𝐸[𝑊2(𝑠)] = 𝑠. 

11.4 STOCHASTIC MODELS 

 

In stochastic modeling, we take into account a certain degree of 

randomness or unpredictability. The million-dollar question is when 

to use deterministic models and when we really need to use stochastic 

ones. People argue that stochasticity put realism in models, and hence 

it should be added to make the model more realistic. However, I prefer 

that a stochastic model should be built when it is absolutely necessary 

and then stochasticity should be put in those parts of the model that 

are absolutely necessary to be stochastic, and then control the rest to 

improve the understanding of the model. 

11.4.1 STOCHASTIC LOGISTIC GROWTH 

 

The famous logistic growth model for a single species is given by (in 

the deterministic case) 

𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥

𝑘
) , 𝑥(0) = 𝑥0 (𝟏𝟏. 𝟒) 

where 𝑟 is the intrinsic growth rate and 𝑘 is the carrying capacity. 

Clearly, 𝑥 = 0 and 𝑥 = 𝑘 are the two points of equilibria. It can be 

easily shown that the solution of (11.4) is  

𝑥(𝑡) =
𝑒𝑟𝑡𝑥0

(𝑒𝑟𝑡 − 1)
𝑥0

𝑘
+ 1

. 

Suppose the logistic growth model for a single species is now 

subjected to the environment stochasticity or randomness 𝜂(𝑡), which 

is a Gaussian white noise with a time-varying intensity 𝜎2(𝑡). Then 

𝜂(𝑡)𝑑𝑡 = 𝜎𝑑𝑊, where 𝑊(𝑡) is a Wiener process and 𝜎 is the 

intensity of the noise. The stochastic version of the model is given by 

𝑑𝑋(𝑡) = 𝑟𝑋(𝑡) (1 −
𝑋(𝑡)

𝑘
) 𝑑𝑡 + 𝜎𝑑𝑊 
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It can be shown that the logistic model is stochastically stable if 𝜎2 <
2𝑟

𝑘
, 𝑡 ≥ 0 . Fig. 11.2 numerically confirms the result and shows that 

the equilibrium point 𝑥∗ = 𝑘 is stochastically stable. 

 

 

 

FIGURE 11.2: Effect of stochasticity on the logistic growth model. 

For 𝑟 = 0.5, 𝑘 = 5.0, 𝜎 = 0.3 and initial condition 𝑥(0) = 1.0, the 

steady-state solution 𝑥∗ = 5 is stochastically stable. 

11.4.2 TWO SPECIES STOCHASTIC MODEL 

 

Lotka and Volterra proposed a two species competition model, which 

was later studied by gauss empirically. The proposed model is give 

below 

 

(a) Price of the asset          
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(b) Volality of the asset 

FIGURE 11.3: Heston model showing the price of the asset and its 

corresponding volatility. The parameter values are 𝜇 = 0.2, 𝑘 =
2, 𝜃 = 1, 𝜎 = 0.5, 𝜌 = −0.35 with initial condition: (25,1.25). 

𝑑𝑁1(𝑡)

𝑑𝑡
= 𝑟1𝑁1(𝑡) (

𝐾1 − 𝑁1(𝑡) − 𝛼12𝑁2(𝑡)

𝐾1
) ,

𝑑𝑁2(𝑡)

𝑑𝑡
= 𝑟2𝑁2(𝑡) (

𝐾2 − 𝑁2(𝑡) − 𝛼21𝑁1(𝑡)

𝐾2
) ,

 

where 𝑁1(𝑡) and 𝑁2(𝑡) are densities of species 1 and species 2, 

respectively, at any time 𝑡. The meaning and interpretation of the 

positive parameters 𝑟1, 𝐾1, 𝛽12 , 𝑟2, 𝐾2, 𝛽21 are left for the readers. 

The model is now subjected to external noises and we obtain the 

stochastic two species competition model as 

𝑑𝑁1(𝑡) = 𝑟1𝑁1(𝑡) (
𝐾1 − 𝑁1(𝑡) − 𝛼12𝑁2(𝑡)

𝐾1
) 𝑑𝑡 + 𝜎1𝑑𝑊1(𝑡)

𝑑𝑁2(𝑡) = 𝑟2𝑁2(𝑡) (
𝐾2 − 𝑁2(𝑡) − 𝛼21𝑁1(𝑡)

𝐾2
) 𝑑𝑡 + 𝜎2𝑑𝑊2(𝑡)

 

with initial conditions 𝑁1(0) = 𝑁2(0) = 50, where 𝑊1(𝑡), 𝑊2(𝑡) are 

two independent Wiener processes and 𝜎1, 𝜎2 are the intensities of the 

noise. 

The model is solved numerically by taking 𝑟1 = 0.22, 𝑟2 =
0.06, 𝐾1 = 13, 𝐾2 = 5.8, 𝛼12 = 3.15, 𝛼21 = 0.44 and different 

values of the intensities 𝜎1, 𝜎2. Fig. 11.4(a) shows the deterministic 

model ( 𝜎1 = 0, 𝜎2 = 0 ), where, species 1 wins and species 2 dies 

off. With 𝜎1 = 0.7, 𝜎2 = 0.7, the stochastic model shows similar 

dynamics, that is, due to competition, species 2 goes to extinction (fig. 

11.4(b)). However, it is observed that by manipulating the intensities 

of the noise, the dynamics of the model can be changed. Taking 
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(a) 𝜎1 = 0 , 𝜎2 = 0                                       (b)    𝜎1 = 0.7 , 𝜎2 = 0.7 

  

 
 

 (𝒄 ) 𝜎1 = 2.7, 𝜎2 = 0.7                                    (d)    𝜎1 = 3.7, 𝜎2 = 0.7       

FIGURE 11.4: The figures show the dynamics of two species 

stochastic competing model with different values of the intensities of 

the noise. (a) Deterministic model: Species 1 wins, (b) stochastic 

model: Species 1 wins, (c) stochastic model: Coexistence of both the 

species, (d) stochastic model: Species 2 wins. 

𝜎1 = 2.7, 𝜎2 = 0.7, we observe that neither species can contain the 

other and it is the case of stable coexistence (fig. 11.4(c)) of both the 

species. But, with 𝜎1 = 3.7, 𝜎2 = 0.7, species 2 dominates over 

species 1 and forces it to go to extinction (fig. 11.4(d)). 

Therefore, from the behavior of the model, it is concluded that with 

proper intensities of the noise (which needs to be interpreted in terms 

of biology/ecology), different scenarios are obtained to give rich 

dynamics of the two species stochastic competition model. 

Note: Please note that the stability analysis of the stochastic models 

discussed is actually research problems; hence they are left for the 

readers to research. 

11.5 SUMMARY 

 

Stochastic Differential Equations (SDEs): These equations are 

mathematical equations that describe the behavior of systems that are 

subject to random fluctuations or uncertainty. 
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Randomness: SDEs incorporate random fluctuations or noise, which 

are modeled using stochastic processes. 

Uncertainty: SDEs account for uncertainty in the system's behavior, 

which can arise from various sources, such as measurement errors or 

inherent randomness. 

Dynamic behavior: SDEs describe the dynamic behavior of systems 

over time, taking into account the interactions between the system's 

components and the random fluctuations. 

Analytical solutions: These solutions involve finding closed-form 

expressions for the solution of the SDE. 

Numerical solutions: These solutions involve approximating the 

solution of the SDE using numerical methods, such as Euler's method 

or Monte Carlo simulations. 

 

 

11.6 GLOSSARY 

 

Stochastic Differential Equation (SDE): A mathematical equation 

that describes the behaviour of a system that is subject to random 

fluctuations or uncertainty. 

Stochastic Process: A mathematical representation of a system that 

exhibits randomness or uncertainty over time. 

Random Variable: A variable that takes on random values, often 

denoted by ω. 

Probability Measure: A mathematical function that assigns a 

probability to each possible outcome of a random experiment. 

Expectation: A mathematical operation that calculates the average 

value of a random variable. 

 

CHECK YOUR PROGRESS 

 

1: What is the primary characteristic of a Stochastic Differential 

Equation (SDE)? 

A) Nonlinearity 

B) Time-varying coefficients 

C) Randomness 

D) Determinism 

 

2: Which of the following is a common application of SDEs? 

A) Image processing 

B) Population dynamics 

C) Signal processing 

D) Machine learning 
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3: What is the purpose of the stochastic integral in an SDE? 

A) To introduce nonlinearity 

B) To model time-varying coefficients 

C) To capture random fluctuations 

D) To add determinism 

 

4: What is the purpose of the drift term in an SDE? 

A) To introduce randomness 

B) To model time-varying coefficients 

C) To capture the deterministic component of the system 

D) To add nonlinearity 

 

5: Which of the following is a challenge in solving SDEs? 

A) Nonlinearity 

B) Time-varying coefficients 

C) Randomness 

D) All of the above 
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11.9 TERMINAL QUESTIONS 

 

1. Describe the main differences between a Stochastic Differential 

Equation (SDE) and an Ordinary Differential Equation (ODE). 

2. What is the purpose of the stochastic integral in an SDE? 

3. How do SDE model system with time varying coefficients? 

4. Discuss the application of SDE in finance, including the modelling 

of stock prices and interest rates. 

 

11.10ANSWARS  

 

CYQ1. (C)  

CYQ2: (B) 

CYQ3. (C)  

CYQ1. (C)  

CYQ1. (D)  
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12.1 INTRODUCTION 

A graph is another type of mathematical model. We 

can determine the sale price of an item by locating its original price 

along the x-axis and then finding the corresponding y-value, or sale 

price, on the graph. 

 

 

12.2 OBJECTIVES 

 

After studying this unit, learner will be able to  

i. Qualitative Relations in Applied Mathematics 

ii. Balance Of Signed Graphs 

 

12.3 SITUATIONS THAT CAN BE 

MODELLED THROUGH GRAPHS 

 

12.3.1 QUALITATIVE RELATIONS IN APPLIED 

MATHEMATICS 

 

It has been stated that "Applied Mathematics is nothing but solution 

of differential equations". This statement is wrong on many counts 

(i) Applied Mathematics also deals with solutions of difference, 

differential-difference, integral, integro-differential, functional and 

algebraic equations (ii) Applied Mathematics is equally concerned 

with inequations of all types (iii) Applied Mathematics is also 

concerned with mathematical modelling; mathematical modelling 

has to precede solution of equations (iv) Applied Mathematics also 

deals with situations which cannot be modelled in terms of equations 

or inequations; one such set of situations is concerned with 

qualitative relations. Mathematics deals with both quantitative and 

qualitative relationships. 

Typical qualitative relations are: y likes x, y hates x, y is superior to 

x, y is subordinate to x, y belongs to the same political party as x, set 

y has a non-null intersection with set x; point y is joined to point x 

by a road, state y can be transformed into state x, team y has defeated 

team x, y is the father of x, course y is a prerequisite for course x, 

operation y has to be done before operation x, species y eats species 

x, y and x are connected by an airline, y has a healthy influence on 

x, any increase of y leads to a decrease in x, y belongs to the same 

caste as x, y and x have different nationalities and so on. Such 

relationships are very conveniently represented by graphs where a 
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graph consists of a set of vertices and edges joining some or all pairs 

of these vertices. To motivate the typical problem situations which 

can be modelled through graphs, we consider the first problem so 

historically modelled viz. the problem of the seven bridges of 

Königsberg. 

 

12.3.2 THE SEVEN BRIDGES PROBLEM  

 

There are four land masses A, B, C, D which are connected by seven 

bridges numbered 1 to 7 across a river (Figure 12.1). The problem 

is to start from any point in one of the land masses, cover each of 

the seven bridges once and once only and return to the starting point. 

 
 
                      Figure 12.1                                                                Figure 12.2 

There are two ways of attacking this problem. One method is to try 

to solve the problem by walking over the bridges. Hundreds of 

people tried to do so in their evening walks and failed to find a path 

satisfying the conditions of the problem. A second method is to draw 

a scale map of the bridges on paper and try to find a path by using a 

pencil. 

It is at this stage that concepts of mathematical modelling are useful. 

It is obvious that the sizes of the land masses are unimportant, the 

lengths of the bridges or even whether these are straight or curved 

are irrelevant. What is relevant information is that and B are 

connected by two bridges 1 and 2. B and C are connected by two 

bridges 3 and 4, and D are connected by one bridge number 5, 4 and 

D are connected by bridge number 6 and C and D are connected by 

bridge number 7. All these facts are represented by the graph with 

four vertices and seven edges in Figure 12.2. If we trace this graph 

in such a way that we start with any vertex and return to the same 

vertices and trace every edge once and once only without lifting the 

pencil from the paper, the problem can be solved. Again, the trial 

and error method cannot be satisfactorily used to show that no 

solution is possible. The number of edges meeting at a vertex is 

called the degree of that vertex. We note that the degrees of A, B, C, 

D are 3, 5, 3, and 3 respectively and each of these is an odd number. 

If we have to start from a vertex and return to it, we need in even 
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number of edges at that vertex. Thus, it is easily seen that 

Konigsberg bridges problem cannot be solved. 

This example also illustrates the power of mathematical modelling. 

We have not only disposed of the seven-bridges problem, but we 

have discovered a technique for solving many problems of the same  

type. 

 

 

 

12.3.3 SOME TYPES OF GRAPHS 

 

A graph is called complete if every pair of its vertices is joined by 

an edge (Figure 12.3(a)). 

A graph is called a directed graph or a digraph if every edge is 

directed with an arrow. The edge joining A and B may be directed 

from A to B or from B to A. If an edge is left undirected in a digraph, 

it will be assumed to be directed both ways (Figure 12.3(b)). 

 
                            Figure 12.3a                                                             Figure 12.3b 

 
                      Figure 12.3c                                                            Figure 12.3d 

A graph is called a signed graph if every edge has either a plus or 

minus sign associated with it (Figure 12.3(c)). 

A digraph is called a weighted digraph if every directed edge has a 

weight (giving the importance of the edges) associated with it 

(Figure 12.3(d)). We may also have digraphs with positive and 

negative numbers associated with signs. These will be called 

weighted signed digraphs. 
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12.3.4 NATURE OF MODELS IN TERMS OF GRAPHS 

 

In all the applications we shall consider, the length of the edge 

joining two vertices will not be relevant. It will not also be relevant 

whether the edge is straight or curved. The relevant facts would be: 

(a) which edges are joined; (b) which edges are directed and in 

which direction(s); (c) which edges have positive or negative signs 

associated with them; (d) which edges have weights associated with 

them and what these weights are. 

 

 

 

12.4 MATHEMATICAL MODELS IN TERMS 

OF DIRECTED GRAPHS 

 

12.4.1 REPRESENTING RESULTS OF TOURNAMENTS  
 

The graph (Figure 12.4) shows that: 

                                  
   Figure 12.4 

 

(i) Team A has defeated teams B, C, and E. 

(if) Team B has defeated teams C and E. 

(iii) Team E has defeated D. 

(iv) Matches between A and D, B and D, C and D, and C and E have 

yet to be played. 

                                                                                           

12.4.2 ONE-WAY TRAFFIC PROBLEMS 

 

The road map of a city can be represented by a directed graph. If 

only one-way traffic is allowed from point a  to point b, we draw an 

edge directed from a to b. If traffic is allowed both ways, we can 

either draw two edges, one directed from a to b and the other 

directed from b to a or simply draw an undirected edge between a 

and b. The problem is to find whether we can introduce one-way 

traffic on some or all of the roads without preventing 
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persons from going from any point of the city to any other point. In 

other words, we have to find when the edges of a graph can be given 

direction in such a way that there is a directed path from any vertex 

to every other, It is easily seen that one-way traffic on the road DE 

cannot be introduced without disconnecting the vertices of the graph 

(Figure 12.5). 

 

 
         Figure 12. 5(a)                                                              Figure 12.5(b) 

In Figure 12.5(a), DE can be regarded as a bridge connecting two 

regions of the town. In Figure 12.5(b) DE can be regarded as a blind 

street on which a two-way traffic is necessary. Edges like DE are 

called separating edges, while other edges are called circuit edges. 

It is necessary that on separating edges, two-way traffic can also be 

permitted. It can also be shown that this is sufficient. In other words, 

the following theorem can be established:  

 

        If G is an undirected connected graph, then one can always 

direct the circuit edges of G and leave the separating edges 

undirected (or both way directed) so that there is a directed path 

from any given vertex to any other vertex.  

 

12.4.3 GENETIC GRAPHS  

 

In a genetic graph, we draw a directed edge from A to B to indicate 

that B is the child of A. In general, each vertex will have two 

incoming edges, one from the vertex representing the father and the 

other from the vertex representing the mother. If the father or mother 

is unknown, there may be less than two incoming edges. Thus, in a 

genetic graph, the local degree of incoming edges at each A, vertex 

must be less than or equal to two. This is a necessary condition for 

a directed graph to be a genetic graph, but it is not a sufficient 

condition. 

 

      Thus Figure 12.6 does not give a genetic graph even though the 

number of incoming edges at each vertex does not exceed two. 

Suppose A1 is male, then A2 must be female, since A1, and A2  have 

a child B1. Then A3 must be male, 

since A2, and A3 have a child B2.  

 

Figure 12.6 
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                    Figure 12.7 

 

Now A1, A3 being both males cannot have a child B3. 

 

12.4.4 SENIOR SUBORDINATE RELATIONSHIPS 

 

If a is senior to b, we write aSb and draw a directed edge from a to 

b. Thus, the organisational structure of a group may be represented 

by a graph like the following [Figure 12.7].  

 

 
Figure 12.8 

The relationship S satisfies the following properties: 

(i) ~ (aSa) i.e. no one is his own senior. 

(ii) aSb =~ (bSa) i.e. a is senior to b implies that b is not senior to a. 

(iii) aSb, bSc = aSc i.e. if a is senior to b and b is senior to c, then a 

is senior to c. 

   

The following theorem can easily be proved: "The necessary and 

the sufficient condition that the above three requirements hold is that 

the graph of an organization should be free of cycles". 

 

         We want now to develop a measure for the status of each 

person. The status m(x) of the individual should satisfy the following 

reasonable requirements: 

(i) m(x) is always a whole number. 



MATHEMATICAL MODELLING                                                     MAT 610 

 

Department of Mathematics  
Uttarakhand Open University Page 228 
 

(ii) If x has no subordinate, m(x) = 0. 

(iii) If, without otherwise changing the structure, we add a new 

individual subordinate to x, then m(x) increases. 

(iv) If, without otherwise changing the structure, we move a 

subordinate of a to a lower level relative to x, then m(x) increases. 

A measure satisfying all these criteria was proposed by Harary. We 

define the level of seniority of x over y as the length of the shortest 

path from x to y. To find the measure of status of x, we find n1, the 

number of individuals who are one level below x, n2, the number of 

individuals who are two levels below x and in general, we find nk, 

the number of individuals who are k levels below x. Then the Harary 

measure h(x) is defined by 

 

h(x) = ∑ 𝑘𝑛𝑘                                             (1)𝑘   

 

It can be shown that among all the measures which satisfy the four 

requirements given above, the Harary measure is the least. 

If however, we define the level of seniority of x over y as the 

length of the longest path from x to y, and then find H(x) = ∑ 𝑘𝑛𝑘𝑘   
 we get another measure which will be the largest among all 

measures satisfying the four requirements. For Figure 12.8, we get 

 

h(a) = 1.2+4.2+2.3=16                       H(a) = 1.1+3.2+2.3+2.4=21 

h(b) = 1.3+2.4=11                              H(b) = 2.1+2.2+2.3+1.4=16 

h(c) = 1.2+1.2=4                                H(c) = 1.1+1.2+1.3=6 

 

 
            Figure 12.8 

 

h(d) = 1.1 = 1                                     H(d) = 1.1 

h(e) =1.3 = 3                                      H(e) = 1.2+2.1 = 4 

h(f) =1.1 = 1                                      H(f) =1.1 = 1 

h(g) =1.2 =2                                      H(g) = 1.2 = 2  

h(k) = 0                                             H(k) = 0 
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h(I) = 0                                             H(I) = 0 

 

 

12.4.5 FOOD WEBS 

 

Here aSb if a eats b and we draw a directed edge from a to b. Here 

also ~(aSa) and aSb =~ (bSa). However, the transitive law need not 

hold. Thus consider the food web in Fig. 12.9. Here fox eats bird, 

bird eats grass, but fox does not eat grass. 

 

 
Figure 12.9 

We can however calculate the measure of the status of each species 

in this food web by using Eqn. (1) h(bird)=2, h(fox)=4, h(insect)=1, 

h(grass)=0, h(deer) = 1. 

 

12.4.6 COMMUNICATION NETWORKS 

 

A directed graph can serve as a model for a communication network. 

Thus consider the network given in Figure 12.10. If an edge is 

directed from a to b, it means that a can communicate with b. In the 

given network e can communicate directly with b, but b can 

communicate with e only indirectly through c and d. However, every 

individual can communicate with every other individual. 

 

Our problem is to determine the importance of each individual in 

this network. The importance can be measured by the fraction of the 

messages on average that pass through him. In the absence of any 

other knowledge, we can assume that if an individual can send a 

message directly to n individuals, he will send a message to any one 

of them with probability 1/n. In the present example, the 

communication probability matrix is: 
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      Figure 12.10 

 

 

                            …………. (2) 

 

No individual is to send a message to himself and so all diagonal 

elements are zero. Since all elements of the matrix are non-negative 

and the sum of elements of every row is unity, the matrix is a 

stochastic matrix and one of its eigenvalues is unity. The 

corresponding normalised eigenvector is [11/45, 13/45, 3/10, 1/10, 

1/15]. In the long run, these fractions of messages will pass through 

a, b, c, d, e respectively. Thus, we can conclude that in this 

network, c is the most important person. If in a network, an 

individual cannot communicate with every other individual either 

directly or indirectly, the Markov chain is not ergodic and the 

process of finding the importance of each individual breaks down. 

 

12.4.7 MATRICES ASSOCIATED WITH A DIRECTED GRAPH 

 

For a directed graph with n vertices, we define the n × n matrix A = 

(aij) by aij = 1 if there is an edge direct 

ed from i and j and aij = 0 if there is no edge directed from i to j. 

Thus, the matrix associated with the graph of Figure 12.11 is given 

by 
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                       … … … (3) 

 

We note that: 

(i) the diagonal elements of the matrix are all zero. 

(ii) the number of non-zero elements are equal to the number of 

edges. 

(iii) the number of non-zero elements in any row are equal to the 

local outward degree of the vertex corresponding to the row. 

(iv) the number of non-zero elements 

                        

 
                                       Figure 12.11 

 

in a column are equal to the local inward degree of the vertex 

corresponding to the column.     

                                           

  

Now 

 

                         … … . . (4) 

 

The element aij
(2) gives the number of 2-chains from i to j. Thus, 

from vertex 2 to vertex 1, there are two 2-chains via vertex 3 and 

vertex 4. We can generalize this result in the form of a theorem viz. 

"The element aij
(2) of A2 gives the number of 2-chains i.e. the number 

of paths with two-edges from vertex i to vertex j". 
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     The theorem can be further generalised to "The element aij
(m) of 

Am gives the number of m-chains i.e. the number of paths with m 

edges from vertex i to vertex j”. It is also easily seen that "The ith 

diagonal element of A2 gives the number of vertices with which i 

has a symmetric relationship". 

 

       From the matrix A of a graph, a symmetric matrix S can be 

generated by taking the elementwise product of A with its transpose 

so that in our case 

 

 
 

S obviously is the matrix of the graph from which all unreciprocated 

connections have been eliminated. In the matrix S (as well as in S2, 

S3,....) the elements in the row and column corresponding to a vertex 

which has no symmetric relation with any other vertex are all zero.  

 

 

12.4.8 APPLICATION OF DIRECTED GRAPHS TO DETECTION 

OF CLIQUES 

 

A subset of persons in a socio-psychological group will be said to 

form a clique if (i) every member of this subset has a symmetrical 

relation with every other 

member of this subset (ii) no other group member has a symmetric 

relation with all the members of the subset (otherwise it will be 

included in the clique) (iii) the subset has at least three members. 

 

   If other words a clique can be defined as a maximal completely 

connected subset of the original group, containing at least three 

persons. This subset should not be properly contained in any larger 

completely connected subset. 

 

   If the group consists of n persons, we can represent the group by 

n vertices of a graph. The structure is provided by persons knowing 

or being connected to other persons. If a person i knows j, we can 

draw a directed edge from i to j. If i knows j and j knows i, then we 

have a symmetrical relation between i and j. 

With this interpretation, the graph of Figure 12 .11 shows that 

persons 1, 2, 3 form a clique. With very small groups, we can find 

cliques by carefully observing the corresponding graphs. For larger 
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groups analytical methods based on the following results are useful: 

(i) i is a member of a clique if the ith diagonal element of S3   is 

different from zero. (ii) If there is only one clique of k members in 

the group, the corresponding k elements of S3 will be 

(k - 1) (k - 2)/2 and the rest of the diagonal elements will be zero. 

(iii) If there are only two cliques with k and m members respectively 

and there is no element common to these cliques, then k elements of 

S3 will be (k-1)(k-2)/2, m elements of S3 will be (m - 1)(m-2)/2 and 

the rest of the elements will be zero. (iv) If there are m disjoint 

cliques with k1, k2, ..., km members, then the trace of S3 is 
1

2
∑ 𝑘𝑖

𝑚
𝑖−1 (𝑘𝑖 − 1)(𝑘𝑖 − 2). (v) A member is non-cliquical if only if 

the corresponding row and column of S2 x S consists entirely of 

zeros. 

 

 

12.5  MATHEMATICAL MODELS IN TERMS OF 

SIGNED GRAPHS 

 

12.5.1 BALANCE OF SIGNED GRAPHS 

 

A signed (or an algebraic) graph is one in which every edge has 

a positive or negative sign associated with it. Thus, the four 

graphs of Figure 12.16 are signed graphs. Let the positive sign 

denote friendship and the negative sign denote enmity, then in 

graph (i) A is a friend of both B and C, and B and C are also 

friends. In graph (ii) A is a friend of B and A and B are both 

jointly enemies of C. In graph (iii), A is a friend of both B and 

C, but B and C are enemies. In graph (iv) A is an enemy of both 

B and C, but B and C are not friends. 

 

 
Figure 12.16 

     The first two graphs represent normal behavior and are said 

to be balanced, while the last two graphs represent unbalanced 

situations since if A is a friend of both B and C and B and C are 

enemies, this creates tension in the system and there is a similar 
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tension when B and C have a common enemy A, but are not 

friends of each other. 

 

      We define the sign of a cycle as the product of the signs of 

component edges. We find that in the two balanced cases, this 

sign is positive and in the two unbalanced cases, this is negative.  

 

      We say that a cycle of length three or a triangle is balanced 

if and only if its sign is positive. A complete algebraic graph is 

defined to be a complete graph such that between any two edges 

of it, there is a positive or negative sign. A complete algebraic 

graph is said to be balanced if all its triangles are balanced. An 

alternative definition states that a complete algebraic graph is 

balanced if all its cycles are positive. It can be shown that the 

two definitions are equivalent. 

 

   A graph is locally balanced at a point A if all the cycles 

passing through A are balanced. If a graph is locally balanced at 

all points of the graph, it will obviously be balanced. A graph is 

defined to be m-balanced if all its cycles of length m are 

positive. For an incomplete graph, it is preferable to define it to 

be balanced if all its cycles are positive. The definition in terms 

of triangle is not satisfactory, as there may be no triangles in the 

graph. 

 

12.5.2 STRUCTURE THEOREM AND ITS IMPLICATIONS  

 

Theorem: The following four conditions are equivalent: 

i. The graph is balanced i.e., every cycle in it is positive. 

ii. All closed line-sequences in the graph are positive i.e. 

any sequence of edges starting from a given vertex and 

ending on it and possibly passing through the same 

vertex more than once is positive. 

iii. Any two line-sequences between two vertices have the 

same sign. 

iv. The set of all points of the graph can be partitioned into 

two disjoint sets such that every positive sign connects 

two points in the same set and every negative sign 

connects two points of different sets. 

The last condition has an interesting interpretation with 

possibility of application. It states that if in a group of persons 

there are only two possible relationships viz. liking and disliking 

and if the algebraic graph representing these relationships is 

balanced, then the group will break up into two separate parties 

such that persons within a party like one another, but each 
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person of one party dislikes every person of the other party. If a 

balanced situation is regarded as stable, this theorem can be 

interpreted to imply that a two-party political system is stable.  

 

12.5.3 ANTIBALANCE AND DUOBALANCE OF A GRAPH 

 

An algebraic graph is said to be anti-balanced if every cycle in 

it has an even number of positive edges. The concept can be 

obtained from that of a balanced graph by changing the signs of 

the edges. It will then be seen that an algebraic graph is anti-

balanced if and only if its vertices can be separated into two 

disjoint classes, such that each negative edge joins two vertices 

of the same class and each positive edge joins persons from 

different classes. 

 

     A signed graph is said to be duo-balanced if it is both 

balanced and anti-balanced. 

 

12.5.4 THE DEGREE OF UNBALANCE OF A GRAPH 

 

For many purposes it is not enough to know that a situation is 

unbalanced. We may be interested in the degree of unbalance 

and the possibility of a balancing process which may enable one 

to pass from an unbalanced to a balanced graph. 

The possibility is interesting as it can give an approach to group 

dynamics and demonstrate that methods of graph theory can be 

applied to dynamic situations 

also.  

 

      Cartwright and Harary define the degree of balance of a 

group G to be the ratio of the positive cycles of G to the total 

number of cycles in G. This balance index obviously lies 

between 0 and 1. G1 has six negative triangles viz (abc), (ade), 

(bcd), (bce), (bde), (cde) and has four positive triangles. G2 has 

four negative triangles viz (abc), (abd), (bce) and (bde) and six 

positive triangles. The degree of balance of G1 is therefore less 

than the degree of balance of G2. 

 

 
Figure 12.17 
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     However, in order to get a balanced graph from G1, we have 

to change the sign of only two edges viz. bc and de and similarly 

to make G2, balanced we have to change the signs of two edges 

viz bc and bd. From this point of view both G1, and G2 are 

equally unbalanced. 

 

    Abelson and Rosenberg therefore gave an alternative 

definition. They defined the degree of unbalance of an algebraic 

graph as the number of the smallest set of edges of G whose 

change of sign produces a balanced graph. 

 

     The degree of an anti-balanced complete algebraic graph 

(i.e., of a graph all of whose triangles are negative) is given by 

[n(n -2) + k]/4 where k = 1. 

if n is odd and k = 0 if n is even. It has been conjectured that the 

degree of unbalancing of every other complete algebraic graph 

is less than or equal to this value. 

 

 

12.6 MATHEMATICAL MODELLING IN 

TERMS OF WEIGHTED GRAPHS 

 

12.6.1 COMMUNICATION NETWORKS WITH KNOWN 

PROBABILITIES OF COMMUNICATION 

 

In the communication graph of Figure 12.19, we know that a 

can communicate with both b and c only and in the absence 

of any other knowledge, we assigned equal probabilities to 

a's communicating with b or c.  

 
                       Fig.12.18 

 

However, we may have priori knowledge that a's chances of 

communicating with b 

and c are in the ratio 3:2, then we assign probability .6 to a's 

communicating with b and .4 to a's communicating with c. 
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Similarly, we can associate a probability with every directed 

edge and we get the weighted digraph (Figure 12.19) with the 

associated matrix 

                         … … . (6) 

  

We note that the elements are all non-negative and the sum of 

the elements of every row is unity so that B is a stochastic 

matrix and unity is one of its eigenvalues. The eigenvector 

corresponding to these eigenvalues will be different from the 

eigenvector found in Section 12.4.6 and so the relative 

importance of the individuals depends both on the directed 

edges as well as on the weights associated with the edges. 

 

12.6.2 WEIGHTED DIGRAPHS AND MARKOV CHAINS 

 

A Markovian system is characterised by a transition 

probability matrix. Thus, if the states of a system are 

represented by 1, 2. .... n and pij gives the probability of 

transition from the ith state to ith state, the system is 

characterised by the transition probability matrix (t.p.m) 

 

 

 

Since∑ 𝑝𝑖𝑗
𝑛
𝑖=1  represents the probability of the system going 

from ith state to any other state or of remaining in the same 

state. This sum must be equal to unity. Thus, the sum of 

elements of every row of a t.p.m is unity. 

 

     Consider a set of N such Markov systems where N is large 

and suppose at any instant NP1, NP2,…..NPn of these (P1 + 

P2+… + Pn = 1) are in states 1, 2, 3. …, n respectively. After 

one step, let the proportions in these states be denoted by P’1, 

P’2,…,P’n, then  
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𝑃1
′ = 𝑃1𝑝11 +  𝑃2𝑝21 +  𝑃3𝑝31 + ⋯ +  𝑃𝑛𝑃𝑛1 

𝑃2
′ = 𝑃2𝑝12 +  𝑃2𝑝22 +  𝑃3𝑝32 + ⋯ +  𝑃𝑛𝑃𝑛2 

… … … … … … … … … … … … … … … … … … ….        (8) 

𝑃𝑛
′ = 𝑃1𝑝1𝑛 +  𝑃2𝑝2𝑛 +  𝑃3𝑝3𝑛 + ⋯ +  𝑃𝑛𝑃𝑛𝑛 

 Or  

𝑃′ = 𝑃𝑇                                                                   (9)  
 

  

P’1 = P1p11 + P2p21 + P3p31 = … + Pnpn1 

 

P’2 = P2p12 + P2p22 + P3p32 = … + Pnpn2 

 

………………………………………………………………. 

 

P’n = P1p1n + P2p2n + P3p3n = … + Pnpnn 

 

Or            P’ = PT  

 

where P and P' are row matrices representing the proportions 

of systems in various states before and after the step and T is 

the t.p.m. 

 

We assume that the system has been in operation for a long 

time and the proportions P1, P2, ... ,Pn have reached 

equilibrium values. In this case 

 

P = PT or P(I - T) = 0 

 

where I is the unit matrix. This represents a system of n 

equations for determining the equilibrium values of P1, P2,..., 

Pn. If the equations are consistent, the determinant of the 

coefficient must vanish i.e. | T – I | = 0. This requires that unity 

must be an eigenvalue of T. However, this, as we have seen 

already is true. This shows that an equilibrium state is always 

possible for a Markov chain. 

 

     A Markovian system can be represented by a weighted 

directed graph. 

Thus consider the Markovian system with the stochastic 

matrix 
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Its weighted digraph is given in Figure 12.19.  

 

 
Figure 12.19 

In this example d is an absorbing state or a state of equilibrium. 

Once a system reaches the state d, it stays there forever. 

 

     It is clear from Figure 12.19, that in whichever state, the 

system may start, it will ultimately end in state d. However, the 

number of steps that may be required to reach d depends on 

chance. Thus, starting from c, the number of steps to reach d 

may be 1, 2, 3, 4, ...; starting from b the number of steps to reach 

d may be 2, 3, 4, ... and starting from a, the number of steps may 

be 3, 4, 5, ... In each case, we can find the probability that the 

number of steps required in n and then we can find the expected 

number of steps to reach it. 

 

     Thus, for the matrix  

                                      (12)         

a is an absorbing state. Starting from b, we can reach a in 1, 2, 

3, ..., n steps with probabilities (1/3), (1/3) (2/3), (1/3) (2/3)2 ,..., 

(1/3) (2/3)n-1, ..., so that the expected number of steps is   

 

∑ 𝑛
1

3
(
2

3
)𝑛−1

∞

𝑛=1

= 3                              (13) 
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12.6.3 GENERAL COMMUNICATION NETWORKS 

 

So, for we have considered communication networks in which 

the weight associated with a directed edge represents the 

probability of communication along that edge. We can however 

have more general networks e.g.,  

a) for communication of messages where the directed edge 

represents the channel and the weight represents the 

capacity of the channel say in bits per second. 

b)  for communication of gas in pipelines where the 

weights are capacities, say in gallons per hour.  

c) communication roads where the weights are the 

capacities in cars per hour. 

 

An interesting problem is to find the maximum flow rate, of 

whatever is being communicated, from any vertex of the 

communication network to any other. Useful graph-theoretic 

algorithms for this have been developed by Elias. Feinstein and 

Shannon as well as by Ford and Fulkerson. 

 

12.6.4 MORE GENERAL WEIGHTED DIAGRAMS 

 

In the most general case, the weight associated with a directed 

edge can be positive or negative. Thus Figure 12.21 means that 

a unit change at vertex 1 at time t causes changes of -2 units at 

vertex 2, of 2 units at vertex 4 and of 3 units at vertex 5 at time 

t + 1. Similarly, a change of 1 unit at vertex 2 causes a change 

of -3 units at 3 vertex, 4 units at vertex 4 and of 2 units at vertex 

5 and so on.  

                            

 
                                    Figure 12.20 

 

Given the values at all vertices at time t, we can find the values 

at time t + 1, t + 2, t + 3, .... The process of doing this 

systematically is known as the pulse rule. 
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      These general weighted digraphs are useful for representing 

energy flows, monetary flows and changes in environmental 

conditions. 

 

12.6.5 SIGNAL FLOW GRAPHS 

 

The system of algebraic equations – 

 

𝑥1 = 4𝑦0 + 6𝑥2 − 2𝑥3                                                      
𝑥2 = 2𝑦0 − 2𝑥1 + 2𝑥3                             (14) 
𝑥3 = 2𝑥1 − 2𝑥2                                                   

  
 

                           x1 = 4y0 + 6x2 - 2x3 

                           x2 = 2y - 2x1 + 2x3 

                           x3 = 2x1 - 2x2 

 

can be represented by the weighted digraph in Figure 12.21. 

For solving for x, we successively eliminate x, and x2 to get 

the graphs in Figure 12.22 and finally we get x1 = 4y0 

 

We can similarly represent the solution of any number of 

linear equations 

graphically. 

 
Figure 12.21                                                    Figure 12.22 

 

 

12.6.6 WEIGHTED BIPARTITE DIGRAPHS AND 

DIFFERENCE EQUATIONS  

 

Consider the system of 

difference equations 

 

𝑥𝑡−1 = 𝑎11𝑥𝑡 +  𝑎12 𝑦𝑡 +  𝑎13𝑧𝑡                        
𝑦𝑡−1 = 𝑎21𝑥𝑡 +  𝑎22 𝑦𝑡 +  𝑎23𝑧𝑡              (15) 
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𝑧𝑡−1 = 𝑎31𝑥𝑡 +  𝑎32 𝑦𝑡 +  𝑎33𝑧𝑡                        
  

This can be represented by a weighted bipartite digraph 

(Figure 7.24). 

The weights can be positive or negative. 

 

 
               Figure 12.23 

 

12.7 SUMMARY 

 

A graph is called complete if every pair of its vertices is joined by an 

edge.  

A graph is called a signed graph if every edge has either a plus or 

minus sign associated with it.  

    General weighted digraphs are useful for representing energy flows,  

    monetary flows and changes in environmental conditions. 

 

12.8 GLOSSARY 

 

Random Variable: A variable that takes on random values, often 

denoted by ω. 

Probability Measure: A mathematical function that assigns a 

probability to each possible outcome of a random experiment. 

Expectation: A mathematical operation that calculates the average 

value of a random variable. 

 

CHECK YOUR PROGRESS 

 

1. A graph is called ……. if every pair of its vertices is joined by an  

    edge.  

2. A graph is called a …… if every edge has either a plus or minus  

    sign associated with it.  
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12.11 TERMINAL QUESTIONS 

 

1. Draw some antibalanced graphs and verify the structure theorem 

for them. 

2. Show that a signed graph has an idealised party structure if and 

only if no circuit has exactly one – sign. 

3. Define Mathematical Models in terms of directed graphs. 

4. Define Mathematical Models in terms of Signed graphs. 

5. Define Mathematical Models in terms of Weighted graphs. 
 

12.12 ANSWARS  

 

CYQ1. Complete                                  CYQ2. Signed graph                       

https://archive.nptel.ac.in/courses/111/107/111107113/
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13.1 INTRODUCTION 

 

In calculus of variations the basic problem is to find a function y for which the 

functional I(y) is maximum or minimum. We call such functions as extremizing 

functions and the value of the functional at the extremizing function as extremum. 

The calculus of variation (or variational calculus) is a fold of mathematical analysis that 

uses variations, which are small changes in functions and functional to find maxima 

and minima of functional: Mapping from set of functions to the real numbers. 

Functional are often expressed as definite involving functions and their derivatives. 

Functions that maximize or minimize functional may be found using the Euler to 

langrage equation of the calculus of variations. A simple example of such a problem is 

to find the cause of shortest length connecting two points if there are no constraints, the 

solution is a straight line between the points. However, if the curve is constrained to lie 

on a surface in space, then the solution is less obvious, and possible many situations 

may exist. Such solutions are known ass geodesics. A related problem is posed be 

fermatas Principle: light follow the path of shortest optical length connecting two 

points, which depends upon the material of the medium. One corresponding concepts in 

mechanics is the principle of least or stationary action.  

Differential dynamic programming is an optical control algorithm of the trajectory 

optimization class. The algorithm was introduced in 1966 by mayne and subsequently 

analyzed in Jocobson and mayne’book. The algorithm uses locally-quadratic models of 

the dynamics and cost functions, and displays quadratic convergence. It is closely 

related to Newton’s Method. It can be used in the study of dynamic programming and 

other new mathematical formalisms in optical control problems, such as the 

determination of rocket trajectories, the correction of lunch error and inflight 

disturbances of spacecrafts and in the problems of optimal control found in economics, 

biology and the Social Sciences. 

 

13.2 OBJECTIVES 

 

After studying this unit, learner will be able to  

 

i.           Euler-Lagrange's equation. 

ii. Maximum entropy distributions. 

iii. Mathematical Modelling of Geometrical Problems through   

             Calculus of Variations 

 

13.3 EULER – LAGRANGE EQUATION 

 

Consider 

𝐼 = ∫  
𝑏

𝑎

 𝑓 (𝑥, 𝑦,
𝑑𝑦

𝑑𝑥
) 𝑑𝑥                                (1)  
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For every well-behaved function 𝑦 of 𝑥, we can find 𝐼 as a real number so that 𝐼 

depends on what function 𝑦 is of 𝑥. The problem of calculus of variations is to find that 

function 𝑦(𝑥) for which 𝐼 is maximum or minimum. The answer is given by the 

solution of Euler-Lagrange's equation 

𝜕𝑓

𝜕𝑦
−

𝑑

𝑑𝑥
(

𝜕𝑓

𝜕𝑦′
) = 0,                                  (2)  

which is an ordinary differential equation of the second order. A proof of this result 

will be obtained in the next section by using dynamic programming. 

 If  𝐼 = ∬  𝑓 (𝑥, 𝑦, 𝑧,
𝜕𝑧

𝜕𝑥
,
𝜕𝑧

𝜕𝑦
) 𝑑𝑥𝑑𝑦 ≡ ∬  𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞)𝑑𝑥𝑑𝑦             (3)  

then 𝐼 is maximum or minimum when 

𝜕𝑓

𝜕𝑧
−

𝜕

𝜕𝑥
(

𝜕𝑓

𝜕𝑝
) −

𝜕

𝜕𝑦
(

𝜕𝑓

𝜕𝑞
) = 0                                                              (4)  

 

13.4 MAXIMUM – ENTROPY DISTRIBUTIONS 

 

(a) We want to find that probability distribution for a variate varying over the range 

(−∞, ∞) which has the maximum entropy out of all distributions having a given mean 

𝑚 and a given variance 𝜎2. 

Let 𝑓(𝑥) be the probability density function, then we have to maximize the entropy 

defined by 

𝑆 = − ∫  
∞

−∞

 𝑓(𝑥) ln 𝑓(𝑥) 𝑑𝑥                     (5)  

subject to  ∫  
∞

−∞
𝑓(𝑥)𝑑𝑥 = 1, ∫  

∞

−∞
𝑥𝑓(𝑥)𝑑𝑥 = 𝑚, 

∫  
∞

−∞

 𝑥2𝑓(𝑥)𝑑𝑥 = 𝜎2 + 𝑚2                                (6)  

We form the Lagrangian 

𝐿 = ∫  
∞

−∞

 − 𝑓(𝑥) ln 𝑓(𝑥) − 𝜆 ∫  
∞

−∞

 𝑓(𝑥)𝑑𝑥 − 𝜇 ∫  
∞

−∞

 𝑥𝑓(𝑥)𝑑𝑥 − 𝑣 ∫  
∞

−∞

 𝑥2𝑓(𝑥)𝑑𝑥           (7)  
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Here the integrand contains only 𝑥 and 𝑦(= 𝑓(𝑥)) and there is no 𝑦′ in it. As such 

(8) gives 

−(1 + ln 𝑓(𝑥)) − 𝜆 − 𝜇𝑥 − 𝑣𝑥2 = 0                 (8)  

or 

𝑓(𝑥) = 𝐴𝑒𝜇𝑥+𝑣𝑥2
                   (9)  

We use (11) to calculate 𝐴, 𝜇, 𝜈 to get 

𝑓(𝑥) =
1

√2𝜋𝜎
𝑒−[

1
2(𝑥 −

𝑚)2

𝜎2]
         (10)  

This shows that out of all distributions with a given mean 𝑚 and a given variance 

𝜎2, the normal distribution 𝑁(𝑚, 𝜎2) has the maximum entropy. 

Now mean and variance are the simplest moments and the maximum entropy 

distribution for which these moments have prescribed values is the normal distribution. 

This gives one reason for the importance of the normal distribution. 

 

(b) We now want to find the distribution over the interval [0, ∞) which has the 

maximum entropy, out of all those which have given arithmetic and geometric means. 

Here we have to maximize 

− ∫  
∞

0

 𝑓(𝑥) ln 𝑓(𝑥) 𝑑𝑥                                (11)  

subject to 

∫  
∞

0

 𝑓(𝑥)𝑑𝑥 = 1, ∫  
∞

0

 𝑥𝑓(𝑥)𝑑𝑥 = 𝑚, ∫  
∞

0

  ln 𝑥𝑓(𝑥) 𝑑𝑥 = ln 𝑔                        (12)  

Using Lagrange's method and (8) we get 

𝑓(𝑥) = 𝐴𝑒−𝑎𝑥𝑥𝛾−1                            (13)  

𝐴, 𝑎, 𝛾 are determined by using (2). Thus, gamma distribution has the maximum 

entropy out of all distributions which have given arithmetic and geometric means. 

(c) We want to find the maximum entropy bivariate distribution when 𝑥, 𝑦 vary from 

−∞ to ∞ and when means, variances and covariance are prescribed. 

We have to maximize 
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− ∫  
∞

−∞

 ∫  
∞

−∞

 𝑓(𝑥, 𝑦) ln 𝑓(𝑥, 𝑦) 𝑑𝑥𝑑𝑦                                 (14)  

subject to 

∫  
∞

−∞

 ∫  
∞

−∞

 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 1, ∫  
∞

−∞

 ∫  
∞

−∞

 𝑥𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 𝑚1

∫  
∞

−∞

 ∫  
∞

−∞

 𝑦𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 𝑚2, ∫  
∞

−∞

 ∫  
∞

−∞

 𝑥2𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 𝜎1
2 + 𝑚1

2

∫  
∞

−∞

 ∫  
∞

−∞

 𝑥2𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 𝜎2
2 + 𝑚2

2 ∫  
∞

−∞

 ∫  
∞

−∞

 𝑥𝑦𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 𝜌𝜎1𝜎2
+ 𝑚1𝑚2 

(15) 

 

Forming the Lagrangian and using (4), we get 

𝑓(𝑥, 𝑦) = 𝐴𝑒−𝑎1𝑥−𝑎2𝑦−𝑏1𝑥2−𝑏2𝑦2−𝑐𝑥𝑦 (16) 

Using (15) to find 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐, we get 

𝑓(𝑥, 𝑦) =
1

2𝜋𝜎1𝜎2√1 − 𝜌2
exp (−

1

2(1 − 𝜌2)
(

(𝑥 − 𝑚1)2

𝜎1
2

−
2𝜌(𝑥 − 𝑚1)(𝑦 − 𝑚2)

𝜎1𝜎2
+

(𝑦 − 𝑚2)2

𝜎2
2 ))

(17) 

 

which gives the density function for the bivariate normal distribution, so that out of 

all bivariate probability distributions for which 𝑥, 𝑦 vary from −∞ to ∞ and which have 

given means, variances and covariance, the distribution with the maximum entropy is 

the bivariate normal distribution. 

(d) We want to find the multivariate distribution for 𝑥1, 𝑥2, … , 𝑥𝑛 where 

0 ⩽ 𝑥1 ⩽ 1,0 ⩽ 𝑥2 ⩽ 1, … ,0 ⩽ 𝑥𝑛 ⩽ 1; 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛 = 1 (18) 

for which 𝐸(ln 𝑥1), … , 𝐸(ln 𝑥𝑛) have prescribed values for which entropy is 

maximum. 

Using the principle of maximum entropy, we get, 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = 
𝑇(𝑚1 + 𝑚2 + ⋯ + 𝑚𝑛)

𝑇(𝑚1)𝑇(𝑚2) … , 𝑇(𝑚𝑛)
𝑥1

𝑚1−1
𝑥2

𝑚2−1
… 𝑥𝑛−1

𝑚𝑛−1−1
 (1 − 𝑥1 − 𝑥2 … − 𝑥𝑛−1)𝑚𝑛−1    (19) 
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which is Dirichlet distribution. 

13.5 MATHEMATICAL MODELLING OF 

GEOMETRICAL PROBLEMS THROUGH CALCULUS OF 

VARIATIONS 

 

(a) Finding the path of the shortest distance between two points in a plane 

Here 

I = ∫  
b

a

 √1 + (
dy

dx
)

2

dx, f(x, y, y′) = √1 + y′2 (20) 

(2) gives 

d

dx
(y′) = 0, y′ =  const, y = mx + c (21) 

Alternatively 

 I = ∫  
θ2

θ1
√r2 + (

dr

dθ
)

2

dθ, f(θ, r, r′) = √r2 + r′2 (22) 

 

(2) gives 

r
dθ

dr
=  const., tan φ =  const., φ =  const. (23) 

Thus the path of shortest distance between two points is a straight line. 

 

(b) Finding geodesics (paths of shortest distance) between two given points on the 

surface of a sphere 

Let 

x = asinθ cos φ , y = asinθ sin φ, z = acosθ (24) 

then 

I = ∫  
x1,y1,z2

x0,y0,z0

 √(dx)2 + (dy)2 + (dz)2 =  a ∫  
φ2

φ2

 √sin2 θ + (
dθ

dφ
)

2

dφ (25) 
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f = √sin2 θ − θ′2 (26) 

 

(2) gives 

dφ

dθ
=

sin α

sin θ√sin2 θ − sin2 α
                              (27)  

Integrating 

tan α cos θ − sin θ cos p cos β + sin θ sin p sin β = 0                   (28)  

or 

z tan α − x cos β + y sin β = 0;                                                           (29)   

which is the equation of a plane passing through the center of the sphere. Hence a 

geodesic is a great circle arc passing through the two given points. 

 

(c) Finding the Minimal surface of revolution i.e., finding the equation of a curve 

joining two given points in a plane, which when rotated about the x-axis gives a surface 

with minimum area. 

The surface area is given by 

S = 2π ∫  
b

a
 yds = S = 2π ∫  

b

a
 y√1 + (

dy

dx
)

2

dx (30)                                                                                                         

                              

                                               

                                                                         Fig. 13.5.1 

f(x, y, y′) = y√1 + y′2 (31) 

Equation (2) gives 

y√1 + y′2 = constant (32) 

Integrating 

y = c cos h (
x

c
) (33) 
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                                                                                 Fig.13.5.2 

Thus, the minimal surface of revolution is the catenoid obtained by rotating a 

catenary about its directrix. The soap film between two loops of circular wire is a 

practical example of a catenoid. As we go on increasing the distance between the loops, 

a stage comes when the film breaks down. This corresponds to 

the case when no catenoid is possible. 

 

(d) Determining a given plane closed curve with given perimeter enclosing 

maximum area (The isoperimetric curve) 

Using polar coordinates, we have to maximize 

I =
1

2
∫  

2π

0

  r2dθ (34)

 subject to  ∫  
2π

0

 √r2 + (
dr

dθ
)

2

dθ =  constant (35)

 

Using Lagrange's method, 

f =
1

2
r2 − λ√r2 + r′2 (36) 

(2) gives 

1

2
r2 −

λr2

√r2 + r′2
=  constant (37) 

Differentiation with respect to θ, gives 

r2 + r′2 − rr′′

(r2 + r′2)3/2
=

1

λ
(38) 

but the LHS is the expression for the curvature of the curve. As such the required 

curve is a curve of constant curvature i.e. it is a circle. 

The problem is supposed to have arisen from the gift of a king who was happy with 

a person and promised to give him all the land he could enclose by running round in a 
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day. Since he could run a fixed distance, the perimeter of his path was fixed and as such 

the radius of the circle he should describe is known. 

 

(e) Finding the solid of revolution with a given surface area and maximum volume. 

If V is the volume and S is the surface area 

V = π ∫  y2dx, S = 2π ∫  y√1 + (
dy

dx
)

2

dx (39)

f(x, y, y′) = πy2 − 2λπy√1 + y′2 (40)

 

(2) gives, 

y2 −
2λy

√1 + y′2
=  constant (41) 

Its integration for general values of the constant involves elliptic functions, but for 

the special case when the constant is taken as zero, (47) gives 

y = 2λcos ψ so that sin ψ =
dy

ds
= −2λsin ψ

dψ

ds
(42) 

or 
dψ

ds
= −

1

2λ
= constant, (43) 

  

so that in this case the surface is obtained by rotating a circle and is thus a sphere. 

 

13.6 MATHEMATICAL MODELLING OF SITUATIONS IN 

MECHANICS THROUGH CALCULUS OF VARIATIONS 

 

(a) Finding the shape of a freely hanging uniform heavy string under gravity when the 

two ends of it are fixed 

We minimize the potential energy V subject to the length of the string being fixed. As 

such we have to minimize 

V = mg ∫  y√1 + y′2dx (44) 
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subject to 

l = ∫  √1 + y′2dx (45) 

Therefore 

f = y√1 + y′2 − λ√1 + y′2 (46) 

(8) gives 

dy

dx
= (

(y − λ)2

c2
− 1)

1
2

(47) 

Integrating 

y − λ = cos h
x − a

c
, (48) 

so that the required curve is a catenary. 

 

(b) Finding the equation of the smooth vertical curve along which the time of descent 

under gravity between any two given points is minimum (Brachistochrone Problem) 

 

Using the principle of conservation of energy, we get 

1

2
mv2 − mgy =  constant  

If the particle starts from rest when y = 0 (Fig. 13.6.1), we get 

                                   

                                                      Fig. 13.6.1 

t2 = 2gy or 
ds

dt
− √2gy (49) 
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 or  T = ∫  
ds

√2gy
=

1

√2g
∫  

b

a

1

√y
√1 + (

dy

dx
)

2

dx (50) 

so that 

f(x, y, y′) =
√1 + y′2

√y
(51) 

(2) gives 

y(1 + y′2) = 2c (52) 

or 

y = c(1 + cos 2ψ) (53) 

Now 

 dx = cot ψ dy = −4c cos2ψdψ (54) 

x = a − c(2ψ + sin 2ψ) (55) 

Equations (53) and (55) give the parametric equations of a cycloid. 

(c) Discussion of the shapes of vibrating strings and membranes. 

These have already been discussed in section 6.4. 

 

(d) Obtaining the equation of the free surface of a fluid rotating in a cylinder about its 

axis under gravity. 

Consider the element of volume 2πxdxdz and mass ρ2πxdxdz. Its potential energy is 

ρ2πxdxdz (gz −
1

2
ω2x2 + c) (56) 

so that the total potential energy of the fluid is  

                                                        

                                                               Fig.13.4.2  
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2πρ ∫  
a

x=0

 ∫  
y

z=0

 x

 (gz −
1

2
ω2x2 + c) dxdz =  πρ ∫  

a

0

(gy2 − ω2x2y + 2cy)xdx

(57) 

Since potential energy has to be minimum, we minimize (57). Here 

f = (gy2 − ω2x2y + 2cy)x (58) 

(2) gives 

2gy − ω2x2 + 2c = 0 (59) 

which is a parabola. so that the free surface is a paraboloid of revolution. 

 

 

(e) Lagrange's equations of Motion 

Let q1 , q2, … , qn be 'generalised' coordinates in terms of which a dynamical system is 

described, then its kinetic energy T is a function of q1, q2, … , qn;  q1
′ , q2

′ , … , qn
′  and its 

potential energy V is a function of q1, q2 , … , qn only. According to the Hamiltonian 

principle, we then have to find an extreme value for 

H = ∫  (T(q1, q2 , … , qn; q1
′ , … , qn

′ ) − V(q1q2, … , qn))dt (60) 

Using an equation similar to (8) for q1, q2, … , qn, we get 

∂T

∂qi
−

∂V

∂qi
−

d

dt
(

θT

∂qi
) = 0, i = 1,2, … , n (61)

d

dt
(

∂T

∂qi
) −

∂T

∂qi
= −

∂V

∂q′i
, i = 1,2, … , n (62)

 

or 

 
d

di
(

∂L

∂q2
′ ) −

∂L

∂q1
= 0; L = T − V; i = 1,2, … , n (63) 

 

Equations (61) or (62) or (63) are called Lagrange's equations of motion. These are n 

simultaneous ordinary differential equations of second order for determining 

q1, q2, … , qn as functions of t. 

 Mathematical Modelling in Bioeconomic Through Calculus of 

Variations. 
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Mathematical Bioeconomic is an interdisciplinary subject in which we use 

mathematical methods to optimize the economic profits from the utilization of 

renewable biological resources like forests and fisheries. 

Let x(t) be the fish population at time t and let h(t) be the rate at which it is harvested, 

then we get the equation 

dx

dt
= F(x) − h(t), (64) 

where F(x) is the natural biological rate of growth. Let c(x) be the cost of harvesting a 

unit of fish when the population size is x(t) and let p be the selling price per unit fish so 

that the profit per unit fish is (p − c(x)) and the profit in time interval (t, t + dt) is 

[p − c(x)h(t)]dt. If δ is the instantaneous discount rate, the present value of the total 

profit is 

P = ∫  
∞

0

  e−δt(p − c(x))h(t)dt (65) 

If we know h(t), we can use (64) to solve for x(t) and then we can use (65) to 

determine P so that P depends on what function h is of t. We have to determine that 

function h(t) for which P is maximum. Substituting for h(t) from (64) in (65), we get 

P = ∫  
∞

0

  e−δt(p − c(x))(F(x) − x′)dt (66) 

so that 

f(t, x, x′) = e−δt(p − c(x))(F(x) − x′) (67) 

Using Euler-Lagrange eqn. (2), 

∂f

∂x
−

d

dt
(

∂f

∂x′
) = 0 

e−δ′
(−c′(x))(F(x) − x′) + e−δt(p − c(x)) (F′(x) −

d

dt
[e−βt(c(x) − p)]  = 0 (68) 

Or 

−c′(x)(F(x) − x′) + (p − c(x))F′(x) + δ(c(x) − p) − c′(x)x′ = 0  

Or 

−c′(x)F(x) + (p − c(x))(F′(x) − δ) = 0 (69) 

which determines a constant value x∗ for x and then (70) gives the rate of harvesting as 

constant and equal to F(x∗). 
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If the initial population is less than x∗, we should do no harvesting till the population 

rises to x∗ and then begin harvesting at a constant rate F(x∗). If the initial population is 

more than x∗, we should do harvesting at the maximum permissible rate till the 

population falls to x4, and then begin doing harvesting at a constant rate F(x∗). 

 Mathematical Modelling in Optics Through Calculus of Variations 

According to Fermat's principle of least time, light travel from a given point A to 

another point B in such a way as to take the least possible time. If μ(x, y) is the 

refractive index at the point (x, y), then the velocity of light at the point is c/μ(x, y) and 

the time taken in going from A to B is 

 = ∫  
B

A

 
ds

c/μ
= ∫  

B

A

 μ(x, y)√1 + (
dy

dx
)

2

dx                                   (70)

 

 

∴ f(x, y, y′) = μ(x, y)√1 + y′2                                                 (71)  

(2) gives 

∂μ

∂y
√1 + y′2 −

d

dx
[μ

y′

√1 + y′2
] = 0                                            (72)  

∂μ

∂y
=

d

ds
(μ sinψ)                                                                            (73)  

 

 

          Fig.13.4.3                                        Fig.13.4.4     

If y-axis separates two media of refractive indices μ1 and μ2, then     
∂μ

∂y
= 0   and so 

μ1 sin ϕ1 = μ2 sin ψ2                             (74)  

which is Snell's law of refraction. 
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13.7 SUMMARY 

 

1. Euler-Lagrange's equation 

𝜕𝑓

𝜕𝑦
−

𝑑

𝑑𝑥
(

𝜕𝑓

𝜕𝑦′
) = 0.                                 

2. Finding the Minimal surface of revolution i.e., finding the equation of a curve 

joining two given points in a plane, which when rotated about the x-axis gives a surface 

with minimum area.The surface area is given by 

S = 2π ∫  
b

a

 yds = S = 2π ∫  
b

a

 y√1 + (
dy

dx
)

2

dx  

 

 

 

13.8 GLOSSARY 

 

Random Variable: A variable that takes on random values, often denoted by ω. 

Probability Measure: A mathematical function that assigns a probability to each 

possible outcome of a random experiment. 

Expectation: A mathematical operation that calculates the average value of a random 

variable. 

 

CHECK YOUR PROGRESS 

 

1: A graph is called ……. if every pair of its vertices is joined by an  

    edge.  

2. A graph is called a …… if every edge has either a plus or minus  

    sign associated with it.  
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13.11  TERMINAL QUESTIONS 

 

1. Show that the closed curve which encloses a given area and has minimum perimeter 

is a circle. 

2. Show that the rectangle with given perimeter and enclosing maximum area is a square. 

3. Define Maximum-Entropy Distributions. 

4. Define Mathematical Modelling of Geometrical Problems through Calculus of 

Variations. 
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UNIT 14:   MATHEMATICAL MODELLING 

THROUGH DYNAMIC PROGRAMMING 
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14.1 INTRODUCTION 

 

In terms of mathematical optimization, dynamic programming usually refers 

to simplifying a decision by breaking it down into a sequence of decision steps over 

time. Dynamic programming is a useful mathematical technique for making a 

sequence of interrelated decisions. It provides a systematic procedure for determining 

the optimal combination of decisions. In contrast to linear programming, there does 

not exist a standard mathematical formulation of “the” dynamic programming 

problem. Rather, dynamic programming is a general type of approach to problem 

solving, and the particular equations used must be developed to fit each situation. 

Therefore, a certain degree of ingenuity and insight into the general structure of 

dynamic programming problems is required to recognize when and how a problem 

can be solved by dynamic programming procedures. These abilities can best be 

developed by an exposure to a wide variety of dynamic programming applications and 

a study of the characteristics that are common to all these situations. A large number 

of illustrative examples are presented for this purpose. 

 

14.2 OBJECTIVES 

 

After studying this unit, learner will be able to  

 

i. Euler-Lagrange's equation. 

ii. Maximum entropy distributions. 

iii. Applications of Dynamic programming 

 

14.3 MATHEMATICAL MODELLING THROUGH 

DYNAMIC PROGRAMMING 

Dynamic programming is an important technique for solving multi-stage 

optimization mathematical modelling problems. The main principle used is the 

principle of optimality discussed. 

Quite often the problem of maximizing of a function of 𝑛 variables can be reduced 

to an 𝑛-stage decision problem where a stage corresponds to the choice of the 

optimizing values of a variable. Instead of dealing with one problem of maximizing a 

function of 𝑛 variables, we deal with 𝑛 problems of maximizing a function of one 

variable and we deal with these in a sequence. This leads to a considerable 

simplification of the problem, as we shall see in the examples below: 
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14.4 TWO CLASSES OF OPTIMIZATION 

(a) A Class of Maximization Problem 

We have to allocate a total resource 𝑐 to 𝑛 activities so as to maximize the total output 

when the output from the 𝑖 th activity when an amount 𝑥𝑖 is allotted to it is 

𝑔𝑖(𝑥𝑖) where 𝑔𝑖(𝑥𝑖) is a concave function of 𝑥𝑖 so that our problem is 

maximize 𝑔1(𝑥1) + 𝑔2(𝑥2) +⋯+ 𝑔𝑛(𝑥𝑛)

 subject to 𝑥1 + 𝑥2 +⋯+ 𝑥𝑛 = 𝑐; 𝑥𝑖 ≥ 0, 𝑖 = 1,2,… 𝑛
 

Let 𝑓𝑛(𝑐) be the maximum value, then the principle of optimality gives 

Also 

𝑓𝑛(𝑐) = max
0≤𝑥𝑛≤𝑐

 (𝑔𝑛(𝑥𝑛) + 𝑓𝑛−1(𝑐 − 𝑥𝑛))  

𝑓1(𝑐) = 𝑔1(𝑐)  

so that 

𝑓2(𝑐) = max
0≤𝑥2≤𝑐

 (𝑔2(𝑥2) + 𝑔1(𝑐 − 𝑥2))  

The function to be maximized is the sum of two concave function and its maximum 

arises when 

𝑔2
′ (𝑥2) = 𝑔1

′(𝑐 − 𝑥2)  

Thus 𝑥2 is known and therefore 𝑓2(𝑐) is determined for all values of 𝑐. In particular if 

𝑔1(𝑥) = 𝑔2(𝑥) = 𝑔(𝑥), then 𝑔(𝑥1) + 𝑔(𝑥2) is maximum when 𝑥1 = 𝑥2 = 𝑐/2 and the 

maximum value is 2𝑔(𝑐/2). Similarly, if 𝑔(𝑥) is concave, then the maximum value of 

𝑔(𝑥1) + 𝑔(𝑥2) +⋯+ 𝑔(𝑥𝑛) occurs when 

𝑥1 = 𝑥2 = ⋯ = 𝑥𝑛 =
𝑐

𝑛
 

and the maximum value is 𝑛𝑔(𝑐/𝑛). For a general value of 𝑛, this result can be 

established by mathematical induction. 

Special Cases 

(i) Since ln𝑥 is a concave function, 

ln𝑥1 + ln𝑥2 +⋯+ ln𝑥𝑛 is maximum subject to 𝑥1 + 𝑥2 +⋯+ 𝑥𝑛 = 𝑐, when 
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 𝑥1 = 𝑥2 = ⋯𝑥𝑛 = 𝑐/𝑛 and the maximum value is 𝑛ln𝑐/𝑛 and the maximum 

value of 𝑥1, 𝑥2…𝑥𝑛 is (𝑐/𝑛)𝑛. 

 

(ii) Since −𝑥ln𝑥 is a concave function, 

−(∑  𝑛
𝑖=1  𝑝𝑖ln𝑝𝑖) is maximum subject to ∑  𝑛

𝑖=1 𝑝𝑖 = 1 when 𝑝1 = 𝑝2 = ⋯ =

𝑝𝑛 = 1/𝑛. 

 

(iii) Since (𝑥𝛼 − 𝑥)/(1 − 𝛼) is concave function 

(∑  𝑛
𝑖=1  𝑝𝑖

𝛼 − 1)/(1 − 𝛼) is maximum subject to ∑  𝑛
𝑖=1 𝑝𝑖 = 1, when 𝑝1 = 𝑝2 = 

… = 𝑝𝑛 = 1/𝑛. 

(iv) Since −𝑥ln𝑥 +
1

𝑎
(1 + 𝑎𝑥)ln(1 + 𝑎𝑥) is a concave function, 

−∑  𝑛
𝑖=1 𝑝𝑖ln𝑝𝑖 +

1

𝑎
∑  𝑛
𝑖=1 (1 + 𝑎𝑝𝑖)ln(1 + 𝑎𝑝𝑖) is maximum subject to 

∑  𝑛
𝑖=1 𝑝𝑖 = 1, when 𝑝1 = 𝑝2 = ⋯ = 𝑝𝑛 = 1/𝑛. 

All these results are of considerable importance in applications of information 

theory. 

 

(b) A Class of Minimization Problems 

If ℎ(𝑥) is a convex function, the functional equation for obtaining the minimum value 

of ℎ(𝑥1) + ℎ(𝑥2) + ⋯+ ℎ(𝑥𝑛) subject to 

𝑥1 + 𝑥2 +⋯+ 𝑥𝑛 = 𝑐, 𝑥1 ≥ 0, 𝑥2 ≥ 0,… , 𝑥𝑛 ≥ 0 

is given by 

𝑓𝑛(𝑐) = min
0≤𝑥𝑛≤𝑐

 (ℎ(𝑥𝑛) + 𝑓𝑛−1(𝑐 − 𝑥𝑛))  

and proceeding as before we find that the minimum value of 

ℎ(𝑥1) + ℎ(𝑥2) +⋯+ ℎ(𝑥𝑛)  

subject to (82) is 𝑛ℎ(𝑐/𝑛) and occurs when 𝑐1 = 𝑐2 = ⋯ = 𝑐𝑛 = 1/𝑛 

In the same way if ℎ1(𝑥1), ℎ2(𝑥2),… ℎ𝑛(𝑥) are all convex functions, the minimum 

value of ℎ(𝑥1) + ℎ(𝑥2) + ⋯+ ℎ𝑛(𝑥𝑛) subject to (82) occurs when 

ℎ1
′ (𝑥1) + ℎ2

′ (𝑥2) + ⋯+ ℎ𝑛
′ (𝑥𝑛).  

Special Cases 

(i) Since 𝑥ln
𝑥

𝑦
 is a convex function of 𝑥, the minimum value of ∑  𝑛

𝑖=1 𝑥𝑖 ln
𝑥𝑖

𝑦𝑖
 

subject to ∑  𝑛
𝑖=1 𝑥𝑖 = 𝑐,∑  𝑛

𝑖=1 𝑦𝑖 = 𝑑 occurs when 

1 + ln
𝑥1
𝑦1

= 1 + ln
𝑥2
𝑦2

= ⋯ = 1 + ln
𝑥𝑛
𝑦𝑛

 

or 

𝑥1
𝑦1

=
𝑥2
𝑦2

= ⋯ =
𝑥𝑛
𝑦𝑛

=
𝑐

𝑑
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and the minimum value of ∑  𝑛
𝑖=1 𝑥𝑖ln

𝑥𝑖

𝑦𝑖
 is cln

𝑐

𝑑
. If ∑  𝑛

𝑖=1 𝑥𝑖 = ∑  𝑛
𝑖=1 𝑦𝑖 then the 

minimum value is zero. 

(ii) Since (𝑥𝛼𝑦1−𝛼 − 𝑦)/(𝛼 − 1) is a convex function of 𝑥, the quantity 

∑  𝑛
𝑖=1 (𝑥𝑖

𝛼𝑦𝑖
1−𝛼 − 𝑦)/(𝛼 − 1) is minimum when (90) is satisfied and its minimum value 

is ((𝑐/𝑑)𝛼𝑐 − 𝑑)/(𝛼 − 1) and if 𝑐 = d, the minimum value is zero. 

14.5 SOME OTHER ALLOCATION PROBLEM 

(a) A Cargo-loading Problem 

We consider a vessel whose maximum cargo capacity is 𝑍 tons. Let 𝑣𝑖 and 𝑤𝑖 denote 

respectively the value end weight of the 𝑖 th item and let 𝑥𝑖 denote the 

number of items of type 𝑖 chosen. The problem of determining the most valuable cargo 

consists in maximizing 

subject to 

𝐿𝑛(𝑋) =∑  

𝑛

𝑖=1

 𝑥𝑖𝑣𝑖  

∑ 

𝑛

𝑖=1

 𝑥𝑖𝑤𝑖 ≤ 𝑍, 𝑥𝑖 = 0,1,2,…  

Let 𝑓𝑛(𝑍) denote the maximum value, then 

𝑓1(𝑍) = [
𝑍

𝑤1
] 𝑣1  

where [𝑦] denotes the greatest integer less than or equal to 𝑦. The principle of 

optimality then gives 

𝑓𝑛(𝑍) = max
𝑥𝑛

 [𝑥𝑛𝑣𝑛 + 𝑓𝑛−1(𝑍 − 𝑥𝑛𝑤𝑛)]  

where the maximization with respect to 𝑥𝑛 is over the set of values 

𝑥𝑛 = 0,1,2,… [
𝑍

𝑤𝑛
]  

This is essentially a problem of linear integer programming which we have solved by 

using dynamic programming technique. 

(b) Reliability of Multicomponent Devices 
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We consider an equipment containing 𝑛 components in series so that if one component 

fails, the whole equipment fails. For ensuring greater reliability of the equipment, we 

provide duplicate components in parallel at each stage. We assume that the units in each 

stage are supplied with switching circuits which have the property of shunting a new 

component into the circuit when an old one fails. We want to choose the number of 

components at each stage so that the probability of successful operation of the system is 

maximum subject to a given amount of money being available for duplicate components. 

Let 𝜑𝑗(𝑚𝑗) denote the probability of successful operation of the system when 𝑚𝑗 

components are used at the 𝑗 th stage. Let 𝑐𝑗 be the cost of a single component at the 𝑗 th 

stage so that we have the constraint 

∑ 

𝑛

𝑗=1

 𝑚𝑗𝑐𝑗 ≤ 𝑐  

The reliability of the 𝑛-stage equipment i.e. the probability of its successful operation is given 

by 

∏ 

𝑛

𝑗=1

 𝜑𝑗(𝑚𝑗)  

Let its maximum value, which depends on 𝑐 and 𝑛 be denoted by 𝑓𝑛(𝑐), then by the principle 

of optimality 

𝑓𝑛(𝑐) = max
𝑚𝑛

 [𝜑𝑛(𝑚𝑛)𝑓𝑛−1(𝑐 − 𝑐𝑛𝑚𝑛)]  

where 𝑚𝑛 can take value 0,1,2,… [𝑐/𝑐𝑛]. Also 

𝑓1(𝑐) = 𝜑1 ([
𝑐

𝑚1
])  

(c) A Farmer's Problem 

A farmer starts with 𝑞 tons of wheat. He can sell a part, say 𝑦 tons for an amount 𝑔(𝑦) and he 

can sow the remaining 𝑞 − 𝑦 tons and get a (𝑞 − 𝑦) tons (𝑎 ≥ 1) out of it for further selling 

and sowing. It is required to find the optimum policy for him if he intends to remain in 

business for 𝑛 years. Let 𝑓𝑛(𝑞) be the maximum return on following an optimum policy, then 

by the principle of optimality 

and 

𝑓𝑛(𝑞) = max
0≤𝑦≤𝑞

 (𝑔(𝑦) + 𝑓𝑛−1(𝑎(𝑞 − 𝑦))

𝑓1(𝑞) = max
0≤𝑦≤𝑞

 (𝑔(𝑦) + 𝑔(𝑎(𝑞 − 𝑦))
 

For an infinite stage process, applying the limiting process to (101), we get 
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𝑓(𝑞) = max
0≤𝑦≤𝑞

 (𝑔(𝑦) + 𝑓(𝑎(𝑞 − 𝑦))  

which is a functional equation to solve for 𝑓(𝑞). 

(d) A Purchase Problem 

An amount 𝑥 can be used to buy two equipments 𝐴 and 𝐵. If an amount 𝑦 is invested in type 

𝐴, we get 𝑔(𝑦) hours of useful work in the course of a year and the equipment has a salvage 

value 𝑎𝑦(0 < 𝑎 < 1). The remaining amount 𝑥 − 𝑦 invested in equipment of type B gives 

ℎ(𝑥 − 𝑦) hours of useful work and has a salvage value 𝑏(𝑥 − 𝑦)(0 < 𝑏 < 1). If 𝑓𝑛(𝑥) is the 

number of useful hours on following an optimal policy, we get 

𝑓𝑛(𝑥) = max
0≤𝑦≤𝑥

 (𝑔(𝑦) + ℎ(𝑥 − 𝑦) + 𝑓𝑛−1(𝑎𝑦 + 𝑏𝑥 − 𝑏𝑦))

𝑓1(𝑥) = max
0≤𝑦≤𝑥

 (𝑔(𝑦) + ℎ(𝑥 − 𝑦))
 

If the infinite-period optimal policy gives 𝑓(𝑥) as the number of useful hours of work, then 

taking the limit of (104) we get 

𝑓(𝑥) = max
0≤𝑦≤𝑥

 (𝑔(𝑦) + ℎ(𝑥 − 𝑦) + 𝑓(𝑎𝑦 − 𝑏𝑥 − 𝑏𝑦))  

(e) Allocation Processes Involving Two Types of Resources 

Suppose we have two types of resources in quantities 𝑥 and 𝑦 respectively. We have to 

allocate these resources to 𝑛 activities and if we allocate, 𝑥𝑖, 𝑦𝑖  to ith activity, the return is 

given by 𝑔𝑖(𝑥𝑖, 𝑦𝑖) so that the total return is 

∑ 

𝑛

𝑖=1

 𝑔𝑖(𝑥𝑖, 𝑦𝑖)  

Let 𝑓𝑛(𝑥, 𝑦) be the maximum return for 𝑛 activities following an optimal policy, then the 

principle of optimality gives 

𝑓𝑛(𝑥, 𝑦) = max
0≤𝑥𝑛≤𝑥

  max
0≤𝑦𝑛≤𝑦

 (𝑔𝑛(𝑥𝑛, 𝑦𝑛) + 𝑓𝑛−1(𝑥𝑛 − 𝑥𝑛 , 𝑦 − 𝑦𝑛)), 𝑛 ≥ 2  

𝑓1(𝑥, 𝑦) = 𝑔1(𝑥, 𝑦)  

(f) Transportation Problem 

We have 𝑚 origins 01, 02, … , 0𝑚 where quantities 𝑥1, 𝑥2, … , 𝑥𝑛 of a certain commodity are 

available and these have to be supplied to 𝑛 destinations 𝐷1, 𝐷2, … , 𝐷𝑛 where quantities 

𝑦1, 𝑦2 , … , 𝑦𝑛
′  are required. We further assume that 

∑ 

𝑚

𝑖=1

 𝑥𝑖 =∑  

𝑛

𝑗=1

 𝑦𝑗  
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The cost of transporting 𝑥𝑖𝑗 commodities from 𝑖 th origin to 𝑗 th destination is 𝑔𝑖𝑗(𝑥𝑖𝑗) so that 

we have to minimize 

∑ 

𝑛

𝑗=1

 ∑  

𝑚

𝑖=1

 𝑔𝑖𝑗(𝑥𝑖𝑗)  

subject to 

𝑥𝑖𝑗 ≥ 0,∑  

𝑛

𝑗=1

 𝑥𝑖𝑗 = 𝑥𝑖,∑  

𝑚

𝑖=1

 𝑥𝑖𝑗 = 𝑦𝑖 ,∑  

𝑚

𝑖=1

 𝑥𝑖 =∑  

𝑛

𝑗=1

 𝑦𝑗  

Let 𝑓𝑛(𝑥1, 𝑥2, … , 𝑥𝑚) denote the minimal cost obtained by following an optimal policy, 

then the principle of optimality gives 

𝑓𝑛(𝑥1, 𝑥2, … , 𝑥𝑚) = min
𝑅𝑛

 ((𝑔1𝑛(𝑥1𝑛) + 𝑔2𝑛(𝑥2𝑛) +⋯+ 𝑔𝑚𝑛(𝑥𝑛𝑚) 

where 𝑅𝑛 is the 𝑚-dimensional region determined by 

0 ≤ 𝑥𝑖𝑛 ≤ 𝑥𝑖, (𝑖 = 1,2,… ,𝑚),∑  

𝑚

𝑖=1

 𝑥𝑖𝑛 = 𝑦𝑛  

Instead of dealing with 𝑚𝑛 independent variables 𝑥𝑖𝑗 at one time, we have to minimize 

with respect to variations in 𝑚 variables at a time and the reduction in dimensionality is 

quite significant. Yet for 𝑚 > 2, the problem of computation is still difficult. For 𝑚 =
2 i.e., for the case of two origins, we get 

𝑓𝑛(𝑥1, 𝑥2) = min
0≤𝑥1𝑛≤𝑥1

 (𝑔1𝑛(𝑥1𝑛) + 𝑔2𝑛(𝑦2 − 𝑥1𝑛) 

which is more easily solvable. 

14.6 DYNAMIC PROGRAMMING AND CALCULUS OF     

VARIATIONS 

Let 

𝐼 = ∫  
𝑥0,𝑦0

𝑥,𝑦

 𝐹 (𝑥, 𝑦,
𝑑𝑦

𝑑𝑥
) 𝑑𝑥  

then the value of 𝐼 depends on what function 𝑦 is of 𝑥, the starting point 𝑥, 𝑦 and the 

final point 𝑥0, 𝑦0. If we choose different functions 𝑦(𝑥) and find the minimum 

value of 𝐼, this minimum value will depend on 𝑥, 𝑦 and 𝑥0, 𝑦0. If we keep 𝑥0, 𝑦0 fixed, 

the minimum value will depend on 𝑥, 𝑦 only. Let 𝑓(𝑥, 𝑦) be this minimum value. 
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To apply dynamic programming, we break up the interval (𝑥, 𝑥0) into two parts (𝑥, 𝑥 +

Δ𝑥) and (𝑥 + Δ𝑥, 𝑥0). In the first interval, we choose an arbitrary slope 𝑦′, so that the 

contribution of the first interval to 𝐼 is 

∫  
𝑥+Δ𝑥

𝑥

 𝐹(𝑥, 𝑦, 𝑦′)𝑑𝑥 = 𝐹(𝑥, 𝑦, 𝑦′)Δ𝑥 + 0(Δ𝑥)2  

The starting point for the second interval is 𝑥 + Δ𝑥, 𝑦 + 𝑦′Δ𝑥 and for this interval, we 

use the optimal policy to get 

𝑓(𝑥 + Δ𝑥, 𝑦 + 𝑦′Δ𝑦) = 𝑓(𝑥, 𝑦) + Δ𝑥
𝜕𝑓

𝜕𝑥
+ 𝑦′Δ𝑥

𝜕𝑓

𝜕𝑦
+ 0(Δ𝑥)2  

Applying the principle of optimality, we get 

𝑓(𝑥, 𝑦) = min
𝑦′

  [Δ𝑥𝐹(𝑥, 𝑦, 𝑦′) + 𝑓(𝑥, 𝑦) + Δ𝑥
𝜕𝑓

𝜕𝑥
+ 𝑦′Δ𝑥

𝜕𝑓

𝜕𝑦
+ 0(Δ𝑥)2]  

Taking the limit as Δ𝑥 → 0 

0 = min
𝑦′

  [𝐹(𝑥, 𝑦, 𝑦′) +
𝜕𝑓

𝜕𝑥
+ 𝑦′

𝜕𝑓

𝜕𝑦
]  

For the expression within brackets to be minimum 

0 =
𝜕𝐹

𝜕𝑦′
+
𝜕𝑓

𝜕𝑦
 

When we solve for 𝑦′ from Eqn. (121) and substitute in Eqn. (120) we get the 

minimum value of the expression as zero so that 

0 = 𝐹(𝑥, 𝑦, 𝑦′) +
𝜕𝑓

𝜕𝑥
+ 𝑦′

𝜕𝑓

𝜕𝑦
 

From Eqns. (121) and (122), we can determine 

(i) 𝑦 as a function of 𝑥 and 

(ii) 𝑓(𝑥, 𝑦) as a function of 𝑥, 𝑦. 

Differentiating Eqn. (121) totally with respect to 𝑥, we get 

𝑑

𝑑𝑥
(
𝜕𝐹

𝜕𝑦′
) +

𝜕2𝑓

𝜕𝑥𝜕𝑦
+
𝜕2𝑓

𝜕𝑦2
𝑦′ = 0  
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Differentiating Eqn. (122) partially with respect to 𝑦, we get 

𝐹𝑦 + 𝐹𝑦
′
𝜕𝑦′

𝜕𝑦
+

𝜕2𝑓

𝜕𝑥𝜕𝑦
+
𝜕2𝑓

𝜕𝑦2
𝑦′ +

𝜕𝑓

𝜕𝑦

𝜕𝑦′

𝜕𝑦
= 0  

Eliminating 𝑓(𝑥, 𝑦), we get Euler-Lagrange equation 

𝑑

𝑑𝑥
(
𝜕𝐹

𝜕𝑦′
) −

𝜕𝐹

𝜕𝑦
= 0  

For the more general case when there are several dependent variables 𝑦1, 𝑦2, … , 𝑦𝑛 i.e., 

where we have to minimize 

𝐼 = ∫  𝐹(𝑥, 𝑦1, 𝑦2, … , 𝑦𝑛 , 𝑦1
′ , 𝑦2

′ , … , 𝑦𝑛
′ )𝑑𝑥  

the equation corresponding to Eqn. (120) is 

0 = min
𝑦1,𝑦2 ,…,𝑦𝑛

  [𝐹 +
𝜕𝑓

𝜕𝑥
+∑ 

𝑛

𝑗=1

 𝑦𝑗
′
𝜕𝑓

𝜕𝑦𝑗
]  

which gives the following two equations 

𝜕𝐹

𝜕𝑦𝑖
′ +

𝜕𝐹

𝜕𝑦𝑖
= 0, 𝑖 = 1,2,… , 𝑛

𝐹 +
𝜕𝑓

𝜕𝑥
+∑ 

𝑛

𝑗=1

 𝑦𝑗
′
𝜕𝑓

𝜕𝑦𝑗
= 0

 

Eliminating 𝑓𝑖 we get Euler's equations 

𝑑

𝑑𝑥
(
𝜕𝐹

𝜕𝑦1
′) −

𝜕𝐹

𝜕𝑦𝑖
= 0, i = 1,2,… , 𝑛  

14.7 SOME OTHER APPLICATIONS OF DYNAMIC 

PROGRAMMING 

(a) A Defective Coin Search Problem 

We consider the problem of using an equal arms balance to detect the only heavy coin 

in a lot of 𝑁 coins of similar appearance. Let 𝑓𝑁 denote the maximum number of 

weightings required using an optimal policy. As each stage, we weigh one batch of 𝑘 

coins against another and observe the result. Either the two sets of coins will balance or 
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they will not. If the two sets balance, the heavy coin must be in the remaining 𝑁 − 2𝑘 

coins. If they do not balance, then we have already found the group of 𝑘 coins to which 

it belongs. Thus 

𝑓𝑁 = 1 + min
0≤𝑘≤𝑁/2

 max[𝑓𝑘 , 𝑓𝑁−2𝑘]  

To minimize, we want 𝑘 and 𝑁 − 2𝑘 to be as near as possible. Accordingly we take 

𝑘 = [𝑁/3] or [𝑁/3] + 1 depending on whether 𝑁 has the form 3𝑚 + 1 or 3𝑚 + 2. 

(b) An Inventory Problem 

At the beginning of each period, a businessman raises his stock to 𝑦. There is no time 

lag between his ordering and supplies being received. The cost of ordering an amount 𝑧 

is ℎ(𝑧). During a period, the probability that the demand lies between 𝑠 and 𝑠 + 𝑑𝑠 is 

𝜑(𝑠)𝑑𝑠. If the demand 

exceeds stocks, there is a penalty cost𝑝(𝑧) associated with the shortage 𝑧. The 

businessman starts with a stock 𝑥 and wants to continue in business for 𝑛 periods. It is 

required to find 𝑦 so that his cost of ordering and stock-out is minimized. 

In the first period, he has to spend 𝑘(𝑦 − 𝑥) on ordering new stocks. If the demand lies 

between 𝑠 and 𝑠 + 𝑑𝑠, the expected stockout cost is ∫  
∞

𝑦
𝑝(𝑠 − 𝑦)𝜑(𝑠)𝑑𝑠 since the cost 

will be there if 𝑠 ≥ 𝑦. Thus if 𝑓𝑛(𝑥) denotes the minimum cost for 𝑛 periods, 

𝑓1(𝑥) = min [𝑘(𝑦 − 𝑥) +∫  
∞

𝑦

 𝑝(𝑠 − 𝑦)𝜑(𝑠)𝑑𝑠]  

For writing the general recurrence relation, we note that at the end of the first period, 

the stock may be zero with probability ∫  
∞

𝑦
𝜑(𝑠)𝑑𝑠 or it may be 𝑦 − 𝑠 if the demand has 

been for 𝑠 commodities in this period (𝑠 ≤ 𝑦). The principle of optimality then gives 

𝑓𝑛(𝑥) = min
𝑦≥𝑥

 [𝑘(𝑦 − 𝑥)+∫  
∞

𝑦

 𝑝(𝑠 − 𝑦)𝜑(𝑠)𝑑𝑠 + 𝑓𝑛−1(0)∫  
∞

𝑦

 𝜑(𝑠)𝑑𝑠 

(c) Optimal Exploitation of a Fishery Containing Many Interacting Species 

Let 𝑥𝑖(𝑡) be the population of the 𝑖 th species at time 𝑡 and let ℎ𝑖(𝑡) be its rate of 

harvesting at time 𝑡 so that 

𝑑𝑥𝑖
𝑑𝑡

= 𝑎𝑖𝑥𝑖 − ℎ𝑖(𝑡); 𝑖 = 1,2,… , 𝑛  

Let 

ℎ𝑖(𝑡) = 𝛼𝑖 +∑  

𝑛

𝑗=1

 𝛽𝑖𝑗𝑥𝑗 + 𝛾𝑖𝐸, 𝑖 = 1,2,… , 𝑛  
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where 𝐸(𝑡) is the effort per unit time. Let the cost of making an effort 𝐸 be 𝑏𝐸2 −

𝑘𝐸 − 𝑚, then the present value of the profit is 

𝑃 = ∫  
∞

0

  𝑒−𝛿𝑡 {∑  

𝑛

𝑖=1

 𝑝𝑖 (𝛼𝑖 +∑ 

𝑛

𝑗=1

 𝛽𝑖𝑗𝑥𝑗 + 𝛾𝑖𝐸) − (𝑏𝐸2 − 𝑘𝐸 − 𝑚)}  

where 𝑝𝑖 is the selling price per unit of the 𝑖 th species. 

The maximum value of 𝑃 depends on the initial population sizes of the species. Let this 

maximum value be 𝑓(𝑅1, 𝑅2, … , 𝑅𝑛) where 

𝑋𝑖(0) = 𝑅𝑖 , (𝑖 = 1,2,… , 𝑛)  

We now split the integral in Eqn. (136) into two, over the ranges 0 to Δ and Δ to ∞, 

where Δ is small. We choose some arbitrary value for the initial effort 𝐸 and find the 

value of the first integral for this value of 𝐸 because Δ is small. From (136), if the 

maximum value is 𝑓(𝑅1, 𝑅2, … , 𝑅𝑛), then for the second integral, the maximum value is 

𝑓(𝑅1
′ , 𝑅2

′ , … , 𝑅𝑛
′ ) when 𝑅1

′ , 𝑅2
′ , … , 𝑅𝑛

′  are the population sizes at time Δ determined from 

(134), so that 

𝑅1
′ = 𝑅𝑖 + Δ(𝑎𝑖𝑅𝑖 − 𝛼𝑖 −∑ 

𝑛

𝑗=1

 𝛽𝑖𝑗𝑅𝑗 − 𝛾𝑖𝐸)  

We then find the sum of the first integral and the maximum value of the second 

integral. Both these depend on the choice of 𝐸. We now choose 𝐸 so as to maximize the 

sum. This gives the equation 

𝑓(𝑅1, 𝑅2, … . , 𝑅𝑛) = max
𝐸

  [Δ {∑  

𝑛

𝑖=1

 𝑝𝑖(𝛼𝑖 + 𝛽𝑖𝑗𝑅𝑗 − 𝛾𝑖𝐸) − 𝑏𝐸2 − 𝑘𝐸 −𝑚}

+𝑒−𝛿Δ𝑓 (𝑅1 + Δ(𝑎1𝑅1 − 𝛼1 −∑  

𝑛

𝑗=1

 𝛽1𝑗𝑅𝑗 − 𝛾1𝐸) ,…

𝑅𝑛 + Δ(𝑎𝑛𝑅𝑛 − 𝛼𝑛 −∑ 

𝑛

𝑗=1

 𝛽𝑛𝑗𝑅𝑗 − 𝛾𝑛𝐸))]

 

Using Taylor's theorem expanding in power of Δ, simplifying and proceeding to the 

limit as Δ → 0, we get 

𝛿𝑓(𝑅1, 𝑅2, … , 𝑅𝑛) =max
𝐸

 [∑  

𝑛

𝑖=1

 𝑝𝑖 (𝛼𝑖 +∑  

𝑛

𝑗=1

 𝛽𝑖𝑗𝑅𝑗 − 𝛾𝑖𝐸) − 𝑏𝐸2 − 𝑘𝐸 −𝑚] 

This gives the equations 
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∑ 

𝑛

𝑖=1

  (𝑝𝑖𝛾𝑖 − 𝛾𝑖
𝜕𝑓

𝜕𝑅𝑖
) − 2𝑏𝐸 − 𝑘 = 0

𝛿𝑓(𝑅1, 𝑅2, … , 𝑅𝑛) =∑  

𝑛

𝑖=1

 𝑝𝑖 (𝛼𝑖 +∑  

𝑛

𝑗=1

 𝛽𝑖𝑗𝑅𝑗 −𝑚)

+∑  

𝑛

𝑖=1

 (𝑎𝑖𝑅𝑖 − 𝛼𝑖 −∑  

𝑛

𝑗=1

 𝛽𝑖𝑗𝑅𝑗)
𝜕𝑓

𝜕𝑅𝑖
+

1

4𝑏
(∑  

𝑛

𝑖=1

 𝛾𝑖 (𝑝𝑖 −
𝜕𝑓

𝜕𝑅𝑖
) − 𝑘)

2

 

Equation (142) gives a partial differential equation for determining 𝑓 as a function of 

𝑅1, 𝑅2, … , 𝑅𝑛 and then Eqn. (141) determines 𝐸(𝑡). 

CHECK YOUR PROGRESS 

 

1:  Which of the following is/are property/properties of a dynamic programming 

problem? 

a ) Optimal substructure 

b) Overlapping subproblems 

c) Greedy approach 

d) Both optimal substructure and overlapping subproblems 

2. When dynamic programming is applied to a problem, it takes far less time as 

compared to other methods that don’t take advantage of overlapping subproblems. 

a) True 

b) False 

 

14.8 SUMMARY 

 

1.  A Cargo-loading Problem 

We consider a vessel whose maximum cargo capacity is 𝑍 tons. Let 𝑣𝑖 and 𝑤𝑖 denote 

respectively the value end weight of the 𝑖 th item and let 𝑥𝑖 denote the 

number of items of type 𝑖 chosen. The problem of determining the most valuable cargo 

consists in maximizing 

subject to 

𝐿𝑛(𝑋) =∑  

𝑛

𝑖=1

 𝑥𝑖𝑣𝑖  
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∑ 

𝑛

𝑖=1

 𝑥𝑖𝑤𝑖 ≤ 𝑍, 𝑥𝑖 = 0,1,2,…  

Let 𝑓𝑛(𝑍) denote the maximum value, then 

𝑓1(𝑍) = [
𝑍

𝑤1
] 𝑣1  

where [𝑦] denotes the greatest integer less than or equal to 𝑦. The principle of 

optimality then gives 

𝑓𝑛(𝑍) = max
𝑥𝑛

 [𝑥𝑛𝑣𝑛 + 𝑓𝑛−1(𝑍 − 𝑥𝑛𝑤𝑛)]  

where the maximization with respect to 𝑥𝑛 is over the set of values 

𝑥𝑛 = 0,1,2,… [
𝑍

𝑤𝑛
]  

This is essentially a problem of linear integer programming which we have solved by 

using dynamic programming technique. 

2. Euler's equation is 

𝑑

𝑑𝑥
(
𝜕𝐹

𝜕𝑦1
′) −

𝜕𝐹

𝜕𝑦𝑖
= 0, i = 1,2,… , 𝑛  

14.9 GLOSSARY 

 

Random Variable: A variable that takes on random values, often denoted by ω. 

Probability Measure: A mathematical function that assigns a probability to each 

possible outcome of a random experiment. 

Expectation: A mathematical operation that calculates the average value of a random 

variable. 
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14.11 SUGGESTED READINGS 

 

1. E.A. Bender (1978) An Introduction to Mathematical Modelling, New York,  

              John Wiley and Sons. 

2. W.E. Boyce (1981) Case Studies in Mathematical Modelling, Boston,  

                Pitman. 

3. A. Friedman and W. Littman, (1994) Industrial Mathematics: A Course in  

              Solving Real World Problems, Philadelphia, SIAM. 

4. F.R. Giordano and M.D. Weir (1985). A First Course in Mathematical  

              Modelling, Monterey, Brooks/Cole. 

 

14.12  TERMINAL QUESTIONS 

 

1. Write Applications of Dynamic programming 

2. Define Mathematical Modelling Through Dynamic Programming. 

3. Define Two classes of optimization. 

4. Write note on A Farmer's Problem. 

 

14.13  ANSWERS 

 

CYQ 1.     D 

CYQ 2.     A 
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