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COURSE INFORMATION

The present self learning material “Theory of Relativity” has been designed for M.Sc.
(Fourth Semester) learners of Uttarkhand Open University, Haldwani. This self learning
material is writing for increase learner access to high-quality learning materials. This
course provides a comprehensive introduction to the foundations and applications of
relativity and tensor analysis across three major blocks. Block I begins with the Special
theory of Relativity, covering the classical concepts leading to Einstein’s formulation,
the Lorentz transformation equations, and their consequences in relativistic
mechanics. It introduces the four-dimensional geometry of Minkowski space and
explores key applications such as time dilation, length contraction, and relativistic
dynamics. Block Il focuses on Tensor Analysis, beginning with the concept of tensors
and the line element, and proceeds to geodesic equations—which describe the paths of
particles in curved spacetime—and the curvature tensor, crucial for understanding
gravitational effects in curved geometry. Block Il presents General Relativity,
including the formulation of Einstein’s field equations, the exact Schwarzschild
solution for spherically symmetric mass distributions, and their significance in
cosmology, such as the expanding universe. The block concludes with an introduction to
relativistic electrodynamics, which integrates electromagnetism into the relativistic
framework. This structure equips students with both the theoretical tools and physical
insights needed to study modern gravitational physics.
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UNIT 1:-Classical Theory of Relativity
CONTENTS:

1.1  Introduction

1.2  Objectives

1.3  The Newtonian Framework of Space and Time
1.4  Inertial and Non Inertial Frame

1.5 Galilean Transformation

1.6  Fictitious Force

1.7  Electrodynamics

1.8  Fiezeau’s Experiment

1.9  Michelson and Morley Experiment
1.10 Explanation of Negative Results
1.11  Summary

1.12  Glossary

1.13  References

1.14  Suggested Reading

1.15 Terminal questions

1.16  Answers

1.1 INTRODUCTION:-

The Classical Theory of Relativity, formulated by Albert Einstein,
revolutionized our understanding of space, time, and gravity. It consists of
two key components: Special Relativity (1905) and General Relativity
(1915). Special Relativity applies to observers in inertial frames and
introduces the principle of relativity, stating that the laws of physics
remain the same for all observers in uniform motion. It also establishes the
constancy of the speed of light, leading to phenomena such as time
dilation, length contraction, and mass-energy equivalence E = mc?.
General Relativity extends these ideas to accelerated frames and
gravitational fields, describing gravity not as a force but as the curvature
of space-time caused by mass and energy. This theory predicts effects
such as gravitational time dilation, gravitational Lansing, black holes, and
gravitational waves. The classical theory of relativity replaced Newton’s
concept of absolute space and time with a dynamic and relative
framework, and it has been confirmed through numerous experiments,

Department of Mathematics
Uttarakhand Open University Page 2



Theory of Relativity MAT609

including light bending near the Sun, precise GPS calculations, and
gravitational wave detections.

1.2 OBJECTIVES:-

After studying this unit, the learner’s will be able to

e To find the solutions of Inertial and Non Inertial Frame.
e To represent he Galilean Transformation
e To solved the Michelson and Morley Experiment

1.3 THE NEWTONIAN FRAMEWORK OF SPACE
AND TIME:-

If we take into account the particle's path and velocity, we must always
assume that there is a coordinate system (or frame of reference) in which
the particle's position can be specified by a mean of measuring time that
can determine the intervals of time at which the particle's position should
be recorded, as well as some coordinates from instant to instant. The walls
of a room or the position of the stars and the plumb line's direction might
be thought of as examples of a coordinate system. The earth's rotational
period can also be used to measure time. Such a frame of reference and the
sources of time measurement allow for the verification of Newton's law or
the law of mechanics, at least to a very good approximation. Newton's
second law states that when a change occurs in the direction that the force
acts, the rate of change of momentum is proportional to the net force
impressed. i.e.

F = ma

where m is the mass of the body and a is acceleration. This law is valid in
such frames of reference. However, this law does not hold in some frames
of reference.

There are generally two types of reference systems:

1. Accelerated frame of reference
2. Unaccelerated frame of reference

1.4 INERTIAL AND NON INERTIAL FRAME:-
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Inertial Frame

“The frames with respect to which an unaccelerated body appears
unaccelerated are Inertial frame. In other words the frames which are at
rest or in uniform translator motion relative to one other are inertial
frames.”

Let's look at a coordinate system that a moving body has co-ordinates
(x,y,z) as well.Since the body is moving at a constant speed and is not
being affected by any forces, the coordinates x, y, and z are functions of
time t.
d?x d?y d?z
- =057=0,—=0,
dt? dt? dt?
dx dy dz
—_—=Uu— = _—=
dt dt

where u, v, w being velocity components in x, y, z directions respectively.
This is Newton’s first law of inertia.

We define this type of coordinate system as an inertial frame.
Accordingly, "An inertial frame of reference is one in which Newton's
first law is true.” Or an inertial frame is an unaccelerated frame.

Non-Inertial Frames

“Non-Inertial frames” are the frames that make an unaccelerated body
appear accelerated. Alternatively said, the accelerated frames are non
inertial.

1.5 GALILEAN TRANSFORMATION:-

The outcome of research work of Galileo on the motion of the projectile
led him to formulate Galilean Transformations. These are used to relates
the motions which are observed by two observers in two different inertial
frames. His two main results are as follows:

1. The motion of a particle projected at any angle may be derived
from the motion of the particle thrown vertically upward.

2. If a particle is thrown straight up from a cart which is moving with
uniform speed, the observer on the cart may see the particle
moving up and down, but the motion observed by an observer on
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the ground may be described by superimposing the motion of the
cart into that of the projectile.

Let's look at two frames of reference, S and S’, one at rest and the other
traveling at a constant speed, v. Assume that the observers O and 0"
are located at the origins of S and S’, respectively. At any point P,
they observe the identical event. Assume that the X', Y’, and Z' axes
are parallel to one another, or that the two frames are parallel to one
another. Let (x,y, z, t) and (X', y', Z/, t') be the coordinates of P with
respect to origin O and O’, respectively.

Two frames have been chosen so that their origins overlap at time t =
0(t' = 0).

Fig.1.1
Case I: When the frame S’ have the velocity v only in X' direction.

In that case, O’ has velocity v only along the X axis (see figure 1.2).
The two systems can be combined to each other by the following
equations

=
a
=
I

<

~

~ N <
Il
&N

(D

~

~
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Fig.1.2

Case II: When the frame S’ have velocity v along any straight line in
any direction such thatv = iv, + jv, + kv,.

During a time t, the frame S’ separated from S by tv,,tv,,tv, and

tv, along the x, y, and z axes, respectively. Then, the following equations
can be used to relate the two systems.

x'=x =ty
;",z;"_“’y} ()
z =Z—thJ

t'=t

Fig.1.3

Transformations (1) and (2) are known as Galilean Transformations.
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Case I11: Galilean transformation in vector form:

Fig.1.4

Let S and S’ be two systems that are moving with a velocity v in relation
to S. Two systems' origins initially coincide.

Suppose that, after time t,r and r' are the position vectors of any particle
P with regard to origins O and O’ of systems S and S’, respectively. Then

00’ = vt.

Accordingly, using the law of triangles of vector addition, fig. 1.4

r=r"+uvt
= r'=r—vuvt ..(3)
also t'=t . (4)

These equations are known as Galilean transformations of space and time
in vector form.

Equations (1), (2) and (3) are represent time dependent Galilean
transformation since they are time dependent and were given by Galileo.

EXAMPLEL: Prove that the Galilean transformation of a position vector
is expressed as r = r, + v + vt, where v is the linear velocity of the
frame O' and 1y is the position vector of origin O’ as measured by O at
t'=0.
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Fig.1.5

SOLUTION: Take two frames S and S', the latter moving with velocity
v relative to former. Consider O and O' to be the observers of the event
occurring at P, who are positioned at S and S, respectively. When r and
r' represent the point P position vectors at any given time (fig. 1.5), we
written

r=r"+R .. (1)
where R is the position vector of observer 0’ relative to O after time ¢.

If r,(0Q) is the position vector of the observer O’ relative to O at t = 0,
then from Fig. 1.5, we get

R=00+ Q0"
=1,+ vt ..(2)
The distance traversed w by the observer 0" in time t is vt.
Substituting the value of R from (2) in (1), we obtain
r=r'+ry+uvt

EXAMPLE2: Let two systems S and S’ moving with velocity v = iv, +
Jjvy + kv, relative to S. If the origins of the two systems coincide at t =

t' = t,, find the Galilean transformation equations.
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SOLUTION: The system S’ is moving with respect to S at velocities v,,
vy, and v, along the X,Y, and Z axes in a positive direction,

respectively. If two frames have the same origin at t = t' = t,, then

The distance traversed by observer O’ in S’ relative to observer O in S at
any instant t along axis of X = v, (t — t,)

The distance traversed by observer O’ relative to observer O at any instant
talong Y axis = v, (t — ty)

The distance traversed by observer O’ relative to observer O at any instant
talong Z axis = v, (t — t,)

Hence the Galleon transformation equations are
x'=x—v,(t —ty)
y' =y —vy(t—to)
z'=z—v,(t —ty)

EXAMPLES. The origin of two systems S and S’ coincide initially. The
system S’ is moving with velocity (3i + 4j + 6k)cm/sec. relative to S.
After 2 sec if the co-ordinates of any point as observed by an observer at
the origin of S are (5, 6, -9) cm. Find the co-ordinates of the point relative
to an observer at the origin of S'.

SOLUTION: we know that, the Galilean transformation equations are

Givenx =5,y = 6,z = —9,t = 2sec,v, = 3cm/sec, v, =
4cm/sec,v, = 4cm/sec

ax'=5-3x2=-1
Yy =6-—4%x2=-2

Z=-9-6x2=-21
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The co-ordinate of the point relative to an observer at the origin of S’ are
(-1,-2,—-21)cm.

1.6 FICTITIOUS FORCE:-

The presence of a mass particle in an accelerated frame relative to a
stationary frame observer makes the frame non-inertial, and even when the
particle is at rest, the acceleration of the frame gives the impression that a
force is operating on it. The term "fictitious force™ refers to this kind of
force. As an illustration: Coriolis force

Example 4. Show that the length of the rod is invariant under Galilean
transformation.

Solution: Let us suppose the co-ordinates of two point A and B in two
inertial frame S and S'are

(x1,V1,21), (X3, V5, 25) and (x1,y1,21"), (x5, 5, 2,") respectively.

If S’ is moving with velocity v relative to S along X' axis, then according
to Galilean transformation

!

I I __ [
X1 =X1— VLY =YV1,21 = 21} )
b p
Xp =Xo — VLY, = Y2,22 = 23

The distance between the points A and B in the frame S’

1
=[(x2" =12+ (3 =31 + (23 — z)?]2
By using equation (1),

= [{(x; —vt) = (x; — v + (v, —y1)* + (2, — 21)2]%

= distance between the poinsin the frame S
=the length of rod is invariant under Galilean transformation.

Theorem 1. Invariance of Newton’s Law: To prove that Newtonian
fundamental equations are invariant under Galilean transformation.
Proof: Using Newton's second rule of motion, we demonstrate this claim.

2
A particle acted upon by a force F has an accelerationZTf, in the absolute
system of coordinates, so that
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d?x

In Galileon frame of reference, we get

X'=x—-vt,y =y,z' =zt =t

dx’ B dx dt' = dt
at _dr VT
dx’ B dx
de’ dt ©
d?*x’  d®x
—dt,z = ﬁ (2)

Forces and masses are absolute quantities in Newtonian mechanics, thus
that

m =m,F' =F ..(3)
Substituting thevalues from (2) and (3) in (1)’

2
y dexr

Newton's second rule of motion is invariant under Galilean
transformation, according to a comparison of (1) and (4).

1.7 ELECTRODYNAMICS:-

The forces between two moving charges in classical mechanics are
dependent on their distance from one another and are directed down the
straight line that connects them. According to electrodynamics, the force
between two moving charges is determined by their velocities and distance
from one another. Furthermore, the active force's path does not connect
the charges in a straight in a straight line.

This is how electrodynamics and classical mechanics vary from one
another. Therefore, in the case of electrodynamics, the fundamental ideas
of Newtonian or classical mechanics may not be applicable. Maxwell's
basic equations of electrodynamics are the outcome of applying the
principle of relativity to electrodynamics through experiments conducted
in two distinct inertial frames. In line with Maxwell,
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"Electrodynamics waves propagate in empty space with a uniform velocity
c = 3 x10%m/sec. light waves are electromagnetic waves and the
velocity of light in vacuum is independent to the state of motion of the
source of light and is equal to the constant value, ¢ = 3 x 10%cm/sec.”

Then, regardless of the motion of the light source, the velocity of light
must have a constant value ¢ with respect to all inertial frames. This is in
contrast to the classical theory, which also shows in Galilean
transformation that a system moving in the direction of the velocity of a
particle has a lower velocity than a system at rest. Therefore, if the moving
system is traveling with a constant velocity in the direction of light
propagation, the velocity of light must be different in the two systems—
one at rest and the other moving—and its value in the moving system must
be lower than the stationary one.

As a result, the relativity principle and the constancy of the speed of light
are incompatible with classical theory. Therefore, we must rethink our
standard understanding of space and time if we embrace the relativity
principle in the context of electromagnetism.

1.8 FIZEAU’S EXPERIMENT:-

The purpose of this experiment was to use ether to measure the earth's
absolute velocity. Water served as Fizeau's medium within the block. He
used two light beams in his experiment, one pointing in the direction of
the water's velocity and the other in the opposite direction. The setup of
the experiment is depicted in fig. 1.6.

A

@T

Fig.1.6
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In the tube ABCDEF, the arrow at points A through F indicates the
direction of the water flow, while S represents a light source. Following its
emission from source S, the light beam strikes a semi-silvered mirror M,,
which is angled 45° degrees from the horizontal. A portion of the light
beam falling in direction M, is transmitted in direction M,D, while the
other portion is reflected in direction M; M, .

The reflected beam follows the path M, M, is reflected towards M, C, at M,,
is reflected again by mirrors C and D at C and D, falls on M; and then
enters the telescope following reflection. As a result, the transmitted part
follows path M;EDCM,M in the opposite direction of the water's velocity
and subsequently enters the telescope, whereas the reflected part follows
path M, M,CDM;. Interference is a phenomena that results in interference
fringes because the two beams enter the telescope at different times since
they take different amounts of time to travel the same path.

The time difference between the two rays is:

B d d
c 1\ ¢ 1
u+fv—u(1—’u2> ‘u+fv+u(1—‘u2)
1
2u (1 33)

=d

Eor—-2)

U
1 2 v v 1\) v
=2ud.(1——> “—{1+u+’%(1——)} 1+ 2E

u?) | c? c u? c
u 1\t
)]
c u
_ 2udp? (1 1)
T2 U2

(Neglecting higher order terms).

One oscillator's period T is divided by the equation to determine the phase
difference. Let n be the frequency at which the light oscillates.
Consequently, nT = 1.

Phase difference:

=20 - 1) =202 - 1) (1)

c2T 2
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Fizeau noticed that the interference pattern's fringes were shifting, and he
discovered that this was just what equation (1) predicted. He was
unsuccessful in determining the earth's velocity.

1.9 MICHELSON AND MORLEY EXPERIMENT:-

The Michelson and Morley experiment, conducted in 1887 by Albert A.
Michelson and Edward W. Morley, is one of the most significant
experiments in the history of physics. It was designed to detect the
presence of a hypothetical medium known as the luminiferous aether,
which was believed to be the substance through which light waves
propagated analogous to how sound waves require air. Using an optical
device called an interferometer, the experiment attempted to measure
differences in the speed of light in perpendicular directions, assuming that
the Earth’s motion through the aether would cause a measurable "aether
wind." According to classical physics, light moving with or against this
wind would have different speeds, leading to observable shifts in
interference patterns. However, the experiment produced a null result no
significant change in the interference pattern was observed. This
surprising outcome strongly suggested that the speed of light is constant in
all directions; regardless of the motion of the source or the observer
relative to the supposed aether.The implications of this result were
profound. It undermined the ether theory and paved the way for Albert
Einstein's theory of Special Relativity (1905), which postulated that the
speed of light in a vacuum is constant for all inertial observers and that
space and time are interwoven into a single continuum: space-time.

The experiment is set up so that a monochromatic light source S shines on
a half-silvered plate P, that is angled 45 °degrees from the light beam
from S. The light beam is split into two halves by the half-silvered plate
Py; one is transmitted through it, and the other is reflected perpendicular to
its initial direction. The reflected beam enters the telescope T after
generally striking a flat mirror M, at A and reflecting back along its own
path, passing via P;. After being transmitted through P4, the other beam
travels through a plate P, that is parallel to it and has a thickness equal to
P;. It then travels along its own route and is generally reflected by a plane
mirror M, at B. After going through P, the reflected beam hits P, and is
reflected back to the telescope T. Both mirrors, M, and M, are at similar
distances from P4, such that ., P,B = P,A, and are highly polished to
prevent double total internal reflection.
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M, A

Fig.1.7

Interference fringes are created when the two beams that are reflected
from the mirrors M; and M, enter the telescope. Since the reflected beam
crosses plate P, twice, the plate P, serves just to offset the additional path
it takes. Therefore, the plate P, is added in the path so that the two beams
before entering the telescope can travel equal distances, allowing the
transmitted beam to have to travel an equal additional distance.

Let's now assume that the entire apparatus is traveling toward the right at
the earth's velocity, or along SP;B ether, while remaining stationary.
Because of the earth's motion, the beam is reflected by the mirror M_1 at
A' rather than A, and again by M, at B’ rather than B.
During this period, the earth's motion causes the plate P, to shift to P,’,
which causes the two beams in the telescope T to collide. It is clear that in
this instance, the transmitted and reflected beams' journey lengths are not
equal.

A A
:
5
S P éPl' B B
i 5
@T o
Fig.1.8

Suppose
¢ = velocity of light w.r.t. ether.

v = velocity of earth w.r.t. ether, P,A = [
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t; = time taken by the transmitted beam which travels the distance from
P; to B'and then B'to P;’

t, = time taken by the reflected beam which travels from
P, to A'and then A'to P,’

Since the mirror M; at A and the mirror M, at B are placed at equal
distance and therefore

PlA = PlB = l
To calculatet,

The device is traveling to the right with a velocity of v. Consider the
laboratory to be the norm. It implies that the device could be assumed to
be located in the stream of ether traveling leftward at velocity v. velocity
of light in relation to the device in the appropriate direction.

= velocity of light w.r.t. ether + velocity of ether w.r.t. apparatus
=c+(-v)=c—v
Thus, ¢ — v is the relative velocity of light along P, B’.
Similarly, ¢ + v is the relative velocity of light along B'"’

t, = time taken by the beam from P; to B’and B'to P;’

_ b b2 ol 2]
T c—v cH+v c2—v? 2 c?
_2lcl_|_v2 _2l1_|_v2
¢ c2| ¢ c?

3
v being small in comparison to C'Z_3 and higher power of v/c have been
neglected.

To calculate t,: for the path P, A'P,’, when the beam travels from P;to A’,
the apparatus travels from A to A’ and hence
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In AplAA,, P1A2 + A’AZ = PlAIZ

2 vZ 12 12
l +§P1A =P1A

I _i|x vz_l/z_l1 2
T | e T e
-]

t, = time taken by the beam from P;to A'and A'to P,’

PlA,=

= 2 time taken by the beam from P,to A’

A , distance
=2——_.Fortime = ———
c velocity

21 N v?

T c 2c?

The difference in two timings results from the relative distance with
respect to the apparatus being [ in the travel towards b and backwards.

21 v? 21 v?
At=t1—t2=? 1+C_2 —? 1+ﬁ

The two systems will be in reverse positions when the device is turned
90° degrees and hence.

At=t -t =t,—t; =—(t; —tp) = —At

At — At = —At — At = —2At = —

Let T be the time period, n the frequency.
ThennT =1

time dif ference
T

phase dif ference =
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_2lv?
31
, 2nlv?
phase dif ference = — 3

Therefore, a shift in fringes could be anticipated as a result of the
aforementioned discrepancy, but none was seen. In order to increase the
distance, the experiment was performed using many mirrors; nonetheless,
the outcome remained the same, i.e., all produced null results.v = 0
could be one reason, although Fresnel's law of drift contradicts this
supposition. No change in fringes was seen when Trouton and Noble
conducted the experiment again in 1904 using electromagnetic waves
rather than visible light. All recent attempts to precisely avoid potential
mistakes were unable to significantly alter the initial outcome.

1.10 EXPLANATION OF NEGATIVE RESULTS:-

1. Drag Theory: As started earlier, one possible explanation is v = 0 i.e.
velocity of earth relative to ether is zero.

This gives t; = t,. for

w21 0) =2 (14
1= ¢ c2)’? 7 ¢ 2c?

In that case, the earth and the ether have no relative velocity. Stated
differently, the ether is pulled with the earth's gravity at the same speed as
the earth. There shouldn't be any aberration light, though, if this argument
is adopted. The value of aberration and the lack of shift in fringes cannot
be explained at the same time, even if the ether is thought to be partially
pulled.

Lorentz and Fitzgerald Contraction Hypothesis: Fitzgerald proposed a
theory in 1892 to account for the negative results of the Michelson-Morley
experiment, which became known as the Lorentz Fitzgerald contraction
hypothesis. Their hypothesis is “All material bodies moving with velocity v
are contracted in the direction of motion by a factor (1 —
v,

L)Y 2where f = -

Cc
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According to this hypothesis, if [, is the length of a body at rest with
regard to ether and [ is its length when it is moving with velocity v with
respect to ether, thenl = [,(1 — p?)Y/2 .

Using this idea, they offered the following explanation for the negative
results of the Michelson-Morley experiment:

n=2(140) =21+ 2
17 ¢ 2]’ ¢ 2¢2

According to Lorentz and Fitzgerald, then we get

21 v? v2\ 2
t=—(1+=|(1-=
=2 5)(-5)

4
Neglecting the term :—4

A tl = tZ'

Consequently, there is no phase difference between the transmitted and
reflected beams because their response times are equal. As a result, no
change in fringes is seen.

Example 5: In an experiment, the length of the arm of the interferometer
was 11 meters, the wavelength of light 5.5 x 10> centimeters and the
earth velocity 30 km/sec, calculate the amount of the fringe-shift.

Solution: given: [ =1100cm,A = 5.5 %X 10"%cm, v = 30 X
10°¢cm/sec,c = 3 x 10 %cm/sec

The required fringe-shift i.e., phase difference x, is given by

2lnv?  2W? ¢ 2Wv?
x0: = =

c3 c3 A 2

_2x1100x(3x109° 2 _
X0 = 3x1010)2x55x10-5 5 =
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a)
b)
c)
d)

a)
b)
c)
d)

a)
b)
c)
d)

a)
b)
c)
d)
S.

SELF CHECK QUESTIONS

Frames for which law of inertia is valid are called

Inertial

Rotational

Non-inertial

None of these

the reference frame where fundamental laws of physics are
invariant are called:

rotational

inertial frame

accelerated frame

frame attached to earth

the fundamental laws of physics are the same which are :
rotationary frame

inertial frame

accelerated frame

frames connected to earth

In Michelson-Morley experiment if the effective lenghth of path is
7 meter and wavelength of light is 700 A° , then fringe
displacement is

0.2

0.1

0.4

0

Newton’s 1% law of motion holds good in

a) Inertial frame
b) Every frame
c) Non-inertial frame
d) None of these

6.
a)
b)
c)
d)

Newton’s 2™ law of motion is invariant under
Galilean transformation

Lorentz transformation

Both of the above

None of these

1.11 SUMMARY:-

In this unit, we explored the Newtonian framework of space and
time, where space and time are treated as absolute and independent
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entities. We distinguished between inertial frames (those moving
with constant velocity) and non-inertial frames (accelerating
frames), introducing the concept of fictitious forces that appear in
non-inertial frames to explain apparent accelerations. The Galilean
transformation was studied as the mathematical tool to relate the
coordinates and velocities between different inertial frames in
classical mechanics. We extended our study to classical
electrodynamics, highlighting the inconsistencies it faced when
subjected to Galilean transformations. Experimental efforts to
resolve these issues, such as Fizeau’s experiment (which tested the
speed of light in moving media) and the Michelson-Morley
experiment (which attempted to detect the aether), were discussed
in detail. The null result of the Michelson-Morley experiment and
its explanation marked a pivotal shift in physics, setting the stage
for Einstein’s theory of Special Relativity.

1.12

GLOSSARY:-

Relativity: The principle that the laws of physics are the same in
all inertial frames of reference.

Galilean Relativity: A classical theory proposed by Galileo
stating that mechanical laws are invariant under Galilean
transformations between inertial frames.

Inertial Frame of Reference: A frame of reference in which a
body remains at rest or moves at constant velocity unless acted
upon by a force.

Non-Inertial Frame of Reference: A frame that is accelerating,
where fictitious forces (like centrifugal force) must be introduced
to apply Newton’s laws.

Galilean Transformation: Equations used to transform
coordinates and time between two inertial frames in classical
mechanics.

Absolute Time: The concept in Newtonian mechanics that time
flows uniformly for all observers, independent of their motion.
Absolute Space: The idea that space exists independently and is
the same for all observers.

Relative Motion: The change in position of an object with respect
to a particular frame of reference.
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e Velocity Addition Law: In Galilean relativity, velocities add
linearly (e.g.,u’ = u +v).

e Fictitious Force: A force that appears when observing motion
from a non-inertial frame (e.g., Coriolis force or centrifugal force).

e Michelson-Morley Experiment: A famous experiment aimed at
detecting the motion of Earth through the aether; it yielded a null
result, challenging classical relativity.

e Fizeau’s Experiment: An experiment measuring the speed of light
in moving water, supporting the idea of partial aether drag.

e Electrodynamics: The study of electric and magnetic fields,
particularly how they behave with moving charges; classical
electrodynamics struggled under Galilean transformations.

e Aether: A hypothetical medium once thought to carry light waves
through space.

e Null Result: An experimental result showing no expected effect;
in relativity, often refers to the Michelson-Morley experiment’s
failure to detect the aether.
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1.15 TERMINAL QUESTIONS:-

(TQ-1)Discuss Michelson-Morley experiment and explain the outcome
of this experiment.
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(TQ-2) Explain Lorentz- Fitzgerald contraction idea. How was the idea
used to account for the negative result of the Michelson-Morley
experiment?
(TQ-3) In the Michelson-Morley experiment, the wavelength of the
monochromatic light used in 50004°. What will be the expected fringe-
shift on the basis of stationary ether hypothesis if the effective length of
each path be 5 meter? Given velocity of earth =3x 10 m/sec and ¢ = 3 X
108m/sec.
(TQ-4) in Fizeau’s experiment, the approximation values of the
parameters were as follows

l=15mn=133,1=53x%x10"m,n, = 7m/sec
A shift of 0.23m fringes was observed from the case v,, = 0. Calculate the
drag coefficient and compare it with the predicted value.

1.16 ANSWERS:-

SELF CHECK ANSWERS (SCQ’S)

(a)
(b)
(b)
(a)
(a)
(a)

o gk whE

TERMINAL ANSWERS (TQ’S)

(TQ-3)m
(TQ-4) d=0.4922
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UNIT 2:- Lorentz Transformation Equations
CONTENTS:

2.1 Introduction

2.2  Objectives

2.3  The Relativistic Concept of Space & Time
2.4  Postulates of Special theory of Relativity
2.5  Lorentz Transformation

2.6 Consequences of Lorentz Transformation
2.7  Time Dilation or Apparent Retardation of Rest
2.8 Simultaneity

2.9  Lorentz Transformation for a group

2.10 Aberration (Relativistic Treatment)

2.11 Doppler’s Effect

2.12  Summary

2.13  Glossary

2.14  References

2.15  Suggested Reading

2.16  Terminal questions

2.17  Answers

2.1 INTRODUCTION:-

The Lorentz transformation is a set of linear equations that relate the space
and time coordinates of events as measured in two different inertial frames
of reference moving at a constant velocity relative to each other. It was
developed by Hendrik Lorentz and later incorporated into Einstein’s
Special Theory of Relativity. The need for Lorentz transformation arose
when the classical Galilean transformation failed to explain phenomena
involving the speed of light, such as the null result of the Michelson-
Morley experiment. According to Einstein’s second postulate of special
relativity, the speed of light is constant in all inertial frames, which
contradicted the assumptions of classical mechanics. Lorentz
transformations preserve the constancy of the speed of light and the form
of the equations of electrodynamics (Maxwell's equations) across different
inertial frames. They show that measurements of time, length, and
simultaneity are relative, depending on the observer’s frame of reference.
This leads to important relativistic effects such as time dilation and length
contraction.
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2.2 OBJECTIVES:-

After studying this unit, the learner’s will be able to

To explain relativistic concept of space and time.

To explain the postulates of special theory of relativity.
To derive Lorentz transformation equations.

To understand the Doppler’s Effect.

2.3 THE RELATIVISTIC CONCEPT OF SPACE
AND TIME:-

Despite careful studies, Michelson-Morley, Trouton, Noble, and others
were unable to ascertain the earth's velocity with respect to ether. Lorentz
and Fitzgerald put out the following theory in an effort to explain the
undesirable result: Every inertial frame requires the use of unique space
coordinates (Fitzgerald hypothesis) and unique time coordinates (Lorentz
hypothesis), which differ from the time and space coordinates in the
absolute ether system. Thus, Lorentz and Fitzgerald suspected a new
understanding of space and time in addition to the concept of an absolute
ether frame. Einstein boldly asserted in 1905 that whereas motion via ether
is a useless idea, motion relative to material entities has physical
substance. This was done in response to the unfavorable findings of the
Michelson-Morley and other tests that were carried out to ascertain the
earth's velocity through ether, as well as the scientific tradition that
prohibits making assumptions about things that are by definition
impossible to observe. In other words, there is no absolute frame; all
frames can be used to explain motion, but there may be circumstances in
which a certain frame is more useful than others. He therefore rejected the
notion that space is absolute. To clarify the two contradicting claims that
follow:

1. The velocity of any motion varies depending on how observers
move in relation to one another, according to classical mechanics.
2. Experimental investigations indicate that the motion of the frame
of reference has no effect on the velocity of light.
Einstein concluded that the disagreement between them had to be caused
by a flaw in the traditional theories of measuring time and space. By
challenging our preconceived notions of simultaneity, he disproved the
idea of absolute time.
His argument's nature can be viewed as follows:
The phrase “The two events X and Y take place simultaneously without

reference of any co-ordinate system” may be meaningless, but let's check.
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Let's examine a light signal that travels from point X to pointYin a
straight path within a given inertial frame. Only if the clocks at X and
Y are positioned correctly will the difference (t, —t;) obtained in this
way provide the actual time it takes for light to travel from X to Y. This is
presuming that a clock at X reads the emission time f and a clock at Y
reads the arrival time t,. The clocks at X and Y must be synced because
this obviously requires that both clocks' hands be in the same place at the
same time.

Now, how can we make sure that the two events occurring in two different
places are occurring simultaneously? Will two events that happen at the
same time in one frame also happen in any other frame? Examine two
occurrences that occur in the inertial frame S at two fixed locations, X and
Y. Since the velocity of light is c in all directions, it follows that for these
occurrences to occur simultaneously with regard to system S, the two light
signals released from X and Y at the time of the events must meet in the
center O of the line connecting X and Y .A same condition for simultaneity
also applies to system S’, which has a constant velocity v compared to
system S. Assume for the moment that the two events take place in
relation to system S at the same time and that the line connecting X and
Y runs parallel to the direction of system S’ velocity. Next, examine two
points X’"and Y’ in system S’ that correspond to those points at the moment
of the events. At that point, O will coincide with the center O’ between X’
and Y. Like X" and Y’,0' now moves with system S’ at a velocity v with
respect to system S.O'will not coincide with O at the intersection of the
light signals from X and Y. According to the aforementioned criterion, the
two events are not synchronous with respect to system S’since the light
signals do not meet in O".

Simultaneity is therefore a relative rather than an absolute concept.
Therefore, the idea of simultaneity between two events in separate spatial
positions has an accurate meaning only when referring to a certain inertial
system. In other words, each frame of reference has its own time.
Therefore, unless we mention the reference system to which the time
statement is referencing, expressing the time of an occurrence has no
value. Since the absolute concept of simultaneity is excluded, the absolute
concept of space is also ultimately excluded. Finding an object's end
points at the same time is necessary to measure its length. The length
measurements will be influenced by the frame of reference in the same
manner as simultaneity is dependent on it. Therefore, rather from being
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absolute, the concept of length, or space, is relative. The experimental
observation that observers moving relative to each other measure the
speed of light at the same speed can be explained by Einstein's relativistic
theories of space and time. Given these new concepts of space and time, a
new class of transformation equations based on the invariant nature of the
speed of light must be developed to replace the Galilean transformation
equations.

The theory of relativity, which is separated into two sections and has a
novel concept of space and time, applies to all optical and electromagnetic
phenomena in addition to mechanical phenomena.

1. Special or restricted theory of relativity.

2. General theory of relativity.
According to the special theory of relativity, systems that move in uniform

rectilinear motion relative to one another are called inertial systems. Thus,
"All systems of co-ordinates are equally suitable for description of
physical phenomena.” When applied to accelerated systems that is,
systems moving more quickly than one another the theory of relativity is
known as the "general theory of relativity." The general theory of
relativity provides a more sophisticated explanation of the laws of
gravitation than Newton did, and it is relevant to them.

2.4 POSTULATES OF SPECIAL THEORY OF
RELATIVITY:-

1. “The natural laws must preserve their forms relative to all observers
in a state of relative uniform motion.”

According to this postulate, velocity is not absolute but relative. It is a fact
drawn from the failure of Michelson and Morley experiment which was
performed to determine velocity of earth through ether.

2. “The velocity of light in vacuum is independent of the velocity of
observer or the velocity of the source.”

According to Galilean transformation this postulate is not true. In fact, it is
confirmed experimentally that the velocity of light calculated by any
method is constant. The second postulate is important in the sense that it
gives a clear distinction between classical theory and Einstein theory of
relativity.
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2.5 LORENTZ TRANSFORMATION:-

According to Einstein the theory of relativity is applicable to laws of
optics. Thus for the constancy of velocity of light we have to introduce the
new transformation equations which fulfill the following requirements:

1. The speed of light ¢ must have the same value in every inertial
frame.

2. The transformation must be linear and for low speed v « c they
should approach the Galilean transformations.

3. They should not be based on “absolute time and absolute space”.

The above requirements were fulfilled by H. A. Lorentz by introducing
transformation equations relating the observations of position and times
made by two observers in two different inertial frames and are known as
“Lorentz Transformation Equations”.

&P

Fig.2.1

Assume that S and S’ are two inertial frames of reference, and that S'is
traveling relative to S with a constant velocity v. Assume that two
observers Any event P from systems S and S’ is observed by O and O".
Its coordinates are (x.y,z,t) and(x’,y,z,t") in S and S’, respectively.
When the origins of two frames coincide and both t and t'are zero, the
event P a light signal is created.

Points which are at rest relative to S’ will move with velocity v relative
to S in X-direction. In particular the point x" = 0 will move with
velocity v in X-direction, i.e. x" = 0 will be identical with x = vt so
that

x'=alx—vt) ..(Q1)
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Where « is some function of v.

Since the velocity of S’ is only along X-axis. Hence by symmetry
y =7 - (2)
zZ =7Z

An equation in t and t" must be created in order to complete the set of
equations. Linearly, t’ depends on t,x,y, and z. Since clocks in S’
would seem to conflict as seen from S, we suppose that ¢’ does not
depend on y and z for the zone of symmetry. Consequently, we have

t'=pt+yx - (3)

Where S and y both are functions of v only. We are to determine the
unknown a, 3, .

The light pulse generated at t = 0 will expand into a growing sphere,
and the wavefront radius will increase with speed c. Since (x,y, z, t)
are the event's coordinates from the observer in system S at rest, the
equation for a spherical surface whose radius increases with speed c is

x2+y? + 22 = c*t? . (4)

Similarly the equation of spherical surface for observer O’ in system S’
is

x?2+y?+27?%2=c%? ..(5

From equation (1), (2) & (3) substituting value x',y',z'& t" in equation

®)
a?(x —vt)? + y% + z% = c?(Bt + xy)?
x2(a? — c?y?) + y? + z? = 2xt(a?v + c?By) = (c*B? — a?v?)t?

Equation (4) and the equation above both describe the same motion.
Therefore, when we compare the coefficients of different terms, we get

a?=c*y?=1 [6(D)]
Qv+ c2By =0 [6(ii)]
c2p? — a?v? =2 [6(iii)]
v X [6(0)] — [6(ii)] gives
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—c?ytv—c?py =v
v(1+c?y?)+c?By =0 . (7)
Similarly v? x [6(i)] + [6(iii)] gives
—v2c?y? + ¢?B? = v? + ¢?
—v2(1+c?y?)+c?B?=c? ..(8)
Similarly v x (7) + (8) gives
ve?By + c?p? = ¢?
vy + p% =1
p?—1=—-vpy ..(9)

Removing y between (7) and (9)

v{1+c2<'82_1> }+02<1—[32> =0
v v
v[v?p? + c*(B* — 1)?] N [c?(1-8%)]

v2p2 v

0

V2% + c?(p? —1)2 4+ c?p*2(1—-p%) =0
B?[v? +c? —2c?]+c?=0

CZ

p* =

c2 — p2

Putting the value of $2 in equation [6(iii)]

c
- 2_azvz_cz
cc—v
c* v?c?
2,2 _ A2
a~v: = z ¢ 2 2
cc—v cc—v
2
c
2 _ P2
a_
c2 — 2 B

From equation [6(ii)]
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_—a’v _ —av _ —fv
V="cg c2 c2
a=p
Also
8 1
a = =
J1—1v2/c?
1
x' = alx —vt) = ————=(x — vt)

J1—1v2/c?
vXx vXx
t’=ﬁt+yx=,[>’t—ﬁc—2=ﬁ(t——)

c?

Thus Lorentz transformation equations are

VX
x'=Bx—vt),y =y,z' =zt =,B(t—c—2)

Where
1

=
I

v2

Note: If v is very small, then (v/c) - 0 so that § — 1. In this case
Lorentz transformation equations becomes
x'=@—-vt),y =y,z =zt =t

These are the equations of Galilean transformation. So that Lorentz
transformation reduce to Galilean transformation as v « c.

2.6 CONSEQUENCE OF LORENTZ
TRANSFORMATION:-

(1) Lorentz and Fitzgerald Contraction (Length Contraction)

For a system S’ moving with velocity v in relation to a system S, the
Lorentz transformation equations are obtained by

x'=px—vt),y =y,z' =zt =ﬁ(t‘g)

Department of Mathematics
Uttarakhand Open University Page 31



Theory of Relativity

MATG609

Assume that a rod of length | has been placed on the X-axis. If x;& x, are

the rod's end points, then

l=x,—x ..(0)

Since the measurement of the both ends are taken at the same time t, then

tl_tzzt

Assume that, according to an observer S’ system, x;and x,' are the same
rod's locations along the X-axis at time t’. At time t’, the rod's two end

locations are simultaneously observed in order to
ti=t;=t'

l' = lengthof rod in S'system = x; — x;’

By Lorentz transformation equations
xy = Blxy + vtq), x; = B(xz + vt3)
Substituting the value of x; & x, in equation (1)
L=p(x; +vty) — Blxg + vity)

L= Blx; —x1) +vp(t; — t1) = BI’

tp =1t
PN
l—E: <1—§> <l
' <1
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This illustrates how the ratio (1 — v2/c?)"/2 decreases the apparent
length of a rigid body in the direction of motion.

2.7 TIME DILATION OR APPARENT
RETARDATION OF REST:-

Examine two reference frames, S and S'. S is traveling along the X-axis
at a uniform velocity, v. Let x = x, be the location of a clock in system S.
Let t," be the time that an observer in S" measures in relation to the signal
that this clock provides at time t = tinS. Afterward, by Lorentz
transformation

, VX4
tl = ,8 (t1 - C_Z) (1)
1
where f =
2
-z

Let's say that at time t, in S, the clock gives another signal, and t," is the
matching time in S'. Then,

- _
ty = Bt - ) -2
Compose At =t, — t;,At' =t, — t;

Equation (2)-(1) gives,
vXx vXx
At =p(t-—) =B (t-3)

At' = BAt  ...(3)

2 -1/ 2
At' =At|1—— =(1+—|At > At
(1-5) =(1+3)

The following is equation (3)'s physical significance:

The interval At’, as it appears to the observer in motion, is lengthened,
i.e, the time is dilated and hence the name "time est dilation”. It means
that the time interval At appears to be dilated or miengthened by the
factor B to the moving observer. Therefore, a clock moving in relation to
an observer is observed to run more slowly than one that is at rest in
relation to him, as per (3). Stated otherwise, a physical process with a
finite duration will go significantly more slowly in a moving frame than it
would in a stationary frame.
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Let's do it the other way around and suppose that the clock is at x;". in
system S". When the clock gives a signal at t,in S', and t, is the observer's
measurement of the corresponding time in S... As per the Lorentz inverse
transformation,

t, = ﬁ(t1’+m)

c?

Then At =t, —t; = B(t,' —t;") = AL’ ...(4)
= At > At

It states that, to an observer traveling with velocity v in relation to S', the
time interval At’ seems to be dilated by the factorp. This is the same
conclusion that was previously discussed.

Thus, based on the reasoning above, we may say, “A moving clock always

appears to go slow”. As a result, the clock at rest seems to be delayed by

the factor / 1—’:—2 to the observer in motion. This means that: This

appears to be clock retardation. From what has been done it follows:

Every clock appears to go at its fastest rate when it is at rest relative to the
observer. If the clock moves w.r.t. the observer with velocity r, then it
appears to go at its slowest rate by the factor.

Thus, the issue deduction Clock Hypothesis or Clock Paradox
The observer in S believes that the clock in S' is moving slowly, while
from S' perspective, the clock in S'is moving quickly. As a result, when he
returns to S', he discovers the exact opposite phenomenon.

2.8 SIMULTANEITY:-

Any two events are said to be simultaneous if they occur at the same time.

Let S and S’ be two frames of reference. S’ is traveling along the X-axis
with velocity v. Also let two events occur simultaneously in S at two
distinct points P, (x;, y4, z1, t;)and P,(x,,y,, Z,, t,) SO that
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X1 F Xt F Ly

Since the events are simultaneous in S so that

Assume that t,’ and t,’ are the times in S' that correspond to time
t; and t, in S. Through Lorentz transformations
. VX4 ;L VX,
ti =P (t1 —C—z).tz = ,B(tz _c_z)
Iy = AR _
tz_t1—.3(t2 CZ) ,B(t1 )

2
= p(t; —t1)+ﬁcv—2(x1 —X3)

v
=,3§(X1_X2)f07”t1=t2

However, sincex; # x,, the final statement reads t," # t,’. Thus, in S', the
two events occurrences are not happening at the same time.

Two events (P, and P,) at two distinct locations For an observer S'
traveling with velocity v relative to S along the X-axis, which are
simultaneous for an observer at rest in S, are no longer simultaneous. It
demonstrates that simultaneity is relative rather than absolute.

29 LORENTZ TRANSFORMATION FOR A
GROUP OR GROUP PROPERTY OF LORENTZ
TRANSFORMATIONS:-

Theorem 1: To prove that Lorentz transformations from a group.
Or

Show that the result of two successive Lorentz Transformations is itself a
Lorentz Transformation.

Proof: Examine three frames of reference S,S’, and S" as shown in Fig.
2.3, S' has relative velocity v with respect to S along position X-axis and
S" has relative velocity v’ with respect to S’ along positive X-axis.
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Fig. 2.3

By Lorentz transformation, the frames S and S’ can be related as
VX
x'=Bx—vt)y' =y,z =zt = (t _?) .. (1)

1
where f =
UZ
-z

Similarly for the frames S" and S” can be related as

x=B'(x-v't)y"=y', z"'=z", t"=p' <t’ - —> . (2)

1
where ' =

Let us assume v” is the resultant velocity of v and v’ then

v+v
v = - (3)

!
44
1+ 2

Where v” is the velocity of frame S” relative to S. So that

n 1
p=——
1_?

If we show that
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X =p"(x—vb),y =y,2" =z,t" =p" (t - ﬂ) . (4)

Then the required result will be proved.

1 . v"? . 1 v+7
2 LT T T AT S ’
B ¢ “\1+3

From equation (3)

(1+2272v +v v )—(v2+2vv’+v'2)
- 2

v’
CZ

2
—v? =2vv =7

(1)

From equation (1) & (2)
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x"=B'(x' - v'th)=p [ﬁ(x—Vt)_vﬁ(t_ﬁ)]

o
o v’ v+ . .
_ﬁﬁ<1+cz)x (—1717) —,B(x—vt)

From equation (3) & (5)

v’ )
el ttv+v")

Again from equation (2) & (1)

vl
t"=ﬁ< > lﬁ C—zﬁ(x—Vt)l
Y
oob(1+)-2e0e
o vy’ v+v x
_5ﬁ<1+7> t—1+vc_z.c—2

From equation (3) & (5)
yn:yI,yI:y:yu:y
"=77=z2=2z"=2

Thus, we have prove that

vV X
x"=p"(x—vt),y" =y z"=zt"=p" (t - C_2>

2.10 ABERRATION (RELATIVISTIC
TREATMENT):-

The phenomenon of aberration was originally discovered by Bradley in
1927. This phenomenon of light is very useful to determine the velocity of
earth if the velocity of light is known. The phenomenon of aberration
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results "The speed of light is independent of the medium of transmission;
but the direction of light rays depends on the motion of the source emitting
light relative to the observer".

The direction of a light ray emitted from a star is compared here with
respect to the inertial frames S and S'. S' is traveling in the positive
direction of the X-axis at a constant speed v in relation to S.
Given that the earth orbits the sun, we can presume that the system S is
fixed in the sun and S' in the earth. A full light beam from star P is located
in XY -plane or X'Y' —plane. At any given time t, the observers at
0 and O’ observe that, the direction of this light ray makes angles
a and &' with the X-axis, respectively as shown in fig. 2.4. Then

U, = ccosa,u, = —csina,u, =0 . (D)

Uy = ccosa’,uy, = —csina’,u; =0 -.(2)
By Lorentz Transformation

x'=px-vt),y =y,z' =zt =ﬁ(t_ﬁ)

1
where f =
7

c?

XX

Fig. 2.4

v
= dx' = f(dx — vdt),dy’ = dy,dt’' = f (dt h C—de)

dx'  p(dx—vdt) dy dy
dt’ _ Y\ gy dt _v
B (dt - 27) dx B (dt — 2 dx)
’ Uy — U ’ uy
Uy = T Uy = >
1 -z Ux B (1 ﬁux)

Department of Mathematics
Uttarakhand Open University Page 39



Theory of Relativity MAT609

! = ! 1_£u
or u,’  csina’ _ u, o2 Ux
1 1 v .
Uy ccosa (1——u) Uy — V
g (1-Zu,
" , uy, csina
—tana’' = =—
B(u, —v) B(ccosa —v)
ctana
- v
cfl1— )
ﬁ( ccosa
) tan a
—tana’ =

B (1 —gseca)

2\ 1/2
tana (1 - Z—2>

v
1——=seca
c

tana =

This is known as the relativistic formula for aberration.

2.11 DOPPLER’S EFFECT:-

2.11.1 Non Relativistic Treatment

According to this phenomena, which most readers have probably read
about in physics class, the pitch sound that an observer hears changes in
two situations: first, when the source and observer are both stationary, and
second, when they are moving relative to one another. The perceived
frequency rises as the source and observer get closer to one another and
falls as they get farther away. This phenomenon, known as Doppler's
effect, happens with all types of wave motion, albeit it differs slightly
from electromagnetic waves like light, which do not involve a medium, in
the case of mechanical waves that involve a material medium. If the
spectrum of light waves is viewed in a spectrometer, the motion of the
source causes a shift in the spectral line's position from its initial position.

We start by looking at the scenario in which the source is traveling toward
the observer at velocity u while the observer is at rest. Set the source's
frequency to f so that the wave speed is ¢ and the time period T = 1/f.
The wave travels a distance cT in a time interval T during which it emits
one cycle, yet the source waves in the same direction uT during the same
period. Therefore, rather than cT, the wave length, which is the distance

Department of Mathematics
Uttarakhand Open University Page 40



Theory of Relativity MAT609

between two successive peaks in the wave, is cT-ut. As a result, the
matching frequency represented by f; " is provided by

c cf f

=T(c—u)=c—u=1—c/u

fi - (1)
This indicates a perceived rise in the frequency. We substitute - u for u in
(1) to obtain the appropriate f; ' if the source is moving away from the
observer.
The apparent frequency in the second scenario, where the source is
stationary but the observer is traveling v from the source, is because the
wave speed in relation to the observer is c-v and rather than c.
, cC—vV cC—vV cC—vV v

=== f=0-3)f -®
Where f = c/A is the frequency in the stationary case.
Now when both the source of the observer is moving with velocities u and
v along the same direction, the same result may be combined as follows:

The source's velocity causes the apparent wave length in the first scenario
mentioned above to be
A= i _ c—u
1= fll - A
This indicates that the second wave maximum isA; behind the first wave
maximum when it reaches the observer. However, because of the
observer's motion, the wave speed in relation to the observer isc — v, and

as a result, the observer perceives the apparent frequency.
_ cC—vV _ C — Uf

f'=

A c—u

If the source and observer are moving in different directions, the signs of u
and v will be adjusted appropriately.
if v>uthenf' < fifv<uthenf' > f

Therefore, the apparent frequency falls as the source and observer move
apart, resulting in an increase in wave length; the opposite is true when the
source and observer are moving closer together.

2.11.1.1 Experimental Evidence for Non-Relativistic Treatment

When light waves are viewed in a spectrometer, the mobility of the source
causes a change in the spectral line's position from its initial position.
There are two  kinds of this  spectral line  shift.
A decrease in wave length is shown by several spectral lines shifting
towards violet. However, in some situations, these lines change in the
direction of red, signifying an increase in wave length. Doppler's effect
provides the following explanation for the above:
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The velocity of stars has a major impact in this change. The star is moving
toward the earth (us) in the first scenario and away from the earth in the
second. The shift is proportional to the distance of source from the earth.

By (1),

Forv =nA,i.e.c = fi{A,c = fil

A= (C ; u) A (for approach)

c+u
A= ( . )7\ (for recession)

2.11.2 Relativistic Treatment

Examine two inertial frames, S and S', where S' is traveling along the X-
axis at a velocity v relative to S. If f and T stand for frequency and time
period respectively, in the S system, then ' and T' stand for the S’ system.
Using the standard time dilation formula,

T
T’ = .
v
-z
But T= 1/f
1
T = -
v
fyl—-=
,_i ¢
_/1' (c=v)T'

_c f\/l—vz/c c+v
c—v ’c—v

fr= <c+v>1/2f

c—vV

Finally we get

Solved Examples:

EXAMPLE 1: A particle with a mean proper life of 1u second moves
through the laboratory at 2.7 x 101%cm/sec.

(1) What will be its life as measured by an observer in the laboratory?
(2) What will be the distance transversed by it before disintegrating?
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(3) Find the distance transversed without taking relativity into account
SOLUTION: Given
At = lusec =1 x 107 %sec,v = 2.7 X 101%m/sec

(1) By the result of time dilation,

_1/2
v
At' = At<1 ——2>
c
(2.7 x 1010)2
I __ -6 _
At' =1x10 /\[(1 BX1007

2.7\*
w10 - (2)

At' =3x1076/,/9 — (2.7)2
At'=3x107%/4/1.71 =3 x 107/1.31 = 2.3 x 10 ®sec
At = 2.3u sec.
(2) Distance transversed by the particle:
=v.At' = 2.7 x 10" x 2.3 x 1076 = 6.21 X 10* = 621 meter
(3) Distance transversed with relativistic effects

= At=27%10"x1x107% =27 x 10*cm = 270 meter

EXAMPLE 2: A body has the dimensions represented by 6i + 7j meters
in reference system S. How these dimensions will be represented in the
system S'? If S is moving with velocity 0.6¢ along positive X axis i, j
being unit vector along respective axis.

Solution: By Lorentz contraction

172
l:l 1_C_2
0.6¢\2
I'=6 1—( C) = 610.64 = 6 x 0.8

I'=48

Given v=0.6¢c

In S' system, the body's dimension along the X-axis is 4.8. However, since
there is no motion along the y-axis in S', there is no contraction in the y-
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axis direction. Therefore, in S' system, the body will be represented by
4.8i + 7j meters.

EXAMPLE 3: The length of a rocket ship is 100 meters on the ground.
When it is in fight its length observed on the ground is 99 meters,
calculate its speed.

SOLUTION: By Lorentz transformation

172

l=l 1_C_2

172

99 =100 |1 ——

c

Asl' <1

(99)2_ vZ v 997 199
100/ c2 T ¢2 1002 = 104

v V199 V199
= — = == x 3% 108

100 100

= v =423 X 10°m/sec

EXAMPLE 4: A man in rocket ship is travelling with velocity 0.9c
relative to an observer on the earth. He fires a proton in the direction of
travel at a velocity of 0.9c relative to rocket ship. What is the velocity of
proton relative to the observer on earth?

SOLUTION: We have
v = velocity of rocket ship relative to an observer on the earth = 0.9¢
u' = velocity of protonrelative to rocket ship = 0.9¢
V = velocity of protonrelative to an observer on earth

We know that

- u +v B 0.9c + 0.9c
1+u'£2 1+w
C CZ
V_1.806_0 995
181 U
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EXAMPLE 5: If u and v are two velocities in the same direction and V
their resultant velocity given by

V u v
tanh™!— = tanh™'— 4 tanh™' —
c c c

Then deduce the law of composition of velocities from this equation.

SOLUTION: Given that
|74
tanh™' — = tanh™! e + tanh™?! v
c c c

This equation is expressible as

1 c+V 1 ct+u 1 c+v

Elo'gc—szlo‘qc—u-}_ElOgc—v
; C+V—l c+uc+v
9 vTI =y

c+V c+u c+v_cz+(u+v)c+uv

= = . =
c=V c—-uc—v c2—-(w+v)c+uv

c+V _+w+v)ctuw

c—=V T 2—(u+v)ct+u
2V 2(u+v)c

= =

c—=V c¢Z—Ww+v)c+uv

c—V c-(u+v)ct+u

Vv (u+v)c
c . c 1+ uv
= — — = —_— -
Vv u+v (u+v)c
c c uv c® +uv

=>—= + =
V u+v @W+v)c w+v)

V_(u+v)c

c c2+uv

Ly (u + v)c?
c2(1+lé—127)
3 (u+v)

T D)
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This is required expression for V.

SELF CHECK QUESTIONS
1. The resultant of two velocities of light each of which is less than ¢
is also
a) Lessthanc
b) Equaltoc

c) Greaterthanc

d) None of these

2. Aberration of light stars is caused due to:

a) The travelling of light in the atmosphere

b) Elliptical orbit of the earth around the sun

c) The finite speed of light and the speed of earth in its orbit around
the sun.

d) The scattering of light by the air particles.

3. The basic theory of field is governed by

a) Lorentz transformation

b) Laplace transformation

c) Legendre’s transformation

d) Lagrange’s formalism

4. Lorentz transformation reduce to Galilean transformation on if

a) v=c

b) v<c

C) v>c

d) None of these

5. The result of two successive Lorentz transformation is:

a) Galilean transformation

b) Lorentz transformation

c) Einstein transformation

d) None of these

2.12 SUMMARY::-

In this unit, we explored the relativistic concept of space and time, which
replaces the classical notion of absolute space and time with a unified
space-time framework. The unit began with the postulates of the Special
Theory of Relativity proposed by Einstein, emphasizing that the laws of
physics are the same in all inertial frames and that the speed of light in
vacuum is constant for all observers, regardless of their motion. We then
studied the Lorentz transformation, which mathematically relates the
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space and time coordinates between two inertial frames in relative motion,
and ensures the invariance of the speed of light. The unit further examined
the consequences of Lorentz transformation, including key relativistic
effects such as:

o Time Dilation, where a moving clock appears to tick slower.

e Length Contraction, where objects in motion appear shortened
along the direction of motion.

o Relativity of Simultaneity, which shows that simultaneous events
in one frame may not be simultaneous in another.

We also studied the group properties of Lorentz transformations,
establishing that they form a group under composition. Additionally, the
unit covered relativistic optical phenomena such as aberration, which
refers to the apparent shift in the direction of incoming light due to the
motion of the observer, and the relativistic Doppler effect, which explains
the frequency shift in light or sound due to the relative motion between
source and observer.

2.13 GLOSSARY:-

e Lorentz Transformation: A set of equations that relate space and
time coordinates between two inertial frames moving at constant
velocity, ensuring the speed of light remains constant across all
inertial frames.

e Inertial Frame: A reference frame in which a body remains at rest
or moves with constant velocity unless acted upon by a force.

e Relative Motion: The motion of an object as observed from a
particular frame of reference.

e Space-Time Interval: A quantity invariant under Lorentz
transformations; it combines differences in space and time between
two events.

e Time Dilation: A phenomenon where time appears to pass slower
in a moving frame as observed from a stationary frame.

e Length Contraction: The shortening of an object's length in the
direction of motion as observed from a stationary frame.

e Simultaneity: The concept that two events that are simultaneous
in one frame may not be simultaneous in another due to relative
motion.

e Postulates of Special Relativity:

» The laws of physics are the same in all inertial frames.
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» The speed of light in a vacuum is constant in all inertial
frames, regardless of the motion of the light source or
observer.

e Aberration of Light: The apparent change in the direction of
incoming light due to the motion of the observer.

e Relativistic Doppler Effect: The change in frequency or
wavelength of light from a moving source, accounting for time
dilation effects.

e Group Property: Lorentz transformations form a group, meaning
they satisfy closure, associativity, identity, and inverse properties.
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e James J. Callahan (2019), "The Geometry of Spacetime: An
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e Satya Prakash and K.P. Gupta (Nineteenth Edition, 2019),
Relativistic Mechanics.

e Dr. JK. Goyal and Dr. K.P. Gupta (Twenty Eight Edition, 2018),
Theory of Relativity.

2.16 TERMINAL QUESTIONS:-

(TQ-1) Explain the postulates of special theory of relativity.

(TQ-2) Explain the phenomenon of time dilation in special relativity.
(TQ-3) Obtain the law of transformation for the Lorentz contraction
factor.

(TQ-4) Discuss the concept of Simultaneity in special theory.

(TQ-5) A rod has length 100cm when the rod is in a satellite moving with
velocity 0.8c relative to laboratory, what is length of the rod as determined
by an observer, (i) in the satellite and (ii) in the laboratory?
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(TQ-6) Calculate the length of a rod moving with a velocity of 0.8c in a
direction inclined at 60° to its own length. Proper length of the rod is
given to be 100 cm.

(TQ-7) A man is in a car travelling at 30 miles/hour. He throws a ball in
the direction of travel, at a velocity of 30 miles/hour relative to the car.
What is the velocity of the ball relative to the ground?

2.17 ANSWERS:-

SELF CHECK ANSWERS

arwdE
oo o T o

(TQ-5) (i) 100cm, (ii)60cm
(TQ-6) 91.6
(TQ-7) 59.999 miles/hour
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UNIT 3:- Relativistic Mechanics

3.1 Introduction

3.2  Objectives

3.3  Mass and Momentum

3.4 Newton’s Law of Motion

3.5  Measurement of Different Units

3.6  Variation of Mass with Velocity

3.7 Experimental verification

3.8  Transformation Formula for Mass

3.9  Transformation Formula for Momentum and Energy
3.10 Particle with Rest Mass Zero

3.11 Binding Energy

3.12 Transformation Formula for Force

3.13 Relativistic Transformation Formula for Density
3.14  Summary

3.15 Glossary

3.16 References

3.17 Suggested Reading

3.18 Terminal questions

3.19 Answers

3.1 INTRODUCTION:-

Relativistic mechanics is the branch of physics that extends classical
Newtonian mechanics to account for objects moving at or near the speed
of light. It is based on Albert Einstein’s theory of special relativity, which
fundamentally changed our understanding of space, time, and motion. In
relativistic mechanics, the assumptions of absolute time and space are
replaced by the idea that measurements of time and distance depend on the
relative motion between observers. One of the key insights is that the laws
of physics are the same in all inertial frames, and the speed of light is
constant for all observers, regardless of their relative motion. This leads to
phenomena such as time dilation, length contraction, and the relativity of
simultaneity, which have been experimentally verified. Additionally, the
famous equation E =mc? emerges from relativistic mechanics,
establishing the equivalence of mass and energy. This framework is
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essential not only in particle physics and astrophysics but also in
technologies like GPS, where relativistic corrections are necessary for
accurate functioning.

3.2 OBJECTIVES:-

After studying this unit, the learner’s will be able to

e To explain mass and momentum.

e To solve equivalence of mass and energy relation.

e To obtain the law of variation of mass with velocity.
e To understand the formulation of energy momentum.
e To solve the Binding energy.

3.3 MASS AND MOMENTUM:-

A moving particle's linear momentum (p) is described in classical
mechanics as p = mv, where m is the mass and v is the velocity.
We assume in classical mechanics that

e A moving body's mass is equal to that of a stationary one.

e In the absence of external forces, a body's total momentum stays
constant.
e The law of conservation of momentum refers to this.
If we use Lorentz transformations to test assumption (1), it will not
be true.
The law of conservation of momentum'’s Lorentz invariance suggests that
a moving body's mass is not constant but rather varies with velocity, as we
will see later.

3.4 NEWTON’S LAW OF MOTION:-

In classical mechanics, Newton has given three laws of motion namely.

1. A body at rest remains at rest and a body in motion continues with
constant velocity in a straight line unless as external force is
applied to it. Symbolically,

F=0=>a=0
Where F and a denote respectively net external force and
acceleration.

2. If aforce F acts on a body, then the momentum of the body will be
changed so that rate of change of momentum is proportional to the
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force and is in the direction of the force. Mathematically it is
expressed as:
dp
F=K—
dt
Where K is constant of proportionality. We defined K s.t. K = 1 and
dimension less.

_dp

F=a

In the non-relativistic limit the momentum is given by

o dv_
—mdt—ma

It is non-relativistic form of Newton's second law.

3. Whenever two bodies intersect at, then forces F;_,, on the second
body exerted by the first body is equal and opposite to the force
F,_,; on the first body due the second. That is to say, action and
reaction are equal and opposite.

Fi,=-F4

3.5 MEASUREMENT OF DIFFERENT UNITS:-

The three unit systems are C.G.S., F.P.S., and M.K.S. Keep in mind that
the ergs is in C.G.S. and the Joule is in M.K.S.
1. In the formula E = mc? ,units of m, c and E are gram, cm/sec and
ergs
2. leV = 1electron Volt = 1.6 x 10712 ergs
3. 1Joule = 107 ergs
leV = 1.6 x 10712 x 1077 = 1.6 x 10~ *°Joule
MeV =Million electron Volt, BeV = Billion electron Volt.
4. 1MeV = 10%eV = 1.6 x 10712 x 10°ergs
1BeV = 10%°eV =10° x 1.6 x 1072 ergs= 1.6 x 1073 ergs
Rest mass of proton = my, = 1.67 x 10~2* gm.
Rest mass of electron = m, = 9 x 10728 gram.
1 Kilo watt hour = 1 KW.H.= 3.6 x 10*? ergs
1gm = 6 x 1023a.m.u.
a.m.u. =Atomic mass unit
9. 1calorie = 4.2 x 107ergs = 4.2 joules

© N o v
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10. Distance from the earth to the sun is about 150 x 10® Km.

3.6 VARIATION OF MASS WITH VELOCITY:-

Examine two frames of reference, S and S'. S" is traveling along the X-axis
at a constant rate, v. If m, is the mass of a particle traveling along the x-
axis in system S at velocity u_1, then mj and u, " are the mass and velocity
of the identical particle in system S, respectively.

Suppose
B & B & B - (1)
p— —’ 1 p— ) 2 —_— .
v2 U,y 2 uy'?
1-= 1-5 1--14
By the formula of composition of velocities,
u; +v
U =—75
1+ C—2u1,
U, (1 +Cv—2u1’) =u +v
] Uu,—v
= v nen 2
Uy P (2)
Biuy' = = . (3)
57 )
Now,
uy"? _ (u; —v)?
cz 21 V2
¢ (1 c? ul)

=c?+ —u?—vi=c

u, 2v? 2[{ _ u? + v? N u, 2v?
CZ

Dividing by c?
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u,'? v\ u 2 +v? utv?
1_C_2 (1—C—2u1) =1- C2 + C4

Taking square root both sides, we get

u;"? v u 2 +v? utv? 12
1-— (1—C—2u1)= -ty

Putting the above value in equation (3)

1o Uu;—v
Biuy = T . (4)
242 2,,2\2
uc+v4  uq14vé\2
(1)

U —v

(1-&)(-%)]

s = BB (uy —v) by (1)

N[ =

B — By - ) .. (5)

Assuming that several of these particles are traveling along the X-axis and
that their masses and momentum remain constant within the system S, we
can now

Z my; = constant

Z m1u1 = constant
Since f and v are same for every particle and therefore

Y. m, v = constant
..(6)
Y. myu,f = constant
Subtracting, we get
Z m,f(u; — v) = constant
From equation (5)
> [ml M] = constant . (7)
B1
Appling in S’, law of conservation of momentum
Y m,'u," = constant ..(8)
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Comparing equation (7) & (8)

myf] —m
=my
B
my my
— = — = an absolute constant = my(say)
Br B
Then
my , my,
m =————m =

, -
’ _ u12 ’ u1/2
CZ CZ

According to this, if a particle with mass m in relation to system S is
traveling with velocity u in relation to system S, then

my
u
1- oz
If u = 0, then the last given m = m,

Hence is the mass of the body at rest. Hence, m, is also called rest mass or
proper mg, mass.

For it is the mass of the body measured, like proper length and proper
time, in the inertial frame in which the body is at rest.

3.7 EXPERIMENTAL VARIFICATION:-

The mass velocity relation:

o )

v2
c2

3
I

1—

can be verified in the experiments measuring the mass or e/m of the final
traveling electrons. We here offer the experiment by Guye and Lavanchy.
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Fig.1

3.7.1 Experiment of Guye and Lavanchy

In 1915, Guye and Lavanchy used their "identical paths" method, which is
seen in figure 1, to achieve the most accurate validation of equation (1). In
a vacuum tube, a cathode-anode system C*A is set up and run at several
thousand volts. The hole B in the anode collimates the cathode rays into a
fine beam, which then travels in a straight line to impact a photographic
plate Fat 0. By applying a potential difference between the plates D and E
and the latter employing an electromagnet M, represented by a dotted
circle, electric and magnetic fields are arranged in the course of the
former's electron beam.

Two fields sequentially deflect the electron beam. The field strengths are
set up so that the path taken by the electrons being studied matches the
path taken by a reference beam of low-speed electrons. Assuming that the
electric and magnetic field strengths X' and H' are such that the fast
electrons (velocity v') experience the identical electric and magnetic
deflectors as the slow electrons (velocity v) under the field strengths X and
H, it can be shown that

v xHg "

v X'H m’_ X'H
\XH'

Where m is the mass of the electron in the reference beam of low speed
electrons and m' that of an electron in the beam of fast electrons under
examination.

Guye and Lavanchy produced approximately 2000 determinations of for
electrons with (m") / m velocity ranging from 26 to 48% that of light and
showed that their results confirmed therewith to an accuracy of 1 part in
2000.

Theorem 1. Equivalence of mass and energy: To show that E = mc?2.
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Proof: Let S and S' be two systems. S' is traveling along the x-axis with
velocity v in relation to S. In the system S, suppose that a particle of mass
m is traveling along the X-axis at velocity v. Then

my

(1)

The equation dT = F.dr = force X displacement , where dr is the
particle's displacement, gives the particle's increase in energy if a force F
is applied to it.

ar = .2 4e = F.va 2
=F.—.dt=F.v - (2)
Since force is defined as the rate of change in momentum so that
d
F = a(mv)or Fdt = d(mv)

From equation (2)

| - ]
dT = vd(mv) = vdI 0 I
1=
ly1— 2]
2
T 2| w
=mev| [1-—+ 5
S [
1 _C_Z CZ
myvdv
dT = 37 (3)

Taking differential of both sides in (1), we get

dm = mo(=2v/c®)dv  myvdv
m= v2 3/2 v2 3/2
o(1-%)  (-5)
Zdm — movdv

v2\3/2
@—7)
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dT = c*dm . (4)

From equation (3)

Assume the particle has a mass of m, and is initially at rest. Its mass
becomesm, + dm = m, say, once force F is applied. The particle's total
K.E. T is determined by

m

T=de=f c?dm = c?(m — my)
mo

T = mc?—myc?
or T + myc? = mc?
= FE = K.E.of the moving particle + energy at rest

=T + myc?

We obtain
E = mc?

This formula is known as Einstein formula showing that the two
fundamental conceptions of mass and energy are identical.
Here myc? is called interval or rest energy.

3.8 TRANSFORMATION FORMULA FOR MASS:-

Let's look at systems S and S.S" is traveling along the x-axis at velocity
v. A body moving with velocity u and ' in S and S' has masses m and
m'in S and S’, respectively.

We have,
mg my
m=——m = —— (1)
2 12
1-% u
2 1-=7
u? = w Hu utu? =u 't u,?
By the law of composition of velocities
1/2 1/2
2 / 2 /
Uy —V Uy 1_C_2 u, 1_C_2
! ! !/
Uy = v Uy = v Uz = v
1—C—2ux 1—C—2ux 1—C—2ux
From equation (1)
1
u'?\ 2
m [l1-7==
W = ) U2 (2)
CZ
12
u 1
— 2 2 2
1_C_2_ 1—C—z(ux' +uy’ +uz' )

Department of Mathematics
Uttarakhand Open University Page 58



Theory of Relativity MAT609

=1-—

v2 v2 1
(ux—v)z+uy2<1—c—2>+u22<1—c—2>l. —
c? (1 - —ux)
v

2 2 1_72 2 1_72
—{(ux—v) +u, <1—C—2>+uz (1—C—2>}l

2
Taking a2 = 1/c? (1 —~ :—zux) , we get

2 2

u’ v 2vu
1-—= a’ [c2<1+—ux2 ——x>
c c

Taking square root
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This is the transformation formula for mass.

If u, =0, then
m

2\1/2
(1 - c—z)

3.9TRANSFORMATION FORMULA FOR
MOMENTUM AND ENERGY:-

m' =

Consider the two systems, S and S'. S" is traveling along the X —axis with
velocity v. Assume that a body in S and S’ has masses m and m'. The
body traveling with velocities u(uy, uy, u,)and u'(uy, u}, uy) is in S and
S’ respectively.

Next is the relationship,

The components of the momentum p are:
Dx = MUy, Py = MUy, P, = MU, in S system.
Py =mu',p,’ =mu/,p," =m'u, inS system.
v u, —v

pr =mu,’ = m(l — C_qu):B—v = (mu, — mv)p
1 —C—Zux
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E
vE=mc*=>m=—
c

b= (e~ = (e~ 23 B

c2

s, =m'u, =m l—ﬁu B el mu, =

py = y = 2 Ux v = MUy =Dy
c?x

1o oo v Uy _ _

pz=mu; =m 1_C_2ux .8 [y =mu; =p;
o7t

v
E'=m'c? = m(l — C—Zux),[fc2 = B(mc? — mvu,)

= B(E —vpy)
[ E = mc?,p, = mu,]
Thus, we have shown that
vE 1

—Z)b’,p; =Dy, Dz =P B = ———
c 1_v_z

c?

Dx = (px -

These are transformation equations for momentum. These transformation
equations are exactly similar to Lorentz transformation equations if we

E .
replace x,y, z by py, py, Pz respectively.

3.10PARTICLE WITH REST MASS:-

A particle with rest mass m, and momentum p has relativistic energy E,
which may be found using
E2 = pzcz + mozc4
1
E = (p%c? + my%ch)z ...(1)
Wherem, = 0, then equation (1) can be writtenas E = pc ... (2)
But

vE
b= oz
o UZEZ
o p = C4
From equation (2)
E? v2E?
 — 2
2 P T
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svi=c?orv=c
This proves that the particle of zero mass travels with the speed of light.

3.11 BINDING ENERGY:-

The binding energy of a nucleus is the amount of energy required to break
its protons and neutrons apart across an infinite distance.

Therefore, we anticipate that the nucleus's mass will be less than that of
the constituent nucleus by a factor of

Am = AE/c?
Where AE is the nucleus' binding energy.

3.12TRANSFORMATION FORMULA FOR
FORCE:-

Let's look at two systems. S and S’ are traveling along the X —axis at a
certain velocity. The masses of a body in S and S’, with velocities a and
u'in S and S’, respectively, are denoted by m and m'. If a body with mass
m and velocity an is subject to a force, then

d
F = rate of change of momentum = a(mu) (1)
dm du dm )
=Uu——+tm——=u——+mu

dt dt dt
F = iF, + JF, + kF,u = iu, + ju, + ku,

This gives
dm )
E, =u, ar + mu,
dm
Fy = uyE + mu'y > (2)
dm )
E,=u, ar + mu, |
dm d my u du 1
dt ~ dt 2 2 dt u2\3/?
-2 ( - c_2>
_du m _ m du
— Y 2(1 uZ) (c2—u?) " dt
-=
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dm m du 3
— = Uu— ..
dt  (c?2—-u?) dt (3)
u? = u,® +uy? 4 u,’
Differentiating w.r.t. t, we get
UL = Uyl + Uy Uy, + UL,
Equation 3 now becomes
dm  muyly, + Uyt + Usuy)

dt (c? —u?)

Equation 2 now becomes

- MUy + Uytiy + UyUy) )
x = Uy (CZ _ uz) muy
P = m(UyUy + uyty, + U,U,) A
y = Uy (CZ _ u2) mu,,
B mUyUy + uytiy, + uyu,) o
2 = Uz (c?2 — u?) Mz

By Lorentz transformation,

t'=ﬁ(t—:—f)
a =0 ()
where = ! >

In the system S’, according to equation (1)

! d ! 1A d ! ! dt
E _%(mux)—a(mux)ﬁ

v
_d[m(l_c_zux) ux—v] 1

(4

-z
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1 d 1
=g MmO - ””-m
p(1-%) ¢t

1 [dm( )+ mai

= |5 (u —v mux]
(1- )t
, 1 m . . .
Fl = = [ —— (weuy, + uytiy + uyti,) (uy — v)
(1 - —Zux) ct—u
C
+miy| .. (5)
Observe that

E, —
v
(1-Zw)
From equation (4)
m . . . .
= m (uxux + uyuy + uzuz)ux + mu,
(v/c?) m

— (uy? + u,?) (uuty + uyu
(1_6%ux)[cz_uz y" U ) (Ul F Uyl

+ uzu'z) + m(uyu'y + uzu'z)]

= (1 —mlu ) [(CZ i u?)’ (urtty + uytly, + uytiy) {(1 B cﬁzux) U
7 Uy

v v v
= (0,2} = (uytdy + i) = + (1 - ) ux]

~ m (s + uytiy + uyu,) (ux — C%uz)
) R

v . . . .2
~ 2 (uxux +u,uy, + uzuz) + u,

1 m

(E)

(s + uytiy + uyti, ) (uy — v) + mu'x] =F
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By virtue of (1)

d . d , o dt
Fy’:@(muy):d_t(muy)dt,
1.72
1 d I[m(1 ) 1-2 |
-_— .U
v \dt Y(1_Y
'8(1 czux) [ 1—?—; (1 czux)J
= vc E(muy) vc .F,
(1_02 x) (1 c_zux)
Thus, we have shown that
UZ
. ( 2) (uyF, + u,F,) . 1-—
x = e ™ Ly = v’
(1-Zw) (1- )
v
F = < R,

These are the required transformation formula for force acting on a body.

3.13RELATIVISTICT RANSFORMATION
FORMULA FOR DENSITY:-

Let S and S" be two systems. Assume that S’ is traveling with velocity
relative to S in the r-axis' positive direction. Let

Case 1: Assume that a body in system S is at rest. Let Vyand V' represent
the body's two systems' volumes. Then,

V, = Voﬁ
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If p and p' be the densities, then

my ,_m ,_mo
pO_ VO ’p _Vl'm - B
=t =t
BVoB  B?
= = Po

Case 2: A body moving with velocity u(uy,u,,u,) relative to S and
u'(uy', uy', u,") related to S' is what we'll assume. Then

U = iuy + ju, + ku,
u' = iu, + juy,’ + ku,’

Let V represent the body's volume in system S and V' as determined by
S'. Let L, l,and I, be the lengths of the body's edges when it is at rest in
system S, and let V,, be the volume. Then,

Vo =Ll 1,

By Lorentz contraction, the length of edges in system S are

U, 2 Uy, 2 u,?
lx\/l—c—z,ly\/]. —C—Z,lz\/l—c—z
respectively. Then

u,? u,? w,2\1"?
=) () (%)

Let

Then,

Mass of the body as observed from the system S is given by
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_m my 1

Py = 2 VoA

1-=
c
From equation (2)
Po

p= = (3

u
All-=

c

where u® = u,* + u,* + u,*

To obtain the density expression for the system S',

1o Uy —V 1 uyﬁ 1 u’Zﬁ
A S A g A
——Uu ——Uu ——Uu
CZ X CZ X CZ X
' Mo
m =
u'?
1_C_2

Lengths of edges in system S are
u,'? u,'? u,'?
lxj1—%,lyj1_L2,zz\/1 - =

C C C

V' =Ll LA

We have

V' = VoA .. (4)
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orp=—Le (5)
, u
A [1— =z
2 1/2
put |1-"2 i (1 B cz)
ut [1-—=
2 v
< (1-zw)
Now from equation (5)
v
_w(-aw)
p = L
ap(1-%)

From equation (3), we get

Solved Examples

Example 1: The rest mass of an electron is 9 x 10728 g. what will be its
mass if it were moving with 4/5" the speed of light?

Solution: The mass of an electron if it were moving with speed v is
determined by
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Where m,, is the rest mass of the electron

Here
4 —28 -31
v=§c=0.8c&m0=9><10 g=9x%x10"""kg
9 x 10731
am = —2
0.8c
1 _( c )
B 9x 10731 B 9x 10731 B 9x 10731
- Vi—-064 036 06
=1.5Xx 1073%g

Example 2: How much electric energy could theoretically be obtained by
annihilation of 1 gm of matter?

Solution: We have
AE = Am.c?
= (1x1073kg) X (3 X 108m/s)?
=9 x 1033joule
1 electron volt = 1.62 X 10~ %joule
Therefore, electrical energy obtained

9 x 1013 v
T 1602x10-19°

9 x 1032

1602 ¢

= 5.618 x 1032%eV

Example 3: Proton and neutron rest masses are 1.6725 x 10~%*gm and
1.6748 x 1072* gm, respectively. The deuteron’s measured mass is
3.3433 x 1072* grams. Determine the binding energy.

Solution: We know that a nucleus of deuteron consists of one proton and
one neutron.
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Am = (mass of proton + mass of neutron — mass of deuteron)
= (1.6725 + 1.6748) x 1072* — 3.3433 x 10~2*
= 0.0040 X 1072* =4 x 107%"gm
Binding energy AE is given by

AE = Am.c? =4 x 10727 x (3 x 101%)2 =36 x 107 7eryg

_36x107 o 36x107
T16x1012% T16x10-12x106 ¢
—3'6—225MV
16 oM

Example 4: A particle with rest mass 2 x 10~%*kg is moving with speed
2.1 X 108m/sec. Calculate its moving mass.

Solution: Given
my =2 X 107%*kg,v = 2.1 X 108m/sec,c = 3 X 108m/sec

We have to calculate m.
my

v2

1—C2

2 x 1072
L (2.1 X 108)2
3 x 108

2 x 10724
T 0.714

= 2.8 x 107 %*kg
Example 5: Calculate rest mass of photon.

Solution: We know that for photon v = ¢, then

2
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my=mx0=0
=~ rest mass of photon= 0

Example 6: From the relativistic concept of mass and energy show that
the kinetic energy of the moving mass m with velocity v is myv?/2 when
v < ¢ where ¢ being velocity of light.

Solution: We know that
E = K.E.of the moving particle + energy at rest
(~ E =mc? T = K.E.of the moving particle)

mc2 =T +myc? =T = c?(m—myg)

Neglecting higher power as v < ¢

, v 1
T=m0C F=§mov

SELF CHECK QUESTIONS

1. Prove that the relation between momentum and energy is
E2 = pzcz + m02C4
2. Rest mass of photon is
a) h/Ac
b) hv/c?
c) 0
d) m
3. The variation of mass relation is given by
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Mo
aym =
vZ
-z
2
by m =m, 1_0_2
c)m= 02
v
-z

d) None of these

3.14 SUMMARY::-

In this unit, we studied the fundamental modifications required in classical
mechanics to accurately describe physical phenomena at relativistic
speeds. We began with a review of mass and momentum, followed by
Newton’s laws of motion and the measurement of physical quantities in
different unit systems. A major focus was on the variation of mass with
velocity, where we learned that mass increases with speed, as supported
by experimental verifications. We then studied the transformation
formulas for mass, momentum, and energy, which are essential for
analyzing particle motion in different inertial frames. Special emphasis
was given to the behavior of particles with zero rest mass, such as
photons, and how they still carry energy and momentum. The concept of
binding energy was introduced, illustrating the mass-energy relationship in
nuclear processes. Additionally, we examined the relativistic
transformation formula for force, showing how force components change
under Lorentz transformations. Finally, we discussed the transformation of
density in relativistic contexts, reinforcing the idea that even quantities
like mass density are frame-dependent. Overall, this unit laid a solid
foundation for understanding motion, forces, and energy in the realm of
high velocities close to the speed of light.

3.15 GLOSSARY::-

e Relativistic Mechanics: The branch of physics that modifies
classical mechanics to account for objects moving at speeds close
to the speed of light, incorporating the principles of special
relativity.
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e Special Relativity: Einstein’s theory that describes the physics of
objects in inertial frames moving at constant high speeds, based on
two postulates: the constancy of the speed of light and the
invariance of physical laws in all inertial frames.

e Lorentz Transformation: A set of equations that relate space and
time coordinates of events between two inertial frames moving at
constant velocity relative to each other.

e Rest Mass (mg): The mass of an object as measured in its own
rest frame; it is invariant (does not change with speed).

e Binding Energy: The energy required to separate the components
of a bound system, such as a nucleus; it's equal to the mass defect
multiplied by c2.

e Particle with Zero Rest Mass: Particles like photons that have no
rest mass but carry energy and momentum and always move at the
speed of light.

e Transformation of Force: In relativistic mechanics, the
components of force transform differently along and perpendicular
to the direction of motion.

e Relativistic Density: The mass density of an object as observed
from a moving frame, which changes due to length contraction.

e Relativistic Mass ( m ): The effective mass of an object increases
with its velocity according to

Mo

m = >

v

-z

e Momentum (Relativistic):Momentum in special relativity is given
by

_ mgu

p= 2

-z

It grows without bound as velocity approaches the speed of light.

e Energy-Mass Equivalence: Expressed as E = mc?, this famous
relation shows that mass and energy are interchangeable.

e Total Energy ( E ): The sum of rest energy and kinetic energy:

K.E.= E = myc?

It increases more steeply than in classical mechanics as speed
increases.

e Time Dilation: The phenomenon where a moving clock appears to
tick slower when observed from a stationary frame:
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e Length Contraction: The phenomenon where a moving object
appears shorter along the direction of motion:
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3.18 TERMINAL QUESTIONS:-

(TQ-1) Derive and discuss E = mc?

(TQ-2) The normal 12 volt car battery has the capacity to deliver 31
amperes for 20 minutes from full charge to discharge. It weighs 20 kg
when fully charged. When it is not charged, how much less does it weigh?

(TQ-3) Calculate the velocity at which the mass of a particle becomes 8
times its rest mass.

(TQ-4) If the mass of a hydrogen atom is 1.00814 a.m.u., that of a
neutron is 1.00898 a.m.u., and that of a helium atom is 4.00388 a.m.u.,
then determine the binding energy of one helium nucleus.

(TQ-5) Prove the formula
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my

m= 2
(TQ-6) Explain the formulation of energy- momentum vector in special
relativity.
(TQ-7) Describe experimental verification of the variation of mass with
velocity.
(TQ-8) A particle is moving with speed 0.6c. Calculate the ratio of rest

mass to moving mass.

3.19 ANSWERS:-

SELF CHECK ANSWERS

TERMINAL ANSWERS
(TQ-2) 12.96 x 10~°
(TQ-3) 0.992¢
(TQ-4) 28.687MeV
(TQ-8) 4/5
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UNIT 4:-Minkowski Space

CONTENTS:
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4.2  Objectives

4.3  Minkowski Space

4.4  Geometrical Interpretation of Lorentz Transformation
4.5  Space and Time like Interval

4.6  World Points and World Lines
4.7  Light Cone

4.8  Proper Time

4.9  Energy Momentum Four Vector
4.10 Four Vector (World Vector)
4.11 Relativistic Equation of Motion
4.12  Minkowski’s Equation of Motion
4,13 Summary

4.14  Glossary

4.15 References

4.16 Suggested Reading

4.17  Terminal questions

4.18 Answers

4.1 INTRODUCTION:-

Minkowski space is a fundamental concept in the theory of special
relativity that combines space and time into a single four-dimensional
continuum known as spacetime. Proposed by the German mathematician
Hermann Minkowski in 1908, it provided a new geometric interpretation
of Einstein’s special theory of relativity. Unlike classical Newtonian
mechanics, where space and time are treated as separate and absolute
entities, Minkowski space treats them as interconnected dimensions. Each
point in this space, called an "event," is described by four coordinates:
three for space (x,y,z) and one for time t, often written as ct to ensure
consistent units. This unification allows the laws of physics, especially the
behavior of light and motion at high speeds, to be expressed more
naturally and precisely. Minkowski space forms the mathematical
foundation for analyzing relativistic effects and understanding the
structure of spacetime in both special and general relativity.
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4.2 OBJECTIVES:-

After studying this unit, the learner’s will be able to

e To explain Minkowski’s four dimensional space- time continuums.

e To solve geometric interpretation of Lorentz transformation.

e To define space and time like interval.

e To define world points, world lines, light cone, proper time and
four vector.

e To obtain relativistic equations of motion and Minkowski’s
equation of motion.

4. 3IMINKOWSKI SPACE:-

Minkowski argues that the external world is not Euclidean space of three
dimensions, meaning that it is made up of events with coordinates of
(x4, X2, x3, x4), Where the first three (x;, x,, x3)are space coordinates and
the fourth one is time. In other words, the external world is not made up of
points with coordinates of (x, y, z), where X, y, and z are real numbers. If
anything happens in space, the location of the event in the four-
dimensional continuum represents both the point where it happens and the
moment it happens. The four directions are not interchangeable. Because a
meter stick cannot be turned into a clock, an axis that measures distance in
the X-direction can be rotated to measure distance in the Y and Z-
direction. However, the same axis cannot be rotated to measure time
interval. As a result, the time interval's direction is not unique. The space-
time continuum is described as 3+1 dimensional instead of four
dimensional to convey this distinction.

The interval between two events whose co-ordinates are
(x,y,z,x4)and (x + dx,y + dy, z + dz, x, + dx,), is given by
ds? = dx? + dy? + dz? + dx,* (D

Where the co-ordinates x, involves t. this interval must be independent of
transformation from one system to another system.

We have seen that the expression

ds? = dx? + dy? + dz? — c?dt?
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Is the Lorentz invariant. The invariant interval between two adjacent
points must therefore have the following form

ds? = dx? + dy? + dz? — c?dt? . (2)

Comparing equation (1) and (2), we get

X4 = ict,wherei = ,/(—1)

Four elements (X, vy, z, t) can be used to identify an event in Newtonian
physics, where t is the time at which the event happens and x, y, and z are
the rectangular Cartesian coordinates of the location. Since it is evident
that an event requires four numbers to be identified, we say that the
totality of all possible occurrences forms a four-dimensional continuum in
Newtonian physics. We are unable to eliminate the hyphen and refer to
space and time separately because this continuum is known as space-time.
Sincex® = x,x? = y,x3 = z,x* = t, the coordinates of an event can thus
also be obtained at ( x1, x2, x3, x*).

44 GEOMETRICAL INTERPRETATION OF
LORENTZ TRANSFORMATION:-

To prove that Lorentz transformation is simply a rotation in four
dimensional spaces.

Assume p = ict. We are aware that under the Lorentz transformation
x% — c?t? = x% + p? is invariant. It indicates that there is no change in
the distance between a point P(x, p) and the origin O.
To create the new rectangular axes, Ox' and Op', rotate the rectangular
axes Ox and Op via an angle of 8. Let P's coordinates be (x', p') with
respect to the new axes. The relationships come next.
OP? = x? + p? in system xp
OP? = x'? + p'? in system x'p’
x' = xcosf + psing ...(1)
p' = xcos(90° + 0) + psin(90° + O)
p' = —xsinf + pcosf ...(2)

v
let Z = (,tanf = if3, so that
i 1

sin = ——— ,c0s0 = ——

V(@ —B?) V(@ —B?)

Putting the value of sin@ and cos@in equation (1), we get
X pif

+
Ja-g Ja-p%»

!
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But we know that p = ict & = B,

, x — vt (3)
X = —
v =52
Putting the value of sin@ and cos@ in equation (2), we get

, —Xxif +p
P = . (4)
V(A -p?)
—xif+p= —xiz+ ict =ic (t—ﬁ)
_ P c c?
Now equation (4) becomes

= ..(5)
(1-p2)

The equation (3) & (5) represent Lorentz transformation. Thus, we have
proved that Lorentz transformations are equivalent to rotation of axes in
four dimensional space (x,y,z)or (x,y,z,ict) through an hypothetical
angle

0 = tan"1(if) = tan™?! (%)

4.5 SPACE AND TIME LIKE INTERVAL.:-

Assume that two frame of references S and S’. S’ is moving with constant
velocity v along X-axis. Then by Lorentz transformation

r__ _ [ I — I — — U_X
x'=Bx—vt),y =y,z' =zt = ﬁ(t CZ) (D
1
where f§ =
UZ
-z
Assume two events whose coordinates are

(x1, 1,21, t1)and(xy, y,, z,, t,) in S.
s12% = =[xy = %)% + (2 = y1)2 + (2 — 2)*] + *(t, — t1)* ... (2)

Similarly in system S’

5’122 = —[(x" — x1’)2 + (' — }’1’)2 + (z,' — Z1')2]
+c%(t,' — )% ... (3)
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From equation (1)

5'122 = —[B*{(xy — x1) —v(t; =t} + (2 —y1)* + (2, — 21)?]

+ c?p? {(tz —ty) — Ciz (x2 — x1)}2

2
= - [ﬁz(xz — x1)? <1 - %) + 2 = y1)* + (22— Zl)zl
2

+ c2B2(t, — t;)? <1 - :_2> — 20B%(xy — x1)(ty — t1)

2v
+ C_zczﬁz(xz —x1) —v(t; — t1)

2
butﬁz<1—1:—2>=1

Hence

5’122 = =[x = %)% + (2 = y1)? + (22 — 21)?] + ¢?(t, — t1)? = 51,57

2
= 5'15" = 5957
= 5"y = S12
This proves that the interval s, is Lorentz invariant.

Consequently, the following outcome is obtained.
The space-time, interval between two events is an invariant.

1. Ifs;, =0, then the intervals s;,,given by equation (2), is called

singular. Also s,, = 0 given

—[Ge = x)? + (y2 —y1)? + (22 — 21)?] + *(t, —t)* = 0
This suggest that
—[dx? + dy? + dz?] + c?dt?* =0

This equation is known as equation of null cone or light cone.
2. Let the two events occur at the same point in S’ and also let the

first event occur after the second event so that

x'=xy =z =26 >t
Putting these values in equation (3)
s't=c2(t, —t,)%2>0
s'1,° > 0&s"y, >0
buts',, = s15.
hences;, > 0 = the interval s,,is real.
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Real intervals are called time like intervals.
For s’;, contains only time component.
The condition that the intervals is time like interval is

c?(ty" —t1)% > (xy — %)% + (¥, —y1)? + (25 — 2¢)?
If the interval is time like, then there exists a frame of reference for
which the interval between two events is real.

3. Next, we assume that t;" = t,’ since the two events in S' happen

simultaneously. 3 now turns into

5'122 = —[(x; —x)* + (2 —y1)* + (22 — 2)*] <0

s'1,5 < 00rs,2>0

Or s;, is imaginary.
Imaginary intervals are called space like intervals. For s';,
contains only space co-ordinates. The condition that an interval is
space like interval is

c?(ty' —t,)? < (e —x1)* + (72 = y1)* + (22 — 21)?
Thus if the interval is space like, then there exists a frame of
reference in which two events occur at the same time.
If the magnitude of a vector is real, it is said to be time-like. If its
magnitude is imaginary, it is space-like. If its magnitude is zero,
then it is null.

4.6WORLD POINTS AND WORLD LINES:-

Each particle corresponds to a certain line known as the world line, and
the events in the four-dimensional space, or Minkowski space, are
represented by points called world points. We just take into account one
space axis, the X-axis, without sacrificing generality. A space-time
diagram with a horizontal space axis and a vertical time axis that is
orthogonal to one another can therefore be used to depict the coordinates
(x, t) of an event. If we take ct (= m, say) rather than r, we can maintain
the same dimensions of the coordinates. The formulae for the Lorentz
transformation for and fare

v =2 Em Q)
D
m — Bx

m == (2)

NeerD
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'e world line of particles

£— world line for length
signal

3 X

Fig. 4.1
X X~ pm m m — fx wherefs = v/c
V(1 -5%) V(-2
In the frame S, we assume that the X-axis is horizontal and the m axis is
vertical. A particle's trajectory in this frame will look like a world line,
which is a curve whose points are determined by

ldx v
tang = —— = —
cdt ¢

Where a is the angle between the m-axis and the tangent. Additionally,
for each material particle, @ < 45°as v < c. In such case, the world line
for the light signal (v = c) is a straight line that forms a 45° angle with the
m-axis.

The junction of two particles' world lines is represented by a collision. It is
clear that an event and a space-time diagram at that event determine a
material particle's world line. If the final velocity is the same as the initial
velocity but different in direction, the collision is considered elastic.

4.7 LIGHT CONE:-

The quantity
s?2=x%+y%+2z%—c?t? (1)
remains the invariant under Lorentz transformations. Here we take
xt=xx% =y,x% =z,x* =ict = ct,/(-1) ...(2)

Naturally, the square of the four-dimensional distance between the event
(x%)and the origin (0,0,0,0) equals the invariant from (1). The equation
describes a surface made up of all the points with zero distance from the
origin.
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s?=x?2+y2+z22-c%%=0 (3

We refer to this surface as the light cone. The propagation of a spherical
light wave from the origin O(0, 0, 0) at t = 0 was described by equation
(2). According to the inequalities, the light cone separates the (3 + 1)
space into two distinct and invariant domains, S; and S,.

st=x2+y2+2%2—-c%?*<0
and s> =x2 +y?+2z2 - c*t* >0

Respectively. We have the instance of simultaneity with respect to Lorentz
transformations in the domain S,. It is not possible to change two events
in the domain S, in this way.

4.8 PROPER TIME:-

Working with the invariant dT? = ds?/c? instead of ds? itself is
sometimes more convenient. Thus, we designate it as the element of

appropriate time and assign it a unique symbol, dT.

1 1
dT? = —2d52 = ——Z(dxz + dyz + dz?) + dt?
c c

=@ @G

If the particle has a velocity u, then the last becomes

uz 1/2
dT = dt <1 - —2>
c

Integral of proper time along a world line

4.9 ENERGY MOMENTUM FOUR VECTOR:-

To describe how the energy-momentum vector is formulated in special
relativity.

The definition of momentum p in classical mechanics isp =mv .
Similarly, the definition of momentum p in relativistic terms is
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MY )

We know that
ds? = —(dx? + dy? + dz?) + c?dt?

dz

@) =@ @ @]

But we know that

ﬁN| QN

1—

ds dt
— =—orfds = cdt

B
Writing Cartesian equivalent of (1), we have
Moy dx cdx
Px = vzzﬁmovx:ﬁmoazmog
1=z

From equation (2)

cdx
or Px = mOE
o cdy cdz
similarly p, = mOE , Py = mOE
myc? cdt
E =mc? = —2 = Bmyc? = myc? —
02 ds
-z
From equation (2)
(E/c) = cdt
/c) = mgycC Is
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Write x1 = x,x%2 = y,x3 = z,x* = ct, we get

cdx? cdx? cdx® E cdx*
Px = Mo=gm Py = Moo= Pz = Moo=y 0= o=

It is evident from this that the four quantities (px, Dy, pz,é) belong to the
energy momentum four-vector, which we represent by p# i.e.

E
p* = (px, Py pz,;)
This is the significance of the fourth component of momentum.

4.10 FOUR VECTOR (WORLD VECTOR):-

The ordinary vector analysis can be extended to four dimensions by
introducing four-dimensional space (X, Y, z, ict). We refer to these four-
dimensional  vectors as world vectors or four vectors.
Below their emblems are bars that represent the world vectors.

A
- = lAl +]A2 + kA3 +pA4

B
- = lBl +_]BZ +kB3 +pB4,

P d , , . . . .
If we write u = d—: = U, + ju,, + ku, in usual three dimensional velocity

. u
vector, then components of velocity four vector — are

U = :Bux'uZ = ﬁuy'u3 = ﬁuz'ul = ,B(lC)

1
where =

u’

A B
- .= AlBl + Asz + A3B3 + A4B4,

Now we can defined four velocity u* of a particle as

U dx” U
ut=——=x
ds
Also we define four acceleration vector as
u du* d (dx“ )
uwr=xr=—=—\—
ds ds\ ds
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4.11 RELATIVISTIC EQUATION OF MOTION:-

The relativity theory adopts Newton's equations for motion and
momentum, but with the distinction that a body of mass m traveling at
velocity v fulfills the equation

Momentum p is defined as

moyv
1-—p?

Hence the components of momentum are

p=mv =

mox myy myZ
Px = y Py = ———=, Pz =
X /—1_’82 y ,—1—,32 Z 1—ﬁ2

5 v: X%+ y%+4z2
where p? = — = ————
c c

Here dots denotes differentiation w.r.t. time t. the equation of motion are

d Dx dpy_dez_F
- - Ix

dt Y dt xdt

X
E.,m

R
1-pzl Nl gz T dt| 1 pe

d
moa

4.12 MINKOWSKI’S EQUATION OF MOTION:-

The equation

P d ( dx“) Kk
=Kti.e.—|moc—) =

P ds\" % ds

is referred to as Minkowski’s equation of motion and the K# is four force.

This K* is alo known as Minkowski’s force.

Department of Mathematics
Uttarakhand Open University Page 86



Theory of Relativity MAT609

To prove that Minkowski’s equation reduces to the Newtonian form in the
limit where v/c - 0

Equation (1) is expressible as

d(  dxtdeydt
(0 &)z ="

dt\""° dt ds)ds
d ( dtdx“)dt_K#ds )
a\sa)as Kag @
ds? = —[(dx)? + (dy)? + (dz)?] + c?dt?

2

(ds )2 _q (dx)z N (dy)z N (dz>2 1 1 v
cdt) dt dt dt) |'c2 = 2

dt 1 my
= =m ..(4)

o m0C% = moc. vZ vZ
Ji-%) J(-%)
C C

(According the law of variation of mass with velocity)

From equation (2), (3) & (4)

d( dx“)_K“ " v2
ac\ " ar )T e c2

Taking limitas v/c — 0, we get

This is Newton’s form of equation of motion.

SELF CHECK QUESTIONS
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1. What are the four coordinates used to describe an event in
Minkowski space?

2. What is the formula for the spacetime interval between two events
in Minkowski space?

3. What are the three types of intervals in Minkowski space, based on
the sign of s2?

4. Is the spacetime interval invariant under Lorentz transformations?

5. What transformation replaces Galilean transformations in
Minkowski space?

6. Why is the time coordinate often written as ct in Minkowski
space?

4.13 SUMMARY::-

In this unit we have studied the Minkowski space is a four-dimensional
framework that merges the three dimensions of space with the dimension
of time to form a unified concept called spacetime. Developed by
Hermann Minkowski, it provides the geometric foundation of Einstein's
special theory of relativity. In this space, events are represented by four
coordinates (ct, x,y,z), where ct is the time component scaled by the
speed of light. The key feature of Minkowski space is the spacetime
interval, which remains invariant under Lorentz transformations, unlike
distances in classical mechanics. This interval determines whether two
events are causally connected and is classified as timelike, spacelike, or
lightlike. The geometry of Minkowski space is pseudo-Euclidean,
meaning it has one time dimension with a different sign in the metric
compared to the three space dimensions. This structure allows for a natural
explanation of relativistic phenomena such as time dilation, length
contraction, and the constancy of the speed of light, making it essential for
understanding modern physics.

4.14GLOSSARY::-

e Minkowski Space: A four-dimensional spacetime framework that
combines three spatial dimensions and one time dimension, used to
describe the structure of space and time in special relativity.

e Spacetime: The unified concept of space and time as a single four-
dimensional continuum, where events are located using space and
time coordinates.
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e Event: A point in spacetime defined by four coordinates (ct,x,y,z),
representing a specific place at a specific time.

e Spacetime Interval (s2): An invariant quantity defined ass? = x? +
y? + z% — c?t? that remains the same in all inertial frames of
reference.

e An interval with s? < 0<0, meaning two events can be connected
by a signal moving slower than light; they are causally connected.

e Spacelike Interval: An interval with s? > 0, meaning two events
cannot influence each other; they are outside each other's light
cones.

e Lightlike (Null) Interval: An interval with s? = 0, representing
the path of a light signal; the events lie on each other's light cone.

e Worldline:The path that an object traces in Minkowski spacetime,
showing its position over time.

e Light Cone: A cone-shaped surface in spacetime representing all
possible light paths from an event. It separates the past, future, and
elsewhere (causally disconnected regions).

e Proper Time ( T):The time interval measured by a clock moving
with the object; the actual experienced time between two events on
a timelike path.

e Metric Tensor (m,,): A matrix that defines the geometry of
spacetime in special relativity. For Minkowski space, it typically
has the form:

Nw = diag(—1,+1,+1,+1)

e Causality: The principle that a cause must precede its effect;
preserved in Minkowski space by restricting causal influence to
within the light cone.

e Inertial Frame: A reference frame in which an object not acted
upon by a force moves in a straight line at constant speed.

e Pseudo-Euclidean Geometry: A geometry where the time
component has a different sign than spatial components in the
metric, as in Minkowski space.

4.15 REFERENCES:-

e Ashok Das (2011), Lectures on Gravitation, University of
Rochester, USA ,Saha Institute of Nuclear Physics, India.
e Richard Feynman (2018), Feynman Lectures On Gravitation.
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4.16 SUGGESTED READING:-

e Satya Prakash and K.P. Gupta (Nineteenth Edition, 2019),
Relativistic Mechanics.

e Dr. J.K. Goyal and Dr. K.P. Gupta (Twenty Eight Edition, 2018),
Theory of Relativity.

4.17 TERMINAL QUESTIONS:-

(TQ-1) Discuss Minkowski’s four dimensional space- time continuums.
(TQ-2) Explain Minkowski’s four dimensional formation bringing out the
significance of the four components of momentum and the equations of
motion.

(TQ-3) Explains the following terms in detail; light cone, world line,
space like vector, time like vector.

(TQ-4) Derive the four vector equation of motion and discuss the physical
significance of the force four-vector in terms of classical quantities.
(TQ-5) What is Minkowski space and how does it relate to special
relativity?

(TQ-6) Explain the concept of the spacetime interval and its physical
significance.

(TQ-7) How are Lorentz transformations derived from Minkowski space,
and what is their role?

(TQ-8) Describe the geometry of Minkowski space and contrast it with
Euclidean space.

(TQ-9) How does Minkowski spacetime help explain time dilation and
length contraction?

(TQ-10) What is the significance of Minkowski space in general
relativity?

4.18 ANSWERS:-
SELF CHECK ANSWERS
1. (ct,x,y,2)
2. 5% =—[(xz —x1)* + (2 —y1)* + (22 — 21)?]
3. Timelike (s? < 0), Spacelike(s? > 0), Null(s? = 0).
4. The spacetime interval is invariant—it has the same value in all

inertial frames.
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5. Lorentz transformations replace Galilean transformations to
preserve the spacetime interval.

6. Multiplying time t by c (the speed of light) makes the units of time
and space the same (typically meters), simplifying the interval
formula and unifying space and time.
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UNIT 5:-Some Applications of Special Theory
of Relativity

CONTENTS:

5.1 Introduction

5.2  Objectives

5.3 Compton Effect

5.4  Experiments on Compton Scattering
5.5 De-Broglie Hypothesis of Matter
5.6  Summary

5.7  Glossary

5.8  References

5.9  Suggested Reading

5.10 Terminal questions

5.11 Answers

5.1 INTRODUCTION:-

The Special Theory of Relativity, formulated by Albert Einstein, is not
only a profound theoretical advancement but also a practical framework
with far-reaching applications in modern science and technology. At its
core, the theory redefines fundamental notions of time, space, and energy,
especially at speeds approaching that of light. While originally developed
to resolve inconsistencies in classical mechanics and electromagnetism,
special relativity now serves as the basis for interpreting high-speed
phenomena in various domains. Its effects are no longer just theoretical
curiosities—they manifest in everyday technologies such as satellite
communication, particle accelerators, and even nuclear energy production.
From ensuring the accuracy of GPS navigation to explaining the dynamics
of cosmic rays, the theory's applications extend across both terrestrial and
astronomical scales. Exploring these applications highlights the essential
role of relativity in bridging abstract physics with real-world functionality.

5.2 OBJECTIVES:-

After studying this unit, the learner’s will be able to

e Toexplain Compton Effect and its importance.
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e Todiscuss De-Broglie hypothesis of matter wave.

5.3 COMPTON EFFECT:-

The term “Compton effect” or “Compton scattering” refers to the elastic
scattering of a photon from an electron. Compton asserts that when
electrons in the scatter a high-frequency radiation beam, lower-frequency
radiations are also produced. The Compton Effect is the name given to this
observable shift in the frequency or wave length of the scattered high
frequency radiations. Compton discovered that the direction the scattered
beam travels, or the angle it makes with the indirect photon, affects this
change. The simultaneous application of the theory of relativity provided
an explanation for this effect on the fundamentals of quantum theory.
According to the quantum  theory's radiation  principle,

I.  Photons with energy hv, where h = Planck's constant and
frequency, make up radiations.
Il. The photons move at the speed of light c,
c=3x%x10"%m/sec

Incident photon

Fig.5.1

1. When the photons hit the scatterer's electrons, they follow all the
rules of energy and momentum conservation.

V. Some photons' K.E. is passed to electrons when they collide with
them, resulting in scattered photons having a lower K.E. than the
incident one.

To Derive the Formula for Scattering

Prior to the collision, let's assume that the electron is free and at rest.

Figure 5.1 displays the dispersed photon and electron trajectories

following a collision.

* hv = energy of photon = mass. c?

(By E = mc?)

hv
~ mass of photon = 2
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hv hv
momentum of photon = mass.velocity = mass.c = —c¢=—
c c

Before Collision: energy of photon = hv

hv
momentum of incident photon = —
c

energy of electron = myc?; my is the mass of electron when it is at
rest.

Momentum of electron=0 as electron is at rest before collision.

After Collision: Let after collision the scattered photon and recoil electron
make angles a and S respectively with the direction of incident beam.

energy of scattered photon = hv'

hv'
momentum of scattered photon = —
c

energy of electron = mc?
momentum of recoil electron = mv
Where m is the mass of the electron when it is moving with velocity v.
Calculations: By the principle of conservation of energy,
Energy before collision = Energy after collision

hv + myc? = hv' + mc? . (D)
By principle of conservation of momentum,

Momentum before collision = Momentum after collision along and
perpendicular to the direction of incident photon

We get

!

v v
—c0s0 + 0 = —cosa + mvcosf
c c

!

v
& —sin0 + 0 = —sina — mvsinf
c c
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hv  hv' hv'
= — = —cosa + mvcosfi & —sina — mvsinfi =0
c c c
= cmv cosf = h(v — v'cosa) - (2)
& cmv sinf3 = hv'sina .. (3)

Squaring (2) and (3) and then adding,
m?v2c? = h?[v? +v'? — 2vv/cosa] . (4)

Let p and E denote respectively momentum and energy of recoil electron.
Then

p = mv,E = mc?

equation (4) = p?c? = h?[v? + v'? — 2vv'cosal
equation (1) = E? = [h(v — V') + myc?]?
or E? = h2(v?2 +v'2 = 2vv") + my%c* + 2myc?h(v — v') ...(5)

Subtracting equation (4) from (5), we get
E? —p?c? = 2vv'h%(cosa — 1) + my?c* + 2hmyc?(v — V')
But we know that
E2 — p2¢? = my2c*
or mo?c* = 2vv'h2(cosa — 1) + my?c* + 2hmyc?(v — v')
or 2vv'h?(1 — cosa) = 2hmyc?(v — v')

h(1 — cosa) 3 (v—7v")

!

or >
mocC 44

1 1 h a ) 6
or v v mgc? cosa ..(6)

As « is acute so that cosa < 1.% - % >0

or v—v' >00rv>7
But velocity = frequency. Wave length

c =vAdand c = v'A'for photon
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c , C
= = — = —
v /1,1) A’
Using this in equation (6), we get
A2 h
———= > (1 — cosa)
c Cc mgyc
h
AM—2A=—~>1—cosa) - (7)

mgycC
S -21>0=1>1

The frequency change indicated by relation (6) implies that incoming
radiation has a higher frequency than scattered radiation. The relation (7)
indicates that the wave-length of incident radiation is smaller than the
wave-length of dispersed radiation.

If « = /2, then cosa = 0 so that (7) gives

A =2A=— ..(8)
myc

h =6.62 x 107%7ergs sec,c = 3 x 101%m/sec

electonic rest mass = my = 9 X 10"28gram

h 6.62 x 10727 662 o 1o
= = = . X
mec 9 x 1028 x 3 x 1010 27 x 1010 cn
= 0.0245194

This quantity is called Compton wavelength and is denoted by A..

A, = 0.024519A

h
M =1 —-1=——>1-cosa) = 22.sin?(a/2)
myC

Since A, is finite in every inertial frame and hence it is impossible for a
free electron to emit or absorb a photon.

5.4 EXPERIMENT ON COMPTON EFFECT:-

In 1905, De-Broglie and Geiger carried out an experiment to confirm
Compton’'s idea. In order to detect the photons and electrons produced by
an X-ray beam scattering in hydrogen gas, two Geiger counters were
placed opposite each other and perpendicular to the beam. While the other
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counter was sensitive to electrons exclusively, the platinum foil used to
close one of the counters was sensitive to photons since it absorbs
electrons, enabling only X-rays to enter the chamber. A secondary electron
is created when a photon interacts with the gas inside the chamber. The
photon counter actually reacts only to a secondary electron, not to a
photon that strikes it directly.

X-rays

photon Electron
counter -counter

Hydrogen gas

Fig.5.2

Compton theory states that an electron enters the electron counter for
every photon entering the photon counter. About ten electrons were found
in the electron counter for each scattered photon that was recorded in the
photon counter. The reason is that no secondary electron is created by
each photon that enters the chamber. The simultaneous detection of about
10% ionization in both counters can be attributed to chance and
coincidence. The simultaneous emission of a scattered photon and a
recoiling electron can be attributed to the observed coincidence,
supporting the Compton theory as a two-particle action.

5.5 DE-BROGLIE HYPOTHESIS OF MATTER
WAVES:-

De-Broglie Hypothesis: De-Broglie proposed that just like the dual nature
of electromagnetic radiation, a material particle such as electron, proton
etc., might have dual nature. He asserted, “A moving particle whatever its
nature has wave properties associated with it”. According to him: 1 =
h/mv where A is the wave length associated with the moving particle, m
the mass of the particle, v its velocity and h is Planck's constant.

(h = 6.62 x 10™3%joules/ sec)

Derivation: In case of radiation, the momentum of photon:
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as v = nd gives ¢ = vA
Similarly, the wavelength of the matter wave is given by

h h

B p Cmv
The special theory of relativity can also be used to determine this value of
the matter wave's wave length. Similar to a proton or electron, a material
particle can be thought of as the standing wave system in the space region,
then

l/) — lpoezmvt (1)
Where v is the particle's frequency in the remaining frame, v, is the
wave's amplitude at the position (x, y,z) at the moment &, and v is the
quantity that varies periodically to produce matter waves. Using the
Lorentz transformation of this wave function in the new frame of variables
(x',y',2"), let the particle travel with velocity v in the positive direction of

the X-axis., we have ( |
, o vx'
Y =YPyexp { 2miv (t " vz) } - (2)
L J0-2)

Now the standard equation of wave equation is

Y =Ypexp {Zniv <t + 3:)} - (3)

Where u' is the phase velocity of the wave in the new frame. From
equation (2) & (3), we get

c
'=——and u' = — .. (4
v and u " 4)

Taking the mass of the particle m, in the position of rest, we get by
Einstein’s mass energy and quantum hypothesis

E = hv = myc?

myc?
= v =
h
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Putting this value in equation (4), we get

2
myC
) % my ¢ mc?
v = = — = —
V2 v2\ h h
(-8) J0-&)
my
asm =

Hence, the wave length of the matter particle is

! CZ
u E7) h
v’ mc? my
h

Thus, the wave length of De-Broglie wave associated with a material
particle is given by the expression

A=—
p

A relation between the particle and wake aspects of the matter.

SOLVED EXAMPLE

EXAMPLE: 1. An excited nucleus of rest mass m,, is at rest with respect
to a chosen inertial frame. It goes over to the lower state whose energy is
smaller by AE. As a result it emits a y — ray photon and undergoes a
recoil. Show that frequency v of the y — ray photon is given by

_AE[1 AE ]
V=

2myc?

SOLUTION: The mass m of the recoil nucleus in the inertial frame where
its rest mass is my is determined by taking v to be the frequency of the
y —ray photon that is emitted and allowing the nucleus to recoil with
velocity V.

moc? — AE
m= (1)

\1/2
c? (1 - V—z)
Cc

According to the principle of conservation of energy,
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myc? = — 1+ hv . (2)

p = mv gives p = mc for photon and so

mc: E hv

P c c c

P = 7 (3)

According to the principle of conservation of energy,

hv _ (moc® — AE)lv - (4)

C =

It follows from (1) and (3)

2 _
(4) = hv = (m‘)C—AlE) L ..(5)
vz €
(1-2)
2 _
2)=> myc? — hv = (mOC—AlE) .. (6)

V2\2
(1‘72)

hve (mgc? — AE)

(5) = . .(5)

(1-2)
Equating (6) & (7)
hvc
myc? — hv = —
%

or —_— ==

vV hv
or —
c

" mec? — hv
Putting the expression for V/c in (5), we get
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(mgc? — AE)

- ()|

(moc? — AE)
[(myc? — hv)? — (hv)2]1/2

hv =

N =

1=

(mgc? — AE)? = (mgc? — 2hv)myc?
(myc?)? — 2myc?AE + (AE)? = (mgc?)? — 2hvmc?

AE[AE — 2myc?] = —2hvmgc?

AE AE
v= |

Rl 2mgyc?

EXAMPLE2: Show that it is not possible for a photon to transfer all its
energy to a free electron.

SOLUTION: Allow a photon with momentum p and energy E to transfer
all of its energy to a free electron if at all possible. An electron with rest
mass m, move with velocity v following the energy transfer.

We can regard the motion of an electron as a non-relativistic one so that

1
E = Emovz . (1)

(Since mass of electron compared to that of photon is infinitely large.)

E — —
c p = myv
E
—=myv ..(2)
c
Dividing (1) by (2), we get
Cc = 2 orv = 4C

This demonstrates that the electron travels at twice the speed of light. A
contradiction. The maximum speed at which any particle in nature may
travel is the speed of light.
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SELF CHECK QUESTIONS

1. If 2 and A" are wavelengths at emission and reception respectively,
if the condition of red sift is

a) 1 =2

by 1'<2

Q) A>2

d) None of thes

2. What is time dilation and where is it observed in real-life
applications?

3. How does the special theory of relativity apply to particle
accelerators?

4. What role does length contraction play in high-speed travel?

5. How does special relativity help explain the decay of fast-moving
muons?

5.6 SUMMARY:-

This unit focused on key discoveries that marked the transition from
classical physics to quantum theory. We began by studying the Compton
Effect, which provided strong evidence for the particle nature of light. The
effect, observed during Compton scattering experiments, confirmed that
photons carry momentum and that their interaction with electrons leads to
a measurable shift in wavelength something that classical wave theory
could not explain. Moving forward, we examined the groundbreaking De
Broglie Hypothesis, which introduced the concept that all matter exhibits
wave-like behavior. This idea extended the notion of wave-particle duality
from light to matter, leading to the conclusion that particles such as
electrons have a wavelength inversely proportional to their momentum.
These topics not only deepen our understanding of the quantum world but
also form the theoretical foundation for technologies like electron
microscopes and quantum computing.

5.7GLOSSARY:-

e Time Dilation: The phenomenon where time appears to pass more
slowly for an object moving at a high velocity relative to a
stationary observer.

Department of Mathematics
Uttarakhand Open University Page 102



Theory of Relativity MAT609

Length Contraction: The shortening of an object in the direction
of its motion as its speed approaches the speed of light, relative to
an observer.

Relativistic Mass: The concept that the mass of an object
increases with its speed, becoming significantly larger as it
approaches the speed of light.

Photon: A quantum (particle) of electromagnetic radiation that has
zero rest mass and travels at the speed of light.

Relativistic Momentum: The momentum of a particle moving at
relativistic speeds, given by p = ymv, where y is the Lorentz
factor.

Global Positioning System (GPS): A satellite-based navigation
system that requires corrections from both special and general
relativity to provide accurate location data.

Muons: Elementary particles produced by cosmic rays in the
upper atmosphere, whose extended life when traveling fast is
evidence of time dilation.

Particle Accelerators: Devices that accelerate particles to near-
light speeds, where relativistic effects must be taken into account
to predict motion and collisions.

Cosmic Rays: High-energy particles from space that travel at
nearly the speed of light, used in experiments confirming
relativistic effects.

Simultaneity: The concept that two events occurring at the same
time in one frame may not occur simultaneously in another moving
frame.

Twin Paradox: A thought experiment that illustrates time dilation:
a twin who travels at high speed and returns ages less than the one
who stayed on Earth

5.8 REFERENCES:-

Rindler, W. (2018). Introduction to Special Relativity (2nd ed.). Oxford
University Press. A modern and accessible textbook covering both
theory and applications, including GPS, relativistic kinematics, and
particle physics.

5.9 SUGGESTED READING:-
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e Satya Prakash and K.P. Gupta (Nineteenth Edition, 2019),
Relativistic Mechanics.

e Dr. J.K. Goyal and Dr. K.P. Gupta (Twenty Eight Edition, 2018),
Theory of Relativity.

5.10 TERMINAL QUESTIONS:-

(TQ-1) What is Compton Effect? Give its theory and importance.

(TQ-2) Using special theory of relativity derive De-Broglie hypothesis.
(TQ-3) Calculate De- Broglie wavelength of an electron whose Kinetic
energy is 50eV. (m = 9.1 x 10728gm)

5.11 ANSWERS:-

SELF CHECK ANSWERS

1. ¢

2. Time dilation is the effect where time appears to pass more slowly
for an object moving at high speed relative to a stationary observer.
It is observed in real-life in the accurate timing of GPS satellites,
which must account for both special and general relativistic effects
to provide precise location data.

3. In particle accelerators, particles move at speeds close to the speed
of light. Due to relativistic effects, their mass increases with speed,
and relativistic momentum and energy equations must be used to
describe their behavior accurately.

4. Length contraction is the phenomenon where objects moving at
relativistic speeds appear shortened in the direction of motion.
Although not experienced at everyday speeds, it becomes
significant in relativistic space travel or in cosmic ray interactions
with Earth’s atmosphere.

5. Muons created by cosmic rays in the upper atmosphere have a
short lifetime. However, due to time dilation, they appear to live
longer from the perspective of an Earth observer, allowing them to
reach the ground before decaying.

TERMINAL ANSWERS

(TQ-3) 1 = 1.73A
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BLOCK II
TENSOR ANALYSIS
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UNIT 6:-Tensor and line Element |

CONTENTS:

6.1 Introduction

6.2  Objectives

6.3  Summation Convention

6.4  Dummy suffix

6.5 Real Suffix

6.6  Kronecker Delta

6.7  Determinant

6.8  Four Vectors (World Vectors)
6.9  Transformation of Co-ordinates
6.10 Summary

6.11 Glossary

6.12 References

6.13  Suggested Reading

6.14 Terminal questions

6.15 Answers

6.1 INTRODUCTION:-

In this section, we are introduced to the fundamental concepts of tensors
and the line element, which play a crucial role in the mathematical
formulation of physics, especially in the theory of general relativity. A
tensor is a generalization of scalars and vectors that remains invariant
under coordinate transformations, allowing physical laws to be expressed
in a form valid in all reference frames. The line element is an expression
for the infinitesimal distance between two nearby points in space or space-
time and is defined using the metric tensor, which encodes the geometric
structure of the space. This forms the foundation for describing the
curvature and geometry of space and time in both special and general
relativity.

6.2 OBJECTIVES:-

After studying this unit, the learner’s will be able to
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e To explain Summation Convention, Dummy suffix and Real
suffix.

e To define Kronecker Delta.

e To explain four vectors and determinant.

e To discuss transformation of co-ordinate.

6.3 SUMMATION CONVENTION:-

The expression a;x* + a,x? + --- + a,x™ is represented by

n

i=1

Summation convention means drop the sigma sign and adopt the

convention
n
Z a;xt = a;xt

i=1

According to the summation convention, a suffix implies sum across a
specified range if it appears twice in a phrase, once in the upper position
and once in the lower position. We assume that the range is between 1 and
4 if it is not specified.

6.4ADUMMY SUFFIX:-

The word "dummy suffix™ refers to a suffix that appears twice in a term,
once in the upper position and once in the lower position. For example i is
dummy suffix in a} x!

If we have
al'xt = afx! + - + af x*
a]”x]—alx + ~+ alxt
The last two equations prove that a} x‘ = a!'x/. This shows that a dummy

j
suffix can be replaced by another dummy suffix not used in that term.

Also two or more than two dummy suffixes can be interchanged. For
example

0x% dxP B 0xP ax*
9aB Jxiox7 ~ IBa Gyt gxi

6.5REAL SUFFIX:-
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Real suffixes are those that are not repeated. For example u is a real suffix
in aj'x‘. A real suffix cannot be replaced by another real suffix. i.e.
aj' x' # alx!

6.6KRONECKER DELTA:-

It is denoted by 6}' and is defined as

5i = {1 ifi=j
JT0ifi#j
Properties:
axt 5
Cox) T
2. 8/A4) = A
3.6/ =4

foréi+62+63+6f=1+1+1+1+=4

4. 516} = 6}

6./DETERMINANT:-

Consider the determinant
aj a; a3 a;
2 2 .2
ay Az az A
= a(sa
a3 a3 a3 al (say)
aj a; as aj
In this case, al, might be interpreted as this determinant's general element.
The row and column to which the element al, belongs are indicated by the
suffix u and v, which is also used to indicate this determinant|al|. A%,
stands for the element a’;’s cofactor. The determinant's symmetry or anti-
symmetry is determined by
u_

v H_ v
a, =a,ora, =—a;Vuandv

We have

v — Hg1 Hp2 4 a3y oM g4
a,Ay = a; Ay + a, Agt+az Az +a, Ag
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By the well known property of determinant
abAv =0ifu+o
abAb =aifu=o
These two results can be represented by a single equation
alb AV = ast
6.7.1. Differentiation of Determinant

Let the element a, be functions of independent variables x, v, z, ... etc. So
that

daj dai 0dai al .. a}
da axz 69; 62x a? .. aj
-=lai ai ..af |t .o
Ox dat Oaj
a; a; a; dox — Ox
First det. on R.H.S
daj daj da; dal
A A4 A=
ax Nt g At G4 =5
a;
Similarly, last det.on R.H.S.= 92 AY
da dal oa; dal
Finally, — = AV e — AV =247
macty ox  Ox Tt +6x 4 ox H
Similari aa_aa,’f ’
imilarly, oy = oy

6.8FOUR VECTORS (WORLD VECTORYS):-

The concept of four-dimensional space has been introduced to us.

Ordinary vector analysis (three vectors) can now be extended to four

dimensions, or four vectors. Four vectors or world vectors are these four-

dimensional vectors.

Given that the coordinates in four dimensions are orthogonal,
lLi=jj=kk=pp=1

i.j=jk=kp=pi=pj=ki=0
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The bars underneath their symbols represent the world vectors. Given two

world vectors, A and B, then
A - lAl +]A2 + kA3 +pA4

And
B - lB1 +]B2 + kB3 +pB4

The scalar product A. B is defined as
A.B = A,B; + A,B, + A3B; + A,B,
or A.B=A.B+ A,B,
Where A and B are ordinary vectors.
Thus, A= A(A1, Ay, As, iAL)

Hence A> = A.A = A? + A5 + A% — A3

_2 — —
or A2 =A — A% where A = A(A,,A,,A3), is ordinary three dimensional

vector.

The world vector A is said to be space-like A2 > 0 and time like if A? <

0.

Corresponding to three dimensional operator V we have four dimensional

operator

X(D’alembertian operator)defined as

&—'a+'a+k +
_lax ]6y 0z pap

_ 0A, 0A, 0A; 0A,
Dzvé-&é—ax+ay+az+ap
i j k p
CurlAzlExA:iiii
Jdx O0x O0x Ox
A A Ay Ay

6.9TRANSFORMATION OF CO-ORDINATES:-
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We examine a transition from one coordinate system (x?!,x?,x3,x%) to
another (x'%,x'%,x'3,x'*) , where x'* = x"'(x'%, x'2,x'3,x'%),i = 1,2,3,4.

For co-ordinates x*, the four functions x'“are continuous differentiable
with a single value. It is claimed that the four equations above define a
transformation of coordinates. According to the equations, the differentials
(dxt, dx?,dx3, dx*)are transformed.

ox't ox't ox't ox't ox't

o _ 1 _ 2 3 4 __ 7 j
dx =35 dx +6x2 dx +_6x3 dx +_6x4 dx* = o) dx’

Generalizing this, we get,

_ax’id j
~ OxJ X

dx't

This is the transformation law of co-ordinates.

SELF CHECK QUESTIONS

1. What is a tensor?
2. What is the role of the metric tensor in defining the line element?
3. What does the term "infinitesimal" in the line element mean?

6.10 SUMMARY::-

In this unit, we studied essential concepts that form the mathematical
foundation for tensor analysis and special relativity. We began with the
Einstein Summation Convention, which simplifies tensor notation by
implying summation over repeated indices. The ideas of dummy suffix
(repeated indices summed over) and real suffix (free indices that represent
tensor components) were introduced to distinguish between variables in
expressions. We explored the Kronecker delta, a special symbol used as
the identity operator in tensor calculus. The concept of determinants was
discussed in the context of coordinate transformations and matrix
operations. We also studied four-vectors (or world vectors), which
combine spatial and temporal components into a single object invariant
under Lorentz transformations. Finally, we learned how coordinate
transformations affect tensor components, preparing us for understanding
more complex structures in relativistic physics.

6.11 GLOSSARY:-
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Tensor: A mathematical object that generalizes scalars and
vectors, characterized by components that transform systematically
under coordinate transformations. Tensors describe physical laws
in a coordinate-independent way.

Line Element ds?: An expression representing the infinitesimal
distance between two nearby points in space or space-time,
typically written as ds* = g,,,dx,dx,,.

Metric Tensor g,,,: A symmetric tensor that defines the geometry
of spacetime by specifying how distances and angles are measured.
It appears in the line element.

Einstein Summation Convention: A shorthand notation where
repeated indices in a term are assumed to be summed over without
explicitly writing the summation symbol.

Dummy Suffix (Index): An index that appears twice in a term and
is summed over. It does not appear in the final result and can be
replaced by any other letter.

Real Suffix (Index): A free index that appears only once in a term
and indicates the specific component of a tensor. It must match on
both sides of an equation.

Kronecker Delta(é‘,w): A symbol defined as 1 when p=v and 0
otherwise. It acts as the identity operator in tensor equations.
Determinant: A scalar value calculated from a square matrix, used
in transformations and to determine properties such as invertibility
and volume scaling.

Four-Vector (World Vector): A vector in four-dimensional
spacetime, consisting of time and spatial components (e.g., x* =
(ct,x,y,z), x which transforms under Lorentz transformations.
Coordinate Transformation: A rule that relates the coordinates in
one frame to those in another. Tensors transform according to
specific laws under such transformations.

6.12 REFERENCES:-

Tevian Dray(2023), Differential Forms and the Geometry of
General Relativity , CRC Press.

Iva Stavrov (2020),Curvature of Space and Time, with an
Introduction to Geometric Analysis, American Mathematical
Society.
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6.13 SUGGESTED READING:-

e Satya Prakash and K.P. Gupta (Nineteenth Edition, 2019),
Relativistic Mechanics.

e Dr. J.K. Goyal and Dr. K.P. Gupta (Twenty Eight Edition, 2018),
Theory of Relativity.

6.14 TERMINAL QUESTIONS:-

(TQ-1) Write short note on Kronecker Delta.

(TQ-2) Define four vectors.

(TQ-3) What do you understand by transformation of co-ordinates?
(TQ-4) What is meant by the term dummy suffix in tensor notation?
Explain its role in tensor equations and how it relates to summation
convention.

(TQ-5) How does the summation convention help in the efficient
calculation of physical quantities in relativistic and tensor equations?
(TQ-6) Discuss the significance of free indices in tensor expressions, and
give examples of how real indices are used in the formation of tensor
components.

(TQ-7) Discuss the concept of the determinant in the context of tensors
and their transformations. How is the determinant of the metric tensor
important in general relativity?

(TQ-8) Explain how coordinate transformations work in tensor calculus.
Discuss how the components of a tensor transform when changing from
one coordinate system to another.

6.14 ANSWERS:-

SELF CHECK ANSWERS

1. A tensor is a mathematical object that generalizes scalars, vectors,
and matrices. It can be described in terms of its components, which
transform in a specific way under a change of coordinates. In
essence, a tensor is a multi-dimensional array of quantities that
obeys a set of transformation rules depending on the type
(contravariant, covariant, mixed) and rank (order of the tensor).
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2. The metric tensor guv defines the geometry of the space or
spacetime. It determines how distances and angles are measured.
In the context of the line element, the metric tensor allows the
calculation of the infinitesimal distance ds between two nearby
points in a given coordinate system. It also dictates how vectors
and tensors transform under coordinate changes.

3. The term "infinitesimal” refers to a wvery small quantity,
approaching zero. In the context of the line element, it describes
the infinitesimally small distance ds between two points that are
arbitrarily close to each other in the manifold. This allows for the
calculation of the distance between points in the limit as the
separation between them tends to zero.
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UNIT 7:-Tensor and Line Element 11
CONTENTS:

7.1  Introduction

7.2 Objectives

7.3  Tensor

7.4 Symmetric Tensor

7.5  Anti-symmetric Tensor

7.6 Addition of Tensor

7.7 Inner Product of Two Vectors
7.8 Multiplication of Tensors
7.9  Contraction

7.10  Reciprocal Symmetric Tensor
7.11  Relative Tensor

7.12  Riemannian Metric

7.13  Associate Tensors

7.14  Magnitude of Vector

7.15  Angle between two vectors
7.16  Summary

7.17  Glossary

7.18 References

7.19 Suggested Reading

7.20  Terminal questions

7.21  Answers

7.1 INTRODUCTION:-

Tensor and Line Element Il delves deeper into the mathematical
framework used to describe curved spaces in differential geometry and
general relativity. It focuses on key concepts like the Riemann curvature
tensor, which measures the curvature of spacetime, and the Christoffel
symbols, which describe how vectors change when parallel transported in
curved spaces. The line element, expressed through the metric tensor,
provides a way to calculate the infinitesimal distance between points in a
curved manifold. Additionally, the covariant derivative, geodesics, and
metric compatibility are explored to understand how objects move and
interact in curved spacetime. These tools are essential for describing the
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geometry of space-time and are foundational in the study of general
relativity and other areas of physics involving curved geometries.

7.2 OBJECTIVES:-

After studying this unit, the learner’s will be able to

e T derives the mathematical expression for the Riemann tensor and
understands its physical interpretation.

e To examine how the line element describes infinitesimal distances
in both curved and flat spaces.

7.3 TENSOR:-

We will define scalar and vector first, followed by a tensor.

1. Scalar: A quantity that can be expressed by a single number is
called a scalar. For example, body mass, and body temperature.

2. Vector. Any quantity that can be represented by three numbers in
three  dimensions is called a vector. For example,
ul,u?,and u® three dimensions can be used to indicate the
velocityg.

3. Tensor: A collection of numbers A® is said to be vector if it
fulfills the transformation law

x'*
At = A® @ (1)
Or if it satisfies the transformation law
, d0x“%
A u = Aaax—,“ (2)

It is referred to as a contra variant vector or contra variant tensor of rank
one if it satisfies the first one, and as a covariant vector or covariant tensor
of rank one if it satisfies the second.
The total number of real indices or suffixes for each component is known
as the tensor’s rank.
The suffix's upper place is set aside for indicating characters that are
contra variants. The suffix's lower position is set aside to denote covariant
character.
As an extension of (1) and (2), we express the
Contra variant tensor of rank p, i.e. tensor of the type (p, 0)...

0x'M ox'H2  9x'Hr

0x% dx% " 9x%
Covariant tensor of rank q, i.e. tensor of the type (0, q)...

A'BabzHp = AG102--0p

Department of Mathematics
Uttarakhand Open University Page 116



Theory of Relativity MAT609

) dxPr 9xP2  9xPa
A V1V2..Vq = Aﬁ1ﬁz---ﬁq ax’vl ax’vz axlvq
Mixed tensor of rank p + g, i.e. tensor of the type (p, q)...

! ! ’H
akinoty  ayag..ay 0X'F10x'M2 Ox'Mr 9xF1 9xPz  9xPa
V12V BiBz--Bq 0x1 dx% ™ dx% 0x'v10x'Vz " 0x'Va

In 4 dimensions (u dimensions) , a tensor of rank m consists of
4™ (n™) components. Therefore, scalars (tensor of rank zero) and vectors
(tensor of rank one) are included in the general form of tensor.

Remark: if A;i;j;: = 0, then evidently

fHil2-Hp
A U1U2...‘Uq - 0

This shows that if a tensor vanishes is one co-ordinate system then it
vanishes in all co-ordinate systems.

7.4 SYMMETRIC TENSOR:-

If two contravariant or covariant indices may be interchanged without
modifying the tensor, then the tensor is said to be symmetric with regard
to these two indices. i.e.
Aw = A"“} (D)
AHY = AVH

Claim 1: Symmetric property remains unchanged by tensor law of
transformation. If we show that

A’uv = A,vu
The result will follow.
From equation (1)
, dx® oxF ox* dxP
A = At G g ~ A6 G o
From equation (2)
oxhB axe ,
~ CPa gy gxm vk

[; Y
or Ay, = Ay,

Claim 2: A symmetric tensor A,,, has independent components.
A, has 4% components in 4 dimensions which are written as follows:
All A12 A13 A14
A21 A22 A23 A24

4(4+1)
2
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A31 A32 A33 A34

A41 A42 A43 A44
No. of components corresponding to a repeated suffix is 4.
No. of components corresponding to a distinct suffix is42 — 4.

2_
Due to symmetric property this no. is reduced to 42—4

Total no. of independent components is
42—4+ AP —4+2X4 4(4+1)
2 B 2 2
Note: A tensor A, is said to be symmetric in suffixes y and v if

A;wa = Aww
The total no. of independent component in this tensor has

nn+1)  n? 1
5 .n—z(n )

7.5 ANTI-SYMMETRIC TENSOR:-

When two contravariant or covariant indices are switched, a tensor is said
to be skew symmetric or anti-symmetric with regard to these two indices if
each component changes in sign but not in magnitude. i.e.

Ay, =—A
o = ] (D)
Claim 1: An anti-symmetric property remains unchanged by tensor law of

transformation.

For this we have to show that

AR = — ATk (2
From equation (1)
AP = — B« ..(3)
AW = paB Ox™ % = —AB«a x™ aim
0x® dxh 0x® dxP
From equation (3)
_ _gBa ox'V ox'# _ g
0xP dx«
Claim 2: An anti-symmetric tensor A*’ has (1) independent
components.
AH has 4% components in 4 dimensions which are written as follows:
All A12 A13 A14
A21 A22 A23 A24
A31 A32 A33 A34
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i . . A41 A42 A43 A44
Putting 4 = v in equation (1)
AHE = —AHH = ARE =

Hence no. of independent components corresponding to a repeated suffix
is 0.

No. of independent components corresponding to a distinct suffix is 42 —
4.

2_
Due to anti-symmetric property this no reduce to 42—4

Total no. of independent components is
42 — 4 4(4—1)

6
2 2
Note:
1. Atensor A,y is said to be skew-symmetric in suffixes u and v if
Auva = _Aww
The total no. of independent component in this tensor has
nn—1) n?
— =5 (n—1)
2. Atensor A, is said to be skew-symmetric in suffixes u, v and o
if
Auva = _Av;w: Auva = _A[LO"UIA[L‘UO' = _Aavu

The total no. of independent component in this tensor has
n n
(3)=g-D@-2)
Theorem 1: To prove that tensor (mixed tensor) law of transformation

POSSES group property.

Proof: Consider transformation of co-ordinate

x# > x> x"H

(@) - (i) - (i)
AL At A
In case of transformation (i) — (ii), we have

A/p _ A(X ax,p ﬂ 1
a7 "B gxax gx'a - (1)
In case of transformation (ii) — (iii)
. p0x"ox'®  ox'P 9xF ax"+ ox'
At =4 =A

99x'P gx"v B axa 9x'9 9x'P 9x"v
" dx'P ax"* axP ax'?

~ OB 9x® ax'® 9x'T 9x"
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i L 0x"H 0xF

A% = B axe ax"v o _
This implies that the same law of transformation is obtained if we directly
change from (i) — (ii). The following is an expression for this property:
Group property is present in the Tensor Law of Transformation.

7.6 ADDITION OF TENSOR:-

If two tensors are of the same rank and character, they can be added or
subtracted.

Then sum or difference of two tensors is a tensor of the same rank and
similar character. This is proved in the following theorem:

Theorem 2: To show that the sum of two tensors is a tensor of the same
rank and similar character.
Proof: Let A7, and B, be mixed tensors. Their sum is defined as

Al + BP, = C, . (1)
If we show that C,7, is a mixed tensor of rank three, the result will follow:
From equation (1)

Cop =Als +Blp - (2)

and ', =A%, + B,
oy 0x“ xP ax'® , 0x® xP ax'®
— TaB 9x'k ax' dxY aB gx'k 9x'v dxY

, ,\ 0x® 0xFP ox'®
= | (4, + BLy) .
af = TaB) gx'* 9x'" dxY
oy 0xF xP ox'®
_ Ciiv = Cap 5o 37 v
This proves the required result.

7.7 INNER PRODUCT OF TWO VECTORS:-

Let B, be a covariant vector and A% be a contravariant vector. The inner
product or scalar product of vectors A* and By is the productA“B,. The

outer or open product of A% and By is the product A%Bg.
ox'k axh
dx“ dx'H#

A'MB', = A

/ B B
= A“BP 20X — paph I — pph s

0x% gx'H
= A%B, = A“Bu
or A'MB', = A¥B,
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This proves that A#B,, remains unchanged by tensor law of transformation
and hence A B, is a scalar or invariant.

7.8 MULTIPLICATION OF TENSORS:-

A tensor whose rank is the sum of the ranks of the two tensors is called a
product of two tensors. More broadly, if we multiply a tensor AL!)? "

Um

(which is covariant of order m and contravariant of order n) by tensor

Bgfg;.‘.'_g: (which is covariant of order ¢ and contravariant of order p). The

result is a tensor that is covariant of order m + q and contravariant of
orderl + p. This product is referred to as the outer product or the open
product of two tensors.

Theorem 3: The product of two tensors is also a tensor.
Proof: Let A" and B, be any two tensors. Let
ch =AlB, (1)

If we show that C!.  is a tensor, the result will follow:
From equation (1)

L _ Al D1
C vo — A vB o
» Ox'* 0x1 ox’
4 gxr gxv T Ax'o
» Ox'* 0x9 9x™
7T 9xP Jx' 0x'C
u Ox'* 0x9 9x™
Y9 9xP dx'v 9x'C

From this it follows that C/ is a tensor.

7.9 CONTRACTION:-

When one contravariant and one covariant suffix are equivalent in a
tensor, the process is referred to as contraction.

Let AP be a tensor of rank five. Then by tensor law of transformation

ap 0P 0x'? 0x' Ox) dx*
Uk gxa 9xPB 9x'm dx'S Ox't
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Takingt = p, we get

ap 0P 0x'? Ox' OxJ 9x*

q _
Arsp = Aijk G 5P 327 925 9%
I k k
But ap dx'? 0x _ ap 0x _ Aaﬁ(sk _ Aaﬁ
ik gx g Sijk gea - Aijkla = Aija
pa _ sap 0x'7 Ox' 0xJ

Hence, A = tensor of rank 3

TSP e gxB gx'T dx'S
For R.H.S. contains three partial derivatives.
This shows that contraction reduces the rank of a tensor by two.

Theorem 4: Quotient law of tensors. A set of quantities, whose inner
product with an arbitrary vector is a tensor, is itself a tensor.

Proof: Let Ajliij.j.'.‘j.’ . be a set of quantities whose inner product with an
m

arbitrary vector u* is a tensor of the type Bj'if;:.'.'.'l:l .

Jm
To prove that A:*2""" s a tensor.
J1j2-J pk
- iliZ"'il _ iliZ'-'il k
By assumption B ;i = Ajljz--~jmku
From which, we get
a1az..a; __ a1a;3 ... a
Bg s bm = Ap1rypat - (1)
’iliZ---il _ ’iliZ---il /k
and B spim = Arigd, ¥
.. pritizedp
< B, 1satensor.
i i i
. gz Ox" ax'?  0x'"oxPr gxPz  gxPm C hidl ok

BiBz2--Bm gx@ dx% " Qx® dx'ir dx'V2 " Qx'im ~ T T2k

Using equation (1), we get

e P "0 gxB1 §xhe B o
@a.a dx" 0x Ox""t 0xPr 0x dxFm _ gzt ik _ g
BiBz--Bma™ gx@1 gx® " dx% dx'1 dx'J2 " dx'im J1ized ik

Making use of the fact that u* is a vector,
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a ria riy B1 B P
Aalaz...al 1k 0x® 0x dx"" 0x dxPm _prialzeg 1k 0

BiBz--Bma™  9x'k dx1 " 9x dx'ir T @x'im JiJzJ ok -

a 25 rig B1 B S
a1z .a 0x% 0x dx'"t dx dxFm _ riaigedy —0
BiB2-Bma gx'k gx a1 " dx x'r U oxIm 1 Jujzedpk

oru'®|A

Since u is an arbitrary vector and hence the expression within the bracket
vanishes. Consequently

o a gyt 1 5.8 B
izl _ iz d0x% 0x ox't oxPr OgxFm
J1Jz-d pk B1B2--Bpa Ox'® 0x% " 9x® Jx'ir " Gx'im

This proves that A]L:li.z"‘i.l is a tensor.

1Jz-J pk

7.10RECIPROCAL SYMMETRIC TENSOR:-

Theorem 5: If a;; is a symmetric covariant tensor then conjugate tensor
a' is also a tensor.

Proof: Let a;; be a second rank covariant symmetric tensor. Consider the
determinant

4 —
= a (say)

The cofactor of a;; in this determinant is denoted by ATt We define

Al
a

ay =

a;; s symmetric = |al-j| = ais symmetric

= AJlis symmetric

AT
= ag¥ =

is symmetric

= a¥ is symmetric

Let u! be an arbitrary vector. Then a;j u' is a tensor since the product of
two tensors is a tensor. Let B; = a;; u'
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Now B; is an arbitrary vector.

. . . Ay
B; a’* = u'a;; a/* = u‘aijT = Fa&-" = ukf = a tensor

B; a’* = a tensor
This proves, by quotient law that a’* is a tensor. i.e. a¥ is tensor.

The tensors a;; and aY are defined as reciprocal to each other. They are
also called conjugate tensor.

Note:

. qlk = gk

1. a;al* =6
. AR ask

fora;;a/* =q; — =

a a

= &k
2. a a’ =4
For k = i the result (1) gives
a;j alt =6f =4
or a;; a¥ = 4 for a' is symmetric.
3. These results are of vital importance for future study.

7.11 RELATIVE TENSOR:-

Let A,, be a tensor

dx® dxP

if Ay = Aag 32 9

ox |‘“
0x'

Then A, is called relative tensor of weight w.

A relative tensor of weight one is called tensor density; while if the weight
is zero, the tensor is absolute.
A relative tensor of order one is called relative vector. Thus, if

0x% | 0x |“’

Ay = Ay |25
# Y9x'H |0x’

Then A, is called a relative vector of weight w. A relative vector of weight
one is called vector density, while if the weight is zero, the vector is
absolute.

A relative tensor of rank zero is called relative scalar. Thus,
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dx“
dx’

ifa =a

Then a is called relative scalar of weight w. A relative scalar of weight one
is called scalar density, while if the weight is zero, the scalar is absolute.

7.12 RIEMANNIAN METRIC:-

The term "line element™ or "metric” refers to a formula that expresses the
distance between adjacent points.
For example ds? = dx? + dy? + dz? is a line element. For it expresses

the distance between adjacent(x,y,z) and(x + dx,y + dy,z + dz).
More generally for any curvilinear co-ordinates u, v, w,

ds? = adu? + bdv? + cdw? + 2fdvdw + 2gdwdu + 2hdudv

Where the coefficients a, b, c, ..., h are functions of co-ordinates uvw.By
defining the infinitesimal distance ds between neighboring points whose
coordinates in any system are x‘ and x! + dx‘, Riemann expanded this
concept to a space of n dimensions.

ds? = g;;dxtdx! (i,j =1,.2,..,n)
Where the coefficients g;; are functions of co-ordinates xt.

ds? = g;;dx'dx’ is the quadratic differential form known as the

Riemannian metric for n-dimensional space. A space that is defined by
this metric is referred to as a Riemannian space of n dimensions. The term
Riemannian geometry of n dimensions refers to the geometry based on
this metric.

In general theory of relativity, the line element is given by

ds? = g,,dx*dx® (u,v = 1,2,3,4).
The case of special theory of relativity corresponds to
911 =922 = 933 = 1,911 = —¢?
Guv = 0(p # v)
Note:

1. The determinant formed by the elements g,,, is denoted by g and
is always assumed to be non-zero. i.e.

Department of Mathematics
Uttarakhand Open University Page 125



Theory of Relativity MAT609

911 912 913 YG14
921 922 Y23 Y924
931 Y932 Y33 Y34
9a1 942 Ya3 YGaa

Thus g#*0and g = |gl-]-|=

2. We define
cofactor of g,, in this determinant

g

g;w
It can be shown that
g;wglw = 4‘;9;41791]0 =9u = 6;{
This tensor g’ is called reciprocal tensor ofg,,. The tensors
Juv and g are called fundamental tensor.

Theorem 6: Fundamental tensor: to show that g,, is covariant
symmetric tensor of second order.

Proof: Firstly we shall show that dx* is a contravariant vector. Consider
the transformation x# — x'*.

evidently dx'* = dx® ox™
0x«
If we write dx* = A%, then
x'*
At = A Ox®

This confirms the tensor law of transformation. Hence, A% is a
contravariant vector. Secondly we shall show that g,,, is a second rank

covariant tensor. ds? is a invariant under any co-ordinate system. Then
ds? = gapdx®dxP:in x' system
ds? = g’ ,dx'"*dx'V:in x't system
From which, we get
Japdx®dx? = g’lwdx’“dx’v
Since dx“ is a contravariant vector,

ax’“d B(’)x'”
Jdx« X dxP

Japdx®dxP = g’ ,dx¢
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or

. 0x'*ox"™
R

> dx®dxP =0

Since dx® is arbitrary, the expression within the bracket vanishes.

. 0x'*ox"™
Jap = 9 v 0x%* 0xP

This confirms the tensor law of transformation. g is hence a covariant
tensor of second rank. Finally, we demonstrate that g,,,, is symmetric. g,
can be expressed as

Juv = A;w + B;w

1
where Ay, = > (g,w + gv#) = symmetric tensor &

B, = %(gw — gv#) = anti — symmetric tensor
Jupdxtdx?® = (Auv + Bu,,)dx”dx"
or (g,w — A,w)dx“dx” = By,dxtdx® .. (1)
But B, dx*dx" = B,,dxVdx*, by interchanging dummy suffix 4 and v
= —B,,dx"dx*. For B, is anti-symmetric
or 2B,,dx*dx" = 0 = By, dx*dx" = 0
= (guw — Ay )dxtdx’ =0 From equation (1)
= Guv — A =0
= Guv = Ay = symmetric tensor

= Juv IS symmetric

7.13 ASSOCIATE TENSORS:-

We define

Ay = GuaA® . (1)
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The tensor A,, is called associate to A#. Also we say that the tensors A4,
and A* are associate to each other. We also define

AR = ghag, . (2)
This is called raising the subscript.
Multiplying equation (2) by g,,,,, we get
I A" = 9" gupAa = 6pAg = Ay
or A, = gM,A“ = gapA“ = gpaA“
or Ay, = gpaA® or Ay = guaA®
This is equation (1).
This is called lowering the superscript.

Thus, there are three processes:

1. Multiplication by g*¥ gives substitution with raising.
2. Multiplication by g,,,, gives substitution with lowering.

3. Multiplication by g!' gives a simple substitution.

7.14 MAGNITUDE OF A VECTOR:-

The magnitude A of a vector A, is defined as

A% = g*F A, Ap
obviously A* = g*FA,Ag = A* = APAg = A? = AP g, pA* = g,p A" AP
or A% = g,pA“AF

This shown that magnitude of contravariant component and covariant
component of the same vectors are equal.

7.15 ANGLE BETWEEN TWO VECTORS:-

Let 8 is the angle between any two vectors A* and B%, then we define
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gaﬁAaBﬁ
J(gepea) [(g,45%)

SOLVED EXAMPLE

cosO =

EXAMPLEL: Calculate the quantities g;; for a V; where fundamental
form in co-ordinates (u, v,w) is

a(du)? + b(dv)? + c(dw)? + 2fdvdw + 2gdwdu + 2hdudv
SOLUTION: Comparing ds? = g;;jdx'dx’ (i,j = 1,2,3)

ds? = g11(dx")? 4 go2(dx?)? + g33(dx>)? + 2g1,dx dx?
+ 2g,3dx?dx3 + 2g3,dx3dx?

with ds? = a(du)? + b(dv)? + c(dw)? + 2fdvdw + 2gdwdu
+ 2hdudv

wegetx' =u,x* =v,x* =w,g;,=a, gnp=b  gz;3=c¢
J12=921=h g3 =932=f,913=931= 4

911 912 913 ahg
|gij| = 1921 922 923|=|h b f|=g
931 932 Y33 g fc

This completes the problem.
Deduction: To find quantities g¥/,

y cofactor of g;;  cofactor of g;;
g- = -

|9ij| g

gl = cofactor of gi4 _ bc — f? g2 = —(ch —gf)

g 9 9
Similarly we calculate the other g%

Form the determinant

|9t e 9P| |be—f* 9f —ch fh—bg
|9V = g% 9% 9%|==|9f —ch ac—g* gh—af
g31 g32 g33 fh—bg gh—af ab_hz

EXAMPLE?2: Prove that Kronecker delta is an invariant tensor.
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SOLUTION: Consider two co-ordinate systems x‘ and x't. By tensor law
of transformation,
. ax't 9xF
8= 8
J TR 9xa gx'

_(se Ax" axﬁ_ ax'"\ [ 9xB
- ﬁ'axa axlj_ axﬁ axlj

dx't
_ s

=5x7 =

= 8'} = 6}, showing thereby &/ is an invariant tensor.

EXAMPLES3: If A" and B/ are contravariant vectors and C;;A'B/ is an
invariant. Prove that C;; is a tensor of the second order.

SOLUTION: Suppose A* and B’ are contravariant vectors. Also suppose
that C;;A'B7 is an invariant so that

C;;A'B) = C';;A"B" (D
To prove that C;; is a tensor.
Equation (1) =

i ) ax'"t  ox'’
CopA*BF =C';A'"'B" = C';;A* —BF

0x® 0xP
«pp ) dx'' 9x"’ « pp
= A*B Caﬁ—C ijax_“ax—ﬁ = 0.AlsoA ,BP? =0
, dx'' ax"’
” Cop = 1 G gxF

= (;; is asecond rank covariant tensor.

EXAMPLE4: Transform ds? = dx? + dy? + dz? in polar and
cylindrical co-ordinates.

SOLUTION: Let ds? = dx? + dy? + dz?. Comparing this with

ds? = g;dxtdx! (i,j =1,2,3)
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We obtain g;1 = g2 = gs3 = land g;; = 0for i #
0x* dxP

ab ox't ax'’

Ox% dx“
=zgaaﬁm for gupy =0s.t.a#b

4

9';=9

a=1

= 9x® 9x°
= Z for gaa =1Va
a=1

ax' ax')

. ° dx% 0x¢
Ty = Z ax'" dx'’
a=1

1. To determine polar form of the given line element.
Polar co-ordinates are

x = rsinfcos¢
y = rsinfsing
Z =1rcosfO
setx!=x,x?=y,x3=z,x1=rx?2=0,x3=¢
From equation (1)
. ° dx% dx?
1= 2 g axt
ox! ox' 0x? 9x? 0x3 9x3
~oxtox?t * ax't ox"t * ax't ox"t
ax\> [0y\* [0z\°
@) +G) +G)
= (sinfcosp)? + (sinbsing)? + (cosh)?
=1

From equation (1)
3

, 0x%® dx¢
’g 22 = Z axlz axIZ

’ Ax®\?
- z <6x’2>
a=1
dx\> ay\> dz\*
-2
L} a0 a0
= (rcosOcos®)? + (rcosBsing)? + (—rsind)?
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:1"2

From equation (1)
3

, dx? 9x°
933 = Z PYREPTRE

a=1

() + () + ()

= (—rsinBsing)? + (rsinfcosp)? + (0)?

= r?sin%0
From equation (1)
3
, 0x® 0x%
Y127 ax't ax'?
a=1

_0x0x 0dydy 0z0z
~ra6  9roe oroe
= (sinBcosp)(rcosbcos¢p) + (sinbsing)
(rcos@sing) + (cos0)(—rsind)
= rsinfcosp[cos?P + sin?¢p —1] =0
Similarly ¢',, =0, g',, =0.
Hence, g, = 0 for a # b.

3
ds* = g'_ dx'"*dx'"® = Z 9’ aa (dx'*)?
a=1
= g’ll(dx’l)z +g'22(dx’2)2 +g’33(dx'3)2
ds? = dr? + r?d6? + r?sin?0d¢?
2. To determine cylindrical form.
Cylindrical co-ordinates are

X = rcosf
y = rsinf
zZ=2z
setxl=xx?=y,x3=zxt=rx?=0,x3=2
From equation (1)
3
0x® 0x“
, —_— — —
g 11 axll axll
=1
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B dx'3

=1
ax\> [0y\* [0z\°
ar ar ar

cos0)? + (sinB)? + (0)?

I
N - ~

Il
Uy

From equation (1)
O 0xd axC
g 22 = Z axlz ax12
a=1
-> (%)
- dx'?
a=1
ax\*  [0y\* 9z\°
-G + @) + o)
a0 a0 a0

= (=rsind)? + (rcos6)* + (0)*

=T‘2

From equation (1)
3

, 0x% 0x“
933 = z PYREPIRE
a=1
-y (e
B ox'3
a=1

-(3) () 5

= (0 + (0 +(1)? =1

From equation (1)
. : dx%® dx“
9127 & ax't ax’?
dxdx Jdydy 0zoz
~%rae " oroe " oroo
= cosO(—rsinb) + sinB(rcosf) + 0 =0
Similarly ¢',, =0, g',, =0.
Hence, g',, = 0 for a # b.
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3
dsz — g/abdxladxlb — z g’aa (dxla)z
a=1
= g'11(dx"")? + g'5,(dx"?)? + g'33(dx"?)?
ds? = dr? + r2de? + dz?

SELF CHECK QUESTIONS

1. Tensor equations are invariant under.

a) Energy equations

b) Velocity transformation

¢) Momentum transformation

d) Co-ordinate transformation

2. What is the Riemann curvature tensor?

3. What is the covariant derivative?

4. How do the tools of differential geometry help describe spacetime
in general relativity?

7.16 SUMMARY::-

In this unit, we have studied various fundamental concepts related to
tensors and their operations. A tensor is a mathematical object that
generalizes scalars, vectors, and matrices, and is used to represent physical
quantities in multiple dimensions. We examined symmetric tensors, which
remain unchanged when their indices are swapped and anti-symmetric
tensors, which change sign when their indices are swapped. The addition
of tensors involves combining tensors element-wise when they have the
same rank, and the inner product of two vectors is a scalar product that
measures the projection of one vector onto another. Multiplication of
tensors includes various operations like contraction, where repeated
indices are summed over, and the reciprocal symmetric tensor, which is a
symmetric tensor whose inverse follows specific properties. We also
studied relative tensors, which change with coordinate transformations,
and the Riemannian metric, which defines distances in curved spacetime.
Associate tensors are related through operations like contraction or
multiplication, while the magnitude of a vector is computed using the
metric, and the angle between two vectors is determined by the cosine of
their inner product divided by their magnitudes. These concepts form the
basis for analyzing geometrical and physical problems in curved spaces
and spacetime.

7.17 GLOSSARY:-
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e Tensor: A mathematical object that generalizes scalars, vectors,
and matrices, capable of representing multi-dimensional data and
transforming according to specific rules under coordinate changes.

e Symmetric Tensor: A tensor that remains unchanged when its
indices are swapped, i.e., TH? = TH,

e Anti-symmetric Tensor: A tensor that changes sign when its
indices are swapped, i.e., Ty, = T,,,,.

e Addition of Tensors: The operation where two tensors of the
same rank and dimension are added element-wise, resulting in a
new tensor where each component is the sum of the corresponding
components of the two tensors.

e Inner Product of Two Vectors: The operation that combines two
vectors to produce a scalar, defined as A,B*, where A, and B* are
the components of the vectors.

e Multiplication of Tensors: The operation of combining tensors
through different methods, such as the tensor product or
contraction, to form a new tensor.

e Contraction: The operation of summing over repeated indices in a
tensor, which reduces its rank by 2 and results in a scalar or lower-
rank tensor.

e Reciprocal Symmetric Tensor: A symmetric tensor whose
inverse also exhibits symmetry, meaning the inverse tensor
maintains the property T#? = TVH,

e Relative Tensor: A tensor whose components transform according
to specific rules when the reference frame or coordinate system is
changed.

e Riemannian Metric: A mathematical tool in differential geometry
that defines the geometry of a curved space by providing a way to
measure distances between points, represented by the metric tensor
9 pv-

e Associate Tensors: Tensors that are related through operations
such as contraction or multiplication, leading to new tensors
derived from the original ones.

e Magnitude of a Vector: The length or norm of a vector,
calculated as

o |V]|= W where the components of the vector are contracted
with the metric tensor.
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Angle Between Two Vectors: The angle between two vectors A
and

B, defined by cos(0) =

magnitudes of the vectors.

Geodesic: The shortest path between two points in a curved space,
representing the trajectory of a free-falling particle in general
relativity.

Christoffel Symbols: Connection coefficients that describe how
vectors change during parallel transport in curved spaces, used in
the calculation of covariant derivatives.

Covariant Derivative: An extension of the partial derivative to
curved spaces, which takes into account the curvature of the
manifold and is used to differentiate tensors.

Riemann Curvature Tensor: A tensor that describes how
spacetime is curved due to mass and energy, and how vectors
change as they are parallel transported around a closed loop.
Parallel Transport: The process of moving a vector along a curve
while keeping it parallel according to the connection in a curved
space.

Metric Compatibility: A property of a connection in which the
covariant derivative of the metric tensor is zero, ensuring the
preservation of distances and angles under parallel transport.
Conformal Transformation: A transformation that preserves
angles but not necessarily distances, often used in the study of
scaling and geometry in curved spaces.

AyB*
|Al1B]

, using the inner product and
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e Dr. J.K. Goyal and Dr. K.P. Gupta (Twenty Eight Edition, 2018),
Theory of Relativity.

7.20 TERMINAL QUESTIONS:-

(TQ-1) Show that the open product of two vectors is a tensor of rank 2.
(TQ-2) Show that Kronecker delta is a mixed tensor of rank two.
(TQ-3) Explain what is meant by covariant and mixed tensor.

(TQ-4) Show that the contraction of two suffixes in a tensor
reduces its rank by two.

(TQ-5) Find the components of a vector in polar co-ordinates, whose
components in Cartesian co-ordinates are x,y and X, y.

(TQ-6) Show that /gdx1dx? ...dx™ is an invariant.

(TQ-7) If B,, is any arbitrary covariant tensor, and A(, v) B, = Cq,
where C,, is a tensor, then show that A(u, v) is a mixed tensor.

7.21 ANSWERS:-

SELF CHECK ANSWERS

1. d)

2. The Riemann curvature tensor measures the intrinsic curvature of a
manifold, describing how vectors change when parallel transported
around a closed loop.

3. The covariant derivative is a generalization of the partial derivative
that accounts for curvature when differentiating tensors in curved
spaces.

4. The tools of differential geometry, such as tensors and covariant
derivatives, provide the mathematical framework for describing the
curvature and geometry of spacetime in general relativity.

TERMINAL ANSWERS
(TQ-5) (i) Polar form of x, y are 7,

270

r

(ii) Polar form of X, are # + r8% and 6 +
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UNIT 8:-Geodesic Equations and Their
Applications

CONTENTS:

8.1 Introduction

8.2  Objectives

8.3  Christoffel Symbols

8.4  Geodesic

8.5  Covariant Differentiation of Tensor
8.6  Gradient of a Scalar

8.7  Derived Vector Projection
8.8  Tendency of Vector

8.9  Curl of a vector

8.10 Divergence of a Vector
8.11 Parallel Displacement of Vectors
8.12  Principal Normal

8.13 Geodesic Co-ordinates
8.14  Natural Co-ordinates
8.15 Summary

8.16 Glossary

8.17 References

8.18 Suggested Reading

8.19 Terminal questions

8.20  Answers

8.1 INTRODUCTION:-

Geodesic equations form a fundamental part of differential geometry and
general relativity, describing the path that a particle or object follows
when moving solely under the influence of spacetime curvature, without
any external forces. In simple terms, geodesics represent the "straightest
possible™ lines in curved space or spacetime, generalizing the idea of a
straight line in Euclidean geometry. These equations are derived from the
principle of extremal action, typically minimizing the proper time or
distance between two events. Mathematically, geodesics are expressed
using second-order differential equations involving Christoffel symbols,
which encode information about the curvature of the space. Applications
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of geodesic equations are vast and include predicting the motion of planets
and light in gravitational fields, analyzing satellite orbits, understanding
black hole dynamics, and modeling the structure of the universe in
cosmology.

8.2 OBJECTIVES:-

After studying this unit, the learner’s will be able to

e To explain Christoffel symbols.

e To understand differential equation of geodesic.

e To solve the transformation law for Christoffel symbols.

e To discuss Principal normal, Geodesic co-ordinates and Natural
co-ordinates.

8.3 CHRISTOFFEL SYMBOLS:-

We define

_1(0gvs , 0Gus  99gyv
Ko 2\ gxk T 9xv 0x°

Tiv=9 Uﬁruv,ﬁ

The first one I, ; is known as the Christoffel symbol of the first kind,
whiles the second one, I7, is known as the Christoffel symbol or
Christoffel's bracket of the second kind.

Note:

1. Tuwe =Toue
This follows from the fact g,,,, is symmetric tensor.
2. I, =1,
For g, = g°PT,, 5 = 9PT,u 5 =T,
3. The following notations are used by some authors:
F/w,a = [,LHJ, ol

a — g
{uv} = T
4. gkpri’; = Lijp
By definition
Il = "L
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k _ k Y
Girlij = G1r 9 PLijp = 6 Tijp
K _
or el = Tijr

k _
= Irpli; = Tijp

Theorem:1. To prove that

. d
ol = EToi log\[g

09;; _

d) axk —gilrz]k _gljrlik

Proof: a) By definition

1 <agjk Agir agij) 4 1<agki 4 9gji agjk)

Fij'k-l_rjk'izf dxt  OdxJ  oxk 2\ dxJ  o9xk  Oxi

_ 09ix
0xJ

b) & ¢) We know that

da ; aa{ _ :
P A 7 (in usual notation)

In this case it becomes

g _ 99k
3T = (cofector of g;;) Fi
09ix cofector of g;;
= ggikw y ik = g
1 dg 09ik
or E% = Gix a—xl] = gik[rij.k + FJ'k'i]

= Gilijx + Girlj,i

Department of Mathematics
Uttarakhand Open University Page 140



Theory of Relativity MAT609

=T+ T =T, + I, = 2T}

1 dg _ i L

or 29 90 U (1)
1 ag

But 25 900 = og\/— .. (2)
1 dg 0

Also 25 90~ 9% log/(=9) ..(3)

Equating equation (1) to (3), we get the result (b) i.e.

d
=55 log\/(—g)

Equating equation (1) to (2), we get the result (c) i.e.

= %log\/ﬁ
d) We know that
9i97F =8F =1oro0.
Differentiating it w.r.t. x™,

9" e + 911 G = 0

Multiplying it by g and noting that

agjk aglk
_ ol gl

gi]gll 6]16] axm axm;
We obtain

- 0g;; dg™
g'g” (')xi’]1 + ox™ 0
aglk
or e m+g“g’"[f‘lm1+[‘1ml]—0
gk .
or agm + btk + g7 T}, =0
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aglk

dxm

or + g'"rk, + g"* T}, =0
In view of this, we have

T oxk 99T + g"'Ty,

8.4 GEODESIC:-

It is a curve whose length stays constant for arbitrary displacements as
long as the end points are held constant.
That is to say,

B
f ds is stationary.
A

B
or 6st=0
A

Theorem:2. Differential equation of a geodesic: Determine the
differential equations of a geodesic, which is defined as a path of
extremum distance between any two points on it.

or
To use a variational concept in a given space to find the differential
equations of a geodesic.

Proof: A geodesic is an extremum-distance path that connects any two
places on it. In other words, for a geodesic's differential equations, we
obtain

B B
f ds is stationary i. e.6f ds =0
A A

We have ds? = g;;dx'dx’
Taking differential of both sides,

iy . o o
2ds. 8(ds) = 5% 5x*. dx'dx’ + g,y (dx)dx + gyydx's(dx’)

Interchanging the dummy suffixes in the last term on R.H.S.
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agij

2ds.5(ds) = =3 Sx*.dxtdx’ + 2g;;6(dx?)dx/

Dividing by 2ds and then integrating

B 1 (Bag; . ,dxtdx/ B §(dxt)dx/
J,swr=3] ST m et g a e

But the geodesic & ff ds=0

Bag;; dx'dx’ B 5 dx') dx’

2), oxk X ds ds ds ds

But by integrating by parts

Bagij6 dxldxfd dxf j dx’ syl d
Aax"xdsds 94j0%". ds\997qs )X

B JBd dx/ oy
), ds Yi7gs )09
(since 6x' = 0 at both A and B)
B j’B d dx/ sk d
), ds Grjgs )04

B j‘ 9gx; dxtdx’ d?x’
9xi ds ds + G ds?

Putting this in equation (1), we get

g 1agij dxt dx’ agk,- dxtdx/ d?xt
294i ax ax” .
-I- IZ&xk ds ds 0x' ds ds gkldzl5x .ds =0
But 6x* is arbitrary and hence the integrand of the last integral vanishes.

19g; dxtdx’ gy dxtdx’ d?x’
20x% ds ds _ oxi ds ds I gs?

=0

d?x/ 16gk dxtdx’ 1agkjdxidxf 1E)gudx dx’
Grej ds? 2 dxi ds ds ' 2 0x! ds ds 20xk ds ds

or

Interchanging the dummy suffixes i and j in third term, we get
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Iki~gs2 t3 ax‘ ds ds  20x ds ds 20x*ds ds

d?xP dxtdx’
or v g5z kg g5 =
d?xP dx‘dxf
or gkp d 2 +gkp l] d dS
d?xP dxi dx’t I‘ _ 0
or Ikp | 452 ds ds

But gy, Iis arbitrary. Hence

d?xP  dxtdx’ b _
———T?

ds? + ds ds

This is required differential equation of a geodesic. For p = 1,2,3,4 this
equation gives four equations to determine a geodesic.

Null geodesic: A geodesic is referred to as null if there is no distance
between any two of its points i.e. the distance between any two points on
geodesic is zero. The characteristics of the null geodesics are

dxt dx’ B
9 qnax =

d?x@ adxi dxt

and g Pligsas =

Theorem: 3. Geodesics for Euclidean space are straight lines that are
referred to as rectangular coordinates.

or

Show that the geodesics in S, the Euclidean space of n dimensions are
straight lines.

Proof: We know that differential equation of geodesic are

d?x? e dxtdx’t _ o "
ds? BY ds ds -+ (1)

In case of Euclidean space, g;; = constant V i and j
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= I‘gy =0ValpBy
From equation (1)

d?x®
ds?

+0=0

Integrating the above equation, we get

dx“_ a
ds_a

Again integrating, we get

x% =a%s + b* .. (2)
Where a® and b“ are integration constants.
Clearly, equation (2) of the type y = mx + ¢

Hence, equation (2) represents straight line. But equation (2) is the
solution of equation (1). Hence geodesic are straight line in case of
Euclidian space.

Theorem: 4. To determine the distance formula in S,,.

Proof: We know that geodesic is straight line in S,.. The Euclidian space
of n dimension whose equation is

y' =als + b (D
Where b! is constant of integration.

Equation (1) shows that a’ are components of unit tangent vector and so
n
1=a’=a;a; = Z:(al-)2 . (2)
i=1
Let P(y!) and Q(y}) be two points on the line (1) and I be the length of
the line joining P to Q.
Then equation (1)
= yt = als, + byl = a's, + b’

= y; —yi =a'(s; —s;) = al

Department of Mathematics
Uttarakhand Open University Page 145



Theory of Relativity MAT609

- D @h? =) (=)’
i=1 i=1

Using equation (2),

n

. N2

12 = Z(yé —yi)
i=1

n 1/2
or | = {Z(yé - y{)z}
i=1

This is the required distance formula.
Theorem: 5. To obtain geodesic equations from Lagrangian equation.
Proof: We know that

ds? = g;;jdx'dx’

ds\? dxtdx’ o
( ) = gijx' %

@) =99ds ds

Where dot denote differentiation with respect to t.

Let] = “gija'cia'cj] , We get

ds
ds =Idt or —=s5=1= [gl-]-x‘xl]
dt
=29 sy
dxk 25'6x"xx
p ol _ 1 iy
an ik~ “2g9nX
FIACIT g2 SGX TG X T GikX

B B
For a geodesic,f ds is stationary. i. e.f Idt is stationary.
A A
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This is obtaining by putting,

6(61) ol — 0
ot \oxk dxk

Which are known as Euler- Lagrange equations.

—S-iﬁgikfc" + %%M" + %gikjéi — Z%giz i =0
or —S.lz'S'gikai+%aaiiijxi+%gpkjép—2%% iy =0
or GpkXP + T xii) = 0
or Ip g TEP + gFT T xR = 0
or SpxP + %) = 0

X"+ Thxtl =0

d?x" o dx'dx)
or ds? Uds ds
For r = 1,2,3,4 this gives four equations for determining a geodesic.

Theorem: 6. Transformation law for Christoffel symbols: Prove that
Christoffel symbols are not tensors.

Proof: - g;; is a second rank covariant tensor

. dx® dxb
9ij = Yab X 0%

Differentiate with respect to x'*, we get

99';;  9gap 0x° 0x dxP 9%2x*  0xb
1k = c 1k 7l 1] + Yab /L 1k 1J
dx 0x°9x"ox" ox dx"0 x"* 0x
N 0x® 092%xb "
Yab Ix'iax"To x'k ( )

Similarly differentiation of g’
dxP 0x¢

= Gvc 3,77 5% with respect to x't, we get
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09" 0gpc 0x® 9x° 9x° tg 9%x?  0x¢
ax,i dx@ ax’i ax’jax’k bc axljaxri axrk
N oxb  0%x° ,
Ibc dx'J 9x'id x'k ( )
Similarly differentiation of gy;
0x°€ ox* y
= Yea 3k g5 with respect to x'/, we get
09';  0gcq 0x° 0x° 0x° N 0%x°¢ 0x“
Fl X'j T 9 xP ax,j 9 X'k dx't Yca ax’kax’f ox'l
N ax¢ 0%x“ 5
gca axlk axlia xlj ( )

Equation(1) + equation (2) - equation(3), we get

ag';; ag’j,.( ~ ag'k%. _ 0gap 0x° 0x° axb' ‘g afxa axb'
ax® axt ax’  dxcax*oaxiox’ P ox'iox*ax
N ox*  0%xP 0gpc 0x* 0x? 0x° N 0%xP  0x°¢
Yab ax" ox Mo x'®  0x*ox'tox 9 x'* Goe dx' ox"t dx'*
N oxb  92%x¢ 00gcq 0xP 0x¢ 9x* 0%2x¢ 09x“
Ibe 537 9x'1a x'% 3 xP dx'l 9 x'kox't Yea dx'kgx'l 0x't
dx¢ 0%x“
—Yca 6x”‘ ax’ia x'j
A dx® dxb 0x¢ ) 0%x* oxb
bpke = Slabe ax' 9x' d x'* Yab dx''ox" @ x'*
, 0x® dxb 0x¢ 0%x*  oxb
or r ijk = Fa + Yab (4-)

b,c . r} . .
ax' ax' a x'* ax''ox' 0 x'*

Multiplying eq. (4) by g'*?

x® dxb 9xc dx*ax'?

1kp 1 — qaB
[ijx=g%T, P
g Uk = abe G T oxT g xF 0 x% 0 xP
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9%2x*  oxP ax*ax?

dx"'ox'/ @ x'* d x* 9 xF

+9apg“f

dx® dxP 9 x'? 2%x% 9 x'P

af sb
6x’i 6x’j axﬁ +gabg 8

P gaBgce
or I ij g Sarab,c a ax,iax,j 9 xB

g 0x? OxP 92xF o x'?

or ij ab Ix'  ox'’ Ox" 9x"’ axﬁ ( )
for g“ﬁ&if‘ab’c = gﬁcrab,c = Faﬁb and gap g™ 88 = gapg"* = 55
d B 0%x“ 0%xP
an . - = . .
“ax"ox"’  Ax''ox"

Equation (5) is also expressible as

e |pe 0x® 0xP N 32x¢ 19 x'P ©

ij — ab ax,l’ ax,j ax’iax’j 9 x¢

PP _ e 0x® dxP 9 x'P N 92x¢ 0 x'P ,

or ij — ‘ab axri axlj 9 x¢ axriax/j 0 x€ ( )

Christoffel's bracket of the first kind is not tensor, according to equation
(4). Christoffel's bracket of the second kind is not tensor, according to
equation (7).

It is evident from the work done that Christoffel's brackets are not tensor

components.
Remarks:
1. From equation (6), we have
» 0x° 0x® 0xP 0%x¢
r’ =T¢

ij dx'p ab axli axlj + ax/iaxlj
This result is of important for further study.
2. If the linear transformation of the type

x'=aqj " 4 pi
Is valid, then equation (4) and (7) becomes

0x® dxb 9 x°

F’i‘k = ,abc ; ;
& “ox't ax a x'*
P _ e 0x® dxP a9 x'?
ij =

@ axtgx') 9 x©
Christoffel's brackets are tensors with respect to linear
transformations, as demonstrated by these equations.

3. The transformation laws for Christoffel's brackets are found in
equations (4) and (7).
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Theorem: 7. Covariant derivative of a covariant vector: Define covariant
derivative of a covariant vector and show that it is a tensor of rank 2.

Proof: Let A; be a covariant vector, then by tensor law of transformation

dx?

A1 = Aoy

Differentiation of it with respect to x'/, we get

0A';  0A,0x® 0x® 4 0%x¢ "
ax') 9xbPax'tax'T T % gxrigx] - (1)
0 x€ 0x%® dxP 0%x°¢

but r’ =T¢

2 = : -+ . .
Yox'r P axtaxt " ax'tox')
Now the last equation becomes
0A'; 0A,0x% dxP ,p 0x° 0x% 0xb
P = b I /'+Ac Fij_l_ gb_i i
dx'l  O0xPoxtox'J dx'P Ox't dx"’
_ 04, 0x° dxb dx® dxb

oo ! /p' _ c _
axb axaxT | Aplij = Aclap ox't ax'’

A, 04, o) 0x® dxP
" 4o = (5~ ) S
If we write
04,
Agp = axb A lg,
Then the last equation becomes
dx® 9xP

A,' p= A e ——
| | U Woxtoxd o
This says that is a second rank covariant tensor and this tensor is defined
as A, covariant derivative of covariant vector 4, W.r.t. x?.

Remark: If only linear transformation of the type

x'=ajx"" + b’ . (2)
Is valid, then equation (1) becomes

0A'; 0A,0x® 0x®

ax'’  0xP ox'tox'
This demonstrates that, in relation to the linear transformation (2), the
ordinary partial derivative of a covariant vector is a second rank covariant
tensor.
Theorem: 8. Define covariant derivative of a contravariant vector and

show that it is a tensor.
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Proof: Let A* be a contravariant vector, then by the tensor law of
transformation

rp dx¢
7 axt

Differentiate the above equation with respect to x?

0A® 9A" ox*ox’ . 9%x® ox” =
axb - axlj axli axb axliaxlj axb
d x€ . 0x° dxP 02%x¢

P —
but Vg = v ax'" ox' * dx''ax"
Now the last equation becomes
0A® A" 0x® ax"’ L 0x" e d x“ , 0x™ 0x°
dxP  9x' gx't dxP axb | Taxr ™ gxtgxti

aAa+A,iax'f ox™ ox¢ A" ax®dx’  ax' 9x@

7L

or

dxP xb gx't gxl ™ - dx' 9x't OxP axb gyt P
0A% | msera _ 94" . |9x%ax”
or 6xb+A mec— _ax’j+A ij_mm
0A% | mpa _ 94" o g 9% dx"
or 9xP mb — 9x' pJ’_ dx't dxb
If we write
a
A} = =5 + AT,
Then the last equation becomes
. ,; 0x® 0x"’
Ap =4 9x't OxP

This proves that A% is a mixed tensor of rank two and this tensor is

defined as covariant derivative of A% w.rt. x? . Here covariant
differentiation is denoted by subscript preceded by a comma.

Remark: If the linear transformation of the type

xt=alx" + bt - (2)
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Is valid, then equation (1) becomes ' '
0A* QA" 0x® ox"’
0x> ~ gx' gx't OxP

In relation to the linear transformation (2), this demonstrates that the
ordinary partial derivative of A% w.r.t. x? is a second rank tensor.

Theorem: 9. Define covariant derivative of covariant tensor of second
order and show that it is a covariant tensor of rank three.

Proof: Let A;; be a second rank covariant tensor, then by tensor law of
transformation

dx® oxb

Ay = Aab 5 gy

Differentiation of it with respect to x'*, we get

0A";;  0Ag 0x® 0x” 0x° A 9%x®  OxP
ax'®  9x° ax'tax' ax'k D axriax* ax')
ox®* 9%xb %
ab ax' ox'Tox'*
Now
0%x* Jxb B 0%2xP  9xP
ab ax'ax®ax pb dx' ox'* ox'’
_ axbyr . axP _ 0x® 9x€
= Apo ax'’ [F kgt Tac dx't ox'’
If [ 0x€ re 0x® dxb N 02x¢ l
or s, - = - - - -
Y ox' P axtox " ox'iox'
o dx® dxb ox¢ »
=A r]F ik — Apb Fﬁax’k Fac (2)
dx® 9%xb 0x®* 02xP
and Agp

_—— = A - .
dx't dx' 0x'* Poxtoxox'k

ox*[ . 0xP _, 0x® 0x°©

= App ax't| KaxT be g gk
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0x® 0x? 0x°¢ p
r ..(3)

_ /; "o
_A“”Flk Aapaxﬂax,]axk bc

Writing equation (1) with the help of equation (2) and (3)

04’ AT — AT 0Agp AP — AT dx®* dxP 0x°
ax ir rjl ik — dx¢ pb ap-bc axrl axl] axlk
. aAab p p
If we write Agp . = I Applae — Agply,, then the last equation
Becomes
0x® 9xP 9x¢
Aij,k = Agp,c

“ox'tax' ax'k

This proves that A, is a third rank covariant tensor and this tensor is
defined as covariant derivative of A, w.r.t. x€.

8.5 COVARIANT DIFFERENTIATION OF
TENSOR:-

A subscript followed by comma or semicolon indicates the covariant
differentiation of a tensor. We define

04, c
Aa,b = ﬁ — AT
a
A% b = EI + ACFI?C
0A.p

Aab,c = W - Apbrgc - Aaprzl;c

0Aqp
A%, ¢ = —22 4 APPTD — A%PT,

a c
More generally,
i112..0;
A s = o A e e AT — A T
i1ip..0] a

—_ e —

j1j2.jm=1"Jmb
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Theorem: 10. Show that covariant derivatives of the fundamental tensor

and Kronecker delta vanish.

Proof: We have to prove that

ijx =0
g7, =0
g]i',k =0

agij agij _

Gijk = 3k~ 9ailik — Gialjk = ok likj

agij
T axk [Fik‘j + ij‘i] T 9xk  oxk

Hence Jijxk =0
Hence the equation (1) becomes

9i;97F =6F=10r0
Differentiating it w.r.t. x™, we get

9" Gam T Gii i =

Multiplying the above equation by g% and noting that

99" = 8},6] gij: - %Z
We obtain
gligjk% %:j 0
or gz—: + g¥g*[Tim, + Timi] =0
or gz—lmk+g”ri'fn+gjkr}lm:0

(D
(2
(3

— Dig,i

agij _ agij ~0

Refer theorem 1.
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aglk
Tk + 9T, = (4
or Fpen +g +g =0 (4)
or g* =0 or g7, =0
> 9" ,=0

Hence equation (2) proved.
i

. ag;
gjl',k Ox k+g] mk garjlllc

Hence equation (3) proved.

Theorem: 11. To show that the covariant differentiation for products,
sums, differences obeys the same rule as in the case of ordinary
differentiation.

Proof: Let A and Bj, be any two tensors, then their outer product A* B
is also a tensor. Let

C]k = A B
(4'By) , = ¢f
ach,
:a_;z-l' e Tar — Caxlft — CL T
aAl a i i a i a
=— l +A Bjilg — A'Barlj] — A'Bja Iy
aAi LaBjk a i i a i a
6 5-Bx +4 I + A"Bj g — A'Bgi Iy — A'Bja I
aAL' ari ; (’)B]k a a
= Bjx I S5+ AT, |+A o -7 — Barljt = Bjala
= ]kA + A B
or (AiBjk),l = jkA,il + AiBjk,l (1)
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We can show that this approach works for all situations involving outer
products by generalizing this finding.
The inner product of two tensors that are created via contraction and outer
multiplication. Thus, it is a total of the products. Therefore, equation (1)
also applies in this case. For example

(4¢Bln) o = AiaBlin + A Bl - (2)
Let A;; and B;; be any two tensors, each of the same rank and similar

character. Then their sum is tensor of the same rank and similar character.
Let

Cij = AU + BU
(4 +By) , = Cyjy

_0Cy;

a l Ca] Fll Ciara

Jjl

0
== (Ayj + Byj) = (Aaj + Boj)Tff — (Aia + Bia)T}}

aAL] aBl] —A F(ll B 'Fl —A. l.,l B. Fl
axl ax aji ajti ialj iasj
oA, 0By, )
Ox 1 — AT — Al ax —=1 — BT — —Bial
= Ay + Bij,
= (A + Bij),l = Ajj1 + Bijy ..(3)

Similarly we can show that

( ij = l]) Ajji — Bijy ..(4)

From equation (1),(2),(3) and (4), it follows that covariant differentiation
of products, sums, differences obeys the same rule as in the case of
ordinary differentiation.

Theorem: 12. To show that covariant derivative of an invariant is the
same as ordinary derivative.

Proof: Let I be an invariant and A; be a covariant vector so that the
product I4; is a covariant vector.

To prove that
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a1
)= 9
By definition
OIA, .ol 04, .
(IAi)] £l IAaFl-j 3 in+Ia 7 IAaFl-]-
(2 A TS A
al
or (IAL-)] = IA +Ala 7 ..(1)
but (IAL),] = I,in + IAi,j (2)

For covariant differentiation of products obeys the same rule as in the case
of ordinary differentiation. Equating equation (1) to (2)

ol
LiAi+1A;; =1A;; + A 5— EP
ol _
or (I,j i ]>A 0
or Ij— Pk 0.For A; is arbitrary
a1
or = ax]
8.6 GRADIANT OF SCALAR:-

The ordinary derivative of a scalar (or invariant) I is its gradient, and it is
represented by VI = grad I.

Th VI = dl = 91
us =gradl =——
ol
But — = I; (refer theorem 12 )
dxt
_ ol
VI :gradl :W:I'i

8.7 DERIVED VECTOR PROJECTION:-
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1. a’;b"is the derived vector of vector a’ in the direction of b'.
2. a;;b’ is the derived vector of vector a; in the direction of b'.
3. a'b; = a;b' is the projection of a' in the direction of b.

Another name for the derived vector is the intrinsic derivative.

8.8 TENDENCY OF VECTORS:-

1. Tendency of a’ in the direction of b
2. Tendency of a; in the direction of b!
= Cli,jbibj

dx’ . .
3. s is the intrinsic derivative of a! in the direction of a curve a‘j.
S :

dx’

4. s is the intrinsic derivative of a; in the direction of a curvea, ;.
S :

8.9 CURL OF A VECTOR:-

The curl of vector A4 is defined as

Curl A= CurlA; = A;; — A;;

04; a aA]' a
But Aij — A = Gy~ Aaly — | 5o~ Aelii
_ GAL aA]
- ox/  Oxt
CurlA=A;; - 4j; =575~ 57
oa; E)ak
Curlij{ai} = Qe — Ak = A — Agj = W’L‘ B @

OFy; , Fy , OFy

Curlijp{Fij} = Fijx + Fyrei + Fiayj = axk " oxi " 9xJ

If F;; is anti-symmetric tensor.

8.10 DIVERGENCE OF A VECTOR:-
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Given a vector A, its divergence can be defined as the contraction of its
covariant derivative, or the divergence of its contravariant component A°.
Thus

div A = div A' = A},

1 9(44/g)

To prove that

Aj = g ox
By definition '

AL = Ox; + A°TY;
Putting i = j, we get '

Al = Oxz + AT
or div A = a—xz A% O(ISi;/_) aAl \?‘_66\9/;
or div A' = ﬁ(ﬁ 6;12 6\/_> \;5%
or divA = A} = 1 9(4Y9)

\/g oxt
Theorem: 13. A necessary and sufficient condition that the first covariant
derivative of a covariant vector be symmetric is that the wvector be
gradient.
Proof: Let A; be a covariant vector such that the first covariant derivative
of A; is symmetric so that

Ay = Aj;
We have to prove that A; = grad¢ where ¢ is scalar.
Equation (1) =

04; a 04;
ax) TAall = 5+ Al
R 0A; B 04;
dxJ)  dx!
R 0A; (')A]d j
0x/ (')x X
. f@A J‘ ]d j
dxJ oxt X
0 )
¢
= A; = Fvi gradg
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wherefAjdxf = ¢ = ascalar

= A; = grade
Conversely let A; be a covariant vector such that
a9
A; = grad¢ = i

Where ¢ is scalar.
We have to prove that

o
Il
o

. i
apy . (09 .
A0y =430 = (553) 1 = (57)
= (‘ib,i)J- - (d)*j),i =¢ij—¢,;;=0
or Ai,j _Aj,i =0
or Ai = A

i

8.11 PARALLEL DISPLACEMENT OF VECTORS:-

In a Riemannian V, , let A® be a vector with a constant magnitude that is
defined along curve C. Along curve C, the vector A' is said to suffer a
parallel displacement if
Al — dx’ =0 1
i s (D)
At each point of C.
It is also expressed by saying that the vector At is parallel along C.

Equation (1) =

dx’
AUE = 0 (2)
Equation (1) multiplying by g;., we get
dx’
ngA d 0
dx’
or (guA’) ,—— = 0.for gye; =0
dx’ dx’
or Ak,jgzo or Ai'jEZO
Writing equation (1) in full
dA! dxf api & dx) _ 0
oxJ ds Y4 ds
dA' oy dx’
or ds U ds
or dA' = —A“F;def ..(3)
Similarly equation (2) gives
dA; = A“Fl-‘}dxf . (4)
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Thus the increments in components of A' and A; due to the displacement
dx’ along C are given by equation (3) and (4) respectively. This concept
is due to Levi and Cita.

Theorem: 14. To prove that the magnitude of all vectors of a field of
parallel vectors is constant.

Proof: If a forms a field of parallel vectors along the curve x! = x(t),
then we have

dxt
a] E =0 (1)

We have to prove that a = 0 ,where a is the magnitude of a'
Equation (1) =

dx’
gy ="
a’? = a"al

ds (aa) (af ;)

dxf dxj
= ] d a; + at Qi j—- ds
= (0)a; + a’(0) =0
= da’ =0
- ds _-
Integrating above equation, we get

az = constant or a = constant

Theorem: 15. To prove that a vector of constant magnitude is orthogonal
to its intrinsic derivative in any direction.
Proof: Let A be a vector of constant magnitude so that

A? = constant (1)
Let a’ be any unit vector. Then the intrinsic derivative of A in the
direction of a’ is A;a/.
To prove that Afjaj is orthogonal to A, we have to show that

(ALal)A; =0 - (2)
Equation (1) = AlA; = constant = (AiAi)j =
= ALA + A4 =0

Since the dummy suffix has freedom to movement and therefore the last
equation becomes

ALA; + AAL =02 2454, =0
= ALA; =0
Forming scalar product of this with a’, we get
(454:)a’ =0
or (ALal)A; =0
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8.12 PRINCIPAL NORMAL:-

The derived vector of t* in its own direction is known as the first curvature
vector of C relative to 1, is represented by p. Let t! be the unit tangent
vector at any point P(x!) lie ona curve C inaV,.
pi — ti.ﬁ . ti — dx' (1)
Jods ’ ds

The magnitude of p' is denoted by k, is defined as first curvature (or
curvature simply) of the curve C relative to V,. Then

k? = gip'p’ - (2)
If n be unit vector along pt, then

pt = kn' ..(3)
n!, contravariant component of n is called unit principal normal.

From equation (1)

o ati+t“{i} dx’
P =\ oxi aj) | ds

B dtt { i }dxa dxt

~ds @) ds ds
. d dxt N Li }dxj dx*
or P = a5\ ds k) ds ds
o d?xt N Li }dxj dxk
or P = g2 k) ds ds
. o 1[d*xt (i }dxj dxk A
or n—?orn—EF Lk EK ()

This is required expression for principle normal.

Theorem: 16. Any vector of constant magnitude which undergoes a
parallel displacement along a geodesic is inclined at a constant angle to a
curve.

Proof: Let a vector a! of constant magnitude undergoes a parallel
displacement along a geodesic C, so that
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al—=0 . (1)
At each point of C.

Let ¢! be the unit tangent vector to the curve C, so that

; dx/
t’jg =0 (2)

At each point of C. since geodesics are auto- parallel curves.
Let 6 be the angle between the vector ! and t¢. Hence

alt! = a.1.cosf

d d , . . oo dxt
_ — — (i 0 = i
IS (acosh) IS (ai th) = (a't )'], IS
'Hde—ti . dxi+ (i dx’
or —asin—— = tla’;——+a't’;—
From equation (1) and (2), we get
. de . .
asind—=0.t"+0.a' =0
ds
ind a6 _ 0 #+ 0
or sing —— = fora
) deo
= sinf =0 or —=0
ds
= 0=0 or 0 = constant
= 0 = constant

8.13 GEODESIC CO-ORDINATE:-

With the pole at P, , the coordinate system x' is referred to as a geodesic
coordinate system if g;; are locally constant in the neighbourhood of the

point Py. g;; are said to be locally constant in the neighbourhood of P, if

agij

Ik # 0 elsewhere

and
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Or equivalently

Fij,k =0 =FLI; at PO

To determine the necessary and sufficient condition for a given coordinate
system to be a geodesic coordinate system with the pole at P,.

i dx! _ ax%axP  9%x!

ij A7 i I'+ i T
YU gx'a B ax'iax'] | dx'iox']

Interchanging co-ordinate system x‘ and x',

ox't . ox'®ox'F 9%
Fia' — = ap - — + - -
] 9xa oxt 0x/ = Oxtox/
. 0x'@ ox'P ax't  0%x'!
— —~ _—_r@
or B xt dxi ly xe | oxiox) - (1)
B
For a given value of [, x'! is a scalar function of x! and hence Fr isa
covariant vector. Write
dox't
_ — Wl
A= =
Then equation (1) becomes
ax'“ax'? a4,
2’ _ 3 _ _ /1
~lag axt oxJ  oxJ ~Aally = A = (x 'i)J
p L ox'“ox'f
or, X ij = I apB axi W (2)

Case (i): Let x'* be a geodesic co-ordinate system with the pole at Py,
then F’fxﬁ = 0 at P,. In this even (2) shows that x’fij =0at P,.

Case (ii): Conversely suppose that x’fij = 0 at P,.
Then equation (2) becomes

o 0x'%ox't
Vap 557 =0
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o I
oxt
hence I"i{ﬁ =0at P,

This = x' is a geodesic co-ordinate system with the pole at P,,.

This proves that a necessary and sufficient condition that a given co-
ordinate system be geodesic co-ordinate system with the pole at P, are
that all their second order covariant derivatives w.r.t. space co-ordinate
vanish at P,.

8.14ANATURAL CO-ORDINATE:-

, : 99i) . ,
At the geodesic coordinate pole a‘i,i = 0. To obtain Galilean values for

all g;;, a transformation of coordinates can be introduced. A particle in
motion at rest can also be created by using a Lorentz transformation. Such
a coordinate system is referred to as a proper or natural coordinate system.

SOLVED EXAMPLE

EXAMPLEL: Show that all Christoffel symbols vanish at a point where
gij are constants.

SOLUTION: ~ g;; = constant Vi and j

agij ..
SO WzOVl,],k
= Tijx =0T =0Vijk

= All Christoffel symbols vanish.

EXAMPLE2: Show that if ¢! is unit tangent to a geodesic, then tf}ct" =0,
comma denoting covariant difference.

SOLUTION: The differential equation of a geodesic C is

d%x® e dx’ dxk — 0o .
ds? K ds ds -+ (1)

Suppose t* is unit tangent vector to the curve C is that
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B dxt
"~ ds

ti
We have to prove that equation (1) is equivalent to the equation tj(t" =0

Now equation (1) is expressible as

d (dx“) . dxJ dx* B

ds\ ds kK ds ds
ta
il ok —
or s + R/t =0
ot dx* ik
or ﬁgi‘l—‘jkt t“=0
ot AU
or <6x"+rﬁ‘t])t =0
or thth =0
or titk =0

EXAMPLES: If 4; is a vector show that, in general,

04 tat but th taAi 04y
axkls Nnot a tensor nu a axk axi

is a tensor.

SOLUTION: If 4; is a vector so that, by tensor law of transformation,
, dx¢
A i = Aa ﬁ (1)

0A;
(i) We have to prove that a—x,i is not a tensor, in general

Partially differentiating equation (1) with respect to x'*, we get

0A'; 0A, 9xP 0x* 9%x¢
K b 1k 1 + Aa Ak "t (2)
0x 0xP dx'*k ox' 0x''0x
0%x¢ ;
This says that if the term ———— were absent, then —Llisa component
dx' ox'" dxk

04;
of a tensor. But in general, (2)says that W’l‘ is not a tensor.
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o 0A A AL 04
Woxk " axi “oxk  fatik T Ak T G
04, .\ (0A, .
= (G~ Aar) = (5 — 4ar)
94, 94,
axk  oxt Apge — Ak .. (3)

R.H.S. of equation (3) is a difference of two tensor each is second rank
covariant tensor. Hence R.H.S. of equation (3) is a second rank covariant
tensor. Therefore L.H.S. of equation (3) is also second rank covariant
tensor.

94, 04,
'e'axk dxt

i is second rank covariant tensor.

EXAMPLEA4: If A;;, is an anti-symmetric tensor of the second order,

show that

04, 0Axm O0An;
dxm = Oxt dxk

is a tensor.

SOLUTION: Suppose A;; is an anti-symmetric tensor so that

Ajg = —Ay
Hence Aj + 4 =0 (1)
We claim

0Ay 0Apm 0An

Aigm + Axmi + Amigx = Ixm + Il + axk - (2)

L.H.S. of equation (2)

aAik a a aAkm a a
= (axm — Al — Aiarkm> - (W — AamIyi — Akarmi)

0A,,;
( ax‘n}zl - Aail—}%k - Ama i(llcF)

o T ot T axk ) — (Aak + Ak T

_(Aia + Aai)rr%k - (Aam + Ama) i‘llc
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(aAik aAkm aAmi)
ax™m = Oxt dxk

From equation (1)
= R.H.S of equation (2)

Since L.H.S. of equation (2) is sum of tensors of rank 3 therefore L.H.S.
and R.H.S. of equation (2) is also tensor of rank 3.

SELF CHECK QUESTIONS

A. The rank of the covariant derivative of a covariant tensor of second
rank is:

a) One

b) Two

c) Three

d) Four

B. The geodesics in three dimensional Euclidean space are:

a) Straight lines

b) Spheres

c) Paraboloids

d) None of these

C. The differential equation of the geodesic is:

a) a? {(;1_;>2 + rz} = k?r*
b) a? {(Z—;)Z + rz} =rt
c) a? {(Z—;)Z — rz} = k?r*

d) None of these

D. With usual symbols, the differential equation:
d?x?  dx'dx’
ds? + ds ds

a) Riemannian equation

b) Newtonian equation

c) Geodesic equation

d) Metric equation

r}j. =0
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8.15 SUMMARY::-

In this unit, we have studied essential concepts in differential geometry
and tensor calculus relevant to curved spaces and general relativity.
Christoffel symbols were introduced as mathematical tools that help
define how vectors change in curved spaces. We explored the concept of a
geodesic, which is the shortest path between two points in a curved space,
governed by geodesic equations. The unit also covered covariant
differentiation of tensors, which extends the concept of differentiation to
curved spaces while preserving tensorial properties. The gradient of a
scalar gives the direction of the greatest rate of increase of the scalar field,
while derived vector projection involves projecting vectors along
specific directions. We studied the tendency of a vector, a notion
capturing how a vector changes along a curve. Furthermore, we learned
about the curl and divergence of a vector field, measuring the field’s
rotation and outward flux, respectively. The parallel displacement of
vectors explained how vectors can be transported while maintaining their
direction relative to the space. The concept of principal normal relates to
curvature in a curve, helping to define the plane of curvature. Finally, we
explored geodesic coordinates, where Christoffel symbols vanish at a
point simplifying calculations, and natural coordinates, which are
adapted to the geometry of a specific problem or surface. These concepts
are crucial for understanding motion, forces, and geometry in curved
spaces.

8.16 GLOSSARY:-

e Geodesic: The shortest path between two points in a curved space
or spacetime, representing the natural trajectory of a free particle
under no external forces.

e Christoffel Symbols: Mathematical expressions derived from the
metric tensor, used to describe how coordinate bases change from
point to point in a curved space.

e Covariant Derivative: A generalization of the derivative that
accounts for curvature, allowing for the proper differentiation of
tensors in curved spaces.

e Gradient of a Scalar: A vector field that points in the direction of
the greatest rate of increase of a scalar function, defined as the
covariant derivative of the scalar.
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Derived Vector Projection: The component of a vector projected
in a specified direction, often used in describing motion along
curves.

Tendency of a Vector: Describes the change in direction and
magnitude of a vector along a curve or field in a manifold.

Curl of a Vector: A measure of the rotational tendency of a vector
field; in curved space, defined using covariant derivatives.
Divergence of a Vector: A scalar measure of how much a vector
field spreads out or converges at a point; calculated using the
covariant derivative.

Parallel Displacement: The process of moving a vector along a
curve while keeping it parallel according to the rules of curved
geometry.

Principal Normal: A unit vector perpendicular to the tangent of a
curve, pointing in the direction of the curve’s immediate turning.
Geodesic Coordinates: A coordinate system in which the
Christoffel symbols vanish at a point, simplifying the form of
geodesic equations locally.

Natural Coordinates: Coordinates chosen to simplify a problem
based on the geometry or symmetry of the space, often aligned
with curves or surfaces.

Affine Parameter ().): A parameter along the geodesic that
preserves the form of the geodesic equation and is often
proportional to proper time or arc length.

Manifold: A mathematical space that locally resembles Euclidean
space and allows the definition of tensors and geodesics.
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e Dr. JK. Goyal and Dr. K.P. Gupta (Twenty Eight Edition, 2018),
Theory of Relativity.

8.19 TERMINAL QUESTIONS:-

(TQ-1) Show that

i 0

i} = 2710049
(TQ-2) Define geodesic and obtain their equations with the help of
variational principle.
(TQ-3) Show that fundamental tensor is covariant constant.
(TQ-4) Prove that intrinsic derivative of fundamental tensors g;;, g/, g}
vanish.
(TQ-5) Find the condition of the tensor 4; ; to be symmetric.
(TQ-6) Show that unit tangent to a geodesic suffers a parallel

displacement along the geodesic.
(TQ-7) Show that

1(0g;; 0gix 0gix
Uijre + Uy + T j = §<ax§i + ax]i + axlj

8.20 ANSWERS:-

SELF CHECK ANSWERS

oo ® P
L
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UNIT 9:-Tensor of Curvature
CONTENTS:

9.1 Introduction

9.2  Objectives

9.3  Riemannian Christoffel Tensor
9.4  Covariant Curvature Tensor
9.5  Flat Space Time

9.6  Summary

9.7 Glossary

9.8  References

9.9  Suggested Reading

9.10 Terminal questions

9.11 Answers

9.1 INTRODUCTION:-

The Tensor of Curvature, commonly known as the Riemann Curvature
Tensor, is a fundamental object in differential geometry and general
relativity that measures the intrinsic curvature of a differentiable manifold.
It provides a precise mathematical description of how vectors change
when parallel transported around infinitesimal loops, revealing the
manifold’s deviation from flatness. Denoted as R(flw, the tensor depends

on the metric and its derivatives, and encapsulates the effects of
gravitational fields in Einstein’s theory. It is essential for defining other
important curvature-related tensors, such as the Ricci Tensor and the
Scalar Curvature, and plays a crucial role in the Einstein Field Equations,
governing the dynamics of space-time under the influence of mass and
energy.

9.2 OBJECTIVES:-

After studying this unit, the learner’s will be able to

e T explain Riemannian Christoffel tensor.

e To solve xplain properties of covariant curvature tensor.
e To prove Bianchi identity.

e Todiscuss flat space time.
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9.3 RIEMANNIAN CHRISTOFFEL TENSOR:-

Let A; be a covariant vector.

erte Ai AU'AUk =Aijk

04;
LT P )

- Aij

62Ai a 04a arg a 04, b ra a d04;
T oxdoxk Lij axk Aagyk dxk ~ T oxJ + Aplg;lie — T 0x2

Rearranging the terms

024, 04, OA. 04,
Aij,k = Ox)0xk F]ka a +Abrla jk Fl] dxk l-‘ikﬁ

a

T
Aaa k+Abrbj 2 (D

Interchanging j and k in the equation (1), we get

024, ., 04 , L0A, 04,
A = \Gaans ~ 1 e * ATl | =Tl 7~ T

a

are
~Aas—5 S ATETS (2)

Subtracting equation (2) from equation (1), we get

a a

aTyj b
Ajjr — Aig,j = —A +Abl" Tk +Aa6 7
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4 a b aricllc a b
Aijye = Ay = Aa| — 5% c+ TTh + a7 Toielij
: o 5, rapn 4 Ol )
We get Aij,k _Aik] A RUk (3)

A difference of two tensors of rank three each makes up the first element
of (3). As a result, both the first and second members of (3) are covariant
tensors of rank three. The inner product of A, and R is a tensor of rank
three since the covariant vector A, is outside the bracket, and the quantity
inside the bracket is a mixed tensor of type R{}, of rank four, according to
the quotient law. The symbols R{}, are known as Riemann's symbols of
the second kind, and the tensor R;j, is known as the Curvature tensor.

The following have the same meaning:

Riemann Christoffel's tensor, Riemann Christoffel curvature tensor,
Curvature tensor.

9.4 COVARIANT CURVATURE TENSOR:-

We define
Rhijk = GnaRik

Rpji s thus referred to as the covariant curvature tensor.
The symbols Ry are referred to as Riemann’s symbol of the first kind.
Now,

— a
Ruijk = GnaRijk

are  org ,
= Gha _W-I_a + ) wlni — it o

d agh d agh
~Ax % Inalij + I ax ka+@gharﬁc i ax Ja+r Lhjn

b
=L Tokn

G ] 9
= _Wrij,h + I3 (Thiea + Taicn) + Wrik,h

k(rh]a + Iy, h) + 5 yjn — Fil}Fbk,h
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21 0%g;; B 0%g;n B 0%gin 0°Gnk .~ 0%
~ 2\0xhaxk odxidxk dxiaxk  dxidx/  dxJdxk

0% gix a a
~aioxt ) Tiklhja + T

R _1 0% Ghie azgij _ 0% gir _ azghj n rarb
rijk = 5\ gxiax] T axhaxk  dxioxh  dxigxk) T Jabliihk

—gabri?cri?j
This is required relation for Ry, ..

Theorem: 1. Properties of covariant curvature tensor. To show that
covariant curvature tensor Ry jx is

a) Skew-symmetric in the first two indices.
b) Skew-symmetric in the last two indices.
c) Symmetric in two pairs of indices.

Proof: We know that

1( 0%gny 0%g;; 0% gix 0% gn, apb
Rnijic = E(Oxiaxj dxhoxk odxioxh 0dxidxk + JanTijTni

—Yab Fi(}crf?j - (1)
We have to show that

a) Rpijk = —Rinjk
D) Rnijk = —Rnikj
¢) Rnijx = Rikni
Interchanging the suffixes h and i in equation (1), we get

1( 0%gu 0%gnj  0°gne  0°9ij 4 b
Rinjie = §<6xh6xj dxioxk 0dxJioxi dxhoxk + Gan i

—Yab Ff?kril}
Comparing the above equation with equation (1), we get

Rhijk = _Rihjk
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Hence the result a)

Interchanging the suffixes j and k in equation (1), we get

1 az.ghj 0% gix azgij 0% Gni b
Rnikj = E(axiaxk dx"hoxi dxkoxh odxidx) + Gan Tl

—Yab Fi‘}Fflz)k
Comparing the above equation with equation (1), we get
Rhijk = —Rnix;j
Hence the result b)

Interchanging the suffixes h and j in equation (1), we get

R _1(0%gjx  0%gin  9’gu _ 0%gpn + g Tarh
jitk = 5\ oxiaxh T 9xioxk  oxhdx)  oxidxk) " Jablin'jk

—Yab Fi‘llcr}'l;l
Again interchanging the suffixes i and k in above equation, we get

1 ( azgkh azgji azgki 82gjh

_ = _ _ arb
Rjieni = 2\ 0xJoxt + dxkoxh 9xJioxh ax"axi> + JapTienT]:

~Yab Flgirjl;l
Comparing the above equation with equation (1), we get
Rpijk = Rjkni
Theorem: 2. Prove the cyclic property
Rpijie + Rujki + Rugij = 0
Proof: We know that

1( 0% | 0%gi;  0%gu  0%gn; arb
Rnijic = E(éxiaxf dxhoxk odxioxh  odxidxk + JanTijTni

arb
—9ar ik

From the above equation we have
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1(0%gk 0% gni 0%gi 0% gni b
Rnjii = E(axhaxi oxioxk  axhoxk  axioxt) T Jwliln

—Yap Ffll Ffll)k

0%gr; . 0°gjn  0°gxj  0°gni b
and Rpij = E(axfaxh dxkdxi odxMoxi odxkdxi + Javlialin

_gabr‘lgjrfll)i
Adding the above three equation, we get
Rhijie + Rpjki + Ruxij = 0
Theorem: 3. Contraction of Rj},. To show that the curvature tensor may
be contracted in two ways. One of these leads to a zero tensor and the
other method leads to Ricci tensor.

Proof: We have

a _ ari(} ari(’l‘ a bra
Rl = "9k Yo Ipilij + LTy - (1)
Three methods exist for contracting the curvature tensor. A zero tensor is
the result of one of them.
I.  Contraction of R}, with respect to a and { in equation (1)
aTy, @
ajk =~ 32k a;j — T Ta; + T Ts,
_ azlo'g\/g azlo'g\/g re Fb e Fb
T OxkoxJ dxJoxk bk aj + lbictaj
(on interchanging dummy suffixes a and b in the last term)
. a. =
ajk

il.  Contraction of R, with respect to a and k in equation (1)
This approach produces the Ricci tensor, a significant tensor

represented by R;;, which is defined as

are org

Rij = Rjq = T oxa T ax) [eTh + TLTS,
2
oo . 92log.[g o dlog./g R @
Y 9x®  dxjoxt YU Qxb la”bj

Interchanging i and j in equation (2), we get
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_ o org N 0%log\/g o dlog\[g

jii — 2 bya
B oxa T axioxd i gxb T Tialsi ..(3)
Comparing equation (2) and (3), we get

R = Rj;
Hence it is symmetric tensor.

ili.  Contraction of R, with respect to a and k in equation (1)
Here we get the Ricci tensor with negative sign. For

Ri = —R{.. = —Rix = negative of Ricci tensor
a — a
for ijk = —Rix;

Theorem: 4. Bianchi identity: To prove that
R%k,l + RS(Z,]' + R?l]',k =0
or Rpijii + Ruiki,j + Ruije = 0

Proof: We know that

a _ ari(} ari(’l‘ a bra
Rl = T axk + 9 Ipilij + LDy

Introducing geodesic co-ordinates with the pole at P,, then
TS =0=T,at P
At P,, covariant derivative reduces to ordinary partial derivative.

Differentiating covariantly with respect to x! and them imposing the
condition of geodesic co-ordinates with the pole at P, , we get

0°rg  o°rg

Rijic = ~ dxlaxk ' 9xlax] at o
L o _ 0T 0%
Similarly Riy, ; = ~3xiox! + EISEPY: at P,

] 9°r% 0TS
Wk = " gxkax] ' dxkox!

at P,

Adding the above three equations, we get

Rijg1 + Ri; + Rijx =0at Py ...(1)
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Multiplying equation (1) by g, Where g,, is constant under covariant
differentiation, i.e.

InaRir = (GnaRi ), 1 = Rugjk, We get
Ruijii + Ruikt,j + Rpigje =0 ... (2)

Given that each term in this equation is a tensor component, (2) is a
tensorial equation. In other words, it is true in all coordinate systems. P,
is also an arbitrary point of Ij,. As a result, equation (2) holds for all
coordinate systems in Riemannian space. As a tribute to its discoverer,
Bianchi, it is known as Bianchi identity.

Hence equation (1) and (2) gives required result.

Theorem: 5. To show that curvature tensor has 20 components in four
dimensional space.

Proof: Let V, be a Riemannian space with n dimensions. It has n*
components since Ry is of rank four. None of them are unrelated to the
properties listed below that belong to Ry j :

Rpijk = —Rnix; (antisymmetric property)
Rpijk = Rjkni (symmetric property)
Rpijk + Rujki + Rukij = 0 (cyclic property)
Case I: When Ry, has one unlike suffix, i.e. of the type Ryppp.
By anti-symmetric property,
Rnhnn = —Rnnhn
= Rnphn = 0

The curvature tensor itself vanishes, indicating that Ry,, has no
component.

Case I1: When it contains two unlike suffixes, i.e., of the type, Ry;,; h can
be had in n ways. Once a specific value is assigned to h, the remaining
n — 1 values can be assigned to i. There are thus n(n — 1) ways to have
handi.

By anti-symmetric property,

Rpini = —Rinni = Rinin

or Rpini = Rinin
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i.e. i and h be interchanged.
Due to this property the number n(n — 1) is reduced to (n/2)(n — 1).
By cyclic property,
Rhini + Rppii + Rpiin = 0
o1 = Rpjin + 0 + Rpjip = 0
or0=0

Proving the satisfaction of their cyclic property. Because of this property,
there is no reduction. As a result, Ry;,; has (n /2)(n — 1) independent
components.

Case Il1: When it has three unlike suffixes, ie., of the type Ry;; . It can

be easily shown that h,i and j can be had n(n — 1)(n — 2) ways. Due
to symmetric property, this number is reduced to 1/2 n(n — 1)(n — 2).

Consider the cyclic property,
Rpinj + Rpnji + Rpjin =0
or Rpinj + 0+ Rijpp; =0
or = Rippj + Rippj = 0
or0=0

Therefore satisfying the cyclic property itself. Because of this
characteristic, there is no reduction. This means that Ry;,; has (n/

2)(n — 1)(n — 2) independent components.
Case IV: When it has four unlike suffixes. i.e. of the type Rp; .

All the suffixes h, i, j and k are unequal.

It can be shown that h,i,j and k can be had in n(n —1)(n —2)(n — 3)
ways. Due to anti-symmetric this no. reduces to

9.5 FLAT SPACE TIME:-

If a Galiean frame of reference can be constructed in a given area of the
world, that area is considered flat or homogeneous. We know that
Galilean coordinates can be generated and that the line element ds? in
four-dimensional space simplifies to the sum of four squares where guy
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are constants. Therefore, if such coordinates can be discovered in the
space-time for which g ,,,are constants, then the space-time is said to be
flat. This is an equivalent definition of flat-space time.

Furthermore, all of the three-index symbols disappear when guy is a
constant. However, since 3-index symbols do not form a tensor, they
generally do not also disappear when other coordinates are replaced in the
same flat region. The Riemann-Christofell tensor, which is made up of
products and derivatives of Christofell's 3-index symbols, will disappear
once more when 8uv are constants. Because it is a tensor, it will also
disappear when other coordinates are substituted in the same flat region.
Therefore, the vanishing of the Riemann-Christofell tensor is a
prerequisite for flat-space time. This condition will also be sufficient if the
converse is also true, i.e., if the Riemann-Chris-tofell tensor vanishes, the
space-time must be flat.

Theorem: To prove that vanishing of Riemann Christoffel tensor is a
necessary and sufficient condition for the flat space-time (or or Euclideam
space).

Proof: In above section we have shown that the construction of a uniform
tor field by parallel displacement of a vector all over the region is
posssible if

Rlte =0 .. (1)
Given four uniform vector fields A‘(‘a) with the tensor suffix «a =

1,2,3,4, eqn. (1) implies

aA*
Al 0 = @ + F/{LO‘A%(Z)

@’ 7 gxo
aat
() _ U 47
pal —FMA(a) - (2)

Let's now examine the coordinate transformation law
dxt = Afydx®(@= 1,2,3,4)  ..(3)
Since ds? is an invariant, we obtain

ds? = Gapdx®dxP = g, dx*dx¥
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— u U
= gm,A(a)dx“A(ﬁ)dx
Jap = GvAipAls) o (4)

Differentiating above equation w.r.t.x?, we have

_ 4
0Gap u aA(ﬁ) + v aA(a) Lok gk 09w
oxe  Iml@ gxe TInA@ gre T A@A B Gyo

Using (2), we have

agaﬁ u K goat aguv
0x° =_g#vA(a)A(ﬁ)F/w Iuv )A(ﬁ)r +A(a)A(ﬁ) dx°

Changing the dummy suffix, we obtain

ag—cxﬁ U aguv
0x° _A(a) () [—gwrfg—g,wf' + I ]
09w
A (ﬁ)[ Live = Dojuo + axa]

u
= AwAlp) |~

09y | 0Guw] _ 0
() -

0x° = 0O0x°
Integrating, we have

Jap = constant throughout the region

It is clear from definition that space-time is flat. For flat space time, the
vanish-or is therefore a necessary and sufficient condition.

SELF CHECK QUESTIONS

1. Contraction of Riemann- Christoffel tensor leads to
a) Ricci tensor only
b) Zero tensor only
c) Ricciand zero tensors
d) None of the above
2. What does the Riemann curvature tensor represent?
It represents the intrinsic curvature of a manifold and measures
how vectors change under parallel transport around a loop.
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3. What is the condition for a spacetime to be flat?

A spacetime is flat if the Riemann curvature tensor is zero
everywhere.

4. Which geometric space is used to model flat spacetime?
Minkowski spacetime is used to model flat spacetime in special
relativity.

5. What role does the curvature tensor play in general relativity?

It describes how mass and energy curve spacetime and appears in
the formulation of Einstein’s field equations.

6. Is curvature always due to gravity?

Yes, in general relativity, spacetime curvature is interpreted as the
manifestation of gravity.

7. Which tensors are derived from the Riemann curvature tensor?
The Ricci tensor and scalar curvature are derived by contracting
the Riemann curvature tensor.

8. What is parallel transport in curved spacetime?

It is the process of moving a vector along a curve while keeping it
"parallel" according to the manifold’s geometry.

9. Does the curvature tensor depend on the coordinate system?

No, although its components may change, the curvature tensor
itself is a geometric object independent of coordinates.

9.7 SUMMARY:-

In this unit, we have studied the Riemannian Christoffel Tensor, which
provides the connection coefficients necessary for defining covariant
derivatives in curved spacetime; the Covariant Curvature Tensor, more
formally known as the Riemann Curvature Tensor, which measures the
intrinsic curvature of a manifold and describes how vectors are affected by
parallel transport; and the concept of Flat Spacetime, an idealized model
with zero curvature where the Riemann tensor vanishes, typically
represented by Minkowski spacetime in special relativity.

9.8 GLOSSARY :-

e Riemann Curvature Tensor: A fourth-rank tensor that measures
the curvature of a manifold by describing how vectors change
when parallel transported around a closed loop.
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e Christoffel Symbols: Mathematical objects representing
connection coefficients used to define covariant derivatives and
geodesics in curved spaces.

e Covariant Derivative: A derivative that accounts for the curvature
of space, allowing for differentiation of tensors in a coordinate-
independent way.

e Ricci Tensor: A second-rank tensor obtained by contracting the
Riemann curvature tensor, used in Einstein’s field equations to
describe gravitational effects.

e Scalar Curvature: A single number derived from the Ricci tensor
that summarizes the overall curvature of spacetime at a point.

e Parallel Transport: The process of moving a vector along a curve
on a manifold such that it remains parallel according to the
manifold’s connection.

e Geodesic: The generalization of a straight line to curved spaces,
representing the shortest path between two points on a curved
surface.

e Flat Spacetime: A spacetime with zero curvature where the
Riemann curvature tensor vanishes, typically modeled by
Minkowski geometry.

e Metric Tensor: A symmetric tensor that defines the geometric
properties of space or spacetime, including distances and angles.

e Bianchi Identities: Mathematical identities involving the Riemann
tensor that are crucial in deriving Einstein’s field equations in
general relativity.

9.9 REFERENCES:-

e Abraham, Ralph; Marsden, Jerrold E.; Ratiu, Tudor (2017),
Manifolds, Tensor Analysis, and Applications. Springer.

e Millman, Richard S., & Parker, George D. (2019), Elements of
Differential Geometry. Dover Publications

9.10 SUGGESTED READING:-

e Satya Prakash and K.P. Gupta (Nineteenth Edition, 2019),
Relativistic Mechanics.

e Dr. J.K. Goyal and Dr. K.P. Gupta (Twenty Eight Edition, 2018),
Theory of Relativity.

9.11 TERMINAL QUESTIONS:-
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(TQ-1) Show that U; ;; = U;; for all covariant vector U iff curvature
tensor is zero. Prove that
Ry + Rh + Riy; = 0

(TQ-2) Show that the vanishing of Riemann-Christoffel tensor is a
necessary condition for flat space time. Is this condition sufficient also ?

(TQ-3) Prove that divergence of RY —~RgY is zero where Ry; is
Einstein’s tensor.

(TQ-4) Show that algebraically independent components of curvature
tensor Ry inaV, cannot exceed 20.

(TQ-5) Prove that
Rpijir + Ruiki,j + Ruije = 0

(TQ-6) Define a flat space time. Show that the vanishing of curvature
tensor is a necessary and sufficient condition for a space time to be flat.

(TQ-7) Show that in general 4, ,, # A, 4»
(TQ-8) Show that the divergence of GY — % g is identically zero.

(TQ-9) Define Riemann Christoffel curvature tensor and obtain an
expression for it.

(TQ-10) Show that vanishing of the Reimann curvature tensor is a
necessary and sufficient condition that the space be flat.

(TQ-11) Prove that Bianchi Identity

Rix1+ R+ Rij =0
or Rpijii + Ruiki,j + Ruije = 0
(TQ-12) show that covariant curvature tensor Ry, is

a) Skew-symmetric in the first two indices.
b) Skew-symmetric in the last two indices.
c) Symmetric in two pairs of indices.

(TQ-13) show that

a) Rpijk = —Rinjik
b) Rhijk = _Rhikj
C) Rnijk = Rikni
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9.12 ANSWERS:-

SELF CHECK ANSWERS

1. ¢
It represents the intrinsic curvature of a manifold and measures
how vectors change under parallel transport around a loop.

3. A spacetime is flat if the Riemann curvature tensor is zero
everywhere.

4. Minkowski spacetime is used to model flat spacetime in special
relativity.

5. It describes how mass and energy curve spacetime and appears in
the formulation of Einstein’s field equations.

6. Yes, in general relativity, spacetime curvature is interpreted as the
manifestation of gravity.

7. The Ricci tensor and scalar curvature are derived by contracting
the Riemann curvature tensor.

8. It is the process of moving a vector along a curve while keeping it
"parallel" according to the manifold’s geometry.

9. No, although its components may change, the curvature tensor
itself is a geometric object independent of coordinates.
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UNIT 10:-Introduction of the General Theory
of Relativity

CONTENTS:

10.1  Introduction

10.2  Objectives

10.3  Principal of Covariance
10.4  Principal of Equivalence
10.5 Equality of Inertial and Gravitational Masses
10.6  Summary

10.7  Glossary

10.8  References

10.9  Suggested Reading
10.10 Terminal questions

10.1 INTRODUCTION:-

The General Theory of Relativity (GTR), proposed by Albert Einstein in
1915, is a fundamental theory of gravitation that describes gravity not as a
force but as the curvature of space-time caused by mass and energy. It
extends the Special Theory of Relativity to include acceleration and
gravity, introducing key principles such as the Principle of Covariance,
which ensures that the laws of physics hold in all coordinate systems, and
the Principle of Equivalence, which states that locally, the effects of
gravity are indistinguishable from acceleration. The theory replaces
Newton’s concept of gravitational force with the idea that massive objects
bend space-time, influencing the motion of other objects along geodesic
paths. General Relativity successfully explains several gravitational
phenomena, including gravitational time dilation, the bending of light near
massive bodies, gravitational waves, and black holes, and has been
confirmed by numerous experiments such as the Mercury perihelion shift,
gravitational Lansing.

The Special Theory of Relativity originated from the development of
electrodynamics and is based on the principle that the motion of a body
can only be detected and measured relative to other bodies, with no
absolute motion being meaningful. It specifically considers the relativity
of uniform translational motion in regions of free space where
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gravitational effects can be neglected. This leads to the conclusion that
physical laws remain unchanged in inertial reference frames, where the
law of inertia holds. However, to address phenomena such as the "clock
paradox” and the universal law of gravitation, the theory had to be
extended to non-inertial systems, which involve acceleration. This
extension led to the General Theory of Relativity, which incorporates
gravity into the relativistic framework by describing it as the curvature of
spacetime. Despite its success, early theoretical predictions struggled to
fully explain certain observed gravitational phenomena, necessitating
further refinements and experimental verification.

These deviations arose due to the following reasons:

1. The theory fails for fixed particles in a gravitational field, as
observed in the redshift of spectral lines. In such cases, atoms
remain fixed, and the spectral lines emitted by these atoms are
affected by strong gravitational and magnetic fields.

2. The theory is fails for phenomena involving velocities comparable
to the speed of light, such as the bending of light rays under the
influence of a massive attracting body.

3. According to the Special Theory of Relativity, the predicted
bending of light rays passing near the Sun should be 0.88 arc
seconds, whereas actual observations show a bending of 1.75 arc
seconds.

4. The theory also fails in scenarios where both velocity and
gravitational fields are present, as seen in the precession of the
perihelion of Mercury.

The predictions of Special Relativity suggest an advance of 7.2 seconds of
arc per century, but the observed value is 43 seconds of arc per century,
indicating a discrepancy that requires modification. Special Relativity
applies only to inertial reference frames, where physical laws remain
invariant under Lorentz transformations. However, this invariance is
restricted to such frames, meaning it does not account for gravitational
effects or accelerated motion. Since real-world phenomena often involve
non-inertial frames, Special Relativity alone is insufficient to describe
nature comprehensively. To address this limitation, Einstein extended the
principles of Special Relativity to include non-inertial reference frames,
leading to the General Theory of Relativity (GR). GR describes gravity
not as a force but as the curvature of space-time caused by mass and
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energy. When applied to gravitational phenomena, GR predicts small
deviations from Special Relativity, such as the anomalous precession of
Mercury’s orbit. These deviations, confirmed through experimental
observations, validate the accuracy of General Relativity and demonstrate
its superiority in explaining gravitational interactions beyond the scope of
Special Relativity.

10.2 OBJECTIVES:-

After studying this unit, you will be able to

e Define and apply the Equivalence Principle in different physical
situations.

e Understand the Principle of General Covariance and how it
ensures the consistency of physical laws in all reference frames.

10.3 PRINCIPAL OF COVARIANCE:-

When referring to different sets of Cartesian axes that are in uniform
relative translatory motion, the laws describing any phenomenon in free
space must have the space form and contents and be independent of the
velocity of the specific observer making the measurements, according to
the special theory of relativity. We fully utilize the basic concept of
relativity for all types of motion in general theory. Here the laws must be
expressible in a form which is independent of the particular space time co-
ordinate choosen or in other words laws of nature remain invariant w.r.t.
any space time co-ordinate system. This statement is called the principle
of genera covariance.

Therefore, all of our laws must be expressed using covariant equations that
do not require a specific coordinate system. Since the form of a tensor
equation, which expresses a law, is precisely the same in all coordinate
systems, we utilize tensor calculus to do this. As we can see, the equation's
modified form

ds* = — (dx* + dy* + dz?) + c*dt?
in tensor form is

ds® = gy dx'dx’) (i,j = 1,2,3,4).
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The fundamental tensor g;; is co-variant tensor of rank two that transforms
according to the law

, dx® OxP?
9ij = gabﬁaxq

where g;; is the transformed metric in the new coordinate system x'*.

Suppose the physical laws of the nature in x! co-ordinate system are
expressed by an equation involving tensors, such as

A; = B;

Then we can write the transformation law for this tensor as

A= i = g P OX g 07 7
1 1 B ox® ax'i P oxeax'i
ax' axP ax't 9xP

' )ax'“ ax 0. dx“® ax"f -

Al —Bj'=0 or A =B/

(45 - Bf

Thus, we see that tensorial quantities follow the general covariant laws,
ensuring that physical equations retain their form under arbitrary
coordinate transformations, which is a fundamental principle of General
Relativity.

10.4 PRINCIPAL OF EQUIVALANCE:-

The principle of co-variance is the assumption that the physical laws may
be stated in a way that is independent of the coordinate system, and the
principle of equivalence is the actual hypothesis that introduces
gravitational considerations into the development. It is now possible for us
to examine the principle of equivalency in depth

The inertial mass is a coefficient which measures the resistance of intertia
of the body opposing the action of force. If the acceleration given to the
body by the force F is a, then inertial mass is and the gravitational mass is

— =m;
a l

as well as the coefficient that determines the attractive force that a body
experiences in the gravitational field. According to Newtonian theory the
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gravitational mass and inertial mass are always equal. This is called the
principle of equivalence.

and

d?x
e gz = Mad

d?x
@ =9
dzxk
dtz =9k

We may observe that the equation above is unaffected by the body's mass.
Consequently, we assert that, regardless of mass, the rate at which all
bodies fall under the influence of gravity is the same. Galleilo verified the
same empirically. All bodies, regardless of mass, fall in the same manner
in an evacuated laboratory, he claims (here the word evacuation is simply
used to avoid via friction of air).

Relative deceleration, which occurs when a system of reference is
subjected to accelerated motion, is similar to gravitational acceleration i.e.,
when an elevator is accelerated ward, a person in the elevator feels
momentarily heavier and en the acceleration is in the downward direction,
he feels Lighter. Thus Einstein noticed this fact and gave a very
fundamental and important idea that the gravitational field produced by
accelerating uniformly ah inertial frame of reference. According to
Einstein the principle of equivalence can be stated as follows:

In the neighborhood of any given point, we can distinguish between the
gravitational field produced by the attraction of masses and the field
produced by accelerating uniformly ah inertial frame of reference.

Consequently, two fields are the same. The equivalency concept is also
discovered to apply to electrical and optical phenomena. For example, a
light beam that propagated rectilinearly with regard to the uniform
motion's X" coordinate system was no longer rectilinear when compared to
the accelerated motion's x" coordinate system. It follows from this that
light beams propagate curvilinearly in gravitational fields normally.
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10.5 EQUALITY OF INERTIAL AND
GRAVITATIONAL MASSES:-

Inertial mass: The inertial mass of an object determines its resistance to
accelerationa; when a force F; is applied, as described by Newton’s
second law:

F; = maq;
where:

e Fjisthe applied force.
o minertial is the inertial mass, and
e q; is the resulting acceleration.
F;
m; = —
a;

Thus the inertial mass of a body may be defined as the ratio of the
inertial force acting on the body to the acceleration acquired.

Gravitational Mass: If g is a body's acceleration in a field of
gravitational attraction Fy, then

F, =mg
where m is the gravitational mass of the body and may be expressed as

Fy

mg = g
Thus the gravitational mass of a body is defined as the ratio of the
gravitational force to the gravitational acceleration of the body in the
gravitational field.

Since the principle of equivalence states that the gravitational and inertial
forces are of the same kind and subject to the same laws, and that a desired
gravitational field can be created by selecting an appropriate accelerated
frame of reference, hence

F, F
a g
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m; = my
Consequently, the equality of the gravitational and inertial masses of the
same body is implied by the principle of equivalence. This equality of
gravitational and inertial masses has the effect of accelerating the fall of
all bodies in the same gravitational field. The equality of inertial and
gravitational masses has been confirmed experimentally with a high
degree of accuracy by Dicke in 1962, Eotvos in 1896, and 1908.

Sometimes, the concept of equivalence refers to the idea that inertial and
gravitational masses are equivalent.

SELF CHECK QUESTIONS

1. What is the Principle of Covariance?

2. Why is the Principle of Covariance important in General
Relativity?

3. How does the Principle of Covariance differ from Galilean
Invariance?

4. What mathematical tools are used to express physical laws
covariantly?

10.6 SUMMARY :-

In this unit, we explored two fundamental principles of General Relativity:
the Principle of Covariance and the Principle of Equivalence.

e The Principle of Covariance states that the laws of physics must
be valid in all coordinate systems, meaning their form remains
unchanged under smooth transformations. This ensures that
Einstein’s field equations are expressed in a covariant form using
tensors, making them independent of the observer’s frame of
reference.

e The Principle of Equivalence establishes that locally, the effects
of gravity are indistinguishable from those of acceleration. This
implies that a uniform gravitational field is equivalent to a
uniformly accelerated reference frame, leading to the conclusion
that gravity is not a traditional force but rather a curvature of
space-time caused by mass and energy. Together, these principles
provide the conceptual framework for General Relativity,
fundamentally redefining our understanding of gravity as the
geometric deformation of space-time rather than a force acting at a
distance.
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10.7 GLOSSARY :-

e Principle of Covariance — A fundamental concept in General
Relativity stating that the laws of physics must have the same form
in all coordinate systems, ensuring their invariance under smooth
transformations.

e General Covariance — The requirement that physical laws be
expressed using tensors so that they remain valid in any reference
frame or coordinate system.

e Coordinate Independence — The idea that the formulation of
physical laws should not depend on a specific choice of
coordinates, reinforcing the universal applicability of physical
principles.

e Einstein Field Equations (EFE) — A set of covariant equations in
General Relativity that describe the relationship between spacetime
curvature and energy-momentum distribution.

e Principle of Equivalence — The assertion that locally, the effects
of gravity are indistinguishable from acceleration, meaning that a
uniform gravitational field is equivalent to a uniformly accelerated
reference frame.

e Weak Equivalence Principle (WEP) — The principle stating that
all objects, regardless of their mass or composition, fall at the same
rate in a gravitational field.

e Strong Equivalence Principle (SEP) — An extension of the Weak
Equivalence Principle that includes gravitational self-energy,
stating that the laws of physics, including General Relativity, hold
true in all freely falling reference frames.

e Tensors — Mathematical objects used in General Relativity to
express physical laws in a covariant form, ensuring their validity in
all coordinate systems.

e Spacetime Curvature — A concept in General Relativity
describing how mass and energy distort spacetime, leading to what
we perceive as gravitational attraction.

e Geodesic Motion — The trajectory of a freely falling object in
curved spacetime, which follows the shortest path (geodesic)
dictated by the curvature of spacetime rather than a direct force.

10.8 REFERENCES:-

e Robert J. A. Lambourne (2010). Relativity, Gravitation and
Cosmology.

e Michel Janssen and Christoph Lehner (2014), The Cambridge
Companion to Einstein.
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e Asghar Qadir (2020), Einstein's General Theory of Relativity.

10.9 SUGGESTED READING:-

e S.P.Puri (2013), General Theory of relativity.

e Farook Rahman (2021), The General Theory of Relativity: A
Mathematical Approach

e Goyal and Gupta (1975), Theory of Relativity.

e R.K.Pathria (2003), Theory of Relativity.

10.10 TERMINAL QUESTIONS:-

(TQ-1) Give an account of Einstein's principle of equivalence. What are
the observable consequences of general theory of relativity?
(TQ-2) Explain Einstein's principle of equivalence. Give a detailed
account of red shift of light. How has this been verified experimentally?
(TQ-3)Explain the principle of equivalence and give a concise account of
the general theory of relativity. Discuss the experimental evidence in
support of it.
(TQ-4)State and comment on the basic hypothesis and postulates of the
general theory of relativity and discuss how the principle of equivalence
and covariance follow from the guiding principle in the development of
general relativity?
(TQ-5)Explain the principle of equivalence and the principle of general
covariance
(TQ-6)Write notes on the following:

(a) Fundamental concepts of general theory of relativity.

(b) Principle of covariance.

(c) Postulates of general theory of relativity.
(TQ-7) State the principle of equivalence in general theory of relativity
and discuss that it acts as a bridge to pass from special to general theory of
relativity.
(TQ-8) What is the Principle of Equivalence? Discuss its role in the
development of General Relativity.
(TQ-9) Compare and contrast the Principle of Covariance and the
Principle of Equivalence.

(TQ-10) Write short note on 'principle of equivalence'.
(TQ-11) Write short note on principle of equivalence.

(TQ-12) State the basic postulates and principles of General Theory of
relativity. Justify the statement that the principle of equivalence acts as a
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bridge to pass from, special theory of relativity to General Theory of
Relativity

10.11 ANSWERS:-

SELF CHECK ANSWERS

1. The Principle of Covariance states that the laws of physics should
take the same mathematical form in all coordinate systems.

2. It ensures that the laws of physics, particularly Einstein’s field
equations, are valid for all observers regardless of their state of
motion or coordinate choice, reflecting the general nature of
spacetime.

3. Galilean invariance applies only to Newtonian mechanics and
inertial frames, while the Principle of Covariance applies to all
frames, inertial or non-inertial, using the language of tensor
calculus.

4. Tensors, covariant derivatives, Christoffel symbols, and metric
tensors are key tools used to express physical laws in a covariant
(coordinate-independent) form.
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UNIT 11:-Relativistic Field Equations
CONTENTS:

11.1  Introduction

11.2  Objectives

11.3  Energy Momentum Tensor

11.4  Einstein’s Field Equations

11.5 Newtonian Equation of Motion as an Approximation of
Geodesic Equations

11.6  Poisson’s Equation as an Approximation of Geodesic
Equations

11.7  Summary

11.8  Glossary

11.9  References

11.10 Suggested Reading

11.11 Terminal questions

11.12  Answers

11.1 INTRODUCTION:-

The energy-momentum tensor, also known as the stress-energy tensor, is a
fundamental mathematical object in physics that describes the distribution
and flow of energy and momentum in space-time. It is a second-rank
tensor denoted by T#Vand plays a crucial role in General Relativity (GR)
as the source of space-time curvature in Einstein’s field equations. Each
component of the tensor represents different physical quantities, such as
energy density, momentum density, and stress (pressure and shear forces)
in a given system. Depending on the type of matter or field, the energy-
momentum tensor takes different forms, including those for perfect fluids,
electromagnetic fields, and scalar fields. In relativistic hydrodynamics and
astrophysical models, it is often extended to include viscosity and heat
conduction, making it essential in studying radiating stars, neutron stars,
and cosmology. Furthermore, the conservation V,T*' = 0 ensures that
energy and momentum are locally conserved, governing the motion of
matter in curved spacetime. The energy-momentum tensor serves as the
bridge between matter-energy content and the geometry of space-time,
shaping our understanding of gravity and the evolution of astrophysical
objects.
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11.2 OBJECTIVES:-

After studying this unit, Lernear’s will be able to

e To solve the Energy momentum tensor

e To derive the formula of Energy momentum tensor for perfect fluid.

e To solve the Einstein’s Field Equation.

e To explain the derivation of Einstein’s Field Equations

e To provide solutions to Poisson’s Equations as an Approximation of
Field Equation.

e To explain solutions to Newtonian Equation of Motion as an
Approximation of Geodesic Equations.

11.3 ENERGY MOMENTUM TENSOR:-

The energy-momentum tensor or material energy-tensor or energy tensor
TY is a mathematical object that describes the density and flow of energy
and momentum in space-time, serving as the source of gravity in
Einstein's field equations.

Let‘% represent the speed of the matter in the gravitational system, that

is, when the velocity of light = ¢ = 1, and let p, represent the
appropriate density of matter.

The energy momentum tensor, denoted by T¥, is written as

ii dxtdx/
lJ = = =
T Po o - (1)
The Galilean coordinate system gives us

ds? = —dx? — dy? — dz? + dt?,whenc =1

(&) =@ @ @ +

Taking
dx\? dy 2 dz\?
2 (7 7 -
Vo= (dt) +(dt) +(dt)
We obtain
das 2 _ 2
(£) =1-v ()
where ¢ = 1.

Department of Mathematics
Uttarakhand Open University Page 199



Theory of Relativity MAT609

Given the coordinate density of matter p and velocity v with respect to the
Galilean coordinate system, we obtain

p= povz = 1 iovz, (When c= 1)
1-=
p(1—v*) = pg
ds\ >
p(5) =p0  (From @)

Applying this to (1), we get
i dxtdx’ B dxiﬂdxjﬁ
—Pous ds T PO7de ds dt ds

_dxtdx) (dt)z Cdxidxd| py | dxtdx
P Tae \ds) T dt dt |pasne| Pdt ae
(@)
g axad
TV = p—— ) ..(3)
This is the Galilean coordinate system expression for T,
dx?t dx?

2
22w =2 then the equation(3) obtain
dt dt

If we write u = V=
pu? puv puw pu ]

puv pv? pvw pv |
puw pvw pw? pw

pu pv pw p J
THEOREML1: To derive the formula for energy momentum tensor for a
perfect in the form

T”=|
|

T, =(+pvv” —gip
SOLUTION: Let T, represent the energy momentum tensor in the
appropriate coordinate system, where the matter is assumed to be at rest at
the origin, we have
To = T¢2 = T5% = po, Td* = po (D)

The other elements all being zero.

In the appropriate coordinate system, p, and p, stand for pressure and
density of a perfect, respectively. When used correctly, the Galilean
coordinate system is applicable for which

ds? = —dx? — dy? — dz? + dt?,whenc =1
Let g(i,j represent the Galilean coordinate system's basic tensor so that

9 =95=93=-gs"=-19/ =0fori#]
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In an arbitrary coordinate system, let T¥ and g¥ stand for the energy
tensor and fundamental tensor, respectively. By the transformation's tensor
law,

. ap 0%t 0x
T = T8
axoa
axt axt
=Y T 2x8 9<% from (1)
i oxl ax axl oxJ .
TH =pyX3_ 16; a;‘ + po ax e again from (1) . (2)

Y Ox 00 i o 0x1 0
9" = gi° oxgoxh L9 9xgoxt

3 o
x* axj ;o Ox'ox!
E —9'+t>2332

0xq 0xg

From (2), we get

—Po{79 dxg dxg Po dxg dx¢
dx' ax’ y
= (p, +PO)FF—P09’

dxt axf

TV = (po +P0)ax pw — Pog” - (3)

Since the fluid is at rest in the proper-co-ordinate system and hence the
velocity components can be taken as
axg _ dx§ _ dxg _ o dxg _ 1 4)

ds ds ds ds
dxt  dx‘dx) dx'dx
ds axé' ds dx§ ds

oxt ox!
dxt 0x!
ds  oxg

Putting the above value in (3), we obtain

dx d
T = (po + po) d’: d’i Pog"” - (5)

This is the required expression for T/
From (4) it follows that

TY = (po + po)V'V/ — pog"
where v! = % = velocity component .Again the equation (5) can be

written as
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T, = (po + po)v¥v, — gy wherep =pg,po = p

MATG609

THEOREM2: Explain the construction of the energy momentum tensor T
for matter composed of moving particles and show that the conditions of
conservation of energy and momentum lead to the tensor equation

(Tl’w),v =0
SOLUTION: Prove as in theorem 1 that

axt ox/
T = (po+po)aff a1~ Pog"!

Then

[ Poxx pOxy Poxz 0

| pny pOyy pOyz 0
0

Pozx pOzy Pozz
lo 0 po

where poxx, Poxy ©tC. Represent mternal stresses.

To

(3

Let the coordinate density and velocity of the matter consisting of a
perfect fluid flowing with regard to the Galilean coordinate system be

represented by p and q (u, v, w), respectively. Then

[p,, + pu? P, tpuww p, . +puw pu]l

T — | Py + pvu Py, + pvz Py, + pvw pv |
2
i-pzx + pwu pZy +pwv p, +pw pWJl
pu pv pw p
Let
aTHY
axv

For u = 4, the equation (4) obtain
aT4-v
ox?

Now
aT4-1 aT4-2 aT4-3 aT4-4-

0x1 + 0x2 9x3 dx*
dpu , dpv , dpw | Op __
ox Ty Tz T =0
Putting 4 = 1, the equation (4) gives that
aTlv

oxV -

aTll ale aT13 6T14

Ox1 + 0x2 9x3 dx*

or

(4

..(5)

(pxx + puZ) + (pxx + puv) + (pxz + qu) + P (pu) 0
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or

Opxx , OPxy  OPxz [0 ., O ] ]
ax oy oz [ax(p” )+ax(p””)+az(puw)+ax(p”)]

d d d dp
—'—u[EE(PU)4'5;(PV)4'5;(PW0'F5;]
Ju du du OJu

_pP5;+v5;+W5;+5?

pdu pdu
=-ul—-——=——
dt dt
O0Dxx | OPxy | ODxz _ __pdu
ox + oy + 9z dt - (6)

where
d_ 0, .9 9 38
dr - “ox " Vay " Waz T e

Similarly for u = 2,3 the equation 4 obtains

apyx + apyy + aPyz — _ ﬂ

dx ay 0z dt (7)
ODzx , Pzy n 0Dzz _ _ pdw

dx ay 0z dt

du dv dw

— 7 o 'epresent components of acceleration of fluid particles.

The hydrodynamics equation of continuity is equation (5). The
hydrodynamic motion equations in the absence of external forces are (6)
and (7).

Thus, the conservation of mass and momentum is expressed by equations
(5), (6), and (7). As a result, equation (4) in relation to Galilean
coordinates expresses the concepts of mass and momentum conservation.

Also I}7, = 0 relative to Galilean coordinates.
Hence
uv
T _ aT
sV axv
Therefore relative to Galilean coordinates, (4) is expressible as
(Tpm)v = Tgv =0

_aTHY : L
In reality ——- denoted the rate of creation of mass and momentum in unit
volume.

11.4 EINSTEIN’S FIELD EQUATIONS:-
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Einstein’s law of gravitation, formally known as the Einstein Field
Equations (EFE) . According to the Newton's theory of gravity states that
the field equations in the presence of matter are as follows:
Vip = 4nGp . (1)

where G is the gravitational constant, p is the matter density, and is the
gravitational potential ¢ . We must substitute the metric tensor guy for &
in the relativistic theory of gravitation since g,, performs the function of
gravitational potential in the non-relativistic limit. Consequently, it is
necessary to describe the left-hand side in terms of the second-order
derivatives of g,, based on equation (1). The right-hand side of the
relativistic theory of gravitation must be stated in terms of the material
energy tensor T*¥ in such a way that its divergence disappears since the
density of matter, p is one of the components of the second rank energy
momentum tensor. Therefore, if the classical equation (1) is to be generalized
for the relativistic theory of gravity, it must be a tensor equation that satisfying
the following conditions:

() The tensor equation should not contain the derivatives of guv

higher than the second order.
(i) It must be linear in the second differential coefficients.
(iii)  Its covariant divergence must vanish identically.

We know that the covariant derivatives of g,, are known to be exactly
zero and R,, and R,,(=R) are the tensors that are generated by
contracting the curvature tensor R,,,,0nce and twice. This is the sole
tensor that involves g,, up to and second order. Therefore, the most
appropriate tensor of the form required is the Einstein’s tensor provided by

1
Guv = Ruv - EguvR

The above eqgn. (1) is generalized as
1
Ry = guR = —kTy, w(2)

where k is a constant and is related to the gravitational constant. If
Newton's theory and Einstein's relativistic theory are equivalent in the
non-relativistic approximation. In relativistic units

k = 8m (3

The equation (2) is obtained as

Department of Mathematics
Uttarakhand Open University Page 204



Theory of Relativity MAT609

1
Ry, — Eg,wR + Agyy = —8Ty, ..(4)

1
Ry =3 9wy (R —2A) = —8nT,, ..(5)
where A is called cosmological constant.
Neglecting cosmological constant A, the equation (4) given as
1
Ruy =5 gwR = =81y, .. (6)

The other two forms of Einstein's field equations are obtained by raising
the indices using the metric is

1
RY —2gyR + Agy, = —8nTy! (7
RHV _ %g’“’R + Agh’ = —8mTH ..(8)

Now multiplying (5) byg#",we obtain

1
R, g* — Eg‘“’gw(R — 2A) = —8ng"'T,,

R— %4(R — 2A) = —8nT (sinceg"’g,, = 8, = 4)
R —2A = 8nT
Since in the absence of matter 7,,,, = 0 so that T = 0. then
R=4A

Putting these values in equation (5), we obtain
1
Ruv =5 Gy (4 A= 21) = 8.0

R/LV = g;wA

Therefore, the above equation defined the Einstein’s field equations in
general theory of relativity in the absence of matter or Einstein;’s law of
gravitation in empty space is

R, =0
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THEOREM2: To derive the field equation (in empty space) from
Lagrangian density.

Or
To derive the field equation (in empty space) from variational principle.

PROOF: The relativistic field equation are obtained from

8 [\ —99""-RudT =0 (1)

We assume that variations in g,,,, or its first order derivatives stay arbitrary

inside area D but disappear on the edge of the four-dimensional domain
D. In other words,

8gij = 0 = 8T/ on the boundary D. ..(2)
org, org
uv ua
R;w = Rﬁva = - 9xa + W - Fp?vrgb + F;?arlgv

08T%,  96T4
uv ua
SR,y = — o + Fao 8T, T, — T2, 6T, + 6T, + T2 0TS,

SR,y =

lasr;}v

Gea T 8T2, T, — T2 TS, — rfaarg,,l

+ [ aiv (or%,) — Sl“l;‘al}ﬁ’v]
= —(6T% )t (8T8
= 9" 6R = —g"" (8T )at 9" (6T% )
= —(g" 8T )at (9*70T %), as g0 =0
= (9" 6T )+ (9" 6Ta) .
or 9" 8Ry = [~g""6TE, + M0 T |

But

(Alz)\/__g = W

Hence
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d
V=99""6Ruy = 55 [\[=g{-g"" 8T, + g 8T a}]
Now integrating,
0
f V—99""6R,,dT = f m[,/—g{—gwar;ﬁ grPeTe3dT .. (3)
D D

According to the Gauss theorem, this volume integral on the R.H.S. of the
above equations may be transformed into a surface integral, which
disappears in line with (2). It indicates that

Jo 99" 8R,,dT = 0 . (4)

The equation (1) can be written as

f,/—gg’“’(SRwdT +ij5[,/—gg‘“’]dT =0
D D

fD uv \/_gg”"]dT= 0 ..(5)

Now

8[y=g9"] = 6g"*. /=g + \/—5( 9

u

_\/_5guv

99 8gap
—g

ag,w]
0x°

= (99"")

;w
8ly=99*"] = =9 89*" + =~ =9(=9%" 8 gup)
R
Ruv0l\=99""] = V=9.69" Ry + 5 =9(=9%" 8 gup)
1
= | V(-9).69"" [k 5 Ren | ar =0

= fD \/__g Sgliv I:Ruv _% R'g“V:I dT =0

Since §g* is arbitrary.
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1
= Ruv_ERguvzo

11.5 NEWTONIAN EQUATION OF MOTION AS
AN APPROXIMATION OF GEODESIC
EQUATIONS:-

Geodesic equations reducible to Newtonian equations of motion in case of
weak static field.

Or,
To discuss the motion of a free particle in case of weak static field.

PROOF: The motion of a test particle in a weak static gravitational field
is governed by the geodesic equation,

dzxt 2 dxFdxV (1)
ds? W gs dz

The entire g, is constant and independent of coordinate systems, and the
line element in special relativity corresponds to the Euclidean (flat) space-
time manifold. All of Christofell's symbols I}, disappear as a result, and

the geodesic equations of motion provided by (1) then reduce to the
equations of straight lines, i.e.

The fact that the equations of motion and the line element are determined
by the metric tensor g,, is relevant. In the first case, the geometry's
structure is determined by the metric tensor g,,, components, but in the

second case, the test particle's trajectory is determined by the derivatives
of these components as shown by Christofell's symbols. When comparing
Newton's equations of motion with equations of motion (1), we conclude
that g,,, represents gravitational potential since the derivatives of potential

occur in Newton's equations of motion.

In this case, the constant components of the metric tensor g,, in

Euclidean space, represented by €,,,, are provided by
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Since
ds? = g ,dx*dx?
= —dx?+dy? + dz? + c?dt?

Now, let's assume that g,, are not constants but rather deviate by a

negligible amount from the values provided by (3), i.e., in a weak static
field

v = NMuv + €y

where 7,,,, is @ metric tensor for Galilean values and €, is a function of
X, v, z; but independent of time t.

dny _ 0w _ 0
dx* Ox*
Then we obtain
Fp%v = gplrp,uv

_ g 1(%9en , 99y _ 09w
-9 2\ dxV =~ OxH  OxP

1 on an an
— pA pA PH pv _ uv
2 (E 0 ) ( dxv? + ox#*  0OxP

Now neglecting second order terms in n, we get

Y 1 <a77/1u + ar’/’Lv an/w>

l"m,—2

dxv  dxH  ox*

(2

Now the Galilean Coordinates are

xl=x,x*=y,x3=zx*=ct

ds? = —dx?+dy? + dz? + c?dt?
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c?

172
—v2dt? + c?dt? = c?dt? (1 - —)
For the velocities v « c, then

ds =~ cdt = dx* )

Since the field is static, i.e., it does not change with time. Consequently,
velocity components might be interpreted as

dx' dx? dx3

4
-, '—=Oanddi=1 ..(4)
ds ~ ds ~ ds ds

By equation (1) given as
d?x* 5 (dx* 2
asz i (d_> =0

d2x?
ds?

+Th =0

Using (2)above equation, we get

d?x® 1 (67744

AT
ox“®

757 - = > ) fora=1,23

Using (2) the equation may be given as

d?x@ a (1,
ds? _ ox® (EC g44>

Now the Newton’s equations of motion are

d?x® o)

ds? ~ 0x“

where ¢ is potential function.

From the above equations, we obtain
d <1 5 )_ ¢
dx“* ZC Gaa ) = dx“
Integrating, we obtain

ag44d a_if ¢

N 0x¢%

a
Ep X = dx® + constant
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2¢
Jas = o +k
In flat space
gas =1, =0,s0that k=1
Then
2¢
gas =1+ 3

Therefore, in the case of a weak static field, geodesic equations may be
reduced to Newton's equations of motion if

2¢
944=1+C_2

11.6 POISSON’S EQUATION AS AN
APPROXIMATION OF GEODESIC EQUATIONS:-

To prove that (Einstein's) field equations reduce in linear approximation to
Newtonian equations (Poisson's equations)

V2 = —4mp - (1)

Proof: Let us consider the motion of a test particle in a weak static field. A
weak static field is

Where 7, metric tensor is for Galilean line element and ¢,, is the
function of x, y, z.

The deviation of the metric from unity is represented through €,,. The
quantities €,,, are taken to be so small that the powers of €, higher than
the first are neglected. Here we obtain

M1 =Mz =M3z3 = MNgg = —LNy =0=g,foru+v

Since the field is static, i.e., it does not change with time. Consequently,
velocity components might be interpreted as

dx! dx? dx3
ds ' ds ’ ds

dx*
—Oandg—l (1)
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Now the Galilean Coordinates are

Now the geodesic equations are reduced to Newtonian equations of
motion if
2¢
g44=1+c—2=1+2¢) whenc =1 ..(2)

Each element of the energy tensor will be approximately equal to zero on
its own, with the exception of

Ty = p sothatT = g*'T,, = g**Ty,

=(1 +Ew)_1p =(1-ent)p=p
Tyo=p T=p

Now the field equation is given by

1
Ry — ERguv = —8nT,,

From which we obtain
1
Ry, = —8m (Tuv — E‘g’“’>

1 1
Ry, = —8m <T44 - 5944> = —8mp (1 - 5944>

= —8mp (1 - ; X 1) approximate

Ry = —4mp
org, odrg
R/(lea = - axug a;: - F;fvrlgla + Fpltjarlglu

From above equation we have

org, N org,
0x%  Jx*

Ry, = thlz}a = - Ff4rl?a + l"fal"lf4

Now we obtaining the first order approximation,
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org, org org,
4 dx* = Ox* 0x°
ary.
Ryy = — a;; = 4mp
[7] . 09uv
Butﬁl"f4 = 0,since —= =0,
Hence
ords _ _
o 4mp(a = 1,2,3)
If a = 1,2,3, then
1 10944
— ab — ab —
Tia = 9% Laap = 9% Taaun = 1 +e,, T 9xa
=(1—€g4y) "

1 e _ 16944

=@+ Eaa)Z 0x9 2 0x@
From (4), we have
0 ( 1 6g44> 4
oxa\ 20x%) P

3
0% gaa

Z — = 8mp or V?g,, = 8mp

a=1

0%2x

VZ(1+2¢ ) =8mpby (3)

VZ(2¢ ) = 8mp

V(¢ ) = 4mp

This is Poisson’s equation.

SELF CHECK QUESTIONS

MATG609

- (3)

. (4)

)asg4a=0

1. What is the general form of Einstein's field equations (EFE)?
2. What does the Einstein tensor G, represent?
3. What role does the energy-momentum tensor T,,, play in the field

equations?
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4. Why are Einstein’s equations nonlinear?

What is the cosmological constant A in Einstein's equations?

6. How does Poisson’s equation compare to the relativistic field
equations?

o

11.7 SUMMARY :-

In this unit we have studied the Relativistic Field Equation, or Einstein

Field Equations (EFE), describes gravity as the curvature of space-time

_ 8nG
v C4

caused by mass and energy, given by G, T, where G, represents

space-time curvature and T, represents energy-momentum distribution. In
the Newtonian limit, where gravity is weak and velocities are much
smaller than the speed of light, EFE reduces to Newton’s law of
gravitation which describes gravity as force acting at a distance. Newton’s
theory can be further expressed through Poisson’s equation, V(¢ ) = 4mp

which relates the gravitational potential ¢ to mass density p. While
Poisson’s and Newton’s equations are sufficient for classical physics, they
fail in strong gravitational fields or relativistic conditions, where
Einstein’s equations are necessary.

11.8 GLOSSARY::-

e Einstein Field Equations (EFE) — A set of ten interrelated
differential equations in General Relativity that describe how
matter and energy influence space-time curvature.

e Metric Tensor g,,— A mathematical function that defines the
geometry of spacetime and determines distances and intervals in
curved space-time.

e Einstein Tensor g,, — A tensor that represents the curvature of
spacetime, given by g,, = Ry, — %Rg,w

e Ricci Tensor Ry, — A contraction of the Riemann curvature tensor
that represents gravitational effects due to matter distribution.

e Ricci Scalar (RRR) — A scalar quantity obtained from the Ricci
tensor, summarizing the curvature of spacetime.

e Energy-Momentum Tensor T, — A tensor that represents the

distribution of energy, momentum, and stress in spacetime, acting
as the source of gravity in EFE.
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Newtonian Limit — The weak-field, slow-motion approximation
of EFE, where they reduce to Newton’s law of gravitation.
Cosmological Constant A— A term introduced by Einstein to

account for the expansion of the universe, modifying the field

equations as G, + Ay, = ﬂTw.

C4—
Weak Field Approximation — The limit in which spacetime
curvature is small, allowing EFE to be approximated by Poisson’s
equation V2(¢ ) = 4mp.
Geodesic Equation — The equation describing the motion of a
free-falling test particle in curved space-time, derived from the
principle of least action in General Relativity.
Gravitational Waves — Ripples in space-time predicted by EFE,
generated by accelerating masses, such as merging black holes or
neutron stars.
Schwarzschild Solution — An exact solution of EFE that describes
the space-time around a spherically symmetric, non-rotating
massive object, leading to the concept of black holes.

Kerr Solution — A solution to EFE describing the space-time
around a rotating massive object, important for understanding
astrophysical black holes.

Stress-Energy Conservation — Expressed as VZT#,,:O :
indicating the local conservation of energy and momentum in
General Relativity.

Bianchi Identities — Mathematical identities V>G,, = 0, that
ensure the consistency of EFE with energy-momentum
conservation
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e Satya Prakash,Revised by K.P.Gupta, Ninteenth Edition (2019),
Relativistic Mechanics.
e Dr. J.K.Goyal & Dr.K.P.Gupta (2018), Theory of Relaivity.

11.9 TERMINAL QUESTIONS:

(TQ-1) Define energy momentum tensor. Hence derive the formula for
this tensor for a perfect fluid in the form

T =(+pv,—g.p

(TQ-2) Discuss the reason which led Einstein to choose field equations
in the form

1

(TQ-3) Show further that these field equations reduce under
approximation to Poisson's equations

V(¢ ) = 4mp

(TQ-4) In general relativity derive the expression for the energy
momentum tensor T¥ for a perfect fluid distribution in the

TY = (p + p)v'v/ — g'p

(TQ-5) Discuss the formulation of energy-momentum vector in special
relativity.

(TQ-6) Define Material energy tensor. Show that in Galilean

. dxH dxV
coordinates THY = p =—2—
ds ds

(TQ-7) Show that the divergence of the energy tensor vanishes and in
the usual notation prove that G = 8nT.

(TQ-8) Derive the energy momentum tensor for a perfect fluid in the
form.

T = (p +p)v*vY — g;p

(TQ-9) Obtain Einstein's law of gravitation of the material world and
deduce some of its consequences.

(TQ-10) Verify that the equation
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Rij—Rgiy; = —8nTy; and TY = py ===,
(TQ-11) To show that (Einstein's) field equations reduce in linear

approximation to Newtonian equations (Poisson's equations)

(TQ-12) To prove that Geodesic equations reducible to Newtonian
equations of motion in case of weak static field.

(TQ-13) To derive the motion of a free particle in case of weak static
field.

(TQ-14) : Explain the construction of the energy momentum tensor T for
matter composed of moving particles and show that the conditions of
conservation of energy and momentum lead to the tensor equation
("), = 0.

11.10 ANSWERS:

SELF CHECK ANSWERS
1. G — 871G

w T e

2. Guy = Ruy = 3 RGu»

3. The energy-momentum tensor T,,, represents the distribution of
energy, momentum, and stress in space-time. It acts as the
source of the gravitational field.

4. Einstein’s equations are nonlinear because the curvature of
space-time (represented by the metric tensor G, itself affects
the distribution of energy and momentum, leading to a
feedback loop.

5. The modified Einstein field equations with a cosmological
constant are:

8nG
+ A

v =

G =

uv uv
where A the energy density of the vacuum, responsible for the
accelerated expansion of the universe.

6. Poisson’s equation is a weak-field, non-relativistic limit of
Einstein’s field equations. It describes gravity in the Newtonian
framework, whereas Einstein’s equations describe it in a fully
relativistic context.
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UNIT 12:-Schwarzschild Solution

CONTENTS:

12.1  Introduction

12.2  Objectives

12.3  Schwarzschild’s Exterior Solution
12.4  Relation between M And m

12,5 Isotropic Coordinates

12.6  Planetary Orbits

12.7  Crucial Test in Relativity

12.8  Schwarzschild’s Interior Solution
129  Summary

12.10 Glossary

12.11 References

12.12 Suggested Reading

12.13 Terminal questions

12.14 Answers

12.1 INTRODUCTION:-

The Schwarzschild solution is one of the most important exact solutions
to Einstein’s field equations, describing the spacetime around a spherically
symmetric, non-rotating, and uncharged massive object. It plays a crucial
role in understanding gravitational phenomena, including planetary orbits,
gravitational time dilation, and light bending due to gravity. The solution
also predicts the existence of black holes, introducing the concept of the
Schwarzschild radius, which defines the event horizon beyond which
nothing can escape. In the weak-field limit, it reduces to Newtonian
gravity, making it a bridge between classical and relativistic gravity. The
Schwarzschild metric has been instrumental in verifying General
Relativity through experiments such as the precession of Mercury’s orbit
and gravitational lensing, making it a cornerstone of modern gravitational
physics.

12.2 OBJECTIVES:-

After studying this unit, Lernear’s will be able to
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e To solve the Einstein’s law of gravitation in empty space.
e To solve the Schwarzschild exterior solution.

e To explain the Isotropic Coordinates

e To explain the Crucial tests of General Relativity.

12.3 SCHWARZSCHILD’S EXTERIOR
SOLUTION:-

The law of gravitation in empty space is represented by Einstein's original
field equations, which are

R,y=0 .. (1)
However, Einstein's law of gravity in empty space is altered as follows if
the cosmological constant A is included

R, = aguy .. (2)

Finding the line element for the interval in empty space around a
gravitating point particle, which eventually corresponds to the field of an
isolated particle continuously at rest at the origin, is all that is required to
solve the aforementioned equations. Schwarzschild was the first to obtain
this solution.

In the absence of mass point, space time would be flat, so that the line
element in spherical polar coordinates to be written as

ds? = —dr? — r2d0? — r?sin?0d¢? + dt? ..(3)

The line element would change if the mass point were present. However,
the line element would be spherically symmetric about the point mass and
is static since mass is isolated and static. One way to describe such a line
element in its most generic form is as

ds? = —e*dr? — r2df? — r?sin?0d¢? + eVdt? . (4)

Here A and v are functions of r only; since for spherically symmetric
isolated particle the field will depend on r alone and not on 6 and ¢.

At an infinite distance from the particle, the line element (4) must limit to
the Galilean line element (3) because the gravitational field (i.e., the
disruption from flat-space time) caused by the particle diminishes
indefinitely. Hence A and v must tend to zero as tends to infinity.
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The line element in general relativity is obtained by
ds? = g, dx*dx? ..(5)
Here the coordinates are
xl=rx?2=0,x3=¢,x*=t ..(6)

Comparing (4) and (5) with the help of (6), we obtain

2

9 =10 0 r2sin20 0
0 0 0 e
Thenthe g, is
9 =|gn| = e*(=rD).(=rH)(-r2sin%0).e’ = —e* Vrisin?g
Using
g,w _ cofactor (;f Juvin g, we obtain
[—e? 0 0 0]
| 0 (%) 0 0|
Iuv = | " 1 | ..(8)
l 0 0 (rzsinze) 0 J
0 0 0 e v
If u,v, o ae different suffixes, then we have
rh =1 uu 9 gup _ 10(log gup))
He ™ 2 axk 2 dxk
v _1 4y 99up
Lo =397 S0 ! - (9)
v 1 _pp09vw _ 19(log gvy)
F/w - Zg axk 2 dxH
[ =0 )

Now we obtain the following nine independent non-vanishing 3-index
symbols, all others being zero.
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104 1 1 )
Iy = Ea—}rfz = ;}ng =
. 1 v .
F14 2 a F23 = COt@ Fzz = —re 5 > - (10)
1 617
I3; = —rsin®fe™ T}, = Ee 6_r ;T4 = —sinfcos6
]"#Ga =0 )
We obtain
Ry =218 % b ra r® —rarf
W= gxv mB T gxB MY T TuBla Hotap
_ 9%logy (gD ] dalog/(1g])
dxHoxVy Ffﬁ T 9xB F#ﬁv + 1 ﬁrﬁ [ —— ..(11)
_ 9%logy(UgD) 4 M 4o s dlog /(g
17 hxlgxt up Ox 9.6 111 + 18 11 —ax“

0 logy(gl 5 0
o012 #[3 - a_r111 + F111F111 + +F122F221 + F133F3I?’1 + F144Ff1
alog\/(lg
- l-‘11
A+v
As|g| = eM*Vrtsin?0, i.e.,\/lgl = ez r?sinB, therefore
R _62 (/1+ Ll o 6) 6(161)_'_(16&)2_}_1
L7 9rz\ 2 ogr + logsin or\2 or 20r r2
+<1>2+<16v> 1616(A+v+2l o _0)
r 20r 20ror\ 2 ogr T togsm
R 0 1 <av>2 1020v 102
= 9r2 " 4\or 40rdr ror
R v vz A
n=2 4 4 r
Similarly
R <1+1 ov 1 EM) sy B A= 1
22=¢ 2"or 2"9r) T T ¢ "\72
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Ry3 = {e"1 (1 +

2 O0r

- — —

1 /0v\2
+2(6r> " 20ror

= eV—4 [

MATG609

§r5> - 1} sin?0 = R,,sin?0

10A0v 261/}
+__
ror

vll AI,VI vlz vll

2+4 4

Additionally, for the line element mentioned above, all of R,,,,0ff diagonal

components are zero.

Hence
Ry =0
8%y av\2 10i0v 101
Ru=55+1(5) —ioo =0 ~(12)
-2 1 0v 1 01\ 4 _
et (1+2r2-2r2)—1=0 ..(13)
R33 = RZZSinZQ = 0 (14‘)
N e 62v+1(6v>2 10Adv 20v) _
4 Ze or2  2\or 20rdr ror| - (14)

Therefore, the only Einstein's field equations that A and v may satisfy for

empty space are

ar?

0%v 1 (0v
oy 10
4

2 19A9v 101
———————:0
or

..(15)

4 dr or ror

_1 1 _0v 1 _0A\ . _

e (1+2r_ar zr_ar) 1=0 ..(16)
ov\% 1910v  20v
%) —zzaﬁa}—o-"(”)

2 or?

1 4,3 (0%2v 1
_ev A{__l__

Now dividing (17) by e¥~% and then subtracting (16), we obtain

10v
r or

v

§+

Integrating, we have

16/1_
ror
6/1_

E—O
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v+A1=A4

where A is the integrating constant, and since r = oo,A =0and v = 0, it is
possible to adjust it to O without losing generality. Therefore

A=—-v .. (18)

”<1+r@>—1
¢ o) =

ad

a(re”) =1
Integrating, we get

re* =r+B

B being constant of integration

ev=—e*=1 _sz ..(19)

where we have substitute B = 2m. Hence, from equation (4), the line
element resulting from a static, isolated gravitating mass point is

-1

2m
ds? = — (1 — 7) dr? —r?d6? — r?sin?0d¢p?
2my
+ (1 —T> dt ..(20)

This solution is called to as the Schwarzschild line element because it was
first identified by Schwarzschild. In the limit r — oo,, the Schwarzschild
line element clearly reduces to the line element of special relativity's flat
space time.

Schwarzschild singularity: The singularities of the Schwarzschild
solution are observed to be as follows:

1) At r = 0, the Schwarzschild solution becomes singular, but
Newton's (classical) theory also occurs this singularity.

2) When the distance r is provided by 1 —2m = 0, that is, r = 2m,
the Schwarzschild solution once more becomes singular.This value
of r is called Schwarzschild radius. For points 0 < r <
2m,ds? < 0, i.e., the interval is purely space-like. Hence there is a
finite singular region for 0 < r < 2m. Thus r = 2m represents
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the boundary of the isolated particle and the solution holds in
empty space outside the spherical distribution of matter (or isolated
particle) whose radius must be greater than 2m. Hence egn. (20) is
known as the Schwarzschild exterior solution for the gravitational
field of an isolated particle.

Schwarzschild solution (21) corresponds to Einstein's original field
equations for empty space
Ry =0

But when the cosmological constant A is taken into account, the
Schwarzschild's solution for empty space that corresponds to field
equations

Ruv = Ag/,w

Leads to the line element or metric is

2m  Ar?\ "'
ds? = —<1 —7—T> dr? —rz(dHZ +sin29d¢2)
2m  Ar?
+ 1—7——3 dt? ..(21)

This is required Birkhoff’s Solution.

By comparing the line elements provided by equations (20) and (21) we
can observe that the larger the region under consideration, the greater the
effect of the A term on the field surrounding an attractive point particle.
However, the cosmological constant A is so minuscule that, even if it
deviates from zero, it has no discernible impact inside an area the size of
the solar system.

For empty world, we set m = 0, we get

Ar2\ 7 ,
ds?=—(1- = dr? —r?d0? — r?sin?0d¢?
Ar?
+ 1—7 dt? ..(22)
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This is known as Schwarzschild exterior solution for entirely empty

world.This solution has a singularity at r = \/% because r is very large

and the cosmological constant A is very small. It represents the It
expresses the horizon of the world.

12.4 RELATION BETWEEN M AND m:-

The Schwarzschild exterior solution for gravitational field of an isolated
particle is given as below

2 -1
ds? = — (1 — Tm) dr? —r?d6? — r?sin?0d¢p?

+ (1 —27m> dt? .. (1)

Suppose r >» 2m. The field of distance r due to an attracting Mass M is
below

2¢
gas =1+ z
Where ¢ is Newtonian potential, i.e.,
2¢ 2m 2m
wmou-1=(1-7)-1=-
2 2
b= @)
If M is the mass of the particle and G the gravitational constant, then
o¢ GM
or r?

Putting the value of (2) in above equation, we get

ch_GM
r  r2

GM
mzﬁ

This is the relationship between Schwarzchild’s solution’s constant m and
the attracting mass M.
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12.5 ISOTROPIC COORDINATES:-

Schwarzchild's exterior solution is obtained by

2my\ "t
ds? = — (1 — T) dr? —r?d0? — r?sin?0d¢p?

2m

+ (1 ——) dt? (1)
r

Let the transformation
m 2
r= (1 + Z) 71 . (2)

So that

21 (1 + Zﬂrl)zrl
(1-7)
- 2
(1 +zﬂr1)

Putting the above values in equation (1), we obtain

(1+§)2 mA\2 mA\2 5 mAA
ds? = (1_£)2(1_Z) (”Z) dry® - (1 +2—T1) r,2d6? —
271
4 m )2
(1+2mTl) r12sin?0d¢? +%dt2

(*m)

m 2
4 1+—
5t = (14 2) (@n niaor s ritsmtoas) + 2l )
211
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This is known as isotropic line element. The coordinates 4, 6, ¢ are called
isotropic polar coordinates.

On applying the transformation
x = rsinfcos¢p, y = rysinfsing, z = r;cosd

The line element (3) becomes
m 4
ds* = (1 + —) (dx? + dy* + dz*) +
2r

This is known as isotropic line element in Cartesian Coordinates.

12.6 PLANETARY ORBITS:-

We shall now consider the motion of the planets in the gravitational field
of the sun. The planets’ space-time trajectories, when considered as free
particles, are determined by geodesic equations.

d?x® dxt dxV
+IE————= .. (1)
ds? ds ds

Since the sun is an attractive point particle, its gravitational field may be
considered as the field of a single particle that is always at rest at the
origin. As a result, the Schwarzschild's line element for empty space
provides the space-time, i.e.

ds? = —e?dr? — r?(d6? + sin?0d¢?) + eVdt? .. (2)
Where
2m
A=—vev=—eet1=1——
r

Now the Christoffel’s Symbols are

! !

v
1 1 - 1

v—-A71

1
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3 1 1 P A
I3 = ;,F33 = —rsin?fe~
vl
rh = ?,ngg = —sinfcosh

Our coordinate are x* = r,x2 = 0,x3 = ¢, x* = t. Taking a = 1, we get

d?x? , dx*dx”

ds? i ds ds
d’xt | (4 2+r1 d?x? 2+r1 d?x3 2+r1 d?x* 2_0
ds? 12\ ds? 22\ ds? 33\ ds? 44\ ds? B

2r 16/’1( ) ( )2 20,2 (dqb)z 1 ,0v (dt)
26r retnve ds Ze ar ds
(3

For a = 2, we obtain

d?x? dx* dxV
+ I3 =
ds? ds ds

dixl | o dxtdxt o detdxl |, (dx "o
ds2 = ' ds ds *'ds ds ds |
azo  1drdf LLI0I  ocost) (d¢>2 _o
ds? rds ds rdsd sindcos ds)
a2e | 2drde o\% _
P B sinfcosf (ds) =0 .. (4)
Similarly for = 3 & 4, we get
d’*¢ | 2drd¢ ae d¢
F rd ds + 2¢ ot@d ds =0 (5)
av dr dt (6)

ds2 ardx’ds
Hence the equations (3),(4), (5) and (6) are the motion of planet.

The planet moves initially on a plane 8 = g thus let's use the coordinate

system so that
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) do
cosf =0,sin0 =1,—=20
ds
Then from (4) given
aze _
i 0 - (7)

According to this equation, the planet continues to move in the plane 6 =
%. Consequently, we always have

cosf = 0,sinf = 1 and % =0 ...(8)

So that the equations (3), (5) and (6) become

d’r 104 (dr>2 » <d¢)2 PRINY (dt)
ds? = 20r\ds "¢ \ds 2 e’ ar ds

=0 - (9)
d?¢ 2drd¢

F-F;EE =0 ...(10)
d?t 6vdr dt _ o "
ds? 6r dx ' ds - (1)

From the equation (10) and (11) may be obtained as

1d /. dg ,ddp
[ 2 ) = 4
rzds(r ds) 0, Le., ds( ds) 0

1d( dt) 0 i d(vdt>_0
evds ¢ ds te ds € ds)

The above equations' integration instantly produces

248 = p
ds
- (12)
e"E =k

ds

where h and k are integration constants. The motion's angular momentum
is measured by the constant h. Additionally, because integrating equation
(9) is difficult, we utilize the line element (2) instead, which, when
combined with equation (8), yields
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2

) ) e -
S () @ 1m0 a9

Now using (12), we get

ds T2 v
ar\? | 2
(;) +r—2€V—k2+€V =0 ...(14)
We obtain
dr drd¢ h%dr ,
E=%E=T—2@ using (12)
and ev=1-22 from (3)

r

Consequently equation (14) becomes

h? dr 2+h2(1 2m> k2+(1 Zm)_o
r2dg r? r r)

Now substituting u = % and rearranging, we obtain

d_u 2 2 _ kz—l 2mu 3
(d¢) tu =—+—+2mu’ ..(15)

Differentiating (15) w.r.t. ¢», we obtain

2du d2u+2 du_2mdu+6 , du
dp do? ' “Ydp ” hzde ' O dg
d?u _m 2
71)2 +u= 2 + 3mu (16)
d¢o
2_T —
r Is h

The relativistic differential equation for the planet's trajectory is
represented by equation (16). Here, ds is a component of the proper time
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as determined by a clock that moves with the planet, and r and ¢ are the
special coordinates.

One can compare the relativistic equation (16) of the planet's orbit with
the corresponding Newtonian equation, which is

d2u+ _m
dp? " “ T Rz
with
deo
2T —
r It h

It is clear that the Newtonian equation of the planet's orbit has an
additional component (3mu?) due to the relativistic effects of gravity, and
the proper time element ds takes the place of the time element dr. The

additional term's ratio 3mu’ to % is

3mu? dg>
= 3% = 3(r20)
@ " "ds
hZ
which is practically three times the square of the transverse velocity of the
planet in relativistic units.

In the terms of speed of light

d 2
3h2y2 = 3. r-d_(f _3 (transverse velocity of planat)2
¢ velocity of light

The calculated value of this ratio for the earth is 3 x 1078 at normal
speed, it is insignificant. In real-world applications, this ratio indicates a
negligible adjustment to Newtonian orbit.

EXAMPLE: Explain the statement that the mass of the sun which is
1.99 x 1033 gms. becomes in gravitational units 1.47 kilometers.

SOLUTION: It is given that

M Mass of the sun = 1.99 x 1033 gms.

To prove that mass of the sun gravitational unit. 1.47 kilometres in
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We know that

mc? = yM
YM

m = —
CZ

10
where ¢ = velocity of light = 3 x °—".

sec

y = Gravitational constant 6.66 x 1078C.G.S. unit.

_YM 6,66 x107° x 1.99 x 10%
m = 2 (3 x 1010)2

132539 x 10°

5 = 1.4694 X 105cms = 1.4694 kilometers

= 1.47 kilometers(app)

12.7CRUCIAL TEST IN RELATIVITY:-

In relativity, the following are referred to as important tests.

Q) Advance of perihelion.

(i) Gravitational deflection of light.

(iii)  Shift in spectral lines.

0] Advance of perihelion: To discuss the advance vanced sun,
comparing the the perihelion of a planet's orbit around the sun,
relativistic equations with those of classical mechanics.

Proof: The differential equation of the path of a planet is

d2u+ = 7 4 3mu? 1
497 U=+ 3mu - (1)
with
dé
2—:
s h

Neglecting the small term 3mu? as a first approximation, then we obtain

d2u+ _m
dpz T T he

So the solution is
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u= 2 [1 + ecos(¢p — w)] - (2)
where e and w are integration constants that provide eccentricity and
longitude of the perihelion. Applying this initial estimate to (1)'s R.H.S.,
we get

PR

a9’ u ezt ecos(¢p —w
d2u+ _m+3m3+6me ( ) + cos?( )3m
i9? u—h2 0 P cos(¢p — w) + cos*(¢p — w

One of the other terms is the only one that can have an impact inside the
term's observational range

6m3e
h4 cos(¢p — w).
The P.I of the terms is
1 6md3e ( )_ m3e ( )
1702 1t ——cos(¢p —w .1+D2.cos¢—w
6 3
r: ¢ 9 sin(p —w) = ed)sin(qb - w)

—smx ]

Hence the solution of (1) to the second order of approximation is

m 3¢
u=-—[1+ecos(¢p—w)]+ 1 ¢psin(¢p — w) by (2)

h

m me
AN

Now taking 3’%2(1) = dw and observing sindw, cosdw = 1. Since dw is

very small so
m me , ,
u=13 + ™ [coséw cos(Pp — w) + sinbw sin(¢p — w)]
m me
u —ﬁ+ﬁ[cos(¢—w —éw)]
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3m?
hZ

With

¢ =dbw

This is the required solution of (1). A planet's perihelion advances a
fraction of a revolution when it completes one orbit around the sun, which
is equivalent to

dw 3m? 3m? 3m? _ 3m l—bz
¢ h2  ml ma(l-e?) a(l-—e?) for T a
i.e.,
Sw_ 3m 3
¢>_a(1—ez) ..(3)

[on using the well known formulah? = ml]

From (3), we get

Se = 3me
a(l —e?)
By Kepler’s third law,
21
T =—a3/?
Vm
From which m =
T
Now
Se = 3m¢p 3¢ 4n’ad’
@= a(l—e?) a(l—e?) T2
12m%a?¢
oW = 5=
T2(1—e?)

The velocity of the light into the consideration,

12m%a?¢
oW =——5———=
c?T?(1 —e?)

Taking

Department of Mathematics
Uttarakhand Open University Page 234



Theory of Relativity MAT609

24m3a?

=m0 = o —er

T being a time period.

Thus the relativistic theory leads to an advance of perihelion of a planetary
orbit. In other words, this theory leads to planetary orbit with a slow
rotation of perihelion instead of to be perfectly closed elliptical orbits of
the Newtonian theory.

When analyzed mathematically, the perihelion advance of all planets is
negligibly minor, with the exception of Mercury, whose e = 0.2056,a =
0.6 X 108 km,c = 3x108m/sec,and T = 88 days. This means that
the perihelion advance of Mercury is 43 seconds of arc each century. This
is the precise amount that has been scientifically measured for the orbit of
Mercury; neither the Newtonian theory nor the special relativistic theory
of gravity could account for this precession. The development of the
perihelions of Venus and Earth has also been isolated from the influence
of other perturbing agents in recent years with the use of electronic
computers, and it has been observed that the theoretical formula (10) also
coincides with the experimental data in these conditions. The general
theory of relativity can thus be experimentally tested by the advancement
of planet perihelions.

(i)  Gravitational deflection of light(Binding of light rays): To
show that the deflection in the path of light due to the
relativistic field of a heavy mass is wice that predicted by the
Newtonian theory.

OR
Assuming Schwarzchild’s solution for a particle, show that the
relativistic deflection of light in the gravitational field of the
sun, as observed by a terrestrial observer, is twice the
corresponding Newtonian effect.

Proof: Suppose the binding of light rays in the gravitational field of
gravitating mass m is written by

d*u

+u = — + 3mu? 1
197 U=43 mu (1)
with
do
2— =
Ly h - (2)
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If ds = 0. In (2), then we obtain h = co. Substituting h = co. in (1), we
given

d2
192 + u = 3mu? ..(3)

Now neglecting the small term 3mu? as a first approximation, we get

d2
ap? +u=0
The solution of this is
u = Acos¢ + Bsing ..(4)

Since ¢ = 0,3—; =0and ¢ =0,u = % putting these condition in above

equation
1—A+BO—A
R U
du
0= dqb = —Asin¢p + Bcosp =—-A.0+B.1 =B
A—1 B=0
=B =

Putting these values in (4), we obtain

u= Ecosd)
From (3), we get
d*u o 3m
192 u= 72 cos?¢

The particular integral of 2 coszd) is

cos“¢p = (3 — cos2¢)

1 3m 3m 1 (1 + cos2¢
1+ D2 R2 " R2°'1+4 D?*"

2 )=
2 2R?

=SR2 (3c052q§ + 3sin?¢p — cos?¢p + sin?¢) = R? (c052¢ + 2sin?¢)
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= e (r?cos?¢ + 2r?sin?¢)

Hence the complete solution of (3) to the second approximation is

1
—=u=—cosp+ (r?cos?¢ + 2r?sin?¢)

m

T R r2R?

Multiplying by rR
m
R =rcosp + - (r?cos?¢ + 2r?sin?¢)
Introducing the Cartesian coordinates are x = rcos¢,y = rsing
We obtain
N m(x? + 2y?)
R\/x?% + y?

m(x? + 2y?)

x=R ..(5)
Ryx?+y?
Now the first approximation is
1
—=u=Ecosq,'>orR=rcos¢ orx =R ...(6)
From (5) and (6), we obtain the second term = % in (5).

Asymptotes to (5) are given by taking y very large compared to so that
asymptotes to (5) are

m
=R ——(+2
x R(_ y)

2 2
x=R+ﬂandx=R my
R R

RxX R? x R?

_——_andy:__ =

2m 2m 2m  2m

Let a be the angle between these asymptotes then we obtain

tana = % _ (%) = AmR
Ligx (-g)
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" _ 4mR
ana = AmZ — RZ
Then
] 4mR
S = am2 + R?

Since 4m? << R? and hence neglected

. _4mR 4m
sina = —7— =4
_4m_4><1.47_175 P
a = = 57000 — L/ ° seconds

[~ sina = a]
Deflection =1.75 seconds.

Treatment of Newtonian theory: Assume that a star's light ray is moving
parallel to the y-axis and passing through mass m at a distance x = R. In
the x-direction, the acceleration is provided by

d*x o omx mx
FTAR A e O ()

For a light ray moving parallel to y-axis, we get

dy dzy_o
dt ' dt?
dx dx dy
dt dy’ dt’

d?x d (dx dy) d2x (dy)z dx d2y
dt2  dt

“at\ay at) T dy2\ar) Ty az

_d2x12+dx 0_dzx
 dy? dy =~ dy?

d?x B d?x
dt?2  dy?

Using (7), we obtain
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d?x mx mR
dy? =~ (x2 + y2)3/2 =~ (RZ + y2)3/2° forx =R
d?x 3 mR
dyz - (RZ + y2)3/2
Integrating w.r.t.y, we get
dx f mR jR sec?0do
—_ - B ———— = —m 3 3 ,y =
dy (R2 +y2)2 R3sec30
- mf 0d0 = — = sing + C
=—75| cos =—gsin
dx =D 0+C = ny +C 8
o R Sin = R\/m ..(8)
Hence
m
x=—§w/x2+y2+Cy+C1 (9
From (8) and (9)
dx =0,x=R,y=0
dy - lx :y

WeobtainC =0and R = —-m+C,i.e,C=0and C; =m+R

Now the equation (9) becomes

x=R+(m—%\/x2+y2+Cy) ..(10)

Newtonian theory states that this is the equation for a light beam's path.
Derivation from the path x = R is demonstrated by the second term, m

divergence from the path m — %w/x2 + y2.

Now from (10) are written by taking y very large compared with x so

m
x=R+m—§(iy)

B Ram) and y= -4 B ry
y=— m) and y = ——+—(R+m)
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Let B be the angle between these asymptotes then we obtain

R _ (_E)
tana = —2 m = 2mR
1+2 % (—E) m? — R®
m m
2mR
tana = —— 72
Then
) 2mR
sinf = T T RZ

Since m? << R? and hence m? is neglected

I4mR 2m

But

This proves that the deflection on the path of a light ray due relativistic
field is twice that predicted by Newtonian theory.

(i)  Gravitational Shift in spectral lines: Obtain the formula for
gravitational shift in spectral lines.
OR
Give the theatrical account of the red shift of spectral lines in
gravitational fields.

Proof: We examine how the spectral lines of light generated by an atom in
a gravitational field change when the light is seen on Earth's surface.
Sodium atoms vibrate at a consistent frequency. Let dt be the equivalent
periodic time and ds be the time interval between the start and finish of a
single vibration. Imagine a spectator moving beside sodium atoms. For a
brief moment, let the atom be in the coordinate system (r, 8, ¢, t). So that
by Schwarzschild the line element
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2my\ ! .
ds? = — (1 — T) dr? —r?d0? — r?sin?0d¢p?
2m
+ (1 —T) dt? (1)

Fordr = d6 = d¢ = 0, then

Up to first approximation
We compare the periodic time of sodium atom at two places

i.  On the surface of the sun.
ii.  On the surface of the carth.

On the surface of the sun and earth, let dt and dt’ represent the periodic
periods of a sodium atom, respectively. Then

A+6a_dt_ . om ,
A ds T - (2)
dt’_
ds'

Using the fact that ds remains invariant under arbitrary co-ordinate
transformation, we can be written as

dt'_1
ds

From (2) and above equation, we get

A+61  dt
A dt
o4 m
T

m
=1+—
Tr

A

This expression is required for the spectral line shift.

Department of Mathematics
Uttarakhand Open University Page 241



Theory of Relativity MAT609

12.8 SCHWARZSCHILD’S INTERIOR
SOLUTION:-

To derive Schwarz child’s interior solution for a sphere of incompressible
perfect fluid of constant proper density p such that at the boundary r = r;
of the sphere, the pressure is equal to zero and the solution agrees with the
exterior solution.

Proof: We must determine an expression for the line cleme that holds
inside a large body that is at rest at its origin. Additionally, we assume that
the body is spherically symmetric since it contains an incompressible
perfect fluid with the right density. A suitable pressure Po, we use the line
element in the manner described below.

ds? = —e*dr? — r2(d6? + sin20d¢p?) + eV dt? (1)

Where A and v are function of r only, we get

T = (o + p) e g
= Po T Po ds ds Po
From which we get
. d id 12 .
le = (po + Po)d_i%guj - 5}190 - (2)
So the velocity components are
bl Al b _ g ez (3)
ds " ds " ds das
From(2), we have
dx! dx*

T11 = (po + Po)gggul — Do

= (Po + Po)-0 — po
=0—=po = —Po
Similarly
T; = —po, Ts = —Po
From (2),
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. dx* dx#
Ty = (po + po)EKgm — Po

dx* dx*
= (po + PO)EEHM — Po

= (po + Po)(e_v/z)zev —Po
= Po T Po — Po = Po
Thus
Ti =T =T§ = —po, Ty = po
The field equations in the interior are obtained by
o1 . . .
R — 5 8/R + A§] = —8nT}
From which we have
—8nT} = g'*Tj — > 5/R + A5}

The non vanishing components are

Where denote differentiation w.r.t. r, we get

From (5), we obtain

8mpo — A= 1Ry —5R

8mpo — A = g%2Ry, — IR

8mpo — A= g**Ry3 — IR

MATG609

(4

. (5)

.. (6)
(D)
(7))
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—8mpo — A= g** Ry — 2R ..(8)

The equation (7") can be written as

_A= - inZg — —
8mpy — A rzsinZHRzzsm 0 2R
1 1
___ZRZZ_ER_QZZRZZ__R

Since (7) and (7") are identical.
So

4
R = ginij = ZgiiRii = g" Ry1 + 9**Ry; + g**R33 + g** Ry,
i=1

22
) .
= gllRll + gZZRZZ + Sin_ZQ RZZSLTIZQ + g44R44

= 911R11 + Zgzszz + 944R44

Y )l'v’_l_v’z AN o2 . A= L
- 2 4 Ta T7) | "\ 2

_gze-a(vquﬂ_"_JrM_i)J,f_z - (9)

2 2 T r2

From (6) and (9), we obtain

1
8mpy — A= g''Ryy _ER

_/1< UII AI,VI UIZ /1’)
R e

2 4 4 r

2 2 T r2

g <v” N Av v?E (M =v) 2> 2

-r-Z
a1 1
8npo = e[+ -L+A  ..(10)

Similarly

From (7) and (9), we get
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R N T A
87'(190 =e ( 2 4 + 4 2r )+A "'(11)
From (8) and (9), we have
_ A’ 12 1 1
mpo=e(TH+-— ) +5-A  ..(12)

Adding (10) and (12), we get

8m(py + po) = e"l(/v:—v’) ..(13)

_1 (Avr+v'?)
2r

8m(p, + po)% =e ..(13")

8n@=e—l(v__v__i_l_”_l—)+i .. (14)

dar r rz2 r3 T T2

Adding (13") and (14), we obtain

U” /’llvl ,UIZ /1! _ 'U’
e +
2 4 4 2r

v 1 1
>+A=e"1[—+—2 ——2+A
r r r

N A 1 0
2 4 4 2r  rz) rz
From (15) we obtain
dp, v 2
8m IW + (po + Po)?l = ;(0)
d ! I
P24 (o +po) 5 =0 .. (15"

Since we have to integrate (10), (12) and (15)

From(12),
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Aov?o1 1
— ,—A
8mpy +A=¢e <7+ 4 _T'_2>+T'_2

d
e (re=*) = 1—1r2(8mp, + A)

Integrating,
T'3
(re?)=r- 3 (8mpy + A) + (4
r? C
(re™?) =1——(8mpy + A) + —
3 T
Taking — = &2 e optain
R
r2 C
-1 — 1—— -1
€ R? + T
Wetake C; =0
-1 r?
et=1-12 .. (16)
From(15’), we get
dp, v’
W‘F (Po +Po)?— 0
dpo _ dv
Po t Po 2

Integrating,
v
log(po + po) = 5 + constant = logC,e~"/?

(Po + po) = Cze_v/2

8m(py + po) = 8mCre V% = C;e77/?

MATG609
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2 v r? A 2r
ﬁ-l_? 1_ﬁ ,for —e ™A = RZ
v[2 v r?
e ﬁ-l-? 1—ﬁ =C3
Put ez=1u sod—u=v—e5
dr 2
2u  2du . r? c
R?  rdr R2) 73
d_u r TGy _ G p2
e sk s ..(17) Cy, = 2R

Now we know that the solution of

du

I +uP(r) = Q(r)

is uelPI = [QelPIdr + const.

On applying this method of (17), we obtain the final answer

1 8mpy +A
RZ 3
From(10), we have
-2 31 1
8mp, = +e’1r—z]—r—z+A
vet 1 1 1 A
or r2 R? r?
ve™t 1
8mpy = _ﬁ-l_ A .. (18)
Ty! r B
And 623 =z E
R2
v’ 2B/R?
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Y G o

7"2
_Av, 1 3B (1_ﬁ>_‘4

Using (18), we have

+A ..(19)

When the distance from the origin is significantly more than r;, where r;
is the radius of the massive body, factor A becomes significant.

Hence wetake A=0forr<n
Alsop, =0forr =n;
Thusp, =0=Aforr=n

From (19), we get

1

a=38{(1- %)}E ..(20)

The line element for an interval in the interior of the massive body is
2 _ r2\7 2 2 2 2 2
ds?=—(1-15)  dr? —r?(d6? + sin?0dgp?) + [A -

B |(1- 5)12 dt? - (21)

This is called Schwarzschild’s interior solution.

The exterior solution is
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-1

2m
ds? = — (1 —7) dr? —r2(d6? + sin*0d¢?)
2m
4 (1 _ T) dt? - (22)
2
,',.12 Zm TZ
1__EE_= -—= A— B 1-§5
1 e =4B2( 1 r by (20
= = 7z ) by (20)
2 2 2
£ 2m 1 r
(- _m 1—— =4B2(1-—
R? " ’ R? < RZ)
T13 2
- =, 4B?=1
2R
4T 3
= ST’ =55 2B=1
— 8o~ 2 B ==
3 R
Now
1  8mpy+ A
RT3 where A = 0forr=mn;
3 TZ 1 1 87-[,0()
A:— 1__ )] B:_’ w2
2 ( RZ) 2 R? 3

So the interior solution will be real only if

2 2
T <lor— <1,
T1 R

3
8mpo

This is complete.

Department of Mathematics
Uttarakhand Open University Page 249



Theory of Relativity MAT609

SELF CHECK QUESTIONS

1. What is the Schwarzschild solution?
It is the exact solution to Einstein's field equations in general
relativity that describes the spacetime geometry outside a
spherically symmetric, non-rotating, uncharged mass.

2. What is the Schwarzschild radius?
The radius at which the escape velocity equals the speed of light,
given by:

2GM
Ty =

CZ
This is the radius of the event horizon of a non-rotating black hole.

3. Write the Schwarzschild metric.
2my\ !

ds? = — (1 — T) dr? —r2d0? —r?sin?0d¢?

2m
+ (1 — —) dt?
Tr
4. Isthere a true singularity in the Schwarzschild solution? Where?
Yes, at r = 0. It is a true physical singularity, where spacetime
curvature becomes infinite.
5. What kind of spacetime does the Schwarzschild solution describe?
e Static
e Spherically symmetric
e Vacuum (i.e., outside any mass distribution)
6. Isthe Schwarzschild solution valid inside a black hole?
No, it breaks down at r = r, due to coordinate singularity. For
r < 15, a different coordinate system like Kruskal-Szekeres is
used.
7. What is the significance of the time dilation in the Schwarzschild
metric?
Clocks closer to a massive object tick slower compared to clocks
farther away. Near the event horizon, time appears to stop for a
distant observer.
8. How does the Schwarzschild metric reduce at large distances (i.e.,
r—00)?
It reduces to the flat Minkowski metric, as gravitational effects
vanish at infinity.
9. Does the Schwarzschild solution include charge or rotation?
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No. For charge, you need the Reissner—Nordstrém solution; for
rotation, the Kerr solution.

12.9 SUMMARY :-

In this unit, we explored the Schwarzschild exterior solution, which
describes the spacetime geometry outside a static, spherically symmetric,
and uncharged mass, leading to important concepts such as the
Schwarzschild radius and event horizon. We examined the relation
between the gravitational mass M that appears in the metric and the
inertial mass m, reinforcing the equivalence principle in general relativity.
The Schwarzschild metric was also expressed in isotropic coordinates to
simplify the form of the spatial components for certain applications. A
detailed analysis of planetary orbits revealed key relativistic corrections,
including the famous perihelion precession of Mercury. We reviewed the
classical tests of general relativity—Ilight bending, gravitational redshift,
and time delay—which provided crucial experimental confirmations of
Einstein’s theory. Finally, the Schwarzschild interior solution was studied
to understand the spacetime geometry inside a spherically symmetric,
static mass distribution, such as a star, giving insight into the pressure and
density profiles necessary for hydrostatic equilibrium in relativistic stars.

12.10 GLOSSARY:-

e Schwarzschild Solution: An exact solution to Einstein's field
equations representing the spacetime outside a static, spherically
symmetric, and uncharged mass.

e Schwarzschild Metric: The line element that defines the geometry
of spacetime in the Schwarzschild solution. It is given by:

2m

o ds?=-— (1 _T)_l dr? —r2d6?% — r2sin20d¢? +
(1—27’”) dt?

e Schwarzschild Radius (¢ = r): The radius at which the escape
velocity equals the speed of light:
2GM
s = 2
e It marks the event horizon of a black hole.
e Event Horizon: A boundary in spacetime beyond which events
cannot affect an outside observer. In the Schwarzschild case, it lies

atr,=r
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Coordinate Singularity: A point where the coordinates used in
the metric break down (e.g., at r; = r), but the spacetime itself is
not singular.

Physical Singularity: A point in spacetime where curvature
becomes infinite and physical laws break down. In the
Schwarzschild solution, this occurs at r = 0.

Isotropic Coordinates: A coordinate transformation of the
Schwarzschild metric where spatial components appear more
symmetric, often used to simplify calculations or match boundary
conditions.

Gravitational Mass (M): The source of the gravitational field in
the Schwarzschild metric. It can be interpreted as the total mass-
energy of the system.

Inertial Mass (m): The mass that resists acceleration when a force
is applied; in general relativity, it is equivalent to gravitational
mass.

Perihelion Precession: The relativistic effect that causes the
closest point in a planet’s orbit around the Sun (the perihelion) to
shift over time. Explained accurately by the Schwarzschild
solution.

Gravitational Time Dilation: The effect where time runs slower
in stronger gravitational fields. In the Schwarzschild spacetime,
clocks closer to the mass tick more slowly.

Light Bending: The deflection of light as it passes near a massive
object. One of the classic tests of general relativity derived from
the Schwarzschild geometry.

Interior Schwarzschild Solution: A solution to Einstein's field
equations that describes the spacetime inside a static, spherically
symmetric body of constant density.
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e Satya Prakash,Revised by K.P.Gupta, Ninteenth Edition (2019),
Relativistic Mechanics.
e Dr. J.K.Goyal & Dr.K.P.Gupta (2018), Theory of Relaivity.

12.13 TERMINAL QUESTIONS:

(TQ-1) State Einstein's law of gravitation (for empty space) sketch the
method for obtaining the gravitational field isolated particle as given by
Schwarzschild metric.
(TQ-2) Assuming Schwarzschild solution, show how the relativistic term
3mu? arises in modifying the Newtonian equation of a planetary orbit,
d?u m
W +u= 2
(TQ-3) Deduce from it the differential equation of a planetary orbit and
compare it with Newtonian orbit for the same.
(TQ-4) Obtain the formula for gravitational shift in spectral lines.

(TQ-5) Derive Schwarzschild's interior solution
-1

ds? = —(1-15)  dr? = r?(d6? + sin?0d?) + |A -

B |(1- ;—z)r dt?

(TQ-5) Derive the expression for the motion of the perihelion of a
planetary orbit round the sun.

(TQ-7) Obtain Schwarzschild's exterior solution of an isolated
gravitating body.

(TQ-8) What are the crucial tests of General Relativity? Discuss one of
them.

(TQ-9) Derive Schwarzschild's solution for an isolated particle
continually at rest at the origin.

(TQ-10) Discuss the three crucial tests of general relativity.

(TQ-11) Derive Schwarzschild's interior solution of a spherically
symmetric distribution of matter with constant density.

(TQ-12) Show how general relativity modifies the equation of planetary
orbit and explain the advance of perihelion.

(TQ-13) Discuss the phenomenon of red shift in general relativity.
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(TQ-14) Derive the Schwarzschild exterior solution for the gravitational
field of an isolated mass particle at rest.

(TQ-15) Derive the expression for the motion of the perihelion of
Mercury round the sun.

12.14 ANSWERS:

SELF CHECK ANSWERS
1. Itis the exact solution to Einstein's field equations in general
relativity that describes the spacetime geometry outside a
spherically symmetric, non-rotating, uncharged mass.
2. The radius at which the escape velocity equals the speed of light,
given by:

2GM
Ty =

c?

This is the radius of the event horizon of a non-rotating black hole.

3. ds? = - (1-22) " dr? - 12d6? — rsin0de? +
(1-22)ar?

.
4. Yes, atr = 0. Itis a true physical singularity, where spacetime

curvature becomes infinite.
5. The kind of
e Static
e Spherically symmetric
e Vacuum (i.e., outside any mass distribution)

6. No, it breaks down at r = r, due to coordinate singularity. For
r < 15, a different coordinate system like Kruskal-Szekeres is
used.

7. Clocks closer to a massive object tick slower compared to clocks
farther away. Near the event horizon, time appears to stop for a
distant observer.

8. It reduces to the flat Minkowski metric, as gravitational effects
vanish at infinity.

9. No. For charge, you need the Reissner—Nordstrom solution; for
rotation, the Kerr solution.
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13.1 INTRODUCTION:-

Cosmological models refer to solutions of Einstein’s field equations of
general relativity that describe the geometric and dynamic properties of
the universe on a large scale. These models are typically built on the
assumption that the universe is homogeneous and isotropic, which leads to
the use of the Friedmann-Lemaitre—Robertson-Walker (FLRW) metric.
This metric simplifies Einstein’s equations into a set of Friedmann
equations, which relate the scale factor a(t) to physical quantities like
energy density p, pressure p, and the cosmological constant A. Different
cosmological models arise by choosing various values of curvature K,
matter content, and the cosmological constant. For example, the Einstein-
de Sitter model assumes k=0 and A=0, while the de Sitter universe
considers a vacuum-dominated model with A>0. These mathematical
models are essential for predicting cosmic expansion, the age of the
universe, and the fate of cosmic evolution.

13.2 OBJECTIVES:-
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After studying this unit, Lernear’s will be able to

e To Solve Einstein's and De-Sitter line elements.
e To explain properties of Einstein Universe.
e To explain properties of De-Sitter Universe.

13.3 COSMOLOGICAL MODELS:-

Cosmology is the branch of science that deals with the study of the
universe as a whole, including the distribution and motion of matter on a
large scale. It aims to understand the origin, structure, evolution, and
eventual fate of the universe. In cosmology, we construct mathematical
models known as cosmological models or world models that describe the
large-scale behavior of matter and the geometry of space-time. These
models are then compared with observational data to evaluate how
accurately they represent the actual universe.

Theories concerning the nature of the cosmos have existed for as long as
humanity. It has long been known that applying Newton's gravitational
theory to the entire cosmos presents significant challenges. At least as far
as the dimensions of the solar system are concerned, the three crucial tests
of the general theory of relativity show that it has significantly modified
the Newtonian theory and provided a workable solution to the problem of
a star's field in the empty space surrounding it. It then seems to be of great
interest to extend the application of the general theory of relativity to the
universe as a whole. Einstein originally addressed this question shortly
after the general theory of relativity was developed. It has been the focus
of numerous investigations ever since. Because several large-scale
features of the cosmos may be compared to such a model of the universe
and are known experimentally, this program is highly intriguing. The
following are the most important of these properties.

(a)Homogeneity of Matter Distribution: On average, matter is
distributed in a fairly uniform manner throughout the universe. The
estimated average density of matter is approximatelyp ~ 10727 g/cm>.

(b) Isotropy of the Universe:

From the viewpoint of the solar system, the universe appears to be fairly
isotropic that is, it looks the same in all directions on a large scale.

(c) Redshift of Light from Distant Nebulae: Light reaching us from
distant nebulae is redshifted, and the amount of redshift is proportional to
the distance the light has traveled. This relationship follows the law:
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oA
7= kr,k =6 x 10728¢m™1

Assuming this redshift is due to the Doppler effect, we infer that distant
nebulae (or galaxies) are receding from us. The speed of recession is
proportional to their distance from us.
(d) According to measurements of the radioactive remains, some rocks in
the crust of earth are at least 3.5 to 4 billion years old. Hence the universe
is older than 4 billion years.
The modified field equations proposed by Einstein are

Ruv =5 GuvR + Mgy = —81T,, (D)
The constant A has such a small effect on solar system or even our own
galaxy phenomena, but it becomes significant when the entire universe is
taken into account.
It is possible to construct alternative models of the cosmos by mixing
different values of A with different possibilities of “Static cosmological
models™ are represented by the static solutions of equation (1). Here, we
will first examine the static, isotropic, and homogeneous models of the
cosmos that were first put forth by Einstein and de Sitter. Finally, we will
discuss Robrtson's non-static, isotropic, and homogeneous model. The
following presumptions form the basis of Einstein's de-Sitter's
cosmological models.

1. The universe is static, i.e., in a proper co-ordinate system matter is
at rest and the proper pressure Po and proper density Po are the
same everywhere.,

2. The universe is isotropic, i.e., all spatial directions are equivalent.

3. The universe is homogeneous, i.e., no part of the universe can be
distinguished from any other.

4. For small values of r the line element should reduce to special
relativity form for flat-space time since local gravitational fields
can be neglected in small space-time regions.

The line element satisfying the condition of spherical symmetry is given
by

ds? = —etdr? —r?(d6? + sin?6d¢?) + eVdt?>  ..(2)
where A and v are functions of r only.
For the universe containing perfect fluids, then we have the following
relations.
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— v 1 1
8mpy =€ '1(7+r—2)—r—2+/\
(Y 1 1
8y = e~ (T - 5) + 55— A

dpo

o T (Do +P0)% =0
According to the assumption% = 0, then we get

dp, v
W‘F(Po +P0)?—0
(Po"‘Po)V’ =0

v'=0 or p0+p0=0}

Po+po=0=1

!

.. (a)

MATG609

- (3)
(4
.. (5)

These solution (a) lead respectively to Einstein, De-Sitter and special

relativity line element.

13.4 EINSTEIN LINE ELEMENT:-

This Einstein line element arises from the possibility

v =0
Integrating

v = (C; = constant
Applying the condition A = v = 0 atr = 0, we have

C, =0
Thus
vV=0=v
From (4), we obtain
87Tp _ e—/1</1_,_i>+l_[\
o r 12 T2

(Brpy + Nr?2 =e*(AXr—1) +1

d
1— (8mpy + Nr? = o (re™)

Integrating

T.3
re * = r—?(8rrp0 +A)+C

Applying the condition A = v = 0 at r = 0, we obtain
0=0—-0+C orC=0

Hence
3

r
ret=r— ?(87'[/00 + A)

(D
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T.Z
e t=1 —?(87'[,00 + A)

2
Taking # = (8%"“1), weget et =1--

Now from (2), we have

RZ
This line element is called Einstein line element for static, isotropic and
homogeneous universe.

r2\ 7
ds? = — <1 — —) dr? —r?(d6? + sin?0d¢?) + dt?

13.5 PROERTIES OF EINSTEIN UNIVERSE:-

i. Geometry of Einstein Universe: By the transformation coordinates,
The Einstein line element is

RZ
Consider the transformation

2\ —1
ds? = — <1 - T—) dr? —r2(df? + sin?0d¢?) + dt? ... (1)

P
P
Then
2
P\ _
T (1 + 4R2> =p
This obtain
__pr
b (1-9%2)
r= >~ dp
(1+4%)
4R2
and
pr :
dr? )

C-7) bRl de)

Simplifying this we have

Now from (1) becomes
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ds? = —;2 [dp? + r2(d6? + sin?0d¢p?)] + dt?
(1+47)
4R2
This can also be transformed into
ds? = —% [dx? + dy? + dz?] + dt?
(1 + %)
Let the second transformation
T'2
zZ1=R-— <1 - F) ,Zy = rsinfcos, zz = rsinfsing, z, = rcosO

Putting these values in (1), we obtain

ds? = —(dz,® + dz,* + dz3* + dz,*) + dt?
with

Z1% + 2% + 732 + 2,2 = R?
This prove that the physical space of Einstein universe may be embedded
in a Euclidean space of higher dimensions.
a. Spherical Space: By the transformation take (1), we have

ds? = —R?(dpB? + sin?B(d6? + sin’0d¢p?) + dt?
We already get0 < 0 <m,0< ¢ <2rm
With the remaining variables 8 & and ¢ being arbitrary, we discover that
this line element (2) stays the same for § = 0 and § = m. this indicates
that there is a comparable occurrence at § = mtooneat S = 0. Inother
words, there is a mirror image at § = m that corresponds to an event at
B = 0. According to this interpretation, the Einstein cosmos is spherical.
The proper volume I, of the spherical universe is

21
Vo —f .l; o-]:p 0(Rd,[i‘)(Rsm,[i’d@)(R sinfsinBdg)

= 47R3 f = (1 —cos2B)dp = 2nR3 [,8 - —SLnZ,B]
0

= 2mR3
and the total distance around the spherical universe is

Vs
zozzf Rdp = 2nR
0

Hence the proper volume of the co called spherical universe is 2R3,

b. Elliptical Space: The Elliptical space (4) provides the Einstein
line element. Only when the r < R, is defined is the element
provided by (4) real. The statement defines the spatial expansion of
the physical space in Einstein's universe is
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dr? ,
do? = ————+1r%d6? + r?sin?0d >

-5

The proper volume of Einstein universe is then
RO T 2T d,r
Vo = j j f ——,rdf.rsinfd¢ = nR3
r=076=0/¢=0 (1 _r?
RZ

and the total distance around the elliptical universe is

/2 Rcosndn r

j f cosn hereR sinnp=m
RZ

ii. Density and pressure of the matter in Einstein universe:
For the line element is

ds? = —e*dr? — r?2(d6? + sin?0d¢?) + edt?
Then we have

lp=2

_af v, 1 1
87Tp0=e’1(v7+r—2)—r—2+A .. (3)
(Y 1 1
87T,00=e/1(7—r—2)+r—2—/\ (4)

’ -1 T2 vy 2
Where v/ =0=v,e ™ =1——=sothate™ ===
R? r  R?

From (3) becomes

R? R?
8mp, = A—— ..(5)

r2\1 1 1
8mpy =0+(1—— ———+A——+A

Now from (4),we get
2 1 1 1
800 =12~ (12~ 2 ) +72 =
87py = — — A ..(6)
Adding (5) and (6), we have

2
8m(po + po) = Rz

Po t Do = 4H1R2 - (7)
The equation (5) and (6) represent required expressions for density and
pressure.
Casel: Let us consider the universe is filled with fluid consisting of
incoherent matter exerting no pressure. For example free particles (stars).
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Thenp, = 0.
Now the equation (7), we have
1
Po = 4nR?
. . 1 TR
Mass of the spherical universe = Vopo = 2m*R%. —3 = —
TR

- - - _ _ 2 3 1 _ Ith
Mass of the elliptical universe = V,p, = m“R T

Casell: When the universe is filled with radiation,p, = 3p,.
From(7), we get

__ L _po
Po= T6nrz ~ 3
Mass of the spherical universe = V,p, = 2m2R3m.—— = 7R

" 16mR2
.. - 3
Mass of the elliptical universe = 1—6nR.

Caselll: When the universe is completely empty

Po =0 =pg
From (5) and (6), we have
1 3
A= =g
1
A=ﬁ_ 0
Therefore
2
T
-4 — —
e =1 —ﬁ =1

This shows that for flat space time, the Einstein element would degenerate
into a line element of special relativity type.

iii. Motion of attest particle in the Einstein Universe: The Einstein
line element is

RZ
The motion of the particle is described by the geodesic equations:
d?x“ e dx'dx)
ds? Uds ds

r2\ 7
ds? = — <1 — —) dr? — r?(d0? + sin?0d¢?) + dt? ... (1)

With
xl=rx?=0,x3=¢,x*=
For the sake of simplicity, we assume the particle was initially at rest so

that velocity components can be calculated as
dr _ 46 _ d¢
ds ds  ds

=0 - (2)
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From (2), we get

d2x® dt\?
erg (&) -0

dsz  *\ds
But
1 Gas .
Y= e 0 since gy =1
Hence

d?r B d?o B d?¢ B

ds?  ds?z  ds?
i.e., the particle has zero acceleration. Hence in Einstein universe a
particle at rest remains at rest.

iv. Shift in Spectral lines (Doppler’s effect in Einstein Universe):
According to zero acceleration for stationary particles, consider an
observer at r = 0 and a light source, such as a star, at » = r. Both are
always at rest with regard to spatial coordinates.

ds=df8 =d¢p =0

dr r2\Y?
=+ _
a  — (1 R2>

At time t,, let a light pulse exit the star. The observer would get it at
time t, , which is provided by

tzdt j‘o dr j‘rl dr
tl T1 TZ 1/2 0 rz

1/2
(1 - ﬁ)

So that from (1), we get

"
t,—t; = Rsin~1—=
2 1 R
"
t,=t; + Rsin™!—=
2 1 R

Since in Einstein universe particle at rest remain at rest.i.e., r; is constant
so we have
6t2 - 6t1 = 0
ot
—2_1
oty

13.6 DE-SITTER’S LINE ELEMENT:-

The de-Sitter's line element arises from the possibility
Po+Po=0
Adding (3) and (4), we obtain
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A+ A+
810 = e - or e % - =0

A+v' =0
Onintegration A+v=_C
Now the subject to condition A = v = 0 atr = 0, we obtain
C=0
Hence
A+v=C=0o0rA+v=0o0r 1=—v

From (40, we have

8mp, = e—l<£_1>+i_/\

o r T T2
(Brpy + Mr2 —1=e*(Ar—-1)

d
1—(8mpy + N)r? = o (re )

Integrating

3
r
ret=r —?(87;00 +A)+C,

Now the subject to condition A = v = 0 atr = 0, we obtain
Cl = 0
Consequently

r3
re*=r- ?(87;00 + A)

2
et=1 —?(871,00 + A)

. 1 8 +A . —
Taking — = &720* \ye obtaine=* =1 — =
R? 3 R?
2
Tr
v _ - _ 1 _
e!=e"=1 R?

Now from (2), we have

R? R?
This line element is called De-Sitter line element for static, isotropic and
homogeneous universe.

, r2\ 7t . r2
ds?=—(1—-=] dr?—7r%(d8? +sin?0d¢?) + | 1 — — | dt?

13.7 PROPERTIES OF DE-SITTER’S UNIVERSE:-

i. Geometry of de-Sitter's universe:
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2

2 -1
ds? = — (1 —_ _> dr? —r2(d6? + sin? 0d$?) + (1 — %) dt? ... (1)

can be written into several forms. We make the transformation

T =
R sin §.

As a result of which (1) becomes
ds? = —R?[dpB? + sin? f(dB? + sin? Od¢p?)] + cos? Bdt2. (2)

On applying the transformation

T-Z
a = rsinfcos ¢, 5 — e = Re~t/R/ <1 _ﬁ>

f = rsin Osin ¢,

72 1/2
y =71cosh, 8 +¢= Ret/R/<1 _ﬁ>

we find that (1) is reduced to
ds? = —[da? + dB? + dy? + d6?] + de2. 3)

Further taking @ = iz, = iz,,y = i25,0 = iz,,€ = izs.
We obtain ds? = dz,* + dz,* + dz;° + dz,* + dzs

with z2 + 72 + 732 + zZ + z2 = (iR)?

The de-Stitter universe's physical space may be embedded in a hlgher-
dimensional Euclidean space, according to equation (3). It also
demonstrates that this universe's geometry is based on a sphere's surface
embedded in a five-dimensional Euclidean space. Lemaitre Robertson
transformation

re~t/R r2\)"/?

gl
~ R?

This transformation (1) helps to take the shape

ds? = _le'R[dTZ +72(d6? + sin? 8d¢p?)] + dt?
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Dropping dashes, we obtain
ds? = —e?/R[dr? + r2(d6? + sin? 6 + d¢p?)] + dt?
Taking k = 1/R, we have
ds? = —e?*t[dr? + r2(d6? + sin? 8d¢p?)] + dt?
Its Cartesian equivalent is
ds? = —e?#t[dx? + dy? + dz?] + dt?

Therefore, we can see that a static line element may be changed into a
non-static one using this transformation.

ii. Pressure and density of matter in de-Sitter universe: The de-Sitter
line element is based on the assumption

Po+Dpo =10 -« (4)

Since p, = 0 and therefore we obtain

Po =0 =po - (5)

This is the only way to solve (4). The de-Sitter universe is implied to be
entirely empty by equation (5). It is devoid of radiation and substance.
iii. Motion of a test particle in de-Sitter universe.
Geodesic  equations  describe  the motion of a  test
particle.

d?x® o dxt dxJ

wr Tl =0 ©

The line element is taken into consideration in the general form
ds? = —e*dr? —r?(d6? + sin? 8d¢p?) + eVdt? (7

2
Withe * =¥ =1 - =
R

The elements of Christoffel's brackets of the second type that are currently
disappearing are
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Ity =21/2,I3; = cotf

I3, =1/r =T3;, 33 = —rsin? fe~*
'ty =v' /2,5, = —sinfcos 6
1—%2 = _Te_l, 1—‘14 = v/ev_l/z

where the dashes indicate the difference with respect to r.
azx? 2 dxdx] _ 0
" ds? Uds ds

Fora = 2
or,

d?x? 2 dx' dx? T2 dx?dx! T2 dx*dx®
ds? 12°ds ds 2 ds ds 3B ds ds

or,
d29+2drd9 o H(dd))z_o o
ds? rdsds S LS ds) ®)
Fora =3, % ?j%%zo
or,
d2x3+ , dx! dx2+ , dx?dx? 3
ds? 13 ds ds 2 ds ds
or,
d2¢  2drde do do
_dSZ +;££ + 2COt9E£ =0 (9)
For a = 4, d:f @Z—i%zo
or,
d?x* + o dxtdx* B 10
ds? Wds ds — (10)

Or d_Zt_l_v'd_r.ﬂ—
" ds? ds ds
T e s . ae
Letd = > initially, then sinf = 1,cos8 = 0 = -

Substituting these values in (8), (9) and (10), we obtain
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0 _,
ds?

d*¢  2drdg _
ds? rdsds
or,

d2t+ drdt 0
ds? v dsds

A particle that begins moving in the plane 8 = gwill continue to move in the
same plane, as demonstrated by the equation (8".

From (9,

2d2_¢ drd¢

ds? TEE N

or, %(rz %) =0

This provides a solution

d¢o
2_T =

ds h
h being a constant of integration.
From (10)

Ldit ., drdt 0
© sz TV dsds

or,

d ( Y dt) _0
ds ¢ ds)
Upon integration, e % = k, k being a constant of integration Instead of

taking a = 1, we shall consider the line element (7). For 8 = g (7)

becomes, ds? = —e*dr? — r?2d¢? + eVdt?
or,
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dr\? dg\> dt\?
Al 2 (- v —
¢ (ds) tr (ds) ¢ (ds) +1=0

Substituting expressions for

do q dt
ds an ds
we get
dr\? h?
e’l(E> +1r? -r—4—e"-kze‘2" +1=0
1 (ar\? | n2e¥ 2
or, eVt (E) +——k+e" =0
dar 2 hz TZ TZ "
or. (E) +§(1_F)_k2 + (1—;) =0.ForA+v
or
(dr)z k214 r? h? N h?
ds) R2 r2 R2

Taking positive square root.

ds R?2 r? RZ
dr _dr ds _e’dr vat _
dt ~ ds dt_kds'For ds_k
1 . r2\ dr ”
Tk R?)ds (11)
dr 1 72 2 r2 h%  p2 1/2
o= (1) (K -1+ 5 -5+ )

Differentiating with respect to t, we get

dzr_l( 2r>dr 2 1+r2 h2+h2 1/2
dt?  k\ R?)dt Rz r2  R2

L r2\ 1 2 1+r2 h2+h2 —1/2 2r_|_2h2 dr
R2 /2 R?2 r2 RZ R2 r3 | dt

1

k
2r\ dr\’ 1 1 r2\’ 1 r  h?
:(_ﬁ>'<a> '(1—r2/R2)+ﬁ<1_ﬁ> '(dr/dt)'<_2+r_3>
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or, 4 (1 _ 1)
"dt  k\rz R2

Putting % = 0in(12),

d’r  (1—1%/R? (r  R?
az \" & R2 T

2
This indicates that for% =0, % > 0. It indicates that a particle will

never return to the perihelion after it has reached it and begun to travel
away from it at ¢,.

Substituting % = 0in (11), we obtain

T'Z h2 h2
kz —1+F—r—2+ﬁ= 0
This obtain the value of r at perihelion.Fo r = R, (11) and (13) are
reduced to

dr_

_a¢
dt

O_dt

This illustrates that all motion will cease inside a radius R. The perceived
horizon of the cosmos is the name given to this radius.

d?x®
dsz 0,(a =
1,2,3). This demonstrates that the particle's acceleration is zero. It means
that in de-Sitter world a particle at rest at origin with h = 0 remains at
rest.

For a particle at rest at origin with h = 0 we find that

Step 1V. Shift in spectral lines.

When a light beam from a far-off star travels in a radial path in the
direction of the origin,

or,
ds,d,d¢ = 0
r2\ 7 r?
Consequently 0 = — (1 - ﬁ) dr? + (1 - ﬁ) dt?
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The required path is obtained by
dr
TZ
(1-7)

If t is the amount of time it takes for a light beam to move from r =
00%% = R, then

dt = —

_f”/chosd)dl/) o
A cos2 1 ’R_Sml'b
/2
=RJ sec pdy
0

R[log(sec + tan y)]7/?
R[wo—0] =

It implies that a light beam would travel between the origin and the
horizon in an indefinite amount of time as observed by an observer at the
origin; in other words, the observer would never be aware of what was
happening at the horizon.

Let 6t; be the separation between two consecutive wavecrests that are
emitted from a far-off star, and 8t, be the corresponding time that an
observer at rest at the origin receives them, so that

5td = 68t,
t2 0 dr

P (-
tl r (1 - rZ/RZ)

. r dr
From which, t—ty = =r2/R?)’

Differentiating w.r.t. ¢, % - 1= 1d:£j;2

. Z

where % denotes the radial velocity at t = t,.

St dr/dt
% _q 4 2
Sty 1-1r2/R2

Thus
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dr dr
where— = (—)
dt dt/i=t,

We obtain e¥ % = k.
ds

r2
(1 - —) dt = kds

From which, (1 —23) 8¢, = kot

or
o 1 r?
61‘1 =E 1_ﬁ =0ty

Also we have seen 6t,° = §t,. Dividing, - &1 = —(1 —r2/R?) - &1
or

5ty St, k

5td 8t; (1—712/R?)

5ty k k(dr/dt)

5t 1—r2/R2 " (1 —71%/R?)?
or

Sincek>0and1—ﬁ>0

It means that the sign of b depends upon the sign of dr/dt, which is

radial velocity at time t = tl.

When — > 0, then > 0, meaning thereby there exists red shift.

0
|f% < 0, then % < 0, showing thereby there exists violet shift. For % is
1

so large that it makes the R.H.S. of (15) to be negative if % <0.

Thus we see that there is a possibility of both red and void shifts. But the
possibility of red shift is more prominent.

06555 log9

Let A, and 44 + 54, be the wave lengths of waves noresponding to the
time 5t,° and &t,°.
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5¢9 c8t,°0  Ag+62 52

Then =% = —2, =2""=14+-2

e 6t10 C6t10 AO + /10
5t,° 52
I, =4%=1+-=-2
' 85t.° + Ao

Consider an alternate form of de-Sitter line element given by
ds? = —e?*/R[dr? + r?(d6? + sin? 8d¢p?)] + dt>

Here we find that
0

% = e(tz"t)/R = ¢7/R = 1 + - upto first approximation.
1

For distance travelled intime t, — t; is 7.

or,
La T 6t L 8%
R_atlo_ /10
6/10_7'
lo R

MATG609

If we assume ¢ = 1, this demonstrates that red shift is proportionate to the
distance measured from the origin. It also confirms Weyl's theory, which
states that nebulae are moving away from us at a speed proportional to
their distance. As a result, we may observe that de-Sitter forecasts nebula

recession despite being entirely empty.

Problem 1. To show that Einstein universe is not an Einstein space

where as de-Sitter's universe is
Solution. The characteristic is what defines an Einstein space

1

where n stands for dimension of the space.(i) To examine Einstein

universe.

Einstein line element is obtain by

-1
TZ
ds? = —<1 ——> dr? = r2(d6? + sin” 0d¢?) + dt”

RZ

Here we have
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2
Ryy = Rz 9uu
R4y = O0,Ry,, = 0 for u # v. where u = 1,2,3.
4 4
Ruu
R = gﬂvR#v = z g##RM“ = Z _
pre=c} = Iuu
Ri;1  Ry;  Rizz Ry 2
=—+—+—+—=——=(1+1+1+4+0).by (2).
911 Y922 Y3z YGasa R? ( )- by (2)
R 2
3 R?’

This means that R, =§guu in (2). Additionally, for u#v, Ry =

0,944 # 0, and R, = 0. According to these facts, R, # ing. Einstein

| niverse is not an Einstein space, according to this.

(if) We now examine de-Sitter's universe, de-Sitter's line element is

obtaind by

-1
ds?=—(1-5)  dr? —r?(d6* +sin? 6d6?) + (1- 1) dt2

Here we have R, = ;—zgw
where u = 1,2,3,4.

R, =0foru#v
Then R = g*'R,y, = g™ Ryy + g*?Raz + 9%°Raz + g**Ray

Ri1 Ry Rz3 Ry 3
=—+—+—+—==1+1+1+1),by
g11 922 G933 Gas R? )

R 3

4 R?

Now (3) is reduced to

R
Rup = % uu
Also
R, =0foru#v,g, =0foru+v
Hence we can write

R

Ry = % uu

(3)
(3)
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13.8 COMPARISON OF EINSTEIN MODEL WITH
ACTUAL UNIVERSE:-

To conclude our brief discussion of the properties of the Einstein universe
we must now make some comparison with the properties of the actual
universe.

The Einstein model's agreement with a cosmos that might in reality
contain a finite concentration of uniformly distributed matter is its most
satisfying aspect. It provides us with a cosmology that is better than the
de-Sitter model in this regard. This benefit is only obtained by adding the
extra cosmological term Aguy to Einstein's original field equations. This is
a mechanism that is comparable to the change made to Poisson's equation
to allow for a uniform static distribution of matter in flat space according
to Newtonian theory.

The fact that there is no basis for expecting any consistent shift in the
wave length of light from distant objects is the most unsatisfying aspect of
the Einstein model as a foundation for the cosmology of the real universe.
However, Hubble and Humason's research in the real cosmos reveals a
clear red shift in the nebulae's light that gets stronger with distance.
Naturally, this is the primary factor in favoring non-static universe
theories as the foundation for real cosmology.

13.9 COMPARISON OF DE-SITTER MODEL
WITH ACTUAL UNIVERSE:-

The linear relationship between red shift and distance that Hubble and
Humason found for the light from nebulae in the real universe is provided
by the de-Sitter model, which includes the distribution of moving
particles. In this situation, the cosmological constant A is significantly
higher in the de-Sitter universe than in the Einstein universe.

The line element, when strictly interpreted, corresponds to a completely
empty university that contains neither matter nor radiations, which is the
most disappointing aspect of the de-Sitter model as a foundation for the
cosmology of the actual universe. The successful and poor aspects of the
two initial static models can be concluded in the final section. The
Einstein model accounts for any red shift in the light from far-off particles,
but it does not account for the universe's limited matter concentration. The
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observed finite concentration of the real cosmos is not supported by the
model, which only allows for a red shift in the light from distant particles.

SELF CHECK QUESTIONS

1. What is meant by a “static universe”?

2. What is the main reason the Einstein model is considered outdated
today?

3. What does a redshift in the light from a galaxy tell us?

4. What role does general relativity play in cosmological models?

13.10 SUMMARY::-

In this unit, we explored the fundamental cosmological models used to
describe the structure and evolution of the universe. We examined the
Einstein line element and the associated Einstein universe, which assumes
a static, closed cosmos with uniformly distributed matter and a
cosmological constant to counterbalance gravity. We also studied the de
Sitter line element, which describes an empty, expanding universe driven
purely by the cosmological constant. The properties of the Einstein
universe highlighted its attempt to maintain a static cosmos, though it fails
to explain the observed redshift of distant galaxies. In contrast, the
properties of the de Sitter universe allow for expansion and redshift but
lack realistic matter content. We compared both models with the actual
universe, finding that while the Einstein model is outdated due to its static
nature, the de Sitter model offers better agreement with observational
evidence such as Hubble's redshift—distance relation. These comparisons
emphasize the need for non-static, dynamic models, paving the way
toward more accurate representations like the FLRW and ACDM models
used in modern cosmology.

13.11GLOSSARY :-

e Einstein Universe: A static, closed model of the universe
proposed by Albert Einstein in 1917, where the universe is filled
with uniformly distributed matter and maintained in a stable,
unchanging state by a cosmological constant.

e Cosmological Constant (A): A term introduced by Einstein in his
field equations of General Relativity to counteract gravity,
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enabling a static universe. Later, it became associated with dark
energy, which is responsible for the accelerated expansion of the
universe.

e de Sitter Universe: A model of the universe proposed by Willem
de Sitter in 1917, describing an empty, expanding universe with a
large cosmological constant but no matter. It explains the redshift
of distant galaxies but lacks the presence of matter.

e Friedmann-Lemaitre-Robertson-Walker (FLRW) Model: A
family of solutions to Einstein's field equations that assumes a
homogeneous, isotropic universe. These models describe an
expanding or contracting universe filled with matter and energy,
and they serve as the basis for modern cosmological models like
the ACDM model.

e Redshift: The phenomenon where light from distant objects in the
universe appears shifted toward longer wavelengths due to the
expansion of the universe. The redshift increases with the distance
of the object, as observed by Hubble.

e Hubble’s Law: A key observation that the velocity of galaxies
moving away from us is proportional to their distance, indicating
the expansion of the universe.

e Expansion of the Universe: The concept that space itself is
stretching, causing galaxies to move farther apart over time. This
phenomenon is supported by observations of the redshift in light
from distant galaxies.

e Static Universe: A universe that remains unchanged over time,
neither expanding nor contracting. The Einstein static universe was
an early attempt to model this idea, though it was later discarded
due to the discovery of the expanding universe.

e Dark Energy: A form of energy associated with the cosmological
constant (A), which is responsible for the accelerated expansion of
the universe. It makes up a significant portion of the universe’s
total energy content.

e Cold Dark Matter (CDM): A form of matter that does not emit,
absorb, or reflect light, making it undetectable by electromagnetic
radiation. It interacts with regular matter through gravity and is
believed to be responsible for the formation of large-scale
structures in the universe.

e ACDM Model: The standard model of cosmology that includes
dark energy (A), cold dark matter (CDM), and normal matter. It
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explains the large-scale structure of the universe and its accelerated
expansion.

Line Element: A mathematical expression that describes the
geometry of space-time. In cosmology, the line element is used to
express the distances between points in a universe model, such as
the Einstein line element or the de Sitter line element.

Isotropy: The property of the universe where it looks the same in
every direction. This assumption is fundamental in the FLRW
model.

Homogeneity: The property of the universe where the same
physical properties are present everywhere on a large scale. It is
another assumption in the FLRW model.

Curvature of Space: Refers to the bending of space-time caused
by the presence of mass and energy, described by general
relativity. A universe can have positive curvature (closed), zero
curvature (flat), or negative curvature (open).
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13.14 TERMINAL QUESTIONS:

(TQ-1) Describe Einstein's model of universe. Show that Einstein's
universe is neither an Einstein space nor a constant curvatur.

(TQ-2) Discuss Einstein's model of universe and compare it w actual
universe.
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(TQ-3) Write an essay on static cosmological models.

(TQ-4) Describe the three possibilities of a static model of universe and
bring out the similarity and difference be them.

(TQ-5) Obtain the equations of the geodesics from a varia principle.
(TQ-6) Discuss the three crucial tests of general relativity.

(TQ-7) Show how the general relativity modifies the equation d
planetary orbit and explain the advance of the perihelion.

(TQ-8) Derive de-Sitter's model of the universe and discuss physical
properties.

(TQ-9) Derive Einstein's model of the universe and discuss properties.
(TQ-10) Describe the salient features of Einstein's the de-Sitter
cosmological models, and discuss the inadequancy of static models.
(TQ-11) Write short notes on ‘cosmological models'.

(TQ-12) Show that in de-Sitter's universe there may be both red violet
shift, but the tendency of red shift is more prominent.

(TQ-13)Obtain the line element for Einstein's universe and discuss its
properties.

(TQ-14)Discuss the physical properties of de-Sitter universe and
compare it with those of the actual universe.

(TQ-15)0Obtain the line elements for Einstein and de-Sitter's
cosmological models.

(TQ-16) Obtain the line element for de-Sitter's cosmological model and
discuss fully the motion of a particle in this universe by investigating the
shape of its orbit, and its velocity and acceleration in the orbit.

(TQ-17) Compare and contrast de-Sitter's world with Einstein's world.
(TQ-18) Deduce an expression for the Einstein line element for a static
universe, stating the assumptions made, and find the total mass of
universe.

(TQ-19)Obtain the line element for Einstein's and de Sitter's
compological models.

(TQ-20)Indicate the unsatisfactory features of Einstein's model as
compared with actual universe.

(TQ-21)Show that de-Sitter's model corresponds to a completely empty
universe without matter or radiation.
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13.15 ANSWERS:

SELF CHECK ANSWERS

1. A static universe is one in which the overall size and geometry do
not change over time neither expanding nor contracting.

2. Because it fails to explain the redshift of distant galaxies and does
not account for the expansion of the universe, which has been
clearly observed.

3. It tells us that the galaxy is moving away from us, indicating that
the universe is expanding.

4. General relativity provides the mathematical framework for
modeling the universe's structure and evolution, forming the basis
for solutions like the Einstein, de Sitter, and FLRW models.
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UNIT 14:-Electrodynamics

CONTENTS:
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14.2  Objectives
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14.5  Lorentz Force on a Moving Charge
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14.8  Gravitational field due to an electron

14.9  Comparison of de-sitter with actual universe

14.10 Summary

14,11  Glossary

14.12 References

14.13  Suggested Reading

14.14  Terminal questions

14.1 INTRODUCTION: -

Electrodynamics, from a mathematical perspective, is the study of how
electric and magnetic fields interact and evolve in space and time,
governed by Maxwell's equations, which are a set of four coupled partial
differential equations. These equations expressed using vector calculus

describe how electric fields (E) and magnetic fields (B) , arise from

charge distributions (p) and currents (f) and how they propagate as
electromagnetic waves in free space or media. The mathematics of
electrodynamics involves solving these equations using tools like gradient,
divergence, curl, and Laplacian operators, often within the framework of
boundary conditions and gauge choices. This rigorous formulation
provides the foundation for understanding phenomena such as wave
propagation, radiation, and the behavior of circuits and materials under
electromagnetic fields.

14.2 OBJECTIVES: -

After studying this unit, the lernear’s will be able to

e To understand the behavior of electric and magnetic fields in space
and time, and how they influence each other.

e To develop and solve Maxwell’s equations in various physical
situations, using vector calculus and boundary conditions.
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e To understanding the Electromagnetic Problems with the help
mathematical techniques.

14.3 THEOREMS: -

Theorem 1. To show that a charge in motion is accompanied by a
magnetic field.

Or
To show that an electromagnetic field is produced by an electric Field.

Proof: Orested observed that an ordinary electric current of density J
might generate a magnetic field of strength H. Maxwell proposed that
shifting electric displacement may create a magnetic field. For unoccupied
space, the Morcover electric displacement is linearly proportional to the
electric field strength E. It indicates that magnetic fields are produced by
electric fields.

“A long straight stationary wire carrying a current sets a magnetic field.”

Assume a system S contains electric charges. Assume that a system S is
traveling along the X-axis with velocity u in relation to S. In such case, an
observer in S will only see electric fields; in contrast, an observer in S will
see both magnetic and electric fields. Thus, the electric field in system S
generates an electromagnetic field in system S'. Lorentz transformation

E, = E;, E,= B(E}, + uHy),E, = B(E, — uH})
H, = H,, H,= p(H;, — uE}), H, = B(H} + uE})

As a result, the Lorentz-transformation makes it possible to understand
that magnetic and electric fields cannot be changed independently. This
amount to saying that a change in motion is accompanied by a magnetic
field.

Theorem 2. To prove the existence of vector potential A and scalar
potential pWith the help of Maxwell Lorentz equations.

Proof. Maxwell's electromagnetic field equations for unoccupied space
are provided by

divE = 4np (D
divH=10 - (2)
19H
curl E = a0 ..(3)
10E 4T
curl H = —o T . (4)
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where E, H, and J stand for current density, magnetic field intensity, and

electric field intensity, respectively. Additionally, if an electric charge

with a density of p moves with velocity u, J = pu (2) implies the

existence of a vector A, also known as a vector potential, such that
H = curl A ...(5)

5 5 1 62)
0=V ———
( v c2 ot2

Now (3) becomes curl E = — %% curlAd

For div curl = 0.

This implies that there exists a scalar potential ¢ such that

grad¢p = —1/c 0A/ot —E. .. (6)
To prove
0?A = -7 (7
O2¢ = —4mnp, ...(8)
41 10E
7pu = curlH — P by (4)
10E
= curl curlA — ——
c ot

19 (104
= curl curlA + e (ZE + gradqb) by (6)

_ 10% 129)
= curl curlA + -+ grad (C 50 );

Utilizing the vector calculus formula,
grad diva — V?a = curlcurla o (%)

we obtain

4%;{)u grad divA -72A +Ci2% + grad (l%)

c ot

= grad (divA +1 a"’) - (v2 - ia—z)A

cat c2 9t?
— : 109\ 2 2
=grad (dlUA+C 0t)D O“A.
Choosing ¢ such that

: 19\ _
diva + (222) =0 (9
we obtain 4T”,ou = 024
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0O%A = 4THpu
Thus, the equation (7) is proved.
From (6),7V¢ = V.(— 252) - F

c dt
19 — (10 (_199)\ _
(250 va-VE= (33;) (= 25¢) — 4mp, by (1) and (9),
L1
\Y Q)__2ﬁ= 47'[[)
Or 0@ =-4mp

Consequently, equation (8) is proved.
14.3 GAUGE TRANSFORMATION:-

The vector potential A and scalar potential ¢ solutions for E and H are as

follows:
H = curl A (1)
_ 10A _
E = o grad ¢ .. (2)

are not unique as any scalar function s gradient can be added to A and
defined

A" = A+ grads - (3)
Then the new vector H' = curl A" = curl (A + grad s)
H = curl A + curlgrads = curl A = Hascurlgrads =0
So H =H
In the previous calculation, ¢ must be replaced by a new function if we

further demand that the new electric field intensity E’stay constant when
A is substituted by A".

' P — 108
¢ st P’ =¢p——— . (4)
Hence - E' = —%aa—’z’ — grad¢’ according to (2),
10 A + orad d( 1 65)
o at( grads) — gra cat)’
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By (3) and (4)

MATG609

,_( 10A d ) d( 10s 185)
=\ "¢ T Erade) merad|— oot oy
=E —grad(0) =E

As a result, we can observe that E and H do not change despite the
changes.

A' = A + grads

, 10s
¢ = c ot

These transformations are known as Gauge Transformations.
Question 1. In case of free space, prove that
0%E = 0 = O?H.

Proof. In case of free space, p = 0.
Now Maxwell's equations for free space are

divE = 0 (1)
divH =0 ..(2)
_ _10H
curl E = - ..(3)
_12e
curl H = o ..(4)

For
J=pu=0u=0
Taking curl in (3),

| curl E = 1 lH = 16(16E> by (4
curl curl E = Catcur =—23:\z3c ) y (4)
or, curl curlE+ingf—0

But graddivE=V?E+ curlcurlE. Then the last
or,

L. 10%E
& grad divE —V°E +— 2502 = 0
or, grad(0) — (V? ——ZE)E 0, by (L).
0—0O%E=0
. . 10 1 0%H
Taking curl in (4), curl curlH—;a—curlE— el

or,

gives

by (3)
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1 0°H
curl curl H + T 0.
But grad div H = V? H + curl curlH
Henc
grad divH — V?H + iaz—H =0
c? 0t?

the last gives

or,
grad(0) — o%H = 0. by (2)
or,
0—o0’H=0
or,
o?H = 0 (6)

Combining (5) and (6),
0%H = 0 = O?E.

14.4 TRANSFORMATION EQUATIONS FOR
DIFFERENTIAL OPERATORS:

Questions2. To prove invariance of D’ Alembert operator @? with
respect to Lorentz transformation.

Or. Prove the invariance of

1 92
- 420

c% at
Proof. Examine at two systems, S and S', where S', ' is moving relative to
S with velocity v in the positive direction of the X-axis. Assume that the
coordinates of an event in S and S'are Let (x,y,z t)and (x’,y',z',t")

respectively.
. - ing=pg2=2. 49 0 120°
D' Alembertain operator in § = 0° = —— + 32 T a7 e

92 + 92 92 1 92

: : o
D' Alembertain operator in §* = 0'* = —— 52 Yo “aaem

Lorentz Transformation are

x' =ﬁ(x—vt),y’=y,z’=z,t’=ﬁ(t—i—§),ﬁ: 1/ <1_v_2>
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Lorentz inverse Transformation are

' , , ' VX ,ovx
X:ﬁ(x—vt),yzy'z =Z't=ﬁ(t_ﬁ);ﬁ= t+c

0 _ 0x 0 dy 0 | 0z 0 gt 0

ox'  dx' dx = 9x'dy = ox' 9z = dx' at
—p9% L9202 Y9 _p(0, v0
_ﬁ6x+00y+062+’8 c2 ot 'B(ax+c20t)0r
0 _ﬁ(@ +v 6)
ax' " \dx c?at

d ox d dy d 0z d 0dt 0
=t =+ ——+
dy’ 0dy'dx 0dy'dy Jy'odz

ay"%
=0—+1-—+0— Oi=i
0 0 0z Jat ady
0 0
dy’ ~ dy
Similarly i
dz' 0z

0 O0x 0 Jdy 0 0z 0 odt 0

0 0 0 0 o 0
=Vﬁa+0@+0£+ﬁa=ﬁ(va+a
0 0 wvad\ 0 0 0 0
Thus’ﬁ=ﬁ(a+ﬁa)’a—y'=@%=£’
0 o 0
at':ﬂ'(”a+a>
0 0 0 0 wvad\y/o0 wva
o e (e G
0x'?  0x'0x dx c?0t/\ox c?0t
0° Jd o0 d 0%
9y? ~ dy'dy’  dydy oy*
0% 0?
Similarly 377 = EP)

d _6 6_ 2( E)_I_E))( 6+6>
acz —avae P \Vaxta/Vax T ae

= p? 262+62+2 i
=B v oz o T Y
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ns—— = st St
c2dt'? c20x?%  c%20t? c¢? o0xot

192 [v*9* 19 2v azl

9% 0 a3 1 92

B2= _ =
x'2 + ayrz + 0z'2 c2ot'2
| et war) @ o
=F ot o T axan dy2 = 0z2

et et o
o 1 172 62 '32 1 172 62 N 62 N 62
=k c?)ox? c? c?)ot?  dy? 0z?
0% 0% 0?2 1 02 5 v?
=ax2+ay2+azz—c—zat2.For,8 1_c_2 = 1.

=|:|2

217262 1 02 21762]

. 0% =npn2
This proves that O? is invariant under Lorentz transformation.
02

02 . . -
+W+_ is not invariant under

aZ
3.2 9z2

Question3. Prove that V2 = —

Lorentz transformation.
Solution. Adding (1), (2) and (3) of Theorem 3, we get
02 02 0?
0'x2 + d'y? + 0'z2

ks +v262+2v 02 +62+62
=F 0x?  c*odt? c?o0xdt| 0y? 0z*

This proves that V2 is not invariant under Lorentz transformation.

Theorem 1. To find Lorentz transformations of electric field E and
magnetic Field component H.

Proof. Let S and S be two systems, where ' is moving with velocity v in
the X-axis's positive direction with respect to S. In the S system, let A,,
Ay, A, be components of A, and in the S’ system, let A,,A,, A, be
components of A. Lorentz transformations state
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v v
Ay =B(A—=0). Ay = Ay, 4, = 4,0 = B (¢ ——As),
172
where f =1/ 1—C—2 .

A being electromagnetic vector potential and ¢ scalar potential.

We obtain
dd = 10A
gradd c ot
i j Kk
H= 1A = 9 9 9 2
SUAT 5% 9y oz (2)
A, A, A,

Lorentz inverse transformations

v
x =Bl +vt)y=y,z=2,t=p('+5x)

V2
= 2-5)

6_(6+v6>t_(6+ 6)
ax P\ax T @at) a0 =P\t T Vax
From (1), we have

Then

d'd — —E 10A’
grad'g’ = c o
or,
g LOA v y
=—Zap & 0] - (1)
ich ! — _ 194 _ 09’
From which E;, = —oy o Of
,  B(o v v
Bo=—c (et a0 p (4= 7)

d d
8 (55 + z250) F (¢~ 45)
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Jd¢p vadA, vc’)qb

1/0A, viA, vip v?ap\+ ( +—
— _p2|= __r_ 77 2
g Ic( ot * ox cot ¢ 6x> 0x cox "c ot

v2 04,
T
— 2 1 vz an vz a¢
=-p2|-(1-5)5 o4
_ 10A, a¢_
¢ Ot ax X
From (1) E,’ = _%%_% or

= (e v 58 (0 70)

~ 104, 0¢ 0A,
—‘ﬂKz?*ay)* (ax ay>l

- (Ey—gH) by (1) and (2).

104, 04’
E}—-—ZE%T—'G,:bY(l)
B0 0 v
-t e gr(0-5a)

B 104, d¢\ v, 04, 0A,
_3[(_2 at _£>+E(_ ox | oz )]

= p[E, +=H,]

From (2), H,' = (ai— 2y ) =2 2y Hy,

ay'’ o0z’ oy 0z
, 04, 0A, d v 0 d vo
Hy’__ax +6z __ﬁ(ax-l_c_z%)A (')Z'B(A _T)

(-2 1%k 2

,_6A’ 6A’ <6+v 6)A 0 (A vgb)
27 9x' Ay’ 'Bax c2at) ay'B c

_ (04, 0A, 104, a¢
—B<W‘ay>+z<zat )ﬁ[” 25

Thus the transformation equations are
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E; =E,E) = (E, —gHz),EZ’ =B |E, + gHy]

Hy = H, Hy = B |H, +§EZ],H; =p|H, - gEy]
The inverse transformations are

E, = E}, B, = B (E,’ +§Hg),Ez =5 (E; —§H§)

H, = Hy,H, = p[H; —gEZ’),HZ = p |H; +§E3’,].

Remark. Take v = (v, 0,0). Then the above transformations can be but in
vector form as

v B
B'=fE+(1=f) 5 (v E) +5 (v x H)
H'=3H+(1—ﬁ):—2(v-ﬂ)—§(vx1§)

and the inverse transformations are

E=BE + (1—3)1]12(\/-13') —g(va’)
v B
H =ﬁH’+(1—ﬁ)v—2(V'H)+z(VXE’)

Theorem 2 : To prove that J#p = pov*
Proof. Suppose a charge of density p moving with velocity v produces a
current of density J.Let a current of density J be produced by a charge of
density p which is moving with velocity v.
Then ] = pv. Letui +vj + wk = v.
Jx = pu,]y = pv,J, = pw.

We define

JE = ey 2 p) = (pu, pv, pw, p)

_ 0 = (dx dy dz )

=pvw. D)=\ G G ar
_ ds (dx dy dz dt)
~Pac\ds'ds’ds " ds
_ds(dx' dx? dx® dx*
~Pac\ds "ds "ds ' ds
Taking p, = p% = proper density of electric charge, we have

or
y_ dx' dx? dx3 dx* B .
JE=po ds ' ds ' ds ' ds ) PV
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J#* = pov* and v# stands for four-dimensional velocity.
Theorem 3. To prove Maxwell's equations are invaria, (covariant)
under Lorentz transformations.

Proof. Step 1. We will first identify the transformation equations for E and

H.
0 wvad\ 0 o 0 0

)
Thus ax’_ﬁ<a+ﬁa)’6_y’_@’az’_a_z’
E.=E_E' = (E aH)E'— (6+v+vH)
x T Hx y_.B y Cz»z_,B ot’ ot Cy:

Hy, = Hy, Hy = § (H +EE)H’—ﬁ(H —EE)

x_x'y_ﬁycz»z_ zcy-
6_(6 176)6_6 6_6 6_ (6 6)
ox Py @ar) oy Tay ez a0 Plar T Vaw
E =E.E =g(E +21),E =g (5 - ZH
x — Lx» y_.g(y'l'z z)' z—ﬁ(z_z y):

H, = H}, H, =ﬁ(H;—§E;,),HZ =ﬁ(H;+§-E;).

Step Il. To prove Maxwell's equations are invariant under Lorentz
transformations.

divE = 4mp ..(1)

divH=0 ..(2)

1 0H
curl E = E% ..(3)
4T .
curlH—;E +—J .. (4)

Cartesian equivalent of these equations are

0E, OE, OE,

0H, aHy J0H, ,
ax+ay+62_0 (27
i j k
0 o] 0 10 /. . ’
el :_ZE(‘H’CJ”HYJFICHZ) ...(3)
E, E, E,
i j k
a d d 10 /. , 4T ’
H, Hy H,

Substituting values in (2",

(6 —£i>H’ + ’ 0 v
dox' c?oat’) ayr(Har/_%EZ') +aZ,(Hé+EE3',)ﬁ=0

Department of Mathematics
Uttarakhand Open University Page 292



Theory of Relativity MAT609

. oHr, . OHy'  8H,'
Takin p=—"= o z
axing ax' ay’ + oz’

_1 0H, OF 0K
¢ at'  dy' 9z
Weget,B[P—%Q] =0

Dividing by 8, we obtain P = %Q (5

N OE; JE 1 0Hy It
From(3),g—a—zy ;¥=0 (33)

Substituting values of E,, E,, H, etc.,

9] v
ay, ﬁ(Ez _E Hy)

i (E”+UH’)+1 (a a)H'—o
az’ﬁ Yoo ? cﬁ ac' Cox) x T

or,
v
Blo—-rp]=0
or,
v
Q=_P
Using (5), we have
_rr
Q=220
or,
1]2
(-5
or

UZ
Q=0, Forl1=—=#0
Using thisin (5), P = 0.
Thus
P=0=0Q
ie.,
0H, N 0H,, N 0H, _
dx'  dy’' 0z’
0E, O0E, 1 0H,
dy’ 0z’

(2"

PRl ...(3'a")

When combined, the equations (2") and ( 2" ) suggest that equation (2) is
invariant with respect to the Lorentz transformation. Equation (3) is
invariant with respect to Lorentz transformation because the equations
(3'a’) and (3'a") taken together imply the equation (3'a’) and
consequently (3"). As a result, we have demonstrated that the Lorentz
transformation does not affect equations (2) and (3). Likewise, we can
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demonstrate that equations (1) and (4), the other two are likewise Lorentz
invariant.
Theorem 4. To prove that the Maxwell equations for empty space are
represented by the two equations
Jr=F
Fue+Fyov+Eguy =0
To derive ""Maxwell’s equation in tensor form.
Proof. A framework for explaining Maxwell's equations in a manner that
complies with physics' principles is offered by the special theory of
relativity. Special relativity describes the behavior of electromagnetic
fields in spacetime, but it does not take into account interactions between
spacetime and electrodynamics in the sense of altering the geometry of
spacetime. The framework used to describe Maxwell's equations is
ds? = —dx? — dy? — dz? + dt?
Holds so that T*;; = 0 = I}
Maxwell's equations for empty space are

divE = p (1)
divH =0 .. (2)
—
curlE = o .. (3)
curlH = -2+, - (4)

Assuming that the speed of light is one. Here, the component 4n is
eliminated from the equations above by using the Heavy Lorentz unit of
change.

Set ] = (O’x, Ty, UZ),]“ = (ax, Ty, az,p)
where p stands for charge density and o,, 0, 0, denote components of
current density.
There are scalar potential ¢p and electromagnetic potential A such that

0A
H = curlA, gradp = ———F

' at
i.e.,
i j k
. . o 0
iH, +jH, + KH, = |5 2y o2 ..(5)
A A, A,
0(iAx+jA,+kA, . .
vp = - WD) (g 4B, 4 KE,) ..(6)
Cartesian equivalent of (3) and (4) are
i j k
d o adf o i+ KH
ox 0y 0z __E(‘ x + JHy +KH,)
E. E, E,
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i j k
a a0 0
ax dy 0z
H, H, H,
We define generalized potential k" as
k" = (A Ay, Ay D)
in terms of ordinary electromagnetic potential A and scalar potential ¢.
The associate covariant vector k,, of k* is defined as
k, = guk' = g, k" For g;; = 0 fori # j

2 . ] . _ ,
- —E(IEX +jE, + KE,) + (io, + jo, + ko,) ...(4)

vl = Guukt
ThlS = k1 = gllkl = _kl, kz = _kz, k3 = _k3
ky = gaak* = k*
Therefore, we must have
k, = (—Ay, =4y, —4,,¢) o (7)
We define an electromagnetic tensor F;; as
Fij =lyj —kj,
This is equivalent to
L I} =0Vi,jand k
ij = ax] axl or l,] an .
This = F;; = —Fj;, F;; = 0 so that Fi =0.
r _0ky 0k, 04, a¢_E by (6
R R A s
_ 2 Ota Y4y U9 _
o = 502~ 022 ot oy Er (O
oks; 0Ok, 0A, 0d¢
R P = Ry TR P A
r _ 0k,  Oks aAy+aAZ_H .
237 9x3 o9x2 9z Ay x by (5).

Oks ki _0(=A;) (=A) _

= - = y, by (5
37 xt 1.3 d0x 0z ()
Similarly F;, = H,.
Thus, we have proved that
Fia = Ex, Fou = Ey»F34 =E,
Fy3 = Hy, F31 = Hy»F12 =H,
Consider the tensor equations
Fl]k+Fk,i+Fki,j =0 (8)
” =] ..(9)
In our frame Work these equations become
FY ’
]l = W (8 )
0F;; O0F; 0F
Uy g, T - (9)

dxk  axt  axJ
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F'2 = ngaﬁgﬁz = 911922F12 = (D (-1)F; = Fp,
F'* = gmngaﬁ = g g*"F1y = (1) (DF14 = —Fa.
The final result is
F'2 = Fi, =H, = _F21'F23 = Fy3 = Hy = —F3y,
F3' = F3 = Ay = —F3
F14 = _F14 = _EX = F41,F24 = _F24 = _Ey = F2
F3% = ——3= —E, = Fy3
L. Putting i=1 in (8")
OFY 9FY QF'? QF QgF“
l=e——= + +—+
ox/J ox1 0x? ét) 0x*
JH, OHy 0E, _

O+ 5, ~ %z "o %
0H, 0H, OE,
dy oz ot %
For i =2, (8")gives
aFZf _
ox/’

dF%1 QF?2 (QF?3 QF?2*
Ox1 + 0x?2 + 0x3 + Ox*

or,
oH, 0H, OE,

0x O+ dz ot

Oy

or,

oH, oH, OE,
9z ox ot T

or,
Fori = 3,.
3

oF J _ 13

dx/J
aF31 aF32 aF33 aF34-
Ox1 + 0x?2 + 0x3 + ox*

oH, 6Hx+ J0E,

ax oy P05 =

]3

or,
0H, 0H, OE,

0x dy Jt

or,
Fori = 4,(8") gives
OF%
_ — 4
dx/J
aF41 aF42 aF43 aF44
ox1 + 0x? + 0x3 + Ox*

=p,
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or,
0, 0E, 0E,  _ N
ox oy "oz TP -+ (1)

Together, the equations (4"), (4™) and (4"") yield (4""). For the equation
(4). Equation 1) is reflected in equation 1.
As a result, equation (8) represents equations (1) and (4).
Takingi =1,j =2,k =3in (9), we get

0F;,  0F;3  0F3

dx3 = dx' = 0x? 0
0H, N 0H, N 0H, 0
0z 0x dy
Div H = 0, which is the equation (2),
Takingi = 1,j =2,k = 4 in (9"), we obtained
dx* + dxt = 0x? =0
or,
0H, N OE, OE, _o
at dx  dy
or,

0E, OE,  0H,

ox 9y ot

Takingi = 2,j =3,k = 4in (9”),we have
ax*  0x?  0x3
0H, O0E, OE,

0

ot T oy oz
0E, 0E,  0H,
dy 0z ot

Takingi = 1,j = 3,k = 4, we have

dx* = dxl  0x3
0H, OE, aE;__O

ot | ax oz

or,
0E, 0E,  0H,

0z 0x ot

The equation (3"), or (3), is represented by the sum of the equations
(3", (3"), and(3").

As a result, (9), represents equations (2) and (3).

Consequently, the Maxwell equations are represented by

Jh= F
Fet Eop+ Fopy =0
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14.5LORENTZ FORCE ON A MOVING CHARGE:-

Question 4.If E and H are the electric and magnetic field intensities
respectively of an electromagnetic field, show that the electromagnetic
force f experienced by a single charged particle carrying a electric charge
e moving with instantaneous velocity V is given by

1
f=e¢e E+E(VXH)

Proof. Let an observer S’ be moving with velocity v along X-axis w.r.t. an
observer S. Let a particle carrying an electric charge e be moving with the
same velocity v along X-axis relative tothe observer S so that

uy =v,u, =0,u, =0
For the observer S', the same particle seems to be at rest.
uy = 0,uy, = 0,u; = 0.
As a result, the field in S” will be entirely electrostatic. therefore

H, =0,H, =0,H, =0

The charge and electric field strength E’(E,’C, Ey, EZ’) will be multiplied to
determine the force F’(Fx’, Fy, FZ’) acting on the charge e in relation to the
cbserver S'.So that

F{ = e'E},F) = ¢'E),F, = ¢'E}
Because the charge e is not affected by the Lorentz translation,
e =e.
Consequently

E = cEy, F, = cE},, F; = cEj.

In system S, the same field seems to be electromagnetic in nature. In
relation to S, the force components are provided by

v2 v2
F,=FLF, = (1—C—Z)Fy'.1«"z = F/ (1 —C—2>

[This follows from Lorentz transformation for a force].

Department of Mathematics
Uttarakhand Open University Page 298



Theory of Relativity MAT609

FE, = cEy, FE, = CcE, / 1—— ,F, = cE, 1——)

or, K, = eEy,F, = ﬁE’ EE’
_ _ep v _e v
or, F, = eEg, Fy, = 2By~ 2H, ), F, = £ (. +2Hy ).

or, F, = ek, F, = e (E, — %) F, = e (E, + ).
In general, the force components are provided by

F=e[E+%(u><H)]
where the velocity of the charge is denoted by u(w,, u,, u,) rather than v
According to the specified issue, we obtain

F=fu=V

so that the last obtains

f— e[E+%(VxH)]

This is the required result.
Note. The force [F per unit volume is obtained by

1 p
F=p[E+E(UXH)]=pE+E(UXH)

Taking the velocity of light to be unity,

F = pE + p(u x H)

i j Kk
iF, +jE, + kB, = p(iE, + JE, + KE,) +p|Ux Uy U
H, H, H,

Since g, = puy, o, = pu, etc.
The last one is therefore equal to the following series of equations:

F.= pEy + (o,H, — 0,H,)
E,= pE, + (0,H, — 0,H,)
F,= pE, + (0,H, — o, H,)
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The rate at which work is being done, let's assume W, is provided by i.e.,

Force X distance )
W= - = Force X velocity
time
= pEyu, + pEyu, + pE,u,
W= p(Exu, + Eyu, + E, - u,)

Because it acts perpendicular to the direction of the current, the magnetic
component of the force is ineffective.

Define
h# = FW]V.
Then h1 = Flv]”

= F11]1 + F12]2 + F13]3 + F14]4
= 0.0 + H,0,, + (—Hyaz) +E.p
= pE, + (H,0, — Hy0,) = F;

Similarly,h, = F,,h; = F,

hy = Fa]V= FaJ' + FaoJ? + F3]? + FuuJ*
=—E, -0, + (—Ey)az + (—E,)o, +0.p
=—(Ex-ax+Ey-ay+aZ-EZ)
= —p(Ex-ux+Ey-uy+EZ-uz) =-W

It is obvious from what has been done that
hy = Fn]" = (Fx'Fy'Fz'_W)

146ELECTROMAGNETIC ENERGY
MOMENTUM TENSOR:-

Question 5.To prove E} = —F*Fj, + %fl‘iFkl-F""
or

. . 1 .
T, = —FkFy + ZS{F“”F“,;

Proof. The line element is taken into consideration here.

ds? = —y? —dy? —dz? + dt?
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In order for each covariant derivative to decrease to its matching partial
derivative.

The following relations must be used in order to explicitly calculate the
value of the electromagnetic energy momentum tensor T,.":

K+ =A,,A), A, ¢ (1)
‘where A and ¢ are vector potential and scalar potential
Fij - Ki,j - I(j,i (2)
where F;; is field tensor and is antisymmetric
= gl 2 2
Ji=F] = — .. (3)
where J¢ is current vector.
_ aFi' aF'k aFki _
Fij,k + P}'k,i + Fki,j —_ ax,i + axji +W — 0 (4‘)
h, = E,v' ..(5)
d (5), hy = FpJ¥ = Ey FYo = E,, 2
BY( 3)31’1 ( )' u = F;w] = Fqua = F/,n/ax_g-

The electromagnetic energy momentum tensor is defined.

T) ash, =T}, .. (6)
aFVO'
TIXV = FI»WW (7)

This differential equation's solution is
1
T) = —F""F, + 6F%Fp  ..(8)

To verify this, we take into account the divergence of both sides, taking
into account that covariant differentiation obeys the normal distributive
law and that &,; is current.

1
TIXV = _(F,?//O—F/LO' + FVUF/LU,‘U) + Z(Sﬁ(FaﬁFaﬂ,‘V + Fa[;P:gﬁ)
Using the fact A,z B* = A*f Bz, we have

L vo af 1 vpaf
TV, = —(FY°F,s + F Fuﬁ,a)+§5u1~" Fapy

vo 1 af 1 La 1 af
= e = 5 F P upa =5 F™ Fuap + 5 FapuF
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1
= —hFy? + EFQB(Faﬁ.u + Fgpa + Fuap)

[ as F*F = —FFa, Fio = - au]
= F,-F7" + 0, by virtue of (4)
= F,;'° = hy, by (3) and (5)

or, h, = T, which is true by virtue of (5).
Hence the solution (8) is a correct solution of (7).

147 LAW OF GRAVITATIONAL IN
ELECTROMEGNETIC FIELD:-

Question 6.To derive field equations in electromagnetic field.
Proof. In terms of the field tensor F;;, the electromagnetic energy

momentum tensor is defined as
with

, . 1 .
T! = —Fj F' + Za;FaﬁFaﬁ
TY = g¥9Tiand T = T}
Here, some writers substitute the signE % for T,

. 1
T=T} = —F;,F'* + 1551*}3}’“”

pa o 1 ap
= ~FpaFP® + L 4F 5F (D)

T= 0.[i.e., Trace of encrgy momentum tensor = 0]
The field equations are obtain by

1
From WhiCh, 'gURU —%Rgl]gl] = —87TTUgU
or, R— %R4 = —8nT
or, —R = —8nT = —8m(0) = 0, by (2)
or, —R=00rR=0.
Using this in (2), R;; = —8nTy;.

This is the required formulation for field equations in electrodynamics.

14.8 ENERGY AND MOMENTUM OF THE
ELECTRO-MAGNETIC FIELD:-

The rate at which forces are performing work W is determined by
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dW  Force X distance

= Force X velocity

dt time
= pEyuy + pE, - u,, + pE, - u,
as work = Froce x distance
or,
dw

= pE W o puE=JE
- -dt—p.uor, dt—pu —].-. - o
Since the magnetic part of the force does not work as it acts in a direction

perpendicular to the direction of current. Also, current density

Therefore, the rate of work in a sp]ac_e \//)vlllth a fixed volume is given by
Gil—vf = f]. Edv .. (1)
By Maxwell's equations,
curl E = —%Z—l: .. (2)
curl B =224+ - (3)
BY (3) curl H =225 4+ 27

With the Heavy Lorentz change unit, we obtain

J 10E L
o= curl H———" ( Now the factor 4 is disappeared )

c ot
or,
E—( | H aE)IE ]I-]I( 1E+6H)
J = | ccur T cur T
or,
Ji 10E .
o= curl H — o ( Now the factor 4 is disappeared )
or,
E—( 1H 6E> E—-—H ( l[E+aH>
J = | ccur T ccur T
Ji oE o
o= curl H — vl ( Now the factor 4 is disappeared )
or,
E—( 1H aE)E H ( 1E+6H>
] = | ccur T ccur T
or,
aw f 0 (E*+ H? p
dt ot 2 v
(H.curl E — E.curl H)dv
or,

dw  d ((E*+H?
E__Ef<7>dv_cf[EXH]"ds . (4)
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Where n denotes outward normal component and [E x H],, denotes
normal component of the vector in E x H.
And

div(E X H) = H.curlE — E.curl H

jdiv(E X H)dV = f n. (E X H)ds

The rate of energy change in the electromagnetic field inside the volume
under consideration is the first term on R.H.S. of (4). The rate at which
energy flows over this volume's surface is the second term in R.H.S. of
(4). Consequently, we can take

1
> (E? + H?)= density of electromagnetic energy,

c(E X H)= density of energy flow.
ExH ExH .
or, Wecanuse g = ¢ (T) = as the density of momentum and p =
i(E2+H2
CZ

c2

) as the density of electromagnetic mass.

14.9 ELECTROMAGNETIC STRESS:-

We know that the Maxwell's equations are

divE=p ..(1)

divH =0 - (2)
10H

curl E 1—6E— Y (3)
—19%, pu

curl H = vl s .. (4)

In this case, the component 47 is eliminated by using the Heavy Lorentz
unit of change. The momentum’s density g is determined by

g ==(ExH) ..(5)
According to the theorem, the Lorentz force F acting on an electric charge
e moving at velocity u is F = {E + % (ux H)} e.
The force F per unit volume is written by

1
F=p{E+E(uxH)} (6)
If G is the charged particle's momentum, the rate at which the

electromagnetic field charges it is determined by
dG 1
Eszdvzfp[E+z(uxH)]dv

where the integral is taken over a fixed volume in the space
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dG—f[ E+1 xH]d

dt p Cpu v
10E

=f [EdiVE+ (curlH———) XH] dv
c ot

[This follows from (1) and (4)]
or, % = [ [{EdivE + (curlH) x H} - 2{2 (E x H) — E x 2} | v
= j [{EdivE + (curlH) x H} — % + %E X E] dv, by (5)

9
_ f [{EdivE + (curlH) x H} — a—f _Ex curlE] dv, by (5)

Or == [EleE + {(curlH) X H + (curlE) x E ] .. (6)
Wr|t|ng the x-component of this equation,

d
Izax(Ez—Ez EZZ+H§—H§—HZZ)+£(ExEy + H H,) +

2 (Ex B, + HeHy) — 22| dv (7
If we now categorize the electromagnetic field's stress components as
1
Dii = _E(Eiz — Ef —E; +H} —H — H)

—(E:E; + H;H;)
then (7) can be expressed as

dﬂ — fff (apxx agxy + apxz) dxdydz

or,

dGy 0gx _ apxx Opyx 0Dxz
—=+ ———fff( ay+ )dxdydz

Question 7: Calculate T]-l in terms of E and H.
Solution.We know that
T! = —F;oF“ +46]Fa Fab (1)
Fa[)’ = _Fﬁa'F14 =Ey, Fou = Ey» F3y = E,
Fy3 = Hy,F31 = Hy, F1, = H,
F1? = Fip, F13 = Fi3, F32 = Fy3
F'% = —F4, F?* = —Fp, F?* = —F3,
In accordance with (1),
T_i
' 1
T} = —F;oF'“ +ZFaBF“B fori+j  ..(3)
FaBF“B = 2(FuF12 + F|3F13 + F{,F' + F,3F?3 + F,,F?* + F3%F;,)
+(F 1 F1 + FyF?2 4 F33F33 + Fy F*)

= —F;o,F'* For i # j . (2)
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=2(F12F12 +F13F13_F14F14+F23F23_F24F24
=2(H? + H} —E2+ H? —E:—E2) ..(4)
=2{(H2 + H2 + HZ?) — (E2 + E2 + E2)}
1 1
7 «pF = E({H’% + H2 + H2) — (E2 + E2 + E2)}
From (3), T{ = —FyF1% + - F,pF

1 )
T? = —F,,F** + ZFaﬁF“ﬁ

~—

1
T3 = —F3,F3% + ZFaﬁF“ﬁ . (5)

1
Ti = —Fy o F* + ZFaﬁF“ﬁ )

FlaFm: F11F11 + F12F2

=0+ FipF; + Fi3F13 — FiaF,

= HZ2 + H; - E,%

FZaF2“=F21F21 + F22F22 + F23F23 + F24F24
= F1Fy1 + 0+ Fy3Fy3 — FouFyy

= HZ2 + H,% - E;

Fgana = F31F31 + F32F32 + F33F33 + F34F24

= F31F31 + F3,F35 + 0 — F3,F3,

= H; + H} — EZ

FyoF* =F, F*' + F,,F*2 + F,3F*3 + F, F*

= —Fy1F41 — FypFy — Fi3E43 +0

= —(EZ +EZ +EZ)
With these values (5), they become
T} =(— HZ + HE — E2) + - [(HZ — HZ + HZ) — (E} + E} — E2)]
1
= - (E? + E; — EZ) + (H} — H} — H})

1
T? = —F,,F?% + ZFaﬁF“ﬁ

= —(H2 + HZ — E2) + - {(H? + HZ + H2) —(E} + E} — E2)}
1
=S [(E5 — B2 — EZ) + (M — H} — H})]
1
T3 = ;FgaF” + ZFaﬁF“ﬁ
= (3 + HE — B2) + 3 (82 + 3 + 1) — (B2 + 53 + E2)

1
= {(B2 B2~ E2) + (2 = H2 — 1)
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1
T} = —F, F** + ZFaﬁF“B
= (E2 + E2 + E2)
1
+ E{(H,% + H2 + HZ) — (E2 + EZ + E2)}

1
= E{(H,% +HZ + HZ) — (E2 + E2 + E2)}

From (2), T = —F,, F®

= —(Fy, F11 + F,,F12 4 F,,F13 + F,,F1%)

= —(0+ OF' + Fy3F;3 — F24F14)

= —(0+0 — HeH, — EyEy) = HeHy, + E,E,
Similarly, T{ = H,H,, + E,E,
TH=—FioF** = —(F;,F*" + F1,F* + Fi3F*% + F F*)

= —(0 — FpFy — Fi3Fy43 + 0)
= —[H,E, + H,(=E,)| = H,E, - E,H,
Ti=—FyoF'* = —[Fy F'' + FyuF ' + FiaF' + Fy, F'4]
= —(0 + FjoFy; + FysFi3 + 0) = —(—EyH, + E,H,)
1 = E,H, — H)E, = —T¢

Thus T} = ~[(E? — Ej — EZ) + (HZ — H} — HZ)]

1

13 = 5(B} — B2 — E2) + (Hj — HZ — HZ)]
1

13 = [(EF — B — EZ) + (H} — Hj — HE)]

1
T = S{(E2 + E} + EZ) + (H + H} + H})}
T} =T = H H,, + ELE,
T} = —T{ = E,H, — H/E,
The electromagnetic field's energy is represented by T;*. Momentum is
represented by T
The field's stresses are represented by T} and T, among others. The

formulas in each of these situations match those found in the classical
theory.

14.10 GRAVITATIONAL FIELD DUE TO AN
ELECTRON OR CHARGED PARTICLE:-

Theorum 4: To obtain the gravitational field of an electron (on
charged particle) and show that the gravitational effect of the
electronic energy is very slight.
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Proof. Consider a charged particle at rest at its origin, such as an electron.
It is expected that this electron produces a spherically symmetric field.
The line element that satisfies the spherical symmetry criterion is provided

by
s? = —e*dr? —r?(d6? + sin? 8d¢p?) + eVdt? (1)
where A and v are functions of r only such that
A=0=vatr = .

We assume that the field is ungquestionably electrostatic. As a result of that
H,,H,, H, = 0. . (2)
Since
K, = (-4, -4, -4, ¢)

oK, 0K,
Fior = K = Ko = G20~

H = curlA.
In view of this, (2)

= Ay Ay A, =0 :
For, vanishing electromagnetic vector potential implies vanishing
magnetic field intensity.

The aforementioned arguments demonstrate that ¢ is just a function of r,
that is,

a¢_0_a¢
90  0¢
_ 0K, 0K, 0A, d¢p __ 03¢
% ot or ot or or
0K, 0K, 04, 9¢
b= =35 "9 =070=0
_0K; 0K, 04, 0¢ _ _
F34_6t_6¢__6t_6¢_0_0_0

(2) can be expressed as
Fp3,F31,F1 =0
Thus we have proves that

Fi2,Fy3, F31, F24,F34 = 0 and Fyy = —0¢ /Or.
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This indicatesF,, is the sole non-vanishing component of F;;. Give this
fact the designation (*).

F1* = Fopg'®g* = g''g**Fiy = —e™*e™V(=0¢ /0T)

= e_(/1+v)a£
or
g = —eM*V . risin? § = |gij| = 911922933944
J(=g) = e?*/2¢25in g
JH=F",v = F L Feor 4 puary
’ dxV av av
OF‘“’ 9] OFHY
ppe +O+F“aa—log,/( 9 =75 +F“V (-9)
aF‘“’ F¥ 0,/(-9)
/( g oxv
or,
[F®TL, = —Fvers,.For F¥® is antisymmetric. |
| —Fvert ForTH =TH | )
| —F®r! by interchanging aand v. |
| or, ZFa”F,fv =0,or FTE =0, |
From (3),
ot = (g ‘W)— - (Vg)F*)
(—9)p = —(\/( —gF*)
gives

to the state when there is no charge or current other than at the origin

Hence the last gives
or,
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a 41 ) —
—JCF*) =0
0

_ [_e(/1+v)/2rzsin0 . e—(/1+v) ai] =0
ar ar

Dividing by —sin 6,

i [TZe—(/1+v)/2 ai] =0.
or or
Integrating, we get e~(V¥V)/2. 2 .‘Z};ﬁ

absolute constant.

= const. = ¢ (say), € being an

Then

00 _ £ w2
or r?

a¢ ceAtv)/2

F,=——=—
14 or T2
_ 9P _ € _(a+v)/2
This = F14 = ¢ *"5r32° '

At a great distance from the attracting particle, g,, = 1 + Zc—lf where v is
the Newtonian potential, occurs when the field is weak and static.

4me? m  2me?

=1+21pifc=10r1p=—7+

This gives 1 — sz +

r2 r2

2

_ 0y m  4me
force == a2
If m = 0, then the last obtains

4me?
= ——5—, Le, force x —
r r

This is not possible.

Consequently, m cannot be zero. In this case, we designate 4me as the
electron's charge and m as its associated mass.

For an electron of mass m,
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m=—7x10"%cm.
2me?

a= =1.5%x10"2cm
It is assumed that this number, a, is on the order of the electron's radius
magnitude. At all locations outside the electron, ? is at least 10740,

As a result, we may observe that the electrical energy's gravitational
influence is minimal.
SELF CHECK QUESTIONS

1. Write down Maxwell's equations and explain their physical
significance.

2. Derive the electromagnetic wave equation from Maxwell's
equations.

3. Discuss the mathematical formulation of electrodynamics,
including Maxwell's equations and the electromagnetic wave
equation.

4. Obtain the gravitational field of a stationary electron in vacuum.

14.11SUMMARY: -

In this unit, we discussed several important concepts in electrodynamics,
including Gauge Transformation, Transformation Equations for
Differential Operators, Maxwell’s Equations, Lorentz Force on a Moving
Charge, and the Electromagnetic Energy-Momentum Tensor. A Gauge
Transformation refers to a change in the scalar and vector potentials that
leaves the physical electric and magnetic fields unchanged, reflecting a
fundamental symmetry of electromagnetism. The Transformation
Equations for Differential Operators explain how mathematical operations
like gradient, divergence, and curl behave under changes of coordinates,
which is crucial for expressing physical laws consistently across different
reference frames. Maxwell’s Equations are a set of four differential
equations that govern the behavior of electric and magnetic fields, their
sources, and how they propagate through space. The Lorentz Force
describes the force experienced by a charged particle when moving in the
presence of electric and magnetic fields, combining both fields into a
single expression. Finally, the Electromagnetic Energy-Momentum Tensor
provides a compact and powerful way to describe the density and flow of
energy and momentum carried by electromagnetic fields, playing a central
role in the interaction between fields and matter, especially in the context
of special relativity.

14.12GLOSSARY :-
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e Electric fields (f) A vector field representing the force per unit
charge exerted on a stationary test charge.

e Magnetic fields (ﬁ) . A vector field representing the force per
unit charge exerted on a moving charge; it arises due to moving
charges (currents).

e Maxwell’s Equations: Four fundamental equations that describe
how electric and magnetic fields are generated and altered by
charges and currents.

e Gauge Transformation: A method of changing the potentials
(¢, A) without affecting the physical electric and magnetic fields.

e Lorentz Force: The total force on a charged particle moving
through electric and magnetic fields, given by F = q(E + © x B).

e Vector Potential (Z)A vector field whose curl gives the magnetic
field, B = V x (4) .

e Scalar Potential (¢): A scalar field whose negative gradient gives
the electric field in electrostatics, E = —V¢ .

e Transformation Equations for Differential Operators: Rules
describing how operators like gradient, divergence, and curl
change under coordinate transformations.

e Electromagnetic Waves: Oscillating electric and magnetic fields
that propagate through space, predicted by Maxwell’s equations.

e Poynting Vector (f): A vector representing the directional energy
flux (the rate of energy transfer per unit area) of an

electromagnetic field, S=Ex uﬂ.
0

e Electromagnetic Energy-Momentum Tensor: A tensor that
describes the distribution of energy, momentum, and stress in
electromagnetic fields.

e Continuity Equation: A mathematical expression of the
conservation of electric charge.

e Displacement Current: A term added by Maxwell to Ampére’s
law, accounting for a changing electric field as a source of the
magnetic field.

e Boundary Conditions: Conditions that electric and magnetic
fields must satisfy at the interface between different materials.

e Retarded Potentials: Solutions for the potentials that take into
account the finite speed of light, representing the fields at a point
due to earlier positions of the sources.

14.13REFERENCES: -

e Robert J. A. Lambourne (2010). Relativity, Gravitation and
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e Michel Janssen and Christoph Lehner (2014), The Cambridge
Companion to Einstein.
e Asghar Qadir (2020), Einstein's General Theory of Relativity.

14.14SUGGESTED READING: -

e S.P.Puri (2013), General Theory of relativity.

e Farook Rahman (2021), The General Theory of Relativity: A
Mathematical Approach

e Goyal and Gupta (1975), Theory of Relativity.

e R.K.Pathria (2003), Theory of Relativity.

14.15 TERMINAL QUESTIONS: -

(TQ-1). Derive the electromagnetic wave equation from Maxwell's
equations and explain its physical significance.

(TQ-2). Discuss the mathematical formulation of electrodynamics,
including the role of vector calculus and differential equations.

(TQ-3). Explain how Maxwell's equations describe the behavior of
electric and magnetic fields.

(TQ-4). Discuss the application of electrodynamics in the design of
electrical systems, such as power transmission lines or antennas.

(TQ-5).Explain how electrodynamics is used in medical imaging
techniques, such as MRI.

(TQ-6). Establish the invariance of Maxwell’s field equations inn
different spaces moving with uniform relative velocity.

(TQ-7). Derive the gravitational field of an electron.
(TQ-8). To prove Ef = —F*Fj, + %fjiijF"i
or

, . 1 .
T] = —F/¥Fy + Z5{1?04”1«"0(,,)

(TQ-9). To prove that the Maxwell equations for empty space are
represented by the two equations
J*=F
Fret EoptEguy=0
(TQ-10). Prove Maxwell's equations are invariant under Lorentz
transformations.
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92 | a2 | a? . N
(TQ-11). Prove that V= —— + 32 T 552 18 ot invariant under Lorentz
transformation.
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