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COURSE INFORMATION

The present self-learning material “Mathematical Methods” has

been designed for M.Sc. (Second Semester) learners of Uttarakhand Open
University, Haldwani. This course is divided into 14 units of study. This
Self Learning Material is a mixture of Four Block.

First block is Fourier series, in this block Fourier series,
Generalized Fourier series, Fourier Cosine series, Fourier Sine series,
Fourier integral, Fourier transform and inverse Fourier Transform defined
clearly.

Second block is Integral transform, in this block Laplace
transform, convolution theorem and inverse Laplace transform and
application in solving differential equation defined clearly.

Third block is Integral equations, in this block Volterra integral
equations, Fredholm integral equations, Volterra and Fredholm equations
of first and second kind, Volterra and Fredholm equations with regular
kernels. Degenerate kernel, Fredholm Theorem, Method of Successive
approximation. Concept and calculation of Green's function, Approximate

Green's function, modified Green’s function, Green's function method for

differential equations, Green's function in integral equations are defined.

Fourth block is Calculus of Variation, in this block concept of
extrema of a functional, variation and its properties. Variational problems
with fixed boundaries, The Euler equation, The fundamental lemma of
calculus of variations. Variational problems with moving boundaries,
Sufficient conditions for an extremum, Field of extremals, Jacobi
conditions, Legendre Condition, Rayleigh- Ritz method, Galerkin’s methos
are defined.

Adequate number of illustrative examples and exercises have also been

included to enable the leaners to grasp the subject easily.
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UNIT 1: FOURIER SERIES 1

CONTENTS
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1.4 Fourier series
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1.7 Summary
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1.1 INTRODUCTION

A Fourier series is an expansion of a periodic function f(x) in terms

of an infinite sum of sines and cosines. Fourier Series makes use of the
orthogonality relationships of the sine and cosine functions. Baron Jean
Baptiste Joseph Fourier (1768—1830) first introduced the idea that any
periodic function can be represented by a series of sines & cosines waves
in 1828. A periodic signal is just a signal that repeats its pattern at some
period. The primary reason that we use Fourier series is that we can better

analyse a signal in another domain rather in the original domain.

Fig.1.1.
Ref
https://en.wikipedia.org/wiki/F
ile:Fourier2 - restorationl.jpg

g

Jean Baptite Joseph e (1766183

1.2 OBJECTIVE

At the end of this topic learner will be able to understand:

(1)  Periodic Function

(i)  Even and odd functions
(iii)  Euler’s Formulae

(iv) Fourier Series

(v) Dirichlet’s conditions

1.3 PERIODIC FUNCTION

A function f(x) which satisfies the relation f(x + T) = f(x) for all real x

and some fixed T is called a periodic function. The smallest positive

number T, for which this relation holds is called the period of f(x).

If T is the period of f(x),

Department of Mathematics
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then f(x) =f(x + T) =f(x +2T) = ... = f(x + nT) =
Also f(x)=1fx-T)=f(x-2T)=.....

~ f(x) = f(x £ nT), where n is a positive integer.
Thus, f(x) repeats itself after periods of T.

For example, sinx, cosx, secx and cosecx are periodic functions with

periodic functions with period 2.

sin(@ +m) _—sinf
cos(f+m) —cosO

Since tan (6 + ) = =tan@

cos(+m) —cosO
And cot (0 +m)= SO+ m)  —smd cotéd.

Therefore tan @ and cot 8 are periodic functions with period 7.
The function sin nx and cos nxare periodic with period 27” .

Note: 1. The sum of a number of periodic functions is also periodic.
2. 1f Ty and T are the periods of f(x) and g(x), then the period of a
f(x) + b g(x) is the least common multiple of T and T>.

For Example: cosx, cos2x and cos3x are periodic functions with periods

2m , w and 2?” respectively.

- f(x) = cosx + % cos2x + g cos3x is also periodic with periodc with period

21, the L.C.M. of 2, 7 and 2?” .

1.4 FOURIER SERIES

Expansion of a function f(x) in a series of sines and cosines of

multiples of x was developed by French Mathematician and physicist
Jacques Fourier. We have seen how a function can be expanded in power
of x by Maclaurin’s theorem but that expansion was possible only when
the function and its derivatives are continuous. A need arises to expand

functions which have discontinuities in their values or derivatives.

Department of Mathematics
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By Fourier series, we can expand both type of functions under certain
conditions as an infinite series of sines and cosines of x and its integral

multiples.

Fourier series for the function f(x) in the interval ¢ <x <c + 2 is given

by f(x) = % + ) a, cosnx + Yo b, sinnx

where a, :% fcc T () dx

1fc+27r

n =~ f(x) cosnx dx

Cc

b, =+

- IN " 27Tf(x) sinnx dx

Cc

Above formulae are also called Euler’s formulae. Constants a, , a,, and

b,, are called Fourier coefficients of f(x).

Note: To determine a, , a,, and b,, , we shall use the following results

(m and n are integers).

c+2m ., - cosnx ¢+ 27
J. smnxde( - ) =0,n+# 0 and
c

sinnx

2 c+2m
fCanosnxdx:( ) =0,n#0
c

c+2m .
) sinmx cosnx dx =0, m # n

V3
cosmx cosnxdx =0, m#n

fC + 2
Cc+2m . .
V. [ sinmx sinnx dx =0, m # n
2
2

V. fC +

T c+2m
. cos’nxdx=m,n+0; fc sinnxdx=m,n# 0

VL. fcc T2 sinnx cosnx dx =0,n % 0
ax gj — " sinbx —
VIL [ e®sinbx dx =—— (asinbx — b cosbx) + ¢
ax _ 0 .
VL [ e® cosbx dx =—— (acosbx + b sinbx) +
IX. Sinnm=0andcosnt = (—1)"

X. Even and odd functions

Department of Mathematics
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A function f(x) is said to be even if f(-x) = f(x). for example x* , cosx, sin’x
are even functions.
The graph of an even function is symmetrical about the y-axis.

Here y-axis is a mirror for the reflection of the curve.

f_if(x)dx =2 fonf(x)dx

Graphs of even functions
A function f(x) is said to be odd if f(-x) = - f{x). for example x° , sinx , tan’x are odd functions.

The graph of an odd function is symmetrical about the origin.

SF fG)dx =0

f
/
/
-

—a o

Graphs of odd functions
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1.5 EULER’S FORMULAE

The Fourier series for the function f(x) in the interval c <x <c +

2 is given by
fix) = % + )0 a, cosnx + Y2, b, sinnx

in finding the coefficients a,, a, and b,, , we assume that the series on
the right hand side of the equation (i) is uniformly convergent for ¢ <x <

¢ + 2m and it can be integrated term by term in the given interval.

To find a , integrate both sides of (1) w.r.t. x between the limits c to ¢ +

2m.
fcc " 27tf(x) dx = %f: I dx + f: ' Zn( Yns1 @y cosSnx ) dx

+ fcc T Yoy by sinnx) dx

=%(c+2n—c)+0+0 (BynoteI)

=4dy

ag == [7"" f(x) dx

To find a, , multiply both sides of (1) by cosnx and integrate w.r.t. x

between the limits ¢ to ¢ + 2.

c+2m _ag (Cc+2m
J;" 7 f&) cosnx dx =2 [ cosnx dx

2
+ fcc TA(Y%., a, cosnx ) cosnx dx

fC+2TL'

(X1 by sinnx ) cosnx dx

=0+a,mr+0

=an,m

fc+21t

a, =i . f(x) cosnx dx

To find b,, , multiply both sides of (1) by sinnx and integrate w.r.t. x

between the limits ¢ to ¢ + 2.

Department of Mathematics
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fc+27'[ + 2

f(x) sinnx dx = % fcc " sinnx dx

C

2 .
+ fcc TEN(Y%.  a, cosnx ) sinnx dx

+J; FA(ye b, sinnx) sinnx dx
=0+0+b,m

=b,m

b, = i fcc " 2ﬂf(x) sinnx dx

Note: These values of a, , a,, and b,, are called Euler’s formulae.

Corollary 1. If c = 0, the interval becomes 0 < x < 2w, and the formulae

reduce to

a, :i fOZ”f(x) dx, a, :% foznf(x) cosnx dx and

b, :i foznf(x) sinnx dx

Corollary 2. If ¢ = - , the interval becomes — m <x <1, and the formulae

reduce to

ap = % ffnf(x) dx, a, ziffnf(x) cosnx dx and

b, = % f_nnf(x) sinnx dx
. . 1w B
Corollary 3. When f(x) is odd function then a, = - f_n f(x)dx=0
Since cosnx is an even function, therefore f(x) cosnx is an odd function.
1 rm
ap == J_ f(x) cosnx dx =0
Since sinnx is an odd function, therefore f(x) sinnx is an even function.

b, = % f_nnf(x) sinnx dx = % fonf(x) sinnx dx

Department of Mathematics
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Hence, if a periodic function f(x) is odd, its Fourier expansion contains
only sine terms.

ie., fix) = ¥, b, sin nx, where b, =% fonf(x) sinnx dx
Corollary 4. When f(x) is an even function then
ag == " ) dx =2 [ f(x) dx

Since cosnx is an even function, therefore f(x) cosnx is an even function.

1 pmT 2 T
ap = - f_nf(x) cosnx dx ==~ fo f(x) cosnx dx

Since sinnx is an odd function, therefore f(x) sinnx is an odd function.
b. = 1 , dx =
N —;f_nf(x) sinnx dx =0

Hence, if a periodic function f(x) is even, its Fourier expansion
contains only cosine terms.

ie, f(x)= % + X5, a, cosnx, where a, :% fonf(x) dx and

a, :% fonf(x) cosnx dx .

1.6 DIRICHLET’S CONDITIONS

The sufficient conditions for the uniform convergence of a Fourier series
are called Dirichlet’s conditions. All the functions that normally arise in
engineering problems satisfy these conditions and hence they can be

expressed as a Fourier series.

Any function f(x) can be expressed as a Fourier series
a .
70 + Yo, apcosnx + XX b, sinnx where a,,a,,b, are constants

provided

(i) f(x) is periodic, single valued and finite.
(i) f(x) has finite number of finite discontinuities in any one period.

(iii)  F(x) has a finite number of maxima and minima.

Department of Mathematics
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(iv)  When these conditions are satisfied, the fourier series converges to
f(x) at every point of continuity. At a point of discontinuity, the
sum of the series is equal to the mean of the limits on the right

and left
ie. ~[fGx+0) + f(x—0)]

where f(x + 0) and f(x — 0) denotes the limit on the right and

the limit on the left respectively.

ILLUSTRATIVE EXAMPLES

Example 1. Obtain the fourier series to represent f(x) = i (m — x)? in the

mterval 0 < x < 2.

Hence obtain the following relations:

(i)

(i)

(iii)

Sol. Let f(x) = % (m—x)%= % + Yo a, cosnx + 3 by, sinnx

. (1)

By Euler’s formulae, we have

1 p2m 1 2m1 s 4 1 [@=x)3]*"
ao—;fo f(x)dx—;fo S(m—x)?dx=—|"— ]0

2

=-—[-n3—n%]="and

121 6

a, :% foznf(x) cosnx dx :% fozn% (r — x)? cosnx dx

1 o sinnx 2m 2m sinnx
E[{(n—x) . }o + [y 2(m—x) dx

n

_c(;snx)}zﬂ _ fOZn(_l) (—cosnx) dx]

n

-1

1
5z (-1 — m) =—and

Department of Mathematics
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=% f f(x) sinnx dx == fzn L = x)? sinnx dx

:in[ (7 — x)? COsnx} _ J‘27r2(7_[_ )co:lnx dx]

iﬁ [( i —) — —fzn(n x)cosnx dx]

n

; 2 ,
_ {(Tl’ _ )sw;nx}o” _ f027r(_1) str;nx d

2‘]'[

__~1 (—cosnx)znzo

2
2mn n 0

2
cosnx T cosx cos2x cos3x
+ +

f(x)_—+z S

12 12 22 32
(i) putting x = 0 in equation (2), we get

n? 1 1 1 1
Tttt )

EEN U S |

i e A

71'2
—_ — =
6

(ii) putting x = 7 in equation (2), we get

)+ 2+ 2+ ]

Hence the results.

-X

Example 2. Obtain the Fourier series to represent f(x) = e ™ in the

interval 0< x < 2.

Department of Mathematics
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Sol. Let flx)=e™* = % + Yo a, cosnx + 32, b, sinnx

. (D)

—2T

1 21 1 p2m  _ 1 B 1—e
Here,aq =1 J)" f00) dx =2 [T e dw =2 [e I =

2 2
ap =i fonf(x) cosnx dx =i Jy " e *cosnx dx

2

1[e™™ , 1- e 27
== [ 5 (—cosnx + nsmnx)] =
mli+n 0 n(1+ n*4)

2 . 2 ,
b, :i Jy " f(x) sinnx dx :i Jy " e *sinnx dx

1[e™ . 2m
== [ (—sinn — ncosnx)]

1t L1+ n? 0 "1+ n?

1- e~ 27 -2 cosnx 1—e” 2T nsinnx
. — =X _ 0 o
o f(x) —e X = +

27 7o n=144 n2 70 n=1 414 p2 -

Example 3. Expand f(x) = x sinx, 0< x < 27 as a Fourier series.

Sol. Let f(x) = x sinx = % + Yo, a, cosnx + X2, b, sinnx
By Euler’s formulae, we have
ag :% fOZﬂf(x) dx :% fozn xsinx dx

:% [x(—cosx) — 1(—sinx)]5" :% [-2m] =-2

1

21 1 21 . 1
ap — J, fGcosnxdx = — [ xsinxcosnxdx = -

fozn x(2cosnx sinx) dx

- i foznx[sin(n +1)x —sin(n — 1) x] dx

_1 [x {_ cos(n+1)x+

21 n+1 n-1

cos(n—-1)x _ _sin(n+1)x sin(n—-1)x ]2"
J-1t },

(n+1)2 (n—1)2

. cos2(n+1)m n cos2(n-1)m }]
n+1 n-1

Department of Mathematics
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When n= 1, we have

1 2w , 1 r2m ,
a; =— [ xsinx cosx dx = [ xsin2x dx

cos2x sin2x
o) g (-

2 4

2 . 2 . .
b, :i Jy " £ (x) sinnx dx :i Jy " x sinx sinnx dx

1 21 . .
= fo x(2sinnx sinx) dx

— i fOan [cos(n — 1) x — cos(n + 1) x]dx

1 [X {_ sin(n-Dx sin(n+1)x} _1 {_ cos(n-1)x + cos(n+1)x}] 2n
0

21 n-1 n+1 (n-1)2 (n+1)2

1 [cos 2(n-Dm cos2(n+1)m 1 1 ]

21 (n—-1)2 (n+1)2 (n-1)2 (n+1)2

1[1 1 1 1

]ZQn¢1

amlin-12 4?2 (=12 | (n+1)?

Ehenn =1, we have

1 /2r . . 1 r2m
b, = Jy xsinx sinx dx =— Jy x(1 = cos2x) dx

21

:i[x (x_ sir;Zx)_ 1(%2+ cos2x )]0

2T 4

1
2T

2
[271(27'[)—4%— %+ %]Zi(an)zrr

a . .
~Af(x) = 70 +a;cosx + bysinx + Y-, a, cosnx + Y2, b, sinnx

. 1 . o 2
=-1— - cosx + 7 sinx + anzmcosnx )

Example 4. Find the Fourier series for the function f(x) = x + x*, - T <x <.
Hence show that

Department of Mathematics
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(1
(ii)
Sol. Let the Fourier series be

fix)=x+x*= % + X a, cosnx + X, b, sinnx

Here, a, :% f_nn(x + x2) dx :i [f_nnx dx + % f_nnxzdx]

2 s 2 2 2
== |"x*dx==m
‘rth 3

a, :i f_nn(x + x2) cosnx dx

:i [f_nnx cosnx dx + f_nn x2cosnx dx| = % f_nn x2 cosnx dx

2 sinnx\ " T sinnx
== [(xz —) — | 2x. dx]
s n Jo 0

n

4 T .
=—— [ xsinnx dx
mn ~0

—cosnx T T —cosnx
n )}0 B fO 1'( n )dx]
= % (- g cosnm) = % cosnx = % (=)
b, :% f_nn (x + x?)sinnx dx

=2 [Ty sinnx dx[ = [ x2sinnx dx = 0]
mv0 -1

2T = _2(_1)n
- ( - coSnm) - =" , as above
=~ from equation (1),

) >, =

= sinnx
n n

2
2_T o0
X+ X —?"‘42”:1
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2 -1 1 1
= f(x)=?+4 [F cosx + c052x—3—2 cos3x + ]

-2 [_Tl sinx + % sin2x —g sin3x + ]

We observe that the series on the R.H.S. given by equation (2) always

represents x + x* for all values of x except the end points - T or T
At the point of discontinuity,

f(-m) =2 (LHL + RHL) == [f(= 1= 0) + f(— 1+ 0)]
=% [f(t—0)+ f(m+0)] [~ f(x) is periodic with period 2 ]
=% [m+ %+ (—n) + (—m)?] =n?

Putting x = —m in equation (2), we get

2 1 1 1 1
2= S S

T
3 12

2 1 1 1
— =]+ =4 =4+ =4 ...
6 ! 22+32+42+

Again, putting x = 0 in equation (2), we get

Hence the results.

Example 5. Express f(x) = |x|, - T < x < m, as a Fourier series. Hence

2

show that Stotg =T
Sol. Since f(-x) = |—x| = |x| = f(x)
=~ f(x) is even function and hence b, =0
Let fx)=I|x|= % + Y, a, cosnx

Department of Mathematics
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Where 2y == [" f(x) dx == [[f(x) dx == [ |x|dx

a, :% ffn f(x) cosnx dx =% fon f(x) cosnx dx = % fon |x|cosnx dx

2 (m 2 sinnx cosnx (1™
== XCOSTleXZ—[X( )—1(— . )]
m -0 m n n 0

2 [cosntm 1 2 0, if niseven
= —;]Z—[(—l)n—l]zf(x)={__4 o

ml n? ™2
2 )
n

_T 4 cos3x , coss5x
w fO0) = Ix[ =7 1T(cosx+ =t )

. . 1,1, 1 2
Putting x = 0 in the above result, we get — + =+ =+ ... ="—.
12 32 5 8

CHECK YOUR PROGRESS

True or false Questions

Problem 1. Trigonometric functions are periodic function.

Problem 2. In the Fourier series of the function f(x) in the

interval 0 to 2m, The value of a, is defined by a,= 1

T
Jy f () dx.

Problem 3. If the periodic function is odd, its Fourier series
contains only sine terms.

Problem 4. F(x) = |x| is odd function.

Problem 5. If the periodic function is even, its Fourier series

contains only cosine terms.

Department of Mathematics
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1.7 SUMMARY

1. The Fourier series can be thought of as analyzing the periodic extension (bottom
graph) of the original function. The Fourier series is always a periodic function,

even if original function wasn't.

2. Any function f(x) can be expressed as a Fourier series
a .
70 + XYoo, a, cosnx + X b, sinnx where ag , a, , b, are constants.

3. If a periodic function f(x) is even, its Fourier expansion contains only cosine
terms.

ie, fix)= % + X5, a, cosnx, where a, :% fonf(x) dx and

2 T
a, =;f0 f(x)cosnx dx

1.8 GLOSSARY

Periodic Functions
Integration
Even, odd functions

Trigonometric functions
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1.10 SUGGESTED READING

1. E. Kreyszig,(2011), Advanced Engineering Mathematics, 9th edition,
John Wiley and Sons, Inc.

2. Kosaku Y, Lectures on Differential and Integral Equations, Translated
from the Japanese. Reprint of the 1960 translation, Dover Publications,
New York, 1991.

3. Porter D and Stirling D S G, Integral Equations: A Practical Treatment
from Spectral Theory to Applications, Cambridge University Press
(1990).

4. Lovitt W V, Linear Integral Equations. Dover Publications, New York,
1950.

1.11 TERMINAL AND MODEL QUESTIONS

Q 1. Expand f(x) = |cosx| as a Fourier series in the interval - < x <.
Q 2. Find the Fourier series of f{x) = x3 in (-m, ) .
Q 3. Expand in a Fourier series the function f(x) = x in the interval 0 <x <2 m.

Q 4. Obtain the Fourier series to represent e* in the interval 0 <x <2 m.

2
Q 5. Find the Fourier series expansion for f(x) = x + S TSXST.

Q 6. Express f(x) = % (m —x) in a Fourier series in the interval 0 <x <2 m. Also
provezz 1— =4+ —2+..
4 3 5 7

Q7. Prove that in the range -m < x < m,cosh(ax) = 2?(1 sinh am

1 [} (_1)71 ]
— cosnxy|.
[Za2 1 p24q2
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1 . 1 . 1
Q 8. Prove that for all values of x between - and 1 , 5 X =sinx - ~ sin2x + 3

. 1 .
sin3x - " sindx + ...

1.12 ANSWERS

CHECK YOUR PROGRESS
CYQ 1. True
CYQ 2. False
CYQ 3. True
CYQ 4. False
CYQ 5. True

TERMINAL QUESTIONS

2 4 (cos2x coS4x
R = — 4 — i cee
TQ 1. |cosx| —+- ( 5 TH )

TQ2. f(x)=2X7 (% — %Z) (=1)™ sin nx

n

TQ 3. f(x) = 1 - 2y S

1 n

2T 2T
e“"—-1 e“"—-1 cosnx n .
TQ4.e* = + ® ( - smnx)
2m T DX 1+n2  1+n2

2 _1\n —1\n
TQ 5. f(x)=71r—2+2‘{°(n12) cosnx—22‘{°(;) sin nx

TQ 6. f{x) = X5 =2
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2.1 INTRODUCTION

Fourier series representation of such function has been studied,
and it has been pointed out that, at the point of discontinuity, this series
converges to the average value between the two limits of the function
about the jump point. so for a step function, this convergence occurs at the
exact value of one half. Fourier series is used to describe a periodic signal
in terms of cosine and sine waves. In other words, it allows us to model
any arbitrary periodic signal with a combination of sines and cosines. A
Fourier series is an expansion of a periodic function f(x) in term of infinite
sum of sines and cosines. Fourier Series makes use of the orthogonality
relationships of the sine and cosine functions. In this unit learner are learn
about the Fourier series for discontinuous function, Fourier series for

change of variable, Fourier series for even and odd function.

2.2 OBJECTIVE

At the end of this topic leaner will be able to understand:

(1) Fourier Series for discontinuous functions
(i)  Fourier Series for change of variable

(iii)  Fourier Series for even and odd functions

2.3 DISCONTINUOUS FUNCTION

A function in algebra is said to be a discontinuous function if it
is not a continuous function. Just like a continuous function has a
continuous curve, a discontinuous function has a discontinuous curve. In
other words, we can say that the graph of a discontinuous function cannot
be made with a single stroke of the pen, i.e., once we put the pen down to

draw the graph of a discontinuous function, we must pick it up at least
Department of Mathematics
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once before the graph is complete. A discontinuous function has

breaks/gaps on its graph and hence, in its range on at least one point.
Some of the examples of a discontinuous function are:

e f(X)=1/(x-2)
o f(x) =tanx.

e f(x)=x?-1,forx<landf(x)=x3-5forl<x<2.

2.4 FOURIER SERIES FOR DISCONTINUOUS

FUNCTION

Fourier series representation of such function has been studied,
and it has been pointed out that, at the point of discontinuity, this series
converges to the average value between the two limits of the function
about the jump point. So for a step function, this convergence occurs at

the exact value of one half.

In the last unit we derived Euler’s formulae for a,, a,, b, on the
assumption that f(x) is continuous in (c, ¢ + 2m). However, if f(x) has
finitely many points of finite discontinuity, even then it can be expressed
as a Fourier series. The integrals for a,y, a,, b, are to be evaluated by
breaking up the range of integration.

fi(x), c <x <x

h
£00), xp <x <c+ 2m " reXo

Let f(x) be defined by f(x) = £ (x) = {

is the point of finite discontinuity in the interval (c, ¢ + 2m).

The values of ay, a,, b, are given by

7 fidx+ [T f(x)dx |

X0

:fcxo fi(x)cosnx dx + [° e fo(x)cosnx dx ]

Xo

fc+2n'

fcxo f1(x)sinnx dx + fo(x)sinnx dx ]

X0

At x,, there is an infinite jump in the graph of the function. Both the limits

f(xo — 0) and
Department of Mathematics
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f(xq + 0) exist but unequal. The sum of the Fourier series

= %[f(xo —0) + f(xo + 0) ] = =[AB + AC] = AM, where M is the mid-

point of BC.

ILLUSTRATIVE EXAMPLES

Example 1. Find the Fourier series to represent the function f(x) given by

X, forO0<x<m
m—x, form<x<2m

>

f(x) = {2

1 m?

1 1
Deducethat§+ 3—2+5—2+ S

Sol. Let f(x) = f(x) = % + Yneq Ap cosnx + X0 by, sinnx

where a, = % foznf(x)dx =% [fonx dx + fnzn(Zn - x) dx]

1 xz 2 (2T

T 2

T
=—[— +|2T[X—x7 ]
0

Vi
1 [m? m2\] _
== [7 + (4m? — 2m?) — (27‘[2 —7)] =7
And a,, = % foznf(x) cosnx dx

1 T 21
= - [fo x cosnx dx + [*(2m — x) cosnx dx]

1 sinnx|™ T sinnx sinnx |27
Z—[x—l —f 1. dx+|(27t—x)— +
T n lg 0 n n g

J-27'[ sinnx dx]

YA n
1 (cosnx)” (cosnx)zn
n nz Jy n?z Jp
1
n?

[(D"-1-1+(=1"]

4

2 ——, ifnisodd
nn2 [(_1)n —1] :{ mn? f .

0 , if niseven

And b, = % foznf(x) sinnx dx
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=% [fonx sinnx dx + f;”(ZE — x) sinnx dx]

= % [{x (—cosnx)}z n J-On co:lnx dx + {(27_[ — %) (—c(:;nx)}i” _

n

D (5

1 T T
== [— —cosnx + — cosnx] =0
T n n

T 4 (cosx cos3x cos5x
- Af(x =—-—( + + +)
( ) 2 @ 12 32 52

Putting x=0,weget0=z—i(lz+ 312+512+...

2 T

0, for—m<x<0

Example 2. If f(x) = {sinx forO<sx<m

1 1 . 2 oo CoS2nx

prove that f(x) = —tZ sinx-— Zn=1 an?1 "
o1 1 1 1
Hence show that (i) =+ —+—+ - ==
1.3 35 57 2

Ly 1 1 1
(II)E_E-I_;_”.

Sol. Let f(x) = % + Y a, cosnx + Y. b, sinnx
where a, = % f_frf(x)dx :% [f_onO dx + fon sinxdx :%
1 rm
and  a,=— [ f(x) cosnx dx
= % [f_onO dx + fon sinx cosnx dx]

1 T .
— [ 7 2 cosnx sinx dx
2m 70

= i fon[sin(n + 1) x —sin(n — 1) x] dx

_ b4
[_ cos(n+1)x n cos(n—1)x ] n# 1
n+1 n—1 0

n+1 n—-1 n+1 n-1

i[_ cos(n+1)n+cos(n—1)n 1 1 ]
2T
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(_1)Tl+1 + (_1)71—1 1 1
n-1 n+1 n-1

L ), whennis odd

n—-1
1 ,
—_— —) ,whennis even
n—-1 n+1 n—-1
0, whennisodd,i.e.,n=3,5,7, ...
when n is even

When n = 1, we have

1,7 ., 1 7 1 cos2x]™
a; = = [ sinx cosx dx =— | sin2x dx:—[— ] =0
T 70 2w Y0 27 2 0

And b, = i f_”nf(x) sinnx dx =% [f_on 0dx + fon sinx sinnx dx ]

_1 . . _1 m _ _
=— Jy 2 sinnx sinx dx — Jy [cos(n — 1) x — cos(n + 1) x] dx

L [ennne_siOnne ) g
27 n—-1 n+1 0

Whenn=1, we have
1 pm . . 1 s
by = — [, sinx sinx dx = — ["(1 — cos2x) dx

1 [ sian] T 1

2 2 1o 2

1 2 |cos2x cos4x cos6x
fox)==-2|
T

22-1 421 62—1

1.
+---]+—smx
n 2

cos2nx

1 . 2 woo
==+ -SINX - = )=
2 nZn—l an2-1

Putting x =0 in (1), we have

1 2 1
0==-2y® _~
T nzn_l 4n2-1

1_

1 1 1 1 1
= © =y = b=
2 Ln=1 4n2-1 Ln=1 (2n-1)(2n+1) 13 35 5.7

Putting x = g in (1), we have

1 1 2 cosnm
L=t 2 T
T 2 T 4an<—-1

Department of Mathematics
Uttarakhand Open University




Mathematical Methods MAT 509

S
= - Xn= 12n- 1)(2n+1)_-(

T—2
:———-'———...:
1.3 5.7 4

Example 3. Find the Fourier series to represent the function f(x) given by

x, n<x<0

—x, 0<x<m °’ and hence show that

flx) = {
Sol. Let f(x) = —

where a, = % f_:rtf(x)dx =% [f_onx dx + fon —x dx]

0

2B, - 6]
And a, = % f_’; f(x) cosnx dx

= l[fo xcosnx dx + [ —x cosnx dx]
T |- 0

n

:% [(X sinnx)in _ f_OT[ 1.si7111nx dx +( smnx) _ f ( 1) (smnx) ]

- %[n_lz (Cosnx)gn - n_12 (Cosnx)g] :% [{1_(_1)71} _ {(—1)“-1}]

n2 n2

—(-1)" h .
e 2 whenn s odd

n2

And b, = % f_nnf(x) sinnx dx = % [f_onx sinnx dx + fon(—x) sinnx dx ]

I RN PR
f ( 1)( cosnx) dx]
=2 = om0 =0
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cosx cos3x + coS5x

= from (1), f(X):‘ng%( +

12 32 52

At point of discontinuity,
F(0)=5[f(0—0)+ f(0+0)]=>(0—0)=0

Putting x = 0 is above expression, we get

T 4 (1 1 1
0=-3r(z+mtat)

2

T 1 1 1

= —=—4 —+=+
8 12 32 52

CHECK YOUR PROGRESS

MCQ Questions

Problem 1. What is the Fourier series expansion of the function f(x) in the
interval (c, c+2m)?

a) %+Z;‘1°=1 a, cosnx + Y., b, sinnx
b) ? + Yo, a, cosnx + Y b, sinnx
c) % + Ynziapcosnx + Y0 by, sinnx

d) ap+ Yo, a, cosnx + Yo, b, sinnx

Problem 2. f the function f(x) is even, then which of the following is zero?
a) an

b) b

) ao

d) None

Problem 3. Who discovered Fourier series?

a) Jean Baptiste de Fourier

b) Jean Baptiste Joseph Fourier
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c¢) Fourier Joseph

d) Jean Fourier

Problem 4. What are the two types of Fourier series?
a) Trigonometric only

b) Trigonometric and logarithmic

c¢) Exponential and logarithmic

d) Trigonometric and exponential

2.5 FOURIER SERIES FOR CHANGE OF
INTERVAL

In many questions, it is described to expand a function in a fourier
series over an interval of length 21 and not 2 1. In order to apply forgoing
theory, this interval must be transformed into an interval of length 2 .
This can be achieved by a transformation of the variable.

Consider a periodic function f(x) defined in the interval ¢ <x <c¢ + 21
to change the interval into one of length 2 1, we put

X X
77 or z=—" so that

When X =C, z= % =d (say)

mt(c+21 TIC
, = Ter2D _

And whenx =c +2l, " T+2T[:d+ 2.

Thus the function f(x) of period 21 in (c, ¢ + 21) is transformed to the

function f(l;z) = F(z),say, of period 2min (d,d + 2m) and the later

function can be expressed as the Fourier series

F(z) = %Jrz;‘f’:lan cosnx + Yo, b, sinnx ..(1)

Where a, = % fdd+2nF(Z)dz and a, = % fdd+2n

F(z)cosnzdz and
b, = % fdd+2n F(z)sinnzdz

Now making the inverse substitution z = % ,dz= ? dx

When z=d, x=c¢ andwhen z=d+2m,x=c+2L

The expression (1) becomes
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Fz) = F(%) = f0x) = %+ 52, @y cos ™ + Biz, by sin ™™

And the coefficient a,, a,,, b, from (2) reduce to

1 rc+21 1 rc+2l nmx
ap=1J,  fEdxsan=7[ """ f(x)cos—=dx;
1 pc+2l . hmx
bn_ffc f(x) sin—dx

Hence the fourier series f(x) in the interval ¢ <x <c + 21 is given by

X

f(x)— 0+ y®  a,cos—— +Zn by, sin—= z

Corollary 1. If we put ¢ = 0, in the interval becomes 0 < x <21, and

the above result reduce to

a, :%fomf(x)dx ; Ap :%foﬂf(x) COS?‘“ > bn :%f"mf(x) Sin?dx

Corollary 2. if we put ¢ = - [, the interval become - [ < x <[ and the

above result reduce to

0= fdx s an =2 [ F() cos™ dx; by =2 [ () sin ™™ dx

Corollary 3. If f(x) is even function, we have

aoZ%folf(x)dx ; an:%folf(x) Cosgdx » bn =0

Corollary 4. If {f(x) is odd function,
we have ay =0, a,= 0, b, = %folf(x) sin?dx

ILLUSTRATIVE EXAMPLES

Example 1. Obtain the fourier series expansion of

fx) = (5 )foro<x<2

Sol. Let f(z) = —+Zn 1 @y, COS—= +Zn 1bn smT

Here l =1
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=X a, .
a—= 7" + Yine1 Ay COSNTX + )0 4 by, sin nmx

Here, a, = %f()zzf(x)dx - foz (?) dx
2

=%(nx—x72)0=%(2n—2)=7r—1

And a, = %foﬂf(x) cosnmx dx = foz (%) cos nmx dx
1 innmx innmx
:E[{(T[_ )snn } f( 1)snn d]

=L(—Cosnn’x)2 -0

2nm nm 0

and b, = %f:lf(x) sinnmx dx = foz (?) sin nmx dx

_ % [{ (r — %) —Cosnnx} f (=1) ( Cosmtx) dx]

nm

=== [(m—2) -7l =—

2nm nm

Hence, from (1)

m—X m—1

— ==t Zn 1> Zsinnmx.

Example 2. Find the Fourier series for the function f(x) = x — x°,

-l<x <.

Sol. Let f(x) = % + Y4 A, coSNTIX + Y00, b, sin nTtx

Then a, = f_ll(x - x¥)dx = f_llx dx - f_llxzdx =0- 2f01 x?dx
N % )
=25 -3

And a, = f_ll (x - x?) cosnmx dx

1 1
= J_, xcosnmxdx - [ x*cosnmxdx

1
=0 2f x2cos n‘l‘[de——Z[ zsmnnx} f 2y (smnn:x)d ]

=2 [ x sinnmx dx
nm 70

[ - 1 ()
_ 4(—1)"

n2m2

1 : 1 1 :
and b, = [~ (x- x*)sinnmx dx = [~ xsinnmxdx - [ x? sinnmx dx
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= 2f01 x sinnmxdx — 0 =2 [X- (_Cosnnx) - L (M)]l

nm n2?m? 0

—» (—cosnn:x) _ 21"

nm nm

12 22 32

(cos X COS 27X n cos 31x )

1 2 3

4 (Sinnx Sin 2mx Sin 3mx
=y N )
nm

Example 3. Find the Fourier series for the function f(x) = x> - 2,
2<x <2
Sol. Since f(x) is even function, b, = 0.
Let f(x)=x%-2= % +Y> . a, cosnzﬂ

3 2
Then a, =§f02(x2 - Z)dx=[x?—2x]o = 2_4:_3

And a, = %foz(xz - 2) cos%dx

. NTX . NTX
Sin—

2
Sin— 2
RGeS Rl

2

4 (2 . hmx
=——["xSin—dx
nm -0 2

nmx« 2 nmx
_ 4 —CosT _ 2 _ CosT d
X. T 0 T X
nT —_— —_—

2 0 2

8 D) __16cosnm _  16(-1)"
nznz( cosn) = oz

n?m?
16 1 1 3
o (x? 2(COSB——cos1'tx+—Cos£—--~).
n 2 4 9 2
Example 4. Obtain the Fourier series for the function

f(x) = {

X, for0<x<1
n(2—x), forl<x<2

Sol. Let f(x) = % + Yo, a, cosnTX + Y0, by, sin nTx

Then a, = fozf(x)dXZfo1 mxdx + ff m(2 — x)dx
5] e[ -5,
—nsin|4-2)-@2-3|=n

And a,, = foz f(x) cos nTx dx
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= fol TTx cos nTix dx + ff 7(2x) cos nTx dx

. 1 2
sinnmx — CcosS nmx smmrx COS Nx
= [nx — T[( )] + [n(Z — - () (—)]
nm n?m? 0 1

n2m?

_ [ cosnm 1 ] [ cos2nm | COSNnm

2
n2m nim ] - n2m (COSIlT[ N 1)

n2m n2m
2
= [(=D"-1]

4 . .
=0or —m according as n is even or odd.

and b,, = fozf(x)sin nmx dx = flnn sin nmx dx + ff (2 — x) sinnmwx dx

[rrx —C(;s;mx_n_( sy;n;nx)] [7‘[(2 _ )( cosnnx) _( ) ( smnnx)]i

n2m?
_ [_ cosnn] i [cosnn] ~0
n n

m 4 (cosmx cos 3mx cos 51tx
X)) ==-= ( +
( ) 2 T 12 32 52

CHECK YOUR PROGRESS

True and False questions

Problem 5. The Fourier series expansion of f(x) = x3 in the interval
-1 <x <1 with periodic continuation has only sine terms.

Problem 6. The value of b,, in the Fourier series expansion of f(x) in
the interval ¢ <x <c + 2 [ in given by % fcc+21 f(x) sing dx.
Problem 7. The value of a,, in the Fourier series expansion of f(x) in
the interval 0 <x < 2 [ in given by % fOZI f(x) cos %dx.

Problem 8. The value of a, in the Fourier series expansion of f(x) in
the interval - [ <x <[ in given by % f_11 f(x)dx.

Problem 9. The function f(x) = 1/x is continuous at x = 0.

2
Problem 10.n—=—+ — —+.
8 32 52

Problem 11. f(x) = x3 + 2 is even function.

Problem 12. f(x) = sinx in odd function.
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26 SUMMARY

1. Fourier series for Discontinuous function:

fi(x), c <x <x
fo(x), xo <x<c+ 2m

Let f(x) be defined by f(x) = f(x) = {

, where x; is the

point of finite discontinuity in the interval (c, ¢ + 2m).

The values of ay, a,, b, are given by

ao == [ fiydx + [3 7 fr()dx |

X0

an fcxo f1(x)cosnx dx + fxco+ 2" £, (x)cosnx dx ]

b, = % fcxo fi(x)sinnx dx + fxco+ 2T £ (x)sinnx dx ]
2. Fourier series for change of interval:

f(x) = % + Yoo, Ay COS g + ¥ by, sin?

c+21

3.letay = %fCHZlf(x)dx Ay = %fc f(x) cos?dx

1 pct2l . hmx
bp =7 J.77 f(x)sin ——dx then
Corollary 1. If we put c =0, in the interval becomes 0 <x <21, and the

above result reduce

to

ao :%fouf(x)dx ; Ay :%foﬂf(x) cos =~ dx ; by :%f"zzf(x) sin=dx

Corollary 2. if we put ¢ = - [, the interval become - [ < x <[ and the

above result reduce to

0 =1 F G 00 =31 £ cos ™ by =21 f ) sin 2

Corollary 3. If f(x) is even function, we have

2

a0=7folf(x)dx ; anZ%folf(x) cos?dx ;b =0

Corollary 4. If f(x) is odd function,
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we have ag =0, a,= 0, b, =%folf(x) sin?dx

4. Discontinuous function.

5. Fourier series for the function f(x) = x? - 2, -2< x < 2 is given by

16 X 1 1 3mx
> (Cos—— =cosmx + -Cos— — -+ )
™ 2 4 9 2

6. Fourier series for the function f(x) =x — x*, -1<x < 1.

1 4 (cosmx COS 2TTXx cos 31tx
f(X)z—_+_( —_ + —...)
3 n? 12 22 32

nm

4 (Sin X Sin 2mx Sin 3mx )
1 2 3

a .
7. f(x) = 70 + ¥ a, cosnx + > b, sinnx
8. The Fourier series expansion for f(x) = mx fromx =-ctox =c s

f@)=24$nc?)—%sm(23)+§sm(22)_"]

Cc c

2.7 GLOSSARY

Discontinuous functions
Periodic Functions
Integration

Even, odd functions
Trigonometric functions
Integrations

Series
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2.10 TERMINAL AND MODEL QUESTIONS

Q 1. Find the Fourier series for f(x) =1 - t*> when -1< t < 1.
Q 2. Find the Fourier series in the interval (0, 2) if

(x, for0<x<1
f(x)_{o, forl<x<2’

Q 3. Find the Fourier series expansion for the function f(x) = x — x> in the
interval -1 <x <1.
Q 4. Find the Fourier series for the function given by

B t, for0<x<1
f(X)_{l—t, forl<x<2’

Q 5. Find the Fourier series expansion for f(x) = mx from x = -c to x = c.
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Q 6. Obtain the Fourier series of the function

1+27x, for—1<x<0

sz, foro<x<l .

f(x) =
1_

Q 7. Find the Fourier series expansion of the periodic function whose

definition in one period is f(x) =4 —x?, -2 < x < 2. Also prove that

2
-t et =2

22 32 42 2
Q 8. Find the Fourier series to represent the function
=k, for—m<x<0

f(x) = { k, for0<x<m Also deduce that

LA R I S ST
4 3 5 7

Q 9. Find the Fourier series for f(x) in the interval (-7, ) when

_(m+x, for—m<x<0
f(X)_{n—x, for0<x<m

Q 10. Find the Fourier series to represent the periodic function

X, for—g<x<§
f(x) =

TC 31
m—X, fOI‘E<X<?

2.11 ANSWERS

CHECK YOUR PROGRESS

CYQ 1. (2)

CYQ 2. (b)

CYQ 3. (b)

CYQ 4. (d)

CYQ 5. True

CYQ 6. True

CYQ 7. False

CYQ 8. True
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CYQ9. False

CYQ 10. True
CYQ 11. False
CYQ 12. True

TERMINAL QUESTIONS

TQ1.f(x) = §+ %(cosnt —

cos2mt cos 3mt
oy cosame )
2 32

TQ 2. f(x) :i (cos T+

COos 31X Ccos 51x
Sy )
5

1 . sin 2mx sin3mx
+—(51n7tx— + —)
T 2 3

TQ 3. f(x) = (sm X —

sin 2mx sin3mx
> = — ...

TQ 4. f(t) = (cos t +

cos 3t cos 5t
5 —_ e

+ - (Sln mt + —— sin 3wt + )

TQ 5. f(x) = 2c[sin (=) — 2 sin (22) + Zsin (22) - .-

nmx

TQ 6. F(x) = = Xy {1 — (—1)"} —

1)”

TQ7 f( )__'_Zn 1 n2

sin 3x sin 5x

TQ 8. f(x)— (smx+ 5 T

TQ 9. f(X):g_i_%(cosx_i_cos?mc c055x+ )

12 32 52

sinx sin3x sin5 x )
12 32 52

TQ 10. f{x) == (5
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3.1 INTRODUCTION

A transformation is a mathematical device which convert one
function into another. It transforms one variable at a time. The Laplace
transform of a function f(t) is designated as L[f(t)], with the variable t
covers a spectrum of (0, o). where s is the parameter of the Laplace
transform, and F(s) is the expression of the Laplace transform of function
f(t) with 0 <t < oo. Laplace transformation is directly gives the solution of
differential equations with given initial conditions without the necessary
of first finding the general solution and then evaluating the arbitrary
constants.

French Mathematician Pierre De Laplace (1749 — 1827) used this

transform much earlier in 1799 while developing the theory of probability.

3.2 OBJECTIVE

At the end of this topic learner will be able to understand:
(1) Laplace transform
(1) Transforms of Discontinuous functions
(111)  Initial-value theorem
(iv)  Final value problem

v) Existence theorem

3.3 DEFINITION OF LAPLACE TRANSFORM

Let F(t) be a function of t defined all t > 0. Then the Laplace transform of
F(t) , denoted by L{F(t)}, is defined by

L{F()} =f(p) = [ e PEF(t)dt

Provided that the integral exists, ‘p’ is a parameter which may be real or

complex.
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L{F(t)} is said to exist if the above integral converges for
some value of p otherwise not. The function f(p) is called
the Laplace transform or the image of the objective function
F(t).

Note: m Some authors use the letter ‘s’ for the parameter

instead of p. therefore we may also write
L{F)} =1(s) = J, e *F(Ddt .

Note: m In general, we will denote the object function by
a capital letter and its transform by the same letter in lower
case. But other notations that distinguish between

functions and their transforms are sometimes preferable

ie.  L{F(O}=¢®) or L{y()} = y(p) or L{f(t)} = f(p)

3.4 LINEARITY PROPERTY

If c1, C2 are constants and f, g are functions of t, then

L{c,f(t) + c.9(0} = . LIF(O} + ¢, L{g(D)}
By definition,

L{csf(t) + 2003 = [ e PHerf(®) + cog(D)}dt

=C fooo e Ptf(t)dt +c, fooo e Ptg(t)dt

= L{FO)} + c,L{g(t)}
The result can easily be generalized.
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35 LAPLACE TRANSFORM OF SOME
ELEMENTARY FUNCTIONS

(1) L{1}:%,p>0

— [ _ —pt _ e~ Pt oo_l .
Proof.L{l}—f0 e Pt 1dt = P]o_r”lfp > 0.

(2 L{t"} = ,,:il , where n is positive integer.

(o] (o] n -
Proof. L{t"} = [~ e P.t"dt= [ e™* (g) %x , on putting pt = X

_I'(n+1)
pntl

fxeptd

- pn+i
provided thatp>0andn+1>0
If n is a positive integer, '(n + 1) =n!

Therefore L{t"}=

Tl+1

1

Note: m Forn=1, L{t} ==

2

3) L{e“‘}— —.p>a

-(p-a)
Proof. L{e®} = [ e, e®tdt = [} e~P-tde = [- = t] =1

o P-a

p>a

(4) L{sinat} = g2 P>0

Proof. L{sinat} = fooo e Plsinat dt

[e]

e~ pt a
= [ > (—psinat — acosat) ]
p*+a 0

p%+a?
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(5) L{cosat} === p>0

p2+a?’

Proof. L{cosat} = fooo e Plcosat dt

[ee]

e~ Pt .
= [ (—pcosat — asinat) ] =
p2+a2 0

P
p2+a?

(6) L{sinh at} = p;%(lz ,p>lal

Proof. L{sinh at} = [ e Psinhatdt= [ e Pt

et_e
\ N

—_at] dt

2
= Uooo e~ -}t g¢ _ p—(p+a)t dt]

1 1 1 a
==|—- =—— forp>|a
2 lp-a p+_a] p2-a?’ P lal

Note: mWe can also prove it by using linear property.

Thus L{sinh at} =L {%eat - e‘at} = %L(eat) - %L(e‘at)

1( 1 )_ a
2 \p+a p2—a?

, P
(7) L{sinh at} = i P> |a|

— 711 at —at] _ 1 aty 4 1 —at
Proof. L{cosh at} = L{Ee +e } = SL(e™) +7L(e™)

): E_forp>|al.

2 \p+a p2—a?

Note: The Laplace transforms of various elementary functions have been

listed in the following table:

F(t) L{F(t)} = f(p)
1

! >0
_’p
p
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t",nis a positive integers

t"n> —1

eat

sin at

cosat

sinh at

cosh at

3.6 TRANSFORM OF DISCONTINUOUS FUNCTIONS

The Laplace transform of F(t) will exist even if the object function F(t) is

discontinuous, provided the integral in the definition of L{F(t)} exists.

3.7 FIRST TRANSLATION PROPERTY OR FIRST
SHIFTING PROPERTY

If L{F(t)} = f(p) then L{e“*F(t)} = f(p - a)
L{e®F(t)} = [" e Pte®F(t)dt ( By definition)
= [T e~ ®-DtF(6)dt = f(p - a).

Note: m L{e*F(t)} =f(p + a)

m L{e“Fbi)} =3 f (=),

b

Department of Mathematics
Uttarakhand Open University




Mathematical Methods MAT 509

Applying this property to the elementary functions of Art. 3.5, we get the following

useful results:

(1) L{e%tt™} = ')n+1 ; N is a positive integer.

t o _ b

(2) L{e* sin bt} = P

¢ __p-a

(3) L{e% cos bt} = a1

(4) L{e® sinh bt} = ﬁ
—-a

(5) L{e% cosh bt} = W

3.8 SECOND TRANSLATION PROPERTY OR
HEAVISIDE’S SHIFTING THEOREM

mIf L{F()} = f(p) and G(t) = f(x) = {F(g_ a): i Z o

Then, L{G(t)} = e~ f (p).
Proof. L{G(t)} = [ e L. G()dt = f, e PE.G(t)dt + [, e PE.G(t)dt
=0+ [ e PLF(t—a)dt=[ e PL.F(t—a)dt
Putt—-a=u=dt=du
= [, e PO F(wdu=e P [~ e P F(u)du

=e7Pa [" e PLF(t)dt = e P f (p).

3.9 CHANGE OF SCALES PROPERTY

m If L{F(D)} = f(p) then L{F(at)} = £ ().

Proof: L{F(at)} = [,” e ?t. F (at)dt

Putat:u:>dt:%u

= [ e e F(u) E= g e Fuydu
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e e @ r@ar =17 (2).

ILLUSTRATIVE EXAMPLES

Example 1. Find the Laplace transform of
7e*'+9e "2+ 5 cost + 7t3 + 5sin 3t + 2.
Sol. L(7e?*+9e~2t+ 5 cost + 7t3 + 5sin 3t + 2)
=7L(e*")+9L(e %)+ 5 L(cost) + 7 L(t3) + 5 L(sin 3t) + 2 L(1)

1 1 3! 3 1
=7. +9. +5 L2 +7.= 45, +2.=
p—-2 p+2 p2+1 p* p%+9 D

42 1 2
SR R | B R

p—-2 p+2 p2+1 p* p2+9 p

Example 2. Find the Laplace transforms of

(i) Sin 2t cos 3t (ii) sin32t
(i)  Cosh32t (iv) (1 + te™%)3

Sol. (i) Since  sin 2t cos 3t = % (2 cos 3t sin 2t) = % (sin 5t —sin t)

 L(sin 2t cos 3t) = L{ (sin 5t —sin t)} = = [L(sin 5t) — L(sin t)]

—l[ > 1 ]_ 2(p?-5)
=21

2152 p2+12] © (p2+25)(p?+1)

(i)  Sin 6t =3 sin 2t — 4 sin®2t
~ sin32t = sin 2t -  sin 6t
4 4
- L(sin® 2t) = L{S (sin 2t ——sin 61)}

_3 . 1 .
=3 L(sin 2t) - L(sin 6t)
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_3 2 1 6 _ 48
4 p%2+22 4 p?2+62  (p%+4)(p?+36)

(iii)  Since cosh 6t =4 cos® 2t — 3 cosh 2t

=~ cosh32t = % cosh 2t + i cosh 6t

= L(cosh®2t) = L{% cosh 2t + i cosh 6t}

=21 (cosh 2t) + (cosh 6t)

T4

3 P 1 P p(p?-28)

1p?-2?  4pP-62  (pP-4)(p*-36)

(iv) (1 +te =1+ 23 +3te (1 +te™)

=1 + t3e3t + 3te™t + 3t2e 2t
AL{(1 + te 93} =L(L) + L(t3e~3t) + 3L(te ") + 3L(t2e2Y) (D)
Now first we find the following

Determination of L(t3e~3%):

3 _ 6

1D (e ( Using first shifting

L(t3) = 5—4 then L(t3e~3t) =

property)
Determination of L(te™%):

1

i) ( Using first shifting property)

L(t) = piz then L(te~t) =

Determination of L(t2e~2%):

20 2
(P+2)%  (p+2)3

L(t3) = ;—3 then L(t2e~2¢) = ( Using first shifting

property)

Also, L(1) :% Now, from (1)
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6 3 6
@+3)*  (p+1?  (p+2)3

L{(1 + te™®)3} = i -

Example 3. Find the Laplace transforms of e =3¢ (cos 4t + 3 sin 4t).

Sol. L(cos 4t + 3 sin 4t) = L(cos 4t ) + 3 L(sin 4t)

_ P + 12 _ P+12
p%+16 p2+16 p2+16

(P+3)+12

~ L{e™3t (cos 4t + 3 sin 4t)} = i3 16

( Using first shifting property)

P+15
pZ2+6p+25 "

Example 4. Find the Laplace transforms of

1 < 1

. _(cost, 0<t<m .. 3 ,y 0st<
(i) F(t)_{o o G)F)=1t , 1<t<2
’ t?,2 <t<ow

t2 ,0<t<2
@) Fl)=4t—-1 , 1<t<3
7 , t>3

Sol. (i) L{F()} = f,” e PE.F(t)dt = [ e Pt.costdt + [ e™Pt.0dt

-pm 1

[e_pt (—pcost + sint)] = [:2+1 D — e (—p)]

74
2
p“+1 0

_ p(1+e7P™)
p2+1

(i)  L{F(O)}=J e Pt F(Ddt

= [JePtdt + [ tePtdt + [ tPePtdt

-pt -pty 2 -PN® -pt
:(e +(t z )+(t2€ ) - [ 2ti—dt
1 P/, 72 p

-p pZ
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4 _ 2 o -
+=e 2P += [T te Pidt
P p -2

_(te__zt)z - 1.6_:tdt]

(iiy  L{F@®)} =[] e PL.F(t)dt

— (%242,-pt 30 —pt © - —pt
= [, tPePtdt + [J(t — Ve Ptdt + [, 7e Pdt

)

14 -p

) _ _ptn 3
4 _ 2 e~ pt 2, ept 1 _ 2 1 e Pt
=——e¢ 2p+—[(t ) -, L dt]+—e P .Ze 3p+—(
14 p -p/y 07 -p P p p\-p

p -p p p p 4

2 1

MAT 509

)
4 _ 2 _ 2 [e7Pt 1 _ 2 1 _ 1 7 _
=——e % -=(2e 21")+—2( ) +-—eTP e3P . —e T + — e + -7

p p 0

p

1 2 1 7
___e_sp +_e_2p__e_3p __e_sp +_Ze_2p+_e_3p
p

p® p p p p?
2 e ? 2 e~2P
- (2+3p+3p%) +—(5p - 1).

p®

Example 5. Find L{F(t)} if

_ |sin(t=%), > y _(t-12% t>1
@ FOH= 0 fom (”)F(t)_{ 0 ,0<t<1

( Using Second Shifting property )
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(i)  L{F®)}=eP L(t?) (va=1)

=eP .p% : (' Using Second Shifting property )

Example 6. Given that L(Sii1 t) = tan‘li , find L(Sin “t),

Sol. By change of scale property ,

sinat) _ 1 -1, 1
L( ” )— tan (p/a)

1 sinat
L5

a

) =5tan1(5)

sin at

- ) =tan‘1(%) :

=>L(

3.10 FUNCTIONS OF EXPONENTIAL ORDER

A function F(t) is said to be of exponential order ast — oo, if there exist constants

M and b and a fixed value t, of t such that
|F(t)| = MePt fort>t,

We also write F(t) = O (e??) , t - oo to mean that F(t) is of exponential

order.

From the definition, it is clear that if a constant b exists, such that

tlim e PtF(t) exists or the value of limit is finite then function F(t) is of

exponential order.

3.11 A FUNCTIONS OF CLASS ‘A’

A function which is piecewise continuous over every finite interval in the

range t > 0 and is of exponential order ast — oo is termed as a function of

class A. A function F(t) is said to be piecewise continuous in any interval
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[a, b] if it is defined on that interval and is such that the interval can be
broken up into a finite number of subinterval in each of which F(t) is

continuous.

3.12 EXISTANCE THEOREM

m If F(t) is piecewise continuous for t > 0 and is of exponential order b,
then

L{F(t)} = f(p) exist for p > b. in the other words, if F(t) is a function of
class A, L{F(t)} exists.

Proof: [[" e Pt F(t)dt = [,° e PL.F(t)dt + f:e‘pt.F(t)dt =L +1,

(say)
1; exist since F(t) is piecewise continuous in every finite interval

0<t <t

L] < f:le‘pt.F(t)ldt < [ le P F(D)ldt

< f0°° e Pt MePtdt(as F(t) is exponential function of order b )

*© —(p—b)t :l
Sfo e .Mdt e

Thus the Laplace transform exist for p > b.

Note: m The condition of the theorem are sufficient but not necessary

for the existence of Laplace transform.

ILLUSTRATIVE EXAMPLES

Example 1. Prove that t™ is of exponential order ast — oo.
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tTL

Sol. lim (e7".¢™) = lim —

t—>o0 t —>00

nt"~1 . nm-1)t"?
= lim ——=—=0
t-o0

= lim T

t oo bebt
Since t™ = O (e??) , t — oo for any fixed positive value of b.

Therefore t™ is of exponential order.

Example 2. Prove that et is not of exponential order as t — co.

2

t

) _ 2 . e ) 2_

Sol. lim (e7?t.et") = lim = = lim (e*"7P*)
t —o0 t—oo e t —-o0

If b <0, this limit is infinite.

If b >0, tlim et=h) = o

Thus, whatever be the value of b, this limit is not finite hence we can not

find a number M such that et* < Me?t,

2 . .
~ et” is not of exponential order ast — .

3.13 LAPLACE TRANSFORM OF DERIVATIVE

m Theorem 1. If F(t) is continuous for all t > 0 and of exponential order
b ast — oo, and if F'(t) is of class A, then Laplace transform of the

derivative F'(t) exists when p > b and
L{F'(1)} = pL{F(1)} - F(0) = pf(p) — F(0) , if L{F(V)} = f(p).
Proof: L{F'()}= [ e P'F'(t)dt
=[e PF(D]Y + f,” e PEF(t)dt (integrating by parts)
lim e ™P*F (t) - F(0) + pL{F(t)}
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Since F(t) is of exponential order b ast — oo then forp>b, e P*F(t) - 0

as — oo

= From (2) L{F'(0} = pL{F(1)} - F(0) = pf(p) - F(0) , if L{F(D)}=f(p)

Note: m if F(t) fails to be continuous at t = 0 but tlimF(t) = F(0+0) exists,

then L{F'(t)} = pL{F(t)} - F(0+0)

m Theorem 2. If F(t) is continuous, except for an ordinary discontinuity
at t = a (a > 0) as given in figure, then L{F'(t)} = pL{F(t)} — F(0) -
e ?P[F(a + 0) — F(a — 0)], where F(a + 0) and F(a — 0) are the limits of F

at t = aast approaches a from right and left respectively. The quantity
F(a+ 0) — F(a—0) is called jump discontinuity at t = a, and
e PF(t) > 0ast — oo.
Proof: L{F'(t)} = f, e P'.F'(t)dt
= [, e PLF'(Ddt + [ e PLF (Ddt

= [eP'!F(D)]¢+p foa e PLE()dt+{e PL.F(O)}Y +p fooo e PLF(t)dt

=™ Fa-0)-F(0) + p f,"e P'F(Dde + lime P'F(t) - e"*F(a +0)

= L{F/(0} = L{FO} ~ F(O) - e’ [F(a+ 0) ~ Fa—0)] ( lime "F(9) = 0)

Note:
mGeneralization if F(t) and its first (n — 1) derivatives are continuous functions for all

t > 0 and are of exponential order b as t — oo and if F(™(t) is of class A then Laplace

transformation of F (™ (t) exists when p > b given by

L{F(n) (t)} — an{f(t)} _ pn—lF(O) _ pn—ZFI(O) - Fn-1) (0)
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3.14 INITIAL — VALUE THEOREM

If F(t) is continuous for all t = 0 and is of exponential order as t — oo and
if F'(t) is of class A then lin(l)l:(t) = lim pL{F(t)}.
- p o

3.15 FINAL - VALUE THEOREM

If F(t) is continuous for all t > 0 and is of exponential order as t — oo and
if F'(t) is of class A then tlim F(t) = lirr%)pL{F(t)}.
—00 p-

Example. If L{F()} = m then, find (i) imF(®) (i) limF()

Sol. (i) Using final value theorem,

tlim F(t) = lirr(l)pL{F(t)} = 11m = =1
—00 p-

p+B B

Q) Using initial-value theorem,

= 1 L:
hmF(t)— llm pL{F(t)} 11m e +ﬁ) pll_r)lgo vy 0.

3.16 LEIBNITZ RULE

To develop the theory of Laplace transforms further, we state the

following results for differentiation under the integral sign.

Let @(a) = f;‘: f(x,a)dx, a < a < b, where u,; and u, may depend on the

parameter a then,
d@ Uy af

= dx+ fug @) T2 flug, @) T2
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Fora<a <bif f(x,a) and Z—Z are continuous in both x and « in some

region of X a plane including, u; <a <u,,a<a <bandu,; and u, are

continuous and have continuous derivatives in interval (a, b).

Note: if u, and u, are constants, the last two terms in (1) are zero and

ao Uy 0
R a2
da Uy da

SO

317 LAPLACE TRANSFORM OF INTEGRALS

m If L{F()} = (p), then L{J, F(t)dt} = f(p)

Proof:  let G(t) = [ F(t)dt, then G'(t) = F(t) and G(0) = 0
Taking Laplace transform, we get

L{G'(t) } = p L{G(1)} — G(0) = p L{G(1)}

~L{GM} =3 L{G' (1) } =2 L{GWM)} = > f(p)

L{f, F(t)dt} = f(p)

3.18 MULTIPLICATION BY t"

m If L{F(1)} = f(p), then L{t" F(t)} = (-1)" :—;[f(p)],

wheren=1,2,3, ........

Proof: we prove the theorem by Mathematical induction
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IFL{FW} =f(p) = [ e .. F(0dt=f(p)

Differentiating both sides w.r.t. p (using Leibnitz’s rule) , we have
i *® —Pf = i
L fy e F(Dde = 2= [f(P)]

Jy spe P F©de= 2 [fp)]

Or N

, —tePLF(Vdt = L [f(p)]
or Jy e P LF®]dt = - [f(p)]

or L{F®} = - 7 [f(p)]
Therefore theorem is true for n = 1.

Now assume the theorem to be true for n = m, so that
L{" F(©} = (1™ £ f(p)]
Or  [ePtem F(ydt = (~1)™ Z{f(p)]

Differentiating both sides w.r.t. p, we have

dm+1

=y e F(de = (- D™ ()]
i sse ™ F©de = (~D)™ f(p)]

J, —te Pte™ F(tydt = (-1)™ ;;nrt:l[f(p)]

f0°° e—pttm+1 F(t)dt = (_1)m+1 ;)m—n:[f(p)]

Or  L{t™*F(t)}=(-1m* ;m_":[f(p)]
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Which shows that the theorem is true forn=m + 1.

Hence by Mathematical induction, the theorem is true for all positive integer n.

3.19 DIVISION BY t

m If L{F()} = f(p), then L{> F(p)} = [;” f (p)dp provided the integral

exists.

Proof: we have f(p) = fooo e P F(t)dt

Integrating both sides w.r.t. p from p to o , we have
[ fydp =1 f; e Pt F(Ddt]dp

Since p and t are independent, changing the order of integration on the

right-hand side, we have

[ fmdp = L[ e P F(Ddt]dp

=I5 [e_ft]: FO dt=f;" e "2 at=L{; F(n)}.

ILLUSTRATIVE EXAMPLES

Example 1. If L{t sin wt } = ﬁ , evaluate

Q) L{wt cos wt + sin wt } (i) L{2 cos wt — wt sin wt }
Sol. Let F(t) =t sin wt then
F'(t) = wt cos wt + sinwt and F"(t) = 2w cos wt - w? t sin wt
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Also F(0) = 0, F'(0) = 0, F(0) = 2w

Given f(p) =

2+w2)2

() H{F'®}=pf(p)-FO)

= L{wt coswt + sin(ut}:p.(pzz+w—52)2 -
(i) L{F"(®O}=p* f(p) - p FO) - F'(0)

2w
(p? +wz)2

2wp3

— w3tsi =
= L{2w cos wt — w?t sin wt } = p2. Pt w?)?

-p.0-0=

p3

~ L{2 coswt — wtsinwt } = PPl

et —COS wt

Example 2. If F(t) = , find the Laplace transform of F(t).

Sol. L(e®) = p%

L(cosbt) =

2+b2

1 p
. L(e? — cosbht) =— —
( ) p—a  p?+b?

Now, L(*=522) = [ (L2 — =2 )dp

= [log(p —a) — %log(p2 + bz)]:

_1 00
=~ [log(p — @) —log(p* + b))}

p2

_1 (p—a)2]°° _1 ]
=3 [log D7 1b? ) =3 |:10g 1+b2

p

(p_a)z} - l

p2+b2 }
p2+b2

_ 1
= -3 log{ 4 e &
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sin at

Example 3. Find the Laplace transform of , Does the Laplace

transform of % exist ?

Sol. Si lim sin SInat oxists.

a

p2+a2

Now, L(sinat) =

= L( Sintat) fpoop 24q2 dp = [tan ' (E)]00

— -1 (P\ — -1(¢a
=cot™! (Z) =tan~! (E) :
Example 4. Find the Laplace transform of
(i) t3e3t (i) t Sin? 3t
=3ty — _—
Sol. (i) L{e™""} = o

. 3,-3t) — 3d 1 _ (1331 6
s e = (107 s G = - e T e

1-Coseét

(ii) sin? 3t =

18
p(p?+36)

& L{sin?3t} =3 [L(1) - L(cos 60 ] =5 (5 — =2 ) =

p  p%+36

18

o L{tsin?3t} = - — [p(p2+36)

| = 18) (1) @* + 36p)2(3p2 + 36)

_ 54(p?+12)
 p2(p2+36)2

(iii)L(l—cost):%— P

pZ+1

(1 cost) f (_ . - +1) dp
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[logp — = log(p? + 1)] [log ]:

1 1 ° 1 241
"2 l1°g<1+p_12)l =-3 Og(p +1) glog(ppz )

p

Now, L(1 C"St) :f = log(p +1)

1 po©
=3[, [Nog(p?+1) — 2logp]dp

2.y

2 [tog(p? + 1) = 21ogpy.p — [ (2 )

p +1
= [Elo (p2+1)]00+f —)+——tan 1
208 p? p PP 241 p

1-cost

=>L( " )—cot‘p-—log(1+—)

Example 5. Find the Laplace transform of the following functions:

(i) - (l) 1-cos?2t

t

1
(p+1)2+1

Sol. (i) L(etsint) =

tsint 0 1 — 0
=L = o Gy dr = ltan™ (p + DIy

= % —tan"Y(p+ 1) =cot™1(p + 1).

(ii) L(1 —cos 2t) == - 2

2+22
=L=52) =5 G

= [logp - é log(p? + 4) ]:
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p2+4] _
p2 1~

1
=3 [logl + log

3.20 SUMMARY

1. Laplace transform L{F(t)} = f(p) = fooo e PLF(t)dt .

2. Laplace transform of some elementary functions

()L{1}=2,p>0

’
p

n! . . .
oL where n is posmve mteger.

(ii) L{t"} =

(iii) L{e?} = p% p>a

a H
(iv) L{sinat} = # ,p>0

3. Exitance theorem: If F(t) is piecewise continuous for t > 0 and is of

exponential order b, then L{F(t)} = f(p) exist for p > b.

4. Laplace transform of derivative:

L{F'(D} = pL{F()} - F(0) = pf(p) - F(0) ,  if L{F(t)}= f(p)

5. Initial-value theorem: If F(t) is continuous for all t = 0 and is of

exponential order as t — oo and if F'(t) is of class A then
limF(t) = lim pL{F(t)}.
t -0 p 2

6. Final-value theorem: If F(t) is continuous for all t > 0 and is of

exponential order as t — oo and if F'(t) is of class A then tlim F(t) =

Il)ig(l) pL{F(t)}.
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7. 1f L{F()} = f(p), then L{2 F()} = [” f(p)dp provided the integral

exists.

CHECK YOUR PROGRESS

True and False questions

Problem 1. lir%F(t) = lim pL{F(t)} is Initial-value theorem.
- p 2o

Problem 2. Laplace transform is defined as

L{F(D} =f(p) = J; e P*F(6)dt .

n!
pn+1’

Problem 3. L{t"} = where n is positive integer.

. a
Problem 4. L{sinat} = rva? p>0

Problem 5. If L{F()} = f(p), then L{ F(t)} = [ f(p)dp

provided not the integral exists.

3.21 GLOSSARY

Discontinuous functions
Periodic Functions
Integration

Even, odd functions
Trigonometric functions

Integrations
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3.24 TERMINAL AND MODEL QUESTIONS

Q 1. Definition of Laplace transform.

Q 2. What is Initial-value theorem and Final value theorem.

Q 3 Find the Laplace transform of the following functions:
(i) t3e3t (i) e ?tsin4t

Q 4. Find the Laplace transform of the function L{sin?t} .

Q 5. State and prove Existence theorem.
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3.25 ANSWERS

CHECK YOUR PROGRESS
CYQ 1. True
CYQ 2. True
CYQ 3. True
CYQ 4. True
CYQ 5. False

TERMINAL QUESTIONS

4
p2 +4p +20

TQ 3. (i) @1_2—‘;)6 (ii)

p%+8
" p(p?+16)

TQ 4
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4.1 INTRODUCTION

In mathematics, the inverse Laplace transform of a function F(s)
is the piecewise-continuous and exponentially-restricted real function

f(t) which has the property: denotes the Laplace transform.

4.2 OBJECTIVE

At the end of this topic Lerner will be able to understand:
(i) Heaviside’s Unit Step Function
(ii) inverse Laplace transform
(ifi)  Heavisede Expansion Formula for Inverse Laplace Transform

(iv)  Convolution theorem

4.3 LAPLACE TRANSFORM OF SOME SPECIAL
FUNCTIONS

m (1) Unit Step Function ( Or Heaviside’s Unit Step Function)

The unit step function u(t —a) is defined as u(t—a)

u(tfa)z{(l)’ i;g,whereazo.

0,t<0

As a particular case, u(t) = {1 £>0

0, t<a
F(t), t=a

The product F(t).u(t —a) = {

t

The function F(t —a). u(t — a) represents the graph of F(t) shifted through

a distance ‘a’ to be right.

Laplace Transform of Unit Step function
L{u(t-a)} = [, e Ptu(t — a)dt
=[JePodt+ [“ePt1dt
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1

In particular, L{u(t)} = .

Second Shifting Theorem
If L{F(t)} = f(p), then L{F(t - a).u(t-a)} = e~?Pf(p).
L{F(t - a).ut-a)} = " e P'F(t - a).u(t — a)dt

= [, e PU+OF(u)du, whereu=t-a

=e fooo e PYF(u)du = e~ f(p)

Note: m ifa = 0, L{F(t) u(®)} = f(p) = L{F()}.

ILLUSTRATIVE EXAMPLES

Example 1. Express the following functions in terms of Heaviside’s unit

step function:

sint, 0<t<m . o res
() f(t) = sin2t, m<t<2m (i) F(t) = {e 0 >3
sin 3t, t>2m , X

sint , t>mn
cost , O<t<m

(iii) F(t) = {

Sol. (i) F(t) = sin t { u(t) — u(t — m)} + sin 2t{u(t — ) — u(t — 2m)}
+sin3t u(t - 2 )
= sint u(t) + (sin 2t —sin t) u(t - ) + ( sin 3t —sin 2t) u(t - 2 7).
(i) F(t) = e~ {u(t) —u(t - 3)} + 0 {ut - 3)}

= e~t{ u(t) — u(t - 3)}
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(iii) F(t) =sint u(t - m) + cos t{u(t) - u(t - m)}
=costu(t) + (sint—cost) u(t-m)
Example 2. Find the Laplace transformation of the following functions
(i) t—1)%u(t-1) (i) sintu(t - m)
(iii) e73tu (t - 2) (iv)e " {1-u(t-2)}
Sol. (i) Comparing (t — 1)% u(t — 1) with F(t — a) u(t -a)

a=1and F(t) = p%

SL{t=1D2u(t—1) }=e tf(p)

(i) Expressing sin t as a function of (t - ) , we have
Sint=sin[(t-n) + ] =-sin(t-m)
Comparing - sin(t - m)u(t - m) with F(t —a) u(t - a), we get

a=m and F(t) =-sint

1
pZ+1

f(p) = {F(O)} = -
Now by second shifting property

~ L[sin t u(t - 7)] = e"™f(p)

(i) L{u(t - 2)} =

e~2p
p
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s Lf{e 3tu(t-2)} = ( using by first shifting property).

e—2(0+3)
+

p+3

e~?%p

(iv) L{1 —u(t-2)} =§- -

e—2(+1)

s Lle {1 - u(t- 2)}] ( using by first shifting

1
p+1 p+1

property).

Example 3. Express the function shown in the diagram in term of unit

step function and obtain its Laplace transformation.

A
t—1,1<2<3

Sol. Here f(t):{3—t 9 <t <3

AR =(t-1) {ut—1)—ut-2)}+

G-t {ut—2)—ut-3)} 0

= (t—3)ut-3)-2(t-2)u(t—2) +(t-1)u(t-1)

Hence, L{F(1)} =L{(t-3)u(t-3)-2(t-2u(t—-2)+(t-1)u(t-1)}

_ e3P 277

e_p
p? p? p?

_eP(1-e7P)?
=

m (2) Periodic Function.

If f(t) is a periodic function with period T i.e. f(t + T) = f(t). then

L{f(0)} = l_pT fOT e PLf(t)dt

Here, L{f()} = J, e Pt f(t)dt
= [ e Ptf(e)dt + [ e PHF(R)de + [ e P F(D)dt + ...

Puttingt=u,t=u+T,t=u+ 2T, In the successive integrals
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L{fO} = [ e P fwdu + [, e PN f(u+ T)du
+ [ e PRI F(y 4 2T))du + ...
Since  f(u) = flu + T) = f{u +2T) =
L{fO} = [ e P f(w)du +e™PT [ e P f(w)du
+e 2T [Te P f(Wdu+ ...

=(L+e P +e72PT + ) [T e Puf(u)du

1

=——r |, ePf (Bt .

ILLUSTRATIVE EXAMPLES

Example 1. Find the Laplace transform of the following periodic

functions:
() f(t) = % , for 0<t < T (saw-tooth wave of period T)
(ii) f(t) = sin (%t) for 0 <t < a. (Rectified sine wave of period a)

Sol. (i) Here, L{f()} = — 7 [ e P f(0)dt =—— [ e ™.~ dt

1-e

_ 1 tept\T T e Pt
"~ T(1-e~PT) [( -p )0 B fO L. T dt]

p2T  p(1-e~PT)

1 [ e Pt 11— e‘pt] 1 e~ PT

T 1—e-PT T p2T

(i) L{FO} = — = Jy e Pesin(5)de ...(1)

a

Let | = foa e Pt sin (%t) dt
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_ l e~at (Tr)l l 1 ( n)l _ (1+e*P)ar
- 2\ /)" AU T
p2+% a p2+Z_2 a a‘p“+m

(1+e~P)an
(1—e~9P)(a?p?+ m?)

« From (1), L{f()} =

Example 2. Draw the graph and find the Laplace transform of the

triangular wave function of period 2c given by

t ,0<t<sc
f(t)_{Zc—t, c<t<2c’

1

Sol. L{f()} = —= J, e Pef(D)dt

_ 1
T 1-e—2cp

[y e Pt tdt + [ ePi(2c — t)dt|

—1. e_pt}: + {(Zc = t).%t — (=1). e;t}zc]

2
p c

1—e~¢P

1 (1 —2e CP 4 e‘ch) 1 (1—e~¢€P)2

1
2

T 1-e—2cp T p2 (1+ e~CP)(1— e~CP)  p2 " 1+e~CP

‘p _v
1 e2 +e 2 1 cp
== % ) = > tan ().
p2<cp _%) p2 2

ez —e

p2

The graph of the given function is shown below:
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Example 3. Find the Laplace transform of the rectified semi-wave

function defined by

sinwt ,0<t<Z
f(x) = © or

, et E
w w

Find the Laplace transform of the following periodic function

Sol. Here f(t) is a periodic function with period %’T

2
1 P

L)} = ——= [,© e PHf()dt

—e

O o =Pt gin o t dt + 2T/O —pt () dt
<np 0 T

w

_ 1 [e‘pt(—p sin wt—w coswt)]n/w

_2mp 24,2
w ptw 0
_Tp

we w+w w

1-e o J(1+e @ (p2+w2)_ l—e_% (p2+w2).
(1-e70 )1ee0) (1o

4.4 INVERSE LAPLACE TRANSFORM

If L{F(t)} = f(p), then F(t) is called the inverse Laplace transform of f(p)

and is defined as

L7{f(p)} =F(®)
Here L~ denotes the inverse Laplace transform operator

. Qj 5ty —_1 . g-101 5 _ st
Example: Since L{e~'} = el L {p_s} e
The inverse Laplace transform given below at once from the results of

Laplace transforms given earlier:
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W)LY =1 (2) L7 {5) =e

tTL—l

D! if n is a positive integer.

@) L5 =

(4) L — et L (5) L 1{——1}=2sinat

(p-a)* (n-1)! p2+azd T a

(6) L™1{ =2—} =cos at

p2+a2

1

(7) L_l{ pZ_aZ

} = isinh at

(8 L7

} =cosh at

pZ_aZ

4.5 LINEARITY PROPERTY

If ¢; and c, are constants and L{F; (t)} = f1(p) and L{F,(t)} = f>(p),
then

L™ H{c1fi(p) + c2f2(p)} = ciL7H{f1(p)} + 2L {f2(p)}-

By definition,

L{cifi(p) + 220} = Jy e PHei Fi(D) + coFp(D)} dt
=c, [ e PR (Ddt + ¢, [ e PEF, (D dt
=c1£1(p) + c2f2(p)

Lo fi(p) + c2f2(0)} = i Fi(t) + ¢ Fa(t) = e L7Hf1(p)} +
L2 (p)}.

Note: m The above result can be extended to more
than two functions.
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4.6 FIRST TRANSLATION OR SHIFTING
PROPERTY

m If L7Hf(p)} =F(t), then L™H{f (p — @)} = e™F(t).

f(p) = [,” e PE.F(t)dt (By definition)
wf(p-a)= [ e” PV F()dt
= [, e7Pt.e®F(t)dt = L{e®F (1)}

LHf(p — &)} =e™F().

4.7 SECOND TRANSLATION OR SHIFTING
PROPERTY

m If L7Y{f(p)} = F(t), then

F(t—a), x>a
0 ,t<a’

L Y{e % f(p)} = G(t) where G(t) = {

f(p) = J, e PL.F(t)dt (By definition)
ne"%f(p) = [ e~ e PLF(t)dt = [ e PET DL F(t)dt
Putt+a=uthendt=du

= faoo e P¥ F(u—a)du = faoo e Pt F(t—a)dt

= [ e7Pt.0dt + [ e PELF(t—a)dt = [ e PL.G(t)dt = L{G(1)}

Hence the result.

4.8 CHANGE OF SCALE PROPERTY

m IFL7Y{f(p)} = F(), then L~ {f(ap)} =3 F(5).

a

f(p) = [, e PE.F(t)dt (By definition)
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« f(ap) = J, e~®*.F(t)dt , now put at = u therefore dt = du

_ foooe_apt-F(g)% — ifome—pt_p(é) dt
=f e Q)= F (D)

L@y =5 F(;).

MAT 509

Note:m Whenever it is convenient to break an expression into
partial fractions, it becomes easier to manipulate inversion term by
term.

ILLUSTRATIVE EXAMPLES

Example 1. Find the inverse Laplace transform of
. 3(p2—1)2 ..\ 2p+1
(i) 22 (i) 27,

...y 4p+15
(III) 16p2-25

2
- 3(p%-1)" _ 3p*-6p?+3 _
Sol. (i) 2 = 0T

! {3(1’2;—51)2 } _ 2 [-1 {%} _
= -3 =3

(i) L {2 o () L

=2 cosh 2t + % sinh 2t.

16p?-25  16(p>-3;) 4’ p2-(5) 16 p2(5)

_1( 4p+15 ) _1,_ p
L~ {16p2—25 } B ZL ' {pz_(i)z } *

4

(iii) 4p+15 _  4p+15 _ 1 15 1

=1 cosh(E t) =

4 4 16
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Ee_(%) (\/5_’ cos? t+ sin?t).

Example 2. Find the inverse Laplace transform of

. 6  3+4p 8 — 6p .. p3
(I) 2p—-3 9p?2-16 16p%+9 (Il)p4—a4

Sol.(i) L {2 St S )

2p -3 9p2 — 16 16p2 +9

:3L‘1{—1 7}_i[’—1{71
4 R Tyl R N

3
2t 1 3 . 5 4t 4 4t 1 4 . 3t
=3ez --.=sinh—--cosh—+=.-sin—
3 4 3 9 3 2 3

3
Zt 1 . , 4t 4 4t 2 . 3t 3 3t
=3ez --sinh—--cosh— +=sin—-=cos—.
4 3 9 3 3 4 8 4

G 1 s =17 Pl )|

1

2 pZ_aZ p2+aZ
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:% (coshat + cosat) .

Example 3. Find the inverse Laplace transform of

M 1 (<) (i) L (=)

p? p?

Sol. (i) we have

L*(§)=t=F@

L”(eﬂpé):{tSZ:EZE:a2)uaa.

t—1,t>1_

0 tep=t=Du-D

(o3> -gue-9

0 ,t<3

By second shifting theorem

cosB(t—Z—n), t>2—”
3 3

0 <z
3

. [e"P —3e73P
Hence L™t (%) =
p

By second shifting theorem

= cos 3tu (t — 2?”)

Example 4. Find the inverse Laplace transform of

. p%+2p-3 .. 1+ 2p
—_— I _—
M) p(P-3)(p+2) ( )(p+2)2(p—1)2

2
Sol. (i) 2222 =L 4 % 3
()p(p—3)(p+2) 2p + 5(p—3) 10(p+2)

) < () 40 () - 51 ()
p(p—-3)(p+2) 2 P 5 p—3 10 p+2
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(ii) 1+ 2p _ A
@+2)2(p-1? p+2 (P+2)? p-1 (p-1)?

21420=A(p+2)(p— D**+B(p—- 1)?>+Clp—-1)(p+ 2)?
+D (p +2)?
=A@EP3>—-3p+2)+B(E?—2p+1)+C(p3+3p?—4)
+D(p? + 4p + 4)
After comparing the coefficient

A+C=0,B+3C+D=0,-3A-2B+4D=2,2A+B-4C+4D =1

Solving these equation thenwe get A=0,B = — § C=0,D= §

. 1+ 2p I S 1
T +2)2(-1? 3(+2)?2  3(p-1)2

L (ﬁ) - _gL_l ((p 4—12)2) + éL_l ((p —11)2)

1 _ 1 t —
=—se 2t.t+§et.t= E(et—e 2ty

4.9 INVERSE LAPLACE TRANSFORM OF
DERIVATIVES

= IFL7Yf(p)} = F(D), then L1 ()} = L7 [ 22 (f@))] =
(—1)™t"F(t).

We have, L{t"F(t)} = (=1)" {%f(p)} =(=D"f"(p)

= LTHfM ()} = (“D™MF(0).
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4.10 MULTIPLICATION BY p

m If L7Y{f(p)} =F(t) and F(0) =0, then L~ {pf(p)} =F'(t).
We have L{F'(t)} = pf(p) — F(0) = pf(p)

= LHpf(@)} =F'(Y (~F0)=0)

Note: m if F(0) # 0, then L™1{pf(p) — F(0)} =F'(t) or
L~ {pf(p)} =F'(t) + F(0)8(t) where &(t) is the unit impulse function.

m Generalizations to L™ {p™f(p)} are possible forn=2, 3, ...

4.11 DIVISION BY p

m If L1{f(p)} = F(t) then

L1 {f%p)} = [ F(wdu

Also, L1 {ff)—?} = fot fot F(u)du du and

-1 {%} = fot fot fot F(u)du du du and so on

_ f(p) _ rtrt t .
L 1{p_I:]} - fo fo ,,,,,fo(ntimes) F(u)du.......du (ntimes)

4.12 HEAVISIDE EXPANSION FORMULA FOR
INVERSE LAPLACE TRANSFORM

m If F(p) and G(p) are two polynomials in p and the degree of F(p) is
less than the degree of G(p) and if G(p) =(p-a1) (P - a3) ....(p —
a,), where a4, a,, ... a, are distinct constants, real or complex, then

-1 m}: n (—F(ar) art)
L {G<p) r=1\gi(a,) ¢
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Proof. By the Methods of partial fractions, let

F(p) A A A A
£2_1+_2+...+ _r+... n
G(p) p-ai; p-az p—ar p—an

Multiplying both sides by p — «,- and allowing p = «,., we obtain,

— lim F@®-ar) _ (p—ar)
Ar_ph—>n;rlr G(p) plgng(p) 15& G(p)

_ F(ar)
= Jim F(p). lim ==

JF® _Fla) 1o, L Fle) 1 Fla) 1
G(p) G'(ay) ‘p—ay 7 G'(ay) ‘p-—ar T G'(ap) p-an

+F(an) an,t

S L7t {F(p)} = @) pare y | 4 EOD) pare
G’ (a1) G’ (ar) G’ (an)

G(p)

— \'n F(ar) r
(o)

4.13 CONVOLUTION THEOREM

m If L71{f(p)} = F(t) and L~ 1{g(p)} = G(t), then
L 1{f(p)g(p)} =F *G = [ F(u) G(t— u) du

Proof. Let ¢(t) = fot F(u) G(t — u) du then

L{o®} = [ e [ F(w) Gt — u) du] dt

— 0 t -

=J, J,eP*F(u) G(t—u) dudt
On changing the order of integration, we get
L{ p(t)} = fooo fuoo e PtF(u) G(t — u) dtdu

= ["ePFW)f; e Pt"WG(t— u) dt|du

= [7e PUF(w)[[," e P’G(v) dv]du  (onputtingt—u=v)

= [y e P*Fg(p)du=g(p) J,” e P F(w)du

= 9(p)-f(p) = (p) 9(p)
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= L {f(p)g(p)} =F*G = [[F(w) G(t — u) du

We call F * G, the convolution of G and G and the theorem is called
convolution theorem or the convolution property.

ILLUSTRATIVE EXAMPLES

Example 1. Find the inverse Laplace transform of
. 1 .. p+1
(i) log(1 + p—z) (ii) Iog(pj)
. _1 1Yy _
Sol. (i) let L~{log(1+ pz)} = F(t)

L1 [:—p {log (1 + piz)}] = -t F(t)

-2

~tF(D)

=2 =- R

p(p?+1)

L1 [% _ﬁ] =LF(t)

lfcost:%F(t)

_2(1-cost)

Ft) =20

(ii) Let L {log (z—j)} = F(t)

L [ {log(p + 1) — log(p — 1)}] =t F()

Lt - = tR

p+1 p—1

e t—et=-tF(t)

e~t-et _2sinht
t

F(t) =
Example 2. Find the inverse Laplace transform of
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. p?-a? .. 2ap
(I) (“) (p2+ a2)2

(pZ + a2)2

Sol. (i) since L1 {p P

2402

} = cos at

L™t [;—p{p +a2}] =-tcos at

1[@ +a2)2] =-tcos at

1 [ p%— a?

= az)z] =-tcosat.

(ii) since L1 {pza

+a?

Lt [dd—p {pzzaz}] = - tsinat

-1 —-2ap - .
L [(p2+ az)z] = -tsinat

} =sin at

-1 2ap _ .
L [(p2+ az)z] = tsinat.

Example 3. Apply Heaviside expression theorem to obtain

(i) L {w} (i) L {3107+21}

S+p?-2p (P-1)(P?+1)
Sol. (i) let F(p) =2p? + 5p - 4 and
G(p)=p* + p* — 2p=p(p-1)(p +2)
G(p)=0 gives p=0,1,-2
o0 =0,a, =1, a3 =-2
= F(oy) =-4, Flap) =3, F(az) =-6

=G'(p)=3p* +2p-2=G"(;)=-2,G'(a3) =3, G'(at3) =2

-1 {sz +5p—4—} - F(aq) ot + F(ay) ot + F(a3) ea?’t
p3 +p? -2p G'(aq) G'(az) G'(a3)

:(_:)e°t+(3)e +(6)e_2t:2+€t—e_2t_

(i) let F(p) =3p+1and
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G =@-DE*+D=@-DE+dE-1)
G(p)=0 gives p=1,i,-i
a, =10, =, a; =-1i

F(y) =4, Flay) =3i+1, Flag)=1-3i

=G6P=@p-D.Q2p)+p*+1 = 3p*-2p+1

= G'(0y) =2, G'(0y) = -2 2i, G'(ot3) = 2i—2

_1{ 3p +1 } — F(C(l) O(1t + F(az) azt + F(a3) ea3t
(P-D@P*+1))  6'(1) G'(az) G'(az)

4 3i +1 i 1-3i _i
(et G+ () e
2 -2 - 20 20—-2

P (P PN (P P

= 2ot -é(eit—e_it) ) (eit +e—it)
:Zet-é .2isint — 2 cost
=2e!-2sint—2cost.

Example 4. Use convolution theorem to evaluate:

L {@224)2}

Sol E_-_~_ _E
T (p%+4)2 p2+44  pZ+4

1
p%+4

p
p2+4

Let, f(p) = and g(p) =

1

~F(t) = LY{f(p)} = L (pzﬁ) =Lsin2t

2
And G(t)= L Y{g(p)}= L1 (p;ﬁ) = cos2t

Now, F(u)= %sinZu, G(t—u) =cos 2(t —u)

=~ by convolution theorem, we have
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-1 _(t1 . B
{(p2+4)2} = fo 5 sin2u. €os 2(t —u) du

= i fot[sinZt + sin(4u — 2t)]du

[u sin 2t — —COS(4:_2t)

1
4

t
] =Lsin2t.
0 4

CHECK YOUR PROGRESS

True or false Questions

Problem 1. If L (f(p)} = F(t), then L™*{f (ap)} == F(%).
Problem 2. If L™*{f(p)} = F(t), then

LY} = L7 L @) = (CDmenF ().

Problem 3. If L™*{f (p)} =F(t) and F(0) =0, then L™ *{pf (p)} =F'(1).
Problem 4. If L_l{f(p)} = F(t), then L—l{f(p — a)} = eatF(t).

Problem 5. L1 [% {f(p)}] = (D)™ (2).

4.14 SUMMARY

1. Laplace Transform of Unit Step function
L{u(t—a)} = fooo e Ptu(t — a)dt = % et
2. Second Shifting Theorem

if L{F(1)} = f(p), then L{F(t — a).u(t-a)} = e~*Pf(p).
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3. 1FL1{f (p)} = F(1), then L™ {f (ap)} == F(%).

4. Inverse Laplace Transform of Derivatives

IfL7Lf ()} = F(D), then L (F" (1)} =L [ (F(@}| = (- D)"¢"F(®).

5. Convolution theorem
If L~1{f(p)} =F(t) and L™1{g(p)} = G(t), then

L {f(p)g(p)} =F* G = f, F(u) G(t — u) du

4.15 GLOSSARY

Discontinuous functions
Periodic Functions
Integration

Even, odd functions
Trigonometric functions
Differentiation

Integrations
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4.18 TERMINAL AND MODEL QUESTIONS

Q 1. Use convolution theorem to find

A 1 T 1

(I) L {(p2+4)(p+2)} (“) L {(p2+ a2)3}
-1 1

(iff) L {(p+2)2(10—2)}

Q2. Find the inverse Laplace transform of

() cot™(B) (i) tan™? (g) (i) log (1 + %) (iv) log (1 - Z—j)

Q3. Apply Heaviside expression theorem to obtain

(i) L {2 (i) Lt {2t

p(p—1)(p+1) p?-p—6

Q4. Find the inverse Laplace transform of

(i) log (—2-—) (i) plog (%)

(p+2)(p+3)

Q5. State and prove convolution theorem.
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4.19 ANSWERS

TQ1 (i) é(sin 2t — cos2t + e~%t) (i) 8%3 (sinat — at cos at)

(iii) £ (2 — e72¢ — 4te™2t)
TQ2 () %% (i) Z2 (i) = (iv) (1~ cosh at)

TQ3 () 1+5et-Ze™ (ii) 5e3t — 22t

+e72t 73t

TQ4 (i) == (i) 2 ( sinh t— t cosh 1
CYQ 1 True
CYQ 2 True
CYQ 3 True
CYQ 4 True

CYQ 5 False
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UNIT 5: - APPLICATIONS OF LAPLACE

TRANSFORM TO DIFFERENTIAL
EQUATION
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5.1 INTRODUCTION

In mathematics, the inverse Laplace transform of a function F(s)
is the piecewise-continuous and exponentially-restricted real function
f(t) which has the property: denotes the Laplace transform. The Laplace
Transform can be used to solve differential equations using a four step
process. Take the Laplace Transform of the differential equation using the
derivative property (and, perhaps, others) as necessary. Put initial

conditions into the resulting equation. Solve for the output variable.

5.2 OBJECTIVE

At the end of this topic Lerner will be able to understand:

(i) Solution of ordinary linear differential equations with constant
Coefficients.

(ii) Solution of simultaneous ordinary differential equations.

(iii) Solution of ordinary differential equations with variable

Coefficients.

5.3 APPLICATIONS OF LAPLACE TRANSFORM
TO DIFFERENTIAL

5.3.1 Solution of ordinary linear differential equations
with constant coefficients:

Laplace transform can be used to solve ordinary linear differential
equations with constant coefficients. The advantage of this method is that
it yield the particular solution directly without the necessity of first finding

the general solution and then evaluating the arbitrary constants.
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Steps: (a) Take Laplace transform on both sides of the given differential

equation, using initial conditions. This gives an algebraic equation.
(b) Solve the algebraic equation to get y in term of p.

(c) Take inverse Laplace transform on both sides. This gives y as a

function of t which is the desired solution.

MAT 509

Note: L{F"(t)} = p"fp) - p"'F(0)—p"?F'(0) -
pF"=2(0) — F™1(0); if L{F(t)} = f(p).

ILLUSTRATIVE EXAMPLES

d3y+2d2y dy

Example 1. Solve the equation ey eIl

2y =0, wherey =1,

d d?
2=, "Z=2att=0.
dt dt

Sol. The given equationis y"' +2y" — y' =2y =10
Taking Laplace transform on both sides, we get
[p*y — p?y(0) — py'(0) — y"(0) ] +2[p*y — py(0) — y'(0)]
-[py —y(0)] -2y=0 e (1)

Using the give conditions y(0) = 1, y'(0) = 2, y"(0) = 2, equation (1)

reduces to

(p* +2p*—p—2)y =p*>+4p+5

5= p?+4p+5 _  p>+4p+5
p3+2p2-p-2  (p-D(p+1)(p+2)

- 1 1 . . '
T 3(p-1) p+l  3(p+2) (using partial fractions)
Taking the inverse Laplace transform of both sides, we get
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) e st

y= % (Set+e ) —et,

2
Example 2. Solve the equation % -3 3—3; + 2y =4t + e3¢, where y(0) = 1

and y'(0) =-1.

Sol. The given equationis y"" — 3y’ + 2y = 4t + e3t
Taking Laplace transform on both sides, we get

1

P2y~ py(©) ~y' (O] -3 [py (O] +2y =%+ ...(])

Using the give conditions y(0) = 1 and y’(0) = -1, equation (1) reduces to

2 _ = _4 1
(p*=3p+2)y-ptl+3=m7+-——
(P2=3p+2)y=—s+—+p—4

p?  p-3

p*=7p3+13p2+4p-12
p2(p-1)(p-2)(r-3)

y:
+ (using partial fraction)

p-2  2(p-3)
Taking the inverse Laplace transform of both sides, we get
YA YA R YRS SR N Y ST SRR S S B
y= 3L {p} 2L {pz} 2 L {p—l} 2L {p—z} T 2 L {p—B}
=3 +2t-2el - 202 4 2gBt
2 2
=3 +2t+%(e3t -et) —2e?t,
Example 3. Using Laplace transformation, solve the equation
d?x o
— + 9x =cos 2t,
dt

where x(0) = 1, x(3)=-1.

Department of Mathematics
Uttarakhand Open University

MAT 509




Mathematical Methods

Sol. The given equation is x"' + 9x = cos 2t
Taking Laplace transform on both sides, we get
L(x") + 9L(x) = L(cos 2t)

[p2% — px(0) — x'(0)] + 9% =L

p2+4

S P*+Ni—p—A= L (where x'(0) = A)

p%+4

A
14 + p

= X =
(p%+4)(p%+9) p%+9 p2+4

Taking the inverse Laplace transform of both side, we get

x=1 (cos 2t — cos 3t) + cos 3t + Zsin3t , but X(E)Z -1
5 3 2

1= A 1==1. =1
=>-1—5( 1 O)+0+3( 1) = -1 c-3 = A=<

x(t) = i (cos 2t — cos 3t) + cos 3t + gsin 3t
==(cos 2t + 4cos 3t + 4 sin 3t).

Example 4. Using Laplace transformation, solve the equation

(D2 +n?)x =asin(nt+a);x=Dx=0att=0

Sol. The given equation is (D? + n?)x = asin(nt + a)
Taking Laplace transform on both sides, we get
L(x"") + n?L(x) = L{asin(nt + a)}

n .
+ asina .

= [p?x — px(0) — x’(0)] + n?x = a cosa S

2 4 n2)i = an cosa an sina
n-)x =
(» ) (@?2+n?)? | (p24n?)?

Taking the inverse Laplace transform of both side, we get

n

— -1
x =(acosa) L [(p2+n2)2

] + (asina) L1 [ L ]

(pZ +TLZ)2
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we know that L1 [

1 .
> 2]:—smnt
pc+n n

-1 [ 1 { 1 }] :ntcosnt—sinnt

Ldn (pZ2+n? n2

-1 [ —2n ] __ nt cosnt—sin nt
L (p2+n?)2

n2

n

|

1 .
_(p2+n2)2] =5 (sinnt —nt cosnt)

Again, from (3), L™* [;—p (pzinz)] =-t. % sin nt

-1 -2p o t .
= L [(p2+n2)2] == sin nt

-1 D _t .
= L [(p2+n2)2] = sin nt

~ From (2), x=(acosa). ﬁ (sin nt — nt cos nt) + (asin a). i sin nt

= %2 [ cosa sin nt — nt cos( a + nt)].

Example 5. Using Laplace transformation, find the general solution of the

equation
(D? + k?)y = 0.
Sol. The given equation is (D? + k?)y =0
Taking Laplace Transform on both sides of (1),
Ly") +k*L(y) =0
Or s*L{y}-sy(0)-y'(0) +k*L(y) =0

Or (s?+k?) L{y} —As—B =0, where y(0) = A and y'(0) = B, say

__As+B S
s2+k2 S2+k?2

Or Ly}
Taking inverse Laplace transform of both sides of (2), we get
y=Acoskt+§(sinkt) = A cos kt + C sin kt
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where C = B/k . (3) is the general solution of given equation and A and B

are arbitrary constants.

5.3.2 Solution of simultaneous ordinary differential

equations:

A simultaneous differential equation is one of the mathematical equations
for an indefinite function of one or more than one variable that relate the
values of the function. Differentiation of an equation in various orders.
Differential equations play an important function in engineering, physics,
economics, and other disciplines. This analysis concentrates on linear

equations with Constant Coefficients.

Laplace transform technique can be also used in solving two or more

simultaneous ordinary differential equations.

ILLUSTRATIVE EXAMPLES

. d d : :
Example 1. Solve the equation d—’; —y = e, d—f + x = sint, given

x(0) =1, y(0)=0.
Sol. Taking Laplace transform of the given equations, we get

[px —x(0)] - %=

=>pf—1—)7=i (sincex(0)=1) =p —yzﬁ

And [py —y(0)] + x =

pZ+1

1

:>f+p)7=p2+1

....(2) [since y(0) = 0]

Solving equation (1) and (2) for X and y, we have

2
ge—L 1l Py

(p-D(P?+1)  (p?+1)2 p-1  p2+1  p2+1 (p%+1)?
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And

= _ 1 N p — 14
Y @*+1)?%2  (p-DP?*+1)  (p?+1)?

Taking Inverse Laplace transform of both sides, we get

St At L o]
p—-1  p?2+1  p?+1 (p?2+1)2

==[et + cost + 2sint — t cost]

] o]
(p?%+1)2 p2+1  p?+1

%tsint—%[et—cost+sint]
=—[tsint —e’ + cost — sint]
Hence x == [e’ + cost + 2sint — t cos t]
And y==[tsint —e+ cost — sint].

Example 2. Solve the simultaneous equations

(D?—-3)x—4y =0 and

X+(D2+1)y=0f0rt>0,giventhatx=y=d—y:

dt
and%zZattz 0.

Sol. Taking Laplace transform of the given equations, we get
p?x —px(0) —x'(0) —3x —4y =0

= (P?*-3)x—4y=2 ...(1) and
x+p*y-py(0)—y'(0)+y=0

ie. I+ @P*+1)y=0

solving (1) and (2) for X and y , we get
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_2w*+y 1 1
TP -n? | el

2z 1 ;]
(P2-12 (p—1)2

Taking inverse Laplace transform on both sides, then we get

t -t
] =tel+te t = Zt(e re ) =2t cosh t

(p+1)2

1 1 ]
p-1  (p+1?  (p-1)2

t_ -t t_ -t
= —2(e7t — et —tet +tet) =£=° -t(e £ )
2 2 2

=(1—t)sinht
Therefore x=2tcasht,y=(1—t)sinht.

Example 3. The co-ordinate (X, y) of a particle moving along a plane

. . d .
curve at any time t are given by d—i’ + 2x =sin 2t ,

%—2y=c052t;(t>0)

It is given that att = 0, x = 1 and y = 0. Show using transforms that the

particle moves along the curve 4x? + 4xy + 5y* = 4.

Sol. The given equations are % + 2x = sin 2t

dx
E—Zy—cosZt

Above equation may be re-written as

2x + Dy = sin 2t
Dx — 2y = cos 2t, where D = %

Taking Laplace transform of equation (1) on both sides, we get

2
p2+4’

2x+py -y(0)= where X = L(x) and y = L(y)
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Therefore

Again, taking Laplace transform of equation (2) on both sides, we get

p
+

ed where x = L(x) and y = L(y)

px -x(0)-2y=

P41 e (B

therefore px+2y= )

multiplying equation (3) by 2 and equation (4) by p and then adding, we
get

_ 4 2
2 5= 14
p2+4  p?+4

4x+p +p

Therefore (4 +p?)x =1+p

1+p _ 1
p?+4  p?+4  p?+4

Therefore X =
Taking inverse Laplace transform, we get
1 .
x=55m2t+cos2t

Again, multiplying equation (3) by p and equation (4) by 2 then
subtracting equation (4) from (3), we get

-2

Therefore y= o2

Taking inverse Laplace transform, we get y = - sin 2t

Now, 4x% =4 E sin?2t + cos?2t + sin2t cosZt]

Therefore 5y2 =5sin?2t and
4xy =4 [(% sin2t + cosZt)(—sinZt)]
= - (2sin?2t +4sin2t cos2t)

Therefore  4x? + 5y?+ 4xy =4 sin?2t + 4 cos?2t =4
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Hence the result.

Example 4. Use Laplace transform to solve
%+y = Sint,%+x = cos tgiventhatx=2,y=0at t=0.

Sol. Taking Laplace transform of the given equations, we get

_ -1
pxX-x(0)+y=—-7
1

therefore px+y= i

and py—-y0)+x=

p2+1

therefore py+x= o

solving (1) and (2) for X and y , we get

1

X = and y=
Y p?+1

p?-1

1

_ 1 2 _
Therefore x =— + + - —
p+ p+1 p-1

Taking inverse Laplace transform on both sides, we get

x=e t+et

t t

and y=sint+e " -e

equations (3) and (4), when takes together, give the complete solution.

Example 5. Solve the following simultaneous differential equations by

Laplace transform

d d
&gy

dx
— =) — + —p-t
dt dt y=0; dt 2y=e

With the conditions x(0) =y(0)=0.

Sol. The given conditions are
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And % +2y=et

Taking Laplace transform on both sides of the equation (1), we get
L(x") +4 L(y") - L(y) = L(0)

Therefore px—x(0)+4[py —y(0)]-y=0

Therefore px+@p-1)y =0

Similarly taking Laplace transform on both sides of equation (2), we get

L(x")+2L(y) =L(e™")

_ — 1
px-x(0)+2y ==

therefore px+2y = —

subtracting (4) from (3), we get

1

4p-3)y =—-

_ 1 1
Therefore y=—- m = —=

“1(L 1)
7 \p+1 p—3/4

Taking inverse Laplace transform on both sides, we get

3t
(e
substituting y in (4), we get

f-i—z( 1 . 1
p 7 \p+1 p—3/4

5 2
7(p+1)  7(p-3/4)

therefore pXx=

5 2
7p(p+1)  7p(p—3/4)

therefore X =
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therefore

T 70D | 210-3/4)
Taking inverse Laplace transform on both sides, we get

1 5 _ g 3t
x=-—-e t+—e
3 7 21

equation (5) and (6), when taken together, give the complete solution.

5.3.3 Solution of ordinary differential equations with

variable coefficients:

Given functions a1, ao, f: R — R, the differential equation in the unknown

function y: R — R given by y"+ ai(t) y' + ao(t) y = f(t)

is called a second order linear differential equation with variable
coefficients. The equation in (1) is called homogeneous iff for all t € R

holds f(t) = 0. The equation in (1) is called of constant coefficients iff
a1, ao, and f are constants.

The solution of the second-order linear differential equation with variable

coefficients can be determined using the Laplace transform are as follows:

ILLUSTRATIVE EXAMPLES

Example 1. Solve the equation

da? a [ )
LR GRNL0) y(t)=01fy(0):0'(d_¥) =1

dt? dt t=0

Sol. Taking Laplace transform of both sides of the given equation, we get

L(y") + L(ty") — L(y) = L(0)

= (p*7 —py(0) = y' (0}~ L) ~§ =0
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=Py = 1= 17—y} =7 =0
=py—1-(py) ~y=0
=—po+ @ -2y=1

= . + (p p) y 5 which is linear differential equation .

2

LF. = ef(r

Solution of equation is given below

pZ

ype 2z = f(—é) pze_pz_zdp +c

2 2
_r° _r° )
= —[pe zdp+c=c+e 2, wherecis a constant.

¢ must vanish if y is transform since y — 0 as p — o

therefore or y=L"1 (i) =t.

pZ
Example 2. Solve the equation

4’y

t
dt?

dy _ . _ d_y _ _

+E—4ty—01fy—3,dt =0whent=0.
Sol. Taking Laplace transform of both sides of the given equation, we get

L(ty") + L(y") + 4L(ty) = L(0)
= — L") + LGy — 4= L(y) =0

Y y ap Y

d ( o ' - av _

— 5 7Y —py(0) = y'(0)} + {py —y(0)} — 47 =0

= (P4 +py=0
dp

Separating the variables, we have

dy d
Zy 2R -
y pc +4
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Taking Integration on both side then we get

log y +%log(p2 + 4)=logc

Taking inverse Laplace transform, we get
y=cJo(2t)

since y(0) = 3, from (4),
y=cJo(0)=c

therefore

hence the required solution is y=3],(2t) .

5.3.4 Solution of integral equations: An equation in which an

unknown function

occur inside an integral is called an equation.

Thus an equation of the form  Y(t) = F(t) + f; Y(uWK (u, t)du
(1)

in which F(t) and K(u, t) are known functions and Y(t) is unknown
function is an integral equation. Here a and b are either constants or

functions of't.
the function K(u, t) is often called the kernel of the integral equation.

Ifa and b are constants, equation (1) is called Fredholm integral equation.

Is a is a constant while b =t, it is called a Volterra integral equation.

A special integral equation of convolution type is

Y() =F(t) + [, YWG(t —w)du
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The Laplace transform is an excellent tool for solving such integral

equations of convolution type. The method is illustrated as follows:

ILLUSTRATIVE EXAMPLES

Example 1. Solve the integral equation

y(t) =t + foty(u). sin(t —u) du .
Sol. We have  y(t) =t? + y(t)* sin t

Let L{y(t)} = ¥(p) then taking Laplace transform and using

convolution theorem, we find that

1

2 _
= — 4 .
s Y p?+1

p

_ , p? _ 2
Therefore therefore y (p2+1) =

therefore

taking inverse Laplace transform, we get

::tZ_FEi
y 12°

Example 2. Solve the integral equation

yit) =1+ foty(u). cos(t —u)du .

Sol. We have y(t) =1+ (y(t)* cos t)

14
p2+1

y=-+ty.

Therefore

Therefore
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Taking inverse Laplace transform on both sides of (2), we get

y=1+ et/2L (p2+13/4)

1+ Zot/zginB
therefore y 1+ﬁe sin—-t.

CHECK YOUR PROGRESS

True or false Questions

Problem 1. Inverse Laplace Transform of Derivatives

If LHf ()} = F(D), then L{F™ ()} = L7 [ {F ()]
= (—1)"t"F(t).

Problem 2. If L=1{f(p)} = F(t) and L-*{g(p)} = G(t), then

L {f(p)g(p)} =F * G = [ F(uw) G(t—u) du is called

Convolution theorem.

Problem 3. Applications of Laplace transform to

differential is not possible.

Problem 4. The value of L1 {log (Z:—Z)} is 8.

Problem 5. The value of L1 {log (%)} is 9.

5.4 SUMMARY

L L{F" ()} = p"f(p) —p"F(0) — p"?F'(0) —
— Fr=1(0); if L{F()} = f(p).
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2.  Solution of ordinary linear differential equations with

constant Coefficients.
3. Solution of simultaneous ordinary differential equations.

4. Solution of ordinary differential equations with variable

coefficients.

5. Inverse Laplace Transform of Derivatives

IfL7H{f(p)} =F(1), then L™H{f™(p)}

=17 S )} = (DR E().

6. Convolution theorem
If L1 {f(p)} = F(t) and L™ {g(p)} = G(t), then
L {f(p)g(p)} =F* G = J, F(u) G(t— u) du
7. L{F"(6)} = p"f(p) — p"1F(0) — p""2F'(0) —

— F=(0); if L{F()} = f(p).

5.5 GLOSSARY

Differential equations
Integral equations
Discontinuous functions
Periodic Functions
Integration
Differentiation

Even, odd functions
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5.8 TERMINAL AND MODEL QUESTIONS

Q 1. Using Laplace transform, solve the differential equation
y" +2ty' —y =t,wheny(0) = 0 and y'(0) = 1.

Q2. Solve the following equations by Laplace transform
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(D*-2D+2)x =0,x=Dx=1att=0.
Q3. Solve the following equations by Laplace transform
(D? — D — 2)x = 20 sin2t,x(0) = —1, x'(0) = 2.
Q4. Solve the following equations by Laplace transform
(i) y"—2y"—8y =0,wheny(0) =3 and y'(0) = 6.
(i) y"" — 8y’ + 15y = 9te?!,when y(0) = 5 and y'(0) = 10.
Q5. Solve the following simultaneous equations by Laplace transform

dx , dy — ,t.
,dt+dt+2x+y—e,

y(0) =1,x(0) = 2.

Q6. Solve the following simultaneous differential equations by Laplace
transform

dx _ dx | dy . s
35 -y = 2t, i A 0 with the condition
y(0) = x(0) = 0.

Q7. A function f(t) obeys the equation f(t) + 2 fotf(t)dt = cosh 2t, find
the Laplace transform of f(t).

5.9 ANSWERS

TQL y=1L1 (piz) =t.

TQ2 x=etcost
TQ3 x=2e? —4e7 !+ cos2t — 3sin2t

TQ4 (i)y=2e* +e7% (i) y = 4e?" + 3te?t + 3e3t — 25t

Department of Mathematics
Uttarakhand Open University




Mathematical Methods MAT 509

TQ5 x=2cost+8sint,y=cost—13sint +sinht

TQ7 L{f(t)} = —2

(p+2)%(p-2)

CHECK YOUR PROGRESS

CYQ1 True
CYQ3 False

CYQS5S False
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6.1 INTRODUCTION

Integral equations are equations in which the unknown function
appears inside a definite integral. They are closely related to differential
equations. In this unit learner learn about Fredholm, Volterra integral
equation and other types of integral equation, also learn about the
conversion of initial and boundary value problem into integral equation.
In 1823 Abel proposed a generalization of the tautochrone problem whose
solution involved the solution of an integral equation which has more
recently been designated as an integral equation of the first kind, and in
1837 Liouville showed that the determination of a particular solution of a
linear differential equation. The solution of integral equation is much

easier than the original boundary value problem or initial value problem.

6.2 OBJECTIVE

At the end of this topic learner will be able to understand:

(i) integral equations

(ii) Volterra integral equation
(iii) Fredholm integral equation
(iv) Leibnitz’s rule

(v) initial value problem

(vi) Boundary value problem

6.3 INTEGRAL EQUATION

An equation in which an unknown function appears under one or more integral

sign is called in integral equation.

For Example: for a< x < b,a <t < b, the integral equations
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f: k(x, t)y(t)dt = f(x)
y(x) - lff k(x, )y(t)dt = f(x)

y(x) = [2 k(x, D [y(0)]2de

where the function y(x), is unknown function while the functions f{(x) and
k(x, t) are known functions and A, a and b are constants, are all integral
equations.

6.4 LINEAR AND NON-LINEAR INTEGRAL
EQUATION

An integral equation is called linear if only linear operations are performed
in it upon the unknown function. An integral equation which is not linear

is known as non-linear integral equation.

For Example: for a< x < b,a <t < b, the integral equations
b
J, k(x, t)y(®dt = f(x)

y(x) - A [ ke(x, D)y (£)de = f(x)

y(0) = [2 k(x, D y(D)]2de

Here equation (1), (2) are called linear and equation (3) is called non-

linear.

Now the most general type of linear equation is of the form

g(x) y(x) = fx) + 1 [, kCx, )y (D)dt

where upper limit may be either variable or fixed. The functions f, g and
k are known functions while y is to be determined, A is a non-zero real or
complex. The function k(x, t) is known as the kernel of the integral

equation.
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Note: m if g(x) # 0, equation (D) is known as linear integral equation
of the third kind. When g(x) = 0, (D) reduces to f(x) +
A fak(x, t)y(t)dt = 0 , is known as linear integral equation of the
second kind. Again when g(x) = 1, (D) reduces to y(x) = f(x) +
A fa k(x,t)y(t)dt, which is known as linear integral equation of the

second kind.

6.5 FREDHOLM INTEGRAL EQUATION

A linear integral equation is of the form

g(x) y(x) = fx) + A [ k(x, )y(t)de

where a and b are constants, f(x), g(x) and k(x, t) are known functions
while y(x) is unknown function and A is a non-zero real or complex
parameter, is called Fredholm integral equation of third kind. The function

k(x, t) is known as kernel of the integral equation.
The following special cases of (D) are as follows.

(i) Fredholm integral equation of First kind.

A linear equation of the form f(x) + A f; k(x,t)y(t)dt = 0, is known as

Fredholm integral equation of First kind.

(ii) Fredholm integral equation of Second kind.

A linear equation of the form y(x) = f(x) + A f; k(x, t)y(t)dt is known

as Fredholm integral equation of second kind.

(iii) Homogeneous Fredholm integral equation of Second kind.

A linear equation of the form  y(x) = 14 f; k(x,t)y(t)dt is known as

Homogeneous Fredholm integral equation of second kind.
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6.6 VOLTERRA INTEGRAL EQUATION

A linear integral equation is of the form

g(x) y(x) = f(x) + A f, k(x, Dy (t)dt

where a is constants, f(x), g(x) and k(x, t) are known functions while y(x)
is unknown function and A is a non-zero real or complex parameter, is
called Volterra integral equation of third kind. The function k(x, t) is

known as kernel of the integral equation.
The following special cases of (D) are as follows.

(i) Volterra integral equation of First kind.

A linear equation of the form f(x) + A f; k(x,t)y(t)dt = 0, is known as

Volterra integral equation of First kind.

(ii) Volterra integral equation of Second kind.

A linear equation of the form  y(x) = f(x) + 4 f; k(x,t)y(t)dt is known

as Volterra integral equation of second kind.

(iif) Homogeneous Volterra integral equation of Second kind.

A linear equation of the form  y(x) = 1 f; k(x,t)y(t)dt is known as

Homogeneous Volterra integral equation of second kind.

6.7 SPECIAL KINDS OF KERNELS

(i) Symmetric Kernel.
A kernel k(x, t) is symmetric (or complex symmetric or Hermitian) if
k(x, t) = k(t, %)

where the bar denotes the complex conjugate. A real kernel k(x, t) is said

to be symmetric kernel if k(x, t) = k(t, x).
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for example: sin(x +t), log(xt), x*t> + xt + 1 etc. all are symmetric kernels.
Again sin(2x + 3t) and x*t> + 1 are not symmetric kernels.

(ii) Separable or degenerate Kernel.

A kernel k(x, t) is called separable or degenerate if it can be expressed as
the sum of a finite number of terms, each of which is the product of a

function of x only and a function of't only, that is

k(X t) Zl lgl(x) hi(t)'

6.8 LEIBNITZ’S RULE OF DIFFERENTATION
UNDER INTEGRAL SIGN

Alx) Bix) -
[ re.oac|- | F e+ Fix, ) dﬂ‘ D _F(x, a(x)
ox

alx) a(x)

a'rr[r)

In particular, we have

i“m Eyu(&) dé‘] -| f £ (x . %) u(x).

a a

Note: m

XX Xy_2 Xy

”jj F(x,) dx, dx, ,...dx,= —1'I( _EA(E) dé.

a a a a

6.9 SOLUTION OF INTEGRAL EQUATION

Consider the integral equations:
2(x) ¥(x) = (x) + 4 f, kCx, Dy(©)dt
£(x) y(x) = 00 + 2 [, k(x, )y(B)dt
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a solution of the integral equation (1) and (2) is a function y(x), which

when substituted into the equation, reduces it to an identity.

ILLUSTRATIVE EXAMPLES

Example 1. Show that the function y(x) = (1 + x2)73/2 is a solution of

y(t)dt .

1
1+ x2

t

x
0 1+x2

the Volterra integral equation  y(x) =

Sol. Given integral equation is y(x) = - fox txz y@®)dt .....(1)

1+ x2 1+

Also given as y(x) = (1 + x2)73/2

From equation (2)  y(t) = (1 + t2)73/2

— fy == (L + )72t

Then, R.H.S. of (1) = ——

2

=1 __1 fxz(1+u)‘3/2 Ldu (on putting t? =
1+x2 1+4x2%2 Y0 2 p g

u and du = 2tdt)

o 1+x2 1+x2°2°

2
1 1 1 [(1+u)_3/2]x
0

-1/2

2

1 1 [ 1 ]x
1+x2  1+x2L(+w)1/2]

1 +1x2 1 +1x2 [(1+x12)1/2 B 1]
= (1 +x?)73/% = y(x), by (2)
=L.H.S. of (1)
Hence (2) is a solution of given integral equation (1).

Example 2. Show that the function y(x) = xe* is a solution of the Volterra

integral equation  y(x) =sinx + 2f(:c cos(x — t)y(t)dt .
Sol. Given integral equation is

y(x) = sinx + 2f0x cos(x — t)y(t)dt
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Also, given
From (1)

Again we know that the following standard results:

eax

a%+bp?

[ e% sin(bx + ¢) dx = [asin(bx + ¢) — bcos(bx + ¢)]

eax

a%+b?

And [ e** cos(bx + ¢) dx = [a cos(bx + ¢) + bsin(bx + ¢)]

Then R.H.S. of (1)

= sinx + 2f;€{cos(x —t) tet}dt = sinx + 2 fox t{et cos(t — x)}dt

= sinx + 2{[t%t{cos(t —x) + sin(t — x)}]: — fox 1.§{cos(t -x) +

sin(t — x)}dt}

= sinx + xe*- f;cet cos(t — x) dt - foxet sin(t — x) dt

X

=ginx + xe* — [e?t {cos(t — x) + sin(t — x)}]0

X

— [%t {sin(t — x) — cos(t — x)}]

0
= sinx + xe* - [%t - % (cosx — sinx)] — [— e?t — % (—sinx — cosx)]
=xe* = y(x)

Hence (2) is solution of (1).

Example 3. Show that y(x) = cos 2x is a solution of the integral equation

y(X) = cosx + 3 k(x, )y(t)dt where k(x, t)
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_{sinxcost, 0<x<t
cosxsint, t<x<m’

Sol. Given integral equation is y(X) = coSX + 3 fon k(x, t)y(t)dt (1)

sinxcost, 0<x <t

Where kix, 1) = {cosx sint, t<x<m

Also given  y(X) = cos 2x
From (3) y(t) = cos 2t
Then R.H.S. of (1)
= cosx + 3[ [ k(x, Dy (®)dt + [ k(x, )y (t)dt]

= cosx + 3[ [ cosx sint cos2t dt + [ sint cost cos 2t dt] ,

by (2) and (4)

= cosx + 3cosx f(jc cos2tsintdt + 3sinx fxn cos2t cost dt

= cosx + % cosx fox(sin3t — sint)dt + %Sinx fxn(cos3t + cost) dt

3 1 X 3, 1, .
= cosx + 5 €osx [_§ cos3t + cost] + 5 Sinx [5 sin3t + smt]
0 x

3 1 1 3, 1, .
=Cosx + 5 €osx [— 3 cos3x + cosx + 3 1] + 5 Sinx [— gsm3x — smx]
1 . . 3 2 )
=cosx —= (cos3x cosx + sin3x sinx) + > (cos? x — sin® x) — cosx
1 3 1 3
=—cos (Bx—-x) + cos2x = — cos 2x+5 cos2x

= cos 2x = y(x)

Hence (3) is solution of (1).
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6.10 INITIAL VALUE PROBLEM

While searching for the representation formula for the solution of an
ordinary differential equation in such manner so as to include the

boundary conditions or initial conditions.

When an ordinary differential equation is to be solved under conditions
involving dependent variable and its derivative at the same value of the
independent variable, then the problem under consideration is said to be

an initial value problem.

2
For example: % +y=x, y(0) =2, y'(0) =3

(1

And &y +y=x (H=2 1) =3
dx? y ’ M ’ y
()

Are both initial value problem.

Note: m Initial value problem is always converted into Volterra integral
equation.

m After converting the initial value problem into an integral equation,
it can be solved by shorter methods of solving integral equations.

6.11 METHOD OF CONVERTING AN INITIAL
VALUE PROBLEM INTO A VOLTERRA
INTEGRAL EQUATION

This method is illustrated with the help of the following solved example.

ILLUSTRATIVE EXAMPLES
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Example 1. Convert the following differential equation into integral

equation:
y"" +y = 0 when y(0) =y'(0) = 0.
Sol. Given y'x)+yx)=0
With initial Conditions  y(0)=y'(0) =0
From (1) we get y'(x) =—-yx)

Integrating both sides of (3) w.r.t. ‘x’ from 0 to x, we have

Jyy"@dx == [Fy(x)dx  or  [y'(0)]F=- [ y(x)dx

or y'(x)—y'(0)=—[ y(x)dx or y'(x)=— [ y(x)dx
Q)]

integrating both sides of (4) w.r.t. X from 0 to x, we have

Jy y'(@)dx =~ [ y(x)dx* or [y (1§ =~ f; y(x)dx?
yx) = y(0)=— [y(x)dx? or y(x)=— [, y(t)dt? using(2)
or y(x)=-— fg (x — t)y(t)dt which is desired integral equation.

Example 2. Convert the following differential equation into integral

equation:
y" + Axy = f(x) when y(0) = land y'(0) = 0.
Sol. Given y" (x) + Axy(x) = f(x)
With initial Conditions y(0)=1 , y'(0)=0
From (1) we get y"'(x) = f(x) — Axy(x)
Integrating both sides of (3) w.r.t. ‘x’ from 0 to x, we have
Jy y"()dx == [[f () = Axy(x)]dx

[y’ (O)IF = — [J1f (x) — Axy(x)]dx
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y'(x) —y'(0) == [[f(x) — Axy(x)]dx  or
y'(x) = = [J[f () — Axy(x)]dx

Integrating both sides of (4) w.r.t. ‘x’ from 0 to x, we have

Jy ¥ Goydx = [f(x) — Axy(x)]dx?

[y(OI§ = = J; [f (x) = Axy (x)]dx?

y(x) - y(0) = — [o[f(x) — Axy(x)]dx?  or

y(x) =1+ [J[f() — Aty(D)]de?

y(x) =1+ [ (x — O[f(£) — Aty(D)]dt

which is the required integral equation.

Example 3. The initial value problem corresponding to the integral

equation

y(x) = Jy y(©dt is
@y —-y=0y0)=1 by +y=0,y(0)=0
©)y' —y=0y(0)=0 My +y=0y(0)=1.
Sol. Given  y(x) = f, y(t)dt is

Differentiating both sides of (1) with respect to x and using the

Leibnitz’s rule of

differentiation under the sign of integral, we obtain

, 2 d d
y'(x)=0+ fox%dt+y(x)£—y(0)£ or

y'(x) = y(x),

From (1),

Department of Mathematics
Uttarakhand Open University




Mathematical Methods MAT 509

(2) and (3) show that result (a) is true.

6.12 BOUNDARY VALUE PROBLEM

When an ordinary differential equation is to be solved under conditions
involving dependent variable and its derivative at two different values of
the independent variable, then the problem under consideration is said to

be an initial value problem.

2
For example: % +y=0, y(a) = y1, y(b) =y,

(1

Note: m Boundary value problem is always converted into Fredholm

integral equation.

ILLUSTRATIVE EXAMPLES

Example 1. Convert the following differential equation into integral

equation:
y" + Ay = 0 when y(0) =0, y(l) = 0.
Sol. Given y'(x)+Ay(x) =0
With boundary conditions
And
From (1), y"'(x) =-2y(x)
Integrating both sides of (3) w.r.t. ‘x’ from 0 to x, we have
Jyy")dx= -4 [ y(x) dx
[y' (01§ = =2 J; y(x) dx

yl(x)—)”(o):—/lfoxy(X) dx or
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Let y'(0) = C, a constant

Using (5), (4)  y'(x) =C— A [ y(x) dx

integrating both sides of (6) w.r.t. x from 0 to x, we have

[y dx=c [Fdx =2 [y dx? o [yl =Cx =1 [ y(0)de?
y(x) = y(0) = Cx — 4 [, (x — D)y (t)dt

y(x)—0=Cx — A f:(x — t)y(t)dt

y(x)=Cx — A f:(x — t)y(t)dt

putting x =€ in (7), we get

y&) = CL—A[ (L= Dy(®dt  or 0=CL—A[ (£~ Dy(t)dt,
using(2b)

At
C=35J,(¢—ydt
using (8), (7) reduces to

y(x) =5 (8= Dy®)dt - 2 [X(x — O)y(e)de

¥ = [ B0y (0yde - 2 [} (x — Oy()de

y(x) = [y ZEDy (0)dt + [ Dy (t)de - 1 f (x — Oy (t)dt

¥ = A 252 — @ - o] y@de + 2 [T XDy ()t

x f—t) — {(x— £ x(£—
y(0) = 2 fif [KE22 100y (yae + [T XD y () ae

¥ = A[[F D y0yde + [2D ()|

y(x) = A f, k(x, )y ()t
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t(e—t)

7 ,if0<t<x
where  k(x, t) = x(0—t) ceeeee (1)

7 ,ifx<t<?®

(10) is the required Fredholm integral equation, where k(x, t) is given by
(11).

Example 2. Convert the following differential equation into integral

equation:
y" + xy = 1 when y(0) =0, y(1) = 0.

Sol. Given y'(x)+xy(x)=1

With boundary conditions

And

From (1), y'(x) =1-xy(x)
Integrating both sides of (3) w.r.t. ‘x’ from 0 to x, we have

Jy y"()dx= [ dx— [ xy(x)dx or [y'(x)]§=x- f:xy(x)dx

Y'(x)—y'(()):x—foxx y(x)dx  or

Let y'(0) = C, a constant
Using (5),(4) y'(x)=C+x-— f;x y(x) dx
integrating both sides of (6) w.r.t. x from 0 to x, we have

[y (dx = [{(c + x)dx — A [ x y(x) dx? or

YOOl = [cx+ 3] = [T ey@ae?

1 x
y(x) = y(0) = Cx + - x? — [ (x — )y()dt
y(x) =Cx + %xz — f;(x —t)y(t)dt  using (2a)
putting x =1 in (7), we have
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y()=c+> - JA-tty®dt  or l=c +2— f,1—0) ty®)de
by (2b)

c=2+ [ (-0 ty(D)dt
using (8), (7) reduces to
y() = x|t + [ (1= ) e y(©)dt| + 232 — [[(x - Oy (D)at
or  y®=sx(l1+x)+ [; xt(1 = Dy(©)dt — [ t(x — )y()dt

or  y(® =3x(1+x) +[xt(1—)y(e)de + [} xt(1 = Oy(e)dt -

Jy tx — Dy (D)dt
or y(x)=3x(1+x)+f; tlx —xt —x + Jy(O)dt + [ xt(1 — )y(t)dt
or y®)=2x(1+x) +f; 21— Dy(O)dt + [ xt(1 - t)y(e)dt

or  y(x)=5x(1+x) +[y k(x, O)y(t)dt

t?2(1—1t), ift<x
xt(1—1t), ift>x

where  k(x,t) = {

(10) is the required Fredholm integral equation, where k(x, t) is given by
(11).

CHECK YOUR PROGRESS

True or false / MCQ Questions

Problem 1. The integral equation
y(X) = fox(x —t)y(t)dt —x fol(l — t)y(t)dt is equivalent to:

(@y"—y=0y(0)=0y(1)=0

b)y"—y=0,y(0)=0,y'(0) =0
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)y +y=0,y(0)=0,y(1)=0
(dy +y=0,y0)=1y'(0)=0

Problem 2. Boundary value problem is always converted into

Fredholm integral equation. True / false.

Problem 3. Initial value problem is always converted into

Volterra integral equation. True / false.

Problem 4. A linear equation of the form  y(x) = f(x) +

A f; k(x,t)y(t)dt is known as Fredholm integral equation of

third kind.

Problem 5. A linear equation of the form y(x) =
A f;k(x, t)y(t)dt is known as Homogeneous Volterra

integral equation of second kind.

6.13 SUMMARY

1. Fredholm integral equation of First kind.

A linear equation of the form f{(x) + A f; k(x, t)y(t)dt = 0, is known as

Fredholm integral equation of First kind.

2. Fredholm integral equation of Second kind.

A linear equation of the form  y(x) = f(x) + 1 f; k(x,t)y(t)dt is known

as Fredholm integral equation of second kind.

3. Homogeneous Fredholm integral equation of Second kind.
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A linear equation of the form  y(x) = 14 ff k(x,t)y(t)dt is known as
Homogeneous Fredholm integral equation of second kind.

4. Volterra integral equation of First kind.

A linear equation of the form f(x) + A f; k(x,t)y(t)dt = 0, is known as

Volterra integral equation of First kind.

5. Volterra integral equation of Second kind.

A linear equation of the form  y(x) = f(x) + 4 fax k(x, t)y(t)dt is known

as Volterra integral equation of second kind.

6. Homogeneous Volterra integral equation of Second kind.

A linear equation of the form  y(x) = 1 f; k(x,t)y(t)dt is known as

Homogeneous Volterra integral equation of second kind.

7. Symmetric Kernel.  k(x, t) = k(t, x).

2
8. Initial value problem. % +y=x, y(0) =2,

2
9. Boundary value problem. % +y=0, y(a) =y,

6.14 GLOSSARY

Integration

Even, odd functions
Trigonometric functions
Differentiation

First order derivatives

Second order derivatives
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6.17 TERMINAL AND MODEL QUESTIONS

Q 1. Verify that the given functions are solutions of the corresponding

integral equations.

() yx) =1-x [ e ty(t)dt =x.

i)y =2; frZde=vx

2’ Vx—t

(i) y(x) =35 x* = [ (x — )%y (6)dt
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(V) () = x =701 Y09 = X - [ sinh(x — )y (D)dt

My =e* (26 =2); y(x) + 25 ety ()t = 2xe*

Q2. Reduce the following initial value problem into an integral equation

a2y
dx?2

+xZ+y=0, y0)=1, y'(0)=1.
Q3. Convert y"' (x) — sinx y'(x) + e*y = x with initial conditions
y(0) =1, y'(0) = -1 to a Volterra integral equation of second kind.

Q4. Show that the solution of the Volterra equation y(x) = 1 +
fox(t — x)y(t)dt satisfying the differential equation y"’(x) + y'(x) = 0
and the boundary conditions y(0) = 1, y'(0) = 1.

Q5. Convert the boundary value problem y”(x)+y'(x)=
0 with boundary condition y(0) = 1, y'(1) =0, into an integral

equation.

6.18 ANSWERS

TQ2 y(x)=1+x- [ ty(t)de

TQ3 y(X) = %3 —x+1+ fox[sint — (x —t)(et + cost) Jy(t)dt.

t,t<x

TQ5  y(¥) =1+ [y k(x,t) y(£)dt, where k(x, ) ={ "7 S 7.

CHECK YOUR PROGRESS
CYQ 1. (a)
CYQ 2. True
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CYQ 3. True

CYQ 4. False

CYQ 5. True
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UNIT 7: FREDHOLM INTEGRAL
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SEPARABLE KERNELS
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7.1 INTRODUCTION

Integral equations are equations in which the unknown function
appears inside a definite integral. They are closely related to differential
equations. In this unit learner learn about Fredholm, Volterra integral
equation and other types of integral equation, also learn about the
conversion of initial and boundary value problem into integral equation.
In this unit learner learn about Solution of homogeneous Fredholm
integral equation of second kind with separable kernel and Solution of
non-homogeneous Fredholm integral equation of second kind with

separable kernel.

7.2 OBJECTIVE

At the end of this topic learner will be able to understand:

(i) integral equation
(ii) Fredholm integral equation
(iii) initial value problem
(vi) Boundary value problem
(v) Solution of homogeneous Fredholm integral equation of
second kind with separable kernel.
(vi) Solution of non-homogeneous Fredholm integral equation of

second kind with separable kernel.

7.3 CHARACTERISTIC VALUES (EIGEN VALUE)
OR CHARACTERISTIC FUNCTION (EIGEN
FUNCTION)

Consider the Homogeneous Fredholm integral equation of the second
kind:
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y(x) =2 [ k(x, O)y(t)dt

then (1) has always the obvious solution y(x) = 0, which is known as zero
or trivial solution of (1). The value of the parameter A for which (1) has a
non-zero (or non trivial) solution y(x) # 0 are known as the eigenvalue of
(1) or of the kernel k(x, t). Further if ¢ (x) is continuous and ¢(x) # 0

on the interval (a, b) and

9(x) =[] k(x, Dp(x) dt

Then ¢@(x) is known as an eigenfunction of (1) corresponding to the

eigenvalue A,.

Note: m The number A = 0 is not an eigenvalue since for A = 0, (1)

yield y(x) = 0, which is non-zero solution.

m if the kernel k(x, t) is continuous in the rectangle R: a< x < b, a<
t < b, and the numbers a and b are finite, then to every eigen value A
there exist a finite number of linearly independent eigenfunction; the
number of such functions is known as the index of the eigenvalue.

Different eigenvalue have different indices.

m A Homogeneous Fredholm integral equation may, generally, have no
eigenvalues and eigenfunctions or it may not have any real eigenvalue

and eigenfunction.

7.4 SOLUTION OF HOMOGENEOUS
FREDHOIM INTEGRAL EQUATION OF THE
SECOND KIND WITH SEPARABLE KERNEL.

Consider a homogeneous Fredholm integral equation of the second kind:

yix) =2 f k(x, Dy(e)dt

since kernel k(x, t) is separable, we take

k(x, ) = Xi fi () gi ()
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using (2), (1) reduces to

y() =2 [ [Z, £ () g (D]y(D)dt or

Yy = AL, i) [F gi(©y(©dt

let 7 g:()y(©)dt = C; , where 1=1,2,3, ..., n.

using (4), (3) reduces to  y(x) = A7, Cif; (x)

where constants C;(i = 1, 2, 3, ..., n) are to be determined in order to find

solution of (1) in the form given by (5).
We now proceed to evaluate C;’s as follows:

Multiplying both sides of (5) successively by g, (x), g,(x), ..., gn (x) and

integrating over the interval (a, b), we have

ff 91(O)y(x)dx = A X1, C; fab g1 () fi (x)dx

ff 92®)y(x)dx =A%, C; | f 9> f;(x)dx

12 ga®y0dx = A5, G [ gn(Of: () dx
Let a; = f; 9; () fi(x)dx, where i, j=1,2, ..., n.
Using (4) and (6), (4,) reduces to
Ci=AY%,Ca;;  or  Cp=AlCiay; + Craqy + -+ + Crtgy]
Or (1-2Aa;1)C; —Aa,Cy — - — Aa,C, =0

_AQZ]_C]_ + (1 - /1“22)6‘2 — AaZnC = O

—ﬂanl(:l - _Aanzcz _ e + (1 - Aann)cn = 0
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The determinant D(A) of this system is

1 - /16{11 - /’1“12 e - /1(11”

—/1(121 1 - /1(122 - /10!171

D(A) = - (7)

—/1(1”1 - /1(1,12 1 - Aa’nn

D(1) # 0, the system of equations (B;), (B,), ..., (B,) has only trivial
solution C; = C, = --- = C,, = 0 and hence from (5) we notice that (1) has
only zero or trivial solution y(x) = 0. However, if D(1) = 0, at least one
of the C;'s can be assigned arbitrarily, and the remaining C;'s can be
determined accordingly. Hence when D(A) = 0, infinitely many solutions

of the integral equation (1) exist.

Those value of A for which D(1) = 0 are called the eigenvalues, and any

non-trivial solution of (1) is called a corresponding eigenfunction of (1).
The eigenvalue of (1) are given by D(41) = 0, i.e.

1—-2Aa;; — ey ... —Aag,
—Aay; 1—Aay, ... —Aagy,

—Aay, —Aay, ... 1—Aag,
So degree of equation (8) in A is m< n. It follows that if integral

equation (1) has separable kernel given by (2), then (1) has at the most n

eigenvalues.

ILLUSTRATIVE EXAMPLES

Example 1. Solve the Homogeneous Fredholm equation
y(x) =1 [ e¥ely(t)dt .

Sol. Given y(x) = Afol e*ety(t)dt or y(x)= Ae* fol ety(t)dt
LD

Let c=J, ety(t)dt
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Then (1) reduce to y(x) = Ace*
From (3), y(t) = Acet

Using (4), (2) becomes ¢ = f01 etAcetdt

2t71

c= /10[670=%(ez—1) or c[l—%(ez—l)]zo

if ¢ = 0 then (4) gives y(x) = 0.we, therefore, assume that for non-

zero solution of (1), c# 0.

Then (5) gives

2

_tp2 1y = -2
1 2(e 1)=0 or A oD

Which is an eigenvalue of (1).

Putting the value of A given by (6) in (3), the corresponding
eigenfunction is given by

Y =)

2

Hence, corresponding to eigenvalue @D

there corresponds the

eigenfunction e”*.

2

(e2i1) is taken as

Note:m While writing eigenfunction the constant

unity.

Example 2. Show that the Homogeneous integral equation y(x) -

A f01(3x —2)ty(t)dt = 0 has no characteristic number and

eigenfunction.

Sol.  Given  y(x) = Af, Bx—2) ty(t)dt

ABx—2) [] ty(t)dt (1)

Let c=J, ty(®dt
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Then (1) reduces to y(x) =Ac(3x — 2)
From (3), y(t)=Ac(3t — 2)
Using (4), (2) becomes
c= f01 t Ac(3t — 2)dt or c¢= Ac[t3—t?]} orc=0.

Therefore from (3) y(x) = 0, which is a zero solution of (1). Hence
for any A, (1) has only zero solution y(x) = 0. Therefore, (1) does not

possess any eigenvalue or eigenfunction.

MAT 509

Note: m Note that the kernel k(x, t) = (3x — 2) t of the above example
is not symmetric. Thus we shown that a kernel which is not symmetric

does not necessarily have a characteristic constant.

Example 3. Find the eigenvalue and the corresponding eigenfunctions of

the homogeneous integral equation y(x) = A [ 01 sinmx cosmtx y(t)dt.

Sol. Given y(x) = A folsinnx cosmx y(t)dt y(x) =

Asinmx fol cosmx y(t)dt (1)
1
Let C= [ cosmx y(t)dt
Then (1) reduce to y(x) = A C sinmx

From (3), y(t) = A C sinmt

Using (4), (2) becomes

/IC[ cosZnt]l_AC[ 1,01

C= fol costt(A ¢ sinmt)dt or c=

2 2t lg 2 2 2nl’

Hence C = 0 and so from (3), y(x) = 0. Thus for any A, (1) has only

zero solution y(x) = 0.

Therefore, (1) does not possess any characteristic number or

eigenfunction.
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Example 4. Find the eigenvalues and the corresponding eigenfunctions of

the integral equation y(x) = A fol(th — 4x?) y(t)dt.
Sol. Given y(x) = 1 [, (2xt — 4x%) y(t)dt or
y(x) = 22 [, ty(t)dt — 42x2 [} y(t) dt

1 1
€, =J, ty®dt (2) and C, = [ y(t)dt
Then (1) reduces to y(X) = 2AC;x — 4AC,x?
y(t) = 2AC;t — 4AC,t?

Using (5), (2) becomes

€= [ t(2AC,t — 42C,t%) dt C[1-2a [ 2 de| +
42C, [ t*dt =0

22 -

¢, (1-2)+2c,=0

Again, using (5), (3) becomes

C, = [} (2AC,t —4AC,t%)dt  or 2AC [ dt — C; [1+44f, t dt]
-0

Or 16 -G (1+%)=0

Thus, we have a system of homogeneous linear equations (6) and (7) for
determining C; and C,, for non-zero solution of this system of equations,

we must have

27
-5 =0 o —(1-Z)(1+%)-22-0

3

42
) —(1+?)
Or A2+ 61+9=0 sothat A=-3-3

Hence eigenvalue are 1, = —3,4, = —3.

Putting A = 4; = —3 in (6) and (7), we get
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and —3C;+3C,=0
(8) or (9) give C; = C,. Hence from (4), we have
y(x) =2C; 4, (x — 2x2) = —6C; (x — 2x?)
Taking —3C,; = 1, the eigenfunction is (x — 2x?2)
Hence eigenfunction corresponding to eigenvalue 4; = 1, = —3
is x — 2x2.

Example 5. Solve the Homogeneous Fredholm integral equation of the

second kind:
y(x) =2 fozn sin(x + t)y(t)dt .
Sol. Given  y(x)=A1 fozn sin(x + t)y(t)dt
Or y(x)=41 fozn(sinx cost + cosx sint) y(t)dt
Or y(x) = Asinx fozn costy(t)dt + Acosx fozn sint y(t)dt
Let C, = fozn costy(t)dt
21T
And C, = [, sinty(t)dt

Then (1) reduces to y(x) = AC;sinx + AC,cosx

From (4) y(t) = ACysint + AC,cost

Using (5), (2) becomes €, = [ cos t(AC;sint + AC,cost) dt

)LC]_ fZTL' /’lCZ f2TL’

Or

sin2tdt +— (1 + cos2t) dt

Or C]_:_ -

21
AC cos2t /’LC sin2t
o] e 4 s
2 2 0

0

Or C =0+ AC,m or C;,— AnC, =0

Using (5), (3) becomes C, = fozn sint (AC;sint + AC,cost)dt
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2T

Or le (1 — cos2t)dt +—f0 sin2tdt

p)
or C,=%4 [t—

sm2t] I AC, cosZt] 2n
2 0 2 2 0
or C,= ACim or

Thus, we have a system of homogeneous linear equations (6) and (7) for

determining C; and C,.
For non-zero solution of this system of equations, we must have

|1 —/17T| ~0

or -1+22m2=0 sothatl=+~.
A T

Hence eigenvalue are 1; = %, Ay =—=
To determine eigenvalues corresponding to 4 = 4, = i
Putting 2 = A; ==~ in (6) and (7), we get
9 ad C;—-C,=0

Both (9) and (10) give C; = C,. Hence from (4), we have
y(x) = % Cysinx + %Clcosx or y(x)= % (sinx + cosx)
Taking % = 1, the required eigenfunction
y1(x) = sinx + cosx .
To determine eigenvalues corresponding to A = 4, = 711'
Putting 2 = A; =~ in (6) and (7), we get

Ci;+C,=0 (12) and C;+C, =0
Both (12) and (13) give C, = —C;. Hence from (4), we have
y(x) = —%Clsinx — % (=Cy)cosx or y(x)= _Tcl (sinx — cosx)
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Taking _Tcl = 1, the required eigenfunction

y,(x) = sinx — cosx .

From (8), (11) and (14), the required eigenvalues and eigenfunctions are

given by

1 . 1 .
==, y1(x) = sinx + cosxand A; = —;J’z(x) = Sinx — cosx.

75 SOLUTION OF NON HOMOGENEOUS
FREDHOILM INTEGRAL EQUATION OF THE
SECOND KIND WITH SEPARABLE KERNEL.

ILLUSTRATIVE EXAMPLES

Example 1. Solve the Fredholm integral equation
y(s) = s+ fol sulg(u)du
Sol. Given y(s)=s+s fol u?g(uw)du
Let C= fol u?g(w)du

Using (2), (1) yields g(s)=s+Cs=5s(1+C)

From (3) g(uw)=u(l +C)

1
0

Using (4), @) yields ~ C= [ u?(1+ O)du=(1+0) [“]
Or C=(1+C)- sothat C==
Hence, (3) = g(s) =s(1+ %) = % .
Example 2. Solve the Fredholm integral equation

y(x) = e*+ A [ 2e¥ety(t)dt .
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Sol. Given y(x) = e*+ A fol 2e*ety(t)dt or
y(X) = e*+ 21e* fol ety(t)dt
Let C= [ ety(t)dt
Using (2), (1) yields y(x) = e* +2CAe* =e* (1 +2CA)
From (3) y(t)=e’ (1 +2CA)

Using (4), (2) yields C = [ [ef.ef(1 + 2CA) ldt

= (1+200) [£]

1
0

=(1 + 2CA)5(e? - 1)

Or C[1 - A(e? = 1)] =§(e2 - 1)

_ e?-1
or C= A1)’ where 4 # ——

putting this value of C in equation (3), we get

— X s S
y(x)=e [1+2/1'2{1—/1(e2—1)}] or

_ e* 1
y(x) = D’ where A4 # ——

e?-1

which is the required solution of the given integral equation.

Example 2. Solve the Fredholm integral equation
y(x) = cosx + A fon sinx y(t)dt .
Sol. Given  y(x) = cosx + 4 fon sinx y(t)dt or
y(X) = cosx + Asinx fon y(t)dt

C=[ y(®adt
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Using (2), (1) reduces y(x) = cosx + AC sinx
From (3), y(t) = cost + AC sint
Using (4), (2) reducesto C = fon (cosx + AC sinx)dt
C = [sint]§ + AC[—cost]§
C=0+AC[—cosm + cos0]
C=2AC or C(1-201)=0

Sothat C=0,ifA ;e%

Hence by (3), the required solution is y(x) = cosx, provided 4 # % .

Example 3. Solve the Fredholm integral equation
y(x) = (1 +x)2 + [ (xt + x*t2)y(t)dt .
Sol. Given  y(x)=(1+x)?+ f_ll(xt + x2t2)y(t)dt

Or yx) = (L +x)% +x 1 ty()de +x2 [1 e2y(e)de
(1

Let

And C, = [, t2y(tde

Using (2) and (3), (1) reduces to y(x) = (1 + x)? + C;x + C,x?
From (4), y(t) =1+ t)? + Cit + C,t?

Using (5), (2) reduces to
C = [ tl+ 0% + it + C,t?]de

G =1 tll+Q@+C)t+ (1 +C)t%ldt  or
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[ 1 311 41t
C, = H_l +(2+C) [;]_1 +(14C) H_l or
2
Cl == g (2 + Cl)
Using (5), (3) reduces to
C,=[1 2[(A+6)% + Cyt + C,t2]de

=121+ @+ COt+ (L+CHERlde o

=[], rereff] rarofd, o

C,=2+(1+C)2 or ¢ =

y) = (1 +2)? +4x+2x2 or y(x)=1+6x+2x2,
Example 4. Show that the integral equation

y(x) = f(x) + % fozn sin(x + t)y(t)dt possesses no solution

for f(x) = x, but that it possesses infinitely many solutions when f(x) = 1.
Sol. Given  y(x) = f(x) + %fozn sin(x + t)y(t)dt

Or y(x)=f(x) + %fozn(sinx cost + cosx sint)y(t)dt

sinx p2m cosx

Or y(x)= f(x) + == [[™ cost y(t)dt + == [ sint y(t)dt

T

Let C, = [*" cost y(t)dt

0
And G, = [ sint y(t)dt 3)

Using (2) and (3), (1) reduces to y(x) = f(x) + i—lsinx + % cosx
We now discuss two particular cases as mentioned in the problem.

Case L. let f(x) = x. then (4) reduces to
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(x) = + ZLsinx + L cosx
y(x) =x+—si —cos
Cl . Cl
from (5), y(t)=t+ — Sint +—cost
using (6), (2) becomes
C,= fozn cost (t + Ssint + 2 cost ) dt
s s
_[2m C 2T . G 2m
=J, tcostdt+= [ sin2tdt + = [ (1 + cos2t) dt

_ , 2 2 . C cos2t]?™ G sin2t]?™"
Or C, = [tsint]§™ — fo sint dt + p- [— — ]0 + Zn[ . ]
Or C,=[—cost]é™ + ZC—; (2 + 0)
Again using (6), (3) becomes

2 .
C, =f0nsmt (t + %smt+i—%ost)dt

_om G op2m G r2m .
=J, tsintdt+- [ (1— cos2t) dt + = [ sin2t dt

sinZt]Z” C, [ cosZt]ZT[

—I_ 2m _ (2T, Gy _
C, = [~tcost]§" — [, (—cost) dt + > [t

2 0 21 2 0

The system of equation (7) and (8) is inconsistent and so it possesses no

solution.

Hence C;and C, cannot be determined and so (5) shows that the given

integral possesses no solution when f(x) = x.

Case IL. let f(x) = 1. then (4) reduces to
—1+%¢ G
y(x)=1+ —sinx + —cosx
from (9), y(t)=1+ %sint + % cost
using (6), (2) becomes
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2 c, . c
C = " cost (1 + Zsint + 2 cost ) dt

2 C1 2m . C, r2m
=J, costdt+= [ sin2tdt + 2 [ (1 + cos2t) dt

2

2T
. C cos2t
= [sint]3™ + ﬁ [— . ]0

Or 61=O+O+2C—72T(27T+0) or C, =0,
Again using (6), (3) becomes
C, = fozn sint (1 + %sint + %cost ) dt
= fozn sint dt +§—;f02n(1 — cos2t) dt + Zc_;f()zﬂ sin2t dt

_ [—COSt](Z)n + C1 [t _ sinZt]Zn G [_ cosZt]zn
0

21 2 21 2 1y
C=0+2Qr+0)+0 or € =0

From (11) and (12), we see that C; = C, = C'(say). Here C' is an arbitrary
constant. Thus, the system (11) — (12) has infinite number solutions C; =
C' and C, = C' . putting these value in (9), the required solution of the

given integral equation is

yx)=1+ % (sinx + cosx) ory(x)=1+ C(sinx + cosx). Where C =

c' . . . . .
— is another arbitrary constant. Since C is an arbitrary constant, we have
T

infinitely many solution of (1) when
fx)=1.

CHECK YOUR PROGRESS

True or false Questions

Problem 1. Solution the following Homogeneous integral

equations:
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y(x) = - fol y(t)dt is?.

Problem 2. The eigenvalue of the homogeneous integral equation:

y(x) =2 foz sin?x y(t)dt True / false.

Problem 3. Initial value problem is always converted into

Fredholm integral equation. True / false.

Problem 4. Solution of homogeneous integral equation y(x) =
2 [T sinx y(t)dt is ?

270

Problem 5. Eigen function of y(x) = cosx + 4 [ On sinx y(t)dt
1s?

Problem 6. The eigenvalue A of the Fredholm integral

equation y(x) = A fol x?ty(t)dt is

7.6 SUMMARY

1. Eigen Value and eigen function.

Consider the Homogeneous Fredholm integral equation of the second

kind:

y() = 4 f k(x, Dy(e)dt

then (1) has always the obvious solution y(x) = 0, which is known as zero
or trivial solution of (1). The value of the parameter A for which (1) has a
non-zero (or non trivial) solution y(x) # 0 are known as the eigenvalue of
(1) or of the kernel k(x, t). Further if ¢ (x) is continuous and ¢@(x) # 0

on the interval (a, b) and

9() =[] k(x,)p(x) dt
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Then ¢@(x) is known as an eigenfunction of (1) corresponding to the

eigenvalue A,.

2. Solution of Homogeneous Fredholm integral equation of second kind
with separable kernel.

3. Solution of non-Homogeneous Fredholm integral equation of second
kind with separable kernel.

7.7T GLOSSARY

Integration

Even, odd functions
Trigonometric functions
Differentiation

First order derivatives
Second order derivatives

Solution of System of linear equations
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7.10 TERMINAL AND MODEL QUESTIONS

Q 1. Solve the following integral equations:

1

y(X) = tanx + f_ll e Xy (t)dt.

Q 2. Solve the following integral equations:

y(x) = sinx + A [ 2 sinx cost y(t)dt.

Q 3. Solve the following integral equations:

y(X) - A [*: tant y(£)dt = cotx.
4

Q 4. Determine the characteristic values of A and the characteristic

functions of the integral equation y(x) = f(x) + 1 fozn cos(x + t)y(t)dt.

Q 5. Solve the following Homogeneous integral equations:

(i) () = - [y y(Byat (if) y(x) =5 J sinx y(£)dt

1
e2-1

(iii) y() = = [ ty(D)dt (V) 5 J, 2e* ety(t)dt.
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Q 6. Determining the eigenvalue and eigen functions of the homogeneous

integral equations:

() y(x) =2 fO% sinx y(t)dt (i) y(x) =2 fozn sinx cost y(t)dt

(i) y(x) = A [ sinxsint y(©)dt ~ (iv) y(x) = 1 [ (5xt> +
4x2%t) y(t)dt.

711 ANSWERS

TQ1 y(x) = tanx
TQ2 y(¥) = {Z}sinx, 2% 2.
TQ3 y(xX) =cotx + ”2—/1 :

TQ4 A4 =% ,V1 = COSX; A, = —% , Y, = sinx .

TQS (Hyx)=0 (i)y()=0 (ii)yx)=0 (v)y(x)=0

TQ6 (i) A =——,y(x) = sin’x

-2

(i) Eigen value and eigen function do not exist.
(i) A==, y(x) =sinx

10x2
3

VA=2, y=2+
CHECK YOUR PROGRESS
CYQ 1l y(x)=0
8
CYQ2.—
CYQ 3. False
CYQ4.y(x)=0 CYQ 5. y(x) = cosx

CYQ6. 4
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8.1 INTRODUCTION

In this unit, the solving of a class of both linear and nonlinear
Volterra integral equations of the first kind is investigated. Here, by
converting integral equation of the first kind to a linear equation of the
second kind and the ordinary differential equation to integral equation we
are going to solve the equation easily. The method of successive
approximations (Neumann’s series) is applied to solve linear and
nonlinear Volterra integral equation of the second kind. Some examples

are presented to illustrate methods.

8.2 OBJECTIVE

At the end of this topic learner will be able to understand:

(1) integral equation

(i1) Fredholm integral equation

(ii1) initial value problem

(vi) Boundary value problem

(v) Solution of Fredholm integral equation of second kind with

separable kernel using Method of successive approximation.

83 ITERATED KERNELS OR FUNCTIONS

(i) Consider the Fredholm integral equation of the second kind

y(x) = f(x) + 1 f; k(x,t)y(t)dt

then the iterated kernels k,,(x,t),n = 1,2, 3, ... are defined as follows:

ki(x,t) = k(x,t)
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kn(6,0) = [7 k(x, 2)kn_1(z,t)dz,n = 2,3, ...
k,(x,t) = f: ky,_1(x,2)k(z,t)dz,n = 2,3, ...
(i) Consider the Volterra integral equation of the second kind
y(x) = f(x) + 2 [ k(x, )y (t)dt (3)
then the iterated kernels k,,(x,t),n = 1,2, 3, ... are defined as follows:
ki(x,t) = k(x,t)

kn(x,0) = [ k(x, 2)kn_q(z,)dz,n = 2,3, ..
k,(x,t) = ftx kn_1(x,2)k(z,t)dz,n = 2,3, ..

8.4 RESOLVENT KERNELS OR RECIPROCAL
KERNEL

(i) Suppose solution of Fredholm integral equation of the second kind

yix) = f(x) + A [ k(x, Dy (t)de (1)

take the form y(x) = f(x) + 4 f: R(x, t; D)f(t)dt

vix) = () + 1 [, T, & Df (0t
then R(x,t; 1) orI'(x,t; A1) is known as the resolvent kernel of (1).
(ii) Suppose solution of Volterra integral equation of the second kind
y() = f(x) + A f; k(x, D)y (e)de 3)

take the form y(x) = f(x) + Af;CR(x, t; A)f(t)de

(4a)
y() = f(x) + 2 [, TCx, & Df(e)de
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then R(x,t; 1) orI'(x,t; 1) is known as the resolvent kernel of (3).

Note:m Resolvent kernel is also written as R(x,t; A) =
Yoo A e (x, 1)

8.5 SOME IMPORTANT THEOREMS

Theorem 1. Let R(x, t; A) be a resolvent kernel of a Fredholm integral

equation. y(x) = f(x) + A f: k(x,t)y(t)dt , then the resolvent kernel

satisfies the integral equation
R(x, t; ) =k(x, ) + A [ k(x, 2)R(z, t; dz.
Proof: We know that R(x, t; A1) is given by
ROx,t; ) =Y A" Yk (x,t)
Where iterated kernel are given by
ki(x,t) =k (x,t)

And k() = [ k(x, 2)kmoq(2,0)dz
Now, from (1), we have

RO, t; A) = ky(x, t) + Xy A Tk (2, 8)

—k(x, )+ X8, A7 [7 (%, 2) K1 (2, t)dz using (2a), (2b)

=k(x, t) + Xpeg A" f: k(x,2)k,(z,t)dz ( settingm - 1=n)

= k(X )+ X80y A" [ k(% Dk (2, ) dz

= k(x, )+ AT52; A7 [T k(x, 2k (2, ) dz
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=KX, 0+ A [} [0 A b (2, Ok (x, 2)dz
(on changing the order of summation and integration)
—k(x, 0+ [, R(z,t; Dk(x,2)dz, using (1)

Therefore R(x,t; ) = k(xt) + A [, k(x,2)R(z,t; Ddz .

Note: m The series for the resolvent kernel R(x,t; A) =

Yo A e, (x,t) ... (1)

is absolutely and uniformly convergent for all values of x and t in the

circle |A| < B~

8.6 SOLUTION OF FREDHOLM INTEGRAL
EQUATION OF THE SECOND KIND BU
SUCESSIVE APPROXIMATIONS

ILLUSTRATIVE EXAMPLES

Type 1. Determine the iterated kernels (or functions) for

YO =10 + 2 [7 k(x, O)y(Ddt.

Examplel. Find the iterated kernel for the following kernel
K, t)=sin(x—-2t),0< x < 2m, 0< t < 2m.
Sol. Iterated kernel k,,(x, t) are given by
ki(x,t) =k(x,t) ....(1)
And  k,(x,t) = foznk(x, 2k, 1(z,t)dz, (n=2,3,...) ....(2)
From (1), ki(x,t) = k(x,t) = sin(x — 2t) )]
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Putting n =2 in (2), we have
ey (x,8) = [ ke(x, 2)ky (2, £)dz
= fozn sin(x — 2z) sin(z — 2t)dz , using (3)

= fozn [cos(x + 2t — 32) — cos(x — 2t — z)] dz

[ 1. . 2m
== [——sm(x + 2t — 3z) + sin(x — 2t — z)]
2 3 0

=0, on simplification

Putting n = 3 in (2), we have
s (x,8) = [7" ke(x, 2)ky(2,6)dz =0 using (4)
Hence k,(x,t) =sin(x —2t) and k,(x,t) =0 forn=2,3,4, ...
Example2. Find the iterated kernel for the following kernel
k(x,t)=e*cost ,0<x < 2m;a=0,b=rm.
Sol. Iterated kernel k,,(x, t) are given by
ki(x,t) =k(x,t) ....(1)
And k(6 0) = [T k(6 Dknoy (z,)dz, (n1=2,3,...) .. (2)
From (1), ki(x,t) = k(x,t) =e*cost )
Putting n =2 in (2), we have
k,(x,t) = fon k(x,2)k,(z,t)dz= fon e*cosz e?cost dz , using (3)

V3
=e*cost [ e“coszdz

e? m

oz (Cosz + sinz)]

=e*cost [
0
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e®x .
[ [ e™cosbx dx = —op? (a cosbx + b sinbx)]
=e*cost {-(1/2)e™ — (1/2)} (4)

1+e™
e*cost.

Ll () = (D1

Next putting n = 3 in (2), we have

ks(x,t) = fonk(x,z)kz(z,t)dz = fonexcosz{(—l)lﬂezcost}dz,

2

using (3) and (4)

1+e™ 4 1+e™ 1+e™
=———e¥cost [ e?coszdz = ———e*cost (— T) , as before

N\ 2
ks(x,t) = (—1)? (1%) e*cost

And so on noting (3) (4) and (5), we see that the iterated kernels are given

by

1+e™

n-1
> ) e*cost ,n=1,2,3,....

ken e, 8) = (=12

Type 2. Determine the Resolvent kernels or Reciprocal kernel
R(x,t; A)

If k,(x,t) be iterated Kkernels then R(x,t; A1) =
Yo A™ 1k, (x,t).

Example 3. Find the Resolvent kernels for the Fredholm integral equation

having kernel
k(x,t)=e**;a=0,b=1.
Sol. Iterated kernel k., (x, t) are given by
ki(x,t) =k(x,t) ....(»1)

And k(0 t) = [ k(6 Dkt (2,0dz, (1=2,3,...) ... (2)
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From (1), ki(x,t) = k(x,t) =e**t
Putting n =2 in (2), we have

k,(x,t) = fol k(x,z2)k,(z,t)dz = fol e**tZe?tt dz using (3)

1
1 e?? e?-1
— ex+tf eZz dz = ex+t [ ] — ex+t( )
0 2 1g 2

Putting n =3 in (2), we have

2

ks(x,t) = fol k(x,2)k,(z,t)dz = fol eXtzoztt (ﬁ) dz

_ x+t (€221 (1 2z x+t (€21 2
=e*tt(—) [, e** dz = e**'(—) . As before

And so on, observing (3), (4) and (5), we may write

m—1

2_
ko (x,t) = e+t (‘371) m=1,2,3,...

Now the required resolvent kernel is given by

R(x, t; ) = Xmas At (x, 1)

-1

1 tezlm
— o m—-1,x+ —
=S e ()

A(e?-1)
— p,X+t (oo
2 =" Y= (

2

But ¥o_, (A(ez—n)m‘l _ 1 _I_A(eZ—l) N (1(62_1))2+

Sy . . . . . . Ae?-1
Which is an infinite geometric series with common ratio % .

Therefore Y1 (

A(ez—l))m_l_ 1 1
1

_A(ez—l) - 2-1(e?-1) >
2

2

2_
Provided |M| <1 or 1] < 22
2 e<—1

Using (8) and (9), (7) reduces to

Zex+t
2-21(e?2-1)

2
e2-1"

R(x,t; )= , provided || <
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Type 3. Solution of Fredholm integral equation with the help of the

resolvent kernel.
Working rule: let y(x)=f(x)+4 f: k(x,t)y(t)dt .....(1)

be given Fredholm integral equation. Let k,,(x,t) be the mth iterated
kernel and let R(x, t; A) be the resolvent kernel of (1). Then we have

R(x, t; A) =Y, Am 1k (%, t)

Suppose the sum of infinite series (2) exist and so R(x,t; A) can be

obtained in the closed form. Then the required solution of (1) is given by
b
y(x) = f(x) + 1 [, Rt Vf (t)dt. 3)
Example 4. Find the Resolvent kernels for the Fredholm integral equation

yx)=x+ [ 01/2 y(t)dt and also find the solution.
. 1/2
Sol. Given y(x)=x+ fo y(t)dt

Comparing (1) with y(x) = f(x) + A [* k(x, )y (t)dt
We have f(x) =x, A=1,
Let k,, (x, t) be the mth iterated kernel. Then we have

k(o t) = k(,t)  .....(3)

And k(e 0) = [ k(2 Dkms (2, ) dz,

From (3), ki(x,t) =k(x,t)=1

Putting m = 2 in (4), we have

k,(x,t) = fol/zk(x,z)h(z, t)dz = fol/z

Putting m = 3 in (4), we have

ks(x,0) = [ k(x, 2)k, (2, ) dz
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1/2 1
0 2

dz, by (5) and (6)

And so on. Observing (5) , (6) and (7), we find

0= ()"

Now, the resolvent kernel R(x, t; A) is given by

R(X, tl )\) = 2?;1:1 )Lm_lkm (X! t)
- nm-1
=Ym=1 (E) , using (2) and (8)
o n\m-1 _ 1 1\2 1n\3
Bt Sia(;) =1+5+(3) ()
Which is an infinite series with common ratio %.

SO

Substituting the above value in (9), we have R(x,t; A) = 2.

Finally, the required solution of (1) is given by

y@) = fx) + A [ RG,6 D) f(©)de or yx)=x+A [, 2t e

(211/2
therefore y(x) = x + 2[?] =x +(1/4)
0

hence the required solution is y(x) = x + % .

Example 5. Solve the following Fredholm integral equations by the

method of successive approximations
_sx, 1
y(x)=—+ zfo xt y(t)dt.

Sol. Given y(x) = S?x + % fol xt y(t)dt

Department of Mathematics
Uttarakhand Open University




Mathematical Methods MAT 509

Comparing (1) with y(x) =f(x) + A fol k(x,t)y(t)dt
We have f(x) = %x, A
Let k,,, (x, t) be the mth iterated kernel. Then we have
ki(x,t) =k(x,t) ....(3)
And  k,,(x,t) = folk(x, Z2)ky_1(z,t)dz,
From (3), ki(x,t) = k(x,t)=xt
Putting m = 2 in (4), we have
ko (x,t) = [ (2, D)k (2, t)dz = [} (x2)(2t)dz
= th01 z%dz = § (xt)
Putting m = 3 in (4), we have
ks (x,8) = [ k(x, D)ky (2, )dz = [ (x2) (;zt)dz, by (5) and (6)
= gxt fol z%dz = G)Z xt

And so on. Observing (5), (6) and (7), we find

ko, (x,t) = G)m_l xt

Now the resolvent kernel is given by

1

nm-1 m-—1 .
R(x,t; A)=Y2_Am 1k (x,t)=Y2_,; (5) (;) xt, using (2) and

1
Xt =1 -

R(x,t; A) = g xt

Finally, the required solution of (1) is given by
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y(x) = f(x) +A [y RG, 6 D) F(O)dt ory(x)= =+ [ 1252 dt

1

3
therefore y(x) = S?x + % [%]
0

hence the required solution is y(X) = x.

8.7 SOLUTION OF VOLTERRA INTEGRAL
EQUATION OF THE SECOND KIND BU
SUCESSIVE APPROXIMATIONS

® An important theorem

Theorem 1. Let R(x,t; 1) be a resolvent kernel of a Volterra integral

equation.

y(x) =f(x) + 4 f; k(x,t)y(t)dt , then the resolvent kernel
satisfies  the integral equation R(x,t; A) = ki, t) +
A ftx k(x,z2)R(z,t; Vdz.

Proof: We know that R(x, t; A1) is given by
ROx, t; A=Y _1 A" 1k, (x,t)
Where iterated kernel are given by

ki(x,t) =k (x,t)

And km (2, 8) = [T k(x, 2k (2, t)dz

Now, from (1), we have
R(x,t; ) = ki(x,t) + Yoo A Tk (x, 8)
=K(x, ) + Xgncy AL [T k(x, 2) k1 (2, £)dz using (2a), (2b)

=k(x, t) + Y=g A" ftx k(x,2)k,(z,t)dz ( settingm - 1=n)
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=k(x, ) + Tney A™ [T k(x, )k (2, ) dz
=k(x, ) + Aoy AL [Tk Cx, 2k (2, t)dz
=k(x, )+ A [ [Biey A" ke (2, D1k (x, 2)dz
(on changing the order of summation and integration)
=k(x, )+ 1 [ R(z,t; Dk(x,z)dz, using (1)

Therefore R(x, t; 1) = k(x,t) + A [ k(x,2)R(zt; Ddz.

ILLUSTRATIVE EXAMPLES

Type 1. Determine the resolvent kernels or reciprocal kernel for

Volterra integral equation

y(X) =1(x) + A [ k(x, D)y (D)dk.

Examplel. Find the resolvent kernel of the Volterra integral equation for

the following kernel k(x, t) = 1.

Sol. Iterated kernel k,, (x, t) are given by

ki(x,t) =k(x,t) ....(1)
And  ky(x,t) = [T k(x, Dkyoi(z,0)dz, (n=1,2,3,..) ....(2)
From (1), ki(x,t) =k(x,t)=1 e (3

Putting n =2 in (2), we have

k,(x,t) = ftx k(x,2)k,(z,t)dz = ftx dz , using (3)

= [z]¢

= x —t, on simplification
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Putting n = 3 in (2), we have

ks(x,t) = ftx k(x,z)k,(z, t)dz = ftx 1.(z—t)dz using (3), (4)

fet] s

Putting n =4 in (2), we have

ko, ©) = [ k(x, Dks(z,0dz = [T 1.2 dz using (3),(5)

2!

_1 [(z—t)B]": (x—1)°
2 3 t 3!

And so on. Observing (3), (4), (5) and (6) etc, we find by Mathematical

induction, that

_ (=)t

kn(x!t)_ (n—-1)! 5

n=1,2,3,...

Now by the definition of resolvent kernel we have

R(x,t; 1) = X1 A Tk (x,8) = ky(x,t) + A kp(x,8) + A2k3(x, t) +

=1+

l(jl—t)_i_ [l(xz—'t)]z " [A(x—t)]3+

Example2. Find the resolvent kernel of the Volterra integral equation for

x—t

the following kernel k(x, t) =e
Sol. Iterated kernel k,, (x, t) are given by

ki(x,t) =k(x,t) ....(1)
And  k,(x,t) = ftxk(x,z)kn_l(z, t)dz, (n=1,2,3,...) ....(2)
From (1), ki(x,t) = k(x,t) =e**t )]

Putting n =2 in (2), we have
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ko(x,6) = [ k(x, 2)ky (2, )dz = [ e*2e?~tdz , using (3)
Zt (X g e
=e*t [T dz=e*""(x 1)
k,(x,t) = e* t(x —t)
Putting n = 3 in (2), we have
ks(x,t) = ftx k(x,2)ky(z,t)dz = ftx e %(z — t)e? tdz using (3), (4)
A
=e* " [((z—t)dz

_ px-t [<z—t>2]x: pr—t G20
2 It

Putting n =4 in (2), we have
k,(x,t) = ftx k(x,z)k3(z,t)dz = ftx e¥Ze?7t (Z;—'t)z dz using (3),(5)

x—t
= ez— ft"(z — t)2dz

_et [@]x: px—t (=D

2! 3

t

And so on. Observing (3), (4), (5) and (6) etc, we find by Mathematical

induction, that

Xt (x—t)"‘l
n-1)! ’

k,(x,t)=e n=1,2,3, ...

Now by the definition of resolvent kernel we have
R(x,t; ) = Yo _ A" 1k, (x, 1)
=ki(x,t) + A ky(x,t) + A2k3(x, t) + ...

xt AE=D | xop ROOP e REOR |
1! 2! 3!

=e*t +e¢

— —_12 _ 3
— pMx-1) [1 Gl [A(x-1)] " [A(x-1)] n ]
1! 2! 3!

= Xt e/l(x—t) — e(x—t)+/1(x—t) — e(x—t)(1+l)_

Department of Mathematics
Uttarakhand Open University




Mathematical Methods MAT 509

Type 2. Solution of Volterra integral equation with the help of the

resolvent kernel.
Working rule: let y(x)=1f(x)+ 1 f; k(x,t)y(t)dt 1)

be given Volterra integral equation. Let k,,, (x, t) be the mth iterated kernel

and let R(x, t; 1) be the resolvent kernel of (1). Then we have
R(x,t; A) =Y, Am 1k (%, t)

Suppose the sum of infinite series (2) exist and so R(x,t; A) can be

obtained in the closed form. Then the required solution of (1) is given by

y(x) =f(x) + 1 [T R(x,t; Df(t)dt. 3)
Example 3. Find the Resolvent kernels for the Volterra integral equation

yx)=1+ | (;C y(t)dt and also find the solution.

Sol. Given y(x)=1+ [ y(t)dt

Comparing (1) with y(x) = f(x) + A [, k(x, D)y (t)dt

We have f(x) =1, A=1,
Proceeding as in Example 1, we have
R(x,t; A) = e**~D =¢*t  gince 1=1, by (2)
Now the required solution of (1) is given by
y(x) =f(x) + 4[] R(x,t; Df(t)dt
y(x)=1+ foxex_tdt, using (1)
=1+e* foxe‘tdt =1+e*[—e ']}

=1l+e*[-e*+1]=1-1+¢e"
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Hence  y(x)=e*.

Example 4. Solve the following integral equation by successive

approximation
y(x) =f(x) + 1 [ e"ty(t)dt .
Sol. Given y(x)=f(x) + A [ e*~ty(t)dt
Comparing (1) with y(x) = f(x) + A fox k(x, t)y(t)dt
Wehave  k(x,t)=e**t
Proceeding as in Example 2, we have
R(x,t; A) = e(*x—00+A

Now the required solution of (1) is given by

y(x) =f(x) + 1 [; R(x,t D)f(t)dt

yx)=f(x) + 1 [ eV f()dt, by (3)

Type 3. Solution of Volterra integral equation of second kind with

the help of the method of successive approximations:
¥00 = () + 4 [ k(x, Oy(©)de ... (1)

Working rule: let f(x) be a continuous in [0, a] and k(x, t) be

continuous for0 < x < a,0 <t < x.

We start with some function y,(x) continuous in [0, a]. replacing y(t) on

R.H.S. of (1) by yy(x) , we obtain

y1(x) =f(x) + [ k(x, )y, (x)dt

y1(x) given by (2) is itself continuous in [0, a]. proceeding likewise we

arrive at a sequence of functions y,(x), y;(x), ..., yn(x), ..., where
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Yn () =£x) + A [ k(x, )Yn_q (x)dt

In view of continuity of f(x) and k(x, t), the sequence {y,,(x)} converges,

as n— oo to obtain the solution y(x) of the given integral equation (1).

Example 5. Solve the following integral equation by successive

approximations

yx)=1+ foxy(t)dt , taking yo(x) = 0.
Sol. Given yx) =1+ [ y(t)dt
And Yo(x) =0
Comparing (1) with y(x) = f(x) + A fox k(x, t)y(t)dt
Here fix)=1, A=1,
The nth order approximation is given by

Yn(6) = £() + A f; k(x, ) yn_1 ()t
Or V() =1+ [ y,_1 (£)dt, using (3)
Putting n = 1 in (4) and using (5), we have
y1(x) = 1+ [ yo()dt =1+ [ 0dt =1
Next, Putting n = 2 in (4) and using (5), we have
V() =1+ [Cy(Ddt =1+ [Fdt=1=1+x

Next, Putting n = 3 in (4) and using (6), we have

X
ys(x) =1+ [Fy,(O)dt =1+ [ (1 + t)dt = [t +§]O ~1 +X+Z_T

(7)
Next, Putting n = 4 in (4) and using (7), we have

Va() =1+ [Fy;(Dde=1+[F(1 + t + tz—zl)dt
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And so on, observing (5), (6), (7), (8) etc, we find

xn—l

yn(x) =1 +x+§+§+ oot
Making n— oo, we find the required solution is given by
y(x) = lim yn(x) or

y(x)=1+x+§+§—j+..... ory(x) = e*.

CHECK YOUR PROGRESS

True or false Questions

Problem 1. The iterated kernels for Fredholm integral equation

is k,(x,t) = f;k(x,z)kn_l(z, t)dz . True/False.

Problem 2. The resolvent kernel of the Fredholm integral

equation for the kernel k(x, t) = x?t%;a=-1, b =1 is

2
R(x,t; A) = ; |A| < 2. True /False.

5x2%t
5-2A

Problem 3. The resolvent kernel of the Volterra integral
equation for the kernel k(x, t)=2 — (x — t), taking A =
1isR(x,t; A) =e* (x — t + 2)True /False.

Problem 4. The eigen value of homogeneous integral equation
y(x) = 2 [ sinx y(t)dt is
(a) 1 (b)2 ()3 (d)4

Problem 5. Eigen function of y(x) = cosx + A [ 0” sinx y(t)dt

18?

Problem 6. Solution of the integral equation y(x) = %x3 —

2x — [ y(©dt, y,(x) = x2.
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8.8 SUMMARY

1. Iterated kernel or functions
For Volterra integral equation
The iterated kernels k,,(x,t),n = 1, 2,3, ... are defined as follows:

ki(x,t) = k(x,t)

k,(x,t) = f: k(x,2)k,_1(z,t)dz,n = 2,3, ...
kn(x,8) = [ kener (v, 2)k(2,0)dz,n = 2,3, ..

For Volterra integral equation
The iterated kernels k, (x,t),n = 1, 2, 3, ... are defined as follows:
ki(x, t) = k(x,t)

k,(x,t) = ftxk(x,z)kn_l(z, t)dz,n = 2,3, ..
kn(,0) = [ knoy (6, 2)k(z,6)dz,n = 2,3, ..

And
2. Resolvent kernel is written as R(x, t; A1) = Y1 A" Yk, (x, £).
3. The series for the resolvent kernel
RO, t; N)=Yo_ A" ke (x,t) ....(1)
is absolutely and uniformly convergent for all values of x and t in the
circle [A] < B™1.
4. Solution of Fredholm integral equation with the help of the resolvent
kernel.

5. Solution of Volterra integral equation with the help of the resolvent

kernel.
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6. Solution of Volterra and Fredholm integral equation with the help of

successive approximations.

8.9 GLOSSARY

Integration

Even, odd functions
Trigonometric functions
Differentiation

First order derivatives

Second order derivatives
Expansions of function
Series
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8.12 TERMINAL AND MODEL QUESTIONS

Q 1. Find the resolvent kernel for the Volterra integral equations with the

following

kernel k(x, t) = 2x, taking 4 = 1.

Q 2. Solve the following Volterra integral equation

y(x) =1+ fox xt y(t)dt by the method of successive Approximations.

Q 3. Using the method of successive approximations, solve the following

integral equation with given value y,(x) of zero-order approximation:

y(x) =1- [ (x — ) y(£)dt, yo(x) = 0.

Q 4. Using the method of successive approximations, solve the following

integral equation with given value y,(x) of zero-order approximation:

y(x) =2x +2- [ y(B)dt, yo(x) = 1.

Q 5. With the help of the resolvent kernel, find the solution of the integral
equation

_ 2 x 1+ x?

y(t)dt.
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8.13 ANSWERS

TQL 2xe*~t*

9 12

TQ2 y)=1+i+1 +2

25 258 25811

X

TQ3  y(X) =cosx

TQ4 y(x)=2
TQ5 y(X)=e*(1+ x?)
CHECK YOUR PROGRESS
CYQ 1. True
CYQ 2. True
CYQ 3. True
CYQ 4. (b)
CYQS. y(x) = cosx

CYQ6. Y(x) = x? — 2x.
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UNIT 9: APPLICATIONS OF INTEGRAL
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9.1 INTRODUCTION

We have already learnt about the conversion of boundary value
problem into integral equations. In this unit we shall consider the initial
and boundary problems again in the different context. We shall introduce
the concept of Green’s function and utilize it in converting initial and
boundary value problems into integral equations. Sometimes we shall be
able to solve the given initial and boundary value problems completely

with the help of Green’s function.

9.2 OBJECTIVE

At the end of this topic learner will be able to understand:

(i) integral equation

(ii) Green’s function

(iii) initial value problem
(vi) Boundary value problem

(v) Solution of integral equation using Green’s Function.

9.3 GREEN’S FUNCTION

Consider a linear homogeneous differential equation of order n:
L[y]=0

Where L is the differential operator

-1

an an
L= Po(x)m + P1(x)m+ 4 pp(x)

Where the functions py(x),p;(x), ..., pp(x) are continuous on [a, b],

Po(x) # 0 on [a, b] and the boundary conditions are

V.(y) =0, (k=1,2,3,..,n)
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Where V. (y) = apy(a) + a,Py'(a) + -+ a, " Dy"~1(a)

+Bey(B) + By (b) + -+ B VY1 (b)

Where the linear form Vi, ... , ¥, in y(a), y'(a), ... , y" (a),
y(b),y'(b), ...,y 1(b) are linearly independent.

Suppose that the homogeneous boundary — value problem given by (1) to
(4) has only a trivial solution y(x) = 0. Then the Green’s function of the
boundary value problem (1) to (4) is the function G(x, t) constructed for

any point t, a <t <b, and which has the following four properties:

(1) In each of the intervals [a, t) and (t, b] the function G(Xx, t), considered

as a function of x, is a solution of (1), that is,
L[G]=0

(11) G(x, t) is continuous and has continuous derivative with respect to x

upto order (n - 2) inclusive for a < x < b.

(111) (n — 1)th derivative of G(x, t) with respect to x at the point x =t has

discontinuity of the first kind, * the jump being equal to — L, that is

po(t)
(6”_10) (6”_16)
dxn—1 x=t+0 dxn—1 x=t—0

(1v) G(x, t) satisfies the boundary conditions (3), that is,

V. (6)=0.(k =1,2,..,n)

Note:m if the boundary value problem given by (1) and (4), has only
trivial solution y(x) = 0, the operator L has a unique Green’s function

G(x, t).

m if the boundary value problem (1) to (4) is self-adjoint, then Green’s

function is symmetric, that is, G(x, t) = G(t, x). the converse is also true.

m if at one of the extremities of an interval [a, b] the coefficient of the

highest derivative vanishes, for example py,(a) = 0, then the natural
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boundary condition for boundedness of the solution at x = a is imposed,

at the other extremity the ordinary boundary condition is specified.

9.4 CONVERSION OF A BOUNDARY VALUE
PROBLEM INTO FREDHOLM INTEGRAL
EQUATION

We shall use the following notations:

dTL dn—l
L= Po(x)m + P1(X)m+ o+ pp(x)

And
Ve) = apy(@) + @,y (@) + -+, Vy ()
+By®) + B Dy () + -+ By (b)
Suppose G(x, t) is the Green’s function of the boundary value problem
Liy]=0
V.(y)=0, k=1,2,3,....,n e (2)

Involving homogeneous boundary conditions (2) at the end points x = a

and x =b of an interval a < x < b.
Result 1. Consider the boundary value problem
Lyl + ¢(x)=0
V.(y)=0, k=1,2,3,.....,n e (B)

Involving the same homogeneous boundary conditions (2). Here ¢(x) is a

direct function of x.

*then solution of the boundary problem (3)-(4) is given by the formula

y(x) = [ G(x, (Dt
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Result 2. Consider the boundary value problem
Liy] + o(x)=0
Ve(y)=0, k=1,2,3,....,n
Involving the same homogeneous boundary conditions (2).

In this result we assume that ¢(x) is not a given direct function of x.
however, ¢(x) may also depend upon x indirectly by also involving the

unknown function y(x), and so being expressible in the form ¢@(x) = ¢(x,

y(x))

Then the boundary — value problem (6) — (7) can be reduced to the

following integral equation

b
y(x) = [, G(x, )t y(t)dt
Particular case of result (2):

Let p(x) = A r(x)y(x) — f(x), where A is a parameter. Then, we see that
the boundary value problem L[y] + Ar(x)y(x) = f(x) ........(10)

V,(») =0, k=1,2,3,....,n e (1)

Reduces to the following integral equation

y(x) =2 [} G, Or(©)y(0)de- [} G(x, )f (£)dt (12)

where G(x, t) is the relevant Green’s function. In (12), G(x, t) r(t) is not

symmetric unless the function r(t) is a constant. However, if we write

GOy = Y

Under the assumption that r(x) is non-negative over (a, b), as is usually

the case in practice, the equation (12) can be written in the form

b, b,
Y(x) =2, k*(x,0)Y(t)dt- [ k*(x,t) {rf( it))}% dt,

1
Where k*(x, t) = G(x, t){r(x)r(t)}z is a symmetric kernel.
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Result 3. When the prescribed end conditions are not homogeneous,

we shall use a modified method as explained below:

In this case, Let G(x, t) denote the Green’s function corresponding to the
associated homogeneous end conditions. We now search for a function

P(x) such the relation

b
yx) =Px)+ [, G(x, )e(Ddt (13)
is equivalent to the differential equation  L(y)+ ¢(t) =0

together with the prescribed nonhomogeneous end conditions.

since L[f: G(x, t)(p(t)dt] =-px)

the requirement that (13) imply (14) leads us to
LPx)]=0

Furthermore, since the second term in (13) satisfies the associated
homogeneous end conditions, we conclude that function P(x) in (13)
must be the solution of (16) which satisfies the prescribed
nonhomogeneous end conditions. When G(x, t) exists, then P(x)

always exists.

ILLUSTRATIVE EXAMPLES

Based on construction of Green’s Function

Example 1. Find the Green’s function of the boundary value problem

y" =0, y(0) =y =0.

Sol. Given boundary value problem

With the boundary conditions:

And

The general solution of (1) is y(x)=Ax+B
Putting x = 0 in (3) and using (2a), we get B=0
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Next, putting x =1 in (3) and using (2b), weget 0=A+Bl

Solving (4) and (5), we get A = B = 0. Hence (3) yields only the trivial
solution y(x) = 0 for the given boundary value problem. Therefore, the

Green’s function exists and is given by

_(a;x + ay, 0<x<t
G(X’t)_{a1x+a2, t<x<l

In addition to the above property (6). The proposed Green’s function must
satisfy the following three properties:

(1) G(x, t) is continuous at x = t, that is
b1t+b2:a1t+a2 or (bl_a1)+(b2 —a2)=0

(11) the derivative of G has a discontinuity of magnitude — pL(t) at the point
0

x = t, where py(x) coefficient of the highest order derivative in (1) = 1.

Therefore (g_z)x=t+0 - (z—z)xzt_o =—1 or bj—a,=-1

(111) G(x, t) must satisfy the boundary conditions (2a) and (2b), that is
G(0,t)=0 so that a, =0

And G(1,t)=0 so that bil+b,=0

Using (8), (7) becomes -t+b, —a,=0

Solving (8), (9), (10) and 11, we have

a,=0 b, =t, b, = —t/l,

Therefore a,x +a, = (1 — %) x =

b1x+b2=—§x+t=§(l—x).

Substituting the above value in (6), the required Green’s function of the

given boundary problem is given by
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G)(l—t), 0<x<t
G)(l—t), t<x<l

Gx, t)=

Example 2. Construct the Green’s function for the differential equation
xy'""+y' =0 for the following conditions. y(x) is bounded as

x> 0,y(1) = ay'(1),a # 0.

Sol. Given boundary value problemis : xy” +y' = 0orx2y” + xy' =0
Or (x?D? +xD)y =0,D=d/dx

With the boundary conditions:  y(x) is bounded as x — 0

y) = ay’ (D), a #0

To solve the linear homogeneous differential equation (1), we proceed by

the usual method

Put x =e? sothat logx=z

Then xD =D, and x2D? = D,(D; — 1), where D, =

Using (4),(1) reduces to [D;(D; — 1) + D;] y=0 or Di%y=0

The auxiliary equation of (5) is D;%=0 so that D, =0, hence the solution

is

Y=Az+B or y(x)=Alogx+B,by(3)
Now from (6), y'(x) =A/x

From (6) and (7), y(1)=B and y'(1)=A
Putting these value in (2b) we get B=aA

In view of B.C. (2a), we must take A =0 in (6). Then A =0 and B = a4
then B = 0.

Thus A = B = 0. Hence yield the trivial solution y(x) = 0. Therefore the

Green’s function exist and given by

Department of Mathematics
Uttarakhand Open University




Mathematical Methods MAT 509

a;logx +a,, 0<x<t
bilogx+ by, t<x <1

G(x, t)= {

In addition to above property (8), the proposed Green’s function must also

satisfy the following three properties:
(1) G(x, t) is continuous at x = t, that is,
b,logt + b, = a;logt + a,

(by —ay) logt+ (b —a;) =0

(i) The derivative of G has a discontinuity of magnitude — 1/p,(t) at the
point x = t, where p,(x) = coefficient of the highest power of x in the

given differential equation = x. thus we have
aG aG
(E)x:t+0 - (E)m_o =—1/t or b/t—aj/t=—1/t
Or
(111) G(x, t) must satisfy the boundary conditions (2a) and (2b), that is

For (2a) , G(x, t) must be bounded as x — 0, i.e. a;logx + a, must be

bounded at x = 0, which is possible only if we take

For (2b) we must have G(1,t)=aG'(1,¢t)

bilogl+b, =a(2) or by =ab,
x=1

x
solving (9), (10), (11) and (12), we get

a, =0, b, =—a«a and a, = —a — logt
Substituting the above values in (8), the required Green’s function is

—a—logt, 0<x<t
—a—logx, t<x<1"~

G(x, t) = {
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m Solved example based on result 1:

Example 3. Use the Green’s function solve the boundary value problem
y'+y=x,y0)=(n/2) =0.

Sol. Given boundary value problem y"' +y = x

With boundary conditions: y(0)=y(m/2)=0

Consider the associated boundary value problem

y"+y=0 or (D?*+1)y=0,D=d/dx

Subject to boundary conditions  y(0) =0

And

We first find the Green’s of the above mentioned boundary value problem

given by (3), (4a) and (4b).

The auxiliary equation of (3)is D? + 1 =0sothat D=+i
Hence the general solution of (3)is  y(x) = A cosx + B sinx
Putting x =0 in (5) and using B.C. (4a), we get A =0
Putting x = 0 in (5) and using B.C. (4b), we get B =0

From (6) and (7), A = B = 0. Hence (5) yield only trivial solution y(x) =
0. Therefore, Green’s function exists for the boundary value problem
given by (3), (4a) and (4b) and it is given by

a,cosx + a,sinx, 0<x<t
bicosx + b,sinx, t<x <m/2

G(x, t) = {

In addition to the above property (8), the proposed Green’s functions must
also satisfy the following three properties:

(1) G(x, t) is continuous at x = t, that is

b,cost + b,sint = a,cost + a,sint
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or (by — ay)cost + (b, — ay)sint=0

(i1) the derivative of G has a discontinuity of magnitude — 1/p,(t) at the
point x =t, where p, (x) = coefficient of the highest order derivative in (3)

= 1. thus we have

(66) (66)
— —\= =-—1 or
9x/x=t+0 0x/x=t-0

—b;sint + bycost — (—a,sint + a,cost) = -1
- (by — ay)sint + (b, — a,)cost =-1
(111) G(x, t) must satisfy the boundary condition (4a) and (4b), that is
G(0,t)=0 so that
And G(t/2,t)=0 so that
Letb; —a; =C; and
The (9) and (10) may be written as
Cycost+C,sint+0=0
—C,sint+ Cycost+1=0
Solving (14) and (15) by cross-multiplication method, we have
C C, 1

— = = . hence C; = sint and C, = —cost
sint —cost  cos?t+sin?t

Therefore b, — a; = sint, by (13)
b, —a, = —cost,by (13)
Solving (11), (12), (16) and (17) we have
a, =0, b, = sint, a, = cost
Substituting these values in (6) we have

cost sinx, 0<x<t
sintcosx, t<x <m/2

G(x, t) = {
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Then we known that the solution of the given boundary value problem (1)-

(2) is given by
y() = [T G (x, )@ (e)dt

where @(x) = —x so that @(t) = —t, hence the required solution is given

by

y(x) == [77 6 (x, t)edt = - [fox tG(x, O)de + [ tG (x, t)dt]

=- f; t sint cosx dt — f:/z t cost sinx dt, using (18)
= - cOsX f;c t sint dt — sinx fxn/z t cost dt
= - cosx|[—tcost]¥ — fox(—cost)dt] — sinx [[t sint]™/? — fxﬂ/z sint dt]
= - cosxX[-xcosX + sinx] — sinx[g -XSinxX — COSX]
Thus y(x) = x - g sinx .
m Solved example based on result 2:
Example 4. Reduce the boundary value problem y"' + 1y = x,
y(0) =y(m/2) = 0 to the integral equation.
Sol. Given boundary-value problem is

'+ 2y = x,y(0) = y(1/2) = 0

We shall first find the Green’s function of the following associated

boundary value problem
or D?y=0,D=d/dx
With boundary conditions y(0)=0
Or y(r/2) =0
So the general solution of (2) is y(x) = Ax + B
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Putting x = 0 is (5) and using B.C. (3), we get B=0
Next putting x = /2 in (5) and using B.C. (4), we get
0=A(m/2)+B

From (6) and (7), A =B = 0. Hence (5) yields only trivial solution y(x) =
0. Therefore Green’s function G(x, t) exists for the associated boundary

value problem given by (2), (3) and (4) and given by

_(ayx + ay, 0<x<t
Glx, t)_{b1x+b2, t<x<m)2

In addition to the above property (8), the proposed Green’s functions must
also satisfy the following three properties:

(1) G(x, t) is continuous at x = t, that is
blt + bz = alt + a,
or (by —ay)t+b,—a,=0

(i1) the derivative of G has a discontinuity of magnitude — 1/p,(t) at the
point x = t, where p,(x) = coefficient of the highest order derivative in (2)

= 1. thus we have

(66) (66)
— —\= =-1 or
0x/x=t+0 9x/x=t-0

b, —a;=-1
G(x, t) must satisfy the boundary condition (2) and (4), that is
G(0,t)=0 so that
And G(r/2,t)=0 so that
Using (10) , (9) gives
—t+b,—a, +=0

Solving (10), (11), (12) and (13), we have
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by = —(3),

Therefore a;x+a, = {1 - %}x and byx+ b, = {1 - 2—x} t

T

Substituting these values in (8) we have

(1—%)96, 0<x<t

G(x, t) = (1_%)& t<x<m/2

Comparing y"" + Ay — x = 0 with y”" + @(x) = 0,we have

@(x)=Ay(x) —x sothat @(t)=Ay(t) —t

Also, we know that , if G(x, t) is Green’s function of the boundary value
problem given by (2), (3),(4) then the boundary value problem (1) can be

reduced to the following integral equation

yx) = [ 6 (x, )@@ dt = [ 6 (x, O[Ay(e) — t ]t

or yx) =2["7 6 y)de - [t Glx, )de (16)
Now, we have

G )dt = [Ft Gl )dt + [t G(x, t)dt
0 0 X

:f;tz (1 _2?") dt+fxn/2tx (1—%) dt , using (14)

(1= [Fezae+x™ (¢ -2 at
0 x

T[ [

2t3

3T

Substituting the above value in (16), we obtain the required integral

equation
3 2
y(x) =1 fon/z G(x, t)y(t)dt + % - % , where G(x, t) is given by (14).
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CHECK YOUR PROGRESS

True or false Questions

In the following boundary value problem examine whether a

Green’s function exists or not ?
Problem 1. y"" = 0, y(0) = y(1), y'(0) = y'(1).
Problem 2. y"” =0, y(0) =0, y(1) = y'(1).

Problem 3. if the boundary value problem is self-adjoint, then

Green’s function is symmetric. True/False.

Problem 4. if the boundary value problem has only trivial
solution y(x) = 0, the operator L has two Green’s function G(X,

t). True/False

Problem 5. When the prescribed end conditions are not

homogeneous, we shall use a modified method. True/False

9.5 SUMMARY

1. If the boundary value problem has only trivial solution y(x) = 0, the

operator L has a unique Green’s function G(x, t).

2. If the boundary value problem is self-adjoint, then Green’s function is

symmetric

3. When the prescribed end conditions are not homogeneous, we shall use

a modified method.
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9.6 GLOSSARY

Integration

Even, odd functions
Trigonometric functions
Differentiation

First order derivatives
Second order derivatives
Expansions of function

Series
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9.9 TERMINAL AND MODEL QUESTIONS

Q 1. Find the Green’s function for the boundary value problem

2ty =0,y(0)=y(1) =0,

. Find the Green’s function for the boundary value problem

2 %y

x2&XY
dx?2

+xZ —y =0, y(x) is bounded as x- 0, y(1) = 0.
. Using Green’s function solve the boundary value problem

y'—y=xy(0)=y(1) =0.

. Using Green’s function solve the boundary value problem
y'—y=-2¢% y(0)=y'(0), yO+y'D=0.

. Reduce the following boundary — value problems to the integral

equations y" + Ay = e*, y(0) =y'(0), y(1) =y'(1).

9.10 ANSWERS

sin u(t—1)sinux

TQL G(x 1) = ponm

sin utsinu(x—1)
usinu

, 0<x<t

, t<x<1

Department of Mathematics
Uttarakhand Open University




Mathematical Methods MAT 509

0<x<t
TQ2 G(xt)=
t<x<1

sinh x

TQ3 y(X) - sinh 1 - X
TQ4 y(x) =sinhx +e*(l — x)

TQ5 y(X)=e*+ A[, G(x,t) y(t)dt,

—(1+ x)t, 0<x<t
—(1+t)x, t<x<1

where G(x, t) = {

CHECK YOUR PROGRESS

CYQ 1. No

CYQ 2. No

CYQ 3. True

CYQ 4. False

CYQ 5. True

Department of Mathematics
Uttarakhand Open University




Mathematical Methods MAT 509

UNIT 10: MODIFIED GREEN’S
FUNCTION AND ITS APPLICATIONS

INTO INTEGRAL EQUATION
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10.1 INTRODUCTION

The Modified Global Green's Function Method (MGGFM) is an

integral technique that is characterized by good accuracy in the evaluation
of boundary fluxes. This method uses only projections of the Green's
Function for the solution of the discrete problem and this is the origin of
the term 'Modified' of its name. We shall introduce the concept of Green’s
function and utilize it in converting initial and boundary value problems
into integral equations. Sometimes we shall be able to solve the given
initial and boundary value problems completely with the help of Green’s

function.

102 OBJECTIVE

At the end of this topic learner will be able to understand:

(1) integral equation

(i1) Green’s function

(i11) initial value problem

(vi) Boundary value problem

(v) Solution of integral equation using Green’s Function.
(vi) Modified Green’s function

(v) Wronskian

10.3 GREEN’S FUNCTION APPROACH FOR

CONVERTING AN INITIAL VALUE PROLEM
INTO AN INTEGRAL EQUATION

Consider the following initial value problem

D)ty =500
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y(a) =0, y'(@)=0 N )

_4d( _ 4>  dpd
let L_dx(pdx)+qy_pdx2+dxdx+q

which is self - adjoint differential operator. Here the function p(x) is
continuously differentiable and positive and q(x) and f(x) are continuous

in a given interval (a, b).

the associated homogeneous second order equation
— i a(, ¥ —
Ly=0 Le. - (p dx) +qy=0

Has exactly two independent solutions u(x) and v(x) which are twice
differential in the interval a < x < b. any other solution of (4) is a linear

combination of u(x) and v(x) , i.e.
y(x) = c;u(x) + c,v(x) , where ¢;and c, are constants.

For the self-adjoint operator L, the Green’s formula is given by
f; (vLu — uLv)dx = [p(x)(vu' —uv']?

In order to convert the initial value problem (1) — (2) into an integral

equation, we consider the function w(x) given by w(x) =

ux) [, v(OfOdt — v(x) [, u®OfOdt ... (6)

Differentiating both sides of (6) w.r.t. ‘x’ we have

X d X
w'(x) = u’(x)f v(t)f(t)dt + u(x)af v(t)f(t)dt

X d X
() f u(f (Ot~ v() o f w(Of Odt

Or w'() =uQ) [ v®Of®dt—v' () [ u@®f(®)dt
From (6) and (7) we have w(a)=w'(a) =0
Now, u and v are the solution of (4)
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Therefore ~—(pu’)+qu=0 and = (pv')+qv=0
Therefore ;—x (pu') — qu and
Using the value w’(x) given by (7), we have
—(ow") =[P () [ v(©f ©dt — p()v' () [} w(©f (D)de]

== () [ v(Of (©de] +pu’ - [T v(©f (©)dt]

— = (V) [] w(©Of©dt] +pv' = [T u@®)f (©)dt]
== (pu") [ v(Of (Odt] +pu’ CIv()f (x)

_ ;_x V") [T u®)f(©dt] — pv’ (Du@)f (x),

by Leibnitz’s rule
= -quf] v(®O)fOde] + qvf u®)F(Odt] + p'v — uv')f (x)

Therefore :—x (pw') = - q(x) w(x) + p(u'v — uv’) f (x), using (6) (10)

Now ;—x [p(w'v —uv')] = :—x [(pvu — (pu")v] = (-qv)u — (-qu)v = 0,

using (9)
Thus, :—x{p(uv’ —u'v)}=0 sothat puv' —u'v)=A4 ...(11)

Where A is a constant. (11) is Abel’s formula

u v
Also uv' —u'v=|\, | =W(u, v)
u v ’

Where W(u, v) is the Wronskian of u and v. since u and v are linearly

independent solution of (4), we have W(u, v)=uv’' —u'v# 0

Using (11), (10) may be re-written as

w
d d | d=)
X

E{p%} + qw = -A f(x) or E{Pd—} +q(— %) =f(x) ... (14)
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Where w(@a)=w'(a) =0 by (8)

Comparing (14) with (1) , we have y = -w/A so that w = -Ay. Substituting

this value of w in (6), we obtain

Ay = [HuG)v®) - vu®}f(Hdt or

y(x) = [ OO ) dt or v(x) = [ R(x, £)f (D)t (16)

where  R(x, t) = (1/A) {v(x) u(t) — u(x) v(t)} (17)
from (17) we find that R(x, t) = -R(t, x)
one can easily verify that, for a fixed value of t, the function R(x, t) is

completely characterized as the solution of initial value problem
d dR
LR=2{p@) %} + g R =680 — 1)

[Rl=c=0. || =150

where 6(x —t) is the Dirac delta function.
This function describes the influence on the value of y at x due to a
concentrated disturbance at t. it is called the influence function. The
function G(x, t) is defined as

0, x <t

Gx. 0= {R(x, t),x >t

1s known as the causual Green’s function.

Note: when the value of y(a) and y(b) are prescribed to be other
than zero, then we simply add a suitable solution A u(x) + B v(x)
of (4) to the integral equation (16) we get Volterra integral

equation of second kind of the form
y(x) = Aux) +Bvx) + [ RO, ODf(O)dt ... (22)
the constants A and B are evaluated by using the prescribed

initial conditions.
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ILLUSTRATIVE EXAMPLES

Example 1. Convert the initial value problem y"” +y = f(x), 0<x<I,
y(0) =y'(0) = 0 into an integral equation.

Sol. Giveny” +y = f(x), 0<x<l
With initial conditions y(0) =y'(0) = 0

: o d( d
Comparing (1) with . (p ﬁ) +qy = f(x) herep=q=1

The associated homogeneous equation of (1) is
y'"+y=0 or (D*+1)y=0
Its general solutionis  y = A cosx + B sinx
Let u=cosx andv=sinx
Where u and v are linearly independent solution of (3)
Now A =p(uv’ — u'v) =p[cos’x + sin’x] =p =1
Therefore R(x, t) = (1/A){v(X) u(t) - u(x) v(t)}

= sinx cost — cosx sint = sin(x —t)

Hence the given initial value problem reduces to the integral equation

y(x) = [ R, )f(Ddt e y(x) =, sin(x —t)f()dt.

Example 2. Convert the initial value problem y" +y = f(x),0<x<I,
y(0) =1, y'(0) = —1 into an integral equation of second
kind.

Sol. Here the values of y(0) and y'(0) are prescribed to be other than zero,

hence the given initial value problem will transform into Volterra integral

equation of the second kind of the form

yx) =Au®) +Bv(x)+ [J R, Of@©dt ... (1)
proceed as in Ex. 1 and show that u(x) = cosx,
v(x) = sinx and R(x, t) = sin(x — t). so (1) reduces to
y(x) = A cosx + B sinx + fox sin(x —t)f(t)dt .....(2)
putting y = 0 in (2) and using the condition y(0) = 1, we get A = 1.
Now, differentiating both sides of (2) w.r.t. ‘x” and using Leibnitz’s rule,

we obtain
y'(x) = - A sinx + B cosx + fox cos(x —t)f(t)dt 3)

Putting x = 0 in (3) and using the given condition y'(0) = —1,
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we get B=-1.
Putting A =1 and B = -1 in (2), the required Volterra integral equation is
given by

y(X) = cosx — sinx + fox sin(x — t)f(t)dt.

10.4 WORKING RULE FOR CONSTRUCTION OF
MODIFIED GREEN’S FUNCTION

Given an inhomogeneous equation with boundary conditions:

Ly=¢(x), ayy(a) + p1y'(a) = 0, ay(b) + B,y'(b) =0
Consider a linear homogeneous equation of order two

d>  dpd
where L = p(x)— ﬁa +q(x)

Together with homogeneous boundary conditions
a,y(a) + pry'(a) =0
azy(b) + B2y’ (b) =0

With usual assumption that at least one of a; and f8; and one of a, and 3,

are non-zero.

Suppose that the homogeneous boundary value problem given by (1), (2a)

and (2b) has a non-trivial solution y(x).

Then  |[ly(x)|l =norm of y(x) = {f; [y(x)]zdx}l/2

Let w(x) =yx)/ [yl

So that w(x) is non-trivial normalized solution of the boundary value

problem given by (1), (2a) and (2b). clearly by definition we have
lwell =1 sothat [)[w(x)]2dx =1

Then, by definition G (x, t) is called the modified Green’s function of the

given boundary value problem if it satisfies the differential equation
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LGy =6(x —t) — w(x) w(t)
Forx #t, (5)" reducesto LGy =— w(x) w(t)

Gi(x,t),ifa<x<t
Gy(x,t),if t<x<bh

Foragivent,let Gy(x,t) = {

Where G, and G, are such that

(1) the function G; and G, satisfy the equation (5) in their respective

mtervals of definition,
Thatis LGi=wXx)w(t),a<x<t
LG, =—wX)w(t),t<x<b

(11) G, satisfies the boundary condition (2a) whereas G, satisfies the

boundary condition (2b).
(iii) the function Gy (x, t) is continuous at x =t,
Le. G1(t, t) =G,(t,t) ....... (8)

(iv) the derivative of G, (x, t) with respect to x at the point x =t has a
discontinuity of the first kind, the jump being equal to 1/p(t). here p(x) is
the coefficient of d’y/dx? in (1).

96m _ (%6m —
Thus ( dx )x=t+0 ( 0x )x=t—0 - 1/p(t)
(v) in order that G, (x, t) may be symmetric, we must have
f: Gy (x, Ow(x)dx =0

Method of reducing the inhomogeneous differential equation (1)’
with prescribed homogeneous boundary condition into an integral

equation.

The required integral equation is given by
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y(x) = f: Gy (x, t)@(t)dt + ¢ w(x), where c is an arbitrary constant.

(11a) may also be re-written in the form

() = [ G (e, Dp©)de + w(x) [ w@)y(x)dx

consistency condition for existence of the desired integral equation (11a)

or (11b) is given by f; p(x)w(x)dx =0. e (12)

ILLUSTRATIVE EXAMPLES

Example 1. Find the modified Green’s function for the system

y"'+f(x)=0,y'(0)=y'(D=0, 0<x<lL

And hence transform this boundary value problem into an integral

equation.

Sol. Given  -y"=f(x), y'(0) =y'() =0,

Here — (d?/dx?) is self - adjoint operator

Consider the associated self- adjoint system -y =0, 0<x<[......

With boundary condition

The general solution of (2) is y(x) = Ax + B
From (4), y'(x)=A

Putting x =0 and x = [ in (5) and using (3a) and (3b), we get A = 0. Hence
the boundary value problem given by 92), (3a0 and (3b0 has a non-trivial

solution y(x) = B, where B is an arbitrary constant.

Here  [ly(x)Il = norm of y(x) = {fol [3/(96)]26196}1/2
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~{['1B12ax) " = BVI

Let  w(x) =y ly()ll=B/BVI=1A1

So that w(x) is non-zero normalized solution of the boundary value

problem given by (2), (3a) and (3b). clearly by definition we have

fol[w(x)]zdx =1

Then, for x # t the required modified Green’s function G, (x,t) must

satisfy the equation
-d%G/dx? = -w(x) w(t) or d’G,/dx*=1/1

Then general solution of (8) is of the form G,,(x,t) = Ax + B + x%/21

2
a1x+a2+§—l, ifos<x<t
Hence we take Gy (x,t) = 2 )
b1x+b2+z, lft<xSl

a; +x/Lif0<x<t
b +x/2,if t<x <1

from (9), OGM/axZ{

in addition to the above property (9), the proposed modified Green’s

function must satisfy the following properties:

(i) since Gy (x, t) must satisfy the boundary conditions (3a) and (3b), (10)

gives

(0Gy/0x)x=0=0 and  (0Gy/0x)x=; =0

Therefore a; =0and b; +1 =0 sothata; = 0and by = —1.... (11)
(ii) Gy (x, t) is continuous at x = t, that is

at +a, +t?/2l=b,;x + b, + t%/2l so that

(al_bl)t‘l'az _bz = 0 .(12)
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(iii) the derivative of G, (x,t) wit respect to x at the point x =t has a
discontinuity of the first kind, the jump being 1/p(t), where p(x) is the
coefficient of y” in (1), i.e. p(x) = -1. Thus,

() ro = 5oy = 1P

ie.by +t/l—(a; +t/)=-1 or a;—b =1

from (12) and (13) t+a, —b, =0sothat b, =a, +t
substituting values of a;, b; and b, from (11) and (14) in (9), we get

Goy () :{a2+x2/21, ifo<x<t
MA a, —x+t+x2/2l, ift<x<lI

(iv) in order that G, (x, t) may be symmetric, we have

fol Gy(x,)w(x)dx =0  or fol Gy, t)dx =0, as w(x) :%

Or fot Gy (x, t)dx + ftl Gy(x,t)dx =0

t 2 l 2 .
Or Jo (az +Z—l)dx+ft (az—x+t+z—l)dx=0, using (15)

2 !
[ayx + x3/61]5 + [azx —x?+ tx +x3/6l] =0
t

Or

Substituting the above value of a, in (15), the symmetric modified

Green’s function Gy (x, t) is given by

T t+ (2 Ht2)/2L if0<x <t
Gu(x,t) =
" Loxt 242l ift<x<I

Which may also be re-written as

x2+t2_{t, fos<x<t

Gu(xt) = X, ift<x<lI

l
—+
3 21
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The above result (16) could have been obtained by inspecting (15) and

making a judicious choice of a,.

Second part: transformation of the given boundary value problem into an

integral equation.

The required integral equation is given by

y(x) = f;/[GM(x,t)f(t)dt+% or  y(x)=c"+ f; Gu(x )f(t)de

Cc

7 is an arbitrary constant and G, (x,t) is given by (16) or

where ¢’ =
(17).
Example 2. Find the modified Green’s function for the system
y" =0, -1 <x<L. Subject to the conditions y(—1) = y(1)
and y'(-1) = y'(1) .
Sol. Given  -y"=0, -1<x<
With boundary condition y(-1) =y(1)

y' (=D =y'"(1)

The general solution of (1) is y(x) = Ax + B

From (3), y'(x)=A

From (3) and (4),

y-D=-A+B, y)=A+B, y'(-D=y'1)=4

From (2a) and (5) wege -A+B=A+B sothat A=0

Then (2b), (5) and (6) = A=A=0

Hence the given boundary value problem has a non-trivial solution
y(x) = B, where B is an arbitrary constant.
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Here Iyl =nom of y( = {[yGol?dx}

.

Let  w(x)=yx) ly()ll=B/BvV2=1~2

flBrax) = Bv2

0

So that w(x) is non-zero normalized solution of the boundary value

problem given by (2), (3a) and (3b). clearly by definition we have

S Iw)Pdx =1

Then, for x # t the required modified Green’s function G,,(x,t) must

satisfy the equation
-d%G/dx? = -w(x) w(t) or d’G,/dx*=1/2

Then general solution of (8) is of the form G,,(x, t) = Ax + B + x*/4

2
ax+a,+>, if-1<x<t
Hence we take Gy (x,t) = 4x2 e (9)
b1x+b2+7, lft<xS].

a +2,if —1<sx<t
by +x/2,if t<x <1

from (9), OGM/axZ{

in addition to the above property (9), the proposed modified Green’s

function must satisfy the following properties:
(i) G (x, t) is continuous at x = t, that is
a;t+a, +t?/4=b;x + b, +t?/4  sothat
(a; —by) =t(hy —ay) .....(11)

(ii) since Gy (x,t) must satisfy the boundary conditions (2a) , we must

have
_a1+a2+1/4:b1+b2+1/4
so that a, - b, = a; + by, by (9)
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Again G, (x, t) must satisfy the boundary conditions (2b) , we must have
by +1/2=a,-1/2 sothat by - a; =—1, by (10)

(iii) the derivative of Gy (x,t) wit respect to x at the point x =t has a
discontinuity of the first kind, the jump being 1/p(t), where p(x) is the
coefficient of y”' in (1), i.e. p(x) = -1. Thus,

2t _ (%m _
( 0x )x=t+o ( ax )x=t—0 =1/p(®)
ie. by +t/2—(a; +t/2)=-1 or by —a;=-1

which is the same relation as (13). Thus, we see that the jump condition

on aaLxM is automatically satisfied.
from(11)and (13) a, —b, =-t so that
again from (13) b=a, -1

substituting values of b,, b; given by (14) and (15) respectively in (12) ,

we have
a,—(a, +t)y=a;+a; —1 sothat a;=(1-1t)/2 (16)

Substituting the value of b,, b; given by (14) and (15) respectively in (9),

we have

2
a1x+a2+x7, if—1<x<t
GM(xit) = x2
(a1—1)x+a2+t+7, ift<x<l1

(iv) in order that G,,(x, t) may be symmetric, we have

f_ll Gy(x,)w(x)dx=0 or f_ll Gy(x,t)dx =0,

Or f_tl Gy (x, t)dx + ftl Gy(x,t)dx =0

2 2
Or f_tl(alx+a2+%)dx+ft1(a2+t+a1x—x+%)dx:0,

by (17)
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2
After integrating we get a, = % — % +1/6

Substituting the value of a, and a, given by (16) and (18) respectively in

(17), the symmetric Green’s function is given by

fo+%_§+§+_nif—1§x<t
Gu(xt) = —(1+t)x+f_£+
2 4 2

or

x
4

x% .
+T’ ift<x<1

1
6

—+)2 -
Qfl+%§+a if—1<x<t
Gy (x,t)

—+)2 —
GO _ el ifr<x<1
4 2 6
Which can be also re-written as
1
I

—_£\2
Gu(et) =5 = —tl+1/6.

CHECK YOUR PROGRESS

True or false Questions

Problem 1. (aG—M) — (aG—M) = L. True/False
X Jx=t+0 0x Jx=t-0 p(t)

In the following boundary value problem examine whether a

Green’s function exists or not ?
Problem 2.y’ =0, y(0) =0, y(1) =y'(1).
u v ) )
Problem 3. |u’ 1],| = W(u, v) is Wronskian of u and v.
True/False.

Problem 4. if the boundary value problem has only trivial

solution y(x) = 0, the operator L has two Green’s function

G(x, t).True/False
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Problem 5. The general solution of y"’ = 0 is y(x) = Ax + B.

True/False

10.5 SUMMARY

. If the boundary value problem has only trivial solution y(x) = 0, the
operator L has a unique Green’s function G(x, t).

. If the boundary value problem is self-adjoint, then Green’s function is
Symmetric.

. When the prescribed end conditions are not homogeneous, we shall use

a modified method.

(aGM) _(aGM) _ 1
"\ ox Jx=t40 0x Jy=t—0 p®)’

. Suppose that the homogeneous boundary value problem has a non-

trivial solution y(x).

Then  Ily(o)ll = norm of y( = { [/ [y T2}

6. |:j, ;],| = W(u, v) is Wronskian of u and v.

10.6 GLOSSARY

Integration

Even, odd functions
Trigonometric functions
Differentiation

First order derivatives

Second order derivatives
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Wronskian

Linearly independent functions
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10.9 TERMINAL AND MODEL QUESTIONS

Q 1. Find Modified Green’s function for the system y” =0, -1 <x <t
subject to the boundary conditions y(-1) = y(1) and y'(—1) = y'(1).
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Q 2. Find Modified Green’s function for the system ky" + f(x) = 0,
- | < x < [ subject to the boundary conditions y(-1) = y({) and
y'(=D=y"D.

Q 3. Transform boundary value problem into respective integral equation
ky" + f(x) =0, - Il < x <[ subject to the boundary conditions y(-1) =
y(l) and y'(=1) = y'(D.

Q 4. Using Green’s function solve the boundary value problem
y'—y=-2¢e* y(0)=y'(0), yDO+yD=0.

Q 5. Reduce the following boundary — value problems to the integral

equations

y'+Ay=e* y(0)=y'(0), y1)=y'(D).

Q 6. Develop the theory of modified Green’s function in case of self-
adjoint system where the completely homogeneous system has two

linearly independent solutions w; (x) and w;, (x).

10.10 ANSWERS

(x—t)? iG] (x t)

" +% —1<x<t
Gu(x,t) = )
+6

(x—t)? (x t)

t<x<1
4

t -t
TQ2 Gy(xt) =— (’i”d) +—";k|

TQ3  y(x) =c+[,Gu(x 1) f(t)dt

TQ4 y(x) =sinhx +e*(l —x)
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TQ5 y(x)=e*+ 4[] G(x,t) y(t)dt , where

—(1+ x)t, 0<x<t
—(1+t)x, t<x<1

G(x, 1) = {

CHECK YOUR PROGRESS

CYQ 1. True

CYQ 2. No

CYQ 3. True

CYQ 4. False

CYQ 5. True
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BLOCK-IV
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UNIT 11: VARIATIONAL PROBLEM WITH FIXED
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11.1 INTRODUCTION

The calculus of variation has its origin in the generalization of the

elementary theory of maxima and minima of the function of a single or
more variable. Its object is to find extreme or stationary values of

functionals. The aims of the calculus of variations are:

a) To explore methods for finding the maximum or minimum of a
function defined over a class of functions.
Geodesic Curve: To find a geodesic curve on the surface which means
finding the shortest curve joining two points on the surface.
Brachistochrone Problem: Ifa smooth body is allowed to slide down
a smooth curve from point A to B under gravity, then determine the
curve along which the time taken will be the least.
Minimal Surface: To determine which curve will yield the least area
of the surface of revolution.
Iso-perimetric Problem: In this problem, we aim to find what a curve

of a given perimeter will enclose the maximum area.

11.2 OBJECTIVE

At the end of this topic learner will be able to understand:

(i) Functional

(ii) extremum

(iii) Euler’s equation

(vi) Isoperimetric Problems

11.3 FUNCTIONAL

A function whose values are determined by one or several functions is

called functional. Also, we can say a function is a function of function.
Note 1: If it is required to find the curve y = y(x) where y(Xo) = yo

and y(x1) = yi1 such that the given function F (X, y, y’), the definite integral

Department of Mathematics
Uttarakhand Open University




Mathematical Methods MAT 509

X
Iy)]= [, F (oy,y'")dx
1S maximum or minimum i.e., extremum.
This integral is known as functional.

the calculus of variation deals with the problems of maxima or minima of

functionals.

11.4 EXTREMAL

A function y = y(x) which extremizes a functional is called extremal or
extremizing function.

11.5S EULER’S EQUATION

M Euler’s Equation

(a necessary condition for the existence of extremal):

The necessary condition for functional
Iyl = ['F (x,y,y') dx

to be maximum or minimum is that

prescribed.

Proof: Consider the functional

Iyl = [, F (o, y,y') dx

Let y = y(x) be extremal of functional and y(x) be neighbourhood of y(x)
such that

y(x) =y(x) +en(x)

Where ¢ is small parameter and n(x) be an arbitrary function such that
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n(xo) =n(x1) =0

Iy (1= [, F (3,7 dx
Using (2) we get
— X1 !
Iy l=[ F( y+en y +en)dx
Which is function of e.

g] Zf;:lF (x, y+en, y +en)dx

Or I[S]Zf; [F (x, y+en y +en)+ sna +£r| +0(£2)]

where 0(g?) is term containing £ and higher power of €2, it is called

BiOh [by Tylor’s theorem of function of several variable]

dl_ X1 a_F ,BF
E_fxo [0+ nay+n +0(s)]

dl _r*1 a_F ] aF
Or, == fxo [n oy T o T 0(8)]

The necessary condition for existence of extremal is
(ﬂ)
de/ g=0
X1
J, [n +7'

S Il ax+

x1 _ OF aF1*1  x d (9F
[3n Sdx+ ["(")a]xo 0o = (55)dx =0

oy’

[itm Sodx+0- [ n(e) o= (5) dx =0 nxo) =n(x1) = 0]

ayr
flen Z_i : (ayr)] dx =0
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Since n(x) is an arbitrary. Therefore, we have

or_d(ony g
dy dx \dyr

d
Or Fy - (Fy) =0

which is required Euler’s equation. This equation is also known as Euler-

Lagrange’s equation.

11.6 OTHER FORMS OF EULER’S EQUATION

d OF dx JOF dy OF dyr
1. — F(x N=—t+ ——+——
dx x5, ¥) ox dx dydx dyrdx

dF 0F OF oF
Or —=—+ —y' +—
dx dx 0y ayr

Ly 2Y —y (), OF
But dx (y ayr y dx \oyr ayr y

On subtracting (2) from (1), we have

dr Ay I0)_ 20 0yl (or)
dx dx ayr dx ayy y dx \oyr

wlF =y G5 =[5 -= )
=y(0) [by Euler’s equation]
=0

Hence, j—x[F—y'(j—;)]—g—iZO

Which is another form of Euler’s equation.

2. we know that Z—; is also known a function of x, y, y’say ¢ (X, y, ¥')

oF ,
5 =0 (X, Y.y )
Differentiate w.r.t. x, we get

=)= se
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_6<pdx+ 6<pdy+ dp dyr
0x dx dy dx Oy dx

3} 3} 3}
=99, 9@ %@
ox ay ayr

F F F n
D (BE) 4 (), 0oy,
ox \oyr dy \oyr dyr \ayr

0%F w 0%F
L2
dyadyr ayr?

y"

0°F

= + v/
axayr y

Hence, Euler equation

dF d ( oF
ay dx

—) = 0 becomes
oy’

oF 0°F , 0°F w0%F

oy oxdy’ y dyoy' y dyr?

Ey - Eeyr- ' Eyyi- y"Fy2 =0

Note:m Every solution of Euler’s equation which satisfies the boundary

conditions is called an Extremal or a stationary function of the problem.

11.7 PARTICULAR CASES OF EULER’S
EQUATION

Case I: When

Then Euler’s equation

oF d (0F
= Z(Z) =0 becom
Jdy dx (ayr) ccomes
9F _

This implies, 3y

;’—x(0)=o

9F
oy

=0
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ILLUSTRATIVE EXAMPLES

Example 1. Extremize

Ily(x)] = fol(xsin y +cosy) dx

y(0)=0, y(1)=n/2
Sol. Here F(x,y,y) =xsiny + cosy

By Euler’s equation
F d (9F\ _
3y~ ax () O
This implies, xcos — sin y - <(0) =0
This implies, xcos — siny =0
This implies, xcos = siny

tany = x

This implies,
y(0) = tan"10=0, y(1)= tan"1Z=1
This is required extremal which satisfying given boundary conditions.

Case II: When F=M(xy)+yN(,5y)

OF _aM | 0N

ay ay ay

oF
I = N(x,y)

Hence Euler’s equation

oF _ 4 (a—F) = ( becomes

dy  dx \dyr

o
oy

m |
6y+y

L[N Y)]=0

LTV VA

This implies, ay ay | ax dy
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@M | _,dN ON _,ON _

ay dy 0x y oy 0

This implies,

C oM AN
This implies, oy 0

oM _ oN
6y_6x

This is condition of exactness of differential equation
M(x,y)dx + N(x,y)dy =0
Example 2. Extremize
1yl = f, 02 +¥'x?)dx
y(0)=0, y(1)=1
Sol. Here F=1y2+y'x?

By Euler’s equation

or_ 4 (o)
dy  dx \oyr

This implies, 2y - :—x(xz) =0
This implies, 2y —2x=0
y= X
This is required extremal which satisfying given boundary conditions.

Case III: When F=F(x,y)

Then Euler’s equation

aF d (9F
— — —(=—) =0 become
Jdy dx (ayr) co S

o d (9F\ _
This implies, 0— — (a—y,) =0

This implies, Ll (a—F) =0

dx \oyr
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On integrating, we get

aF
— = Constant
oyr

F,

), = constant

Example 3. Extremize

Iyl = [ (/1 +y?)dx
y(0)=0, y(1)=1

Sol. Here F=.,1+y"
dF _ oF 2y1

y’
O — =
oy > oyr 2 14y J1+yr?

By Euler’s equation

This implies, 0 W)

This implies, Y ) =0

J1+yr2

On integrating, we get

4

— = constant = ¢;
y!

Yy =c\/1+y"?
Squaring, we get

y?=ci(1+y™)

(o

T _ 2
1-c?

= ¢ (constant)

This is required extremal which satisfying given boundary conditions.
Case IV: When F=F(,y")
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Then Euler’s equation
oF ( aF) 0 becomes

oy dx \ayr

0G5 =0

o) 70

This implies,

This implies,

On integrating, we get

aF
— = Constant
oyr

), = constant

Example 4. Find the curve, the time taken along which the least

when velocity at any point of it is v = x.
Sol. Consider the functional
I[y(] = [[14 = [P gy
[~ ds=414 y'2dx ]
Here F=F(xy')= @
By Euler’s equation

or_ 4 (or)_
ady dx \oy!

This implies, " dx (x 1+y'2>

This implies, dx (x 1+y'2>

On integrating, we get

!

x/1+yr2

y' =tant, ie

= constant = ¢;’

Put =tant
We get tant _
xsect
This implies, x = %sin t
1
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C . 1
This implies, Xx = c¢; sint, where ¢; = -
1

dy dy dx

Now since )
dt dx *dt

=tant c; cost
. d .
ie., 2= sint
dt
Integrating, we get

y = —cqcost+c,
Or Yy —Cy; = —CqCO0St
.. (4)
From (3) and (4),
x2+ (y —c;)? = cisin’t + c?cos?t
= ¢? (sin®t + cos?t)

=2

X+ ) =cf

This is required extremal which represent circles.

Case V: When F=F(,y)

d0F 0y . OF 0y
Now, df _OF Oy OF Oyt
’ dy "dx Odyr ox

_ /a_F+ ua_F
ady ayr
~(yL +y2)
F (y dy + y ayr F
d — li ui
dx -y ady T y ayr
By Euler’s equation

or_d(2)
ady dx \oy'

la n d _
F-(yg + 9 5)B=0  [By()]

la n d _
or Fy'y a(Fyr) - a_y,(Fyr)_O

or E, -y'Fyy — y"Fyy =0
Now, multiplying both sides by y’, we get
V'E -Y?Ey — ¥Y"Fyy =0
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d ! —
or E[F—yFyr]—O

Integrating, we get

F—y'F, = Constant

This is required condition for necessary condition of existence of
extremal.

Example 5. Show that the general solution of the Euler equation for
the functional

b1 dy)?
fa . 1+ ( dx) dx
is (x—h)?+ y* = k?
Sol. Given the functional is

el = 721+ (%) ax

b \/1+yr?
/, % dx.

Here

F=F(xy")= —1;y2

The necessary condition of existence of extremal is

F—y'F, = Constant

J1+yr? o yr
y y y1+yr?

Jityr?  yr?
y yy1+yr?
(1+y’2) - ylz

v 1+yr?

= constant

= constant

= constant

= constant = ¢,

1
y1+yr?
(1)

. d
Put y' =tant, ie., é =tant

Q)
1

We get =G

ysect_

This implies, y = Cicos t
1

This implies, y =k cost, where k =Cl
1
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dx _dx dy
dt dy  dt

=—cott ksint [By(2)and (3)]

. dx
Le., —=—kcost
dt

Now since

Integrating, we get
x = —k sin t + h where h = constant
or x—h= —ksint .. (4
From (3) and (4), we get
(x — h)? + y? = k?sin’t + k? cos?t
= k? (sin®t + cos?t)

= k2

|(x —h)? + y? = Kk?|

This is required extremal which represent circles.

11.8 FUNCTIONAL DEPENDENT ON HIGHER
DERIVATIVES

m Euler-Poisson Equation

Consider the functional
Iyl = [ F (%, 5") s y™) dx

Where values of xy, x1, ¥(x0), y(x1), ¥ (x0), ¥'(x1), ..., v 1(x0),
y™1(x,) are prescribed.

Let y(x) be extremal of (1) and y(x) be neighbourhood of y(x) such that
y(x) =y(x) + en(x)
Where ¢ is small parameter and n(x) be an arbitrary function such that
Nxe) = nx) =0
n'(xo) = M'(x,) = 0
" (x) = " H(xy) = 0
Now from (1),

Iy (0= [ F 3,7, y") dx

Using (2) we get
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Iy x)] = f;;l F(x,y+en y +en,y+en, .., y"+en")dx

Using (3), we get

[2 0 Sodx - [ 00 & (S0)du- [0/ (o) dx+ .

L) (38 a0
Or [ ne) g [ineo (5 dx- e ()]

X1 4% (oF n-2(,) 4 (OF \I™
fxo U(X) dx? (631") dx + ... -[n (x) dx (ay")]xo *
X1 n-—2 d_n a_F =

fxo N (X) dx™ (631”) dx 0

Again using (2) and continuing the process, we get

X1 oF X1 d (0F xq d? (9F
[ mG) 5y 7m0 oo (57) de [ mG 5 (57 dx ...
an ( oF

D"+ [0 g (5m) dx =0

This implies, f n(x )[——i(;;,)+ %22(:_;)4_...4_
1 (25) e

Since n(x) is an arbitrary. Therefore, we have

5~ () * () £t 1>"dx"n(aii)=0

Or Fy - == () + = w)+ + = w@ 0

This is necessary condition for existence of extremal of higher
derivatives.

This equation is known as Euler- Poisson equation.

Particular Case
L If Iyl = [, F Coy,y',y") dx

Then necessary condition for existence of extremal is

oF d (0F d? (oF
E L) =)
dy dx \dy dx2 \dy

2. If ool = [, F (,y,y',y"y") dx

Then necessary condition for existence of extremal is
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0F d (OF d? (oF 3 ( oF

5y " )+ (5) ~ 2 () = ©
Example 6. Find the extremals of the functional

Iy = J;, FI")? = 2(y)? +y?] dx

Solution: Here F= (y"*-=2@")?%+y?

The necessary condition for existence of extremal is

oF d (6F)+ d? (6F>_ 0
dy dx\dy’ dx2\ay")

This implies, 2y — —( —4y") + - (2y") =0

Or y+2L(2 )+d—2(‘ny)=0

Or

Or

Auxiliary equation is

This implies, (m?+1)2 =0
This implies, m?+1 =0 m? +1 =0
This implies, m==+1i, +i

Hence, the solution is

ly = (c1 + %) cos x + (c3 + c4%) sin x|

11.9 FUNCTIONAL FOR SEVERAL DEPENDENT
VARIABLE

Theorem: The necessary condition for

I=fx’f,1F(x, Y Yoo Yo Y1 Y2, ¥a' ) dx

To be extremum is that

oF d [ dF .
a_yi B E (0y,’) = 0; 1= 0’1’2’3’-..,11
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Particular case

1. If I=[,'F (X, y, y2o ¥1, 32 ) dx

Then necessary condition for existence of extremal is

oF d (BF)

dy, dx\dy,')

oF d (BF)
0y,'

dy, dx

If I:f;CglF (X, Y1, Y2, Y3, Y1 ¥2'» ¥3') dx

Then necessary condition for existence of extremal is

OF d (0F
a_yl_E(ayl')_
OF d (0F
7y~ o) =
oF d

dy3 (

a}/3,) B

Example 7. Find the extremal of the functional
b /
Iy(x), 2] = J, (2zy — 2y* +y? - z
Sol. Here F=2zy — 2y?2+y?— 77
Where y and z are two dependent variables.

The necessary condition for existence of extremal is

o _dory

dy; dx\dy;’
oF d ( oF )
dy, dx\dy,’ N

From (1), it becomes
da '
2z — 4y —E(Zy)z 0
da '
2y —a(—Zz)ZO
a (dy _
w (@) +2r =2
a (dz
= (@) +y=0

Or
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2
and u+y=0

dx?

Now differentiate (2) twice w.r.t. x, we get

dy d*y d*z
dx* +2 dx?2 — dx?

Using (3), we get

d*y _d%y
ot i T

ie, (D*+2D? +1)y=0
Auxiliary equation is

m*+2m?+1=0
This implies, (m? +1)% =
This implies, m?24+1 =0 m2+1 =0
This implies, m==+1, +i.

Hence, the solution is

ly = (c1 + %) cos x + (c3 + c4x) sin x|

Now,
dy

== —(¢1 + cyx)sinx + ¢, cos x + (c3 + c4x)cos x + ¢, sinx
2

ay

5= —(cq + c3x)cos — ¢y sinx — ¢, sinx — (c3 + cux)sinx +

C4 COS X + C4 COS X

d? ; ;
Or d_szl =—(c1 + c3x)cos — (c3 + cx)sinx — 2¢, sin x + 2c4 cos x

Therefore, from (2) , we have

_ %y
zZ= dx2+2y

z= —2¢c,sinx + 2c4cosx
Hence, the required extremals are
y = (c; + ¢c3x) cosx + (c3 + c4x) sinx

z= —2¢c,sinx+ 2c,cosx.

Department of Mathematics
Uttarakhand Open University




Mathematical Methods MAT 509

11.10 FUNCTIONAL FOR SEVERAL
INDEPENDENT VARIABLES

Theorem: The necessary condition for existence of extremals for
functional

I=[[F(x, y, u, u, u,)dxdy . ()

OF d [ dF d (9F\ _

Is a—a(a)—a(a)—“
OF OF

Or Fy - _(ux)'E(Fuy) =0 - (2)

Where u(x, y) is continuous and has continuous derivatives upto the
second order and is prescribed on the region of integration D.

Equation (2) is known as Euler-Ostrogradsky Equation.

Example 8. Dirchlet’s Problem: Find the Euler-Ostrogradsky
equation for

u(x, )| = JJ [(g—:‘)z + (3—;)2] dx dy

Where the values of u are prescribed on the boundary C of the
domain D.

Sol. Here F = (Z—Z)Z + (Z—Z)Z = uz+uj e (1)

By Euler-Ostrogradsky Equation
oF d <6F ) d (0F\ _ 0
Ju dx\du, dy \odu,, B

o ) )
This implies, 0— p Qu,) — a(Zuy) =0

From (1)

Or () + — (uy) =0

0 (ou d (du
Or ox (a) +5, )=
9%u | 9%u
Or ﬁ + a_yz =0
This is Laplace equation and its solution gives the required extremal u

(%, y).
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11.11 ISOPERIMETRIC PROBLEM

mconditional Extremum

There are some problems in which one has to find geometric figure i.e.,
extremum under the given condition, such problems is called
isoperimetric problems. Such problems is solved by Lagrange’s
multiplier’s method.

To find extremals of the functional

Myl = [, f Coy,y') dx
Subject the condition (constraint)

Jly(x)] = f;; ‘g (x,y,y") dx = constant
Consider F=f+A1g

Where A is called Lagrange’s multiplier.

Then by Euler equation, the necessary condition for existence of
extremal is

2 _ 4 (35)

dy  dx \ay
This gives required extremal of functional (1) under the condition (2).
Example 9. Find the extremal of the functional
1=, %= ¥y dx
Under the conditions y(0) = 0, y(ir) = 1 and subject to constraint
f: ydx=1
Sol. Let I= fon(y’2 — y?) dx
And J=[ydx=1
Here f=y*=y%, g=y
Consider F=f+A1g
ie., F=y2— y2+ Ly
.. (D
Where A is called Lagrange’s multiplier.

By Euler’s equation
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d N
—2y+A- E(Zy)—o

—2y+1-2(2Z)=0

2LY — ) —2y

dx?

d?y

dx?

2
(D2 +1)y =3

Auxillary equation is
m?2+1 =0

This implies, m==i

C.F. = cicosx+ c,sinx

1 A
DZ +1 2

P.I.=

A1

Hence solution of (2) is

y=C.F. +P.L

. 2
y = cicosx+ ¢psinx+=

y(0) =0, This implies, ¢ +% =0

Now,
This implies, €1 = —%
y(mr) =1, This implies,

This implies, L= — 1
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Solving (4) and (5), we get
c1=- % ,  A=1
Therefore, (3) becomes
y = — % cos x + czsinx+1;
Now, from (2), we have
fon ydx=1
Using (7), we get

fon[—lgcosx+ c, Sinx +1;] dx =1

. . 1, 1 T
This implies, [— —Sinx — c;cosx + — x] =1
2 2 0
This implies, 2c, + ”;z 1
This implies, Cy = 1; - %

Putting value of ¢, in (7), we get

1 1 T\ . 1
y = ——-cosx+ (— - —) sinx +—
2 2 4 2

or y = 1;(1—cosx)+%(2—7t)sinx

This is required extremal.

CHECK YOUR PROGRESS

True or false Questions

Problem 1. The value of 5* - == (72) =2

2
Problem 2. The value of Laplace equatlon + a_ =7

Problem 3. Every solution of Euler’s equatlon Wthh satisfies
the boundary conditions is called an Extremal or a stationary
function of the problem. True/False.

Problem 4. The necessary condition to be extremum is that

oF d oF .
o E(ayi') —0; i=0,1,2,3,....n

Problem 5. The general solution of + 2
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11.12 SUMMARY

1. Euler’s equation: The necessary condition for functional
x ’
[y®]= [, F (0y,y'")dx
to be maximum or minimum is that

dF d ( oF
ay dx

a—y,) = 0 prescribed.

2. Dirichlet’s Problem: Find the Euler-Ostrogradsky equation for
_ ou\? ou\?
truee, 1= 7 [(34) + ()| dxay
Where the values of u are prescribed on the boundary C of the domainD.

3. Theorem: The necessary condition for
X
I=[CF (G Yu Yareeos Yo V' Y2'ooos Y ) dx

To be extremum is that

oF d ([ OF

9F _ _(—) —0; i=0,1,2,3,....n.

dy; dx \ay;’

11.13 GLOSSARY

Integration

Even, odd functions
Trigonometric functions
Differentiation

First order derivatives
Second order derivatives
Expansions of function

Series
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11.16 TERMINAL AND MODEL QUESTIONS

Q 1. Find the extremal of the functional

y(x)] = J, (7% + ' — 2ye®) dx
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Q 2. Find the extremal of the functional
Iyl = [y 0% + 12xy) dx
y(0) =0, y()=1
Q 3. Show that the variational problem of extremizing the functional
I[y()] = J, (v (3x — ) dx y(3) =42, y(1) =1 has no solution.

Q.4 Find the curves on which the functional

With y(1) = 0 and y(2) = 3 can be extremized.

Q 5. A light travel in a medium from one point to another point so that the

time of travel given by [—=— where s is arc length and v(x, y) is the

velocity of the light in the medium, is maximum, show that path of travel

1S

p LY [1 + (d—y)z a—”-d—y[l + (d—y)z]a—":O
dx dx

dx? dx ox dx

Q 6. Find the extremal of the functional

Iyl = [y ("2 = y? = x?) dx

Under conditions y(0) =0, y’(0) =0, y(n/2) =0 and y’(n/2) = -1.
Q 7. Find the extremals of the functional

I[y(x), 201 = [/ 92 + 22 + 2yz) dx

With y(0) =0, y(n/2) =1, z(0) =0, z (n/2) = -1.

Q 8. Find the extremizing function for

ou

W\ 2 2
ifuce 1= [T (32) + (34) + 2u fx )| ax ay
Where f(x, y) is known function.
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Q 9. Find the extremal of the functional I = | 02 y'? dx Under the conditions

y(0) =0, y(2) =1 and subject to constraint foz ydx=1
Q 10. Prove that the isometric problem I = [ 14 y'? dx

Under the conditions y(1) = 3, y(4) = 24 and

subject to constraint [ 14 y dx =36 is parabola.

11.17 ANSWERS

X
*Ze
2

y=ce*+ce” *
y=x°

y=x2-1

y = COS X

y=sinX, z=-sin X

2 2
(a_u) + (a_u) = f(x,y) gives the required extremal u(x, y)

ox ady

1
y=3X

CHECK YOUR PROGRESS
CYQ1.0
CYQ2.0
CYQ 3. True
CYQ 4. True

CYQS.y =(c1 +c3x) cosx + (c3 + c4x) sinx
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UNIT 12: VARIATIONAL PROBLEMS
WITH MOVING BOUNDARIES
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12.1 INTRODUCTION

Consider the functional

Ily()] = f Flxy,y") dx

1

We have already learned if the boundary is fixed then the necessary

condition for the existence of extremal is given by Euler’s equation.

. or_a(ary_
Y dy  dx \dy’'

Fy === (Fy) =0

In this chapter, we consider the case when one or both the boundary points

can move along the curve.

1.e., if the boundary point (x;,y;) moves along the curve y = W(x) and

boundary point (x,,y,) move along the curve y = ¢(x).

Then, such a problem is known as a variational problem with moving or
free boundaries. Then our aim is to find the necessary condition for the

existence of extremal of such problem.

12.2 OBJECTIVE

At the end of this topic learner will be able to understand:

(i) Transversality Conditions
(ii) Orthogonality Conditions

(iii) One Sided Variations

12.3 TRANSVERSALITY CONDITIONS

Consider the functional

Iyl = [;*F(x,y,y") dx
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For the sake of simplicity, let us assume that one of the boundary point
(x1,v1) is fixed while the other boundary point (x,,y,) can move and

varies from (x5, y,) to (x, + 8x,, y, + 8y,) onthe curve y = f(x).
And let §y(a) be variation in y as right end points vary.

Then total variation in [ is given by

Al =1[y(x)+ 8y(x)] — I[y(x)]

+68
— f;flz X2

F(x,y+ 8y,y' + 6y')dx — f;lz F(x,y,y)dx

=[P FQuy +8y,y' + 8ydx+ [ F(x,y + 8y, + 8y")dx —

X2

f:lz F(x,y,y")dx

Al=[[F(xy+8y,y +8y) —F(xy,y)]dx +

x2+8x2
L

F(x,y +8y,y' +8y)dx ... (2)

Now, by mean value theorem of integral calculus, we have
fxx;%xz F(x,y + 8y,y' + 8y )dx = [F(x, y,y’)];c;eSxZsz ...03)
Where 0 < 0 < 1.
By the virtue of continuity of F, we may write

[Flx,+08x, = [Flx, + €

Where € = 0 as §x, = 0 and 8y, = 0.

The by (3) and (4), we have

XZ+83C2
).,

F(x,y + 8y,y" + 8y")dx = [Fly=x,8x,.
Now consider,

[Py +8y,y" +8y") = F(x,y,y)]dx

, a ' 0 !
= [ [P Goyy) + 8y T4 8y Ty = Py y)| dv

[ By Tylor’s theorem |
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= f;lz [Z—; Sy + ;—;, Sy’] dx [ Neglecting higher term |

= f;lz (Z—; (Sy) dx + fxxf (:—; Sy’) dx
i Gyov)ax+ o] - L (o)} ax

~re - s ey ar+ [ e

Combining (5) and (6), we have

Al = f;z [{Z—; 2 (ay,)} (Sy] dx + Sy] + [Fly=x, 8%, .. (7

For extremum, we have

Therefore, (7) becomes

d X2
Al = [a—;, Sy] + [Fly=x,0x;

X1
Since point (x4, ;) is fixed.
8y(x) =0
and it is clear from figure 2.1 that
BD = (8y),, and FC = &y,
Further EC = y'(x,)8x,
And hence BD = FC - EC gives
(53’)x2 = 8y, — y'(x2)8x,

Therefore, (8) becomes

oF
Al = [a—y,Sy] o+ [Fli=x,5%,

X=X

=[Fy] _, [8V)e, + [Flies, 82,
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= [Fy’]x=x2{5)’2 — ' (x2)8x,} + [F]x=x26x2 [By(9) ]
(), e (R, 55+ [Pl
Al = [F — y,Fy,]x=x2 6X2 + [Fy,]x=x26y2

The necessary condition for the extremum is

Al=0
= [F = yFyl _ 80+ [Fy] _ 8y, =0

Since 8x, and 8y, are not independent.
[F - y,Fy’]x=x =0
2 .. (1)
[F] =0

X=X
For example, if the boundary point (x,,y,) moves along the curve
y =¢x)
y2 = d(x2)0x; - (12)

Then 8y, = ¢'(x3) 8x;
Thus, from (10), we get

Al = [F - y,Fy,]xzxz sz + [Fy,]xzxz (I),(XZ) 6x2

= [F + ((I)' - y,)Fyl]xzxZsz.
The necessary condition for extremal is

AIl=0

= [F+ (¢' - yr)py,]xzxz&cz =0

Since 8x, is arbitrary.

[F + ((I), - y,)Fy,]x=X2 =0

Which is the required condition at the free boundary.
This is known as transversality condition.
Particular case: If boundary point (x;,y,) moves along the curve

y = W(x) and boundary point (x,,y,) move along the curve y = ¢(x).
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Then transversality condition is

[F+ (¥ - y')Fy,]xle =0
[F+ @ —y)Fy] _ =0

This gives required extremal of functional.

12.4 ORTHOGONALITY CONITIONS
When F in (1) is given by

ACey)(1 +y2)z

1
ie., F=A(x,y)(1+y?)2
where A(x,y) does not vanish at the movable point x,.

In this case (13) reduces to

1 r.,!
A(x,y).% =0 at x=x,

Since A(x,y) # 0 at x = x,, we have

(1+9'y")
Ty’z =0 at x = Xy

Or y’=—$ at x =x,

Which is the orthogonality condition.

ILLUSTRATIVE EXAMPLES

Example 1. Find the shortest distance between the parabola y = x?
and the straight line x —y = 5.

Sol. The problem is to find extremal of the function
1yC)l = [ ds

or I[y(x)] = f;lz 1+ y2dx
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Here F=\1+y"

Subject to condition that the point (x;,y;) moves along the curve

y=x*

And point (x,,y, ) along the curve
y=x-5
Let = ¢(x) =x—-5
By transversality condition, we have
[F + (LIJ, - y,)Fy,]xle =0
[F + ((I)’ - y,)Fy,]xzxz =0

F=J1+y2% Ykx) =x% ¢x)=x-5
[‘/1+y’2+(2x—y’)Jﬁ7] =0
X=X1

And [\/1 +y?24+(1 —y’)ﬁ] =0
X=X

Now, since F=\1+y"

Then by Euler’s equation.

or_d o0y
dy dx \ay'

&)
dx

0 4=
r dx \J1+y'?
On integrating, we get

yl
= = constant = ¢;

Ji+y™?
Or y' =ciJ1+y"?

Squaring on both sides, we get
ye=c(1+y"?)
Or (1—c}?)y? =c}?

Or
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_=C
dx 1

On integrating, we get required extremal is:
Yy =c1x +c, )
y' =¢ ...(5
Since both end point (x;,y;) and (x,,y,) lies on the extremal (4).
C1X1+C =Y
C1x1 + ¢ = x7 vy =x7
C1Xp+C2 =Y,
- C1x2+C2=x2—5

Now, put y' = ¢; in (2), we get

JA+eD)+2x—c¢) ===0
/1+cf

Or (1+c¢?)+2xc,—c2=0
Or 1 + 2x1C1 = 0

Similarly, put y' = ¢; in (3), we get

\/(1+012)+(1—c1)%:0
1+c?

A+cH)+(c;,—cH)=0
1+C1:0
-

Put c; = —1 in (8), we get
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Putting value of ¢; and x4 in (6), we get
1 1
2t
3
Cy, = Z
Putting value of ¢; and ¢, in (7), we get

3
_XZ+Z=.X2_5

Hence, we get

Therefore, from (4), required extremal is
3
y=-—x+;
And shortest distance between parabola and straight line is

I=f;12 1+y2dx

23
= flg V1 + 1dx
2

3

=2 [x]
-y

Example 2. Using only the basic necessary condition 6/ = 0. Find the
curve on which an extremum of the functional

1yl = ;"2 ax, y©@ =0

Can be achieved if the second boundary point (x4, y;) can move along
the circumference

(x—9)?%+y*=9

Sol. Given functional is
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1

MyCol = ;7228 gy

y(0) =0

Here,

1
122
F=F(yy)= _(“i )

Therefore, the necessary condition for existence of extremal is

F —y'F, = constant
5y -
——— —y'——— = constan

y yy1+y"?

2
14y'2-y! _ o,
yl—m = constant = ¢;
1 _ C’
yiry?
y' =tant
1 —

=C
ysect 1

1
y =—=cost
€1

y=c, cost, wherec; =

dx _dx dy
dt  dy dt

X .
- =cott (—cy sint)

dx

= —c, cost
dt

On integrating, we get

x =-—csint+c,
Or X —Cy = —(q Sint

Now, squaring and adding (3) and (4), we get
(x—c)* +y*=¢f

Now, since y(0)

Then from (5), we get
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Therefore, equation (5) becomes

(X_C2)2+y2 = C12

Or x?2+c—2cx+y?=c?

Or x2—=2cx+y?=0
Now, since (x4,y;) lies on extremal (7) and given curve

(x—9)?2+y2=9
Therefore, we have

x2+y2—2c,x,=0

(1 =92 +y,*=9
Or X2+ y,2—18x; = =72
Now subtracting (8) and (9), we get

—2¢yx, +18x; =72
or x,(9—1¢;) =36
Or x,.(c; — 9) =-36

Now tangent at (x;,y;) to given circle (x — 9)? + y? = 9 and extremal

circle (6) are orthogonal to each other.
my-m, =-—1
() (57 =1
(1 —c)(xg = 9) = —yf
X2 = 9%, — c1xy + 9¢; = —y,?
X2+ v:2—9x; — 1%, +9¢, =0
211 —9x1 —¢1x1 +9¢;, =0 [ from(8) ]
€1x1 — 9% +9¢; =0
x1(c; —=9)+9c; =0

—36+9¢, =0
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or
Putting value of ¢, in (7), we get

x2+y2—-8x=0
This is required extremal.

Example 3. Find the shortest distance between the point (1, 0) and the
ellipse 4x% + 9y? = 36.

Sol. We have to find shortest distance between A(1,0) and B(x,,y,)
where B lies on the ellipse.

4x? +9y? = 36 .. (1)

The arc length AB of the minimizing curve y = f(x) is given by
Iyl = [ ds

or I[y(x)] = f;lz 1+ y2dx .. (2
where the end point A(1,0) is fixed and the other end B (x5, y,) lies

on (1)
Here F=\1+y"?

By the Euler’s equation.

2 _ ()

dy dx \ay'

Or
On integrating, we get

4 = = constant = ¢;

Vi+y?
Or y' =ciJ1+y"?

Squaring both the sides, we get
y*?=cl+y"?)

(- ey =cp
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On integrating, we get
y=cx+c, ...(3)
Which is straight line along the required shortest distance is attained.
Now since (3) passes through A(1,0)
cite=0 = ¢=—¢
Then (3) becomes
Yy=C1X—C

or y=clx—1)
Also, it passes through (x,, y,)

Y2 =c1(x; — 1)
Now from equation (1), we get

y =2V —x? = W(x)

By transversality condition for ¥(x), we have

[F + (lIJ’ - y,)Fy,]x=x2 =0

!

’ 2 1 -2x ! Y =
[W+(§'Ew_y)m]x=xz_o

V1+Clz_§'\/9x-zx2JCl - =0

1+c2 \/1+cf

=
Squaring both sides, we get
9(9 — x2) = 4x2c?

Now since the point (x5, y,) lies on ellipse (1)
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4x2 +9y2 = 36 ... (8)
Now, from (5) and (8), we get
4x2 +9ci(x, —1)> =36
= 4(9 — x2) = 9c2(x, — 1)?
From (7), we get

ax3c?
9

= 16x2 = 81(x, — 1)?

( X5 )2 _ 81
x2—1 16

X2

= 4 =9cZ(x, — 1)?

2
Xz—l 4
9x2—9=4x2

- SXZ=9
- X _2
275

Now from equation (7), we get

9(9 81)—4><81 )
25) 25 1

144 4%x81
= 9 X E = C12

=
=

Now putting value of ¢; and x, in (5), we get
9
v =2(3- 1)
8
= Y2 =<

Hence, we get the point

98
B =5 (5.3)

~ The required shortest distance AB i.e., the distance between A(1,0)
9 8\ .
and B (E'E) 1S
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16 64
= 125125

80 _ 45

25 5

12.5 VARIATION PROBLEM WITH A MOVING
BOUNDARY FOR A FUNCTIONAL DEPENDENT
ON TWO FUNCTIONS

In many problems arising in mathematics, physics, engineering,

economics, and other sciences, it is necessary to minimize amounts of a
certain functional. Because of the important role of this subject,
considerable attention has been devoted to these kinds of problems. Such

problems are called variational problems.

Consider the functional

1ly(0),2(0] = [ F(x,y (0, 2(x), y' (x), 2' (x))dx (D

Where the lower point A(x4, y4, Z;) be fixed and upper point B (x5, y,, Z,)

move in an arbitrary manner, or along a given curve or surface.

It is clear that extremum of (1) can be obtained by Euler’s equation

or_d o0y
dy dx \ay'

oF d (0F
and ——— (—) =0
9z  dx \oz'

The general solution of these equations four arbitrary constant.

Since the boundary point A(x4, y;, z;) is fixed, it is possible to eliminate
two arbitrary constants. The other two constant can be determined from
the necessary condition 8/ = 0 for extremum, where 8/ is the variation of

I.

Hence, 61 = 0 gives
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Therefore (F —y'Fyr— Z’Fzr)x=x2 - Ox, + (Fy')x=x2 -8y, +
(Fz’)x=x2622 =0
If 8x,, 8y, and 6z, are independent.

Then, [F - y,Fy’ — Z,le]x—x =0
=X2

[F, ] =0 and [F,lyey, =0

x=x,
If the boundary point (x5, y,, z,) moves along some curve
V2 = ¢xz), 2z = W(x,}

Then 8y, = ' (x,)8x,
And 8z, = W' (x,)dx,
Then, we get

[F+ (@ —yOFy + (W' =2)Fy| | 8x,=0
Since 8x, is arbitrary, we have

[F+ (' —y)F, + (W - z')FZ,]xzxz =0 ...(49
This is transversality condition in the problem of extremum of (1).

Along with the equation y, = ¢p(x,), 2z, = W(x,) the condition (4)
gives the equations necessary for determining the two arbitrary constants

in the general solution of Euler’s equation.

Note: If the boundary point B(x,,y,,Z,) moves alonga given surface

z; = ¢(x3,¥,) then 6z, = ;—inz + %Syz such that the variation 8x,

and 0y, are arbitrary.
In this case (4) reduces to
[F—y'Fy + (b — 2" Fzr]x=x28x2 +[F, +

byFyrl,_, 872 =0

Since 6x, and 8y, are independent, we get
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[F —Y'Fyr 4+ (x = 2') FZ']x=xz =0

[F, +q>yFZ,]x=x2 =0

These two conditions together with z, = ¢(x,, y,) enable us to determine

two arbitrary constants in the general solution of Euler’s equation.

Example 4. Find the extremum of the functional
I= f;lz(y’z + 2% + 2yz)dx

With y(0) = 0, z(0) = 0 and the point (x5, y,, Z,) moves over the fixed

plane x = x,.

Sol. Here,
F=y?+42?+2yz

By Euler’s equation

and
From (1), we have

d Vi _
= 2z — = (2y)=0

d ’
2y—a(22)20

= ——z=0
dx?

2
and ﬂ—yzo

dx?
Now differentiating (2) with respect to x, we get

d*y d?z _

dx*  dx?

d*y
dx*

Or -y = 0
Or (D*—1)y=0
Auxiliary equation is

mt—1=
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= m?*-=1)mM?*+1)=0

= m=+1, +i

Therefore, solution is
y=cycoshx+c,sinhx+c3cosx +c,sinx

From (3),

_dy

 dx?

i.e., Z= cycoShx+c,sinhx —c3cosx —cysinx ...(5)

VA

Now, y(0)=0, z(0)=0
. C1 =C3 = 0

Now since x, is fixed therefore, by condition of moving boundary point
(x2, 2, Z2).

[Fy,]xzxz =0 and [F,lyey, =0

= y'(x) =0, z'(x;)=0
Then equation (4) and (5) gives

cycoshx,+c4cosx, =0

c;coshxy, — cycosxy, =0
Ifcoshx, # 0thenc, =¢c, =0
And therefore, an extremum is attainedony =0, 2z =0.
But if cosx, =0
Then ¢, = 0 and ¢, remains arbitrary.
Hence, in this case extremum is

Yy =C,Sinx

Z = —(C,Sinx.

12.6 ONE SIDED VARIATIONS

In some problems in minima of double integrals the surface over which

the integral is taken is restricted to lie in a given closed region R. Then it
may happen that there is no extremal surface bounded by a previously

given space curve which lies entirely in R, but that there is a surface
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bounded by the given curve, consisting of an extremal surface and a part

of the boundary of R, which minimizes the given integral.
Consider the functional
Iy)] = [;*F(x,y,y") dx
Earlier, we have discussed that the extremal curve passes through end
point (x;,¥;) and (x5, ¥,).

But in this case, suppose that a restriction is imposed on the class of
permissible curve in such a way that the curve cannot pass through the

point of certain R bounded by the curve W(x,y) = 0.

In such a problem that extremizing curve C either passes through a region
which is completely outside R or C consists of arcs lying outside R and

also consists of parts of the boundary of the region R.

Since on these parts two-sided variation (unaffected by the region R) is

possible. We now derive conditions at the points of transition M, N, P and

Q.
Now, if co-ordinate of M be (X, ¥) then the functional can be written as
I = f;lz F(x,y,y") dx

= f;l F(x,y,y') dx + f;z F(x,y,y') dx

1211+12 .(2)

Where L = f:l F(x,y,y') dx

and I, = f;z F(x,y,y") dx

If the point M (¥, ) moves to neighbouring point M (X + 8%,y + 8y) on
the boundary of region R and if y = ¢ (x) be equation of boundary then

8l = [F+ (' — y’)Fyr]xzf&? =0 .. (3)
oI, = 12(3_’ + 8}_’) - 12()_’)

X2

= Jersz FC0 Y,y )dx — f;zF(x,y,y’)dx
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X+8x

Al = — [ F(x,y,y)dx

X+8x

Al = =[P ), ¢'@)dx [ y=6®] ... (4)
Using mean value theorem of integral calculus, we have
AL =—[F(x,d, &),z AX+aAX
Where a - 0 as A x = 0.

Therefore, this gives

612 = —[F(X, (b; ¢,)]x=f ‘A X
.. (5)

Combining (3) and (5), we find that
oI = 8I; + 681,
81 = [F(x,y,y) = Flx,y,¢") = (v’ =
OFy (e y, 0] - 8%
With y(x) = ¢(x)
Since 0x is arbitrary.

Then the necessary condition 8/ = 0 for an extremum reduces to

[F(x' Y, y,) - F(x,y, (I),) - (y, - q),)Fy,(x'y'y,)]x:f =
0 ... (6)

Applying the mean value theorem to this equation, we get

O = [Fy(y,q) — Fployy)] =0
(7
Where @ lies between g and y'(X).
Assume Fyy(x,y,9) #0
In this case y'(x) = ¢'(X) because ¢ = y’ only when y'(x) = ¢'(X).

Hence, we conclude that at the point M, the extremal AM meets the
boundary curve MN tangentially.
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Example 5. Find the shortest path from the point A(—2,3) to the
point B(2, 3 located in the region y < x2.

Sol. Here we find the extremum of the functional

Iyl = [, 1+ y"dx

Subject to condition that
y<x? y(-2)=3, y2)=3

Now, here F=J1+y'

By Euler’s equation

On integrating, we get

= constant = ¢;

Tivr?

y?=cf(1+y"™)

(1- )y = cf

2
2 _ 4

=1
1-c]

y

Or
On integrating, we get
Yy =c¢1+Cx
This is required extremal curve where c¢; and c, are constant.
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3
Now, Fyryr =[1+ y’(x)]z #0

Thus, the required extremal will consist not proportion of the straight-line
AP and QB both tangent to the parabola y = x? and the position POQ at
the parabola.

Let —x and x be the abscissae of P and Q respectively.

c1+ X = xz}
Cy = 2.7?

Since tangent QB passes through (2,3).
¢4+ 2¢c, =3
Solving (4) and (5), we get two values of X
Le., Xx=1 and x=3
The second value is clearly not possible.
x=1

Therefore, (4) becomes

=

Hence, the required extremal to
—2x—-2, if —-2<x<-1
x2, if —-1<x<1
2x—1, if 1<x<2
This, clearly minimize the functional.

CHECK YOUR PROGRESS

True or false Questions

Problem 1. The distance between the curve y;(x) = x and
y,(x) = x? on the interval [0, 1] is i True/False.

Problem 2. The shortest distance between the point

A(—1,5) and the parabola y? = x is v20 True/False.
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Problem 3. Ttransversality conditions

|[F+ ' —y)F,] =0

X=X1

, , True/False.
[F + (q) -y )Fy’]x=x2 =0

Problem 4. The shortest distance between the point

: : .1
A(—1,3) and the straight liney = 1 — 3x is N True/False.

Problem 5. When the prescribed end conditions are

homogeneous, we shall use a modified method. True/False

Problem 6. The functional f;lz(y’z + x2)dx with y(1) = 1

achieves its:

(a) Weak maximum on all its extremals

(b) Weak minimum on all its extremals

(c) Weak maximum on some, but not on all of its extremals
(d) Weak minimum on some but not all of its extremals

Problem 7. The shortest distance between the circle x? +

2 _ . . . 6 2
y* = 4 and the straight line 2 x +y—6lS\/§(5 \/g)'

Problem 8. Extremals of the functional
f;/z(y”z —y2 +x?)dx

(a) one parameter family of curves

(b) two parameter family of curves

(c) three parameter family of curves

(d) four parameter family of curves

12.7 SUMMARY

1. If the functional

X2

Ily)] = f F(x,y,y') dx

X1

Such that the boundary point (x,,y;) is fixed and other boundary point
(x5,y,) is moving along curve y = ¢b(x).
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Then Euler’s equation.

And transversality condition.

[F+ @ =y)Fy]_ =0
gives extremal.
2. If the functional

ID&H=12H%%VN&

1

Such that the boundary point (x,,y;) moves along curve y = W(x) and
other boundary point (x,,y,) is moves along curve y = ¢ (x).

Then Euler’s equation.

or_d (o)
dy dx \ay'

And transversality condition.

[F + W - y,)Fy’]xle =0

[F + ((I), - y,)Fy’]x=x2 =0

gives the extremal of functional.

3. If the functional
1ly(), 2001 = [7 F(x,y(x0),2(x), ' (x),2' (x))dx

Such that the point (x4, y;, z,) be fixed and point (x,, y,, Z,) moves in an
arbitrary manner, or along a given curve or surface.

y=0¢x), z=¥kx)

ot (00
dy  dx \ay'

oF d (0F
and ——— (—) =0
9z  dx \oz'

Then Euler’s equation

and transversality condition
[F+ @ =y )Fy + (¥ =2)Fy] =0

Gives extremal.
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12.8 GLOSSARY

Integration

Even, odd functions
Trigonometric functions
Differentiation

First order derivatives
Second order derivatives
Expansions of function

Series
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12.11 TERMINAL AND MODEL QUESTIONS

TQ 1. Use the calculus of variation to find the shortest distance between

the line y = x and the parabola y? = x — 1.

TQ 2. If | is not prescribed show that the extremals corresponding to the

problem & foly’zdx =0, y(0), y(l) = sinl are of the form

y(x) = 2 + 2x cos | where [ satisfies the transcendental equation
2+ 2lcosl—sinl =0.

TQ 3. If [ is not prescribed show that the extremals of the problem

8fyly2+4(y—Dldx=0y(0) =2, y(O) =1

Are of the form y(x) = x2 + 2 — sz Where [ is root of equation

21 =23 +1=0.

TQ 4. Find the shortest distance between the point A(—1,5) and the

parabola y? = x.

TQ 5. Find the shortest distance between the point A(—1,3) and the

straight line y = 1 — 3x.

TQ 6. Find the shortest distance between the circle x? + y? = 1 and the

straight line x +y = 4.

TQ 7. Find the shortest distance between the circle x? + y2? = 4 and the

straight line2x +y = 6.

TQ 8. Find the shortest distance between the parabola y? = 4x and the
circle (x —9)%? + y% = 4.
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12.12 ANSWERS

TQ6 2v2 -1

07 5 (2-2)

TQS x/§(2 —%)

CHECK YOUR PROGRESS

CYQ 1. True
CYQ 2. True
CYQ 3. True
CYQ 4. False
CYQ 5. False
CYQ 6. (b)

CYQ 7. True

CYQ 8. (d)
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13.1 INTRODUCTION

The sufficient conditions in the calculus of variations have recently
received a great deal of attention and it would seem fitting that attempts
be made to simplify their discussion whenever possible, and to render the
agreement more exact between the known necessary and the known
sufficient conditions. Such is the purpose of this paper, which also seeks
to present the sufficient conditions in compact form. The work will to a
large extent follow lectures delivered at Géttingen by Professor Hubert,
1899-1901. In mechanics, Hamilton’s principle and Lagrange’s equation
can be derived very easily with the help of calculus of variation. In this
unit learner learnt about the sufficient condition of Legendre to find out

the nature of extremal.

13.2 OBJECTIVE

At the end of this topic learner will be able to understand:

(i) Proper Field

(ii) Legendre condition

(iii) Weak and Strong Extremum
(vi) Hamilton’s principle

(v) Lagrangian of a system

13.3 PROPER FIELD

A family of curve y = y(X, ¢) where c is a parameter is said to form a
proper field in a given region D of the xy-plane if one and only one curve

of the family passes through every point of the region D.

m Jacobi Condition: consider one parameter family of plane curves

@(x,y,c) = 0 where ¢ is parameter.
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For this family ¢ — discriminant is the locus of point of intersection of

O(x,y,¢c) = Oand%z 0

Which include envelope of the family, the locus of cuts and locus of nodal

points too.

If we have a pencil of curves with centre at A(xq,y;) then A(xq,y;) also

belongs to this locus.

Suppose a pencil of extremals passing from A(xq,y;) such that the

@(x,y) = 0 is the ¢ — discriminant.
Then the envelope I" of this pencil of extremals will belongs to
?(x,y) = 0.

Every extremals of the family will touch this envelope I' . the point A,

where the extremal

y = y(x) touches the envelope is called the conjugate point of A. if
B(x,,y,) be a point which lies in between A and A; then the extremals
of the pencil close to AB do not intersect. Hence, it follows that extremal

close to AB from a central field including the arc AB.

Now for the extremal AB; it follows that the conjugate point A, of A lies
in between A and B; and the curves of the curves of the pencil closed to

AB; intersect.
Therefore, the extremal AB; cannot be embedded in a central field.

Hence, to embed an arc AB of the extremal in a central field of extremals

it is sufficient that the conjugate point of A does not lie on the curve.
This is known as Jacobi condition.

m Mathematical Definition: let y = y(x, c) be the equation of pencil of
extremals with c is parameter and A Centre. The parameter c is regarded

as slope y' = % of the extremals at A.
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The c—discriminant is given by y = y(x, ¢) and Z—Z =0.

ay(

Let u = a—j’c) which is a function of x along for every fixed curve of

family.

For the extremum of
Iyl = [, F(x, y,y")dx

y = y(X, ¢) is a solution of Euler’s equation.
! d ! !
Therefore Fy[x,y(x, y); vy (%, )] -—F'y [x,y(x, ©); y L 0)]=0
Differentiating w.r.t. c, we get
d d "N —
By = Fyydu— o (Fyyru) =0
This is Jacobi equation.

Let y(x) is a solution of Euler’s equation with equation with ¢ = ¢, for the

extremal AB.

. . d .
Further, if the solution u = a—i vanishes at A(xy,y;) then Centre of the

pencil belongs to
the ¢ — discriminant curve, also vanish at some point of the internal

x; < x < x, , then the point conjugate to A given by

y=Y¥y(X, ¢g) and (?9_3;) =0

C=Co

lies on the arc AB of the extremal with B at the point (x,, y,).

If there exist a solution of (2) which vanishes for x = x; and does not

vanish at any point in
X1 < x < x, then are no points conjugate to A lying on arc AB.
Thus, the Jacobi condition is satisfied and the arc at the extremal can be

embedded in a central field of the extremals with Centre at A.
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13.4 SUFFICIENT CONDITION FOR
EXTREMUM (LEGENDRE CONDITION)

Legendre condition is sufficient condition to find out the nature of

extremal.

Consider the functional
Iy(ol = [ F(x,y,y")dx

With y(x1) =y1,¥(x2) =y

Let C be the extremal curve of functional (1) and C be neighboring curve

of C.
Therefore, consider

I = fc F(x,y,y")dx for extremal curve C and
I, = [.F(x,y,y")dx for extremal curve C
-
Letp= 5, on C
Consider the auxiliary functional

Je[FGym) + (2= p) By dx

The integral in this integration is an exact differentiation of function.

Therefore

it is independent of path

Therefore |, [F(x, y,p) + (Z—z — p) F,(x,y, p)] dx

= [.Fl,y,yNdx ... (2)

Now Al = [.F(x,y,y)dx — [.F(x,y,y")dx
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= [ F(x,y,y)dx — [, [F(x, y,p)+ (% - p) Fy(x, y,p)] dx

= [[[F(,y,y)dx = F(x,,p) = (= p) F,(x,7,p)]dx
Or Al = fC_E(x, y,y)dx
Where E (x,y, p, y") =F(x,y,5) = F(x,y,p) = (v = p)Fp(x, 7, P)
This E (x,y, p, y") is called Weirstrass function.

Now if E < 0, then extremal is maximum. And if E > 0, then extremal is

minimum.

This is required Legendre condition.

ILLUSTRATIVE EXAMPLES

Example 1. Find the Weirstrass function and test the extremal of the
functional

I[y(x)] = f, ¥'*dx and y(0) = 0, y(a) = b where a > 0, b > 0.

Sol. Here F=y'"?

By Euler’s equation

o dor)

dy dx\dy’

Therefore 0- j—x (y’z) =0

Therefore j—x (y’z) =0

On integration, we get

y'? = constant

2
d

Or (—y) = constant
dx

d
Or 2 — constant = Cq.
dx
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Again integrating we get
y=:0C1Xx + Cy

y(0)=0 =¢, =0

y(@=b =ca=0>b :»cl=§

putting value of ¢; and ¢, in (2), we get

this 1s required extremal.
Weirstrass Function
The Weirstrass function is
EXy,p.y) =Fxyy)—-F(,yp)- @ —p)EXyp)
E(xy,py) =y" —p*= (' —p).3p?
=y"* —p* = 3p2y’ +3p°
=y +2p° = 3p?y’
Therefore E (x,y, p, y') =(y' —p)?(y’' + 2p)
This is required Weirstrass function.
Now, since E (x,y,p, ¥') =(y' —p)?(y' +2p) =0

Therefore, extremal is maxima.

13.5 WEAK AND STRONG EXTEMUM

Consider the functional
Iy = [, F(x,y,ydx
With V(x1) =y1,¥(X2) = Y3
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Let C be the extremal curve of the given functional.

Also, assume that the extremal of curve C is included in a field of

extremals.

Ther Legendre condition for weak extremum and strong extremum are:
m Weak Extremum

1. The curve C is extremal satisfying the boundary condition.

2. Jacobi condition must Satisfied.

3. The Weirstrass function E does not change sign at any point (x, y) close
to the curve C and for arbitrary values of y’ close to p(x, y) on the

extremals.

4. For weak minimum E> 0 or F yly! > 0 on C and for weak maximum

FSOorFyryr <0onC.

m Strong Extremum
1. The curve C is extremal satisfying the boundary condition.
2. The extremal C is embedded in a field of extremals.

3. At a point (x, y) closed to the curve C and for arbitrary value of y', the

Weirstrass function E does not change sign.

4. For strong minimum E = 0 or Fs,» > 0 at point close to C and also
arbitrary value of y’ and for strong maximum E < 0 or F,»,,» < 0 at points

closed curve C and also for arbitrary value of y'.

ILLUSTRATIVE EXAMPLES

Example 1. Test for the extremal of the functional

Iy(x)] = J; (¥ +3)dx and y(0) = 0, y(2) = 1.
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Sol. Here F(x,y,y") =e¥ +3

By Euler’s equation

oF d (aF
dy dx\ay’

Therefore 0-Z (ey') =0
dx

Therefore :—x(ey ') =0

"o__

Therefore ey 'y =0
Therefore y"=0 (= eV % 0)
On integrating, we get  y=c;x + ¢,

Hence the extremal of the given functional is attained only on the straight

line.
Now, from (2)
y0)=0 =¢,=0

y2)=1 =2 =1

1
therefore ¢; = 52C2 = 0

then (1) becomes y= %x

hence the extremal satisfying the boundary condition is y = % which is

including in the central field of extremals y = ¢, x.
Now, Fx,y,y") = e¥' +3
Therefore Fyr= e’ and Fyryr = e¥'> 0 for any value of y'.

Therefore, by Legendre condition, the given functional is strong minimum

X
on extremal y = .
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Example 2. Test for the extremal of the functional

Ily(x)] = [ v'* — y2)dx and y(0) = 0, y(a) = 0, a > 0.

Sol. Here Fx,y,y") = Y'Z — y?

By Euler’s equation

oF d(aF)=

dy  dx\dy’

Therefore 2y - ;—x 2y")=0

Therefore :—x(z—z)+y=0$%+y=0
Auxiliary equation m?+1=0
= m=1-1
Therefore the general solution is
y = €1 €OSX + ¢, Sinx
Now, y(0)=0 =c¢;=0 and y(a)=0= c,sina=0
Now ifa # nm , i.e. sina # 0
hence weget ¢;=0 andc, =0

hence if a # nm, the extremum is attained only on the straight line y = 0.

Now, if a < m, then pencil at extremals y = ¢, sin x with centre (0, 0) for
the central field.

And now science F(x, y, y') =y'> — y2
Therefore Fy,r=2y" and F,, =2 >0forall y’

Therefore, a strong minimum is attained on y = 0 for a <.

For a > m, extremals y = ¢, sin x neither form a proper field nor form a
central field.

Hence, for a > m, minimum is not attained on y = 0.

Department of Mathematics
Uttarakhand Open University




Mathematical Method MAT 509

Example 3. Investigate for the extremal of the functional

I[y(0] =[G+ 2y — 23" )dx and y(0) = 0, y(1) = 0.

2
Sol. Here F&x,y,y") =x+ 2y — %y’

By Euler’s equation

oF d(aF)=

dy  dx\dy’

d (1, .\ _
Therefore 2-;(52)/)—0

d (d d?
- 2-2(2)=0 = =2
dx \dx dx?

On integrating, we get y=x2 + ¢;x + ¢,

Now, y(0)=0 = ¢, =0 and
yH)=0 = 1l+c;+¢c,=0

= cg==-1,c,=0

Therefore (2) becomes y=x2 —x

Hence the extremal satisfying the boundary condition is y = x? — x which
is included in the central field of extremals y = x;2 + ¢;x. Whose centre
at (0, 0)

: 1
Now, since F=x+2y+ Ey'z

1 r __ !
Therefore Fy, = 2y =y

Therefore Fyryr =1>0

Therefore, by Legendre condition the given functional is strong
minimum on

extremal y = x? — x.

13.6 APPLICATION OF THE CALCULUS OF
VARIATION
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The calculus of variation is widely applied in mechanics, mechanical
engineering control theory etc. and used in solving some important

problem in economics.

In mechanics, Hamilton’s principle and Lagrange’s equation can be

derived very easily with the help of calculus of variation.

13.7 HAMILTION’S PRINCIPLE

A particle moves in a conservative field in such a way that

) ttlz (T — V)dt is extremum, actually a minimum, where T

is kinetic energy and V is potential energy of the system.

Proof. Let there be n particles of mass m;;i = 1,2,3,....,n and their

position vectors are

r;i=1,2,3,....,n relative to co-ordinate system. Let F;;i=

1,2,3,....,n be applied force acting on the ith particle.

Then, the equation of the motion of particle are

dzri
L a2

=F;i=123,...,n

And from these equations, we can determine the path¢;;i = 1,2,3,....,n

transversed by n particles.

Next, assume that the path of i*" particle has been varied without changing
the end points.
If the variation of the path be 67; , sometimes called virtual displacement.

2

Then from (1), we get (ml- 6;

‘;i) ari = Fi5ri

t

Summing for all particles, we get

d?r;
n i
i=1 M

_—_ \n
L g¢2 5ri - Zi=1Fi5ri
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Where right hand side indicates the total work done SW under the
displacement of the path, then W =}, F;6r; or oW =

d?r;
n s
i=1 My dt2 STL

Now, the kinetic energy of the system is

m (m)z
=1 L dt

dr; dr; dr; d
Therefore 6T =Y. m;, —=§(— =y m;,—.—
Xinm dt (dt) =107 g tae

d . dr;
But — (= 671;)
dat ~dt

_dr;
dt?

dr;i d
. 6T'i +d—;.z(6ri)

Multiplying both side by m; and summing from I = 1 to n, we get

d dr; d?r;
n — _l . = n . _l
i=1 My dt [dt STL] Zl=1 m; dt2

dar; d
. 67"1' + Z?:l m; d_tla (6Ti)

=86T +8W by (4) and (6)

d dTL'
L L
ldt[dt t

Hence, 0T +dW=X" m
Integrate w.r.t. t from ¢, to t, , we get

. t
f:lz( 6T + SW)dt = [ml- %67}] * = 0 because 87; = 0 at t; and t,.

ty
Therefore f:;z( 6T +6W)dt =0

Now, if force is conservative then W = -V

Where 'V = potential function.

Therefore (7) becomes fttlz( 6T +6(=V))dt=0
Or §[7(T—V)dt=0

From this it can be stated that in a conservative field, a system moves from
. t .
t; to t, in such a way that [ R ?( T —V)dt is an extremum, actually a
1
minimum.
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Hence, we conclude that in a conservative field, a system moves from t;

to t, in such a way that |, tiz( T — V)dt is minimum.

13.8 LAGRANGIAN OF A SYSTEM

The expression L=T-V where T is kinetic energy and V is
potential energy of the system is called Lagrangian.

Note:m Lagrangian L is function of the co-ordinate of particle i.e.

generalized co-ordinate (q;), their velocities (g;) and time (t).

Le. L = L(q1, 92, 91, 91,92, -----» qn, t) hence, Hamilton’s

o . t
principle states that for a conservation system. |, t: 6L dt = 0.

13.9 LAGRANGE’S EQUATION

Consider Lagrangian L = L(q4, g5, Grs G1r Gor oo eos @) e (1)

Where q4, g5, q, are generalized co-ordinate of system of particles.

Now, from (1) 6L = X7 1a 5‘1; + 27 13 44,

By Hamilton’s principle [ :12 6Ldt =0

Using (2), wegetf i= 16 L 5q j+ 2 1a 6q] dt =0

Thereforef A 5q]dt +f 6q] dt =0

Jla Jla

Thereforef X 5q]dt +f n oLd

Fetgy 4 (80 dE =0

Jla

Therefore
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Since §q; =0 at t; and ¢,

Thereforef py 16 5q1dt—ft2 = 1dt( )6q] t=0

Thereforef [Z] 1aq dt( )] 8q;dt =0

d oL
Therefore Y7 1{6q E(a—q,])}&]]

Since §q; are arbitrary and independent to each other.

Therefore % -4 (aL) 0 this is Lagrange’s equation.
J

ILLUSTRATIVE EXAMPLES

Example 1. Using Hamilton’s principle, find the equation of one

dimensional harmonic oscillator.

Sol. A system executing harmonic motion may be referred as harmonic

oscillator.

e.g. A simple pendulum when the displacement of the motion is small is

an example of harmonic oscillator.
Now, the kinetic energy of harmonic oscillator = % mx?
Potential energy of harmonic oscillator
V=-[Fdx= kadx——kx2
Therefore the Lagrangian L=T-V
= % mx? — %kx2
By Hamilton’s principle & [ ttlz Ldt=0
Therefore & [* Gms? — ~kx?) dt = 0

Therefore fttlz 5(%177.562 — %kxz) dt=0
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Therefore [ *(mx8% — kx 8x) dt =0
1

ty . d ty _
Or . mxa(dx)dt — ftl kx dxdt =0

Therefore [mxSx]Zz — fttlz m% (x)6xdt — ftiz kx §x dt = 0

Therefore 0 - fttlz m% (%)6xdt — fttlz kx §x dt =0 [ since 5x = 0 at

ty and t, ]
Or ft’f (mx +kx) dt =0
Since &x is an arbitrary

Therefore mx + kx = 0.

This is required equation of motion of one dimensional harmonic

oscillator.

CHECK YOUR PROGRESS

Problem 1. The function E (x, y, p, ¥') = F(x,y,y') —
F(x,y,p) —(y' — p)E,(x,y,p) is called

Problem 2. Extremal is maximum if E <?
Problem 3 Extremal is minimum if E > 0. True/False.

Problem 4. A central field is called a field of extremals, if it is

not formed by a family of extremals. True/False

Problem 5. Legendre condition is sufficient condition to find

an extremal of the functional. True/False
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13.10 SUMMARY

1. Any family of curve y = y(x, c) in a given region D of xy — plane is said
to be form Proper Field if one and only one curve of family posses through

every point of the region D.

2. A family of curve y = y(x, ¢) is said to be form central field over domain

D if:
(1) Curves cover D without self intersection.
(i1) All curve passes through single point (xg, y,)-

3. Any family of curve y = y(x, ¢) passes through a single point (x,, y,)
which is not in domain D. then point (x,, y,) is called centre of pencil of

curves.

4. A central field is called a field of extremals, if it is formed by a family

of extremals.

5. Legendre condition is sufficient condition to find an extremal of the

functional.

6. The function E (x, y, p, ¥')

= F(x,y,y") —F(x,y,p) — v/ —p)E,(x,y,p) is called

Weierstrass function.

7. Extremal is maximum if E < 0 and Extremal is called minimum if E>

0. This is Legendre condition.

13.11 GLOSSARY

Integration

Even, odd functions
Trigonometric functions
Differentiation

First order derivatives
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Second order derivatives
Expansions of function

Limits
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13.14 TERMINAL AND MODEL QUESTIONS

Q 1. Define Hamilton’s principle.
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Q 2. Define Legendre sufficient condition for extremal.
oL d L. _
Q 3. Prove that g, at (a_q',) =0.
Q 4. Define proper field and Jacobi Condition.

Q 5. Show that the Jacobi condition for the Central field of extremals for

o] = 72 (xyy’ 4 y2 —YT) dx , u(0) = 0 where u = 8y is

fulfilled. Also Show that for extremals the functional is maximum.

Q 5. Show that the Jacobi condition satisfied for the extremal of the

functional

Ily9] = [;(»'* + 2 + x?) dx which passes through (0, 0)
and (a, 0).

Q 6. Investigate for the extremal of the functional
a 1 ,2
I[y(x)] = [y (x + 2y — 2y" )dx and y(0) = 0, y(1) = 0.
Q 7. Test for the extremal of the functional

Iy(x)] = [, (e”" + 3)dx and y(0) = 0, y(2) = 1.

13.15 ANSWERS

CHECK YOUR PROGRESS

CYQ 1. Weierstrass function

CYQ2.0

CYQ 3. True

CYQ 4. False

CYQ 5. True
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UNIT 14: Variational Method for Boundary
Value Problems

(Ordinary and partial differential equation)
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14.1 INTRODUCTION

The solution of Euler’s equation with boundary conditions gives
extremal of functional. This approach gives a method of solving a
boundary value problem approximately by assuming a trivial solution
satisfying the given boundary conditions and extremizing the integral
whose integrated is found from the given differential equation. The
sufficient conditions in the calculus of variations have recently received a
great deal of attention and it would seem fitting that attempts be made to
simplify their discussion whenever possible, and to render the agreement
more exact between the known necessary and the known sufficient

conditions.

14.2 OBJECTIVE

At the end of this topic learner will be able to understand:

(1) Rayleigh — Ritz Method for Ordinary differential equation
(i) Rayleigh — Ritz Method for partial differential equation
(ii1) Galerkin’s method

(vi) Kantorovich Method

14.3 RAYLEIGH RITZ METHOD

(For ordinary Differential equation)

The Rayleigh—Ritz method is a variational method to solve the eigenvalue
problem for elliptic differential operators, that is, to compute their
eigenvalues and the corresponding eigenfunctions. It is the direct
counterpart of the Ritz method for the solution of the assigned boundary
value problems. The Rayleigh—Ritz method has the advantage of being
based on minimal, very general assumptions and produces optimal
solutions in terms of the approximation properties of the underlying trial
spaces. The theory of the Rayleigh—Ritz method has to a large extent been
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developed in the context of finite element methods The Rayleigh Ritz
method utilize the principle of minimizing total potential energy in a
system and calculus of variations. It employs the use of trial functions that
satisfy specific conditions, including boundary conditions, to solve

boundary value problems.

Consider an ordinary Differential equation

a6 () 22 + 0, () 2 + a,(x)y = f(x)

With boundary condition  y(x;) = y;, y(x3) =y,

In order to solve differential equation (1) by variational method, first we

construct F(x, y, y') in such way that Euler’s equation of functional
Iy()] = [, F(x,y, y)dx

Becomes given differential equation (1).

Next, the proper choice of y,(x), y1 (%), Y5 (%), ..., yn(x)

We get  y(X) = yo(x) ey y1(0)+ 202 () F ...t cpyn (%)

Out of these functions y,(x) is the simplest function which satisfy given

boundary condition
Yo(x1) =y(x1) =y
and Yo (x2) =y(x2) =2

and other function y;(x), y,(x), ...., ¥,(x) are linearly independent

function satisfy homogeneous boundary condition
V(X)) =yre(x) =0k 1,2,3, ...
Y1(x1) =y1(x2) =0

V2(x1) = y2(x2) =0

Department of Mathematics
Uttarakhand Open University




Mathematical Methods MAT 509

Now putting the value of y(x) from (3) in (2), we get
I=1(ci,cq, ..., Cp)
These constants ¢4, ¢y, ...., C, are choose in such a way that I is extremum.

Therefore by necessary condition for existence of extremal is

o _ o _ o
dcq - dc, - - dcp

=0.

Solving these simultaneous equations, we will to get ¢4, ¢,, ...., ¢, and
putting these value in (3) we get required solution of differential
equation (1).

Remark: The selection of approximate solution may be done from
solution

V(X) = (¢ + Cx + c3x% + -+, x ) (x — x?)
one term approximation y(x) = ¢;(x — x?) and

two term approximation  y(x) = (¢; + ¢,x)(x — x?) which gives better
approximation.

Obviously, approximate solution of ordinary differential equation are
linearly independent.

ILLUSTRATIVE EXAMPLES

Example 1. Solve the boundary value problem y” =1 subject to
boundary conditions

y(0) =0, y(1) = 0 by Rayleigh-Ritz method.
Sol. The given differential equation is
y'=1
y(0)=0,y(1)=0

First, we construct F(x, y, ¥') in such a way that the Euler’s equation of
functional

1=, F(xy,y)dx
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Becomes given differential equation y"' = 1, we choose
F=y'? + 2y for which y” = 1 is Euler’s equation
By Euler’s equation

oF d (BF) B
dy dx\ay')
Therefore 2.4 2y")=0
dx
Therefore 1-y"=0 =y"=

Hence the required variational problem is

[= fol(y’z +2y )dx
Next we assume the trivial solution
Y(X) = ¢o + €1 + cpx2
therefore y(0)=0=¢, =0
yH)=0=c¢c+tc,=0=c,=—
therefore trivial solution become
y(x) = c1(x — x?)
therefore y'(x) = ¢, (x — 2x)
putting value of y and y’ in (2), we get

I= fol[cl2 (1 —2x)% + 2¢,(x — x?)]dx

al _ d 1
Therefore o :d_clfo [c12 (1 —2%)% + 2¢4(x — x?)]dx

9
= fola_cl [c12 (1 —2%)% + 2¢4(x — x?)]dx

= [M[2¢; (1 = 2x)? + 2(x — x?)]dx
:261[ 1(1-2x)* 2x) [___]

S

dl 201 +1
Therefore —~ =&a*h
dC1 3
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The necessary condition for existence of extremal is

ar

dCl

2c1+1 _
3

= 0 == —%
Therefore (4) becomes

y®) = —2(x—x3)  or y(x) =;@%-x).
This is exact solution of the given boundary value problem.

2
Note:m if we solve =2 =1, y(0)=0, y(1)=0.

2
Integrate, we get y(x) = x? +cx+c,
y0)=0=c¢c, =0
y()=0=4c; +¢;,=0

1
:Clz_z

Therefore  y(x) = xz—z — %x or y(x)= % (x? — x)

Hence y(x) = % (x? — x) is exact solution.

Example 2. Solve the boundary value problem y"” —y + x =0

(0 < x < 1)subject to boundary conditions y(0) = 0, y(1) = 0 by
Rayleigh-Ritz method.

Sol. The given differential equation is
y'—y+x=0
with y(0)=0,y(1)=0

First, we construct F(x, y, ¥') in such a way that the Euler’s equation of
functional

1= fol F(x,y,y")dx

Where F(x,y,y') =2xy-y2 —y'%.

Hence the required variational problem is
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Therefore I[y(x)] = fol(ny — y%2—y"?)dx
Next, assume the trivial solution is
V(X) = ¢+ C1x + cpx?
therefore y(0)=0= ¢, =0
yD)=0=c¢c+c;=0=¢; = —4

Therefore (3) become

y(x) = c1(x — x?)
therefore y'(x) =c,(1—2x).
putting value of y and y’ in (2), we get

I= fol [012952 (1-x)— X2C12(1 —x)?—¢2(1 - 2x)2] dx

= f01[201 (x2 = x3) — ¢ 2(x? + x* — 2x3) — ¢, 2(1 + 4x? — 4x)]dx

3 4 5 1

B R e

3 4 0

11

=1 c
6 1 30 1°

Therefore the necessary condition for existence of extremal is

Put in (4), we get  y(X) = % (x — x?)
This is the required approximate solution.
Example 3. Solve the boundary value problem

(1 —x?)y"” — 2xy’ 4+ 2y = 0 subject to boundary conditions y(0) = 0,
y(1) = 1 by Rayleigh-Ritz method.

Sol. The given differential equation is
(1—x?)y" —2xy'+2y=0
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with y(0)=0, y(1) = 1

First, we construct F(x, y, ¥') in such a way that the Euler’s equation of
functional

[= f01 F(x,y,y")dx
Where F(xy,y") = (1-x2)y'%- 2y?
Hence the required variational problem is
Therefore I[y(x)] = fol[(l — x2)y'’? — 2y?]dx
Next, assume the trivial solution is
y(x)= x4+ c(x —x?)
be approximate solution which satisfying the given boundary conditions.
Therefore  y'(x)=1+c (1 —2x).
Putting value of y and y' in (2), we get

[= fol[(l — x){1+c—2xc}? — 2{x + cx — cx?}*]dx

. dl .
Therefore, for existence of extremal == 0 gives ¢ = 0.

Putting value of ¢ in (3), we get
y(x) =x
this is required solution of given differential equation.

Note: y(x) = 0 is exact solution of given differential equation.

14.4 RAYLEIGH RITZ METHOD

(For Partial Differential equation)

The German mathematician W. Ritz gave variational approach to solve

boundary value problem for ordinary and differential equation in 1908.

The Rayleigh Ritz method utilize the principle of minimizing total

potential energy in a system and calculus of variations. It employs the use
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of trial functions that satisfy specific conditions, including boundary

conditions, to solve boundary value problems.
This is also known as Rayleigh-Ritz method.
Consider the boundary value problem

Uyx T Uy, +qQU =T
In the region R bounded by the curve C.
Let u(x) be prescribed on C.

Then, the corresponding variation problem is to extremize the functional

1S

ffc(uxz +u,? — qu? + 2ru)dx dy

For which we take the trivial function such that it Satisfy the given

boundary conditions.

ILLUSTRATIVE EXAMPLES

Example 4. Solve the Poisson’s equation uy, + uy, = —1

In a square defined by [x| < 1, |y| < 1andu=0whenx=+1,y=+1.
Sol. Given that  u,, +u,, = -1

Compare with Uy T Uyy + QU =T

We get

Hence, the corresponding variational problem is to extremize the
functional is

1= [ [ (u® + uy? — qu? + 2ru)dx dy
ie. 1= [ [ (u® +uy? + 2u)dx dy
where R is square defined by |x| < 1, [y| <1
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let ux,y)=c(l-x2)(1-y?
be trivial function which satisfies the given boundary conditions.
Therefore  u, =-2cx (1 -¥2); u, =-2cy (1 - x?).

Putting value of u, u, and u,, in (2), we get

I = f_11 f_11[4 c2x?(1 — y3) +4c?x?2(1 — x¥)?2 —2c(1 — x> —
y*)]dxdy

=2 (8¢? - 5¢)

Now, for existence of extremal

a_

32
dC_O ﬁg(16c—5) =0

= (16c—5) =0 =c==
Putting value of ¢ in (3), we get

ux,y) == (1 - x2)(1-y?)

this is the required approximate solution.

14.5 GALERKIN’S METHOD

The Galerkin’s method of weighted residuals, the most common method
of calculating the global stiffness matrix in the finite element method, the
boundary element method for solving integral equations, Krylov subspace

methods.

Galerkin’s method is another method to solve any type of boundary value

problems either linear or non-linear.

In this method, the boundary conditions are taken homogeneous i.e., of

the forms

AL+ b L + 00y = f(0)

y(x1) =0 and y(x;) =0
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If the boundary conditions are not homogeneous, it can be made

homogeneous by choosing an approximate transformation

u=y—y—0—%(x—xo)
With conditions that
u,(x;) =0andu,(x,) =0, r=12,..,n
Further let
y(x) = crug (1) + cup (%) + -+ + cpitn ()
Be an approximate solution.

To find the constants ¢;/s; i =1,2,...,n

We use the residue function defined as

RGx,6) = [a(0) 255+ () + ¢()] Ty 14,00 = () e B)

When f;lz R(x,c)u,(x)dx=0;, r=12,..,n . (@)

We can find the value of all constants ¢; s using (3) and then putting value

of these constants in (1), we get required solution.

ILLUSTRATIVE EXAMPLES

Example 5. Solve the boundary value problem

d?y
oty

By Galerkin’s method.

Solution: The given differential equation is
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With y(0) =y G) =0
Here given boundary conditions are homogeneous.
Let approximate solution is

y = ciuy(x) = ¢q sin 2x
Which satisfy given boundary condition.
Now we find constant ¢ .
For consider, corresponding residue function by

R(x,c,) = (;—; + 1) ¢, Sin2x —e*

= —4c,sin2x + ¢, sin2x — e*

Where foz(—4cl sin2x + ¢, sin2x — e*) sin2xdx =0

On simplification, we get

Put in (2), we get

8 /m
= —— 2 [
y(x) {om (e + 1) sin 2x

This is required approximation solution.

14.6 KANTOROVICH METHOD

In his method to reduce a partial differential equation to a system of
ordinary differential equations, Kantorovich uses a cartesian coordinate as
an independent variable. For partial differential equations arising from
variational problems, an alternate formulation is presented, wherein an
arbitrary function takes the role of the independent variable. This
procedure should allow the subspace approximating the solution to be

adapted to the problem at hand. The differential equations are put in a form
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to minimize regularity conditions on the base functions, e.g., for a second
order differential equation, piecewise linear base functions will be
admitted. The set of admissible base functions will be dependent on the
boundary conditions of the problem. Iterative methods to solve the
corresponding two-point boundary value problem are discussed. In order
to solve partial differential equation, Kantorovich method is another more

efficient method in comparison of Rayleigh-Ritz method.

In this method, a trivial solution
u(x,y) = w6, ¥) + fLu (6, ¥) + - + fuin (x, )
= 2= i (x, )
Is taken.

Here, u;(x, y), V; satisfying the given boundary condition and f;(x) are
unknown function of x.

ILLUSTRATIVE EXAMPLES

Example 6. Solve Uyy + Uy, = 0 in a square defined by x| <1,

ly| <1 whereu(+1,y) =1—y?andu(x,+1)=0.

Sol. Here, the corresponding variational problem is to extremize the

functional

1= [ [ (ux® + uy?)dx dy

where R is square defined by |x| < 1, |y| <1

let ux,y)=(1-y))f()
where f(x) is unknown function to be determined such that f(+1) = 0.
Therefore Uy = (1-y3)f'(x) uy, = - 2y f(x).

Putting value ofu, u, ,u, in(2) we get
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I= 2 [0 = yD{F 0P + 4y*{f ()} ]dxdy

On simplification, we get
_8 (1 (22 2
=31 (r 1) dx
And the corresponding Euler’s equation is
4 14 n 5
—gf +2f=0 or f _Ef=0

. . 5
Auxiliary equationis  m? —>=0

Hence solution of (2) is

fix)=A cosh(\E) x + B sinh <\E> x

using boundary condition f(x1) =1

()

we get f(x) =

therefore (2) becomes

con{

ux,y)=1- yz)w

this is the required solution.

Example 7. Solve the Laplace equation u,, +u,, =0 in a square

defined by

x| <1,|yl <1, whenx=0o0n|x| =1andu=1-x%o0nly| = 1.
Sol. The given partial differential equation is Uy, + u,,, =0
Compare with Uy, + u,, + qu=1r,wegetq=0,r=0
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Here, the corresponding variational problem is to extremize the functional

is

1= [ [ (uy® + uy? — qu? + 2ru)dx dy

ie. I=[[(u?+u,?)dxdy

Let ux,y)=1-x3)[1+c(1 — x?)]

Be trivial function, which satisfy the given boundary condition.
Therefore  u, =-2x[1+c(1 — y?)]

Therefore  uy, =-2yc (1 - x?%)

Therefore (1) becomes

[= f_ll f_11[4x2{1 +2c(1 — y3) +c2(1 — y?)?} + 4y?c?(1 — 2x% +
x*)dxdy

Now —=0
dc

Therefore f_ll f_11[8x2(1 — y2) +8x%c(1 — y?)2 +8y?c(1—2x*+
x*dxdy =0

Evaluating the integral, we get c= %5

Putting value of ¢ in (1), we get

u(x, y)= (1= x3)[1 =2 (1 - y?)]

this is required approximate solution.

Example 8. Find the estimate of the least eigen value of uy, +u,, +

Au = 0 in the region R bounded by the circle x? +y? = 1 given that u =
0 on the boundary.

Sol. Here, the corresponding Variational problem is to extremize the

functional is
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1= [ [ (e +uy? — u?)dx dy
Where R is region bounded by x2 +y2 < 1

Let u(x, y) = ¢ (1 - x2 - y?) be trivial solution which satisfy the

boundary condition

ie.u=0atx? +y% =1,

Therefore — u, = —2cx, u,, = —2cy
Putting value of u, u, ,u, in (1) we get

I=[ [.[4c?(x* + y?) = Ac*(1 — x* — y*)?dx dy

Therefore a_ 0
dc

Therefore [ [ [8c(x? + y*) — 2Ac(1 — x* — y*)?*]dx dy =0

4 [ [(x?+y?)dx dy

Therefore A = [ a(-x?—y?)2dx dy

Putting x =r cosf , y =1 sinf
Therefore  dx dy=r dfdr

1 c2m
4 [ _o Jg=or?rdedr

Therefore A = fr1=o fezlto(l_rz)zdedr

21

Therefore A = P—rs) =

Hence A = 6 is the required least eigen value.
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CHECK YOUR PROGRESS

MCQ/True False Questions

Problem 1. Extremals of the functional fxxlzy ’1 +y'% s

attained on the: (a) Catenary (b) Parabola (c) Circle
(d) Ellipse

Problem 2. The shortest distance between two points in a

plane is:
(a) circle (b) parabola (c) Ellipse (d) straight line

Problem 3. Euler’s equation for the functional

j [a(x)y"? + 2b(x)y" + c(x)y?]dx:

(a) First order linear differential equation.

(b) second order linear differential equation.

(c) second order non- linear differential equation.

(d) a linear differential equation of order more that two.

Problem 4. Extremal y = y(x) for the variational problem

I= fol(l +y"?)dx satisfies the ordinary differential

equation is:
(a) Homogeneous linear differential equation of fourth order.

(b) Non-homogeneous linear differential equation of fourth

order.

(c) Homogeneous non-linear differential equation of fourth

order.
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(d) Homogeneous linear differential equation of more than

fourth order.

Problem 5. Necessary condition for existence of extremal is

ol ol o1
L -2 . =% — 0.True/Fal
9 9o, aen 0.True/False

Problem 6. In which situation the variational problem

[ FCxy,yNdx,

y(X1) = Y1, y(x,) = y, becomes

meaningless:
(a) When Euler’s equation reduces into identity.

(b) When y(x) exists but it is not satisfy the given boundary

condition.

(c) When f(x,y,y") = M(x,y) + N(x,y).

(d) All of the above.

14.7 SUMMARY

1. Necessary condition for existence of extremal is

a1l a1l ol
_—_—...——:0.

dcq - dcy - - dcp
2. RAYLEIGH RITZ METHOD:

The Rayleigh—Ritz method is a variational method to solve the eigenvalue
problem for elliptic differential operators, that is, to compute their
eigenvalues and the corresponding eigenfunctions. It is the direct
counterpart of the Ritz method for the solution of the assigned boundary

value problems. The Rayleigh—Ritz method has the advantage of being
Department of Mathematics
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based on minimal, very general assumptions and produces optimal
solutions in terms of the approximation properties of the underlying trial
spaces. The theory of the Rayleigh—Ritz method has to a large extent been
developed in the context of finite element methods Consider the boundary

value problem

Uyx T Uyy +qQU =T
In the region R bounded by the curve C.
Let u(x) be prescribed on C.

Then, the corresponding variation problem is to extremize the functional

1S

ffc(uxz +u,? — qu? + 2ru)dx dy

For which we take the trivial function such that it Satisfy the given

boundary conditions.

3. Galerkin’s method is another method to solve any type of boundary

value problems either linear or non-linear.
4. Kantorovich method:

In this method, a trivial solution
ulx,y) = fi(u(x,y) + fLua(x,y) + -+ + frun(x, y)
= 2imq [i)u(x, )

5. Kantorovich method is more efficient method to solve boundary value

problem of partial differential equation.

6. The German mathematician W. Ritz gave variational approach to solve

boundary value problem for ordinary and differential equation in 1908.
This is also known as Rayleigh-Ritz method.

7. The variational problem corresponding to given ordinary differential
equation is
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I= f;lz F(x,y,y")dx where, we construct F(x,y,y’) in say that the

corresponding Euler’s equation becomes original differential equation.

8. Note that Poisson’s Equation is a partial differential equation, and
therefore can be solved using well-known techniques already established
for such equations. In fact, Poisson’s Equation is an inhomogeneous

differential equation.

14.8 GLOSSARY

Integration

Even, odd functions
Trigonometric functions
Differentiation

First order derivatives
Second order derivatives
Expansions of function

Series
Functional
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14.11 TERMINAL AND MODEL QUESTIONS

TQ 1. Find the estimate of the least eigen value of

Uy + Uy, +Au =0
In the region R bounded by |x| <1, |y|<1and u =0 atx = +1 and
aty = +1.

TQ 2. Solve the boundary value problem

y(0)=0 y(1)=1
By Galerkin’s method.

TQ 3. Solve the Poisson’s equation in a circle uy, + uy, = —1, x? +

y? < 1whenu=0
onx?+y?=1.

TQ 4. Solve the Laplace equation uy, + u,, = 0 in a square defined by
x| <1, [y] <1whenx =0on|x|=1andu=1-x%only| =1.
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14.12 ANSWERS

TQ1 A=5

TQ2 y=§x(x— 1) +x

TQ3 u(x,y) == (1 —x2 - y?)

TQ4u(x,y) = (1 - x3)[1 -2 (1 - y?)]

CHECK YOUR PROGRESS
CQ1 (a)

CQ2 (b)
CQ3 (b)
CQ4 ()
CQ5 True

CQo6 (d)
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