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COURSE INFORMATION 

The present self-learning material “Mathematical Methods” has 

been designed for M.Sc. (Second Semester) learners of Uttarakhand Open 

University, Haldwani. This course is divided into 14 units of study.  This 

Self Learning Material is a mixture of Four Block.  

First block is Fourier series, in this block Fourier series, 

Generalized Fourier series, Fourier Cosine series, Fourier Sine series, 

Fourier integral, Fourier transform and inverse Fourier Transform defined 

clearly.  

Second block is Integral transform, in this block Laplace 

transform, convolution theorem and inverse Laplace transform and 

application in solving differential equation defined clearly.  

Third block is Integral equations, in this block Volterra integral 

equations, Fredholm integral equations, Volterra and Fredholm equations 

of first and second kind, Volterra and Fredholm equations with regular 

kernels. Degenerate kernel, Fredholm Theorem, Method of Successive 

approximation. Concept and calculation of Green's function, Approximate 

Green's function, modified Green’s function, Green's function method for 

differential equations, Green's function in integral equations are defined. 

Fourth block is Calculus of Variation, in this block concept of 

extrema of a functional, variation and its properties. Variational problems 

with fixed boundaries, The Euler equation, The fundamental lemma of 

calculus of variations. Variational problems with moving boundaries, 

Sufficient conditions for an extremum, Field of extremals, Jacobi 

conditions, Legendre Condition, Rayleigh- Ritz method, Galerkin’s methos 

are defined.  

Adequate number of illustrative examples and exercises have also been 

included to enable the leaners to grasp the subject easily. 
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1.1 INTRODUCTION 

A Fourier series is an expansion of a periodic function f(x) in terms 

of an infinite sum of sines and cosines. Fourier Series makes use of the 

orthogonality relationships of the sine and cosine functions. Baron Jean 

Baptiste Joseph Fourier (1768−1830) first introduced the idea that any 

periodic function can be represented by a series of sines & cosines waves 

in 1828. A periodic signal is just a signal that repeats its pattern at some 

period. The primary reason that we use Fourier series is that we can better 

analyse a signal in another domain rather in the original domain.                           

 

Fig.1.1. 

Ref: 

https://en.wikipedia.org/wiki/F

ile:Fourier2_-_restoration1.jpg 

 

 
 

1.2 OBJECTIVE 

At the end of this topic learner will be able to understand:  

(i) Periodic Function 

(ii) Even and odd functions 

(iii) Euler’s Formulae 

(iv) Fourier Series 

(v) Dirichlet’s conditions 

 

1.3 PERIODIC FUNCTION 

A function f(x) which satisfies the relation f(x + T) = f(x) for all real x 

and some fixed T is called a periodic function. The smallest positive 

number T, for which this relation holds is called the period of f(x). 

If T is the period of f(x),  

https://en.wikipedia.org/wiki/File:Fourier2_-_restoration1.jpg
https://en.wikipedia.org/wiki/File:Fourier2_-_restoration1.jpg
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then f(x) = f(x + T) = f(x + 2T) = … = f(x + nT) = …… 

Also     f(x) = f(x - T) = f(x - 2T) = ….. = f(x - nT) = …… 

∴ f(x) = f(x ± nT), where n is a positive integer. 

Thus, f(x) repeats itself after periods of T. 

For example, sinx, cosx, secx and cosecx are periodic functions with 

periodic functions with period 2𝜋. 

Since       tan (𝜃 + 𝜋) = 
sin(𝜃 + 𝜋)

cos(𝜃 + 𝜋)
 = 

− sin 𝜃

− cos 𝜃
 = tan 𝜃 

And         cot (𝜃 + 𝜋) = 
cos(𝜃 + 𝜋)

sin(𝜃 + 𝜋)
 = 

− cos 𝜃

− sin 𝜃
 = cot 𝜃. 

Therefore tan 𝜃 and cot 𝜃 are periodic functions with period 𝜋. 

The function sin 𝑛𝑥 𝑎𝑛𝑑 cos 𝑛𝑥are periodic with period 
2𝜋

𝑛
 . 

Note: 1. The sum of a number of periodic functions is also periodic. 

2. if T1 and T2 are the periods of f(x) and g(x), then the period of a   

    f(x) + b g(x) is the least common multiple of T1 and T2. 

For Example: cosx, cos2x and cos3x are periodic functions with periods 

2𝜋 , 𝜋 and 
2𝜋

3
 respectively. 

∴ f(x) = cosx + 
1

2
 cos2x + 

2

3
 cos3x is also periodic with periodc with period 

2𝜋, the L.C.M. of 2𝜋, 𝜋 and  
2𝜋

3
 . 

 

1.4 FOURIER SERIES 

  Expansion of a function f(x) in a series of sines and cosines of 

multiples of x was developed by French Mathematician and physicist 

Jacques Fourier. We have seen how a function can be expanded in power 

of x by Maclaurin’s theorem but that expansion was possible only when 

the function and its derivatives are continuous. A need arises to expand 

functions which have discontinuities in their values or derivatives. 
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By Fourier series, we can expand both type of functions under certain 

conditions as an infinite series of sines and cosines of x and its integral 

multiples. 

Fourier series for the function f(x) in the interval c < x < c + 2𝜋  is given 

by f(x) = 
𝑎0

2
 + ∑ 𝑎𝑛 cos 𝑛𝑥∞

n=1  + ∑ 𝑏𝑛 sin 𝑛𝑥∞
n=1     ……… (1) 

where 𝑎0 = 
1

𝜋
 ∫ 𝑓(𝑥)𝑑𝑥

c + 2𝜋

𝑐
 

           𝑎𝑛 = 
1

𝜋
 ∫ 𝑓(𝑥) 𝑐𝑜𝑠𝑛𝑥 𝑑𝑥

c + 2𝜋

𝑐
 

            𝑏𝑛 = 
1

𝜋
 ∫ 𝑓(𝑥) 𝑠𝑖𝑛𝑛𝑥 𝑑𝑥

c + 2𝜋

𝑐
 

Above formulae are also called Euler’s formulae. Constants 𝑎0 , 𝑎𝑛 and 

𝑏𝑛 are called Fourier coefficients of f(x).  

Note: To determine  𝑎0 , 𝑎𝑛 and 𝑏𝑛 , we shall use the following results  

            (m and n are integers). 

I. ∫  𝑠𝑖𝑛𝑛𝑥 𝑑𝑥
c + 2𝜋

𝑐
 = (

− 𝑐𝑜𝑠𝑛𝑥

𝑛
)

𝑐

c + 2𝜋

= 0, n ≠ 0 and  

             ∫  𝑐𝑜𝑠𝑛𝑥 𝑑𝑥
c + 2𝜋

𝑐
 = (

𝑠𝑖𝑛𝑛𝑥

𝑛
)

𝑐

c + 2𝜋

= 0, n ≠ 0 

II. ∫  𝑠𝑖𝑛𝑚𝑥 𝑐𝑜𝑠𝑛𝑥 𝑑𝑥
c + 2𝜋

𝑐
 = 0, m ≠ n 

III. ∫ 𝑐𝑜𝑠𝑚𝑥 𝑐𝑜𝑠𝑛𝑥 𝑑𝑥
c + 2𝜋

𝑐
 = 0, m ≠ n 

IV. ∫  𝑠𝑖𝑛𝑚𝑥 𝑠𝑖𝑛𝑛𝑥 𝑑𝑥
c + 2𝜋

𝑐
 = 0, m ≠ n 

V. ∫  𝑐𝑜𝑠2𝑛𝑥 𝑑𝑥
c + 2𝜋

𝑐
 = 𝜋, n ≠ 0 ; ∫  𝑠𝑖𝑛2𝑛𝑥 𝑑𝑥

c + 2𝜋

𝑐
 = 𝜋, n ≠ 0  

VI. ∫ 𝑠𝑖𝑛𝑛𝑥 𝑐𝑜𝑠𝑛𝑥 𝑑𝑥
c + 2𝜋

𝑐
 = 0, n ≠ 0 

VII. ∫ 𝑒𝑎𝑥 sin 𝑏𝑥 𝑑𝑥 = 
𝑒𝑎𝑥

𝑎2+ 𝑏2 (a sinbx – b cosbx) + c 

VIII. ∫ 𝑒𝑎𝑥 cos 𝑏𝑥 𝑑𝑥 = 
𝑒𝑎𝑥

𝑎2+ 𝑏2 (a cosbx + b sinbx) + c 

IX. Sin n𝜋 = 0 and cos n𝜋 = (−1)𝑛  

X. Even and odd functions 
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A function f(x) is said to be even if f(-x) = f(x). for example x4 , cosx, sin2x 

are even functions. 

The graph of an even function is symmetrical about the y-axis. 

Here y-axis is a mirror for the reflection of the curve. 

∫ 𝑓(𝑥)𝑑𝑥 =  2
𝜋

−𝜋

∫ 𝑓(𝑥)𝑑𝑥
𝜋

0

 

 

   

  

                              Graphs of even functions 

A function f(x) is said to be odd if f(-x) = - f(x). for example x3 , sinx , tan3x are odd functions. 

The graph of an odd function is symmetrical about the origin. 

                                                     ∫ 𝑓(𝑥)𝑑𝑥 =  0
𝜋

−𝜋

 

                                                                Graphs of odd functions 
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1.5 EULER’S FORMULAE 

The Fourier series for the function f(x) in the interval c < x < c + 

2𝜋 is given by 

f(x) = 
𝑎0

2
 + ∑ 𝑎𝑛 cos 𝑛𝑥∞

n=1  + ∑ 𝑏𝑛 sin 𝑛𝑥∞
n=1     …….. (1) 

in finding the coefficients 𝑎0 , 𝑎𝑛 𝑎𝑛𝑑 𝑏𝑛 , we assume that the series on 

the right hand side of the equation (i) is uniformly convergent for c < x < 

c + 2𝜋 and it can be integrated term by term in the given interval. 

To find 𝒂𝟎 , integrate both sides of (1) w.r.t. x between the limits c to c + 

2𝜋. 

∫ 𝑓(𝑥) 𝑑𝑥
c + 2𝜋

𝑐
 = 

𝑎0

2
∫  𝑑𝑥

c + 2𝜋

𝑐
 + ∫ ( ∑ 𝑎𝑛 cos 𝑛𝑥 ∞

n=1 ) 𝑑𝑥
c + 2𝜋

𝑐
  

                            + ∫ ( ∑ 𝑏𝑛 sin 𝑛𝑥∞
n=1 ) 𝑑𝑥

c + 2𝜋

𝑐
   

                          = 
𝑎0

2
 (c + 2 𝜋 – c) + 0 + 0          ( By note I ) 

                             = a0 π 

∴                   𝐚𝟎 = 
𝟏

𝛑
 ∫ 𝒇(𝒙) 𝒅𝒙

𝐜 + 𝟐𝝅

𝒄
 

𝑻𝒐 find 𝒂𝒏 , multiply both sides of (1) by cos 𝑛𝑥 and integrate w.r.t. x 

between the limits c to c + 2𝜋. 

∫ 𝑓(𝑥) 𝑐𝑜𝑠𝑛𝑥 𝑑𝑥 
c + 2𝜋

𝑐
= 

𝑎0

2
∫ 𝑐𝑜𝑠𝑛𝑥 𝑑𝑥

c + 2𝜋

𝑐
 

                                         + ∫ ( ∑ 𝑎𝑛 cos 𝑛𝑥 ∞
n=1 ) 𝑐𝑜𝑠𝑛𝑥 𝑑𝑥

c + 2𝜋

𝑐
  

                                                                          + ∫ ( ∑ 𝑏𝑛 sin 𝑛𝑥 ∞
n=1 ) 𝑐𝑜𝑠𝑛𝑥 𝑑𝑥

c + 2𝜋

𝑐
 

                                    = 0 + an𝜋 + 0 

                                    = an𝜋 

∴                   𝐚𝐧 = 
𝟏

𝛑
 ∫ 𝒇(𝒙) 𝒄𝒐𝒔𝒏𝒙 𝒅𝒙

𝐜 + 𝟐𝝅

𝒄
 

𝑻𝒐 find 𝒃𝒏 , multiply both sides of (1) by sin 𝑛𝑥 and integrate w.r.t. x 

between the limits c to c + 2𝜋. 
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∫ 𝑓(𝑥) 𝑠𝑖𝑛𝑛𝑥 𝑑𝑥
c + 2𝜋

𝑐
 = 

𝑎0

2
∫ 𝑠𝑖𝑛𝑛𝑥 𝑑𝑥

c + 2𝜋

𝑐
 

                                          + ∫ ( ∑ 𝑎𝑛 cos 𝑛𝑥 ∞
n=1 ) 𝑠𝑖𝑛𝑛𝑥 𝑑𝑥

c + 2𝜋

𝑐
  

                                                                          + ∫ ( ∑ 𝑏𝑛 sin 𝑛𝑥 ∞
n=1 ) 𝑠𝑖𝑛𝑛𝑥 𝑑𝑥

c + 2𝜋

𝑐
 

                                     = 0 + 0 + bn𝜋 

                                     = bn𝜋 

∴                   𝐛𝐧 = 
𝟏

𝛑
 ∫ 𝒇(𝒙) 𝒔𝒊𝒏𝒏𝒙 𝒅𝒙

𝐜 + 𝟐𝝅

𝒄
 

 

Note: These values of 𝑎0 , 𝑎𝑛 𝑎𝑛𝑑 𝑏𝑛  are called Euler’s formulae. 

 

Corollary 1. If c = 0, the interval becomes 0 < x < 2𝜋, and the formulae 

reduce to  

a0 = 
1

π
 ∫ 𝑓(𝑥) 𝑑𝑥

2𝜋

0
 ,   an = 

1

π
 ∫ 𝑓(𝑥) 𝑐𝑜𝑠𝑛𝑥 𝑑𝑥

2𝜋

0
 and  

bn = 
1

π
 ∫ 𝑓(𝑥) 𝑠𝑖𝑛𝑛𝑥 𝑑𝑥

2𝜋

0
 

Corollary 2. If c = - 𝜋, the interval becomes − 𝜋 < x < 𝜋, and the formulae 

reduce to 

               a0 = 
1

π
 ∫ 𝑓(𝑥) 𝑑𝑥

𝜋

−𝜋
 ,   an = 

1

π
 ∫ 𝑓(𝑥) 𝑐𝑜𝑠𝑛𝑥 𝑑𝑥

𝜋

−𝜋
 and  

               bn = 
1

π
 ∫ 𝑓(𝑥) 𝑠𝑖𝑛𝑛𝑥 𝑑𝑥

𝜋

−𝜋
 

Corollary 3. When f(x) is odd function then a0 = 
1

π
 ∫ 𝑓(𝑥) 𝑑𝑥

𝜋

−𝜋
 = 0 

Since cosnx is an even function, therefore f(x) cosnx is an odd function. 

 ∴                           an = 
1

π
 ∫ 𝑓(𝑥) 𝑐𝑜𝑠𝑛𝑥 𝑑𝑥

𝜋

−𝜋
 = 0 

Since sinnx is an odd function, therefore f(x) sinnx is an even function. 

  ∴                           bn = 
1

π
 ∫ 𝑓(𝑥) 𝑠𝑖𝑛𝑛𝑥 𝑑𝑥

𝜋

−𝜋
 = 

2

𝜋
 ∫ 𝑓(𝑥) 𝑠𝑖𝑛𝑛𝑥 𝑑𝑥

𝜋

0
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Hence, if a periodic function f(x) is odd, its Fourier expansion contains 

only sine terms. 

i.e.,         f(x) =  ∑ 𝑏𝑛 sin 𝑛𝑥∞
n=1 , where bn = 

2

𝜋
 ∫ 𝑓(𝑥) 𝑠𝑖𝑛𝑛𝑥 𝑑𝑥

𝜋

0
 

Corollary 4. When f(x) is an even function then  

        a0 = 
1

π
 ∫ 𝑓(𝑥) 𝑑𝑥

𝜋

−𝜋
 = 

2

𝜋
 ∫ 𝑓(𝑥) 𝑑𝑥

𝜋

0
 

Since cosnx is an even function, therefore f(x) cosnx is an even function. 

∴                           an = 
1

π
 ∫ 𝑓(𝑥) 𝑐𝑜𝑠𝑛𝑥 𝑑𝑥

𝜋

−𝜋
 = 

2

𝜋
 ∫ 𝑓(𝑥) 𝑐𝑜𝑠𝑛𝑥 𝑑𝑥

𝜋

0
 

Since sinnx is an odd function, therefore f(x) sinnx is an odd function. 

  ∴                           bn = 
1

π
 ∫ 𝑓(𝑥) 𝑠𝑖𝑛𝑛𝑥 𝑑𝑥

𝜋

−𝜋
 = 0 

Hence, if a periodic function f(x) is even, its Fourier expansion 

contains only cosine terms. 

i.e.,   f(x) =  
𝑎0

2
+ ∑ 𝑎𝑛 cos 𝑛𝑥∞

n=1 , where  a0 = 
2

𝜋
 ∫ 𝑓(𝑥) 𝑑𝑥

𝜋

0
 𝑎𝑛𝑑  

                an = 
2

𝜋
 ∫ 𝑓(𝑥) cos 𝑛𝑥  𝑑𝑥

𝜋

0
 . 

 

1.6 DIRICHLET’S CONDITIONS 

The sufficient conditions for the uniform convergence of a Fourier series 

are called Dirichlet’s conditions. All the functions that normally arise in 

engineering problems satisfy these conditions and hence they can be 

expressed as a Fourier series. 

Any function f(x) can be expressed as a Fourier series                                    

𝑎0

2
+ ∑ 𝑎𝑛 cos 𝑛𝑥∞

n=1  + ∑ 𝑏𝑛 sin 𝑛𝑥∞
n=1  where 𝑎0 , 𝑎𝑛 , 𝑏𝑛 are constants 

provided 

(i) f(x) is periodic, single valued and finite. 

(ii) f(x) has finite number of finite discontinuities in any one period. 

(iii) F(x) has a finite number of maxima and minima. 
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(iv) When these conditions are satisfied, the fourier series converges to 

f(x) at every point of continuity. At a point of discontinuity, the 

sum of the series is equal to the mean of the limits on the right  

and left 

i.e.                    
1

2
[𝑓(𝑥 + 0) + 𝑓(𝑥 − 0)] 

where 𝑓(𝑥 + 0) and 𝑓(𝑥 − 0) denotes the limit on the right and 

the limit on the left respectively. 

 

ILLUSTRATIVE EXAMPLES 

Example 1. Obtain the fourier series to represent f(x) = 
1

4
(𝜋 − 𝑥)2 in the 

interval 0 ≤ 𝑥 ≤ 2𝜋. 

Hence obtain the following relations: 

(i) 
1

12 + 
1

22 + 
1

32 + 
1

42 + … = 
𝜋2

6
  

(ii) 
1

12 - 
1

22 + 
1

32 - 
1

42 + … = 
𝜋2

12
  

(iii) 
1

12 + 
1

32 + 
1

52 +  … = 
𝜋2

8
 . 

Sol. Let f(x) = 
1

4
(𝜋 − 𝑥)2 = 

𝑎0

2
+ ∑ 𝑎𝑛 cos 𝑛𝑥∞

n=1  + ∑ 𝑏𝑛 sin 𝑛𝑥∞
n=1    

                                                                                         …. (1) 

By Euler’s formulae, we have 

a0 = 
1

π
 ∫ 𝑓(𝑥) 𝑑𝑥

2𝜋

0
 = 

1

π
 ∫

1

4
(𝜋 − 𝑥)2 𝑑𝑥

2𝜋

0
 = 

1

4𝜋
 [

(𝜋−𝑥)3

−3
]

0

2𝜋

 

     = - 
1

12𝜋
 [−𝜋3 − 𝜋3 ] = 

𝜋2

6
 and  

an = 
1

π
 ∫ 𝑓(𝑥) 𝑐𝑜𝑠𝑛𝑥 𝑑𝑥

2𝜋

0
 = 

1

π
 ∫

1

4
(𝜋 − 𝑥)2 𝑐𝑜𝑠𝑛𝑥 𝑑𝑥

2𝜋

0
 

    =  
1

4π
 [{(𝜋 − 𝑥)2 𝑠𝑖𝑛𝑛𝑥

𝑛
}

0

2𝜋

+  ∫ 2(𝜋 − 𝑥)
𝑠𝑖𝑛𝑛𝑥

𝑛
 𝑑𝑥

2𝜋

0
] 

    = 
1

4π
 .

2

𝑛
 [{(𝜋 − 𝑥) (

−𝑐𝑜𝑠𝑛𝑥

𝑛
)}

0

2𝜋

− ∫ (−1) (
−𝑐𝑜𝑠𝑛𝑥

𝑛
)  𝑑𝑥

2𝜋

0
]  

    = 
−1

2π𝑛2 (-𝜋 −  𝜋) = 
1

𝑛2 and  



Mathematical Methods                                                                                                                         MAT 509 
 

11 
Department of Mathematics 
Uttarakhand Open University  

bn = 
1

π
 ∫ 𝑓(𝑥) 𝑠𝑖𝑛𝑛𝑥 𝑑𝑥

2𝜋

0
 = 

1

π
 ∫

1

4
(𝜋 − 𝑥)2 𝑠𝑖𝑛𝑛𝑥 𝑑𝑥

2𝜋

0
 

     = 
1

4π
 [{(𝜋 − 𝑥)2 𝑐𝑜𝑠𝑛𝑥

𝑛
}

0

2𝜋

−  ∫ 2(𝜋 − 𝑥)
𝑐𝑜𝑠𝑛𝑥

𝑛
 𝑑𝑥

2𝜋

0
] 

     =
1

4π
 [(−

𝜋2

𝑛
+

𝜋2

𝑛
 ) −  

2

n
∫ (𝜋 − 𝑥)𝑐𝑜𝑠𝑛𝑥 𝑑𝑥

2𝜋

0
] 

    = - 
1

2πn
 [{(𝜋 − 𝑥)

𝑠𝑖𝑛𝑛𝑥

𝑛
}

0

2𝜋

−  ∫ (−1)
𝑠𝑖𝑛𝑛𝑥

𝑛
 𝑑𝑥

2𝜋

0
 ] 

    = 
−1

2π𝑛2 (
−𝑐𝑜𝑠𝑛𝑥

𝑛
)

0

2𝜋

 = 0 

∴ f(x) = 
𝜋2

12
 + ∑

𝑐𝑜𝑠𝑛𝑥

𝑛2
∞
n=1  = 

𝜋2

12
 + 

𝑐𝑜𝑠𝑥

12  + 
𝑐𝑜𝑠2𝑥

22  + 
𝑐𝑜𝑠3𝑥

32  + …      …… (2) 

(𝑖) putting x = 0 in equation (2), we get 

𝜋2

4
 = 

𝜋2

12
 + (

1

12  +  
1

22  +  
1

32  +  
1

42  +  … ) 

⟹ 
𝜋2

6
 = 

1

12  +  
1

22  +  
1

32  +  
1

42  +  …                                      …… (3) 

(𝑖𝑖) putting x = 𝜋 in equation (2), we get 

      0 =  
𝜋2

12
 + [(

−1

12 ) +
1

22  + (
−1

32 ) + 
1

42  + … ] 

⟹ 
𝜋2

6
 = 

1

12 - 
1

22 + 
1

32 - 
1

42 + …                                              ….… (4) 

(𝑖𝑖𝑖) Adding equation (3) and (4), we get 

𝜋2

6
 + 

𝜋2

12
 = 2(

1

12  +  
1

32  +  
1

52  +  … ) 

𝜋2

4
 = 2(

1

12  +  
1

32  +  
1

52  +  … ) 

𝜋2

8
 = 

1

12  +  
1

32  +  
1

52  + …        Hence the results. 

𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟐.  Obtain the Fourier series to represent f(x) = 𝑒−𝑥 in the 

interval 0< 𝑥 < 2𝜋. 
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Sol. Let f(x) = 𝑒−𝑥 = 
𝑎0

2
+ ∑ 𝑎𝑛 cos 𝑛𝑥∞

n=1  + ∑ 𝑏𝑛 sin 𝑛𝑥∞
n=1  

                                                                                         …. (1) 

Here, a0 = 
1

π
 ∫ 𝑓(𝑥) 𝑑𝑥

2𝜋

0
 = 

1

π
 ∫ 𝑒−𝑥  𝑑𝑥

2𝜋

0
 = 

1

𝜋
 [−𝑒−𝑥]0

2𝜋 = 
1− 𝑒−2𝜋

𝜋
 

an = 
1

π
 ∫ 𝑓(𝑥) 𝑐𝑜𝑠𝑛𝑥 𝑑𝑥

2𝜋

0
 = 

1

π
 ∫ 𝑒−𝑥𝑐𝑜𝑠𝑛𝑥 𝑑𝑥

2𝜋

0
 

     = 
1

π
 [

𝑒−𝑥

1+ 𝑛2  (−𝑐𝑜𝑠𝑛𝑥 + 𝑛𝑠𝑖𝑛𝑛𝑥)]
0

2𝜋

= 
1− 𝑒−2𝜋

𝜋(1+ 𝑛2)
 

bn = 
1

π
 ∫ 𝑓(𝑥) 𝑠𝑖𝑛𝑛𝑥 𝑑𝑥

2𝜋

0
 = 

1

π
 ∫  𝑒−𝑥𝑠𝑖𝑛𝑛𝑥 𝑑𝑥

2𝜋

0
 

= 
1

π
 [

𝑒−𝑥

1+ 𝑛2  (−𝑠𝑖𝑛𝑛 − 𝑛𝑐𝑜𝑠𝑛𝑥)]
0

2𝜋

= 
1− 𝑒−2𝜋

𝜋
 . 

𝑛

1+ 𝑛2 

∴  𝑓(𝑥) = 𝑒−𝑥 = 
1− 𝑒−2𝜋

2𝜋
 + 

1− 𝑒−2𝜋

𝜋
 ∑

𝑐𝑜𝑠𝑛𝑥

1+ 𝑛2
∞
n=1  + 

1− 𝑒−2𝜋

𝜋
 ∑

𝑛𝑠𝑖𝑛𝑛𝑥

1+ 𝑛2
∞
n=1  . 

𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟑.  Expand f(x) = x sinx, 0< 𝑥 < 2𝜋 as a Fourier series. 

                 𝐒𝐨𝐥. Let f(x) = x sinx = 
𝑎0

2
+ ∑ 𝑎𝑛 cos 𝑛𝑥∞

n=1  + ∑ 𝑏𝑛 sin 𝑛𝑥∞
n=1  

By Euler’s formulae, we have 

a0 = 
1

π
 ∫ 𝑓(𝑥) 𝑑𝑥

2𝜋

0
 = 

1

π
 ∫ 𝑥𝑠𝑖𝑛𝑥 𝑑𝑥

2𝜋

0
 

      = 
1

π
 [𝑥(− cos 𝑥) − 1(−𝑠𝑖𝑛𝑥)]0

2𝜋 = 
1

π
 [−2𝜋] = -2 

 an = 
1

π
 ∫ 𝑓(𝑥) 𝑐𝑜𝑠𝑛𝑥 𝑑𝑥

2𝜋

0
 = 

1

π
 ∫ 𝑥𝑠𝑖𝑛𝑥 𝑐𝑜𝑠𝑛𝑥 𝑑𝑥

2𝜋

0
 = 

1

2π
 

∫ 𝑥(2𝑐𝑜𝑠𝑛𝑥 𝑠𝑖𝑛𝑥) 𝑑𝑥
2𝜋

0
 

      = 
1

2π
 ∫ 𝑥[sin(𝑛 + 1) 𝑥 − sin(𝑛 − 1) 𝑥] 𝑑𝑥

2𝜋

0
 

       = 
1

2π
 [𝑥 {−

cos(𝑛+1)𝑥

𝑛+1
+ 

cos(𝑛−1)𝑥

𝑛−1
} − 1 {−

sin(𝑛+1)𝑥

(𝑛+1)2 +  
sin(𝑛−1)𝑥

(𝑛−1)2
}]

0

2𝜋

 

       = 
1

2π
 [2𝜋 {−

cos2(𝑛+1)𝜋

𝑛+1
+

cos2(𝑛−1)𝜋

𝑛−1
 }] 
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       = - 
1

𝑛+1
+

1

𝑛−1
 = 

2

𝑛2−1
 , n ≠ 1 

When n = 1, we have 

a1 = 
1

π
 ∫ 𝑥𝑠𝑖𝑛𝑥 𝑐𝑜𝑠𝑥 𝑑𝑥

2𝜋

0
 = 

1

2π
 ∫ 𝑥𝑠𝑖𝑛2𝑥 𝑑𝑥

2𝜋

0
  

    = 
1

2π
 [𝑥 (−

𝑐𝑜𝑠2𝑥

2
) − 1 (−

𝑠𝑖𝑛2𝑥

4
)]

0

2𝜋

= 
1

2π
[−𝜋] = −

1

2
 

bn = 
1

π
 ∫ 𝑓(𝑥) 𝑠𝑖𝑛𝑛𝑥 𝑑𝑥

2𝜋

0
 = 

1

π
 ∫  𝑥  𝑠𝑖𝑛𝑥 𝑠𝑖𝑛𝑛𝑥 𝑑𝑥

2𝜋

0
 

 = 
1

2π
 ∫ 𝑥(2𝑠𝑖𝑛𝑛𝑥 𝑠𝑖𝑛𝑥) 𝑑𝑥

2𝜋

0
  

= 
1

2π
 ∫ 𝑥 [cos(𝑛 − 1) 𝑥 − cos(𝑛 + 1) 𝑥]𝑑𝑥

2𝜋

0
 

=
1

2π
 [𝑥 {−

sin(𝑛−1)𝑥

𝑛−1
−  

sin(𝑛+1)𝑥

𝑛+1
} − 1 {−

cos(𝑛−1)𝑥

(𝑛−1)2 +  
cos(𝑛+1)𝑥

(𝑛+1)2
}]

0

2𝜋

 

= 
1

2π
[

cos 2(𝑛−1)𝜋

(𝑛−1)2 −  
cos2(𝑛+1)𝜋

(𝑛+1)2 −
1

(𝑛−1)2 + 
1

(𝑛+1)2 ] 

= 
1

2π
[

1

(𝑛−1)2 −  
1

(𝑛+1)2  −
1

(𝑛−1)2 + 
1

(𝑛+1)2 ] = 0, n ≠ 1 

Ehen n = 1, we have 

b1 = 
1

π
 ∫ 𝑥𝑠𝑖𝑛𝑥 𝑠𝑖𝑛𝑥 𝑑𝑥

2𝜋

0
 = 

1

2π
 ∫  𝑥(1 − 𝑐𝑜𝑠2𝑥) 𝑑𝑥

2𝜋

0
 

      = 
1

2π
 [𝑥 (𝑥 −  

𝑠𝑖𝑛2𝑥

2
) − 1( 

𝑥2

2
+  

𝑐𝑜𝑠2𝑥

4
 )]

0

2𝜋

 

      = 
1

2π
[2𝜋(2𝜋) −

4𝜋2

2
−  

1

4
+ 

1

4
 ] = 

1

2π
 (2𝜋2) = 𝜋 

∴ f(x) = 
𝑎0

2
+ a1𝑐𝑜𝑠𝑥 +  b1𝑠𝑖𝑛𝑥 +  ∑ 𝑎𝑛 cos 𝑛𝑥∞

n=2  + ∑ 𝑏𝑛 sin 𝑛𝑥∞
n=2  

           = -1− 
1

2
 cosx + 𝜋 sinx + ∑

2

𝑛2−1
cos 𝑛𝑥∞

n=2  . 

𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟒.  Find the Fourier series for the function f(x) = x + x2, - π < x < π. 

Hence show that  
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(i) 
𝜋2

6
  = 1 + 

1

22 + 
1

32 + 
1

42 + …  

(ii)  
𝜋2

12
=

1

12 - 
1

22 + 
1

32 - 
1

42 + …  

Sol. Let the Fourier series be  

f(x) = x + x2 = 
𝑎0

2
+ ∑ 𝑎𝑛 cos 𝑛𝑥∞

n=1  + ∑ 𝑏𝑛 sin 𝑛𝑥∞
n=1           … (1) 

Here, a0 = 
1

π
 ∫ (x + 𝑥2) 𝑑𝑥

𝜋

−𝜋
 = 

1

π
 [∫ x 𝑑𝑥

𝜋

−𝜋
 +  

1

π
 ∫ 𝑥2𝑑𝑥

𝜋

−𝜋
] 

                                               = 
2

π
 ∫ 𝑥2𝑑𝑥

𝜋

0
 = 

2

3
 𝜋 2 

an = 
1

π
 ∫ (x + 𝑥2) 𝑐𝑜𝑠𝑛𝑥 𝑑𝑥

𝜋

−𝜋
 

     = 
1

π
 [∫ x cosnx 𝑑𝑥

𝜋

−𝜋
 +  ∫ 𝑥2𝑐𝑜𝑠𝑛𝑥 𝑑𝑥

𝜋

−𝜋
] = 

2

π
 ∫ 𝑥2 𝑐𝑜𝑠𝑛𝑥 𝑑𝑥

𝜋

−𝜋
 

     = 
2

π
 [(𝑥2 𝑠𝑖𝑛𝑛𝑥

𝑛
)

0

𝜋

−  ∫ 2𝑥.
𝜋

0

𝑠𝑖𝑛𝑛𝑥

𝑛
𝑑𝑥] 

   = −
4

πn
 ∫ 𝑥𝑠𝑖𝑛𝑛𝑥 𝑑𝑥

𝜋

0
 

   = −
4

πn
 [{𝑥 (

−𝑐𝑜𝑠𝑛𝑥

𝑛
)}

0

𝜋

−  ∫ 1. (
−𝑐𝑜𝑠𝑛𝑥

𝑛
) 𝑑𝑥

𝜋

0
]  

   = 
4

πn
 (−

π

𝑛
𝑐𝑜𝑠𝑛𝜋) = 

4

𝑛2 cosnx =  
4

𝑛2 (−1)𝑛 

bn = 
1

π
 ∫  (x + 𝑥2)𝑠𝑖𝑛𝑛𝑥 𝑑𝑥

𝜋

−𝜋
  

     = 
2

π
 ∫ 𝑥 𝑠𝑖𝑛𝑛𝑥 𝑑𝑥

𝜋

0
[ ∵ ∫  𝑥2𝑠𝑖𝑛𝑛𝑥 𝑑𝑥

𝜋

−𝜋
 = 0] 

      = 
2

π
 (−

π

𝑛
𝑐𝑜𝑠𝑛𝜋) =  −

2

n
 (−1)𝑛   ,        as above 

∴ from equation (1), 

 x + x2 = 
𝜋2

3
 + 4 ∑

(−1)𝑛

𝑛2
∞
𝑛=1  cosnx – 2 ∑

(−1)𝑛

𝑛

∞
𝑛=1  sinnx 
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⟹ f(x) = 
𝜋2

3
 + 4 [

−1

12  𝑐𝑜𝑠𝑥 +  
1

22  𝑐𝑜𝑠2𝑥 −
1

32  𝑐𝑜𝑠3𝑥 + ⋯ ]  

                             −2 [
−1

1
 𝑠𝑖𝑛𝑥 +  

1

2
 𝑠𝑖𝑛2𝑥 −

1

3
 𝑠𝑖𝑛3𝑥 + ⋯ ]    …… (2) 

We observe that the series on the R.H.S. given by equation (2) always 

represents x + x2 for all values of x except the end points - π or π. 

At the point of discontinuity, 

                f(- π) = 
1

2
 (L.H.L. + R.H.L.) = 

1

2
 [𝑓(− π − 0) + 𝑓(− π + 0)] 

            = 
1

2
 [𝑓( π − 0) + 𝑓( π + 0)]  [ ∵ f(x) is periodic with period 2 π] 

            = 
1

2
 [π +  π2 + (−π) +  (−π)2] = π2 

       Putting x = −π in equation (2), we get 

                     π2 = 
𝜋2

3
 + 4 [

1

12 +  
1

22 +
1

32 +
1

42 + ⋯ ] 

⟹               
𝜋2

6
 = 1 + 

1

22 +
1

32 +
1

42 + ⋯  

 Again, putting x = 0 in equation (2), we get  

                    0 = 
𝜋2

3
 + 4 [

−1

12 +  
1

22 −
1

32 +
1

42 − ⋯ ] 

⟹               
𝜋2

12
 =  

1

12 - 
1

22 + 
1

32 - 
1

42 + …       Hence the results. 

𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟓.  Express f(x) = |x|, - π < x < π, as a Fourier series. Hence 

show that           
1

12 + 
1

32 + 
1

52 + … = 
𝜋2

8
 . 

Sol. Since f(-x) = |−x| = |x| = f(x)  

         ∴ f(x) is even function and hence bn = 0 

         Let       f(x) = |x| = 
𝑎0

2
+ ∑ 𝑎𝑛 cos 𝑛𝑥∞

n=1  
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Where     a0 = 
1

π
 ∫ f(x) 𝑑𝑥

𝜋

−𝜋
 = 

2

π
 ∫ f(x) 𝑑𝑥

𝜋

0
 = 

2

π
 ∫  |x|𝑑𝑥

𝜋

0
 

                     = 
2

π
 ∫  𝑥𝑑𝑥

𝜋

0
 = 

2

π
 [

𝑥2

2
]

0

𝜋

 = 𝜋       and  

an = 
1

π
 ∫ f(x) 𝑐𝑜𝑠𝑛𝑥 𝑑𝑥

𝜋

−𝜋
 = 

2

π
 ∫ f(x) 𝑐𝑜𝑠𝑛𝑥 𝑑𝑥

𝜋

0
 = 

2

π
 ∫  |x|𝑐𝑜𝑠𝑛𝑥 𝑑𝑥

𝜋

0
 

     = 
2

π
 ∫ x 𝑐𝑜𝑠𝑛𝑥 𝑑𝑥

𝜋

0
 = 

2

π
 [𝑥 ( 

𝑠𝑖𝑛𝑛𝑥

𝑛
) − 1( − 

𝑐𝑜𝑠𝑛𝑥

𝑛2  )]
0

𝜋

 

     = 
2

π
 [

𝑐𝑜𝑠𝑛𝜋

𝑛2 −  
1

𝑛2
] = 

2

π𝑛2 [(−1)𝑛 − 1] = 𝑓(𝑥) = {
0 , 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

−4

π𝑛2 , 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑
 

∴ 𝑓(𝑥) = |x| = 
π

2
 - 

4

π
 (𝑐𝑜𝑠𝑥 +

𝑐𝑜𝑠3𝑥

32 +
𝑐𝑜𝑠5𝑥

52 + ⋯ ) 

Putting x = 0 in the above result, we get 
1

12 + 
1

32 + 
1

52 + … = 
𝜋2

8
 . 

 

CHECK YOUR PROGRESS  

True or false Questions 

Problem 1. Trigonometric functions are periodic function. 

Problem 2. In the Fourier series of the function f(x) in the 

interval 0 to 2𝜋, The value of a0 is defined by a0= 
1

π
 

∫ 𝑓(𝑥) 𝑑𝑥
𝜋

0
. 

Problem 3. If the periodic function is odd, its Fourier series 

contains only sine terms. 

Problem 4. F(x) = |x| is odd function.  

Problem 5. If the periodic function is even, its Fourier series 

contains only cosine terms.  
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1.7 SUMMARY 

1. The Fourier series can be thought of as analyzing the periodic extension (bottom 

graph) of the original function. The Fourier series is always a periodic function, 

even if original function wasn't. 

2. Any function f(x) can be expressed as a Fourier series                                   

     
𝑎0

2
+ ∑ 𝑎𝑛 cos 𝑛𝑥∞

n=1  + ∑ 𝑏𝑛 sin 𝑛𝑥∞
n=1  where 𝑎0 , 𝑎𝑛 , 𝑏𝑛 are constants. 

3. If a periodic function f(x) is even, its Fourier expansion contains only cosine 

terms. 

i.e.,   f(x) =  
𝑎0

2
+ ∑ 𝑎𝑛 cos 𝑛𝑥∞

n=1 , where  a0 = 
2

𝜋
 ∫ 𝑓(𝑥) 𝑑𝑥

𝜋

0
 𝑎𝑛𝑑  

                                                                   an = 
2

𝜋
 ∫ 𝑓(𝑥) cos 𝑛𝑥  𝑑𝑥

𝜋

0
 

 

 

1.8 GLOSSARY  
 

Periodic Functions 

Integration  

Even, odd functions   

Trigonometric functions 
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1.11 TERMINAL AND MODEL QUESTIONS 
 

Q 1. Expand f(x) = |cosx| as a Fourier series in the interval -𝜋 < x < 𝜋. 

Q 2. Find the Fourier series of f(x) = 𝑥3 in (-𝜋, 𝜋) . 

Q 3. Expand in a Fourier series the function f(x) = x in the interval 0 < x < 2 𝜋. 

Q 4. Obtain the Fourier series to represent 𝑒𝑥 in the interval 0 < x < 2 𝜋. 

Q 5. Find the Fourier series expansion for f(x) = x + 
𝑥2

4
 , -𝜋 ≤ x ≤ 𝜋. 

Q 6. Express f(x) = 
1

2
 (𝜋 – x) in a Fourier series in the interval 0 < x < 2 𝜋. Also  

        prove 
𝜋

4
= 1 −  

1

3
 + 

1

5
 −  

1

7
 + … 

Q7. Prove that in the range -𝜋 < x < 𝜋,cosh(ax) = 
2𝑎

𝜋
 sinh a𝜋 

              [
1

2𝑎2 + ∑
(−1)𝑛

𝑛2+𝑎2 𝑐𝑜𝑠𝑛𝑥∞
1 ]. 
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Q 8. Prove that for all values of x between -𝜋 and 𝜋 , 
1

2
 x = sinx - 

1

2
 sin2x + 

1

3
      

         sin3x - 
1

4
 sin4x + … 

1.12 ANSWERS 

CHECK YOUR PROGRESS 

        CYQ 1. True 

        CYQ 2. False 

        CYQ 3. True 

        CYQ 4. False 

        CYQ 5. True 

TERMINAL QUESTIONS 

         TQ 1. |cosx| = 
2

𝜋
 + 

4

π
 (

𝑐𝑜𝑠2𝑥

3
−

𝑐𝑜𝑠4𝑥

15
+ ⋯ ) 

         TQ 2. f(x) = 2 ∑ (
6

𝑛3 −
𝜋2

𝑛
)∞

1 (−1)𝑛 sin nx 

         TQ 3. f(x) = 𝜋 - 2 ∑
𝑠𝑖𝑛𝑛𝑥

𝑛

∞
1  

          TQ 4. 𝑒𝑥 =
𝒆𝟐π−𝟏

2π
 + 

𝒆𝟐π−𝟏

π
 ∑ (

𝑐𝑜𝑠𝑛𝑥

1+𝑛2 −
𝑛

1+𝑛2 𝑠𝑖𝑛𝑛𝑥)∞
1  

          TQ 5. f(x) = 
𝜋2

𝟏𝟐
 + ∑

(−1)𝑛

𝑛2
∞
1  cos nx - 2∑

(−1)𝑛

𝑛

∞
1  sin nx 

           TQ 6. f(x) = ∑
𝑠𝑖𝑛𝑛𝑥

𝑛

∞
1   
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UNIT 2: FOURIER SERIES II 
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2.11 Answers 
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2.1 INTRODUCTION 

Fourier series representation of such function has been studied, 

and it has been pointed out that, at the point of discontinuity, this series 

converges to the average value between the two limits of the function 

about the jump point. so for a step function, this convergence occurs at the 

exact value of one half. Fourier series is used to describe a periodic signal 

in terms of cosine and sine waves. In other words, it allows us to model 

any arbitrary periodic signal with a combination of sines and cosines. A 

Fourier series is an expansion of a periodic function f(x) in term of infinite 

sum of sines and cosines. Fourier Series makes use of the orthogonality 

relationships of the sine and cosine functions. In this unit learner are learn 

about the Fourier series for discontinuous function, Fourier series for 

change of variable, Fourier series for even and odd function. 

 

2.2 OBJECTIVE 

At the end of this topic leaner will be able to understand:  

 

(i) Fourier Series for discontinuous functions 

(ii) Fourier Series for change of variable 

(iii) Fourier Series for even and odd functions 

 

2.3 DISCONTINUOUS FUNCTION 

A function in algebra is said to be a discontinuous function if it 

is not a continuous function. Just like a continuous function has a 

continuous curve, a discontinuous function has a discontinuous curve. In 

other words, we can say that the graph of a discontinuous function cannot 

be made with a single stroke of the pen, i.e., once we put the pen down to 

draw the graph of a discontinuous function, we must pick it up at least 
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once before the graph is complete. A discontinuous function has 

breaks/gaps on its graph and hence, in its range on at least one point.  

Some of the examples of a discontinuous function are: 

 f(x) = 1/ (x - 2) 

 f(x) = tan x. 

 f(x) = x2 - 1, for x < 1 and f(x) = x3 - 5 for 1 < x < 2.  

2.4 FOURIER SERIES FOR DISCONTINUOUS         

                               FUNCTION  

Fourier series representation of such function has been studied, 

and it has been pointed out that, at the point of discontinuity, this series 

converges to the average value between the two limits of the function 

about the jump point. So for a step function, this convergence occurs at 

the exact value of one half. 

In the last unit we derived Euler’s formulae for 𝑎0, 𝑎𝑛, 𝑏𝑛 on the 

assumption that f(x) is continuous in (c, c + 2𝜋). However, if f(x) has 

finitely many points of finite discontinuity, even then it can be expressed 

as a Fourier series. The integrals for 𝑎0, 𝑎𝑛, 𝑏𝑛 are to be evaluated by 

breaking up the range of integration. 

Let f(x) be defined by f(x) = 𝑓(𝑥) = {
𝑓1(𝑥), 𝑐 < 𝑥 < 𝑥0

𝑓2(𝑥),  𝑥0 < 𝑥 < 𝑐 +  2𝜋
 , where 𝑥0 

is the point of finite discontinuity in the interval (c, c + 2𝜋). 

The values of 𝑎0, 𝑎𝑛, 𝑏𝑛 are given by  

                   𝑎0 = 
1

𝜋
 [∫ 𝑓1(𝑥)𝑑𝑥 +  ∫ 𝑓2(𝑥)𝑑𝑥 

c + 2𝜋

𝑥0

𝑥0

𝑐
] 

                   𝑎𝑛 = 
1

𝜋
 [∫ 𝑓1(𝑥)𝑐𝑜𝑠𝑛𝑥 𝑑𝑥 +  ∫ 𝑓2(𝑥)𝑐𝑜𝑠𝑛𝑥 𝑑𝑥 

c + 2𝜋

𝑥0

𝑥0

𝑐
] 

                   𝑏𝑛 = 
1

𝜋
 [∫ 𝑓1(𝑥)𝑠𝑖𝑛𝑛𝑥 𝑑𝑥 + ∫ 𝑓2(𝑥)𝑠𝑖𝑛𝑛𝑥 𝑑𝑥 

c + 2𝜋

𝑥0

𝑥0

𝑐
] 

At 𝑥0, there is an infinite jump in the graph of the function. Both the limits 

f(𝑥0 − 0) and  
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f(𝑥0 + 0) exist but unequal. The sum of the Fourier series  

= 
1

2
[f(𝑥0 − 0) + f(𝑥0 + 0) ] = 

1

2
[AB + AC ] = AM, where M is the mid-

point of BC. 

 

ILLUSTRATIVE EXAMPLES 

Example 1. Find the Fourier series to represent the function f(x) given by  

                f(x) =  {
𝑥,           𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 𝜋

2𝜋 − 𝑥,    𝑓𝑜𝑟 𝜋 ≤ 𝑥 ≤ 2𝜋
  ,  

Deduce that 
1

12
+ 

1

32
 + 

1

52
 + …= 

𝜋2

8
 . 

Sol. Let f(x) = f(x) = 
𝑎0

2
 + ∑ 𝑎𝑛 cos 𝑛𝑥∞

n=1  + ∑ 𝑏𝑛 sin 𝑛𝑥∞
n=1     …….. (1) 

where 𝑎0 = 
1

𝜋
 ∫ 𝑓(𝑥)𝑑𝑥

 2𝜋

0
 = 

1

𝜋
 [∫ 𝑥 𝑑𝑥 +  ∫ (2𝜋 − 𝑥) 𝑑𝑥

2𝜋

𝜋
 

𝜋

0
] 

                =  
1

𝜋
 [|

𝑥2

2
|

0

𝜋

+ |2𝜋𝑥 −
𝑥2

2
 |

𝜋

2𝜋

]    

                = 
1

𝜋
 [

𝜋2

2
+ (4𝜋2 − 2𝜋2) −  (2𝜋2 −

𝜋2

2
)]  =   𝜋                         

And 𝑎𝑛 = 
1

𝜋
 ∫ 𝑓(𝑥) 𝑐𝑜𝑠𝑛𝑥 𝑑𝑥

 2𝜋

0
            

             =  
1

𝜋
 [∫ 𝑥 𝑐𝑜𝑠𝑛𝑥 𝑑𝑥 +  ∫ (2𝜋 − 𝑥) 𝑐𝑜𝑠𝑛𝑥 𝑑𝑥

2𝜋

𝜋
 

𝜋

0
]        

             =
1

𝜋
[|𝑥

𝑠𝑖𝑛𝑛𝑥

𝑛
|

0

𝜋

− ∫ 1.
𝑠𝑖𝑛𝑛𝑥

𝑛
𝑑𝑥 +

𝜋

0
|(2𝜋 − 𝑥)

𝑠𝑖𝑛𝑛𝑥

𝑛
 |

𝜋

2𝜋

+

 ∫
𝑠𝑖𝑛𝑛𝑥

𝑛
𝑑𝑥

2𝜋

𝜋
]      

             =  
1

𝜋
 [(

𝑐𝑜𝑠𝑛𝑥

𝑛2 )
0

𝜋

−  (
𝑐𝑜𝑠𝑛𝑥

𝑛2 )
𝜋

2𝜋

] 

             =  
1

𝜋𝑛2 [(−1)𝑛 − 1 − 1 + (−1)𝑛]  

             =   
2

𝜋𝑛2 [(−1)𝑛 − 1] = {
−

4

𝜋𝑛2  ,   𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

0           ,   𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
          

And bn = 
1

π
 ∫ 𝑓(𝑥) 𝑠𝑖𝑛𝑛𝑥 𝑑𝑥

2𝜋

0
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= 
1

𝜋
 [∫ 𝑥 𝑠𝑖𝑛𝑛𝑥 𝑑𝑥 +  ∫ (2𝜋 − 𝑥) 𝑠𝑖𝑛𝑛𝑥 𝑑𝑥

2𝜋

𝜋
 

𝜋

0
] 

            = 
1

𝜋
 [{𝑥 (

−𝑐𝑜𝑠𝑛𝑥

𝑛
)}

0

𝜋

+ ∫
𝑐𝑜𝑠𝑛𝑥

𝑛
 𝑑𝑥

𝜋

0
+ {(2𝜋 − 𝑥) (

−𝑐𝑜𝑠𝑛𝑥

𝑛
)}

𝜋

2𝜋

−

 ∫ (−1) (
−𝑐𝑜𝑠𝑛𝑥

𝑛
)  𝑑𝑥

2𝜋

𝜋
] 

            = 
1

𝜋
 [−

𝜋

𝑛
𝑐𝑜𝑠𝑛𝑥 +

𝜋

𝑛
𝑐𝑜𝑠𝑛𝑥] = 0 

       ∴ f(x) = 
𝜋

2
 - 

4

𝜋
 (

𝑐𝑜𝑠𝑥

12
+  

𝑐𝑜𝑠3𝑥

32
+

𝑐𝑜𝑠5𝑥

52
+ ⋯ ) 

        Putting       x = 0, we get 0 = 
𝜋

2
 – 

4

𝜋
 (

1

12
+  

1

32
+

1

52
+ ⋯ ) 

       ⟹ 
𝜋2

8
=

1

12
+  

1

32
 + 

1

52
 + … 

Example 2. If f(x) =   {
0,        𝑓𝑜𝑟 − 𝜋 ≤ 𝑥 ≤ 0
𝑠𝑖𝑛𝑥,       𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 𝜋

  

                    prove that f(x) = 
1

𝜋
 + 

1

2
 𝑠𝑖𝑛𝑥 - 

2

𝜋
 ∑

𝑐𝑜𝑠2𝑛𝑥

4𝑛2−1
∞
𝑛=1  . 

                    Hence show that (i) 
1

1.3
+

1

3.5
+

1

5.7
+ ⋯ =

1

2
  

                                                (ii) 
1

1.3
−

1

3.5
+

1

5.7
− ⋯ =

𝜋−2

4
 . 

Sol. Let f(x)  = 
𝑎0

2
 + ∑ 𝑎𝑛 cos 𝑛𝑥∞

n=1  + ∑ 𝑏𝑛 sin 𝑛𝑥∞
n=1  

where 𝑎0 = 
1

𝜋
 ∫ 𝑓(𝑥)𝑑𝑥

 𝜋

−𝜋
 = 

1

𝜋
 [∫ 0 𝑑𝑥 + ∫  𝑠𝑖𝑛𝑥𝑑𝑥

𝜋

0
 

0

−𝜋
] = 

2

𝜋
  

and     𝑎𝑛 = 
1

𝜋
 ∫ 𝑓(𝑥) 𝑐𝑜𝑠𝑛𝑥 𝑑𝑥

 𝜋

−𝜋
            

                =  
1

𝜋
 [∫ 0 𝑑𝑥 +  ∫  𝑠𝑖𝑛𝑥 𝑐𝑜𝑠𝑛𝑥 𝑑𝑥

𝜋

0
 

0

−𝜋
] 

                = 
1

2𝜋
 ∫ 2 𝑐𝑜𝑠𝑛𝑥 𝑠𝑖𝑛𝑥 𝑑𝑥

 𝜋

0
 

                = 
1

2𝜋
 ∫ [sin(𝑛 + 1) 𝑥 − sin(𝑛 − 1) 𝑥] 𝑑𝑥

 𝜋

0
 

                = 
1

2𝜋
[−

cos(𝑛+1)𝑥

𝑛+1
+

cos(𝑛−1)𝑥

𝑛−1
 ]

0

𝜋

 , n ≠ 1 

                = 
1

2𝜋
[−

cos(𝑛+1)𝜋

𝑛+1
+

cos(𝑛−1)𝜋

𝑛−1
+

1

𝑛+1
−

1

𝑛−1
] 
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                = 
1

2𝜋
[−

(−1)𝑛+1

𝑛+1
+

(−1)𝑛−1

𝑛−1
+

1

𝑛+1
−

1

𝑛−1
]  

                = {

1

2𝜋
(−

1

𝑛+1
+

1

𝑛−1
+

1

𝑛+1
−

1

𝑛−1
) , 𝑤ℎ𝑒𝑛 𝑛 𝑖𝑠 𝑜𝑑𝑑

1

2𝜋
(

1

𝑛+1
−

1

𝑛−1
+

1

𝑛+1
−

1

𝑛−1
) , 𝑤ℎ𝑒𝑛 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

 

                = {
0,   𝑤ℎ𝑒𝑛 𝑛 𝑖𝑠 𝑜𝑑𝑑, 𝑖. 𝑒. , 𝑛 = 3, 5, 7, …

−
2

𝜋(𝑛2−1)
,                     𝑤ℎ𝑒𝑛 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛  

 When n = 1, we have 

               𝑎1 =  
1

𝜋
 ∫ 𝑠𝑖𝑛𝑥 𝑐𝑜𝑠𝑥 𝑑𝑥

 𝜋

0
 = 

1

2𝜋
 ∫ 𝑠𝑖𝑛2𝑥 𝑑𝑥

 𝜋

0
 = 

1

2𝜋
[−

𝑐𝑜𝑠2𝑥

2
]

0

𝜋

= 0 

And bn = 
1

π
 ∫ 𝑓(𝑥) 𝑠𝑖𝑛𝑛𝑥 𝑑𝑥

𝜋

−𝜋
 = 

1

𝜋
 [∫ 0 𝑑𝑥 + ∫ 𝑠𝑖𝑛𝑥 𝑠𝑖𝑛𝑛𝑥 𝑑𝑥

𝜋

0
 

0

−𝜋
] 

         = 
1

2π
 ∫ 2 𝑠𝑖𝑛𝑛𝑥 𝑠𝑖𝑛𝑥 𝑑𝑥

𝜋

0
 = 

1

2π
 ∫ [cos(𝑛 − 1) 𝑥 − cos(𝑛 + 1) 𝑥] 𝑑𝑥

 𝜋

0
 

         = 
1

2𝜋
[

sin (𝑛−1)𝑥

𝑛−1
−

sin (𝑛+1)𝑥

𝑛+1
 ]

0

𝜋

= 0, n ≠ 1 

When n = 1 , we have  

         𝑏1 =  
1

𝜋
 ∫ 𝑠𝑖𝑛𝑥 𝑠𝑖𝑛𝑥 𝑑𝑥

 𝜋

0
 = 

1

2𝜋
 ∫ (1 − 𝑐𝑜𝑠2𝑥) 𝑑𝑥

 𝜋

0
  

              = 
1

2𝜋
[𝑥 −

𝑠𝑖𝑛2𝑥

2
]

0

𝜋

= 
1

2
 

∴       f(x) = 
1

𝜋
 - 

2

𝜋
 [

𝑐𝑜𝑠2𝑥

22−1
+

𝑐𝑜𝑠4𝑥

42−1
+

𝑐𝑜𝑠6𝑥

62−1
+ ⋯ ] + 

1

2
 sinx 

                 = 
1

𝜋
 + 

1

2
 sinx - 

2

𝜋
 ∑

𝑐𝑜𝑠2𝑛𝑥

4𝑛2−1
∞
𝑛=1                                … (1) 

Putting x = 0 in (1), we have 

                   0 = 
1

𝜋
 - 

2

𝜋
 ∑

1

4𝑛2−1
∞
𝑛=1  

 ⟹    
1

2
 = ∑

1

4𝑛2−1
∞
𝑛=1  = ∑

1

(2𝑛−1)(2𝑛+1)
∞
𝑛=1  = 

1

1.3
+

1

3.5
+

1

5.7
+ ⋯ 

Putting x = 
𝜋

2
 in (1) , we have 

      1 = 
1

𝜋
+

1

2
 - 

2

𝜋
 ∑

𝑐𝑜𝑠𝑛𝜋

4𝑛2−1
∞
𝑛=1   
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⟹    
1

2
 - 

1

𝜋
= - 

2

𝜋
 ∑

(−1)𝑛

4𝑛2−1
∞
𝑛=1  

⟹ 
𝜋−2

4
 = - ∑

(−1)𝑛

(2𝑛−1)(2𝑛+1)
∞
𝑛=1  = - (−

1

1.3
+

1

3.5
−

1

5.7
+ ⋯ ) 

⟹ 
1

1.3
−

1

3.5
+

1

5.7
− ⋯ =

𝜋−2

4
 . 

Example 3. Find the Fourier series to represent the function f(x) given by  

                    𝑓(𝑥) = {
𝑥, −𝜋 < 𝑥 < 0

−𝑥, 0 < 𝑥 < 𝜋
 , and hence show that  

                    
𝜋2

8
=

1

12
+  

1

32
 + 

1

52
 + … 

Sol. Let f(x) = 
𝑎0

2
 + ∑ 𝑎𝑛 cos 𝑛𝑥∞

n=1  + ∑ 𝑏𝑛 sin 𝑛𝑥∞
n=1           ….… (1) 

where 𝑎0 = 
1

𝜋
 ∫ 𝑓(𝑥)𝑑𝑥

 𝜋

−𝜋
 = 

1

𝜋
 [∫ 𝑥 𝑑𝑥 +  ∫ −𝑥 𝑑𝑥

𝜋

0
 

0

−𝜋
]  

                = 
1

𝜋
 [(

𝑥2

2
)

−𝜋

0

− (
𝑥2

2
)

0

𝜋

] = 
1

𝜋
 (0 −

𝜋2

2
−

𝜋2

2
) = - 𝜋 

And 𝑎𝑛 = 
1

𝜋
 ∫ 𝑓(𝑥) 𝑐𝑜𝑠𝑛𝑥 𝑑𝑥

 𝜋

−𝜋
            

                =  
1

𝜋
 [∫ xcosnx 𝑑𝑥 +  ∫ −𝑥 𝑐𝑜𝑠𝑛𝑥 𝑑𝑥

𝜋

0
 

0

−𝜋
] 

                = 
1

𝜋
 [(𝑥

𝑠𝑖𝑛𝑛𝑥

𝑛
)

−𝜋

0

− ∫ 1.
𝑠𝑖𝑛𝑛𝑥

𝑛
 𝑑𝑥

0

−𝜋
+ (−𝑥

𝑠𝑖𝑛𝑛𝑥

𝑛
)

0

𝜋

−  ∫ (−1) (
𝑠𝑖𝑛𝑛𝑥

𝑛
)  𝑑𝑥

𝜋

0
] 

                =  
1

𝜋
[

1

𝑛2
(𝑐𝑜𝑠𝑛𝑥)−𝜋

0 −
1

𝑛2
(𝑐𝑜𝑠𝑛𝑥)0

𝜋] = 
1

𝜋
 [{

1−(−1)𝑛

𝑛2 } − {
(−1)𝑛−1

𝑛2 }] 

         = 
1

𝜋
 [{2.

1−(−1)𝑛

𝑛2
}] = 

2

𝜋𝑛2
 {1 − (−1)𝑛} = = {

   0,                 𝑤ℎ𝑒𝑛 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

−
4

𝜋𝑛2
,         𝑤ℎ𝑒𝑛 𝑛 𝑖𝑠 𝑜𝑑𝑑

 

And bn = 
1

π
 ∫ 𝑓(𝑥) 𝑠𝑖𝑛𝑛𝑥 𝑑𝑥

𝜋

−𝜋
 = 

1

𝜋
 [∫ 𝑥 𝑠𝑖𝑛𝑛𝑥 𝑑𝑥 +  ∫ (−𝑥) 𝑠𝑖𝑛𝑛𝑥 𝑑𝑥

𝜋

0
 

0

−𝜋
] 

              = 
1

π
 [{𝑥. (−

𝑐𝑜𝑠𝑛𝑥

𝑛
)}

−𝜋

0

− ∫ 1. (−
𝑐𝑜𝑠𝑛𝑥

𝑛
) 𝑑𝑥 + {(−𝑥) (−

𝑐𝑜𝑠𝑛𝑥

𝑛
)}

0

𝜋

−
0

−𝜋

∫ (−1). (−
𝑐𝑜𝑠𝑛𝑥

𝑛
) 𝑑𝑥

𝜋

0
] 

              = 
1

π
 [

−𝜋

𝑛
 (−1)𝑛 +

1

n
. 𝜋 (−1)𝑛] = 0 
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∴ from (1), f(x) = - 
π

2
 + 

4

π
 (

𝑐𝑜𝑠𝑥

12 +  
𝑐𝑜𝑠3𝑥

32 +
𝑐𝑜𝑠5𝑥

52 + ⋯ )              …(2) 

At point of discontinuity,  

                     F(0) = 
1

2
 [𝑓(0 − 0) + 𝑓(0 + 0)] = 

1

2
(0 − 0) = 0 

Putting x = 0 is above expression, we get 

                     0 = - 
π

2
 + 

4

π
 (

1

12 +  
1

32 +
1

52 + ⋯ ) 

⟹ 
𝜋2

8
=

1

12 +  
1

32 + 
1

52 + … 

 

CHECK YOUR PROGRESS  

 MCQ Questions 

Problem 1.  What is the Fourier series expansion of the function f(x) in the 

interval (c, c+2π)? 

a) 
𝑎0

2
+∑ 𝑎𝑛 cos 𝑛𝑥∞

n=1  + ∑ 𝑏𝑛 sin 𝑛𝑥∞
n=1  

 

b) 
𝑎0

3
 + ∑ 𝑎𝑛 cos 𝑛𝑥∞

n=1  + ∑ 𝑏𝑛 sin 𝑛𝑥∞
n=1  

 

c) 
𝑎0

4
+ ∑ 𝑎𝑛 cos 𝑛𝑥∞

n=1  + ∑ 𝑏𝑛 sin 𝑛𝑥∞
n=1  

 

d) a0 + ∑ 𝑎𝑛 cos 𝑛𝑥∞
n=1  + ∑ 𝑏𝑛 sin 𝑛𝑥∞

n=1  

 

Problem 2. f the function f(x) is even, then which of the following is zero? 

a) an 

b) bn 

c) a0 

d) None 

Problem 3. Who discovered Fourier series? 

a) Jean Baptiste de Fourier 

b) Jean Baptiste Joseph Fourier 
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c) Fourier Joseph 

d) Jean Fourier 

Problem 4. What are the two types of Fourier series? 

a) Trigonometric only 

b) Trigonometric and logarithmic 

c) Exponential and logarithmic 

d) Trigonometric and exponential 

 

 

2.5 FOURIER SERIES FOR CHANGE OF 

INTERVAL  

In many questions, it is described to expand a function in a fourier 

series over an interval of length 2l and not 2 π. In order to apply forgoing 

theory, this interval must be transformed into an interval of length 2 π. 

This can be achieved by a transformation of the variable.  

Consider a periodic function f(x) defined in the interval c < x < c + 2l.  

to change the interval into one of length 2 π , we put 

                    
𝑥

𝑙
 = 

𝑧

π
           or        z = 

πx

𝑙
           so that  

When         x = c,                    z = 
πc

𝑙
 = d (say)       

And    when x = c + 2l,          z = 
π(c+2l)

𝑙
=

πc

𝑙
 + 2π = d +  2π .               

Thus the function f(x) of period 2l in (c, c + 2l) is transformed to the 

function f(
𝑙𝑧

π
) = 𝐹(𝑧), 𝑠𝑎𝑦, 𝑜𝑓 𝑝𝑒𝑟𝑖𝑜𝑑 2π in (d, d + 2π) and the later 

function can be expressed as the Fourier series 

                   F(z) =  
𝑎0

2
 + ∑ 𝑎𝑛 cos 𝑛𝑥∞

n=1  + ∑ 𝑏𝑛 sin 𝑛𝑥∞
n=1           …(1) 

Where   𝑎0 = 
1

𝜋
 ∫ 𝐹(𝑧)𝑑𝑧

 d+2𝜋

𝑑
      and 𝑎𝑛 = 

1

𝜋
 ∫ 𝐹(𝑧)𝑐𝑜𝑠𝑛𝑧𝑑𝑧

 d+2𝜋

𝑑
 and  

              𝑏𝑛 = 
1

𝜋
 ∫ 𝐹(𝑧)𝑠𝑖𝑛𝑛𝑧𝑑𝑧

 d+2𝜋

𝑑
 

Now making the inverse substitution z = 
πx

𝑙
 , dz = 

x

𝑙
 dx 

When           z = d,        x = c     and when    z = d + 2𝜋 , x = c + 2l. 

The expression (1) becomes  
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        F(z) = F(
πx

𝑙
) = f(x) =  

𝑎0

2
 + ∑ 𝑎𝑛 cos

nπx

𝑙
∞
n=1  + ∑ 𝑏𝑛 sin

nπx

𝑙
∞
n=1  

And the coefficient 𝑎0, 𝑎𝑛, 𝑏𝑛from (2) reduce to  

 

𝑎0 = 
1

𝑙
∫ 𝑓(𝑥)𝑑𝑥

 c+2𝑙

𝑐
 ; 𝑎𝑛 = 

1

𝑙
∫ 𝑓(𝑥) cos

nπx

𝑙
𝑑𝑥

 c+2𝑙

𝑐
 ; 

 𝑏𝑛 = 
1

𝑙
∫ 𝑓(𝑥) sin

nπx

𝑙
𝑑𝑥

 c+2𝑙

𝑐
 

Hence the fourier series f(x) in the interval c < x <c + 2l is given by 

 

              f(x) = 
𝑎0

2
 + ∑ 𝑎𝑛 cos

nπx

𝑙
∞
n=1  + ∑ 𝑏𝑛 sin

nπx

𝑙
∞
n=1  

   

 

 Corollary 1.    If we put c = 0, in the interval becomes 0 < x < 2l , and 

the above result reduce to 

𝑎0 = 
1

𝑙
∫ 𝑓(𝑥)𝑑𝑥

2𝑙

0
 ; 𝑎𝑛 = 

1

𝑙
∫ 𝑓(𝑥) cos

nπx

𝑙
𝑑𝑥

2𝑙

0
 ; 𝑏𝑛 = 

1

𝑙
∫ 𝑓(𝑥) sin

nπx

𝑙
𝑑𝑥

2𝑙

0
 

 

Corollary 2.  if we put c = -  𝑙, the interval become - 𝑙 < x < 𝑙 and the 

above result reduce to 

𝑎0 = 
1

𝑙
∫ 𝑓(𝑥)𝑑𝑥

𝑙

−𝑙
 ; 𝑎𝑛 = 

1

𝑙
∫ 𝑓(𝑥) cos

nπx

𝑙
𝑑𝑥

𝑙

−𝑙
 ; 𝑏𝑛 = 

1

𝑙
∫ 𝑓(𝑥) sin

nπx

𝑙
𝑑𝑥

𝑙

−𝑙
 

 

Corollary 3.  If f(x) is even function, we have  

𝑎0 = 
2

𝑙
∫ 𝑓(𝑥)𝑑𝑥

𝑙

0
 ; 𝑎𝑛 = 

2

𝑙
∫ 𝑓(𝑥) cos

nπx

𝑙
𝑑𝑥

𝑙

0
 ; 𝑏𝑛 = 0 

 

Corollary 4. If f(x) is odd function, 

                      we have 𝑎0 = 0, 𝑎𝑛= 0, 𝑏𝑛 = 
2

𝑙
∫ 𝑓(𝑥) sin

nπx

𝑙
𝑑𝑥

𝑙

0
 

 

ILLUSTRATIVE EXAMPLES 

Example 1. Obtain the fourier series expansion of  

                     f(x) = (
𝜋−𝑥

2
) for 0 < x < 2. 

Sol. Let f(z) =  
𝑎0

2
 + ∑ 𝑎𝑛 cos

nπx

𝑙
∞
n=1  + ∑ 𝑏𝑛 sin

nπx

𝑙
∞
n=1  

        Here 𝑙 = 1  
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∴ 
𝜋−𝑥

2
 = 

𝑎0

2
 + ∑ 𝑎𝑛 cos nπx∞

n=1  + ∑ 𝑏𝑛 sin nπx∞
n=1                …(1) 

Here,  𝑎0 = 
1

𝑙
∫ 𝑓(𝑥)𝑑𝑥

2𝑙

0
 = ∫ (

𝜋−𝑥

2
) 𝑑𝑥

2

0
 

                = 
1

2
(𝜋𝑥 −

𝑥2

2
)

0

2

 = 
1

2
 (2𝜋 − 2) = 𝜋 – 1 

And 𝑎𝑛 = 
1

𝑙
∫ 𝑓(𝑥) cos nπx 𝑑𝑥

2𝑙

0
 = ∫  (

𝜋−𝑥

2
) cos nπx 𝑑𝑥

2

0
 

             = 
1

2
 [{(𝜋 − 𝑥)

𝑠𝑖𝑛nπx

nπ
}

0

2

− ∫ (−1)
𝑠𝑖𝑛nπx

nπ
𝑑𝑥

2

0
] 

             = 
1

2𝑛𝜋
 (

−𝐶𝑜𝑠𝑛𝜋𝑥

𝑛𝜋
)

0

2

= 0 

𝑎𝑛𝑑 𝑏𝑛 = 
1

𝑙
∫ 𝑓(𝑥) sin 𝑛𝜋𝑥 𝑑𝑥

2𝑙

0
 = ∫  (

𝜋−𝑥

2
) sin nπx 𝑑𝑥

2

0
 

              = 
1

2
 [{(𝜋 − 𝑥)

−𝐶𝑜𝑠𝑛𝜋𝑥

𝑛𝜋
}

0

2

− ∫ (−1) (
−𝐶𝑜𝑠𝑛𝜋𝑥

𝑛𝜋
) 𝑑𝑥

2

0
] 

              = −
1

2𝑛𝜋
 [(𝜋 − 2) − 𝜋] = 

1

𝑛𝜋
  

Hence, from (1)  

             
𝜋−𝑥

2
 = 

𝜋−1

2
 + 

1

𝜋
∑

1

𝑛
sin nπx∞

n=1  . 

 

Example 2. Find the Fourier series for the function f(x) = x – x2,  

                    -1< x < 1. 

Sol. Let f(x) = 
𝑎0

2
 + ∑ 𝑎𝑛 cos nπx∞

n=1  + ∑ 𝑏𝑛 sin nπx∞
n=1  

Then 𝑎0 = ∫ (x – 𝑥2)𝑑𝑥
1

−1
 = ∫ 𝑥 𝑑𝑥

1

−1
 - ∫ 𝑥2𝑑𝑥

1

−1
 = 0 - 2∫ 𝑥2𝑑𝑥

1

0
  

              = -2[
𝑥3

3
]

0

1

= - 
2

3
 

And 𝑎𝑛 = ∫  (x – 𝑥2) cos nπx 𝑑𝑥
1

−1
  

             = ∫  𝑥 cos nπx 𝑑𝑥
1

−1
 - ∫  𝑥2cos nπx 𝑑𝑥

1

−1
 

              = 0 -2∫  𝑥2cos nπx 𝑑𝑥
1

0
 = -2[{𝑥2 𝑠𝑖𝑛𝑛𝜋𝑥

𝑛𝜋
}

0

1

− ∫ 2𝑥 (
𝑠𝑖𝑛𝑛𝜋𝑥

𝑛𝜋
) 𝑑𝑥

2

0
] 

              = 
4

𝑛𝜋
 ∫  𝑥 𝑠𝑖𝑛 nπx 𝑑𝑥

1

0
 

              = 
4

𝑛𝜋
 [𝑥. {

−𝑐𝑜𝑠𝑛𝜋𝑥

𝑛𝜋
}

0

1

− ∫ (
−𝑐𝑜𝑠𝑛𝜋𝑥

𝑛𝜋
) 𝑑𝑥

1

0
] 

              = −
4

𝑛2𝜋2  𝑐𝑜𝑠𝑛𝜋 = −
4(−1)𝑛

𝑛2𝜋2   

𝑎𝑛𝑑 𝑏𝑛 = ∫ (x – 𝑥2)sin 𝑛𝜋𝑥 𝑑𝑥
1

−1
 = ∫ 𝑥 sin 𝑛𝜋𝑥 𝑑𝑥

1

−1
 - ∫ 𝑥2 sin 𝑛𝜋𝑥 𝑑𝑥

1

−1
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             = 2∫ 𝑥 𝑠𝑖𝑛𝑛𝜋𝑥𝑑𝑥
1

0
 – 0 = 2 [𝑥. (

−𝑐𝑜𝑠𝑛𝜋𝑥

𝑛𝜋
) − 1. (

− 𝑠𝑖𝑛𝑛𝜋𝑥

𝑛2𝜋2 )]
0

1

 

             = 2 (
−𝑐𝑜𝑠𝑛𝜋𝑥

𝑛𝜋
) = −

2(−1)𝑛

𝑛𝜋
 

∴ x – 𝑥2 = −
1

3
 + 

4

𝜋2 (
cos 𝜋𝑥

12 −
cos 2𝜋𝑥

22 +
cos 3𝜋𝑥

32 − ⋯ )  

                                                + 
4

𝑛𝜋
 (

Sin 𝜋𝑥

1
−

Sin 2𝜋𝑥

2
+

Sin 3𝜋𝑥

3
− ⋯ ) 

 

Example 3. Find the Fourier series for the function f(x) = x2 - 2, 

                    -2≤ x ≤ 2. 

Sol. Since f(x) is even function, 𝑏𝑛 = 0. 

  Let f(x) = x2 - 2 =  
𝑎0

2
 + ∑ 𝑎𝑛 cos

𝑛𝜋𝑥

2
∞
n=1    

Then 𝑎0 = 
2

2
∫ (𝑥2  −  2 )

2

0
dx = [

𝑥3

3
− 2𝑥]

0

2

=  
8

3
− 4 = −

4

3
 

And 𝑎𝑛 = 
2

2
∫ (𝑥2  −  2 ) cos

nπx

2

2

0
 dx 

              = {(𝑥2  −  2 )
Sin

nπx

2
nπ

2

}
0

2

 - ∫ (2x )
2

0

Sin
nπx

2
nπ

2

𝑑𝑥 

              = −
4

nπ
∫ 𝑥 Sin

nπx

2
𝑑𝑥

2

0
 

              = −
4

nπ
[{𝑥.

−Cos
nπx

2
nπ

2

}
0

2

− ∫ (−
Cos

nπx

2
nπ

2

)
2

0
𝑑𝑥] 

              = 
8

𝑛2𝜋2(2cosnπ) = 
16cosnπ

𝑛2𝜋2  = −
16(−1)𝑛

𝑛2𝜋2  

∴ (𝑥2  −  2 ) = −
2

3
 −

16

𝜋2
(Cos

πx

2
−

1

4
𝑐𝑜𝑠πx +

1

9
Cos

3πx

2
− ⋯ ). 

 

Example 4. Obtain the Fourier series for the function                                                                                     

                    f(x) = {
𝜋𝑥,           𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 1

𝜋(2 − 𝑥),    𝑓𝑜𝑟 1 ≤ 𝑥 ≤ 2
 

 

Sol. Let f(x) = 
𝑎0

2
 + ∑ 𝑎𝑛 cos nπx∞

n=1  + ∑ 𝑏𝑛 sin nπx∞
n=1  

        Then 𝑎0 = ∫ 𝑓(𝑥)
2

0
dx = ∫ 𝜋𝑥

1

0
dx + ∫ 𝜋(2 − 𝑥)

2

1
dx 

                       = 𝜋 [
𝑥2

2
]

0

1

+ 𝜋 [2𝑥 −
𝑥2

2
]

1

2

 

                       = 𝜋
1

2
 + 𝜋 [(4 − 2) − (2 −  

1

2
)]  =  𝜋 

         And 𝑎𝑛 = ∫  𝑓(𝑥) cos nπx 𝑑𝑥
2

0
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 = ∫  𝜋𝑥 cos nπx 𝑑𝑥
1

0
 + ∫  𝜋(2𝑥) cos nπx 𝑑𝑥

2

1
 

               = [𝜋𝑥
𝑠𝑖𝑛𝑛𝜋𝑥

𝑛𝜋
− 𝜋 (

− 𝑐𝑜𝑠 𝑛𝜋𝑥

𝑛2𝜋2 )]
0

1

 + [𝜋(2 − 𝑥)
𝑠𝑖𝑛𝑛𝜋𝑥

𝑛𝜋
− (−)𝜋 (

− 𝑐𝑜𝑠 𝑛𝜋𝑥

𝑛2𝜋2 )]
1

2

 

 

               = [
 𝑐𝑜𝑠 𝑛𝜋

𝑛2𝜋
−

 1

𝑛2𝜋
] + [

 𝑐𝑜𝑠 2𝑛𝜋

𝑛2𝜋
+

 𝑐𝑜𝑠 𝑛𝜋

𝑛2𝜋
] = 

 2

𝑛2𝜋
 (cosnπ – 1) 

               = 
 2

𝑛2𝜋
[(−1)𝑛 − 1] 

              = 0 or 
 4

𝑛2𝜋
 according as n is even or odd. 

         𝑎𝑛𝑑 𝑏𝑛 = ∫ 𝑓(𝑥)sin 𝑛𝜋𝑥 𝑑𝑥
2

0
 = ∫ 𝑛𝜋 sin 𝑛𝜋𝑥 𝑑𝑥

1

0
 + ∫ 𝜋(2 − 𝑥) sin 𝑛𝜋𝑥 𝑑𝑥

2

1
 

             = [𝜋𝑥
−𝑐𝑜𝑠𝑛𝜋𝑥

𝑛𝜋
− 𝜋 (

− 𝑠𝑖𝑛 𝑛𝜋𝑥

𝑛2𝜋2
)]

0

1

+[𝜋(2 − 𝑥)(
−𝑐𝑜𝑠𝑛𝜋𝑥

𝑛𝜋
) − (−)𝜋 (

− 𝑠𝑖𝑛 𝑛𝜋𝑥

𝑛2𝜋2
)]

1

2

 

             = [−
 𝑐𝑜𝑠 𝑛𝜋

𝑛
] + [

 𝑐𝑜𝑠 𝑛𝜋

𝑛
] = 0 

∴ f(x) = 
𝜋

2
 - 

4

𝜋
 (

 𝑐𝑜𝑠 𝜋𝑥

12 +
 𝑐𝑜𝑠 3𝜋𝑥

32 +
 𝑐𝑜𝑠 5𝜋𝑥

52 + ⋯ ) 

 

CHECK YOUR PROGRESS  

True and False questions 

Problem 5. The Fourier series expansion of f(x) = 𝑥3 in the interval 

                    -1 < x < 1 with periodic continuation has only sine terms. 

Problem 6.    The value of 𝑏𝑛 in the Fourier series expansion of f(x) in 

the interval c < x < c + 2 𝑙 in given by 
1

𝑙
∫ 𝑓(𝑥) sin

nπx

𝑙
𝑑𝑥

 c+2𝑙

𝑐
. 

Problem 7. The value of 𝑎𝑛 in the Fourier series expansion of f(x) in 

the interval 0 < x <  2 𝑙 in given by 
1

𝑙
∫ 𝑓(𝑥) cos

nπx

2𝑙
𝑑𝑥

 2𝑙

0
. 

Problem 8. The value of 𝑎0 in the Fourier series expansion of f(x) in 

the interval - 𝑙 < x < 𝑙 in given by 
1

𝑙
∫ 𝑓(𝑥)𝑑𝑥

 1

−1
. 

Problem 9. The function f(x) = 1/x is continuous at x = 0. 

Problem 10. 
𝜋2

8
=

1

12 + 
1

32 + 
1

52 + … 

Problem 11. f(x) = 𝑥3 + 2 is even function. 

Problem 12. f(x) = sinx in odd function. 
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2.6 SUMMARY 

1.  Fourier series for Discontinuous function: 

Let f(x) be defined by f(x) = 𝑓(𝑥) = {
𝑓1(𝑥), 𝑐 < 𝑥 < 𝑥0

𝑓2(𝑥),  𝑥0 < 𝑥 < 𝑐 +  2𝜋
 , where 𝑥0 is the 

point of finite discontinuity in the interval (c, c + 2𝜋). 

The values of 𝑎0, 𝑎𝑛, 𝑏𝑛 are given by  

                   𝑎0 = 
1

𝜋
 [∫ 𝑓1(𝑥)𝑑𝑥 +  ∫ 𝑓2(𝑥)𝑑𝑥 

c + 2𝜋

𝑥0

𝑥0

𝑐
] 

                   𝑎𝑛 = 
1

𝜋
 [∫ 𝑓1(𝑥)𝑐𝑜𝑠𝑛𝑥 𝑑𝑥 + ∫ 𝑓2(𝑥)𝑐𝑜𝑠𝑛𝑥 𝑑𝑥 

c + 2𝜋

𝑥0

𝑥0

𝑐
] 

                   𝑏𝑛 = 
1

𝜋
 [∫ 𝑓1(𝑥)𝑠𝑖𝑛𝑛𝑥 𝑑𝑥 +  ∫ 𝑓2(𝑥)𝑠𝑖𝑛𝑛𝑥 𝑑𝑥 

c + 2𝜋

𝑥0

𝑥0

𝑐
] 

2. Fourier series for change of interval: 

     f(x) = 
𝑎0

2
 + ∑ 𝑎𝑛 cos

nπx

𝑙
∞
n=1  + ∑ 𝑏𝑛 sin

nπx

𝑙
∞
n=1  

3. let 𝑎0 = 
1

𝑙
∫ 𝑓(𝑥)𝑑𝑥

 c+2𝑙

𝑐
 ; 𝑎𝑛 = 

1

𝑙
∫ 𝑓(𝑥) cos

nπx

𝑙
𝑑𝑥

 c+2𝑙

𝑐
  

         𝑏𝑛 = 
1

𝑙
∫ 𝑓(𝑥) sin

nπx

𝑙
𝑑𝑥

 c+2𝑙

𝑐
 then  

Corollary 1.    If we put c = 0, in the interval becomes 0 < x < 2l , and the 

above result reduce  

                          to 

𝑎0 = 
1

𝑙
∫ 𝑓(𝑥)𝑑𝑥

2𝑙

0
 ; 𝑎𝑛 = 

1

𝑙
∫ 𝑓(𝑥) cos

nπx

𝑙
𝑑𝑥

2𝑙

0
 ; 𝑏𝑛 = 

1

𝑙
∫ 𝑓(𝑥) sin

nπx

𝑙
𝑑𝑥

2𝑙

0
 

 

Corollary 2.  if we put c = -  𝑙, the interval become - 𝑙 < x < 𝑙 and the 

above result reduce to 

𝑎0 = 
1

𝑙
∫ 𝑓(𝑥)𝑑𝑥

𝑙

−𝑙
 ; 𝑎𝑛 = 

1

𝑙
∫ 𝑓(𝑥) cos

nπx

𝑙
𝑑𝑥

𝑙

−𝑙
 ; 𝑏𝑛 = 

1

𝑙
∫ 𝑓(𝑥) sin

nπx

𝑙
𝑑𝑥

𝑙

−𝑙
 

 

Corollary 3.  If f(x) is even function, we have  

𝑎0 = 
2

𝑙
∫ 𝑓(𝑥)𝑑𝑥

𝑙

0
 ; 𝑎𝑛 = 

2

𝑙
∫ 𝑓(𝑥) cos

nπx

𝑙
𝑑𝑥

𝑙

0
 ; 𝑏𝑛 = 0 

 

Corollary 4. If f(x) is odd function, 
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    we have 𝑎0 = 0, 𝑎𝑛= 0, 𝑏𝑛 = 
2

𝑙
∫ 𝑓(𝑥) sin

nπx

𝑙
𝑑𝑥

𝑙

0
 

4. Discontinuous function. 

5.  Fourier series for the function f(x) = x2 - 2, -2≤ x ≤ 2 is given by  

    F(x) = −
2

3
 −

16

𝜋2 (Cos
πx

2
−

1

4
𝑐𝑜𝑠πx +

1

9
Cos

3πx

2
− ⋯ ). 

6. Fourier series for the function f(x) = x – x2 , -1< x < 1. 

       

   f(x) = −
1

3
 + 

4

𝜋2
 (

cos 𝜋𝑥

12
−

cos 2𝜋𝑥

22
+

cos 3𝜋𝑥

32
− ⋯ )  

                                       + 
4

𝑛𝜋
 (

Sin 𝜋𝑥

1
−

Sin 2𝜋𝑥

2
+

Sin 3𝜋𝑥

3
− ⋯ ) 

7. f(x) = 
𝑎0

2
 + ∑ 𝑎𝑛 cos 𝑛𝑥∞

n=1  + ∑ 𝑏𝑛 sin 𝑛𝑥∞
n=1            

8. The Fourier series expansion for f(x) = 𝜋𝑥 from x = -c to x = c is  

     f(x) = 2c[sin (
𝜋𝑥

𝑐
) −

1

2
sin (

2𝜋𝑥

𝑐
) +

1

3
sin (

3𝜋𝑥

𝑐
) − ⋯] 

 

 

2.7 GLOSSARY 

 

Discontinuous functions  

Periodic Functions 

Integration  

Even, odd functions   

Trigonometric functions 

Integrations  

Series  
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2.9 SUGGESTED READING 

 

1. E. Kreyszig,(2011), Advanced Engineering Mathematics, 9th edition, 

John Wiley and Sons, Inc.  

2. Kōsaku Y, Lectures on Differential and Integral Equations, Translated 

from the Japanese. Reprint of the 1960 translation, Dover Publications, 

New York, 1991.  

3. Porter D and Stirling D S G, Integral Equations: A Practical Treatment 
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2.10 TERMINAL AND MODEL QUESTIONS 

 

Q 1. Find the Fourier series for f(x) = 1 - 𝑡2 when -1≤ 𝑡 ≤ 1. 

Q 2. Find the Fourier series in the interval (0, 2) if  

         f(x) =  {
𝑥,   𝑓𝑜𝑟 0 < 𝑥 < 1
0,    𝑓𝑜𝑟 1 < 𝑥 < 2

 . 

Q 3. Find the Fourier series expansion for the function f(x) = x – x3 in the      

        interval -1 < x < 1. 

Q 4. Find the Fourier series for the function given by  

         f(x) = {
𝑡,   𝑓𝑜𝑟 0 < 𝑥 < 1

1 − 𝑡,    𝑓𝑜𝑟 1 < 𝑥 < 2
 . 

Q 5. Find the Fourier series expansion for f(x) = 𝜋𝑥 from x = -c to x = c. 
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Q 6. Obtain the Fourier series of the function  

         f(x) = {
1 +

2𝑥

𝑙
,   𝑓𝑜𝑟 − 𝑙 < 𝑥 < 0

1 −
2𝑥

𝑙
,    𝑓𝑜𝑟 0 < 𝑥 < 𝑙

 . 

Q 7. Find the Fourier series expansion of the periodic function whose   

         definition in one period is f(x) = 4 – x2 , -2 ≤ 𝑥 ≤ 2. Also prove that  

         1 - 
1

22 + 
1

32 - 
1

42 + … = 
𝜋2

12
 . 

Q 8. Find the Fourier series to represent the function  

        f(x) =  {
−𝑘,   𝑓𝑜𝑟 − 𝜋 < 𝑥 < 0

𝑘,    𝑓𝑜𝑟 0 < 𝑥 < 𝜋
 , Also deduce that  

         
𝜋

4
 = 1 - 

1

3
+

1

5
−

1

7
+ ⋯ 

Q 9. Find the Fourier series for f(x) in the interval (-𝜋 , 𝜋) when  

        f(x) =  {
𝜋 + 𝑥,   𝑓𝑜𝑟 − 𝜋 < 𝑥 < 0
𝜋 − 𝑥,      𝑓𝑜𝑟 0 < 𝑥 < 𝜋

 

Q 10. Find the Fourier series to represent the periodic function 

           f(x) =  {
x,               for −

π

2
< x <

π

2

π − x,      for 
π

2
< x <

3π

2

 

 

2.11 ANSWERS 

CHECK YOUR PROGRESS 

        CYQ 1. (a) 

        CYQ 2. (b) 

        CYQ 3. (b) 

        CYQ 4. (d) 

        CYQ 5. True 

        CYQ 6. True  

        CYQ 7. False 

        CYQ 8. True  
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         CYQ 9. False 

         CYQ 10. True 

         CYQ 11. False 

          CYQ 12. True 

TERMINAL QUESTIONS 

         TQ 1. f(x) =
2

3
+

4

𝜋2
(cos 𝜋𝑡 −

cos 2𝜋𝑡

22
+

cos 3𝜋𝑡

32
− ⋯) 

         TQ 2. f(x) = 
1

4
 – 

2

𝜋2 (cos 𝜋 +
cos 3𝜋𝑥

32 +
cos 5𝜋𝑥

52 + ⋯) 

                                       + 
𝟏

𝝅
(sin 𝜋𝑥 −

sin 2𝜋𝑥

2
+

sin 3𝜋𝑥

3
− ⋯) 

         TQ 3. f(x) = 
12

𝜋3 (sin 𝜋𝑥 −
sin 2𝜋𝑥

23 +
sin 3𝜋𝑥

33 − ⋯) 

          TQ 4. f(t) = −
4

𝜋2 (cos 𝜋𝑡 +
cos 3𝜋𝑡

32 +
cos 5𝜋𝑡

52 − ⋯) 

                                                             + 
𝟐

𝝅
(sin 𝜋𝑡 +

sin 3𝜋𝑡

3
+ ⋯) 

          TQ 5. f(x) = 2c[sin (
𝜋𝑥

𝑐
) −

1

2
sin (

2𝜋𝑥

𝑐
) +

1

3
sin (

3𝜋𝑥

𝑐
) − ⋯] 

           TQ 6. F(x) = 
4

𝜋2
∑ {1 − (−1)𝑛}

cos
𝑛𝜋𝑥

𝑙

𝑛2
∞
𝑛=1  

           TQ 7. f(x) = 
8

3
 - 

16

𝜋2 ∑
(−1)𝑛

𝑛2
∞
𝑛=1  cos

𝑛𝜋𝑥

2
 

           TQ 8. f(x) = 
4𝑘

𝜋
 (𝑠𝑖𝑛𝑥 +

sin 3𝑥

3
+

sin 5𝑥

5
… ) 

           TQ 9. f(x) = 
𝜋

2
 + 

4

𝜋
 (

cos 𝑥

12 +
cos 3 𝑥

32 +
cos5 𝑥

52 + ⋯ ) 

           TQ 10. f(x) = 
4

𝜋
 (

sin 𝑥

12
−

sin 3 𝑥

32
+

sin5 𝑥

52
− ⋯ )            
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3.1 INTRODUCTION 

A transformation is a mathematical device which convert one 

function into another. It transforms one variable at a time. The Laplace 

transform of a function f(t) is designated as L[f(t)], with the variable t 

covers a spectrum of (0, ∞). where s is the parameter of the Laplace 

transform, and F(s) is the expression of the Laplace transform of function 

f(t) with 0 ≤ t < ∞. Laplace transformation is directly gives the solution of 

differential equations with given initial conditions without the necessary 

of first finding the general solution and then evaluating the arbitrary 

constants. 

French Mathematician Pierre De Laplace (1749 – 1827) used this 

transform much earlier in 1799 while developing the theory of probability. 

 

3.2 OBJECTIVE 

At the end of this topic learner will be able to understand:  

(i) Laplace transform  

(ii) Transforms of Discontinuous functions  

(iii) Initial-value theorem  

(iv) Final value problem 

(v) Existence theorem 

 

3.3 DEFINITION OF LAPLACE TRANSFORM 

Let F(t) be a function of t defined all t ≥ 0. Then the Laplace transform of 

F(t) , denoted by L{F(t)}, is defined by                                         

 L{F(t)} = f(p) = ∫ 𝑒−𝑝𝑡𝐹(𝑡)𝑑𝑡
∞

0
 

Provided that the integral exists, ‘p’ is a parameter which may be real or 

complex. 
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L{F(t)} is said to exist if the above integral converges for 

some value of p otherwise not. The function f(p) is called 

the Laplace transform or the image of the objective function 

F(t).  

Note: ∎ Some authors use the letter ‘s’ for the parameter 

instead of p. therefore we may also write  

    L{F(t)} = f(s) = ∫ 𝑒−𝑠𝑡𝐹(𝑡)𝑑𝑡
∞

0
 . 

Note: ∎ In general, we will denote the object function by 

a capital letter and its transform by the same letter in lower 

case. But other notations that distinguish between 

functions and their transforms are sometimes preferable 

i.e.      L{F(t)} = 𝜑(𝑝)  or L{y(t)} = �̅�(p)  or L{f(t)} = 𝑓(̅p)        

  

 

3.4 LINEARITY PROPERTY 

If c1, c2 are constants and f, g are functions of t, then  

                 L{𝑐1f(t) + 𝑐2g(t)} = 𝑐1L{F(t)} +  𝑐2L{g(t)} 

By definition,      

L{𝑐1f(t) + 𝑐2g(t)} = ∫ 𝑒−𝑝𝑡{𝑐1f(t)  +  𝑐2g(t)}dt
∞

0
 

                                                         

                              = 𝑐1 ∫ 𝑒−𝑝𝑡𝑓(𝑡)𝑑𝑡
∞

0
 + 𝑐2 ∫ 𝑒−𝑝𝑡𝑔(𝑡)𝑑𝑡

∞

0
 

                                                         

                              = 𝑐1L{F(t)} +  𝑐2L{g(t)} 

The result can easily be generalized. 
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3.5 LAPLACE TRANSFORM OF SOME    

ELEMENTARY FUNCTIONS 
 

(1)  𝐋{𝟏} = 
𝟏

𝒑
 , p > 0 

Proof. L{1} = ∫ 𝑒−𝑝𝑡 . 1𝑑𝑡
∞

0
 = [−

𝑒−𝑝𝑡

𝑝
]

0

∞

= 
1

p
 , if p  > 0. 

(2) L{𝒕𝒏} = 
𝒏!

𝒑𝒏+𝟏 , where n is positive integer.  

Proof. L{𝑡𝑛} = ∫ 𝑒−𝑝𝑡 . 𝑡𝑛𝑑𝑡
∞

0
 = ∫ 𝑒−𝑥 (

𝑥

𝑝
)

𝑛 𝑑𝑥

𝑝

∞

0
 , on putting pt = x 

                      = 
1

𝑝𝑛+1 ∫ 𝑥𝑛𝑒−𝑝𝑡𝑑𝑥
∞

0
 = 

Γ( 𝑛+1)

𝑝𝑛+1   

provided that p > 0 and n + 1 > 0 

            If n is a positive integer, Γ(𝑛 + 1) = n! 

            Therefore   L{𝑡𝑛} = 
𝑛!

𝑝𝑛+1   

Note: ∎ For n = 1, L{𝑡} = 
1

𝑝2 

(3)  L{𝒆𝒂𝒕} = 
𝟏

𝒑 − 𝒂
 , p > a 

Proof. L{𝑒𝑎𝑡} = ∫ 𝑒−𝑝𝑡 . 𝑒𝑎𝑡𝑑𝑡
∞

0
 = ∫ 𝑒−(𝑝−𝑎)𝑡𝑑𝑡

∞

0
 = [−

𝑒−(𝑝−𝑎)𝑡

𝑝−𝑎
 ]

0

∞

= 
1

𝑝 − 𝑎
 , 

p > a 

(4) L{𝒔𝒊𝒏𝒂𝒕} = 
𝒂

𝒑𝟐+𝒂𝟐 , p > 0 

Proof. L{𝑠𝑖𝑛𝑎𝑡} = ∫ 𝑒−𝑝𝑡𝑠𝑖𝑛𝑎𝑡 𝑑𝑡
∞

0
  

                            = [
𝑒−𝑝𝑡

𝑝2+𝑎2 (−𝑝𝑠𝑖𝑛𝑎𝑡 − 𝑎𝑐𝑜𝑠𝑎𝑡) ]
0

∞

= 
𝑎

𝑝2+𝑎2 
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(5) L{𝒄𝒐𝒔𝒂𝒕} = 
𝒑

𝒑𝟐+𝒂𝟐 , p > 0 

Proof. L{𝑐𝑜𝑠𝑎𝑡} = ∫ 𝑒−𝑝𝑡𝑐𝑜𝑠𝑎𝑡 𝑑𝑡
∞

0
  

                           = [
𝑒−𝑝𝑡

𝑝2+𝑎2 (−𝑝𝑐𝑜𝑠𝑎𝑡 − 𝑎𝑠𝑖𝑛𝑎𝑡) ]
0

∞

= 
𝑝

𝑝2+𝑎2 

(6) L{𝒔𝒊𝒏𝒉 𝒂𝒕} = 
𝒂

𝒑𝟐−𝒂𝟐 , p > |𝒂| 

Proof. L{𝑠𝑖𝑛ℎ 𝑎𝑡} =  ∫ 𝑒−𝑝𝑡𝑠𝑖𝑛ℎ 𝑎𝑡 𝑑𝑡
∞

0
 = ∫ 𝑒−𝑝𝑡 [

𝑒𝑎𝑡−𝑒−𝑎𝑡

2
]  𝑑𝑡

∞

0
 

                               = [∫ 𝑒−(𝑝−𝑎)𝑡 𝑑𝑡
∞

0
− 𝑒−(𝑝+𝑎)𝑡  𝑑𝑡] 

                               = 
1

2
[

1

𝑝−𝑎
−

1

𝑝+_𝑎
] = 

𝑎

𝑝2−𝑎2 ,for p > |𝑎| 

Note: ∎We can also prove it by using linear property. 

         Thus L{𝑠𝑖𝑛ℎ 𝑎𝑡} = 𝐿 {
1

2
𝑒𝑎𝑡 − 𝑒−𝑎𝑡} =  

1

2
𝐿(𝑒𝑎𝑡) - 

1

2
𝐿(𝑒−𝑎𝑡) 

                                     = 
1

2
 (

1

𝑝−𝑎
) - 

1

2
 (

1

𝑝+𝑎
) = 

𝑎

𝑝2−𝑎2 

 

(7) L{𝒔𝒊𝒏𝒉 𝒂𝒕} = 
𝐏

𝐩𝟐−𝐚𝟐 , p > |𝒂| 

Proof. L{𝑐𝑜𝑠ℎ 𝑎𝑡} = 𝐿 {
1

2
𝑒𝑎𝑡 + 𝑒−𝑎𝑡} =  

1

2
𝐿(𝑒𝑎𝑡) + 

1

2
𝐿(𝑒−𝑎𝑡) 

                                     = 
1

2
 (

1

𝑝−𝑎
) + 

1

2
 (

1

𝑝+𝑎
) = 

𝑝

𝑝2−𝑎2 for p > |𝑎|. 

Note: The Laplace transforms of various elementary functions have been 

listed in the following table: 

F(t) L{F(t)} = f(p) 

1 1

𝑝
 , 𝑝 > 0 
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t 1

𝑝2
 , 𝑝 > 0 

𝑡𝑛 , 𝑛 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 𝑛!

𝑝𝑛+1
 , 𝑝 > 0 

𝑡𝑛 , 𝑛 >  −1 Γ( 𝑛 + 1)

𝑝𝑛+1
 , 𝑝 > 0 

𝑒𝑎𝑡 1

𝑝 − 𝑎
 , 𝑝 > 𝑎 

𝑒−𝑎𝑡 1

𝑝 + 𝑎
 

sin 𝑎𝑡 
𝑎

𝑝2+𝑎2 p > 0 

cos 𝑎𝑡 
𝑝

𝑝2+𝑎2 , p > 0 

sinh 𝑎𝑡 
𝑎

𝑝2−𝑎2 , p > |𝑎| 

cosh 𝑎𝑡 
𝑝

𝑝2−𝑎2 , p > |𝑎| 

 

 

3.6 TRANSFORM OF DISCONTINUOUS FUNCTIONS   
The Laplace transform of F(t) will exist even if the object function F(t) is 

discontinuous, provided the integral in the definition of L{F(t)} exists. 

 

3.7 FIRST TRANSLATION PROPERTY OR FIRST 

SHIFTING PROPERTY 
 

If L{F(t)} = f(p) then L{𝑒𝑎𝑡F(t)} = f(p - a) 

L{𝑒𝑎𝑡F(t)} = ∫ 𝑒−𝑝𝑡𝑒𝑎𝑡𝐹(𝑡)𝑑𝑡
∞

0
          ( By definition) 

                   = ∫ 𝑒−(𝑝−𝑎)𝑡𝐹(𝑡)𝑑𝑡
∞

0
 = f(p – a). 

Note: ∎ L{𝑒𝑎𝑡F(t)} = f(p + a) 

           ∎ L{𝑒𝑎𝑡F(bt)} = 
1

𝑏
𝑓 (

𝑝−𝑎

𝑏
). 
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Applying this property to the elementary functions of Art. 3.5, we get the following 

useful results:  

(1) L{𝑒𝑎𝑡𝑡𝑛} = 
𝒏!

(𝒑 − 𝒂)𝒏+𝟏 ; n is a positive integer. 

(2) L{𝑒𝑎𝑡 sin 𝑏𝑡} = 
𝒃

(𝒑−𝒂)𝟐+ 𝒃𝟐  

(3) L{𝑒𝑎𝑡 cos 𝑏𝑡} = 
𝒑 − 𝒂

(𝒑 − 𝒂)𝟐+ 𝒃𝟐  

(4) L{𝑒𝑎𝑡 sinh 𝑏𝑡} = 
𝒃

(𝒑 − 𝒂)𝟐 − 𝒃𝟐 

(5) L{𝑒𝑎𝑡 cosh 𝑏𝑡} = 
𝒑 − 𝒂

(𝒑 − 𝒂)𝟐− 𝒃𝟐 

3.8 SECOND TRANSLATION PROPERTY OR 

HEAVISIDE’S SHIFTING THEOREM 

∎If L{F(t)} = f(p) and G(t) = 𝑓(𝑥) = {
𝐹(𝑡 − 𝑎), 𝑡 > 𝑎

0         , 𝑡 < 𝑎
 

Then, L{G(t)} = 𝑒−𝑎𝑝𝑓(𝑝). 

Proof. L{G(t)} = ∫ 𝑒−𝑝𝑡 . 𝐺(𝑡)𝑑𝑡
∞

0
 = ∫ 𝑒−𝑝𝑡 . 𝐺(𝑡)𝑑𝑡

𝑎

0
 + ∫ 𝑒−𝑝𝑡 . 𝐺(𝑡)𝑑𝑡

∞

𝑎
 

                         = 0 + ∫ 𝑒−𝑝𝑡 . 𝐹(𝑡 − 𝑎)𝑑𝑡
∞

𝑎
 = ∫ 𝑒−𝑝𝑡 . 𝐹(𝑡 − 𝑎)𝑑𝑡

∞

𝑎
 

                                                                       Put t – a = u ⟹ dt = du 

                         = ∫ 𝑒−𝑝(𝑢+ 𝑎). 𝐹(𝑢)𝑑𝑢
∞

0
 = 𝑒−𝑝𝑎 ∫ 𝑒−𝑝𝑢 . 𝐹(𝑢)𝑑𝑢

∞

0
 

                         = 𝑒−𝑝𝑎 ∫ 𝑒−𝑝𝑡 . 𝐹(𝑡)𝑑𝑡
∞

0
 = 𝑒−𝑝𝑎𝑓(𝑝). 

 

3.9 CHANGE OF SCALES PROPERTY 

∎ If L{F(t)} = f(p) then L{F(at)} = 
1

𝑎
𝑓 (

𝑝

𝑎
).  

Proof: L{F(at)} = ∫ 𝑒−𝑝𝑡 . 𝐹(𝑎𝑡)𝑑𝑡
∞

0
  

                                       Put at = u ⇒ dt = 
𝑑𝑢

𝑎
 

                           = ∫ 𝑒−𝑝
𝑢

𝑎 . 𝐹(𝑢)
𝑑𝑢

𝑎

∞

0
 = 

1

𝑎
 ∫ 𝑒−(

𝑝

𝑎
)𝑢 . 𝐹(𝑢)𝑑𝑢

∞

0
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                           = 
1

𝑎
 ∫ 𝑒−(

𝑝

𝑎
)𝑡 . 𝐹(𝑡)𝑑𝑡

∞

0
 = 

1

𝑎
𝑓 (

𝑝

𝑎
). 

ILLUSTRATIVE EXAMPLES 

Example 1. Find the Laplace transform of  

                     7𝑒2𝑡+9𝑒−2𝑡+ 5 cost + 7𝑡3 + 5 sin 3t + 2. 

Sol. L(7𝑒2𝑡+9𝑒−2𝑡+ 5 cost + 7𝑡3 + 5 sin 3t + 2) 

        = 7𝐿(𝑒2𝑡)+9𝐿(𝑒−2𝑡)+ 5 L(cost) + 7 𝐿(𝑡3) + 5 L(sin 3t) + 2 L(1) 

                          = 7. 
1

𝑝 − 2
 + 9. 

1

𝑝 + 2
 + 5. 

𝑝

𝑝2+1
 + 7. 

3!

𝑝4 + 5. 
3

𝑝2+9
 + 2. 

1

𝑝 
  

                          = 
7

𝑝 − 2
 + 

9

𝑝+ 2
 + 

5𝑝

𝑝2+1
 + 

42

𝑝4 + 
15

𝑝2+9
 + 

2

𝑝 
 . 

Example 2. Find the Laplace transforms of  

(i) Sin 2t cos 3t                      (ii) sin32t 

(ii) Cosh32t                             (iv) (1 +  t𝑒−𝑡)3 

Sol. (i) Since     sin 2t cos 3t = 
1

2
 (2 cos 3t sin 2t) = 

1

2
 (sin 5t – sin t) 

            ∴ L(sin 2t cos 3t) = L{
1

2
 (sin 5t – sin t)} = 

1

2
 [L(sin 5t) – L(sin t)] 

                                         = 
1

2
 [

5

𝑝2+52 −
1

𝑝2+12
] = 

2(𝑝2−5)

(𝑝2+25)(𝑝2+1)
 

(ii) Sin 6t = 3 sin 2t – 4 sin32t 

∴ sin32t = 
3

4
 sin 2t - 

1

4
 sin 6t 

                    ∴ L(sin3 2t) = L{
3

4
 (sin 2t – 

1

4 
 sin 6t)}  

                                     = 
3

4
 L(sin 2t) – 

1

4 
 𝐿(sin 6t) 
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                                     = 
3

4
 

2

𝑝2+22 - 
1

4 
 

6

𝑝2+62 = 
48

(𝑝2+4)(𝑝2+36)
 

(iii) Since   cosh 6t = 4 cos3 2t – 3 cosh 2t 

∴ cosh32t = 
3

4
 cosh 2t + 

1

4
 cosh 6t 

∴ L(cosh32t) = L{
3

4
 cosh 2t + 

1

4
 cosh 6t} 

                      = 
3

4
 L(cosh 2t) + 

1

4
 (cosh 6t) 

                      =  
3

4
 

𝑃

𝑝2−22 + 
1

4
 

𝑃

𝑝2−62 = 
𝑝(𝑝2−28)

(𝑝2− 4)(𝑝2−36)
 . 

(iv) (1 +  t𝑒−𝑡)3 = 1 +  𝑡3𝑒−3𝑡  + 3t𝑒−𝑡(1 + t𝑒−𝑡) 

                      = 1 +  𝑡3𝑒−3𝑡 + 3t𝑒−𝑡 + 3𝑡2𝑒−2𝑡 

∴ L{(1 +  t𝑒−𝑡)3} = L(1) + L(𝑡3𝑒−3𝑡) + 3L(t𝑒−𝑡) + 3L(𝑡2𝑒−2𝑡)         …(1) 

Now first we find the following 

Determination of L(𝑡3𝑒−3𝑡): 

 L(𝑡3) = 
3!

𝑝4 then  L(𝑡3𝑒−3𝑡) = 
3!

(𝑝+3)4 = 
6

(𝑝+3)4      ( Using first shifting 

property) 

Determination of L(t 𝑒−𝑡): 

L(t) = 
1

𝑝2  then L(t 𝑒−𝑡) = 
1

(𝑝+1)2            ( Using first shifting property) 

Determination of L(𝑡2𝑒−2𝑡): 

L(𝑡3) = 
2!

𝑝3 then L(𝑡2𝑒−2𝑡) = 
2!

(𝑝+2)3 = 
2

(𝑝+2)3      ( Using first shifting 

property) 

Also, L(1) = 
1

𝑝
 Now, from (1) 
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 L{(1 +  t𝑒−𝑡)3} = 
1

𝑝
 + 

6

(𝑝+3)4 + 
3

(𝑝+1)2 + 
6

(𝑝+2)3 . 

Example 3. Find the Laplace transforms of 𝑒−3𝑡 (cos 4t + 3 sin 4t). 

 

Sol. L(cos 4t + 3 sin 4t) = L(cos 4t ) + 3 L(sin 4t) 

                                       = 
𝑃

𝑝2+16
 + 

12

𝑝2+16
 = 

𝑃+12

𝑝2+16
 

∴ L{𝑒−3𝑡 (cos 4t + 3 sin 4t)} = 
(𝑃+3)+12

(𝑝+3)2+16
   ( Using first shifting property) 

                                               =  
𝑃+15

𝑝2+6𝑝+25
 . 

Example 4. Find the Laplace transforms of  

(i) F(t) = {
cos 𝑡 , 0 < 𝑡 < 𝜋

0         , 𝑡 >  𝜋
        (ii) F(t) = {

1   ,   0 ≤ 𝑡 < 1 
𝑡    ,    1 ≤ 𝑡 < 2 

𝑡2  , 2 ≤ 𝑡 < ∞  
 

(iii) F(t) = {
𝑡2       ,   0 < 𝑡 < 2 

𝑡 − 1    ,    1 < 𝑡 < 3 
7         ,         𝑡 > 3  

 

Sol. (i) L{F(t)} = ∫ 𝑒−𝑝𝑡 . 𝐹(𝑡)𝑑𝑡
∞

0
 = ∫ 𝑒−𝑝𝑡 . 𝑐𝑜𝑠𝑡𝑑𝑡

𝜋

0
 + ∫ 𝑒−𝑝𝑡 . 0 𝑑𝑡

∞

𝜋
 

                          = [
𝑒−𝑝𝑡

𝑝2+1
(−𝑝𝑐𝑜𝑠𝑡 + 𝑠𝑖𝑛𝑡)]

0

𝜋

 = [
𝑒−𝑝𝜋

𝑝2+1
𝑝 −

1

𝑝2+1
(−𝑝)] 

                          =  
𝑝(1+𝑒−𝑝𝜋)

𝑝2+1
 . 

(ii) L{F(t)} = ∫ 𝑒−𝑝𝑡 . 𝐹(𝑡)𝑑𝑡
∞

0
  

              = ∫ 𝑒−𝑝𝑡𝑑𝑡
1

0
 + ∫ 𝑡𝑒−𝑝𝑡𝑑𝑡

2

1
 + ∫ 𝑡2𝑒−𝑝𝑡𝑑𝑡

∞

2
 

              = (
𝑒−𝑝𝑡

−𝑝
)

0

1

 + (𝑡
𝑒−𝑝𝑡

−𝑝
−

𝑒−𝑝𝑡

𝑝2 )
1

2

+ (𝑡2 𝑒−𝑝𝑡

−𝑝
)

2

∞

- ∫ 2𝑡
𝑒−𝑝𝑡

−𝑝
𝑑𝑡

∞

2
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       = (
1− 𝑒−𝑝

𝑝
) + (

−2

𝑝
𝑒−2𝑝 −

𝑒−2𝑝

𝑝2 ) - (
𝑒−𝑝

−𝑝
−

𝑒−𝑝

𝑝2 ) + 
4

𝑝
 𝑒−2𝑝  + 

2

𝑝
 ∫ 𝑡𝑒−𝑝𝑡𝑑𝑡

∞

2
 

                      = 
1

𝑝
 + 

2

𝑝
 𝑒−2𝑝  + 

𝑒−𝑝

𝑝2  - 
𝑒−2𝑝

𝑝2  +
2

𝑝
 [(𝑡

𝑒−𝑝𝑡

−𝑝
)

2

∞

− ∫ 1.
𝑒−𝑝𝑡

−𝑝
𝑑𝑡

∞

2
] 

                      = 
1

𝑝
 + 

2

𝑝
 𝑒−2𝑝  + 

𝑒−𝑝

𝑝2  - 
𝑒−2𝑝

𝑝2  +
2

𝑝
 [

2

𝑝
 𝑒−2𝑝 +

1

𝑝
(

𝑒−𝑝𝑡

−𝑝
)

2

∞

] 

                      = 
1

𝑝
 + 

2

𝑝
 𝑒−2𝑝  + 

𝑒−𝑝

𝑝2  + 
3

𝑝2 𝑒−2𝑝 + 
2

𝑝3 𝑒−2𝑝 . 

(iii) L{F(t)} = ∫ 𝑒−𝑝𝑡 . 𝐹(𝑡)𝑑𝑡
∞

0
  

              = ∫ 𝑡2𝑒−𝑝𝑡𝑑𝑡
2

0
 + ∫ (𝑡 − 1)𝑒−𝑝𝑡𝑑𝑡

3

2
 + ∫ 7𝑒−𝑝𝑡𝑑𝑡

∞

3
 

                =  (𝑡2 𝑒−𝑝𝑡

−𝑝
)

0

2

- ∫ 2𝑡.
𝑒−𝑝𝑡

−𝑝
𝑑𝑡

2

0
 + {(𝑡 − 1)

𝑒−𝑝𝑡

−𝑝
}

2

3

- ∫
𝑒−𝑝𝑡

−𝑝
𝑑𝑡

3

2
 + 7(

𝑒−𝑝𝑡

−𝑝
)

3

∞

 

                = −
4

𝑝
 𝑒−2𝑝  + 

2

𝑝
 [(𝑡

𝑒−𝑝𝑡

−𝑝
)

0

2

− ∫ 1.
𝑒−𝑝𝑡

−𝑝
𝑑𝑡

2

0
] + 

1

𝑝
 𝑒−2𝑝  - 

2

𝑝
 𝑒−3𝑝  + 

1

𝑝
(

𝑒−𝑝𝑡

−𝑝
)

2

3

+ 
7

𝑝
 𝑒−3𝑝  

                = −
4

𝑝
 𝑒−2𝑝  - 

2

𝑝2 (2𝑒−2𝑝) + 
2

𝑝2 (
𝑒−𝑝𝑡

−𝑝
)

0

2

+ 
1

𝑝
 𝑒−2𝑝  - 

2

𝑝
 𝑒−3𝑝  - 

1

𝑝2 𝑒−3𝑝 + 
1

𝑝2 𝑒−2𝑝 + 
7

𝑝
 𝑒−3𝑝  

                  = −
4

𝑝
 𝑒−2𝑝  - 

4

𝑝2 𝑒−2𝑝  + 
2

𝑝3 - 
2

𝑝3 𝑒−3𝑝  + 
1

𝑝
 𝑒−2𝑝- 

2

𝑝
 𝑒−3𝑝  - 

1

𝑝2 𝑒−3𝑝  + 
1

𝑝2 𝑒−2𝑝+ 
7

𝑝
 𝑒−3𝑝  

                  =  
2

𝑝3 - 
𝑒−2𝑝

𝑝3  ( 2 + 3p + 3𝑝2) + 
𝑒−2𝑝

𝑝2  (5p – 1). 

Example 5. Find L{F(t)} if  

(i) F(t) = {
sin (𝑡 −

𝜋

3
) , 𝑡 >

𝜋

3

0         , 𝑡 <  
𝜋

3

           (ii) F(t) = {
(𝑡 − 1)2, 𝑡 > 1

0         , 0 < 𝑡 < 1
 

Sol. (i) L{F(t)} = 𝑒−𝑝
𝜋

3 L(sin t)            ( ∵ a = 
𝜋

3
 ) 

                          = 𝑒−𝑝
𝜋

3 . 
1

𝑝2+1
               ( Using Second Shifting property ) 
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(ii) L{F(t)} = 𝑒−𝑝 L(𝑡2)                ( ∵ a = 1 ) 

                          = 𝑒−𝑝 . 
2

𝑝3 .              ( Using Second Shifting property ) 

Example 6. Given that L(
sin 𝑡

𝑡
) = tan−1 1

𝑝
 , find L(

sin 𝑎𝑡

𝑡
). 

Sol. By change of scale property ,  

                    L(
sin 𝑎𝑡

𝑡
) = 

1

𝑎
tan−1(

1

𝑝/𝑎
) 

                   
1

𝑎
 L(

sin 𝑎𝑡

𝑡
) = 

1

𝑎
tan−1(

𝑎

𝑝
 ) 

         ⟹   L(
sin 𝑎𝑡

𝑡
) = tan−1(

𝑎

𝑝
 ) . 

3.10 FUNCTIONS OF EXPONENTIAL ORDER 

 

A function F(t) is said to be of exponential order as t → ∞, if there exist constants 

M and b and a fixed value 𝑡0 of t such that  

       |𝐹(𝑡)| = M𝑒𝑏𝑡 for t ≥ 𝑡0 

We also write F(t) = O (𝑒𝑏𝑡) , t → ∞ to mean that F(t) is of exponential 

order. 

From the definition, it is clear that if a constant b exists, such that 

lim
t →∞

𝑒−𝑏𝑡𝐹(𝑡) exists or the value of limit is finite then function F(t) is of 

exponential order. 

 

3.11 A FUNCTIONS OF CLASS ‘A’ 

A function which is piecewise continuous over every finite interval in the 

range t ≥ 0 and is of exponential order as t → ∞ is termed as a function of 

class A. A function F(t) is said to be piecewise continuous in any interval 
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[a , b] if it is defined on that interval and is such that the interval can be 

broken up into a finite number of subinterval in each of which F(t) is 

continuous.  

3.12 EXISTANCE THEOREM 

∎ If F(t) is piecewise continuous for t ≥ 0 and is of exponential order b, 

then  

L{F(t)} = f(p) exist for p > b. in the other words, if F(t) is a function of 

class A , L{F(t)} exists. 

Proof: ∫ 𝑒−𝑝𝑡 . 𝐹(𝑡)𝑑𝑡
∞

0
  = ∫ 𝑒−𝑝𝑡 . 𝐹(𝑡)𝑑𝑡

𝑡0

0
 + ∫ 𝑒−𝑝𝑡 . 𝐹(𝑡)𝑑𝑡

∞

𝑡0
 = 𝐼1 + 𝐼2        

(say) 

𝐼1 exist since F(t) is piecewise continuous in every finite interval 

 0 ≤ 𝑡 ≤ 𝑡0. 

           |𝐼2| ≤ ∫ |𝑒−𝑝𝑡 . 𝐹(𝑡)|𝑑𝑡
∞

𝑡0
 ≤ ∫ |𝑒−𝑝𝑡 . 𝐹(𝑡)|𝑑𝑡

∞

0
 

                  ≤ ∫ 𝑒−𝑝𝑡 . 𝑀𝑒𝑝𝑡𝑑𝑡
∞

0
(as F(t) is exponential function of order b ) 

                    ≤ ∫ 𝑒−(𝑝−𝑏)𝑡 . 𝑀𝑑𝑡
∞

0
 = 

𝑀

𝑝−𝑏
 . 

Thus the Laplace transform exist for p > b. 

Note: ∎ The condition of the theorem are sufficient but not necessary  

                for the existence of Laplace transform.                     

 

 

        ILLUSTRATIVE EXAMPLES 

Example 1. Prove that 𝑡𝑛 is of exponential order as t → ∞. 
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Sol.  lim
t →∞

(𝑒−𝑏𝑡. 𝑡𝑛) = lim
t →∞

𝑡𝑛

𝑒𝑏𝑡  

                                = lim
t →∞

𝑛𝑡𝑛−1

𝑏𝑒𝑏𝑡  = lim
t →∞

𝑛(𝑛−1)𝑡𝑛−2

𝑏2𝑒𝑏𝑡  = 0 

Since 𝑡𝑛 = O (𝑒𝑏𝑡) , t → ∞ for any fixed positive value of b. 

Therefore 𝑡𝑛 is of exponential order. 

Example 2. Prove that 𝑒𝑡2
 is not of exponential order as t → ∞. 

Sol.  lim
t →∞

(𝑒−𝑏𝑡. 𝑒𝑡2
) = lim

t →∞

𝑒𝑡2

𝑒𝑏𝑡 = lim
t →∞

(𝑒𝑡2−𝑏𝑡 ) 

If b ≤ 0, this limit is infinite. 

If b > 0, lim
t →∞

𝑒(𝑡−𝑏) = ∞ 

Thus, whatever be the value of b, this limit is not finite hence we can not 

find a number M such that 𝑒𝑡2
 < M𝑒𝑏𝑡. 

∴ 𝑒𝑡2
 is not of exponential order as t → ∞. 

 

3.13 LAPLACE TRANSFORM OF DERIVATIVE 

∎ Theorem 1. If F(t) is continuous for all t ≥ 0 and of exponential order 

b as t → ∞, and if 𝐹′(t) is of class A, then Laplace transform of the 

derivative 𝐹′(t) exists when p > b and  

 L{𝐹′(t)} = pL{F(t)} – F(0) = pf(p) – F(o) , if L{F(t)} = f(p).    

Proof:    L{𝐹′(t)} = ∫ 𝑒−𝑝𝑡𝐹′(t)𝑑𝑡
∞

0
                                      ..…(1) 

                              = [𝑒−𝑝𝑡𝐹(t)]0
∞ + ∫ 𝑒−𝑝𝑡𝐹(t)𝑑𝑡

∞

0
 (integrating by parts) 

                              =  lim
t →∞

𝑒−𝑝𝑡𝐹(t) – F(0) + pL{F(t)}             ..…(2) 
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Since F(t) is of exponential order b as t → ∞ then for p > b, 𝑒−𝑝𝑡𝐹(t) → 0 

as → ∞ 

∴ From (2) L{𝐹′(t)} = pL{F(t)} – F(0) = pf(p) – F(o) ,     if L{F(t)}= f(p) 

Note: ∎ if F(t) fails to be continuous at t = 0 but lim
t →∞

F(t) = F(0+0) exists,                                        

then L{𝐹′(t)} = pL{F(t)} – F( 0 + 0)   

 

∎ Theorem 2. If F(t) is continuous, except for an ordinary discontinuity 

at t = a (a > 0) as given in figure, then L{𝐹′(t)} = pL{F(t)} – F(0) - 

𝑒−𝑎𝑝[F(a + 0) – F(a – 0)], where F(a + 0) and F(a – 0) are the limits of F 

at t = a as t approaches a from right and left respectively. The quantity  

F(a + 0) – F(a – 0) is called jump discontinuity at t = a, and 

 𝑒−𝑝𝑡𝐹(t) → 0 as t → ∞. 

Proof:  L{𝐹′(t)} = ∫ 𝑒−𝑝𝑡 . 𝐹′(t)𝑑𝑡
∞

0
  

                            =  ∫ 𝑒−𝑝𝑡 . 𝐹′(t)𝑑𝑡
𝑎

0
 + ∫ 𝑒−𝑝𝑡 . 𝐹′(t)𝑑𝑡

∞

𝑎
  

      =  [𝑒−𝑝𝑡𝐹(t)]0
𝑎 + 𝑝 ∫ 𝑒−𝑝𝑡𝐹(t)𝑑𝑡

𝑎

0
 + {𝑒−𝑝𝑡 . 𝐹(t)}0

∞ + 𝑝 ∫ 𝑒−𝑝𝑡𝐹(t)𝑑𝑡
∞

0
  

 = 𝑒−𝑎𝑡 F(a – 0) – F(0) +  𝑝 ∫ 𝑒−𝑝𝑡𝐹(t)𝑑𝑡
∞

0
 + lim

t →∞
𝑒−𝑝𝑡𝐹(t) - 𝑒−𝑎𝑡𝐹(a + 0)     

  =  L{𝐹′(t)} = pL{F(t)} – F(0) - 𝑒−𝑎𝑝[F(a + 0) – F(a – 0)]  (  lim
t →∞

𝑒−𝑝𝑡𝐹(t) = 0) 

Note:                                                                                                                                                                                

∎Generalization if F(t) and its first (n – 1) derivatives are continuous functions for all              

t ≥ 0 and are of exponential order b as t → ∞ and if 𝐹(𝑛)(𝑡) is of class A then Laplace 

transformation of 𝐹(𝑛)(𝑡) exists when p > b given by  

L{𝐹(𝑛)(𝑡)} = 𝑝𝑛L{f(t)} - 𝑝𝑛−1𝐹(0) - 𝑝𝑛−2𝐹′(0) - . . . 𝐹(𝑛−1)(0). 
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3.14 INITIAL – VALUE THEOREM 

If F(t) is continuous for all t ≥ 0 and is of exponential order as t → ∞ and 

if 𝐹′(𝑡) is of class A then   lim
t →0

F(t) =  lim
p →∞

𝑝𝐿{F(t)}. 

 

3.15 FINAL – VALUE THEOREM 

If F(t) is continuous for all t ≥ 0 and is of exponential order as t → ∞ and 

if 𝐹′(𝑡) is of class A then   lim
t →∞

F(t) =  lim
p →0

𝑝𝐿{F(t)}. 

Example. If L{F(t)} = 
1

𝑝(𝑝+𝛽)
 then, find    (i) lim

t →∞
F(t)          (ii) lim

t →0
F(t) 

Sol. (i) Using final value theorem,  

             lim
t →∞

F(t) =  lim
p →0

𝑝𝐿{F(t)} = lim
p →0

 
1

𝑝+𝛽
 = 

1

𝛽
                                                                                                                        

(i) Using initial-value theorem,  

lim
t →0

F(t) =  lim
p →∞

𝑝𝐿{F(t)} = lim
p →∞

𝑝

𝑝(𝑝+𝛽)
 = lim

p →∞

1

𝑝+𝛽
 = 0. 

 

 

3.16 LEIBNITZ RULE 

To develop the theory of Laplace transforms further, we state the 

following results for differentiation under the integral sign. 

Let ∅(𝛼) = ∫ 𝑓(𝑥, 𝛼)
𝑢2

𝑢1
dx, a ≤ 𝛼 ≤ b, where 𝑢1 and 𝑢2 may depend on the 

parameter 𝛼 then, 

𝑑∅

𝑑𝛼
 = ∫

𝜕𝑓

𝜕𝛼
𝑑𝑥

𝑢2

𝑢1
 + 𝑓(𝑢2, 𝛼) 

𝑑𝑢2

𝑑𝛼
 - 𝑓(𝑢1, 𝛼) 

𝑑𝑢1

𝑑𝛼
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For a ≤ 𝛼 ≤ b if 𝑓(𝑥, 𝛼) and 
𝜕𝑓

𝜕𝛼
 are continuous in both x and 𝛼 in some 

region of x α plane including, 𝑢1  ≤ 𝛼 ≤ 𝑢2 , a ≤ 𝛼 ≤ b and 𝑢1 and 𝑢2 are 

continuous and have continuous derivatives in interval (a, b). 

Note: if 𝑢1 and 𝑢2 are constants, the last two terms in (1) are zero and 

so 
𝑑∅

𝑑𝛼
 = ∫

𝜕𝑓

𝜕𝛼
𝑑𝑥

𝑢2

𝑢1
 

 

 

 

3.17 LAPLACE TRANSFORM OF INTEGRALS 

∎ If L{F(t)} = f(p), then L{∫ 𝐹(𝑡)𝑑𝑡}
𝑡

0
 = 

1

𝑃
 f(p) 

Proof:        let G(t) = ∫ 𝐹(𝑡)𝑑𝑡
𝑡

0
, then 𝐺′(𝑡) = F(t) and G(0) = 0 

Taking Laplace transform, we get 

L{𝐺′(𝑡) } = p L{G(t)} – G(0) = p L{G(t)} 

∴ L{G(t)} = 
1

𝑃
 L{𝐺′(𝑡) } = 

1

𝑃
 L{G(t)} = 

1

𝑃
 f(p) 

i.e.        L{∫ 𝐹(𝑡)𝑑𝑡}
𝑡

0
 = 

1

𝑃
 f(p) 

 

3.18 MULTIPLICATION BY t n 

 

∎ If L{F(t)} = f(p), then L{tn F(t)} = (−𝟏)𝒏 
𝒅𝒏

𝒅𝒑𝒏[f(p)],  

     where n = 1, 2, 3, …….. 

Proof: we prove the theorem by Mathematical induction 
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If L{F(t)} = f(p)     ⟹    ∫ 𝑒−𝑝𝑡 . 𝐹(t)𝑑𝑡
∞

0
 = f(p)      

Differentiating both sides w.r.t. p ( using Leibnitz’s rule) , we have 

                  
𝑑

𝑑𝑝
 ∫ 𝑒−𝑝𝑡 . 𝐹(t)𝑑𝑡

∞

0
 = 

𝑑

𝑑𝑝
  [f(p)]  

Or              ∫
𝜕

𝜕𝑝
𝑒−𝑝𝑡 . 𝐹(t)𝑑𝑡

∞

0
 = 

𝑑

𝑑𝑝
  [f(p)] 

Or              ∫ −𝑡 𝑒−𝑝𝑡 . 𝐹(t)𝑑𝑡
∞

0
 = 

𝑑

𝑑𝑝
  [f(p)] 

Or              ∫ 𝑒−𝑝𝑡[ 𝑡𝐹(t)]𝑑𝑡
∞

0
 = - 

𝑑

𝑑𝑝
  [f(p)] 

Or             L{F(t)} = - 
𝑑

𝑑𝑝
  [f(p)] 

Therefore theorem is true for n = 1. 

Now assume the theorem to be true for n = m, so that 

               L{tm F(t)} = (−1)𝑚 
𝑑𝑚

𝑑𝑝𝑚[f(p)] 

Or          ∫ 𝑒−𝑝𝑡𝑡𝑚 𝐹(t)𝑑𝑡
∞

0
 = (−1)𝑚 

𝑑𝑚

𝑑𝑝𝑚[f(p)] 

Differentiating both sides w.r.t. p, we have 

           
𝑑

𝑑𝑝
 ∫ 𝑒−𝑝𝑡𝑡𝑚 𝐹(t)𝑑𝑡

∞

0
 = (−1)𝑚 

𝑑𝑚+1

𝑑𝑝𝑚+1[f(p)] 

Or         ∫
𝜕

𝜕𝑝
𝑒−𝑝𝑡𝑡𝑚 𝐹(t)𝑑𝑡

∞

0
 = (−1)𝑚 

𝑑𝑚+1

𝑑𝑝𝑚+1[f(p)]  

Or        ∫ −𝑡𝑒−𝑝𝑡𝑡𝑚 𝐹(t)𝑑𝑡
∞

0
 = (−1)𝑚 

𝑑𝑚+1

𝑑𝑝𝑚+1[f(p)]    

Or        ∫ 𝑒−𝑝𝑡𝑡𝑚+1 𝐹(t)𝑑𝑡
∞

0
 = (−1)𝑚+1 

𝑑𝑚+1

𝑑𝑝𝑚+1[f(p)] 

Or       L{𝑡𝑚+1 F(t)} = (−1)𝑚+1 
𝑑𝑚+1

𝑑𝑝𝑚+1[f(p)] 



Mathematical Methods  MAT 509 

Department of Mathematics  
Uttarakhand Open University                                                                                                                            57 
 

Which shows that the theorem is true for n = m + 1. 

Hence by Mathematical induction, the theorem is true for all positive integer n. 

 

3.19 DIVISION BY t 

∎ If L{F(t)} = f(p), then L{
𝟏

𝒕
 𝑭(𝒕)} = ∫ 𝒇(𝒑)𝒅𝒑

∞

𝒑
 provided the integral 

exists. 

Proof: we have f(p) = ∫ 𝑒−𝑝𝑡 . 𝐹(t)𝑑𝑡
∞

0
  

Integrating both sides w.r.t. p from p to ∞ , we have 

∫ f(p)dp
∞

p
 = ∫ [ ∫ 𝑒−𝑝𝑡 . 𝐹(t)𝑑𝑡

∞

0
]𝑑𝑝

∞

p
  

Since p and t are independent, changing the order of integration on the 

right-hand side, we have  

∫ f(p)dp
∞

p
 = ∫ [ ∫ 𝑒−𝑝𝑡 . 𝐹(t)𝑑𝑡

∞

𝑝
]𝑑𝑝

∞

0
  

                  = ∫ [
𝑒−𝑝𝑡

−𝑡
]

𝑝

∞
∞

0
 F(t) dt = ∫ 𝑒−𝑝𝑡∞

0

𝐹(𝑡)

𝑡
 dt = L{

1

𝑡
 𝐹(𝑡)}. 

 

ILLUSTRATIVE EXAMPLES 

Example 1. If L{t sin 𝜔𝑡 } = 
2𝜔𝑡

(𝑝2+𝜔2)2 , evaluate 

(i) L{𝜔𝑡 cos 𝜔𝑡 + sin 𝜔𝑡 }         (ii) L{2 cos 𝜔𝑡 − 𝜔𝑡 sin 𝜔𝑡 }        

Sol.  Let F(t) = t sin 𝜔𝑡 then  

         𝐹′(𝑡) = 𝜔𝑡 cos 𝜔𝑡 + sin 𝜔𝑡 and 𝐹′′(𝑡) = 2𝜔 cos 𝜔𝑡 - 𝜔2 t sin 𝜔𝑡 
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Also F(0) = 0, 𝐹′(0) = 0, 𝐹′′(0) = 2𝜔 

Given f(p) = 
2𝜔𝑝

(𝑝2+𝜔2)2 

(i) L{𝐹′(𝑡)} = p f(p) – F(0) 

⟹ L{𝜔𝑡 cos 𝜔𝑡 + sin 𝜔𝑡 } = p. 
2𝜔𝑝

(𝑝2+𝜔2)2  - 0 = 
2𝜔𝑝2

(𝑝2+𝜔2)2. 

(ii)   L{𝐹′′(𝑡)} = 𝑝2 f(p) – p F(0) - 𝐹′(0) 

             ⟹ L{2𝜔 cos 𝜔𝑡 − 𝜔2t sin 𝜔𝑡 } = 𝑝2. 
2𝜔𝑝

(𝑝2+𝜔2)2  - p.0 - 0 = 
2𝜔𝑝3

(𝑝2+𝜔2)2 

∴ L{2 cos 𝜔𝑡 − 𝜔𝑡 sin 𝜔𝑡 } = 
𝑝3

(𝑝2+𝜔2)2 . 

Example 2. If F(t) = 
𝑒𝑎𝑡−cos 𝜔𝑡

𝑡
 , find the Laplace transform of F(t). 

Sol. L(𝑒𝑎𝑡) = 
1

𝑝−𝑎
 

       L(cos 𝑏𝑡) = 
𝑝

𝑝2+𝑏2 

      ∴  L(𝑒𝑎𝑡 − cos 𝑏𝑡) = 
1

𝑝−𝑎
− 

𝑝

𝑝2+𝑏2 

Now,  L(
𝑒𝑎𝑡−cos 𝜔𝑡

𝑡
) = ∫ (

1

𝑝−𝑎
−  

𝑝

𝑝2+𝑏2)
∞

p
dp 

                                = [log(𝑝 − 𝑎) −
1

2
log (𝑝2 + 𝑏2)]

𝑝

∞

 

                                = 
1

2
 [log(𝑝 − 𝑎)2 − log (𝑝2 + 𝑏2)]𝑝

∞ 

                               = 
1

2
 [log

(𝑝−𝑎)2

𝑝2+𝑏2
]

𝑝

∞

 = 
1

2
 [log

1−
𝑎

𝑝

1+
𝑏2

𝑝2

]

𝑝

∞

 

                               = - 
1

2
 log {

(𝑝−𝑎)2

𝑝2+𝑏2 } = 
1

2
 log {

𝑝2+𝑏2

(𝑝−𝑎)2}. 
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Example 3. Find the Laplace transform of 
sin 𝑎𝑡

𝑡
 , Does the Laplace 

transform of 
Cos 𝑎𝑡

𝑡
 exist ? 

Sol. Since lim
t →0

( 
sin 𝑎𝑡

𝑡
 ) = a, the Laplace transform of 

sin 𝑎𝑡

𝑡
 exists. 

       Now, L( sin 𝑎𝑡 ) = 
𝑎

𝑝2+𝑎2 

      ∴ L( 
sin 𝑎𝑡

𝑡
 ) = ∫

𝑎

𝑝2+𝑎2  𝑑𝑝
∞

p
 = [tan−1 (

𝑝

𝑎
)]

𝑝

∞

 = 
𝜋

2
 - tan−1 (

𝑝

𝑎
) 

                          = cot−1 (
𝑝

𝑎
) = tan−1 (

𝑎

𝑝
) . 

Example 4. Find the Laplace transform of  

(i) 𝑡3𝑒−3𝑡                 (ii) t Sin2 3t                    (iii) 
1−𝐶𝑜𝑠𝑡

𝑡2   

𝐒𝐨𝐥.  (i) L{𝑒−3𝑡} = 
1

𝑝 + 𝑎
  

          ∴ L{𝑡3𝑒−3𝑡} = (−1)3 𝑑3

𝑑𝑝3 (
1

𝑝 + 3
) = - 

(−1)3 3!

(𝑝+3)4  = 
6

(𝑝+3)4 . 

(ii) sin2 3t = 
1−𝐶𝑜𝑠6𝑡

2
   

     ∴  L{𝑠𝑖𝑛23𝑡} = 
1

2
 [ L(1) – L(cos 6t) ] = 

1

2
 (

1

𝑝
−

𝑝

𝑝2+36
 ) = 

18

𝑝(𝑝2+36)
 

     ∴ L{𝑡𝑠𝑖𝑛23𝑡} = - 
𝑑

𝑑𝑝
 [

18

𝑝(𝑝2+36)
] = (-18) (-1) (𝑝3 + 36𝑝)−2(3𝑝2 + 36) 

                            = 
54(𝑝2+12)

𝑝2(𝑝2+36)2 . 

(iii) L(1 – cos t ) = 
1

𝑝
 - 

𝑝

𝑝2+1
  

L(
1 – cos t 

𝑡
) = ∫ ( 

1

𝑝
 −  

𝑝

𝑝2+1
) 𝑑𝑝

∞

p
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                  = [log 𝑝 −  
1

2
 log (𝑝2 + 1) ]

𝑝

∞

= 
1

2
 [log (

𝑝2

𝑝2+1
)]

𝑝

∞

 

                   = 
1

2
 [log (

1

1+ 
1

𝑝2

)]

𝑝

∞

= - 
1

2
 log (

𝑝2

𝑝2+1
) =  

1

2
 log (

𝑝2+1

𝑝2 ) 

Now, L(
1 – cos t 

𝑡2 ) = ∫  
1

2
 log (

𝑝2+1

𝑝2 )𝑑𝑝
∞

p
  

                  = 
1

2
 ∫  [log( 𝑝2 + 1) −  2 log 𝑝]𝑑𝑝

∞

p
 

                 =  
1

2
 [{log( 𝑝2 + 1) −  2 log 𝑝}. 𝑝 − ∫ (

2𝑝

𝑝2+1
−

2

𝑝
) . 𝑝𝑑𝑝]

𝑝

∞

 

                = [
𝑝

2
log (

𝑝2+1

𝑝2 )]
𝑝

∞

+ ∫
1

𝑝2+1
𝑑𝑝

∞

p
 = - 

𝑝

2
 log (1 +  

1

𝑝2) + 
𝜋

2
− tan−1 𝑝 

⟹ L(
1 – cos t 

𝑡2 ) = cot−1 𝑝 - 
𝑝

2
 log (1 +  

1

𝑝2). 

Example 5. Find the Laplace transform of the following functions: 

(i) 
𝑒−𝑡 sin 𝑡

𝑡
                                          (ii)  

1 – cos 2t 

𝑡
 

Sol. (i) L(𝑒−𝑡 sin 𝑡) = 
1

(𝑝+1)2+1
 

⟹ L(
𝑒−𝑡 sin 𝑡

𝑡
) = ∫

1

(𝑝+1)2+1
𝑑𝑝

∞

p
 = [tan−1(𝑝 + 1)]𝑝

∞ 

                       = 
𝜋

2
− tan−1(𝑝 + 1) = cot−1(𝑝 + 1). 

(ii) L(1 – cos 2t) = 
1

𝑃
 - 

𝑝

𝑝2+22 

⟹ L(
1 – cos 2t

𝑡
) = ∫ (

1

𝑝
−

𝑝

𝑝2+4
) 𝑑𝑝

∞

p
 

                         = [log 𝑝 − 
1

2
 log (𝑝2 + 4) ]

𝑝

∞
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                         = 
1

2
 [log

𝑝2

𝑝2+4
]

𝑝

∞

= 
1

2
 [ lim

𝑝⟶∞
log (

1

1+ 
4

𝑝2

) − log
𝑝2

𝑝2+4
 ] 

                         = 
1

2
 [log 1 +  log

𝑝2+4

𝑝2
] = 

1

2
 log (

𝑝2+4

𝑝2 ). 

 

3.20 SUMMARY 

1. Laplace transform L{F(t)} = f(p) = ∫ 𝑒−𝑝𝑡𝐹(𝑡)𝑑𝑡
∞

0
 . 

2. Laplace transform of some elementary functions  

   (i) L{1} = 
1

𝑝
 , p > 0           

   (ii) L{𝑡𝑛} = 
𝑛!

𝑝𝑛+1 , where n is positive integer.  

   (iii) L{𝑒𝑎𝑡} = 
1

𝑝 − 𝑎
 , p > a     

   (iv) L{𝑠𝑖𝑛𝑎𝑡} = 
𝑎

𝑝2+𝑎2 , p > 0 

3. Exitance theorem: If F(t) is piecewise continuous for t ≥ 0 and is of 

exponential order b, then L{F(t)} = f(p) exist for p > b. 

4. Laplace transform of derivative:  

    L{𝐹′(t)} = pL{F(t)} – F(0) = pf(p) – F(o) ,     if L{F(t)}= f(p) 

5. Initial-value theorem: If F(t) is continuous for all t ≥ 0 and is of 

exponential order as t → ∞ and if 𝐹′(𝑡) is of class A then   

 lim
t →0

F(t) =  lim
p →∞

𝑝𝐿{F(t)}. 

6. Final-value theorem: If F(t) is continuous for all t ≥ 0 and is of 

exponential order as t → ∞ and if 𝐹′(𝑡) is of class A then   lim
t →∞

F(t) =  

lim
p →0

𝑝𝐿{F(t)}. 
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7. If L{F(t)} = f(p), then L{
1

𝑡
 𝐹(𝑡)} = ∫ 𝑓(𝑝)𝑑𝑝

∞

𝑝
 provided the integral 

exists. 

CHECK YOUR PROGRESS  

True and False questions 

Problem 1.    lim
t →0

F(t) =  lim
p →∞

𝑝𝐿{F(t)} is Initial-value theorem. 

Problem 2.    Laplace transform is defined as  

                          L{F(t)} = f(p) = ∫ 𝑒−𝑝𝑡𝐹(𝑡)𝑑𝑡
∞

0
 . 

Problem 3. L{𝑡𝑛} = 
𝑛!

𝑝𝑛+1 , where n is positive integer.  

Problem 4. L{𝑠𝑖𝑛𝑎𝑡} = 
𝑎

𝑝2+𝑎2 , p > 0 

Problem 5. If L{F(t)} = f(p), then L{
1

𝑡
 𝐹(𝑡)} = ∫ 𝑓(𝑝)𝑑𝑝

∞

𝑝
 

provided not the integral exists. 

 

 

 

 

 

 

 

3.21 GLOSSARY 
 

Discontinuous functions  

Periodic Functions 

Integration  

Even, odd functions   

Trigonometric functions 

Integrations  
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3.24 TERMINAL AND MODEL QUESTIONS 

 

Q 1. Definition of Laplace transform. 

Q 2. What is Initial-value theorem and Final value theorem. 

Q 3 Find the Laplace transform of the following functions: 

       (i) 𝑡5𝑒3𝑡                 (ii) 𝑒−2𝑡𝑠𝑖𝑛4𝑡 

Q 4. Find the Laplace transform of the function 𝐿{𝑠𝑖𝑛2𝑡} .               

Q 5. State and prove Existence theorem. 
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3.25 ANSWERS 

CHECK YOUR PROGRESS 

        CYQ 1. True 

        CYQ 2. True 

        CYQ 3. True 

        CYQ 4. True 

        CYQ 5. False 

        TERMINAL QUESTIONS 

         TQ 3. (i) 
120

(p − 3)6           (ii) 
4

p2 + 4p + 20
 

         TQ 4. 
𝑝2+8

𝑝(𝑝2+16)
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4.1 INTRODUCTION 

In mathematics, the inverse Laplace transform of a function F(s) 

is the piecewise-continuous and exponentially-restricted real function 

f(t) which has the property: denotes the Laplace transform. 

 

4.2 OBJECTIVE 

At the end of this topic Lerner will be able to understand:  

(i) Heaviside’s Unit Step Function  

(ii) inverse Laplace transform  

(iii)       Heavisede Expansion Formula for Inverse Laplace Transform 

(iv)       Convolution theorem 

 

4.3 LAPLACE TRANSFORM OF SOME SPECIAL 

FUNCTIONS 

∎ (1) Unit Step Function ( Or Heaviside’s Unit Step Function) 

The unit step function u(t – a) is defined as                          u (t – a) 

u(t – a) = {
0, 𝑡 < 𝑎
1, 𝑡 ≥ 𝑎

 , where a ≥ 0.                                                                                                                     

As a particular case, u(t) = {
0, 𝑡 < 0
1, 𝑡 ≥ 0

  

The product F(t).u(t – a) = {
0, 𝑡 < 𝑎

𝐹(𝑡), 𝑡 ≥ 𝑎
                           0          a                           

t 

The function F(t – a). u(t – a) represents the graph of F(t) shifted through 

a distance ‘a’ to be right. 

Laplace Transform of Unit Step function 

L{u(t – a)} = ∫ 𝑒−𝑝𝑡𝑢(𝑡 − 𝑎)𝑑𝑡
∞

0
 

                   = ∫ 𝑒−𝑝𝑡 . 0 𝑑𝑡
𝑎

0
 + ∫ 𝑒−𝑝𝑡 . 1 𝑑𝑡

∞

𝑎
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                   = 0 + [−
𝑒−𝑝𝑡

𝑝
]

𝑎

∞

= 
1

p
 𝑒−𝑎𝑡 

In particular,     L{u(t)} = 
1

p
 . 

Second Shifting Theorem 

If L{F(t)} = f(p), then L{F(t – a).u(t-a)} = 𝒆−𝒂𝒑f(p). 

L{F(t – a).u(t-a)} = ∫ 𝑒−𝑝𝑡F(t –  a). u(t − a)𝑑𝑡
∞

0
 

                             = ∫ 𝑒−𝑝(𝑢+𝑎)F(u)𝑑𝑢
∞

0
, where u = t – a 

                             = 𝑒−𝑎𝑝 ∫ 𝑒−𝑝𝑢F(u)𝑑𝑢
∞

0
 = 𝑒−𝑎𝑝 f(p) 

Note: ∎ if a = 0, L{F(t) u(t)} = f(p) = L{F(t)}. 

 

ILLUSTRATIVE EXAMPLES 

Example 1. Express the following functions in terms of Heaviside’s unit 

step function: 

(i) 𝒇(𝒕) = {
𝒔𝒊𝒏 𝒕,    𝟎 < 𝒕 < 𝝅

𝒔𝒊𝒏 𝟐𝒕,   𝝅 < 𝒕 < 𝟐𝝅
𝒔𝒊𝒏 𝟑𝒕,          𝒕 > 𝟐𝝅

                 (ii) 𝑭(𝒕) = {
𝒆−𝒕      , 𝟎 < 𝒕 < 𝟑

𝟎      ,    𝒙 > 𝟑
 

(iii) 𝑭(𝒕) = {
𝒔𝒊𝒏 𝒕         ,              𝒕 > 𝝅
𝒄𝒐𝒔 𝒕          ,    𝟎 < 𝒕 < 𝝅

. 

Sol. (i) F(t) = sin t { u(t) – u(t – 𝜋)} + sin 2t{u(t – 𝜋) − 𝑢(𝑡 − 2𝜋)}  

                                                             + sin3t u(t - 2 𝜋) 

          = sin t u(t) + ( sin 2t – sin t) u(t - 𝜋) + ( sin 3t – sin 2t) u(t - 2 𝜋). 

(ii) F(t) = 𝑒−𝑡 { u(t) – u(t – 3)} + 0 {u(t – 3)} 

             = 𝑒−𝑡{ u(t) – u(t – 3)}. 
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(iii) F(t) = sin t u(t - π) + cos t{u(t) - u(t - π)} 

              = cos t u(t) + (sin t – cos t) u(t - π) 

Example 2. Find the Laplace transformation of the following functions 

(i) (t − 1)2 u(t − 1)                                (ii) sin t u(t - 𝜋) 

(iii) 𝑒−3𝑡u (t – 2)                                      (iv) 𝑒−𝑡 { 1 – u(t – 2)} 

Sol. (i) Comparing (t − 1)2 u(t − 1) with F(t – a) u(t -a) 

a= 1 and F(t) = 
2

𝑝3  

∴ f(p) = L{F(t)} = 
2

𝑝3 

∴ L{(t − 1)2 u(t − 1) } = 𝑒−𝑡 f(p) 

                                        = 
2𝑒−𝑝

𝑝3  . 

(ii) Expressing sin t as a function of (t - 𝜋) , we have 

                     Sin t = sin [ (t - 𝜋) + 𝜋] = - sin(t - 𝜋) 

Comparing - sin(t - 𝜋)𝑢(t - 𝜋) with F(t – a) u(t - a), we get 

                     a= 𝜋 and F(t) = - sin t 

∴                   f(p) = L{F(t)} = −
1

𝑝2+1
 

Now by second shifting property 

∴ L[sin t u(t - 𝜋)] = 𝑒−𝜋𝑝f(p) 

                             =  
−𝑒−𝜋𝑝

𝑝2+1
 . 

(iii) L{u(t – 2)} = 
𝑒−2𝑝

𝑝
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∴ L{𝑒−3𝑡u(t – 2)} = 
𝑒−2(𝑝+3)

𝑝+3
      ( using by first shifting property). 

(𝑖𝑣) L{1 – u(t – 2)} = 
1

𝑝
 - 

𝑒−2𝑝

𝑝
 

∴ L[𝑒−𝑡{1 –  u(t –  2)}] = 
1

𝑝+1
 - 

𝑒−2(𝑝 + 1)

𝑝 + 1
        ( using by first shifting 

property).  

 

Example 3. Express the function shown in the diagram in term of unit 

step function and obtain its Laplace transformation.  

  Sol. Here   𝑓(𝑡) = {
𝑡 − 1  , 1 < 2 < 3
3 − 𝑡  ,   2 < 𝑡 < 3

                 1                                                                                    

∴ F(t) = (t – 1) {u(t – 1) – u (t – 2)} +                                                                                                           

      (3 – t) {u(t – 2) – u (t – 3)}                        0         1        2        3         t   

           = (t – 3) u (t – 3) – 2 (t – 2) u (t – 2) + (t -1) u (t -1) 

Hence, L{F(t)} = L{(t – 3) u (t – 3) – 2 (t – 2) u (t – 2) + (t -1) u (t -1)} 

                          = 
𝑒−3𝑝

𝑝2  - 
2𝑒−2𝑝

𝑝2  + 
𝑒−𝑝

𝑝2  

                          = 
𝑒−𝑝(1−𝑒−𝑝)2

𝑝2  . 

∎ (2) Periodic Function. 

If f(t) is a periodic function with period T i.e. f(t + T) = f(t). then  

L{f(t)} = 
1

1−𝑒−𝑝𝑇 
 ∫ 𝑒−𝑝𝑡𝑓(𝑡)𝑑𝑡

𝑇

0
  

Here, L{f(t)} = ∫ 𝑒−𝑝𝑡𝑓(𝑡)𝑑𝑡
∞

0
  

                      = ∫ 𝑒−𝑝𝑡𝑓(𝑡)𝑑𝑡
𝑇

0
 + ∫ 𝑒−𝑝𝑡𝑓(𝑡)𝑑𝑡

2𝑇

𝑇
 + ∫ 𝑒−𝑝𝑡𝑓(𝑡)𝑑𝑡

3𝑇

2𝑇
 + …. 

Putting t = u, t = u + T, t = u + 2T, ……. In the successive integrals 
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      L{f(t)} = ∫ 𝑒−𝑝𝑢𝑓(𝑢)𝑑𝑢
𝑇

0
 + ∫ 𝑒−𝑝(𝑢+𝑇)𝑓(𝑢 + 𝑇)𝑑𝑢

𝑇

0
  

                                             + ∫ 𝑒−𝑝(𝑢+2𝑇)𝑓(𝑢 + 2𝑇))𝑑𝑢
𝑇

0
 + …. 

Since     f(u) = f(u + T) = f(u + 2T) = ……, we have 

L{f(t)} = ∫ 𝑒−𝑝𝑢𝑓(𝑢)𝑑𝑢
𝑇

0
 + 𝑒−𝑝𝑇 ∫ 𝑒−𝑝𝑢𝑓(𝑢)𝑑𝑢

𝑇

0
  

                          + 𝑒−2𝑝𝑇 ∫ 𝑒−𝑝𝑢𝑓(𝑢)𝑑𝑢
𝑇

0
 + …. 

             = (1 + 𝑒−𝑝𝑇 + 𝑒−2𝑝𝑇  + ….) ∫ 𝑒−𝑝𝑢𝑓(𝑢)𝑑𝑢
𝑇

0
  

              = 
1

1−𝑒−𝑝𝑇 
 ∫ 𝑒−𝑝𝑡𝑓(𝑡)𝑑𝑡

𝑇

0
 . 

ILLUSTRATIVE EXAMPLES 

Example 1. Find the Laplace transform of the following periodic 

functions: 

(i) f(t) = 
𝑡

𝑇
 , for 0< t < T (saw-tooth wave of period T)                     

(ii) f(t) = sin (
𝜋𝑡

𝑎
) for 0 < t < a. (Rectified sine wave of period a) 

Sol. (i) Here, L{f(t)} = 
1

1−𝑒−𝑝𝑇 
 ∫ 𝑒−𝑝𝑡𝑓(𝑡)𝑑𝑡

𝑇

0
 = 

1

1−𝑒−𝑝𝑇 
 ∫ 𝑒−𝑝𝑡 .

𝑡

𝑇
 𝑑𝑡

𝑇

0
 

                                  = 
1

𝑇(1−𝑒−𝑝𝑇) 
[(

𝑡𝑒−𝑝𝑡

−𝑝
)

0

𝑇

− ∫ 1.
𝑒−𝑝𝑡

𝑇
 𝑑𝑡

𝑇

0
] 

                                  =  
1

1−𝑒−𝑝𝑇 
 [−

𝑒−𝑝𝑡

𝑇
+

1− 𝑒−𝑝𝑡

𝑝2𝑇
] = 

1

𝑝2𝑇
 - 

𝑒−𝑝𝑇

𝑝(1−𝑒−𝑝𝑇)
 

(ii) L{f(t)} = 
1

1−𝑒−𝑎𝑝 
 ∫ 𝑒−𝑝𝑡 sin (

𝜋𝑡

𝑎
) 𝑑𝑡

𝑎

0
      ….. (1) 

Let I = ∫ 𝑒−𝑝𝑡 . sin (
𝜋𝑡

𝑎
) 𝑑𝑡

𝑎

0
 

         = [
𝑒−𝑝𝑡

𝑝2+
𝜋2

𝑎2

 (−𝑝 sin (
𝜋𝑡

𝑎
) −

𝜋

𝑎
cos (

𝜋𝑡

𝑎
))]

0

𝑎
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         = [−
𝑒−𝑎𝑡

𝑝2+
𝜋2

𝑎2

(
𝜋

𝑎
)] - [

1

𝑝2+
𝜋2

𝑎2

(−
𝜋

𝑎
)] = 

(1+𝑒−𝑎𝑝)𝑎𝜋

𝑎2𝑝2+ 𝜋2  

∴ From (1), L{f(t)} = 
(1+𝑒−𝑎𝑝)𝑎𝜋

(1−𝑒−𝑎𝑝)(𝑎2𝑝2+ 𝜋2)
 

                                 = (
𝑒

𝑎𝑝
2  + 𝑒

−
𝑎𝑝
2

𝑒
𝑎𝑝
2  − 𝑒

−
𝑎𝑝
2

) (
𝑎𝜋

𝑎2𝑝2+ 𝜋2) = 
𝑎𝜋 cot ℎ

𝑎𝑝

2

𝑎2𝑝2+ 𝜋2  . 

 

Example 2. Draw the graph and find the Laplace transform of the 

triangular wave function of period 2c given by 

                                                 f(t) = {
t        , 0 < t ≤ c

2c − t  ,   c < t < 2c
 . 

Sol. L{f(t)} = 
1

1−𝑒−2𝑐𝑝 
 ∫ 𝑒−𝑝𝑡𝑓(𝑡)𝑑𝑡

2𝑐

0
  

              = 
1

1−𝑒−2𝑐𝑝 
 [∫ 𝑒−𝑝𝑡 . 𝑡 𝑑𝑡 + ∫ 𝑒−𝑝𝑡(2𝑐 − 𝑡)𝑑𝑡

2𝑐

𝑐

𝑐

0
] 

              = 
1

1−𝑒−2𝑐𝑝 
 [{𝑡.

𝑒−𝑝𝑡

−𝑝
− 1.

𝑒−𝑝𝑡

𝑝2
}

0

𝑐

+ {(2𝑐 − 𝑡).
𝑒−𝑝𝑡

−𝑝
− (−1).

𝑒−𝑝𝑡

𝑝2
}

𝑐

2𝑐

] 

              = 
1

1−𝑒−2𝑐𝑝 
 [{−

𝑐𝑒−𝑐𝑝

𝑝
−

𝑒−𝑐𝑝

𝑝2 +
1

𝑝2
} + {

𝑒−2𝑐𝑝

𝑝2 +
𝑐𝑒−𝑐𝑝

𝑝
−

𝑒−𝑐𝑝

𝑝2
}] 

              = 
1

1−𝑒−2𝑐𝑝 
(

1 − 2𝑒−𝑐𝑝 + 𝑒−2𝑐𝑝

𝑝2 ) = 
1

𝑝2 
(1−𝑒−𝑐𝑝)2

(1+ 𝑒−𝑐𝑝)(1− 𝑒−𝑐𝑝)
 = 

1

𝑝2 . 
1−𝑒−𝑐𝑝

1+𝑒−𝑐𝑝 

              = 
1

𝑝2 (
𝑒

𝑐𝑝
2  + 𝑒

−
𝑐𝑝
2

𝑒
𝑐𝑝
2  − 𝑒

−
𝑐𝑝
2

) = 
1

𝑝2 tan (
𝑐𝑝

2
) . 

The graph of the given function is shown below: 
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Example 3. Find the Laplace transform of the rectified semi-wave 

function defined by 

                    f(x) = {
sin 𝜔 t      , 0 < t ≤

𝜋

𝜔

   0                  ,   
𝜋

𝜔
< t <

2𝜋

𝜔

    or 

 

Find the Laplace transform of the following periodic function 

Sol. Here f(t) is a periodic function with period 
2𝜋

𝜔
 

∴ L{f(t)} = 
1

1−𝑒
−

2𝜋𝑝
𝜔  

 ∫ 𝑒−𝑝𝑡𝑓(𝑡)𝑑𝑡
2𝜋𝑝

𝜔
0

  

                  = 
1

1−𝑒
−

2𝜋𝑝
𝜔  

 [∫ 𝑒−𝑝𝑡 sin 𝜔 t 𝑑𝑡
π/ω

0
+ ∫ 𝑒−𝑝𝑡 . 0 𝑑𝑡

2π/ω

π/ω
] 

                

                = 
1

1−𝑒
−

2𝜋𝑝
𝜔  

 [
𝑒−𝑝𝑡(−𝑝 sin 𝜔t−ω cosωt)

𝑝2+𝜔2
]

0

π/ω

 

                = 
𝜔 𝑒

−
𝜋𝑝
𝜔 + 𝜔

(1− 𝑒
−

𝜋𝑝
𝜔  )(1+ 𝑒

−
𝜋𝑝
𝜔  )(𝑝2+𝜔2)

 = 
𝜔

(1− 𝑒
−

𝜋𝑝
𝜔  )(𝑝2+𝜔2)

 . 

 

4.4 INVERSE LAPLACE TRANSFORM 

If L{F(t)} = f(p), then F(t) is called the inverse Laplace transform of f(p) 

and is defined as 

𝐿−1{𝑓(𝑝)}  = F(t) 

Here 𝐿−1 denotes the inverse Laplace transform operator 

Example: Since L{𝑒5𝑡} = 
1

𝑝−5
    ∴  𝐿−1{

1

𝑝−5
}  = 𝑒5𝑡 

The inverse Laplace transform given below at once from the results of 

Laplace transforms given earlier: 
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(1) 𝐿−1{ 
1

𝑝
 }  = 1                                             (2) 𝐿−1{ 

1

𝑝−5
 }  = 𝑒𝑎𝑡     

(3)  𝐿−1{ 
1

𝑝𝑛 }  = 
𝑡𝑛−1

(𝑛−1)!
 , if n is a positive integer. 

(4) 𝐿−1{ 
1

(𝑝−𝑎)𝑛 }  = 𝑒𝑎𝑡 𝑡𝑛−1

(𝑛−1)!
                      (5) 𝐿−1{ 

1

𝑝2+𝑎2 } = 
1

𝑎
 sin at 

(6) 𝐿−1{ 
𝑝

𝑝2+𝑎2 } = cos at                             

(7) 𝐿−1{ 
1

𝑝2−𝑎2 }  =  
1

𝑎
 sinh at 

(8)  𝐿−1{ 
𝑝

𝑝2−𝑎2 }  = cosh at 

4.5 LINEARITY PROPERTY 

If 𝑐1 𝑎𝑛𝑑 𝑐2 are constants and L{𝐹1(𝑡)} = 𝑓1(p) and L{𝐹2(𝑡)} = 𝑓2(p), 

then 

 𝐿−1{𝑐1𝑓1(p) + 𝑐2𝑓2(p)} =  𝑐1𝐿−1{𝑓1(p)} + 𝑐2𝐿−1{𝑓2(p)}. 

By definition,  

L{𝑐1𝑓1(p) + 𝑐2𝑓2(p)} = ∫ 𝑒−𝑝𝑡{𝑐1𝐹1(t) +  𝑐2𝐹2(t)} 𝑑𝑡
∞

0
 

                                   = 𝑐1 ∫ 𝑒−𝑝𝑡𝐹1(t)𝑑𝑡
∞

0
 + 𝑐2 ∫ 𝑒−𝑝𝑡𝐹2(t)𝑑𝑡

∞

0
 

                                   = 𝑐1𝑓1(p) + 𝑐2𝑓2(p) 

∴ 𝐿−1{𝑐1𝑓1(p) + 𝑐2𝑓2(p)} = 𝑐1𝐹1(t) + 𝑐2𝐹2(t) = 𝑐1𝐿−1{𝑓1(p)} + 

𝑐2𝐿−1{𝑓2(p)}. 

Note: ∎ The above result can be extended to more 

than two functions. 
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4.6 FIRST TRANSLATION OR SHIFTING 

PROPERTY 

∎ If 𝑳−𝟏{𝒇(𝒑)}  = F(t), then 𝑳−𝟏{𝒇(𝒑 − 𝒂)}  = 𝒆𝒂𝒕F(t). 

f(p) = ∫ 𝑒−𝑝𝑡 . F(t)𝑑𝑡
∞

0
             (By definition) 

∴ f(p - a) = ∫ 𝑒−(𝑝−𝑎)𝑡 . F(t)𝑑𝑡
∞

0
 

                = ∫ 𝑒−𝑝𝑡 . 𝑒𝑎𝑡F(t)𝑑𝑡
∞

0
 = L{𝑒𝑎𝑡F(t)} 

∴      𝐿−1{𝑓(𝑝 − 𝑎)}  = 𝑒𝑎𝑡F(t). 

 

4.7 SECOND TRANSLATION OR SHIFTING 

PROPERTY 

∎ If 𝑳−𝟏{𝒇(𝒑)}  = F(t), then 

 𝑳−𝟏{𝑒−𝑎𝑡𝒇(𝒑)}  = G(t) where 𝑮(𝒕) = {
𝑭(𝒕 − 𝒂), 𝒙 > 𝒂

𝟎        , 𝒕 < 𝒂
 . 

f(p) = ∫ 𝑒−𝑝𝑡 . F(t)𝑑𝑡
∞

0
             (By definition) 

∴ 𝑒−𝑎𝑝f(p) = ∫ 𝑒−𝑎𝑝 . 𝑒−𝑝𝑡 . F(t)𝑑𝑡
∞

0
 = ∫ 𝑒−𝑝(𝑡+𝑎)𝑡. F(t)𝑑𝑡

∞

0
 

Put t + a = u then dt = du 

                    = ∫ 𝑒−𝑝𝑢 . F(u − a)𝑑𝑢
∞

𝑎
 = ∫ 𝑒−𝑝𝑡 . F(t − a)𝑑𝑡

∞

𝑎
 

                    

 = ∫ 𝑒−𝑝𝑡 . 0𝑑𝑡
𝑎

0
 + ∫ 𝑒−𝑝𝑡 . F(t − a)𝑑𝑡

∞

𝑎
 = ∫ 𝑒−𝑝𝑡 . G(t)𝑑𝑡

∞

0
 = L{G(t)} 

Hence the result. 

 

4.8 CHANGE OF SCALE PROPERTY 

∎ If 𝑳−𝟏{𝒇(𝒑)}  = F(t), then 𝑳−𝟏{𝒇(𝒂𝒑)}  = 
𝟏

𝒂
 F(

𝒕

𝒂
). 

f(p) = ∫ 𝑒−𝑝𝑡 . F(t)𝑑𝑡
∞

0
             (By definition) 



Mathematical Methods  MAT 509 

Department of Mathematics 
Uttarakhand Open University                                                                                                                            75 
 

∴ f(ap) = ∫ 𝑒−𝑎𝑝𝑡 . F(t)𝑑𝑡
∞

0
 , now put at = u therefore dt = 

du

a
 

             =  ∫ 𝑒−𝑎𝑝𝑡 . F (
𝑢

𝑎
)

∞

0

du

a
  =  

1

a
 ∫ 𝑒−𝑝𝑡 . F (

𝑡

𝑎
)

∞

0
𝑑𝑡 

             = ∫ 𝑒−𝑝𝑡 {
1

𝑎
 F (

𝑡

𝑎
)}

∞

0
 dt = 𝐿 {

1

𝑎
 F (

𝑡

𝑎
)} 

∴          𝐿−1{𝑓(𝑎𝑝)}  = 
1

𝑎
 F(

𝑡

𝑎
). 

Note:∎ Whenever it is convenient to break an expression into 

partial fractions, it becomes easier to manipulate inversion term by 

term. 

 

ILLUSTRATIVE EXAMPLES 

Example 1. Find the inverse Laplace transform of  

(i) 
3(p2−1)

2

2p5                              (ii) 
2p+1

p2−4
 

(iii) 
4p+15

16p2−25
                            (iv) 

p+1

p2+ p+1
 

Sol. (i) 
3(𝑝2−1)

2

2𝑝5  = 
3𝑝4−6𝑝2+3

2𝑝5  = 
3

2
.

1

𝑝
− 3. 

1

𝑝3 + 
3

2
.

1

𝑝5 

∴ 𝐿−1 {
3(𝑝2−1)

2

2𝑝5  }  = 
3

2
 𝐿−1 {

1

𝑝
 } − 3𝐿−1 {

1

𝑝3 } +
3

2
 𝐿−1 {

1

𝑝5 } 

                             = 
3

2
(1) - 3{

𝑡2

2!
} + 

3

2
{

𝑡4

4!
} = 

3

2
 - 

3

2
t2 + 

1

16
t4. 

(ii) 𝐿−1 {
2𝑝+1

𝑝2−4
 } = 2𝐿−1 {

𝑝

𝑝2−4
 } + 

1

2
𝐿−1 {

2

𝑝2−4
 } 

                         = 2 cosh 2t + 
1

2
 sinh 2t. 

(iii) 
4p+15

16p2−25
 = 

4p+15

16(𝑝2−
25

16
)
 = 

1

4
 . 

𝑝

𝑝2−(
5

4
)

2 + 
15

16
 . 

1

𝑝2−(
5

4
)

2 

∴ 𝐿−1 {
4p+15

16p2−25
 } = 

1

4
𝐿−1 {

𝑝

𝑝2−(
5

4
)

2 } + 
15

16
𝐿−1 {

1

𝑝2−(
5

4
)

2 } 

                           = 
1

4
 cosh(

5

4
𝑡) + 

15

16
 . 

1
5

4

 sinh(
5

4
𝑡) 
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                           = 
1

4
 cosh(

5

4
𝑡) + 

3

4
 sinh(

5

4
𝑡). 

(iv) 
𝑝+1

𝑝2+ 𝑝+1
 = 

 (𝑝 + 
1

2
)+ 

1

2

(𝑝 + 
1

2
)

2
+ 

3

4

 = 
 𝑝 + 

1

2

(𝑝 + 
1

2
)

2
+ ( 

√3

2
 )

2 + 
1

2
 . 

 1

(𝑝 + 
1

2
)

2
+ ( 

√3

2
 )

2 

∴ 𝐿−1 {
𝑝+1

𝑝2+ 𝑝+1
 } = 𝐿−1 {

 𝑝 + 
1

2

(𝑝 + 
1

2
)

2
+ ( 

√3

2
 )

2 } + 
1

2
𝐿−1 {

 1

(𝑝 + 
1

2
)

2
+ ( 

√3

2
 )

2 } 

                          = 𝑒−(
𝑡

2
)
 cos ( 

√3

2
𝑡 ) + 

1

2
 . 

1

√3

2
 
 𝑒−(

𝑡

2
)
 sin ( 

√3

2
𝑡 ) 

                          = 
1

√3
𝑒−(

𝑡

2
)
 (√3 cos

√3

2
𝑡 + sin

√3

2
𝑡). 

Example 2. Find the inverse Laplace transform of  

(i)  
6

2p − 3
− 

3 + 4p

9𝑝2 − 16
+ 

8 − 6p

16𝑝2  + 9 
                         (ii) 

p3

p4 − a4 

Sol.(i)  𝐿−1 {
6

2p − 3
−  

3 + 4p

9𝑝2 − 16
+  

8 − 6p

16𝑝2  + 9 
 }  

       = 3𝐿−1 {
 1

𝑝 – 
3

2

 } – 
1

3
𝐿−1 {

 1

𝑝2− ( 
4

3
 )

2 } – 
4

9
𝐿−1 {

 1

𝑝2− ( 
4

3
 )

2 } 

+
1

2
𝐿−1 {

 1

𝑝2 +  ( 
3
4 )

2 } 

                                                                           − 
3

8
𝐿−1 {

 𝑝

𝑝2+ ( 
3

4
 )

2 } 

            = 3𝑒
3

2
𝑡
 - 

1

3
.

3

4
sinh

4𝑡

3
 - 

4

9
cosh

4𝑡

3
 + 

1

2
.

4

3
sin

3𝑡

4
 - 

3

8
cos

3𝑡

4
 

            = 3𝑒
3

2
𝑡
 - 

1

4
sinh

4𝑡

3
 - 

4

9
cosh

4𝑡

3
 + 

2

3
sin

3𝑡

4
 - 

3

8
cos

3𝑡

4
 . 

  (ii) 𝐿−1 {
p3

p4 − a4 } = 𝐿−1 [𝑝 {
p2

(p2 − a2)(p2+ a2)
 }] 

                             = 𝐿−1 [
p

2
{

1

p2 − a2 +
1

p2+ a2 }] = 
1

2
𝐿−1 (

1

p2 − a2 +
1

p2+ a2) 
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                             = 
1

2
 (cosh 𝑎𝑡 + cos 𝑎𝑡) . 

Example 3. Find the inverse Laplace transform of  

 (i)  𝐿−1 (
𝑒−2𝑝

p2 )                              (ii) 𝐿−1 (
𝑒−𝑝 − 3𝑒−3𝑝

p2 )     

Sol. (i) we have  

                   𝐿−1 (
1

p2) = t = F(t) 

∴    𝐿−1 (𝑒−2𝑝 1

p2) = {
𝑡 − 2, 𝑡 > 2

0    , 𝑡 < 2
 = (t – 2) u (t – 2) . 

(ii) 𝐿−1 (𝑒−𝑝 1

p2) = {
𝑡 − 1, 𝑡 > 1

0    , 𝑡 < 2
 = (t – 1) u (t – 1) 

      𝐿−1 (𝑒−3𝑝 1

p2) = {
𝑡 − 3, 𝑡 > 3

0    , 𝑡 < 3
 = (t – 3) u (t – 3) 

By second shifting theorem  

Hence 𝐿−1 (
𝑒−𝑝 − 3𝑒−3𝑝

p2 ) = {
cos 3 (𝑡 −

2𝜋

3
) , 𝑡 >

2𝜋

3

0              , 𝑡 <
2𝜋

3

        

By second shifting theorem  

                                        = cos 3𝑡𝑢 (𝑡 −
2𝜋

3
). 

 

Example 4. Find the inverse Laplace transform of  

(i)  
p2+2𝑝−3

𝑝(𝑝−3)(𝑝+2)
                       (ii) 

1+ 2𝑝

(𝑝+2)2(𝑝−1)2 

Sol. (i) 
p2+2𝑝−3

𝑝(𝑝−3)(𝑝+2)
 = 

1

2𝑝
+

4

5(𝑝−3)
−

3

10(𝑝+2)
 

∴ 𝐿−1 (
p2+2𝑝−3

𝑝(𝑝−3)(𝑝+2)
) = 

1

2
𝐿−1 (

1

𝑝
) +

4

5
𝐿−1 (

1

𝑝 − 3
) −

3

10
𝐿−1 (

1

𝑝 + 2
) 
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                                = 
1

2
+

4

5
𝑒3𝑡 −

3

10
𝑒−2𝑡. 

(ii) 
1+ 2𝑝

(𝑝+2)2(𝑝−1)2 = 
𝐴

𝑝 + 2
+

𝐵

(𝑝 + 2)2 +
𝐶

𝑝− 1
+

𝐷

(𝑝− 1)2 

∴ 1 + 2p = A (p + 2)(𝑝 −  1)2+ B (𝑝 −  1)2 + 𝐶(𝑝 − 1)(𝑝 + 2)2 

                                          + D (𝑝 + 2)2 

               = A (p3 − 3𝑝 + 2) + 𝐵(p2 − 2𝑝 + 1) + 𝐶(p3 + 3p2 − 4) 

                                         +𝐷(p2 + 4𝑝 + 4) 

After comparing the coefficient 

A + C = 0, B + 3C + D = 0, -3A – 2B + 4D = 2, 2A + B – 4C + 4D = 1 

Solving these equation then we get A = 0, B = −
1

3
, C = 0, D = 

1

3
 

∴ 
1+ 2𝑝

(𝑝+2)2(𝑝−1)2 = 
−1

3(𝑝 + 2)2 + 
1

3(𝑝 − 1)2 

∴ 𝐿−1 (
1+ 2𝑝

(𝑝+2)2(𝑝−1)2) = −
1

3
𝐿−1 (

1

(𝑝 + 2)2) +
1

3
𝐿−1 (

1

(𝑝 − 1)2) 

                                 = −
1

3
𝑒−2𝑡 . 𝑡 +

1

3
𝑒𝑡. 𝑡 =  

𝑡

3
(𝑒𝑡 − 𝑒−2𝑡) . 

 

4.9 INVERSE LAPLACE TRANSFORM OF 

DERIVATIVES 

∎ If 𝑳−𝟏{𝒇(𝒑)}  = F(t), then 𝑳−𝟏{𝑓𝑛(𝒑)}  = 𝑳−𝟏 [
𝒅𝒏

𝒅𝒑𝒏 {𝒇(𝒑)}] = 

(−𝟏)𝒏𝒕𝒏𝑭(𝒕). 

We have, L{𝑡𝑛𝐹(𝑡)} =  (−1)𝑛 {
𝑑𝑛

𝑑𝑝𝑛 𝑓(𝑝)} = (−1)𝑛𝑓𝑛(𝑝) 

∴ 𝐿−1{𝑓𝑛(𝑝)} =  (−1)𝑛𝑡𝑛𝐹(𝑡). 
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4.10 MULTIPLICATION BY p 

∎ If 𝑳−𝟏{𝒇(𝒑)}  = F(t) and F(0) = 0,  then 𝑳−𝟏{𝒑𝒇(𝒑)}  = 𝑭′(t) . 

We have L{𝐹′(t)} = pf(p) – F(0) = pf(p) 

∴ 𝐿−1{𝑝𝑓(𝑝)}  = 𝐹′(t)                   ( ∵ F(0) = 0 )  

Note:∎ if F(0) ≠ 0, then L−1{pf(p) − F(0)}  = F′(t)             or   

                 L−1{pf(p)}  = F′(t) + F(0)δ(t)    where  δ(t) is the unit impulse function.       

         ∎ Generalizations to L−1{𝑝𝑛f(p)}  are possible for n = 2, 3, … 

 

 

4.11 DIVISION BY p 

∎ If L−1{f(p)}  = F(t) then  

                   L−1 {
f(p)

p
}  = ∫ F(u)du

t

0
 

Also,          L−1 {
f(p)

p2
} = ∫ ∫ F(u)du

t

0
du

t

0
 and 

                   L−1 {
f(p)

p2
} = ∫ ∫ ∫ F(u)du

t

0
du

t

0
du

t

0
 and so on 

                   L−1 {
f(p)

pn
} = ∫ ∫ … … . . ∫ F(u)du … … .

t

0(n times)
du

t

0
 (n times)

t

0
 

 

4.12 HEAVISIDE EXPANSION FORMULA FOR 

INVERSE LAPLACE TRANSFORM 

∎ If F(p) and G(p) are two polynomials in p and the degree of F(p) is 

less than the degree of G(p) and if G(p) = (p - 𝜶𝟏) (p - 𝜶𝟐) … . (𝐩 −

 𝜶𝒏), where 𝜶𝟏, 𝜶𝟐, … 𝜶𝒏 are distinct constants, real or complex, then 

                                               𝐋−𝟏 {
𝐅(𝐩)

𝐆(𝐩)
} = ∑ (

𝑭(𝜶𝒓)

𝑮′(𝜶𝒓)
𝒆𝜶𝒓𝒕)𝒏

𝒓=𝟏  
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𝐏𝐫𝐨𝐨𝐟. By the Methods of partial fractions, let  

             
𝐅(𝐩)

𝐆(𝐩)
 = 

𝑨𝟏

𝐩−𝜶𝟏
 + 

𝑨𝟐

𝐩−𝜶𝟐
+ ⋯ +  

𝑨𝒓

𝐩−𝜶𝒓
+ ⋯

𝑨𝒏

𝐩−𝜶𝒏
  

Multiplying both sides by p − 𝛼𝑟 and allowing p → 𝛼𝑟 , we obtain, 

𝐴𝑟 = lim
p →𝛼𝑟

𝐹(𝑝)(p−𝛼𝑟)

𝐺(𝑝)
 = lim

p →𝛼𝑟

𝐹(𝑝). lim
p →𝛼𝑟

(p−𝛼𝑟)

𝐺(𝑝)
 

      = lim
p →𝛼𝑟

𝐹(𝑝). lim
p →𝛼𝑟

1

𝐺′(𝑝)
 = 

𝐹(𝛼𝑟)

𝐺′(𝛼𝑟)
 

∴ 
F(p)

G(p)
 = 

𝐹(𝛼1)

𝐺′(𝛼1)
 . 

1

p−𝛼1
 + ….+ 

𝐹(𝛼𝑟)

𝐺′(𝛼𝑟)
 . 

1

p−𝛼𝑟
 + .… +  

𝐹(𝛼𝑛)

𝐺′(𝛼𝑛)
 . 

1

p−𝛼𝑛
 

∴ L−1 {
F(p)

G(p)
} = 

𝐹(𝛼1)

𝐺′(𝛼1)
𝑒𝛼1𝑡 + …. + 

𝐹(𝛼𝑟)

𝐺′(𝛼𝑟)
𝑒𝛼𝑟𝑡 + …. + 

𝐹(𝛼𝑛)

𝐺′(𝛼𝑛)
𝑒𝛼𝑛𝑡 

                     = ∑ (
F(αr)

G′(αr)
eαrt)n

r=1  . 

4.13 CONVOLUTION THEOREM 

∎ If 𝐋−𝟏{𝐟(𝐩)}  = F(t) and 𝐋−𝟏{𝐠(𝐩)}  = G(t), then 

     𝐋−𝟏{𝐟(𝐩)𝐠(𝐩)}  = F * G = ∫ 𝐅(𝐮) 𝐆(𝐭 − 𝐮) 𝐝𝐮
𝐭

𝟎
 

Proof. Let 𝜑(t) = ∫ F(u) G(t − u) du
t

0
 then 

           L{ 𝜑(t)} = ∫ 𝑒−𝑝𝑡 [∫ F(u) G(t − u) du
t

0
] dt

∞

0
 

                          = ∫ ∫ 𝑒−𝑝𝑡F(u) G(t − u) du
t

0

∞

0
𝑑𝑡 

On changing the order of integration, we get 

L{ 𝜑(t)} = ∫ ∫ 𝑒−𝑝𝑡F(u) G(t − u) dt
∞

u

∞

0
𝑑𝑢 

               = ∫ 𝑒−𝑝𝑢F(u)[∫ 𝑒−𝑝(𝑡−𝑢)G(t − u) dt
∞

u
]𝑑𝑢

∞

0
 

              = ∫ 𝑒−𝑝𝑢F(u)[∫ 𝑒−𝑝𝑣G(v) dv
∞

0
]𝑑𝑢

∞

0
       ( on putting t – u = v ) 

              = ∫ 𝑒−𝑝𝑢F(u)𝑔(𝑝)𝑑𝑢
∞

0
 = g(p) ∫ 𝑒−𝑝𝑢F(u)𝑑𝑢

∞

0
 

              = g(p).f(p) = f(p) g(p) 



Mathematical Methods  MAT 509 

Department of Mathematics 
Uttarakhand Open University                                                                                                                            81 
 

⟹ L−1{f(p)g(p)}  = F * G = ∫ F(u) G(t − u) du
t

0
 

We call F * G, the convolution of G and G and the theorem is called 

convolution theorem or the convolution property. 

 

 

ILLUSTRATIVE EXAMPLES 

Example 1. Find the inverse Laplace transform of  

(i) log(1 +
1

𝑝2)                        (ii) log(
𝑝 + 1

𝑝 − 1
)    

Sol. (i) let   L−1{log (1 +
1

𝑝2)} = F(t) 

∴          L−1 [
𝑑

𝑑𝑝
{log (1 +

1

𝑝2)}] = - t F(t) 

      ⟹        L−1 [
1

1+
1

𝑝2

(
−2

𝑝3 )] = - t F(t) 

      ⟹         L−1 [
−2

𝑝(𝑝2+1)
] = - t F(t) 

     ⟹          L−1 [
1

𝑝
−

𝑝

𝑝2+1
] = 

𝑡

2
 F(t) 

     ⟹          1 – cos t = 
𝑡

2
 F(t)   

∴                  F(t)  = 
2(1 – cos t )

𝑡
 . 

(ii) Let L−1{log (
𝑝+1

𝑝−1
)} = F(t) 

∴          L−1 [
𝑑

𝑑𝑝
{log(𝑝 + 1) − log (𝑝 − 1)}] = - t F(t) 

⟹        L−1 [
1

𝑝+1
−

1

𝑝−1
] = - t F(t) 

⟹        𝑒−𝑡 − 𝑒𝑡 = - t F(t) 

∴           F(t) = 
𝑒−𝑡−𝑒𝑡

𝑡
 = 

2 sinh 𝑡

𝑡
 . 

             Example 2. Find the inverse Laplace transform of  
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(i)  
𝑝2− 𝑎2

(𝑝2+ 𝑎2)2                       (ii) 
2𝑎𝑝

(𝑝2+ 𝑎2)2    

Sol. (i) since L−1 {
𝑝

𝑝2+𝑎2
}  = cos at 

∴          L−1 [
𝑑

𝑑𝑝
{

𝑝

𝑝2+𝑎2
}] = - t cos at 

        ⟹        L−1 [
𝑎2− 𝑝2

(𝑝2+ 𝑎2)2
] = - t cos at 

∴           L−1 [
𝑝2− 𝑎2

(𝑝2+ 𝑎2)2
] = - t cos at . 

(𝒊𝒊) since L−1 {
𝑎

𝑝2+𝑎2
}  = sin at 

∴          L−1 [
𝑑

𝑑𝑝
{

𝑎

𝑝2+𝑎2
}] = - t sin at 

⟹        L−1 [
−2𝑎𝑝

(𝑝2+ 𝑎2)2
] = - t sin at 

∴           L−1 [
2𝑎𝑝

(𝑝2+ 𝑎2)2
] = t sin at. 

Example 3. Apply Heaviside expression theorem to obtain 

(i)  L−1 {
2𝑝2   +5𝑝 − 4

𝑝3 + 𝑝2 − 2𝑝
}                 (ii)  L−1 {

3𝑝 + 1

(𝑝−1)(𝑝2+1)
} 

Sol.  (i)   let           F(p) = 2𝑝2   + 5𝑝 –  4 and  

                               G(p) = 𝑝3  +  𝑝2  −  2𝑝 = p(p – 1)(p +2) 

                                G(p) = 0     gives    p = 0, 1, -2 

∴                                  α1 = 0, α2 = 1, α3 = -2 

⟹                           F(α1) = - 4,  F(α2) = 3,   F(α3) = - 6 

⟹ 𝐺′(𝑝) = 3𝑝2   + 2𝑝 –  2 ⟹ 𝐺′(α1) = - 2, 𝐺′(α2) = 3,  𝐺′(α3) = 2 

∴  L−1 {
2𝑝2  +5𝑝 − 4

𝑝3  + 𝑝2  − 2𝑝
} = 

F(α1) 

𝐺′(α1)
𝑒α1𝑡  + 

F(α2) 

𝐺′(α2)
𝑒α2𝑡 + 

F(α3) 

𝐺′(α3)
𝑒α3𝑡 

                                = (
−4

−2
) 𝑒0𝑡 + (

3

3
) 𝑒𝑡 + (

−6

6
) 𝑒−2𝑡  = 2 + 𝑒𝑡 - 𝑒−2𝑡 . 

 

(ii) let                     F(p) = 3𝑝 + 1 and  



Mathematical Methods  MAT 509 

Department of Mathematics 
Uttarakhand Open University                                                                                                                            83 
 

                               G(p) = (𝑝 − 1)(𝑝2 + 1) = (𝑝 − 1)(𝑝 + 𝑖)(𝑝 − 𝑖) 

                                G(p) = 0     gives    p = 1, i, -i 

∴                                  α1 = 1, α2 = i, α3 = - i 

⟹                           F(α1) = 4,  F(α2) = 3i + 1,   F(α3) = 1 – 3i 

 

⟹ 𝐺′(𝑝) = (𝑝 − 1). (2𝑝) + 𝑝2 + 1 =  3𝑝2 − 2𝑝 + 1   

⟹ 𝐺′(α1) = 2, 𝐺′(α2) = - 2 – 2i,  𝐺′(α3) = 2i – 2 

∴  L−1 {
3𝑝 + 1

(𝑝−1)(𝑝2+1)
} = 

F(α1) 

𝐺′(α1)
𝑒α1𝑡 + 

F(α2) 

𝐺′(α2)
𝑒α2𝑡 + 

F(α3) 

𝐺′(α3)
𝑒α3𝑡  

                                = (
4

2
) 𝑒𝑡 + (

3𝑖 +1

−2 − 2𝑖
) 𝑒𝑖𝑡 + (

1−3𝑖

2𝑖−2
) 𝑒−𝑖𝑡  

                                = 2𝑒𝑡 -(
𝑖

2
+ 1) 𝑒𝑖𝑡 +(

𝑖

2
− 1) 𝑒−𝑖𝑡  

                                = 2𝑒𝑡 - 
𝑖

2
(𝑒𝑖𝑡 − 𝑒−𝑖𝑡) - (𝑒𝑖𝑡 + 𝑒−𝑖𝑡) 

                                = 2𝑒𝑡 - 
𝑖

2
 . 2𝑖 sin 𝑡 − 2 cos t  

                                = 2𝑒𝑡 - 2 sin 𝑡 − 2 cos t . 

Example 4. Use convolution theorem to evaluate: 

                        L−1 {
𝑝

(𝑝2+4)2
} 

Sol.    
𝑝

(𝑝2+4)2 = 
1

𝑝2+4
 . 

𝑝

𝑝2+4
 

Let,    f(p) = 
1

𝑝2+4
 and g(p) = 

𝑝

𝑝2+4
 

∴ F(t) =  L−1{𝑓(𝑝)} =  L−1 (
1

𝑝2+4
) = 

1

2
𝑠𝑖𝑛2𝑡 

And     G(t) =  L−1{𝑔(𝑝)} =  L−1 (
𝑝

𝑝2+4
) = 𝑐𝑜𝑠2𝑡 

Now,    F(u) = 
1

2
𝑠𝑖𝑛2𝑢, G(t – u) = cos 2(t – u) 

∴ by convolution theorem, we have 
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 L−1 {
𝑝

(𝑝2+4)2
}  = ∫

1

2

𝑡

0
𝑠𝑖𝑛2𝑢. cos 2(t – u) du  

                          = 
1

4
 ∫ [𝑠𝑖𝑛2𝑡 + sin (4𝑢 − 2𝑡)]

𝑡

0
du 

                       = 
1

4
[𝑢 sin 2𝑡 −

 cos(4𝑢−2𝑡)

4
]

0

𝑡

 = 
𝑡

4
 sin 2t. 

 

 

CHECK YOUR PROGRESS  

True or false Questions 

Problem 1. If 𝐿−1{𝑓(𝑝)}  = F(t), then 𝐿−1{𝑓(𝑎𝑝)}  = 
1

𝑎
 F(

𝑡

𝑎
). 

Problem 2. If 𝐿−1{𝑓(𝑝)}  = F(t), then 

                    𝐿−1{𝑓𝑛(𝑝)}  = 𝐿−1 [
𝑑𝑛

𝑑𝑝𝑛 {𝑓(𝑝)}] = (−1)𝑛𝑡𝑛𝐹(𝑡). 

Problem 3. If 𝐿−1{𝑓(𝑝)}  = F(t) and F(0) = 0, then 𝐿−1{𝑝𝑓(𝑝)}  = 𝐹′(t). 

Problem 4. If 𝐿−1{𝑓(𝑝)}  = F(t), then 𝐿−1{𝑓(𝑝 − 𝑎)}  = 𝑒𝑎𝑡F(t). 

Problem 5. 𝐿−1 [
𝑑𝑛

𝑑𝑝𝑛 {𝑓(𝑝)}] = (−1)𝑛+5𝑡𝑛𝐹(𝑡). 

 

 

 

4.14 SUMMARY 

 

1. Laplace Transform of Unit Step function 

L{u(t – a)} = ∫ 𝑒−𝑝𝑡𝑢(𝑡 − 𝑎)𝑑𝑡
∞

0
 = 

1

p
 𝑒−𝑎𝑡 

2. Second Shifting Theorem 

if L{F(t)} = f(p), then L{F(t – a).u(t-a)} = 𝑒−𝑎𝑝f(p). 
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3. If 𝐿−1{𝑓(𝑝)}  = F(t), then 𝐿−1{𝑓(𝑎𝑝)}  = 
1

𝑎
 F(

𝑡

𝑎
). 

4. Inverse Laplace Transform of Derivatives 

If 𝐿−1{𝑓(𝑝)}  = F(t), then 𝐿−1{𝑓𝑛(𝑝)}  = 𝐿−1 [
𝑑𝑛

𝑑𝑝𝑛 {𝑓(𝑝)}] = (−1)𝑛𝑡𝑛𝐹(𝑡). 

5. Convolution theorem  

     If L−1{f(p)}  = F(t) and L−1{g(p)}  = G(t), then 

     L−1{f(p)g(p)}  = F * G = ∫ F(u) G(t − u) du
t

0
 

 

4.15 GLOSSARY  
 

Discontinuous functions  

Periodic Functions 

Integration  

Even, odd functions   

Trigonometric functions 

Differentiation 

Integrations  
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4.18 TERMINAL AND MODEL QUESTIONS 

 

Q 1. Use convolution theorem to find 

(i)  L−1 {
1

(𝑝2+4)(𝑝+2)
}                (ii)  L−1 {

1

(𝑝2+ 𝑎2)3
} 

(iii)  L−1 {
1

(𝑝+2)2(𝑝−2)
} 

Q2.   Find the inverse Laplace transform of 

(i) cot−1 (
𝑝

𝑎
)          (ii) tan−1 (

2

𝑝
)         (iii) log (1 +

1

𝑝
)   (iv) log (1 −

𝑎2

𝑝2)    

Q3. Apply Heaviside expression theorem to obtain 

(i)  L−1 {
2𝑝−1

𝑝(𝑝−1)(𝑝+1)
}                 (ii)  L−1 {

3𝑝 + 16

𝑝2−𝑝−6
} 

Q4. Find the inverse Laplace transform of 

       (i) log (
𝑝+1

(𝑝+2)(𝑝+3)
)                     (ii) p log (

𝑝−1

𝑝+1
)      

Q5.   State and prove convolution theorem.          
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4.19 ANSWERS 
        

TQ1 (i)  
1

8
(sin 2𝑡 − cos 2𝑡 +  𝑒−2𝑡)     (ii) 

1

8𝑎3
(sin 𝑎𝑡 − at cos 𝑎𝑡) 

          (iii) 
1

8
(𝑒2𝑡 − 𝑒−2𝑡 − 4𝑡𝑒−2𝑡) 

TQ2 (i) 
𝒔𝒊𝒏 𝒂𝒕

𝒕
       (ii) 

𝒔𝒊𝒏 𝟐𝒕

𝒕
     (iii) 

1−e−t

t
      (iv) 

2

𝑡
 (1 – cosh at) 

TQ3 (i) 1 + 
1

2
𝑒𝑡 - 

3

2
𝑒−𝑡          (ii) 5𝑒3𝑡 − 2𝑒−2𝑡 

TQ4 (i) 
−𝑒−𝑡 + 𝑒−2𝑡 + 𝑒−3𝑡

𝑡
         (ii) 

2

𝑡2 ( sinh t – t cosh t) 

CYQ 1 True 

CYQ 2 True 

CYQ 3 True 

CYQ 4 True 

CYQ 5 False 
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UNIT 5: - APPLICATIONS OF LAPLACE 

TRANSFORM TO DIFFERENTIAL 

EQUATION 

Contents 
 

5.1 Introduction 

5.2 Objective 

5.3 Applications of Laplace transform to differential  

       5.3.1 Solution of ordinary linear differential equations with     

                 constant Coefficients 

        5.3.2 Solution of simultaneous ordinary differential equations 

        5.3.3 Solution of ordinary differential equations with variable  

                  coefficients 

         5.3.4 Solution of integral equations 

             5.4 Summary 

5.5 Glossary 

5.6 References 

5.7 Suggested Reading 

5.8 Terminal Questions 

5.9 Answers 
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5.1 INTRODUCTION 

In mathematics, the inverse Laplace transform of a function F(s) 

is the piecewise-continuous and exponentially-restricted real function 

f(t) which has the property: denotes the Laplace transform. The Laplace 

Transform can be used to solve differential equations using a four step 

process. Take the Laplace Transform of the differential equation using the 

derivative property (and, perhaps, others) as necessary. Put initial 

conditions into the resulting equation. Solve for the output variable. 

 

5.2 OBJECTIVE 

             At the end of this topic Lerner will be able to understand:  

            (i) Solution of ordinary linear differential equations with constant   

                  Coefficients. 

            (ii) Solution of simultaneous ordinary differential equations. 

            (iii) Solution of ordinary differential equations with variable  

                   Coefficients. 

 

5.3 APPLICATIONS OF LAPLACE TRANSFORM 

TO DIFFERENTIAL 

 

5.3.1 Solution of ordinary linear differential equations 

with constant coefficients: 

Laplace transform can be used to solve ordinary linear differential 

equations with constant coefficients. The advantage of this method is that 

it yield the particular solution directly without the necessity of first finding 

the general solution and then evaluating the arbitrary constants. 
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Steps: (a) Take Laplace transform on both sides of the given differential 

equation, using initial conditions. This gives an algebraic equation. 

(b) Solve the algebraic equation to get �̅�  in term of p. 

(c) Take inverse Laplace transform on both sides. This gives y as a 

function of t which is the desired solution. 

Note: L{𝐹𝑛(𝑡)} = 𝑝𝑛f(p) - 𝑝𝑛−1𝐹(0) − 𝑝𝑛−2𝐹′(0) − …… - 

p𝐹𝑛−2(0) −  𝐹𝑛−1(0); if L{F(t)} = f(p). 

 

 

 

ILLUSTRATIVE EXAMPLES 

Example 1. Solve the equation 
𝑑3𝑦

𝑑𝑡3  + 2 
𝑑2𝑦

𝑑𝑡2  - 
𝑑𝑦

𝑑𝑡
 – 2y = 0, where y = 1, 

                     
𝑑𝑦

𝑑𝑡
 = 2, 

𝑑2𝑦

𝑑𝑡2  = 2 at t = 0. 

Sol. The given equation is 𝑦′′′ + 2 𝑦′′ −  𝑦′ − 2𝑦 = 0 

        Taking Laplace transform on both sides, we get 

[𝑝3�̅� − 𝑝2𝑦(0) − 𝑝𝑦′(0) − 𝑦′′(0) ] + 2[𝑝2�̅� − 𝑝𝑦(0) − 𝑦′(0)]  

                                                   - [𝑝�̅� − 𝑦(0)] − 2�̅� = 0          ..… (1) 

Using the give conditions y(0) = 1, 𝑦′(0) = 2, 𝑦′′(0) = 2, equation (1) 

reduces to 

(𝑝3 + 2𝑝2 − 𝑝 − 2)�̅�  = 𝑝2 + 4p + 5 

∴        �̅� = 
𝑝2 + 4p + 5

𝑝3+2𝑝2−𝑝−2
 = 

𝑝2 + 4p + 5

(𝑝−1)(𝑝+1)(𝑝+2)
  

                                     = 
5

3(𝑝−1)
 - 

1

𝑝+1
 + 

1

3(𝑝+2)
       (using partial fractions) 

Taking the inverse Laplace transform of both sides, we get 
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y = 
5

3
 𝐿−1 {

1

𝑝−1
} - 𝐿−1 {

1

𝑝+1
} + 

1

3
 𝐿−1 {

1

𝑝+1
} = 

5

3
 𝑒𝑡 - 𝑒−𝑡 +

1

3
𝑒−2𝑡 

y = 
1

3
(5𝑒𝑡 + 𝑒−2𝑡) − 𝑒−𝑡 . 

Example 2. Solve the equation  
𝑑2𝑦

𝑑𝑡2  -3 
𝑑𝑦

𝑑𝑡
 + 2y = 4t + 𝑒3𝑡, where y(0) = 1 

and 𝑦′(0) = -1 . 

Sol. The given equation is  𝑦′′ − 3 𝑦′ + 2𝑦 = 4t +  𝑒3𝑡 

        Taking Laplace transform on both sides, we get 

[𝑝2�̅� − 𝑝𝑦(0) − 𝑦′(0)] – 3 [𝑝�̅� − 𝑦(0)] + 2�̅�  = 
4

𝑝2 + 
1

𝑝−3
          …. (1) 

Using the give conditions y(0) = 1 and 𝑦′(0) = -1, equation (1) reduces to 

( 𝑝2 − 3𝑝 + 2) �̅� – p + 1 + 3 = 
4

𝑝2 + 
1

𝑝−3
 

∴     ( 𝑝2 − 3𝑝 + 2) �̅� = 
4

𝑝2 + 
1

𝑝−3
 + p – 4 

∴                         �̅� = 
𝑝4−7𝑝3+13𝑝2+4𝑝−12

𝑝2(𝑝−1)(𝑝−2)(𝑝−3)
 

                               = 
3

𝑝
 + 

2

𝑝2 - 
1

2(𝑝−1)
 - 

2

𝑝−2
 + 

1

2(𝑝−3)
 (using partial fraction) 

Taking the inverse Laplace transform of both sides, we get 

y = 3𝐿−1 {
1

𝑝
} - 2𝐿−1 {

1

𝑝2
} - 

1

2
 𝐿−1 {

1

𝑝−1
} -2𝐿−1 {

1

𝑝−2
} +

1

2
 𝐿−1 {

1

𝑝−3
}  

   = 3 + 2t - 
1

2
𝑒𝑡 - 2𝑒2𝑡 +

1

2
𝑒3𝑡 

   = 3 + 2t + 
1

2
(𝑒3𝑡 - 𝑒𝑡) − 2𝑒2𝑡 . 

Example 3. Using Laplace transformation, solve the equation 

                     
𝑑2𝑥

𝑑𝑡2  + 9x =cos 2t,  

                     where x(0) = 1, x(
𝜋

2
)= -1 . 
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Sol. The given equation is  𝑥′′ + 9𝑥 = cos 2𝑡 

        Taking Laplace transform on both sides, we get 

L(𝑥′′) + 9𝐿(𝑥) = L(cos 2𝑡) 

[𝑝2�̅� − 𝑝𝑥(0) − 𝑥′(0)] + 9�̅�  = 
𝑝

𝑝2+4
  

⟹ (𝑝2 + 9)�̅� − 𝑝 − 𝐴 =  
𝑝

𝑝2+4
           (where 𝑥′(0) = 𝐴) 

⟹ �̅� = 
𝑝

(𝑝2+4)(𝑝2+9)
 + 

𝑝

𝑝2+9
 + 

𝐴

𝑝2+4
 

Taking the inverse Laplace transform of both side, we get 

x = 
1

5
(cos 2𝑡 − cos 3𝑡) + cos 3𝑡 +  

𝐴

3
sin 3𝑡 ,      but x(

𝜋

2
)= -1 

⟹ -1 = 
1

5
(−1 − 0) + 0 +

𝐴

3
(−1) ⟹ -1 = −

1

5
 - 

𝐴

3
  ⟹  𝐴 =  

12

5
 

∴     x(t) = 
1

5
(cos 2𝑡 − cos 3𝑡) + cos 3𝑡 + 

4

5
sin 3𝑡 

              = 
1

5
(cos 2𝑡 + 4cos 3𝑡 + 4 sin 3𝑡). 

Example 4. Using Laplace transformation, solve the equation   

                     (𝐷2 + 𝑛2)𝑥 = 𝑎 sin(𝑛𝑡 + 𝛼); 𝑥 = 𝐷𝑥 = 0 𝑎𝑡 𝑡 = 0 

Sol. The given equation is  (𝐷2 + 𝑛2)𝑥 = 𝑎 sin(𝑛𝑡 + 𝛼) 

        Taking Laplace transform on both sides, we get 

        L(𝑥′′) + 𝑛2𝐿(𝑥) = 𝐿{𝑎 sin(𝑛𝑡 + 𝛼)} 

⟹ [𝑝2�̅� − 𝑝𝑥(0) − 𝑥′(0)] + 𝑛2�̅� = 𝑎 𝑐𝑜𝑠𝛼 .
𝑛

𝑝2+𝑛2 + 𝑎 𝑠𝑖𝑛𝛼 .
𝑝

𝑝2+𝑛2  

⟹                              (𝑝2 + 𝑛2)�̅� = 
𝑎𝑛 𝑐𝑜𝑠𝛼

(𝑝2+𝑛2)2 +
𝑎𝑛 𝑠𝑖𝑛𝛼

(𝑝2+𝑛2)2         ….. (1)  

Taking the inverse Laplace transform of both side, we get 

     x = (a cos𝛼) 𝐿−1 [
𝑛

(𝑝2+𝑛2)2
] + (a s𝑖𝑛𝛼) 𝐿−1 [

𝑝

(𝑝2+𝑛2)2
]       …. (2)  
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we know that 𝐿−1 [
𝑛

𝑝2+𝑛2
] = 

1

𝑛
 sin nt                                      …. (3) 

𝐿−1 [
1

𝑑𝑛
{

1

𝑝2+𝑛2
}]  = 

𝑛𝑡 𝑐𝑜𝑠 𝑛𝑡−𝑠𝑖𝑛 𝑛𝑡

𝑛2  

𝐿−1 [
−2𝑛

(𝑝2+𝑛2)2
] = 

𝑛𝑡 𝑐𝑜𝑠 𝑛𝑡−𝑠𝑖𝑛 𝑛𝑡

𝑛2  

𝐿−1 [
𝑛

(𝑝2+𝑛2)2
] = 

1

2𝑛2 (𝑠𝑖𝑛 𝑛𝑡 − 𝑛𝑡 𝑐𝑜𝑠 𝑛𝑡) 

Again, from (3), 𝐿−1 [
𝑑

𝑑𝑝
(

1

𝑝2+𝑛2)] = - t. 
1

𝑛
 sin nt 

⟹ 𝐿−1 [
−2𝑝

(𝑝2+𝑛2)2
] = −

𝑡

𝑛
 sin nt 

⟹ 𝐿−1 [
𝑝

(𝑝2+𝑛2)2
] = 

𝑡

2𝑛
 sin nt 

∴ From (2),    x = (a cos𝛼) . 
1

2𝑛2 (𝑠𝑖𝑛 𝑛𝑡 − 𝑛𝑡 𝑐𝑜𝑠 𝑛𝑡) + (a sin 𝛼). 
𝑡

2𝑛
 sin nt 

                          = 
𝑎

2𝑛2 [ cos𝛼 𝑠𝑖𝑛 𝑛𝑡 − 𝑛𝑡 cos( 𝛼 + 𝑛𝑡)]. 

Example 5. Using Laplace transformation, find the general solution of the 

equation   

                     (𝐷2 + 𝑘2)𝑦 = 0. 

Sol. The given equation is  (𝐷2 + 𝑘2)𝑦 = 0        ……. (1) 

Taking Laplace Transform on both sides of (1),  

        L(𝑦′′) + 𝑘2𝐿(𝑦) = 0 

Or     𝑠2 L{y} – s y(0) - 𝑦′(0) + 𝑘2𝐿(𝑦) = 0 

Or     (𝑠2 + 𝑘2) L{y} – As – B = 0, where y(0) = A and 𝑦′(0) = 𝐵, say 

Or      L{y} = 
𝐴 𝑠+𝐵

𝑠2+𝑘2 = A 
𝑠

𝑠2+𝑘2 + B 
1

𝑠2+𝑘2        …… (2) 

Taking inverse Laplace transform of both sides of (2), we get 

     y = A cos kt + 
𝐵

𝑘
(sin 𝑘𝑡) = A cos kt + C sin kt       …… (3) 
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where C = B/k . (3) is the general solution of given equation and A and B 

are arbitrary constants. 

 

5.3.2 Solution of simultaneous ordinary differential 

equations: 

A simultaneous differential equation is one of the mathematical equations 

for an indefinite function of one or more than one variable that relate the 

values of the function. Differentiation of an equation in various orders. 

Differential equations play an important function in engineering, physics, 

economics, and other disciplines. This analysis concentrates on linear 

equations with Constant Coefficients. 

Laplace transform technique can be also used in solving two or more 

simultaneous ordinary differential equations. 

ILLUSTRATIVE EXAMPLES 

Example 1. Solve the equation    
𝑑𝑥

𝑑𝑡
− 𝑦 =  𝑒𝑡 ,     

𝑑𝑦

𝑑𝑡
+ 𝑥 = sin 𝑡, given 

x(0) = 1, y(0) = 0. 

Sol. Taking Laplace transform of the given equations, we get 

[𝑝�̅� − 𝑥(0)] − �̅� = 
1

𝑝−1
 

⟹ 𝑝�̅� – 1 - �̅� = 
1

𝑝−1
  (𝑠𝑖𝑛𝑐𝑒 𝑥(0) = 1)       ⟹ 𝑝�̅� −�̅� = 

𝑝

𝑝−1
       …. (1) 

And [𝑝�̅� − 𝑦(0)] + �̅� = 
1

𝑝2+1
 

⟹ �̅� + 𝑝�̅� = 
1

𝑝2+1
            …. (2)   [since y(0) = 0] 

Solving equation (1) and (2) for �̅� 𝑎𝑛𝑑 �̅�, we have 

�̅� = 
𝑝2

(𝑝−1)(𝑝2+1)
+

1

(𝑝2+1)2 = 
1

2
 [

1

𝑝−1
+

𝑝

𝑝2+1
+

1

𝑝2+1
] +

1

(𝑝2+1)2 
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And  

�̅� = 
1

(𝑝2+1)2 −
𝑝

(𝑝−1)(𝑝2+1)
=

𝑝

(𝑝2+1)2 −
1

2
 [

1

𝑝−1
−

𝑝

𝑝2+1
+

1

𝑝2+1
] 

Taking Inverse Laplace transform of both sides, we get 

x =  
1

2
𝐿−1 [

1

𝑝−1
+

𝑝

𝑝2+1
+

1

𝑝2+1
] + 𝐿−1 [

1

(𝑝2+1)2
] 

   = 
1

2
[𝑒𝑡 + cos 𝑡 + 2 sin 𝑡 − 𝑡 cos 𝑡] 

y = 𝐿−1 [
𝑝

(𝑝2+1)2
] −

1

2
𝐿−1 [

1

𝑝−1
−

𝑝

𝑝2+1
+

1

𝑝2+1
] 

    =  
1

2
 𝑡 sin 𝑡 −

1

2
[𝑒𝑡 − cos 𝑡 + sin 𝑡] 

    = 
1

2
[𝑡 sin 𝑡 − 𝑒𝑡 + cos 𝑡 − sin 𝑡] 

Hence x = 
1

2
[𝑒𝑡 + cos 𝑡 + 2 sin 𝑡 − 𝑡 cos 𝑡] 

And    y = 
1

2
[𝑡 sin 𝑡 − 𝑒𝑡 + cos 𝑡 − sin 𝑡]. 

Example 2. Solve the simultaneous equations 

                    (𝐷2 − 3)𝑥 − 4𝑦 = 0     and  

                    x + (𝐷2 + 1)𝑦 = 0 for t > 0, given that x = y = 
𝑑𝑦

𝑑𝑡
= 0  

                     and 
𝑑𝑥

𝑑𝑡
= 2 𝑎𝑡 𝑡 = 0. 

Sol. Taking Laplace transform of the given equations, we get 

          𝑝2�̅� − 𝑝𝑥(0) − 𝑥′(0) − 3�̅� − 4�̅� = 0 

⟹     (𝑝2 − 3)�̅� − 4�̅� = 2      …. (1)     and  

           �̅� + 𝑝2�̅� - 𝑝𝑦(0) − 𝑦′(0) + �̅� = 0 

i.e.         �̅� + (𝑝2 + 1)�̅� = 0      ……. (2) 

solving (1) and (2) for �̅� 𝑎𝑛𝑑 �̅� , we get 
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�̅� = 
2(𝑝2+1)

(𝑝2−1)2 = 
1

(𝑝−1)2 + 
1

(𝑝+1)2 and 

�̅� = −
2

(𝑝2−1)2 = −
1

2
[

1

𝑝+1
−

1

𝑝−1
−

1

(𝑝+1)2 +
1

(𝑝−1)2
] 

Taking inverse Laplace transform on both sides, then we get 

x = 𝐿−1 [
1

(𝑝−1)2 +
1

(𝑝+1)2
] = t𝑒𝑡+ t𝑒−𝑡 = 2t(

𝑒𝑡+ 𝑒−𝑡

2
) = 2t cosh t 

and   y = −
1

2
𝐿−1 [

1

𝑝+1
−

1

𝑝−1
−

1

(𝑝+1)2 +
1

(𝑝−1)2
] 

            = −
1

2
 (𝑒−𝑡 −  𝑒𝑡 − 𝑡𝑒−𝑡 + 𝑡𝑒𝑡) = 

𝑒𝑡− 𝑒−𝑡

2
 - t(

𝑒𝑡− 𝑒−𝑡

2
)  

              = (1 – t) sinh t 

Therefore     x = 2t cash t, y = (1 – t) sinh t. 

Example 3. The co-ordinate (x, y) of a particle moving along a plane 

curve at any time t are given by    
𝑑𝑦

𝑑𝑡
+ 2𝑥 = sin 2𝑡 , 

 
𝑑𝑥

𝑑𝑡
− 2𝑦 = cos 2𝑡 ; (t > 0) 

It is given that at t = 0, x = 1 and y = 0. Show using transforms that the 

particle moves along the curve 4x2 + 4xy + 5y2  = 4. 

Sol. The given equations are 
𝑑𝑦

𝑑𝑡
+ 2𝑥 = sin 2𝑡         ……… (1) 

                                                
𝑑𝑥

𝑑𝑡
− 2𝑦 = cos 2𝑡       …….. (2) 

Above equation may be re-written as  

                                                2x + Dy = sin 2t 

                                                Dx – 2y = cos 2t, where D = 
𝑑

𝑑𝑡
 

Taking Laplace transform of equation (1) on both sides, we get  

                              2 �̅� + p �̅�  - y(0) = 
2

𝑝2+4
, where �̅� = L(x) and �̅� = L(y) 
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Therefore                      2 �̅� + p �̅� = 
2

𝑝2+4
                ……. (3) 

Again, taking Laplace transform of equation (2) on both sides, we get 

                          p �̅�  - x(0) - 2�̅�= 
𝑝

𝑝2+4
    , where �̅� = L(x) and �̅� = L(y) 

therefore                       p �̅� + 2 �̅� = 
𝑝

𝑝2+4
+ 1           …….. (4) 

multiplying equation (3) by 2 and equation (4) by p and then adding, we 

get 

                           4 �̅� + 𝑝2 �̅� = 
4

𝑝2+4
+

𝑝2

𝑝2+4
+ 𝑝           

Therefore       ( 4 +𝑝2 )�̅�  = 1 + p 

Therefore        �̅�  = 
1+𝑝

𝑝2+4
 = 

1

𝑝2+4
+

𝑝

𝑝2+4
 

Taking inverse Laplace transform, we get  

                       x = 
1

2
 sin 2t + cos 2t              ……. (5) 

Again, multiplying equation (3) by p and equation (4) by 2 then 

subtracting equation (4) from (3), we get 

                  𝑝2 �̅� + 4�̅� = 
2𝑝

𝑝2+4
−

2𝑝

𝑝2+4
− 2 

Therefore              �̅� = 
−2

𝑝2+4
 

Taking inverse Laplace transform, we get   y = - sin 2t 

Now,                    4𝑥2 = 4 [
1

4
𝑠𝑖𝑛22𝑡 + 𝑐𝑜𝑠22𝑡 + 𝑠𝑖𝑛2𝑡 𝑐𝑜𝑠2𝑡] 

Therefore             5𝑦2 = 5 𝑠𝑖𝑛22𝑡     and  

                             4xy = 4 [(
1

2
𝑠𝑖𝑛2𝑡 + 𝑐𝑜𝑠2𝑡)(−𝑠𝑖𝑛2𝑡)]  

                                    = - (2𝑠𝑖𝑛22𝑡 +4𝑠𝑖𝑛2𝑡 𝑐𝑜𝑠2𝑡) 

Therefore     4𝑥2 + 5𝑦2+ 4xy = 4 𝑠𝑖𝑛22𝑡 + 4 𝑐𝑜𝑠22𝑡 = 4 
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Hence the result. 

Example 4. Use Laplace transform to solve  

                    
𝑑𝑥

𝑑𝑡
+ 𝑦 = 𝑠𝑖𝑛𝑡, 

𝑑𝑦

𝑑𝑡
+ 𝑥 = 𝑐𝑜𝑠 𝑡 given that x = 2, y = 0 at t= 0. 

Sol. Taking Laplace transform of the given equations, we get 

                          p �̅� – x(0) + �̅� = 
1

𝑝2+1
  

therefore            p �̅� + �̅� = 
1

𝑝2+1
 + 2                      ……. (1) 

and                    p �̅� – y(0) + �̅� = 
𝑝

𝑝2+1
  

therefore           p �̅� + �̅� = 
𝑝

𝑝2+1
                              …… (2) 

solving (1) and (2) for �̅� and �̅� , we get 

�̅� = 
2𝑝

𝑝2−1
      and      �̅� = 

1

𝑝2+1
 + 

2

1− 𝑝2 

Therefore  �̅� = 
1

𝑝+1
 + 

2

𝑝−1
   and  �̅� = 

1

𝑝2+1
 + 

1

𝑝+1
 - 

1

𝑝−1
  

Taking inverse Laplace transform on both sides, we get 

                 x = 𝑒−𝑡 + 𝑒𝑡                        ……. (3) 

   and        y = sin t + 𝑒−𝑡 - 𝑒𝑡              ……. (4) 

equations (3) and (4), when takes together, give the complete solution. 

 

Example 5. Solve the following simultaneous differential equations by 

Laplace transform 

                     
𝑑𝑥

𝑑𝑡
 +4 

𝑑𝑦

𝑑𝑡
 – y = 0; 

𝑑𝑥

𝑑𝑡
 + 2 y = 𝑒−𝑡  

With the conditions           x(0) = y(0) = 0 . 

Sol.  The given conditions are  
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𝑑𝑥

𝑑𝑡
 +4 

𝑑𝑦

𝑑𝑡
 – y = 0            ……... (1) 

And                      
𝑑𝑥

𝑑𝑡
 + 2 y = 𝑒−𝑡               .……. (2) 

Taking Laplace transform on both sides of the equation (1), we get 

                             L(𝑥′) + 4 L(𝑦′) – L(y) = L(0) 

Therefore                p �̅� – x(0) + 4[p�̅� – y(0)] - �̅� = 0 

Therefore             p �̅� + (4p – 1) �̅�  = 0                 ……… (3) 

Similarly taking Laplace transform on both sides of equation (2), we get 

                            L(𝑥′) + 2 L(y)  = L(𝑒−𝑡) 

                              p �̅� – x(0) + 2�̅�  = 
1

𝑝+1
 

therefore             p �̅� + 2�̅�  = 
1

𝑝+1
                 ……… (4) 

subtracting (4) from (3), we get 

                           (4p – 3) �̅�  = −
1

𝑝+1
  

Therefore            �̅� = −
1

(𝑝+1)(4𝑝−3)
 = −

1

7
(−

1

𝑝+1
+

1

𝑝−3/4
) 

                               = 
1

7
(

1

𝑝+1
+

1

𝑝−3/4
) 

Taking inverse Laplace transform on both sides, we get 

                        y = 
1

7
 (𝑒−𝑡 − 𝑒

3𝑡

4 )                    ……… (5) 

substituting �̅� in (4), we get 

                        p �̅� + 
2

7
(

1

𝑝+1
−

1

𝑝−3/4
) = 

1

𝑝+1
 

therefore          p �̅� = 
5

7(𝑝+1)
+

2

7(𝑝−3/4)
 

therefore           �̅� = 
5

7𝑝(𝑝+1)
+

2

7𝑝(𝑝−3/4)
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therefore               = 
5

7
(

1

𝑝
−

1

𝑝+1
) + 

8

21
(

1

𝑝−3/4
−

1

𝑝
) 

                             = 
1

3𝑝
−

5

7(𝑝+1)
+

8

21(𝑝−3/4)
 

Taking inverse Laplace transform on both sides, we get 

                      x = 
1

3
−

5

7
𝑒−𝑡 +

8

21
𝑒

3𝑡

4              ……… (6) 

equation (5) and (6), when taken together, give the complete solution. 

                           

5.3.3 Solution of ordinary differential equations with 

variable coefficients: 

Given functions a1, a0, f: R → R, the differential equation in the unknown 

function y: R → R given by   𝑦′′+ a1(t) 𝑦′ + a0(t) y = f(t)       …….(1)  

is called a second order linear differential equation with variable 

coefficients. The equation in (1) is called homogeneous iff for all t ∈ R 

holds f(t) = 0. The equation in (1) is called of constant coefficients iff  

a1 , a0 , and f are constants.  

The solution of the second-order linear differential equation with variable 

coefficients can be determined using the Laplace transform are as follows: 

ILLUSTRATIVE EXAMPLES 

Example 1. Solve the equation  

                    
𝑑2𝑦(𝑡)

𝑑𝑡2 + 𝑡
𝑑𝑦(𝑡)

𝑑𝑡
− 𝑦(𝑡) = 0 𝑖𝑓 𝑦(0) = 0, (

𝑑𝑦

𝑑𝑡
)

𝑡=0
= 1.   

Sol. Taking Laplace transform of both sides of the given equation, we get 

         L(𝑦′′) + 𝐿(𝑡𝑦′) − L(y) = 𝐿(0) 

⟹ {𝑝2�̅� − 𝑝𝑦(0) − 𝑦′(0)} −
𝑑

𝑑𝑝
𝐿(𝑦′) − �̅� = 0 
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⟹ 𝑝2�̅� − 1 −
𝑑

𝑑𝑝
{𝑝�̅� − 𝑦(0)} − �̅� = 0 

⟹ 𝑝2�̅� − 1 −
𝑑

𝑑𝑝
(𝑝�̅�) − �̅� = 0 

⟹ −𝑝
𝑑�̅�

𝑑𝑝
+ (𝑝2 − 2)�̅� = 1 

⟹ 
𝑑�̅�

𝑑𝑝
 + (

2

𝑝
− 𝑝) �̅� = −

1

𝑝
 which is linear differential equation . 

       I.F. = 𝑒
∫(

2

𝑝
−𝑝)𝑑𝑝

= 𝑝2𝑒−
𝑝2

2  

Solution of equation is given below 

        �̅�𝑝2𝑒−
𝑝2

2 = ∫ (−
1

𝑝
) 𝑝2𝑒−

𝑝2

2 𝑑𝑝 + c 

                       =  − ∫ 𝑝𝑒−
𝑝2

2 𝑑𝑝 + c = c + 𝑒−
𝑝2

2 , where c is a constant. 

c must vanish if  �̅� is transform since �̅� ⟶ 0 𝑎𝑠 𝑝 ⟶ ∞ 

therefore          �̅� =
1

𝑝2      or    y = 𝐿−1 (
1

𝑝2) = t . 

Example 2. Solve the equation  

                    𝑡
𝑑2𝑦

𝑑𝑡2 +
𝑑𝑦

𝑑𝑡
− 4𝑡𝑦 = 0 𝑖𝑓 𝑦 = 3,

𝑑𝑦

𝑑𝑡
= 0 𝑤ℎ𝑒𝑛 𝑡 = 0 .   

Sol. Taking Laplace transform of both sides of the given equation, we get 

         L(𝑡𝑦′′) + 𝐿(𝑦′) + 4L(ty) = 𝐿(0) 

⟹ −
𝑑

𝑑𝑝
𝐿(𝑦′′) + 𝐿(𝑦′) − 4

𝑑

𝑑𝑝
𝐿(𝑦) = 0 

⟹   −
𝑑

𝑑𝑝
{𝑝2�̅� − 𝑝𝑦(0) − 𝑦′(0)} + {𝑝�̅� − 𝑦(0)} − 4

𝑑�̅�

𝑑𝑝
 = 0 

⟹       (p2 + 4) 
dy̅

dp
+ py̅ = 0      …… (1) 

Separating the variables, we have  

                  
𝑑�̅�

�̅�
+

p dp

p2 + 4
= 0              …… (2) 
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Taking Integration on both side then we get  

                    log �̅� + 
1

2
log (p2  +  4) = log c 

⟹             �̅� =
𝑐

√p2 + 4
                 …… (3) 

Taking inverse Laplace transform, we get 

                 y = c 𝐽0(2𝑡)                ……. (4) 

since y(0) = 3, from (4), 

                y = c 𝐽0(0) = 𝑐  

therefore                     c = 4 

hence the required solution is        y = 3 𝐽0(2𝑡) .  

 

  5.3.4 Solution of integral equations: An equation in which an 

unknown function     

           occur inside an integral is called an equation. 

Thus an equation of the form       Y(t) = F(t) + ∫ 𝑌(𝑢)𝐾(𝑢, 𝑡)𝑑𝑢
𝑏

𝑎
      …… 

(1) 

in which F(t) and K(u, t) are known functions and Y(t) is unknown 

function is an integral equation. Here a and b are either constants or 

functions of t. 

the function K(u, t) is often called the kernel of the integral equation. 

If a and b are constants, equation (1) is called Fredholm integral equation. 

Is a is a constant while b = t, it is called a Volterra integral equation. 

A special integral equation of convolution type is  

                                                  Y(t) = F(t) + ∫ 𝑌(𝑢)𝐺( 𝑡 − 𝑢)𝑑𝑢
𝑡

0
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The Laplace transform is an excellent tool for solving such integral 

equations of convolution type. The method is illustrated as follows: 

ILLUSTRATIVE EXAMPLES 

Example 1. Solve the integral equation  

                                       y(t) = 𝑡2 + ∫ 𝑦(𝑢). sin(𝑡 − 𝑢) 𝑑𝑢
𝑡

0
 . 

Sol. We have       y(t) = 𝑡2 + y(t)* sin t 

        Let L{y(t)} = �̅�(p) then taking Laplace transform and using 

convolution theorem, we find that 

                                  �̅� = 
2

𝑝3 + �̅�.
1

𝑝2+1
 

Therefore                 �̅� (1 - 
1

𝑝2+1
) = 

2

𝑝3         therefore �̅� (
𝑝2

𝑝2+1
) = 

2

𝑝3    

therefore                  �̅� = 
2(𝑝2+1)

𝑝5  = 
2

𝑝3 +
2

𝑝5 

taking inverse Laplace transform, we get 

                                y = 𝑡2 +
𝑡4

12
 . 

Example 2. Solve the integral equation  

                                       y(t) = 1 + ∫ 𝑦(𝑢). cos(𝑡 − 𝑢) 𝑑𝑢
𝑡

0
 . 

Sol. We have       y(t) = 1 + (y(t)* cos t) 

                            �̅� = 
2

𝑝
+ �̅�. 

𝑝

𝑝2+1
 

Therefore            �̅� (1 - 
𝑝

𝑝2+1
) = 

2

𝑝
          

Therefore            �̅� = 
𝑝2+1

𝑝2−𝑝 +1
 = 

1

𝑝
 + 

1

𝑝2−𝑝 +1
 

                                                = 
1

𝑝
+ 

1

(𝑝− 
1

2
)2+

3

4
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Taking inverse Laplace transform on both sides of (2), we get 

                            y = 1 + 𝑒𝑡/2𝐿−1 (
1

𝑝2+3/4
) 

therefore              y = 1 + 
2

√3
𝑒𝑡/2𝑠𝑖𝑛

√3

2
𝑡. 

 

CHECK YOUR PROGRESS  

True or false Questions 

Problem 1. Inverse Laplace Transform of Derivatives 

If 𝐿−1{𝑓(𝑝)}  = F(t), then 𝐿−1{𝑓𝑛(𝑝)}  = 𝐿−1 [
𝑑𝑛

𝑑𝑝𝑛 {𝑓(𝑝)}]  

                       = (−1)𝑛𝑡𝑛𝐹(𝑡). 

Problem 2. If L−1{f(p)}  = F(t) and L−1{g(p)}  = G(t), then 

     L−1{f(p)g(p)}  = F * G = ∫ F(u) G(t − u) du
t

0
 is called 

Convolution theorem. 

Problem 3. Applications of Laplace transform to 

differential is not possible.  

Problem 4. The value of  𝐿−1 {𝑙𝑜𝑔 (
𝑝 + 𝑎

𝑝 + 𝑏
)} is 8. 

 Problem 5. The value of  𝐿−1 {𝑙𝑜𝑔 (
𝑝 + 1

𝑝− 1
)} is 9. 

     

         

5.4 SUMMARY 

 

1. L{𝐹𝑛(𝑡)} = 𝑝𝑛f(p) – 𝑝𝑛−1𝐹(0) − 𝑝𝑛−2𝐹′(0) − …… - p𝐹𝑛−2(0) 

                                   − 𝐹𝑛−1(0); if   L{F(t)} = f(p). 
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      2.  Solution of ordinary linear differential equations with 

constant Coefficients. 

      3.  Solution of simultaneous ordinary differential equations. 

      4.  Solution of ordinary differential equations with variable 

coefficients. 

      5. Inverse Laplace Transform of Derivatives 

     If 𝐿−1{𝑓(𝑝)}  = F(t), then 𝐿−1{𝑓𝑛(𝑝)}   

                            = 𝐿−1 [
𝑑𝑛

𝑑𝑝𝑛 {𝑓(𝑝)}] = (−1)𝑛𝑡𝑛𝐹(𝑡). 

6. Convolution theorem  

     If L−1{f(p)}  = F(t) and L−1{g(p)}  = G(t), then 

     L−1{f(p)g(p)}  = F * G = ∫ F(u) G(t − u) du
t

0
 

7. L{𝐹𝑛(𝑡)} = 𝑝𝑛f(p) – 𝑝𝑛−1𝐹(0) − 𝑝𝑛−2𝐹′(0) − …… - p𝐹𝑛−2(0) 

                             − 𝐹𝑛−1(0);  if L{F(t)} = f(p). 

 

5.5 GLOSSARY  
 

Differential equations 

Integral equations 

Discontinuous functions  

Periodic Functions 

Integration  

Differentiation  

Even, odd functions 
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5.8 TERMINAL AND MODEL QUESTIONS 

 

Q 1. Using Laplace transform, solve the differential equation 

𝑦′′ + 2𝑡𝑦′ − 𝑦 = 𝑡, 𝑤ℎ𝑒𝑛 𝑦(0) = 0 𝑎𝑛𝑑 𝑦′(0) = 1. 

Q2.   Solve the following equations by Laplace transform 
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         (𝐷2 − 2𝐷 + 2)𝑥 = 0, 𝑥 = 𝐷𝑥 = 1 𝑎𝑡 𝑡 = 0. 

Q3.   Solve the following equations by Laplace transform 

         (𝐷2 − 𝐷 − 2)𝑥 = 20 sin2𝑡, 𝑥(0) = −1, 𝑥′(0) = 2. 

Q4. Solve the following equations by Laplace transform 

     (i)  𝑦′′ − 2𝑦′ − 8𝑦 = 0, 𝑤ℎ𝑒𝑛 𝑦(0) = 3 𝑎𝑛𝑑 𝑦′(0) = 6. 

     (ii)  𝑦′′ − 8𝑦′ + 15𝑦 = 9𝑡𝑒2𝑡, 𝑤ℎ𝑒𝑛 𝑦(0) = 5 𝑎𝑛𝑑 𝑦′(0) = 10. 

Q5. Solve the following simultaneous equations by Laplace transform 

        2
𝑑𝑥

𝑑𝑡
+

𝑑𝑦

𝑑𝑡
− 𝑥 − 𝑦 =  𝑒−𝑡,

𝑑𝑥

𝑑𝑡
+

𝑑𝑦

𝑑𝑡
+ 2𝑥 + 𝑦 =  𝑒𝑡; 

𝑦(0) = 1, 𝑥(0) = 2. 

Q6. Solve the following simultaneous differential equations by Laplace 

transform 

        3
𝑑𝑥

𝑑𝑡
− 𝑦 =  2𝑡,

𝑑𝑥

𝑑𝑡
+

𝑑𝑦

𝑑𝑡
− 𝑦 =  0 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  

𝑦(0) =  𝑥(0) = 0. 

Q7. A function f(t) obeys the equation f(t) + 2 ∫ 𝑓(𝑡)𝑑𝑡
𝑡

0
 = cosh 2t, find 

the Laplace transform of f(t).  

 

5.9 ANSWERS 

        

TQ1    y = 𝐿−1 (
1

𝑝2) = t. 

TQ2    x = 𝑒𝑡 cos 𝑡 

TQ3    x = 2𝑒2𝑡 − 4𝑒−𝑡 + cos 2𝑡 − 3 sin 2𝑡 

TQ4   (i) y = 2𝑒4𝑡 + 𝑒−2𝑡             (ii) y = 4𝑒2𝑡 + 3𝑡𝑒2𝑡 + 3𝑒3𝑡 − 2𝑒5𝑡 
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TQ5     x = 2 cos t + 8 sin t, y = cos t – 13 sin t + sinh t 

TQ6      x = 
𝑡2

2
+

𝑡

2
−

3

4
𝑒

2𝑡

3 +
3

4
  

TQ7 L{f(t)} = 
𝑝2

(𝑝+2)2(𝑝−2)
 

CHECK YOUR PROGRESS 

CYQ1    True                                     CYQ2    True  

CYQ3    False                                    CYQ4     False                      

 CYQ5     False 
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6.1 INTRODUCTION 

Integral equations are equations in which the unknown function 

appears inside a definite integral. They are closely related to differential 

equations. In this unit learner learn about Fredholm, Volterra integral 

equation and other types of integral equation, also learn about the 

conversion of initial and boundary value problem into integral equation. 

In 1823 Abel proposed a generalization of the tautochrone problem whose 

solution involved the solution of an integral equation which has more 

recently been designated as an integral equation of the first kind, and in 

1837 Liouville showed that the determination of a particular solution of a 

linear differential equation. The solution of integral equation is much 

easier than the original boundary value problem or initial value problem.  

 

6.2 OBJECTIVE 

             At the end of this topic learner will be able to understand:  

            (i) integral equations 

            (ii) Volterra integral equation 

            (iii) Fredholm integral equation 

            (iv) Leibnitz’s rule  

            (v) initial value problem 

            (vi) Boundary value problem  

 

6.3 INTEGRAL EQUATION 

An equation in which an unknown function appears under one or more integral 

sign is called in integral equation. 

For Example: for a≤ 𝑥 ≤ 𝑏, 𝑎 ≤ 𝑡 ≤ 𝑏, the integral equations 
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∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡 = 𝑓(𝑥)
𝑏

𝑎
               …… (1) 

y(x) - 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡 = 𝑓(𝑥)
𝑏

𝑎
         …… (2) 

y(x) = ∫ 𝑘(𝑥, 𝑡)[𝑦(𝑡)]2𝑑𝑡
𝑏

𝑎
                   …… (3) 

where the function y(x), is unknown function while the functions f(x) and 

k(x, t) are known functions and 𝜆, a and b are constants, are all integral 

equations. 

6.4 LINEAR AND NON-LINEAR INTEGRAL 

EQUATION 

An integral equation is called linear if only linear operations are performed 

in it upon the unknown function. An integral equation which is not linear 

is known as non-linear integral equation. 

For Example: for a≤ 𝑥 ≤ 𝑏, 𝑎 ≤ 𝑡 ≤ 𝑏, the integral equations 

∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡 = 𝑓(𝑥)
𝑏

𝑎
                      …… (1) 

y(x) - 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡 = 𝑓(𝑥)
𝑏

𝑎
         …… (2) 

y(x) = ∫ 𝑘(𝑥, 𝑡)[𝑦(𝑡)]2𝑑𝑡
𝑏

𝑎
                    …… (3) 

Here equation (1), (2) are called linear and equation (3) is called non-

linear. 

Now the most general type of linear equation is of the form 

g(x) y(x) = f(x) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
a

            …… (D)  

where upper limit may be either variable or fixed. The functions f, g and 

k are known functions while y is to be determined, 𝜆 is a non-zero real or 

complex. The function k(x, t) is known as the kernel of the integral 

equation. 
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Note: ∎ if g(x) ≠ 0, equation (D) is known as linear integral equation 

of the third kind. When g(x) = 0, (D) reduces to f(x) + 

𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
a

= 0 , is known as linear integral equation of the 

second kind. Again when g(x) = 1, (D) reduces to y(x) = f(x) + 

𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
a

, which is known as linear integral equation of the 

second kind. 

 

 

6.5 FREDHOLM INTEGRAL EQUATION 

A linear integral equation is of the form 

g(x) y(x) = f(x) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑏

𝑎
            …… (D)  

where a and b are constants, f(x), g(x) and k(x, t) are known functions 

while y(x) is unknown function and 𝜆 is a non-zero real or complex 

parameter, is called Fredholm integral equation of third kind. The function 

k(x, t) is known as kernel of the integral equation. 

The following special cases of (D) are as follows. 

(i) Fredholm integral equation of First kind. 

A linear equation of the form f(x) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑏

𝑎
= 0, is known as 

Fredholm integral equation of First kind. 

(ii) Fredholm integral equation of Second kind. 

A linear equation of the form    y(x) = f(x) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑏

𝑎
 is known 

as Fredholm integral equation of second kind. 

(iii) Homogeneous Fredholm integral equation of Second kind. 

A linear equation of the form    y(x) = 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑏

𝑎
 is known as 

Homogeneous Fredholm integral equation of second kind. 
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6.6 VOLTERRA INTEGRAL EQUATION 

A linear integral equation is of the form 

g(x) y(x) = f(x) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑥

𝑎
            …… (D)  

where a is constants, f(x), g(x) and k(x, t) are known functions while y(x) 

is unknown function and 𝜆 is a non-zero real or complex parameter, is 

called Volterra integral equation of third kind. The function k(x, t) is 

known as kernel of the integral equation. 

The following special cases of (D) are as follows. 

(i) Volterra integral equation of First kind. 

A linear equation of the form f(x) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑥

𝑎
= 0, is known as 

Volterra integral equation of First kind. 

(ii) Volterra integral equation of Second kind. 

A linear equation of the form    y(x) = f(x) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑥

𝑎
 is known 

as Volterra integral equation of second kind. 

(iii) Homogeneous Volterra integral equation of Second kind. 

A linear equation of the form    y(x) = 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑥

𝑎
 is known as 

Homogeneous Volterra integral equation of second kind. 

 

6.7 SPECIAL KINDS OF KERNELS 

(i) Symmetric Kernel. 

A kernel k(x, t) is symmetric (or complex symmetric or Hermitian)  if 

                                    k(x, t) = �̅�(t, x) 

where the bar denotes the complex conjugate. A real kernel k(x, t) is said 

to be symmetric kernel if k(x, t) = k(t, x). 
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for example: sin(x + t), log(xt), x2t2 + xt + 1 etc. all are symmetric kernels. 

Again sin(2x + 3t) and x3t3 + 1 are not symmetric kernels. 

(ii) Separable or degenerate Kernel. 

A kernel k(x, t) is called separable or degenerate if it can be expressed as 

the sum of a finite number of terms, each of which is the product of a 

function of x only and a function of t only, that is 

            k(x, t) = ∑ 𝑔𝑖(𝑥) ℎ𝑖(𝑡)𝑛
𝑖=1 . 

 

6.8 LEIBNITZ’S RULE OF DIFFERENTATION 

UNDER INTEGRAL SIGN 

 

Note: ∎  

 

 

6.9 SOLUTION OF INTEGRAL EQUATION 

Consider the integral equations: 

g(x) y(x) = f(x) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑏

𝑎
    …… (1)      and 

g(x) y(x) = f(x) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑥

𝑎
    …… (2) 
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a solution of the integral equation (1) and (2) is a function y(x), which 

when substituted into the equation, reduces it to an identity. 

ILLUSTRATIVE EXAMPLES 

Example 1. Show that the function y(x) = (1 + 𝑥2)−3/2 is a solution of 

the Volterra integral equation      y(x) = 
1

1 + 𝑥2 − ∫
𝑡

1 + 𝑥2 𝑦(𝑡)𝑑𝑡
𝑥

0
 . 

Sol. Given integral equation is y(x) = 
1

1 + 𝑥2 − ∫
𝑡

1 + 𝑥2 𝑦(𝑡)𝑑𝑡
𝑥

0
     …... (1) 

        Also given as              y(x) = (1 + 𝑥2)−3/2        …… (2) 

        From equation (2)       y(t) =  (1 + 𝑡2)−3/2        …… (3) 

Then, R.H.S. of (1) = 
1

1 + 𝑥2 − ∫
𝑡

1 + 𝑥2
(1 + 𝑡2)−3/2𝑑𝑡

𝑥

0
 

                    = 
1

1 + 𝑥2 −
1

1 + 𝑥2 ∫ (1 + 𝑢)−3/2.
1

2
𝑑𝑢

𝑥2

0
  (on putting 𝑡2 =

𝑢 𝑎𝑛𝑑 𝑑𝑢 = 2𝑡𝑑𝑡) 

                    = 
1

1 + 𝑥2 −
1

1 + 𝑥2. 
1

2
 .[

(1+𝑢)−3/2

−1/2
]

0

𝑥2

 

                      = 
1

1 + 𝑥2 −
1

1 + 𝑥2
[

1

(1+𝑢)1/2
]

0

𝑥2

 

                      = 
1

1 + 𝑥2 −
1

1 + 𝑥2
[

1

(1+𝑥2)1/2 − 1] 

                     = (1 + 𝑥2)−3/2 = y(x), by (2) 

                     = L.H.S. of (1) 

Hence (2) is a solution of given integral equation (1). 

Example 2. Show that the function y(x) = x𝑒𝑥 is a solution of the Volterra 

integral equation      y(x) = sin 𝑥 + 2∫ cos (𝑥 − 𝑡)𝑦(𝑡)𝑑𝑡
𝑥

0
 . 

Sol. Given integral equation is 

                         y(x) = sin 𝑥 + 2∫ cos (𝑥 − 𝑡)𝑦(𝑡)𝑑𝑡
𝑥

0
    …… (1) 
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        Also, given                        y(x) = x𝑒𝑥              ……. (2)       

        From (1)                            y(t) = t𝑒𝑡                ……. (3) 

Again we know that the following standard results: 

 ∫ 𝑒𝑎𝑥 sin(𝑏𝑥 + 𝑐) 𝑑𝑥 = 
𝑒𝑎𝑥

𝑎2+𝑏2
[𝑎 sin(𝑏𝑥 + 𝑐) − 𝑏𝑐𝑜𝑠(𝑏𝑥 + 𝑐)]  …… (4) 

And ∫ 𝑒𝑎𝑥 cos(𝑏𝑥 + 𝑐) 𝑑𝑥 = 
𝑒𝑎𝑥

𝑎2+𝑏2
[𝑎 cos(𝑏𝑥 + 𝑐) + 𝑏𝑠𝑖𝑛(𝑏𝑥 + 𝑐)]                      

                                                                                                    …… (5) 

Then R.H.S. of (1)  

       = sinx + 2∫ {cos(𝑥 − 𝑡) 𝑡𝑒𝑡}
𝑥

0
𝑑𝑡 = 𝑠𝑖𝑛𝑥 + 2 ∫ 𝑡{𝑒𝑡 cos(𝑡 − 𝑥)}𝑑𝑡

𝑥

0
 

  = sinx + 2{[𝑡
𝑒𝑡

2
{cos(𝑡 − 𝑥) + sin(𝑡 − 𝑥)}]

0

𝑥

−  ∫ 1.
𝑒𝑡

2
{cos(𝑡 − 𝑥) +

𝑥

0

         sin (𝑡 − 𝑥)}𝑑𝑡} 

 = sinx + x𝑒𝑥- ∫ 𝑒𝑡 cos(𝑡 − 𝑥) 𝑑𝑡
𝑥

0
 - ∫ 𝑒𝑡 sin(𝑡 − 𝑥) 𝑑𝑡

𝑥

0
 

 = sinx + x𝑒𝑥  − [
𝑒𝑡

2
{cos(𝑡 − 𝑥) + sin (𝑡 − 𝑥)}]

0

𝑥

 

                                     − [
𝑒𝑡

2
{sin(𝑡 − 𝑥) − cos (𝑡 − 𝑥)}]

0

𝑥

 

 = sinx + x𝑒𝑥 - [
𝑒𝑡

2
−

1

2
(𝑐𝑜𝑠𝑥 − sinx)] − [−

𝑒𝑡

2
−

1

2
(−sinx − 𝑐𝑜𝑠𝑥)] 

 = x𝑒𝑥 = 𝑦(𝑥) 

Hence (2) is solution of (1). 

Example 3. Show that y(x) = cos 2x is a solution of the integral equation 

                     y(x) = cosx + 3∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝜋

0
 where k(x, t)  
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                                 = {
𝑠𝑖𝑛𝑥 𝑐𝑜𝑠𝑡, 0 ≤ 𝑥 ≤ 𝑡

cos 𝑥 𝑠𝑖𝑛𝑡 , 𝑡 ≤ 𝑥 ≤ 𝜋
 . 

Sol. Given integral equation is y(x) = cosx + 3∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝜋

0
   …… (1) 

        Where       k(x, t) = {
𝑠𝑖𝑛𝑥 𝑐𝑜𝑠𝑡, 0 ≤ 𝑥 ≤ 𝑡

cos 𝑥 𝑠𝑖𝑛𝑡 , 𝑡 ≤ 𝑥 ≤ 𝜋
                      ……. (2) 

Also given       y(x) = cos 2x                  ……. (3)          

From (3)          y(t) = cos 2t                           ………. (4) 

Then R.H.S. of (1)  

                          = cosx + 3[∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡 + ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝜋

𝑥

𝑥

0
] 

                          = cosx + 3[∫ cos 𝑥 𝑠𝑖𝑛𝑡 𝑐𝑜𝑠2𝑡 𝑑𝑡 + ∫ sin 𝑡 cos 𝑡 cos 2𝑡 𝑑𝑡
𝜋

𝑥

𝑥

0
]  , 

by (2) and (4) 

            = cosx + 3𝑐𝑜𝑠𝑥 ∫ 𝑐𝑜𝑠2𝑡 sin 𝑡 𝑑𝑡 + 3𝑠𝑖𝑛𝑥 ∫ 𝑐𝑜𝑠2𝑡 𝑐𝑜𝑠𝑡 𝑑𝑡
𝜋

𝑥

𝑥

0
 

          = cosx + 
3

2
𝑐𝑜𝑠𝑥 ∫ (𝑠𝑖𝑛3𝑡 − 𝑠𝑖𝑛𝑡)𝑑𝑡 +

3

2
𝑠𝑖𝑛𝑥 ∫ (𝑐𝑜𝑠3𝑡 +  𝑐𝑜𝑠𝑡) 𝑑𝑡

𝜋

𝑥

𝑥

0
 

          = cosx + 
3

2
𝑐𝑜𝑠𝑥 [−

1

3
𝑐𝑜𝑠3𝑡 + 𝑐𝑜𝑠𝑡]

0

𝑥
+  

3

2
𝑠𝑖𝑛𝑥 [

1

3
𝑠𝑖𝑛3𝑡 + 𝑠𝑖𝑛𝑡]

𝑥

𝜋
 

           = cosx + 
3

2
𝑐𝑜𝑠𝑥 [−

1

3
𝑐𝑜𝑠3𝑥 + 𝑐𝑜𝑠𝑥 +

1

3
− 1] + 

3

2
𝑠𝑖𝑛𝑥 [−

1

3
𝑠𝑖𝑛3𝑥 − 𝑠𝑖𝑛𝑥] 

           = cosx −
1

2
 (𝑐𝑜𝑠3𝑥 𝑐𝑜𝑠𝑥 + 𝑠𝑖𝑛3𝑥 𝑠𝑖𝑛𝑥) + 

3

2
(cos2 𝑥 − sin2 𝑥) − 𝑐𝑜𝑠𝑥 

           = −
1

2
 cos (3x – x) + 

3

2
 𝑐𝑜𝑠2𝑥 = −

1

2
 cos 2x + 

3

2
 𝑐𝑜𝑠2𝑥 

           = cos 2x = y(x) 

          Hence (3) is solution of (1). 
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6.10 INITIAL VALUE PROBLEM 

While searching for the representation formula for the solution of an 

ordinary differential equation in such manner so as to include the 

boundary conditions or initial conditions.  

When an ordinary differential equation is to be solved under conditions 

involving dependent variable and its derivative at the same value of the 

independent variable, then the problem under consideration is said to be 

an initial value problem. 

For example: 
𝑑2𝑦

𝑑𝑥2 + 𝑦 = 𝑥 ,         y(0) = 2,           𝑦′(0) = 3          …….. 

(1) 

And                 
𝑑2𝑦

𝑑𝑥2 + 𝑦 = 𝑥 ,         y(1) = 2,           𝑦′(1) = 3          ……... 

(2) 

Are both initial value problem. 

Note: ∎ Initial value problem is always converted into Volterra integral 

equation. 

∎ After converting the initial value problem into an integral equation, 

it can be solved by shorter methods of solving integral equations.  

 

 

6.11 METHOD OF CONVERTING AN INITIAL 

VALUE PROBLEM INTO A VOLTERRA 

INTEGRAL EQUATION  

This method is illustrated with the help of the following solved example. 

 

 

ILLUSTRATIVE EXAMPLES 
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Example 1. Convert the following differential equation into integral 

equation: 

                     𝑦′′ + 𝑦 = 0 when y(0) = 𝑦′(0) = 0. 

Sol. Given           𝑦′′(𝑥) + 𝑦(𝑥) = 0         ……. (1) 

        With initial Conditions     y(0) = 𝑦′(0) = 0           ……..(2) 

         From (1) we get                         𝑦′′(𝑥) = −𝑦(𝑥)    ……. (3) 

Integrating both sides of (3) w.r.t. ‘x’ from 0 to x, we have 

          ∫ 𝑦′′(𝑥)𝑑𝑥
𝑥

0
  = − ∫ 𝑦(𝑥)𝑑𝑥

𝑥

0
      or       [𝑦′(𝑥)]0

𝑥 = − ∫ 𝑦(𝑥)𝑑𝑥
𝑥

0
 

   or   𝑦′(𝑥) − 𝑦′(0) = − ∫ 𝑦(𝑥)𝑑𝑥
𝑥

0
   or       𝑦′(𝑥) = − ∫ 𝑦(𝑥)𝑑𝑥

𝑥

0
    …… 

(4) 

integrating both sides of (4) w.r.t. x from 0 to x, we have 

∫ 𝑦′(𝑥)𝑑𝑥
𝑥

0
 = − ∫ 𝑦(𝑥)𝑑𝑥2𝑥

0
     or            [𝑦(𝑥)]0

𝑥 = − ∫ 𝑦(𝑥)𝑑𝑥2𝑥

0
 

y(x) – y(0) = − ∫ 𝑦(𝑥)𝑑𝑥2𝑥

0
      or    y(x) = − ∫ 𝑦(𝑡)𝑑𝑡2𝑥

0
    using (2) 

or       y(x) = − ∫ (𝑥 − 𝑡)𝑦(𝑡)𝑑𝑡
𝑥

0
 which is desired integral equation. 

Example 2. Convert the following differential equation into integral 

equation: 

                     𝑦′′ + 𝜆𝑥𝑦 = 𝑓(𝑥) when y(0) = 1and  𝑦′(0) = 0. 

Sol. Given 𝑦′′(𝑥) + 𝜆𝑥𝑦(𝑥) = 𝑓(𝑥)                                          ……. (1) 

        With initial Conditions     y(0) = 1    ,   𝑦′(0) = 0              ……..(2) 

         From (1) we get                         𝑦′′(𝑥) = 𝑓(𝑥) − 𝜆𝑥𝑦(𝑥)    ……. (3) 

Integrating both sides of (3) w.r.t. ‘x’ from 0 to x, we have 

        ∫ 𝑦′′(𝑥)𝑑𝑥
𝑥

0
 = − ∫ [𝑓(𝑥) − 𝜆𝑥𝑦(𝑥)]𝑑𝑥

𝑥

0
         or   

        [𝑦′(𝑥)]0
𝑥 = − ∫ [𝑓(𝑥) − 𝜆𝑥𝑦(𝑥)]𝑑𝑥

𝑥

0
              or 
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      𝑦′(𝑥) − 𝑦′(0) = − ∫ [𝑓(𝑥) − 𝜆𝑥𝑦(𝑥)]𝑑𝑥
𝑥

0
       or   

       𝑦′(𝑥) = − ∫ [𝑓(𝑥) − 𝜆𝑥𝑦(𝑥)]𝑑𝑥
𝑥

0
                                        …… (4) 

Integrating both sides of (4) w.r.t. ‘x’ from 0 to x, we have 

∫ 𝑦′(𝑥)𝑑𝑥
𝑥

0
 = ∫ [𝑓(𝑥) − 𝜆𝑥𝑦(𝑥)]𝑑𝑥2𝑥

0
        or      

  [𝑦(𝑥)]0
𝑥 = − ∫ [𝑓(𝑥) − 𝜆𝑥𝑦(𝑥)]𝑑𝑥2𝑥

0
 

y(x) – y(0) = − ∫ [𝑓(𝑥) − 𝜆𝑥𝑦(𝑥)]𝑑𝑥2𝑥

0
      or  

 y(x) = 1 + ∫ [𝑓(𝑡) − 𝜆𝑡𝑦(𝑡)]𝑑𝑡2𝑥

0
                 using (2) 

y(x) = 1 + ∫ (𝑥 − 𝑡)[𝑓(𝑡) − 𝜆𝑡𝑦(𝑡)]𝑑𝑡
𝑥

0
     

which is the required integral equation. 

Example 3. The initial value problem corresponding to the integral 

equation 

                    y(x) = ∫ 𝑦(𝑡)𝑑𝑡
𝑥

0
 is 

(a) 𝑦′ − 𝑦 = 0, 𝑦(0) = 1            (b) 𝑦′ + 𝑦 = 0, 𝑦(0) = 0 

(c) 𝑦′ − 𝑦 = 0, 𝑦(0) = 0            (d) 𝑦′ + 𝑦 = 0, 𝑦(0) = 1 . 

Sol. Given       y(x) = ∫ 𝑦(𝑡)𝑑𝑡
𝑥

0
 is         ……. (1) 

        Differentiating both sides of (1) with respect to x and using the 

Leibnitz’s rule of         

        differentiation under the sign of integral, we obtain 

         𝑦′(𝑥) = 0 +  ∫
𝜕𝑦(𝑡)

𝜕𝑥
𝑑𝑡

𝑥

0
+ 𝑦(𝑥)

𝑑𝑥

𝑑𝑥
− 𝑦(0)

𝑑0

𝑑𝑥
       or  

         𝑦′(𝑥) = 𝑦(𝑥),              i.e. 𝑦′ − 𝑦 = 0          …… (2) 

         From (1),          y(0) = 1 + ∫ 𝑦(𝑡)𝑑𝑡
0

0
= 1,     i.e. y(0) = 1   …….. (3) 
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(2) and (3) show that result (a) is true. 

 

6.12 BOUNDARY VALUE PROBLEM 

When an ordinary differential equation is to be solved under conditions 

involving dependent variable and its derivative at two different values of 

the independent variable, then the problem under consideration is said to 

be an initial value problem. 

For example: 
𝑑2𝑦

𝑑𝑥2 + 𝑦 = 0 ,         y(a) = 𝑦1,           𝑦(𝑏) = 𝑦2          …….. 

(1) 

Note: ∎ Boundary value problem is always converted into Fredholm 

integral equation. 

 

ILLUSTRATIVE EXAMPLES 

Example 1. Convert the following differential equation into integral 

equation: 

                     𝑦′′ + 𝜆𝑦 = 0 when y(0) = 0,  𝑦(𝑙) = 0. 

Sol. Given        𝑦′′(𝑥) + 𝜆𝑦(𝑥) = 0           ……… (1) 

        With boundary conditions                y(0) = 0       …….. (2a) 

         And                                                  y(ℓ) = 0        …….. (2b) 

          From (1),                    𝑦′′(𝑥) = −𝜆 𝑦(𝑥)          …….(3) 

Integrating both sides of (3) w.r.t. ‘x’ from 0 to x, we have 

        ∫ 𝑦′′(𝑥)𝑑𝑥
𝑥

0
 = −𝜆 ∫ 𝑦(𝑥) 𝑑𝑥

𝑥

0
         or   

        [𝑦′(𝑥)]0
𝑥 = −𝜆 ∫ 𝑦(𝑥) 𝑑𝑥

𝑥

0
              or 

      𝑦′(𝑥) − 𝑦′(0) = −𝜆 ∫ 𝑦(𝑥) 𝑑𝑥
𝑥

0
       or        ……. (4) 
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Let                      𝑦′(0) = 𝐶, a constant             ……. (5) 

Using (5), (4)       𝑦′(𝑥) = 𝐶 −  𝜆 ∫ 𝑦(𝑥) 𝑑𝑥
𝑥

0
         ……… (6) 

integrating both sides of (6) w.r.t. x from 0 to x, we have 

∫ 𝑦′(𝑥)𝑑𝑥
𝑥

0
 = 𝐶 ∫ 𝑑𝑥 −

𝑥

0
 𝜆 ∫ 𝑦(𝑥) 𝑑𝑥2𝑥

0
    or   [𝑦(𝑥)]0

𝑥 = Cx −𝜆 ∫ 𝑦(𝑡)𝑑𝑡2𝑥

0
 

y(x) – y(0) = 𝐶𝑥 − 𝜆 ∫ (𝑥 − 𝑡)𝑦(𝑡)𝑑𝑡
𝑥

0
        or 

y(x) – 0 = 𝐶𝑥 − 𝜆 ∫ (𝑥 − 𝑡)𝑦(𝑡)𝑑𝑡
𝑥

0
             or 

y(x) = 𝐶𝑥 − 𝜆 ∫ (𝑥 − 𝑡)𝑦(𝑡)𝑑𝑡
𝑥

0
           ……. (7) 

putting x = ℓ in (7), we get 

y(ℓ) = 𝐶ℓ − 𝜆 ∫ (ℓ − 𝑡)𝑦(𝑡)𝑑𝑡
ℓ

0
      or   0 = 𝐶ℓ − 𝜆 ∫ (ℓ − 𝑡)𝑦(𝑡)𝑑𝑡

ℓ

0
, 

using(2b) 

or          C = 
𝜆

ℓ
∫ (ℓ − 𝑡)𝑦(𝑡)𝑑𝑡

ℓ

0
            ……. (8) 

using (8), (7) reduces to 

            y(x) = 
𝜆

ℓ
𝑥 ∫ (ℓ − 𝑡)𝑦(𝑡)𝑑𝑡

ℓ

0
 - 𝜆 ∫ (𝑥 − 𝑡)𝑦(𝑡)𝑑𝑡

𝑥

0
         ……. (9) 

or        y(x) = ∫
𝜆𝑥(ℓ−𝑡)

ℓ
𝑦(𝑡)𝑑𝑡

ℓ

0
 - 𝜆 ∫ (𝑥 − 𝑡)𝑦(𝑡)𝑑𝑡

𝑥

0
 

 or        y(x) = ∫
𝜆𝑥(ℓ−𝑡)

ℓ
𝑦(𝑡)𝑑𝑡

𝑥

0
+ ∫

𝜆𝑥(ℓ−𝑡)

ℓ
𝑦(𝑡)𝑑𝑡

ℓ

𝑥
 - 𝜆 ∫ (𝑥 − 𝑡)𝑦(𝑡)𝑑𝑡

𝑥

0
 

 or        y(x) = 𝜆 ∫ [
𝑥(ℓ−𝑡)

ℓ
− (𝑥 − 𝑡)] 𝑦(𝑡)𝑑𝑡

𝑥

0
 + 𝜆 ∫

𝑥(ℓ−𝑡)

ℓ
𝑦(𝑡)𝑑𝑡

ℓ

𝑥
 

 or        y(x) = 𝜆 ∫ [
𝑥(ℓ−𝑡) − ℓ(𝑥−𝑡)

ℓ
] 𝑦(𝑡)𝑑𝑡

𝑥

0
 + ∫

𝑥(ℓ−𝑡)

ℓ
𝑦(𝑡)𝑑𝑡

ℓ

𝑥
 

 or        y(x) = 𝜆 [∫
𝑡(ℓ−𝑡)

ℓ
𝑦(𝑡)𝑑𝑡

𝑥

0
+ ∫

𝑥(ℓ−𝑡)

ℓ
𝑦(𝑡)𝑑𝑡

ℓ

𝑥
] 

 or        y(x) = 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
ℓ

0
            ……. (10) 
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 where       k(x, t) = {

𝑡(ℓ−𝑡)

ℓ
, 𝑖𝑓 0 < 𝑡 < 𝑥

𝑥(ℓ−𝑡)

ℓ
 , 𝑖𝑓 𝑥 < 𝑡 < ℓ

                 …….. (11) 

(10) is the required Fredholm integral equation, where k(x, t) is given by 

(11). 

Example 2. Convert the following differential equation into integral 

equation: 

                     𝑦′′ + 𝑥𝑦 = 1 when y(0) = 0,  𝑦(1) = 0. 

Sol. Given        𝑦′′(𝑥) + 𝑥𝑦(𝑥) = 1           ……… (1) 

        With boundary conditions                y(0) = 0       …….. (2a) 

         And                                                  y(0) = 0        …….. (2b) 

          From (1),                    𝑦′′(𝑥) = 1 − 𝑥 𝑦(𝑥)          …….(3) 

Integrating both sides of (3) w.r.t. ‘x’ from 0 to x, we have 

        ∫ 𝑦′′(𝑥)𝑑𝑥
𝑥

0
 = ∫  𝑑𝑥 − ∫  𝑥𝑦(𝑥)𝑑𝑥

𝑥

0

𝑥

0
   or  [𝑦′(𝑥)]0

𝑥 = x - ∫ 𝑥 𝑦(𝑥)𝑑𝑥
𝑥

0
 

or             𝑦′(𝑥) − 𝑦′(0) = 𝑥 − ∫ 𝑥 𝑦(𝑥) 𝑑𝑥
𝑥

0
       or        ……. (4) 

Let                      𝑦′(0) = 𝐶, a constant             ……. (5) 

Using (5), (4)       𝑦′(𝑥) = 𝐶 + 𝑥 −  ∫ 𝑥 𝑦(𝑥) 𝑑𝑥
𝑥

0
         ……… (6) 

integrating both sides of (6) w.r.t. x from 0 to x, we have 

∫ 𝑦′(𝑥)𝑑𝑥
𝑥

0
 = ∫ (𝑐 + 𝑥)𝑑𝑥 −

𝑥

0
 𝜆 ∫ 𝑥 𝑦(𝑥) 𝑑𝑥2𝑥

0
    or            

 [𝑦(𝑥)]0
𝑥 =  [𝐶𝑥 +

1

2
𝑥2]

0

𝑥

− ∫ 𝑡 𝑦(𝑡)𝑑𝑡2𝑥

0
            or 

y(x) – y(0) = 𝐶𝑥 +
1

2
𝑥2 − ∫ (𝑥 − 𝑡)𝑦(𝑡)𝑑𝑡

𝑥

0
        or 

y(x) = 𝐶𝑥 +
1

2
𝑥2 − ∫ (𝑥 − 𝑡)𝑦(𝑡)𝑑𝑡

𝑥

0
        using (2a)       ……. (7) 

putting x = 1 in (7), we have 
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y(1) = c + 
1

2
− ∫ (1 − 𝑡) 𝑡 𝑦(𝑡)𝑑𝑡

1

0
         or  1 = c + 

1

2
− ∫ (1 − 𝑡) 𝑡 𝑦(𝑡)𝑑𝑡

1

0
  

by (2b) 

or              c = 
1

2
+ ∫ (1 − 𝑡) 𝑡 𝑦(𝑡)𝑑𝑡

1

0
              …… (8) 

using (8), (7) reduces to 

y(x) = x[
1

2
+ ∫ (1 − 𝑡) 𝑡 𝑦(𝑡)𝑑𝑡

1

0
] + 

1

2
𝑥2 − ∫ (𝑥 − 𝑡)𝑦(𝑡)𝑑𝑡

𝑥

0
 

or      y(x) = 
1

2
 x (1 + x) + ∫ 𝑥𝑡(1 − 𝑡)𝑦(𝑡)𝑑𝑡

1

0
 − ∫ 𝑡(𝑥 − 𝑡)𝑦(𝑡)𝑑𝑡

𝑥

0
 

or      y(x) = 
1

2
 x (1 + x) +∫ 𝑥𝑡(1 − 𝑡)𝑦(𝑡)𝑑𝑡

𝑥

0
 + ∫ 𝑥𝑡(1 − 𝑡)𝑦(𝑡)𝑑𝑡

1

𝑥
 - 

∫ 𝑡(𝑥 − 𝑡)𝑦(𝑡)𝑑𝑡
𝑥

0
 

or     y(x) = 
1

2
 x (1 + x) +∫ 𝑡{𝑥 − 𝑥𝑡 − 𝑥 + 𝑡}𝑦(𝑡)𝑑𝑡

𝑥

0
 + ∫ 𝑥𝑡(1 − 𝑡)𝑦(𝑡)𝑑𝑡

1

𝑥
 

or     y(x) = 
1

2
 x (1 + x) +∫ 𝑡2(1 − 𝑡)𝑦(𝑡)𝑑𝑡

𝑥

0
 +  ∫ 𝑥𝑡(1 − 𝑡)𝑦(𝑡)𝑑𝑡

1

𝑥
 

or     y(x) = 
1

2
 x (1 + x) +∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡

𝑥

0
           …… (9) 

where      𝑘(𝑥, 𝑡) = {
𝑡2(1 − 𝑡), 𝑖𝑓 𝑡 < 𝑥

𝑥𝑡(1 − 𝑡) , 𝑖𝑓 𝑡 > 𝑥
           …… (10) 

(10) is the required Fredholm integral equation, where k(x, t) is given by 

(11). 

 

CHECK YOUR PROGRESS  

True or false / MCQ Questions 

Problem 1. The integral equation  

 y(x) = ∫ (𝑥 − 𝑡)𝑦(𝑡)𝑑𝑡 − 𝑥 ∫ (1 − 𝑡)𝑦(𝑡)𝑑𝑡
1

0

𝑥

0
 is equivalent to: 

 (a) 𝑦′′ − 𝑦 = 0, 𝑦(0) = 0, 𝑦(1) = 0   

 (b) 𝑦′′ − 𝑦 = 0, 𝑦(0) = 0, 𝑦′(0) = 0 
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 (c) 𝑦′ + 𝑦 = 0, 𝑦(0) = 0, 𝑦(1) = 0     

 (d) 𝑦′ + 𝑦 = 0, 𝑦(0) = 1, 𝑦′(0) = 0 

Problem 2. Boundary value problem is always converted into 

Fredholm integral equation. True / false. 

Problem 3. Initial value problem is always converted into 

Volterra integral equation. True / false. 

Problem 4. A linear equation of the form    y(x) = f(x) + 

𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑏

𝑎
 is known as Fredholm integral equation of 

third kind. 

Problem 5. A linear equation of the form    y(x) = 

𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑥

𝑎
 is known as Homogeneous Volterra 

integral equation of second kind. 

 

 

 

 

6.13 SUMMARY 
 

1. Fredholm integral equation of First kind. 

A linear equation of the form f(x) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑏

𝑎
= 0, is known as 

Fredholm integral equation of First kind. 

2. Fredholm integral equation of Second kind. 

A linear equation of the form    y(x) = f(x) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑏

𝑎
 is known 

as Fredholm integral equation of second kind. 

3. Homogeneous Fredholm integral equation of Second kind. 



Mathematical Methods  MAT 509 

Department of Mathematics 
Uttarakhand Open University                                                                                                                          127 
 

A linear equation of the form    y(x) = 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑏

𝑎
 is known as 

Homogeneous Fredholm integral equation of second kind. 

4. Volterra integral equation of First kind. 

A linear equation of the form f(x) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑥

𝑎
= 0, is known as 

Volterra integral equation of First kind. 

5. Volterra integral equation of Second kind. 

A linear equation of the form    y(x) = f(x) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑥

𝑎
 is known 

as Volterra integral equation of second kind. 

6. Homogeneous Volterra integral equation of Second kind. 

A linear equation of the form    y(x) = 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑥

𝑎
 is known as 

Homogeneous Volterra integral equation of second kind. 

7. Symmetric Kernel.        k(x, t) = �̅�(t, x). 

8. Initial value problem.   
𝑑2𝑦

𝑑𝑥2 + 𝑦 = 𝑥 ,         y(0) = 2,           𝑦′(0) = 3.   

9. Boundary value problem. 
𝑑2𝑦

𝑑𝑥2 + 𝑦 = 0 ,         y(a) = 𝑦1,          𝑦(𝑏) = 𝑦2.         

6.14 GLOSSARY  
 

Integration  

Even, odd functions   

Trigonometric functions 

Differentiation 

First order derivatives 

Second order derivatives 
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6.17 TERMINAL AND MODEL QUESTIONS 

 

Q 1. Verify that the given functions are solutions of the corresponding 

integral equations. 

       (i) y(x) = 1 – x;  ∫ 𝑒𝑥−𝑡𝑦(𝑡)𝑑𝑡
𝑥

0
 = x. 

       (ii) y(x) = 
1

2
 ;     ∫

𝑦(𝑡)

√𝑥−𝑡
𝑑𝑡 = √𝑥

𝑥

0
 

       (iii) y(x) = 3 ;  x3 = ∫ (𝑥 − 𝑡)2𝑦(𝑡)𝑑𝑡
𝑥

0
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       (iv) y(x) = x - 
x3

6
 ; y(x) = x - ∫ sinh (𝑥 − 𝑡)𝑦(𝑡)𝑑𝑡

𝑥

0
 

       (v) y(x) = 𝑒𝑥 (2𝑥 −
2

3
) ;    y(x) + 2∫ 𝑒𝑥−𝑡𝑦(𝑡)𝑑𝑡

𝑡

0
 = 2x𝑒𝑥 

Q2.   Reduce the following initial value problem into an integral equation 

          
𝑑2𝑦

𝑑𝑥2 + 𝑥
𝑑𝑦

𝑑𝑥
+ 𝑦 = 0 ,         y(0) = 1,           𝑦′(0) = 1 . 

Q3. Convert 𝑦′′(𝑥) − 𝑠𝑖𝑛𝑥 𝑦′(𝑥) + 𝑒𝑥𝑦 = 𝑥 with initial conditions  

        y(0) = 1, 𝑦′(0) = -1 to a Volterra integral equation of second kind. 

Q4. Show that the solution of the Volterra equation y(x) = 1 + 

∫  (𝑡 − 𝑥)𝑦(𝑡)𝑑𝑡
𝑥

0
 satisfying the differential equation 𝑦′′(𝑥) + 𝑦′(𝑥) = 0 

and the boundary conditions y(0) = 1, 𝑦′(0) = 1. 

Q5. Convert the boundary value problem 𝑦′′(𝑥) + 𝑦′(𝑥) =

0 𝑤𝑖𝑡ℎ boundary condition y(0) = 1, 𝑦′(1) = 0, into an integral 

equation. 

 

6.18 ANSWERS 

        

TQ2    y(x) = 1 + x - ∫ 𝑡 𝑦(𝑡)𝑑𝑡
𝑡

0
 

TQ3    y(x) = 
𝑥3

6
− 𝑥 + 1 + ∫ [𝑠𝑖𝑛𝑡 − (𝑥 − 𝑡)(𝑒𝑡 + 𝑐𝑜𝑠𝑡) ]𝑦(𝑡)𝑑𝑡

𝑥

0
. 

TQ5     y(x) = 1 + ∫ 𝑘(𝑥, 𝑡) 𝑦(𝑡)𝑑𝑡
1

0
, where k(x, t) = {

𝑡 , 𝑡 < 𝑥
𝑥 , 𝑡 > 𝑥

 . 

 

CHECK YOUR PROGRESS 

        CYQ 1. (a) 

        CYQ 2. True  
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        CYQ 3. True 

        CYQ 4. False 

         CYQ 5. True  
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UNIT 7:  FREDHOLM INTEGRAL 

EQUATIONS OF SECOND KIND WITH 

SEPARABLE KERNELS 
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7.1 INTRODUCTION 

Integral equations are equations in which the unknown function 

appears inside a definite integral. They are closely related to differential 

equations. In this unit learner learn about Fredholm, Volterra integral 

equation and other types of integral equation, also learn about the 

conversion of initial and boundary value problem into integral equation. 

In this unit learner learn about Solution of homogeneous Fredholm 

integral equation of second kind with separable kernel and Solution of 

non-homogeneous Fredholm integral equation of second kind with 

separable kernel. 

 

7.2 OBJECTIVE 

             At the end of this topic learner will be able to understand:  

            (i) integral equation 

            (ii) Fredholm integral equation 

            (iii) initial value problem 

            (vi) Boundary value problem  

            (v) Solution of homogeneous Fredholm integral equation of       

                  second kind with separable kernel. 

          (vi) Solution of non-homogeneous Fredholm integral equation of  

                   second kind with separable kernel. 

 

7.3 CHARACTERISTIC VALUES (EIGEN VALUE) 

OR CHARACTERISTIC FUNCTION (EIGEN 

FUNCTION) 

Consider the Homogeneous Fredholm integral equation of the second 

kind: 
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       y(x) = 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑏

𝑎
           ……… (1) 

then (1) has always the obvious solution y(x) = 0, which is known as zero 

or trivial solution of (1). The value of the parameter 𝜆 for which (1) has a 

non-zero (or non trivial) solution y(x) ≠ 0 are known as the eigenvalue of 

(1) or of the kernel k(x, t). Further if 𝜑(𝑥) is continuous and  𝜑(𝑥)  ≠ 0 

on the interval (a, b) and 

                                 𝜑(𝑥)  = 𝜆 ∫ 𝑘(𝑥, 𝑡)𝜑(𝑥) 𝑑𝑡
𝑏

𝑎
          ……… (2) 

Then 𝜑(𝑥)  is known as an eigenfunction of (1) corresponding to the 

eigenvalue 𝜆0. 

Note: ∎ The number 𝜆 = 0 is not an eigenvalue since for 𝜆 = 0, (1) 

yield y(x) = 0, which is non-zero solution. 

∎ if the kernel k(x, t) is continuous in the rectangle R: a≤ 𝑥 ≤ 𝑏, a≤

𝑡 ≤ 𝑏, and the numbers a and b are finite, then to every eigen value 𝜆 

there exist a finite number of linearly independent eigenfunction; the 

number of such functions is known as the index of the eigenvalue. 

Different eigenvalue have different indices. 

∎ A Homogeneous Fredholm integral equation may, generally, have no 

eigenvalues and eigenfunctions or it may not have any real eigenvalue 

and eigenfunction. 

 

7.4 SOLUTION OF HOMOGENEOUS 

FREDHOLM INTEGRAL EQUATION OF THE 

SECOND KIND WITH SEPARABLE KERNEL. 

Consider a homogeneous Fredholm integral equation of the second kind: 

y(x) = 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑏

𝑎
           ……… (1) 

since kernel k(x, t) is separable, we take  

                              k(x, t) = ∑ 𝑓𝑖 (𝑥)𝑔𝑖(𝑡)𝑛
𝑖=1         …… (2) 
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using (2), (1) reduces to 

y(x) = 𝜆 ∫ [∑ 𝑓𝑖 (𝑥)𝑔𝑖(𝑡)𝑛
𝑖=1 ]𝑦(𝑡)𝑑𝑡

𝑏

𝑎
  or     

y(x) =  𝜆 ∑ 𝑓𝑖(𝑥) ∫ 𝑔𝑖(𝑡)𝑦(𝑡)𝑑𝑡
𝑏

𝑎
𝑛
𝑖=1            ……. (3) 

let ∫ 𝑔𝑖(𝑡)𝑦(𝑡)𝑑𝑡
𝑏

𝑎
 = 𝐶𝑖  , where I = 1, 2, 3, …, n.    …… (4) 

using (4), (3) reduces to    y(x) = 𝜆 ∑ 𝐶𝑖𝑓𝑖 (𝑥)𝑛
𝑖=1      …… (5) 

where constants 𝐶𝑖(𝑖 = 1, 2, 3, … , 𝑛) are to be determined in order to find 

solution of (1) in the form given by (5). 

We now proceed to evaluate 𝐶𝑖’s as follows: 

Multiplying both sides of (5) successively by 𝑔1(𝑥), 𝑔2(𝑥), … , 𝑔𝑛(𝑥) and 

integrating over the interval (a, b), we have 

             ∫ 𝑔1(𝑡)𝑦(𝑥)𝑑𝑥
𝑏

𝑎
 = 𝜆 ∑ 𝐶𝑖 ∫ 𝑔1(𝑡)𝑓𝑖(𝑥)𝑑𝑥

𝑏

𝑎
𝑛
𝑖=1      …… (𝐴1) 

            ∫ 𝑔2(𝑡)𝑦(𝑥)𝑑𝑥
𝑏

𝑎
 = 𝜆 ∑ 𝐶𝑖 ∫ 𝑔2(𝑡)𝑓𝑖(𝑥)𝑑𝑥

𝑏

𝑎
𝑛
𝑖=1       …… (𝐴2) 

            ….      ….        ….        ….     ….     ….  

            ∫ 𝑔𝑛(𝑡)𝑦(𝑥)𝑑𝑥
𝑏

𝑎
 = 𝜆 ∑ 𝐶𝑖 ∫ 𝑔𝑛(𝑡)𝑓𝑖(𝑥)𝑑𝑥

𝑏

𝑎
𝑛
𝑖=1       …… (𝐴2) 

Let       𝛼𝑖𝑗 = ∫ 𝑔𝑗(𝑡)𝑓𝑖(𝑥)𝑑𝑥
𝑏

𝑎
, where i, j = 1, 2, …, n. 

Using (4) and (6), (𝐴1) reduces to 

𝐶1 = 𝜆 ∑ 𝐶𝑖𝛼𝑖𝑗
𝑛
𝑖=1        or     𝐶1 = 𝜆[𝐶1𝛼11 + 𝐶2𝛼12 + ⋯ + 𝐶𝑛𝛼1𝑛] 

Or     (1 − 𝜆𝛼11)𝐶1 − 𝜆𝛼12𝐶2 − ⋯ − 𝜆𝛼1𝑛𝐶𝑛 = 0         …… (𝐵1) 

          −𝜆𝛼21𝐶1 + (1 − 𝜆𝛼22)𝐶2 − ⋯ − 𝜆𝛼2𝑛𝐶𝑛 = 0     …… (𝐵2) 

            …       …     …       …       …        …     … 

            …       …     …       …       …        …     … 

            −𝜆𝛼𝑛1𝐶1 − −𝜆𝛼𝑛2𝐶2 − ⋯ + (1 − 𝜆𝛼𝑛𝑛)𝐶𝑛 = 0    …… (𝐵𝑛) 
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The determinant D(𝜆) of this system is 

D(𝜆) = |

1 − 𝜆𝛼11    − 𝜆𝛼12    …   − 𝜆𝛼1𝑛

−𝜆𝛼21    1 − 𝜆𝛼22     …    − 𝜆𝛼1𝑛

…             …             …             …   
−𝜆𝛼𝑛1     − 𝜆𝛼𝑛2    …    1 − 𝜆𝛼𝑛𝑛 

|         ….. (7) 

D(𝜆) ≠ 0, the system of equations (𝐵1), (𝐵2), … , (𝐵𝑛) has only trivial 

solution 𝐶1 = 𝐶2 = ⋯ = 𝐶𝑛 = 0 and hence from (5) we notice that (1) has 

only zero or trivial solution y(x) = 0. However, if D(𝜆) = 0, at least one 

of the 𝐶𝑖′𝑠 can be assigned arbitrarily, and the remaining 𝐶𝑖′𝑠 can be 

determined accordingly. Hence when D(𝜆) = 0, infinitely many solutions 

of the integral equation (1) exist. 

Those value of 𝜆 for which D(𝜆) = 0 are called the eigenvalues, and any 

non-trivial solution of (1) is called a corresponding eigenfunction of (1). 

The eigenvalue of (1) are given by D(𝜆) = 0, i.e. 

              |

1 − 𝜆𝛼11    − 𝜆𝛼12    …   − 𝜆𝛼1𝑛

−𝜆𝛼21    1 − 𝜆𝛼22     …    − 𝜆𝛼1𝑛

…             …             …             …   
−𝜆𝛼𝑛1     − 𝜆𝛼𝑛2    …    1 − 𝜆𝛼𝑛𝑛 

|  = 0       …… (8) 

So degree of equation (8) in 𝜆 is m≤ 𝑛. It follows that if integral 

equation (1) has separable kernel given by (2), then (1) has at the most n 

eigenvalues. 

 

ILLUSTRATIVE EXAMPLES 

Example 1. Solve the Homogeneous Fredholm equation 

                    y(x) = 𝜆 ∫ 𝑒𝑥𝑒𝑡𝑦(𝑡)𝑑𝑡
1

0
  . 

Sol. Given            y(x) = 𝜆 ∫ 𝑒𝑥𝑒𝑡𝑦(𝑡)𝑑𝑡
1

0
  or    y(x) = 𝜆𝑒𝑥 ∫ 𝑒𝑡𝑦(𝑡)𝑑𝑡

1

0
     

….. (1) 

        Let                 c = ∫ 𝑒𝑡𝑦(𝑡)𝑑𝑡
1

0
                                  …… (2) 
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         Then (1) reduce to            y(x) = 𝜆c𝑒𝑥                           …….. (3) 

          From (3),                         y(t) = 𝜆c𝑒𝑡                             ………(4) 

         Using (4), (2) becomes        c = ∫ 𝑒𝑡𝜆c𝑒𝑡𝑑𝑡
1

0
             or  

         c =  𝜆c[
𝑒2𝑡

2
]

0

1

 = 
𝜆c

2
(𝑒2 − 1)    or       c[1 −

𝜆

2
(𝑒2 − 1)] = 0     …… (5) 

        if c = 0 then (4) gives y(x) = 0.we, therefore, assume that for non-

zero solution of (1), c≠ 0.             

        Then (5) gives 

         1 −
𝜆

2
(𝑒2 − 1) = 0             or           𝜆 = 

2

(𝑒2−1)
              …….. (6) 

         Which is an eigenvalue of (1). 

          Putting the value of 𝜆 given by (6) in (3), the corresponding 

eigenfunction is given by 

                        y(x) = {
2𝑐

(𝑒2−1)
𝑒𝑥} 

         Hence, corresponding to eigenvalue 
2

(𝑒2−1)
 there corresponds the 

eigenfunction 𝑒𝑥. 

          

Note:∎ While writing eigenfunction the constant 
2𝑐

(𝑒2−1)
 is taken as 

unity. 

 

Example 2. Show that the Homogeneous integral equation y(x) - 

𝜆 ∫ (3𝑥 − 2) 𝑡 𝑦(𝑡)𝑑𝑡
1

0
 = 0 has no characteristic number and 

eigenfunction. 

Sol.   Given    y(x) = 𝜆 ∫ (3𝑥 − 2) 𝑡 𝑦(𝑡)𝑑𝑡
1

0
      or    y(x) = 

𝜆(3𝑥 − 2) ∫  𝑡 𝑦(𝑡)𝑑𝑡
1

0
     …… (1) 

          Let           c = ∫  𝑡 𝑦(𝑡)𝑑𝑡
1

0
        …… (2) 
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          Then (1) reduces to          y(x) = 𝜆𝑐(3𝑥 − 2)            ……. (3) 

          From (3),                          y(t) = 𝜆𝑐(3𝑡 − 2)              ……. (4) 

           Using (4), (2) becomes 

            c = ∫  𝑡 𝜆𝑐(3𝑡 − 2)𝑑𝑡
1

0
          or        𝑐 =  𝜆𝑐[𝑡3 − 𝑡2]0

1     or c = 0. 

          Therefore from (3) y(x) ≡ 0, which is a zero solution of (1). Hence 

for any 𝜆, (1) ℎ𝑎𝑠 𝑜𝑛𝑙𝑦 zero solution y(x) ≡ 0. Therefore, (1) does not 

possess any eigenvalue or eigenfunction. 

Note: ∎ Note that the kernel k(x, t) = (3x – 2) t of the above example 

is not symmetric. Thus we shown that a kernel which is not symmetric 

does not necessarily have a characteristic constant.   

 

Example 3. Find the eigenvalue and the corresponding eigenfunctions of 

the homogeneous integral equation y(x) = 𝜆 ∫ 𝑠𝑖𝑛𝜋𝑥 𝑐𝑜𝑠𝜋𝑥 𝑦(𝑡)𝑑𝑡
1

0
. 

Sol. Given y(x) = 𝜆 ∫ 𝑠𝑖𝑛𝜋𝑥 𝑐𝑜𝑠𝜋𝑥 𝑦(𝑡)𝑑𝑡
1

0
    or    y(x) = 

𝜆𝑠𝑖𝑛𝜋𝑥 ∫ 𝑐𝑜𝑠𝜋𝑥 𝑦(𝑡)𝑑𝑡
1

0
   …….(1) 

       Let C = ∫ 𝑐𝑜𝑠𝜋𝑥 𝑦(𝑡)𝑑𝑡
1

0
             ……… (2) 

       Then (1) reduce to         y(x) = 𝜆 𝐶 𝑠𝑖𝑛𝜋𝑥          …….. (3) 

        From (3),                       y(t) = 𝜆 𝐶 𝑠𝑖𝑛𝜋𝑡          ……… (4) 

        Using (4), (2) becomes 

       C = ∫ 𝑐𝑜𝑠𝜋𝑡(𝜆 𝑐 𝑠𝑖𝑛𝜋𝑡)𝑑𝑡
1

0
 or   c = 

𝜆 𝐶

2
[−

𝑐𝑜𝑠2𝜋𝑡 

2𝜋
]

0

1

 = 
𝜆 𝐶

2
[−

1

2𝜋
+

1

2𝜋
]. 

     Hence C = 0 and so from (3), y(x) ≡ 0. Thus for any 𝜆, (1) has only 

zero solution y(x) ≡ 0. 

     Therefore, (1) does not possess any characteristic number or 

eigenfunction. 
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Example 4. Find the eigenvalues and the corresponding eigenfunctions of 

the integral equation y(x) = 𝜆 ∫ (2𝑥𝑡 − 4𝑥2) 𝑦(𝑡)𝑑𝑡
1

0
. 

Sol. Given y(x) = 𝜆 ∫ (2𝑥𝑡 − 4𝑥2) 𝑦(𝑡)𝑑𝑡
1

0
    or     

y(x) = 2𝜆𝑥 ∫ 𝑡𝑦(𝑡)𝑑𝑡 − 4𝜆𝑥2 ∫ 𝑦(𝑡)
1

0
𝑑𝑡

1

0
        ……… (1) 

             𝐶1 = ∫ 𝑡 𝑦(𝑡)
1

0
𝑑𝑡      ……. (2)      and  𝐶2 = ∫ 𝑦(𝑡)

1

0
𝑑𝑡      ……. (3) 

Then (1) reduces to         y(x) = 2𝜆𝐶1𝑥 − 4𝜆𝐶2𝑥2              ……. (4)   

                                         y(t) = 2𝜆𝐶1𝑡 − 4𝜆𝐶2𝑡2               ……. (5)   

Using (5), (2) becomes  

  𝐶1 = ∫ 𝑡(2𝜆𝐶1𝑡 − 4𝜆𝐶2𝑡2)
1

0
𝑑𝑡       or    𝐶1 [1 − 2𝜆 ∫ 𝑡21

0
𝑑𝑡] +

4𝜆𝐶2 ∫ 𝑡31

0
𝑑𝑡 = 0 

  𝐶1 (1 −
2𝜆

3
) + 𝜆𝐶2 = 0                ……… (6) 

Again, using (5), (3) becomes 

𝐶2 = ∫ (2𝜆𝐶1𝑡 − 4𝜆𝐶2𝑡2)
1

0
𝑑𝑡       or    2𝜆𝐶1 ∫ 𝑑𝑡

1

0
− 𝐶2 [1 + 4𝜆 ∫ 𝑡21

0
𝑑𝑡]  

= 0 

Or                    𝜆𝐶1 − 𝐶2 (1 +
4𝜆

3
) = 0          …… (7) 

Thus, we have a system of homogeneous linear equations (6) and (7) for 

determining 𝐶1 and 𝐶2, for non-zero solution of this system of equations, 

we must have 

|
(1 −

2𝜆

3
) 𝜆

𝜆 − (1 +
4𝜆

3
)

| = 0      or       − (1 −
2𝜆

3
) (1 +

4𝜆

3
) − 𝜆2 = 0 

Or     𝜆2 +  6𝜆 + 9 = 0     so that        𝜆 = −3, −3 

Hence eigenvalue are 𝜆1 = −3, 𝜆2 = −3. 

Putting 𝜆 = 𝜆1 = −3 in (6) and (7), we get  
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 3𝐶1 − 3𝐶2 = 0     …… (8)     and     −3𝐶1 + 3𝐶2 = 0      ……. (9) 

(8) or (9) give 𝐶1 = 𝐶2. Hence from (4), we have 

                    y(x) = 2𝐶1𝜆1(𝑥 − 2𝑥2) = −6𝐶1(𝑥 − 2𝑥2) 

Taking −3𝐶1 = 1, the eigenfunction is (𝑥 − 2𝑥2) 

Hence eigenfunction corresponding to eigenvalue 𝜆1 = 𝜆2 = −3  

is 𝑥 − 2𝑥2. 

Example 5. Solve the Homogeneous Fredholm integral equation of the 

second kind: 

                    y(x) = 𝜆 ∫ sin (𝑥 + 𝑡)𝑦(𝑡)𝑑𝑡
2𝜋

0
  . 

Sol. Given        y(x) = 𝜆 ∫ sin (𝑥 + 𝑡)𝑦(𝑡)𝑑𝑡
2𝜋

0
   

      Or  y(x) = 𝜆 ∫ (sinx cos 𝑡 + 𝑐𝑜𝑠𝑥 𝑠𝑖𝑛𝑡) 𝑦(𝑡)𝑑𝑡
2𝜋

0
 

     Or y(x) = 𝜆𝑠𝑖𝑛𝑥 ∫ cos 𝑡 𝑦(𝑡)𝑑𝑡
2𝜋

0
 + 𝜆𝑐𝑜𝑠𝑥 ∫ sint 𝑦(𝑡)𝑑𝑡

2𝜋

0
      ……. (1) 

       Let                   𝐶1 = ∫ cos 𝑡 𝑦(𝑡)𝑑𝑡
2𝜋

0
            ……… (2) 

       And                  𝐶2 = ∫ sin 𝑡 𝑦(𝑡)𝑑𝑡
2𝜋

0
            ……… (3) 

       Then (1) reduces to          y(x) = 𝜆𝐶1𝑠𝑖𝑛𝑥 + 𝜆𝐶2𝑐𝑜𝑠𝑥       ……… (4) 

       From (4)                           y(t) = 𝜆𝐶1𝑠𝑖𝑛𝑡 + 𝜆𝐶2𝑐𝑜𝑠𝑡        ………. (5) 

       Using (5), (2) becomes         𝐶1 = ∫ cos 𝑡(𝜆𝐶1𝑠𝑖𝑛𝑡 + 𝜆𝐶2𝑐𝑜𝑠𝑡) 𝑑𝑡
2𝜋

0
           

        Or     𝐶1 = 
𝜆𝐶1

2
∫ sin2t𝑑𝑡

2𝜋

0
 + 

𝜆𝐶2

2
∫ (1 + cos2t) 𝑑𝑡

2𝜋

0
 

        Or     𝐶1 = 
𝜆𝐶1

2
[−

𝑐𝑜𝑠2𝑡

2
]

0

2𝜋

 + 
𝜆𝐶2

2
[𝑡 +

𝑠𝑖𝑛2𝑡

2
]

0

2𝜋

 

        Or      𝐶1 = 0 +  𝜆𝐶2𝜋         or        𝐶1 −  𝜆𝜋𝐶2 = 0         ……… (6) 

        Using (5), (3) becomes  𝐶2 = ∫ sin 𝑡 (𝜆𝐶1𝑠𝑖𝑛𝑡 + 𝜆𝐶2𝑐𝑜𝑠𝑡)𝑑𝑡
2𝜋

0
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        Or    𝐶2 = 
𝜆𝐶1

2
∫ (1 − cos2t)𝑑𝑡

2𝜋

0
 + 

𝜆𝐶2

2
∫ 𝑠𝑖𝑛2𝑡𝑑𝑡

2𝜋

0
    

        or     𝐶2 = 
𝜆𝐶1

2
[𝑡 −

𝑠𝑖𝑛2𝑡

2
]

0

2𝜋

 + 
𝜆𝐶2

2
[−

𝑐𝑜𝑠2𝑡

2
]

0

2𝜋

 

        or      𝐶2 =  𝜆𝐶1𝜋          or            𝜆𝐶1𝜋 − 𝐶2 = 0           ……. (7) 

Thus, we have a system of homogeneous linear equations (6) and (7) for 

determining 𝐶1 and 𝐶2. 

For non-zero solution of this system of equations, we must have 

| 1 −𝜆𝜋
𝜆𝜋 −1

|  = 0     or    -1 + 𝜆2𝜋2 = 0     so that 𝜆 = ±
1

𝜋
 . 

Hence eigenvalue are 𝜆1 =
1

𝜋
, 𝜆2 = −

1

𝜋
.        ……… (8) 

To determine eigenvalues corresponding to 𝝀 = 𝝀𝟏 =
𝟏

𝝅
 

Putting 𝜆 = 𝜆1 =
1

𝜋
 in (6) and (7), we get  

                    𝐶1 − 𝐶2 = 0     …… (9)     and     𝐶1 − 𝐶2 = 0      ……. (10) 

Both (9) and (10) give 𝐶1 = 𝐶2. Hence from (4), we have 

y(x) = 
1

𝜋
𝐶1𝑠𝑖𝑛𝑥 +

1

𝜋
𝐶1𝑐𝑜𝑠𝑥      or    y(x) = 

𝐶1

𝜋
(𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥) 

Taking 
𝐶1

𝜋
= 1, the required eigenfunction 

 𝑦1(𝑥) =  𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥 .       ……. (11) 

To determine eigenvalues corresponding to 𝝀 = 𝝀𝟐 =
𝟏

𝝅
 . 

Putting 𝜆 = 𝜆1 =
1

𝜋
 in (6) and (7), we get  

                    𝐶1 + 𝐶2 = 0     …… (12)     and     𝐶1 + 𝐶2 = 0      ……. (13) 

Both (12) and (13) give 𝐶2 = −𝐶1. Hence from (4), we have 

y(x) = −
1

𝜋
𝐶1𝑠𝑖𝑛𝑥 −

1

𝜋
(−𝐶1)𝑐𝑜𝑠𝑥      or    y(x) = 

−𝐶1

𝜋
(𝑠𝑖𝑛𝑥 − 𝑐𝑜𝑠𝑥) 
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Taking 
−𝐶1

𝜋
= 1, the required eigenfunction  

𝑦2(𝑥) =  𝑠𝑖𝑛𝑥 − 𝑐𝑜𝑠𝑥 .       ……. (14) 

From (8), (11) and (14), the required eigenvalues and eigenfunctions are 

given by 

𝜆1 =
1

𝜋
 , 𝑦1(𝑥) =  𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥 and     𝜆1 = −

1

𝜋
 , 𝑦2(𝑥) =  𝑠𝑖𝑛𝑥 − 𝑐𝑜𝑠𝑥. 

 

7.5 SOLUTION OF NON HOMOGENEOUS 

FREDHOLM INTEGRAL EQUATION OF THE 

SECOND KIND WITH SEPARABLE KERNEL. 

 

ILLUSTRATIVE EXAMPLES 

Example 1. Solve the Fredholm integral equation 

            y(s) = s+ ∫ 𝑠𝑢2𝑔(𝑢)𝑑𝑢
1

0
  

Sol. Given            y(s) = s+ 𝑠 ∫ 𝑢2𝑔(𝑢)𝑑𝑢
1

0
     …… (1) 

         Let               C = ∫ 𝑢2𝑔(𝑢)𝑑𝑢
1

0
              ……. (2) 

          Using (2), (1) yields        g(s) = s + Cs = s(1 + C)      …… (3) 

          From (3)                          g(u) = u(1 + C)                   ……. (4) 

           Using (4), (2) yields        C = ∫ 𝑢3(1 + 𝐶)𝑑𝑢
1

0
 = (1 + C) [

𝑢4

4
]

0

1

 

            Or       C = (1 + C) 
1

4
      so that         C = 

1

3
 

             Hence, (3) ⟹ g(s) = s(1+ 
1

3
) = 

4𝑠

3
 .  

Example 2. Solve the Fredholm integral equation 

            y(x) = 𝑒𝑥+ 𝜆 ∫ 2𝑒𝑥𝑒𝑡𝑦(𝑡)𝑑𝑡
1

0
 . 
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Sol. Given y(x) = 𝑒𝑥+ 𝜆 ∫ 2𝑒𝑥𝑒𝑡𝑦(𝑡)𝑑𝑡
1

0
    or  

                  y(x) = 𝑒𝑥+ 2𝜆𝑒𝑥 ∫ 𝑒𝑡𝑦(𝑡)𝑑𝑡
1

0
       …… (1) 

          Let               C = ∫ 𝑒𝑡𝑦(𝑡)𝑑𝑡
1

0
              ……. (2) 

          Using (2), (1) yields y(x) = 𝑒𝑥 + 2C𝜆𝑒𝑥 = 𝑒𝑥 (1 + 2C𝜆)      …… (3) 

          From (3)                   y(t) = 𝑒𝑡 (1 + 2C𝜆)                            ……. (4) 

           Using (4), (2) yields  C = ∫ [𝑒𝑡. 𝑒𝑡(1 +  2C𝜆) ]𝑑𝑡
1

0
  

                                                  = (1 + 2C𝜆) [
𝑒2𝑡

2
]

0

1

 

                                                  = (1 +  2C𝜆)
1

2
(𝑒2 − 1) 

           Or            C[1 − 𝜆(𝑒2 − 1)] = 
1

2
(𝑒2 − 1)    

               or  C = 
𝑒2−1

2[1−𝜆(𝑒2−1)]
 , where 𝜆 ≠

1

𝑒2−1
 

              putting this value of C in equation (3), we get 

              y(x) = 𝑒𝑥 [1 + 2𝜆.
𝑒2−1

2{1−𝜆(𝑒2−1)}
]     or  

              y(x) = 
𝑒𝑥

1−𝜆(𝑒2−1)
 , where 𝜆 ≠

1

𝑒2−1
 

              which is the required solution of the given integral equation. 

Example 2. Solve the Fredholm integral equation 

            y(x) = 𝑐𝑜𝑠𝑥 + 𝜆 ∫ 𝑠𝑖𝑛𝑥 𝑦(𝑡)𝑑𝑡
𝜋

0
 . 

Sol. Given     y(x) = 𝑐𝑜𝑠𝑥 + 𝜆 ∫ 𝑠𝑖𝑛𝑥 𝑦(𝑡)𝑑𝑡
𝜋

0
  or    

                       y(x) = 𝑐𝑜𝑠𝑥 + 𝜆𝑠𝑖𝑛𝑥 ∫  𝑦(𝑡)𝑑𝑡
𝜋

0
    ……. (1) 

        let            C = ∫  𝑦(𝑡)𝑑𝑡
𝜋

0
          …… (2) 
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        Using (2), (1) reduces          y(x) = cosx + 𝜆𝐶 sinx       ……. (3) 

         From (3),                             y(t) = cost + 𝜆𝐶 sint          ……. (4) 

         Using (4), (2) reduces to   C = ∫  (cosx +  𝜆𝐶 sinx)𝑑𝑡
𝜋

0
  

                                                    C = [𝑠𝑖𝑛𝑡]0
𝜋 + 𝜆𝐶[−𝑐𝑜𝑠𝑡]0

𝜋 

                                                     C = 0 + 𝜆𝐶[−𝑐𝑜𝑠𝜋 + 𝑐𝑜𝑠0] 

                                                      C = 2 𝜆𝐶    or     C(1 - 2𝜆) = 0 

             So that        C = 0, if 𝜆 ≠
1

2
 

          Hence by (3), the required solution is y(x) = cosx, provided 𝜆 ≠
1

2
 . 

Example 3. Solve the Fredholm integral equation 

            y(x) = (1 + 𝑥)2 + ∫ (𝑥𝑡 + 𝑥2𝑡2)𝑦(𝑡)𝑑𝑡
1

−1
 . 

Sol. Given      y(x) = (1 + 𝑥)2 + ∫ (𝑥𝑡 + 𝑥2𝑡2)𝑦(𝑡)𝑑𝑡
1

−1
            

Or                   y(x) = (1 + 𝑥)2 + 𝑥 ∫ 𝑡𝑦(𝑡)𝑑𝑡
1

−1
 + 𝑥2 ∫ 𝑡2𝑦(𝑡)𝑑𝑡

1

−1
    …… 

(1) 

Let                 𝐶1 = ∫ 𝑡𝑦(𝑡)𝑑𝑡
1

−1
         ……. (2) 

And                𝐶2 = ∫ 𝑡2𝑦(𝑡)𝑑𝑡
1

−1
        …… (3) 

Using (2) and (3) , (1) reduces to y(x) = (1 + 𝑥)2 +  𝐶1𝑥 + 𝐶2𝑥2  …… (4) 

From (4),               y(t) = (1 + 𝑡)2 +  𝐶1𝑡 + 𝐶2𝑡2        ……. (5) 

Using (5), (2) reduces to 

 𝐶1 = ∫ 𝑡[(1 + 𝑡)2 +  𝐶1𝑡 + 𝐶2𝑡2]𝑑𝑡
1

−1
           or   

𝐶1 = ∫ 𝑡[1 + (2 + 𝐶1)𝑡 + (1 + 𝐶2)𝑡2]𝑑𝑡
1

−1
      or  
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𝐶1 = [
𝑡2

2
]

−1

1

+ (2 + 𝐶1) [
𝑡3

3
]

−1

1

+ (1 + 𝐶2) [
𝑡4

4
]

−1

1

  or 

𝐶1 = 
2

3
(2 + 𝐶1)          so that   𝐶1 = 4         …… (6) 

Using (5), (3) reduces to 

𝐶2 = ∫ 𝑡2[(1 + 𝑡)2 +  𝐶1𝑡 + 𝐶2𝑡2]𝑑𝑡
1

−1
           or   

     = ∫ 𝑡2[1 + (2 + 𝐶1)𝑡 + (1 + 𝐶2)𝑡2]𝑑𝑡
1

−1
       or  

𝐶2 = [
𝑡3

3
]

−1

1

+ (2 + 𝐶1) [
𝑡4

4
]

−1

1

+ (1 + 𝐶2) [
𝑡5

5
]

−1

1

     or  

𝐶2 = 
2

3
+ (1 + 𝐶2)

2

5
              or   𝐶1 =  

16

9
         …… (7) 

y(x) = (1 + 𝑥)2 + 4x + 
16

9
 𝑥2     or   y(x) = 1 + 6x + 

25

9
𝑥2. 

Example 4. Show that the integral equation  

                     y(x) = 𝑓(𝑥) +
1

𝜋
∫ sin (𝑥 + 𝑡)𝑦(𝑡)𝑑𝑡

2𝜋

0
 possesses no solution 

for f(x) = x, but that it possesses infinitely many solutions when f(x) = 1. 

Sol. Given      y(x) = 𝑓(𝑥) +
1

𝜋
∫ sin (𝑥 + 𝑡)𝑦(𝑡)𝑑𝑡

2𝜋

0
 

    Or  y(x) = 𝑓(𝑥) +
1

𝜋
∫ (sinx cost + cosx sint)𝑦(𝑡)𝑑𝑡

2𝜋

0
 

    Or  y(x) = 𝑓(𝑥) +
sinx

𝜋
∫ cost 𝑦(𝑡)𝑑𝑡

2𝜋

0
 + 

cosx

𝜋
∫ sint 𝑦(𝑡)𝑑𝑡

2𝜋

0
   …… (1) 

        Let 𝐶1 = ∫ cost 𝑦(𝑡)𝑑𝑡
2𝜋

0
        …… (2) 

And        𝐶2 = ∫ sint 𝑦(𝑡)𝑑𝑡
2𝜋

0
        …… (3) 

Using (2) and (3), (1) reduces to   y(x) = f(x) + 
𝐶1

𝜋
𝑠𝑖𝑛𝑥 +

𝐶1

𝜋
𝑐𝑜𝑠𝑥 …… (4) 

We now discuss two particular cases as mentioned in the problem. 

Case I. let f(x) = x. then (4) reduces to  
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             y(x) = x + 
𝐶1

𝜋
𝑠𝑖𝑛𝑥 +

𝐶1

𝜋
𝑐𝑜𝑠𝑥       …… (5) 

from (5),      y(t) = t + 
𝐶1

𝜋
𝑠𝑖𝑛𝑡 +

𝐶1

𝜋
𝑐𝑜𝑠𝑡       ……. (6) 

using (6), (2) becomes  

          𝐶1 = ∫ cost (t +  
𝐶1

𝜋
𝑠𝑖𝑛𝑡 +

𝐶1

𝜋
𝑐𝑜𝑠𝑡 ) 𝑑𝑡

2𝜋

0
        

               = ∫ t cost 𝑑𝑡 +
2𝜋

0

𝐶1

2𝜋
∫ sin2t 𝑑𝑡 +

𝐶2

2𝜋
∫ (1 + cos2t) 𝑑𝑡

2𝜋

0

2𝜋

0
 

Or     𝐶1 = [𝑡𝑠𝑖𝑛𝑡]0
2𝜋 − ∫ sint 𝑑𝑡 +

2𝜋

0

𝐶1

2𝜋
[−

𝑐𝑜𝑠2𝑡

2
]

0

2𝜋

+
𝐶2

2𝜋
[𝑡 +

𝑠𝑖𝑛2𝑡

2
]

0

2𝜋

 

Or      𝐶1 = [−𝑐𝑜𝑠𝑡]0
2𝜋 +

𝐶2

2𝜋
(2𝜋 + 0)     or   𝐶1 − 𝐶2 = 0    …… (7) 

Again using (6), (3) becomes 

𝐶2 = ∫ sint (t +  
𝐶1

𝜋
𝑠𝑖𝑛𝑡 +

𝐶1

𝜋
𝑐𝑜𝑠𝑡 ) 𝑑𝑡

2𝜋

0
 

     = ∫ t sint 𝑑𝑡 +
2𝜋

0

𝐶1

2𝜋
∫ (1 − cos2t) 𝑑𝑡 +

𝐶2

2𝜋
∫ sin2t 𝑑𝑡

2𝜋

0

2𝜋

0
 

  𝐶2 = [−𝑡𝑐𝑜𝑠𝑡]0
2𝜋 − ∫ (−cost) 𝑑𝑡 +

2𝜋

0

𝐶1

2𝜋
[𝑡 −

𝑠𝑖𝑛2𝑡

2
]

0

2𝜋

+
𝐶2

2𝜋
[−

𝑐𝑜𝑠2𝑡

2
]

0

2𝜋

 

  𝐶2 = −2𝜋 +[𝑠𝑖𝑛𝑡]0
2𝜋 +

𝐶1

2𝜋
(2𝜋 + 0)     or   𝐶1 − 𝐶2 = 2𝜋    …… (8) 

The system of equation (7) and (8) is inconsistent and so it possesses no 

solution. 

Hence 𝐶1𝑎𝑛𝑑 𝐶2 cannot be determined and so (5) shows that the given 

integral possesses no solution when f(x) = x. 

Case II. let f(x) = 1. then (4) reduces to  

                   y(x) = 1 + 
𝐶1

𝜋
𝑠𝑖𝑛𝑥 +

𝐶1

𝜋
𝑐𝑜𝑠𝑥      …… (9) 

from (9),   y(t) = 1 + 
𝐶1

𝜋
𝑠𝑖𝑛𝑡 +

𝐶1

𝜋
𝑐𝑜𝑠𝑡       ……. (10) 

using (6), (2) becomes 
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𝐶1 = ∫ cost (1 +  
𝐶1

𝜋
𝑠𝑖𝑛𝑡 +

𝐶2

𝜋
𝑐𝑜𝑠𝑡 ) 𝑑𝑡

2𝜋

0
        

     = ∫  cost 𝑑𝑡 +
2𝜋

0

𝐶1

2𝜋
∫ sin2t 𝑑𝑡 +

𝐶2

2𝜋
∫ (1 + cos2t) 𝑑𝑡

2𝜋

0

2𝜋

0
 

     = [𝑠𝑖𝑛𝑡]0
2𝜋 +

𝐶1

2𝜋
[−

𝑐𝑜𝑠2𝑡

2
]

0

2𝜋

+
𝐶2

2𝜋
[𝑡 +

𝑠𝑖𝑛2𝑡

2
]

0

2𝜋

 

Or      𝐶1 = 0 + 0 +
𝐶2

2𝜋
(2𝜋 + 0)     or   𝐶1 = 𝐶2    …… (11) 

Again using (6), (3) becomes 

𝐶2 = ∫ sint (1 +  
𝐶1

𝜋
𝑠𝑖𝑛𝑡 +

𝐶2

𝜋
𝑐𝑜𝑠𝑡 ) 𝑑𝑡

2𝜋

0
        

     = ∫  sint 𝑑𝑡 +
2𝜋

0

𝐶1

2𝜋
∫ (1 − cos2t) 𝑑𝑡 +

𝐶2

2𝜋
∫ sin2t 𝑑𝑡

2𝜋

0

2𝜋

0
 

     = [−𝑐𝑜𝑠𝑡]0
2𝜋 +

𝐶1

2𝜋
[𝑡 −

𝑠𝑖𝑛2𝑡

2
]

0

2𝜋

+
𝐶2

2𝜋
[−

𝑐𝑜𝑠2𝑡

2
]

0

2𝜋

 

𝐶2 = 0 + 
𝐶1

2𝜋
(2𝜋 + 0) + 0     or   𝐶1 = 𝐶2    ……(12) 

From (11) and (12), we see that 𝐶1 = 𝐶2 = 𝐶′(say). Here 𝐶′ is an arbitrary 

constant. Thus, the system (11) – (12) has infinite number solutions 𝐶1 =

𝐶′ and 𝐶2 = 𝐶′ . putting these value in (9), the required solution of the 

given integral equation is 

y(x) = 1 + 
𝐶′

𝜋
(𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥)    or y(x) = 1 + 𝐶(𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥). Where C = 

𝐶′

𝜋
 is another arbitrary constant. Since C is an arbitrary constant, we have 

infinitely many solution of (1) when  

f(x) = 1. 

CHECK YOUR PROGRESS  

True or false Questions 

Problem 1. Solution the following Homogeneous integral 

equations: 
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                        y(x) = - ∫ 𝑦(𝑡)𝑑𝑡
1

0
 𝑖𝑠 ?. 

Problem 2. The eigenvalue of the homogeneous integral equation:  

                       y(x) = 𝜆 ∫ 𝑠𝑖𝑛2𝑥 𝑦(𝑡)𝑑𝑡
𝜋

4

0
 True / false. 

Problem 3. Initial value problem is always converted into 

Fredholm integral equation. True / false.  

Problem 4. Solution of homogeneous integral equation y(x) = 

1

2
∫ sinx 𝑦(𝑡)𝑑𝑡

𝜋

0
 is ? 

Problem 5. Eigen function of y(x) = 𝑐𝑜𝑠𝑥 + 𝜆 ∫ 𝑠𝑖𝑛𝑥 𝑦(𝑡)𝑑𝑡
𝜋

0
 

is? 

Problem 6. The eigenvalue λ of the Fredholm integral 

equation y(x) = λ ∫ 𝑥2𝑡𝑦(𝑡)𝑑𝑡
1

0
 𝑖𝑠  

 

 

7.6 SUMMARY 
 

1. Eigen Value and eigen function. 

    Consider the Homogeneous Fredholm integral equation of the second 

kind: 

       y(x) = 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑏

𝑎
           ……… (1) 

then (1) has always the obvious solution y(x) = 0, which is known as zero 

or trivial solution of (1). The value of the parameter 𝜆 for which (1) has a 

non-zero (or non trivial) solution y(x) ≠ 0 are known as the eigenvalue of 

(1) or of the kernel k(x, t). Further if 𝜑(𝑥) is continuous and  𝜑(𝑥)  ≠ 0 

on the interval (a, b) and 

                                 𝜑(𝑥)  = 𝜆 ∫ 𝑘(𝑥, 𝑡)𝜑(𝑥) 𝑑𝑡
𝑏

𝑎
          ……… (2) 
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Then 𝜑(𝑥)  is known as an eigenfunction of (1) corresponding to the 

eigenvalue 𝜆0. 

2. Solution of Homogeneous Fredholm integral equation of second kind 

with separable kernel. 

3. Solution of non-Homogeneous Fredholm integral equation of second 

kind with separable kernel. 

 

7.7 GLOSSARY  
 

Integration  

Even, odd functions   

Trigonometric functions 

Differentiation 

First order derivatives 

Second order derivatives 

Solution of System of linear equations 
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7.10 TERMINAL AND MODEL QUESTIONS 

 

Q 1. Solve the following integral equations: 

        y(x) = tanx + ∫  𝑒sin−1 𝑥𝑦(𝑡)𝑑𝑡
1

−1
. 

Q 2. Solve the following integral equations: 

       y(x) = sinx + 𝜆 ∫ 𝑠𝑖𝑛𝑥 𝑐𝑜𝑠𝑡 𝑦(𝑡)𝑑𝑡
𝜋

2
0

.  

Q 3. Solve the following integral equations: 

        y(x) - 𝜆 ∫ 𝑡𝑎𝑛𝑡 𝑦(𝑡)𝑑𝑡
𝜋

4

−
𝜋

4

= 𝑐𝑜𝑡𝑥. 

Q 4. Determine the characteristic values of 𝜆 and the characteristic 

functions of the integral equation y(x) = 𝑓(𝑥) + 𝜆 ∫ cos (𝑥 + 𝑡)𝑦(𝑡)𝑑𝑡
2𝜋

0
. 

Q 5. Solve the following Homogeneous integral equations: 

        (i) y(x) = - ∫ 𝑦(𝑡)𝑑𝑡
1

0
                 (ii) y(x) = 

1

2
∫ sinx 𝑦(𝑡)𝑑𝑡

𝜋

0
 

        (iii) y(x) = 
1

50
∫ t 𝑦(𝑡)𝑑𝑡

10

0
          (iv) 

1

𝑒2−1
∫ 2𝑒𝑥  𝑒𝑡𝑦(𝑡)𝑑𝑡

1

0
. 
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Q 6. Determining the eigenvalue and eigen functions of the homogeneous 

integral equations: 

        (i) y(x) = 𝜆 ∫ 𝑠𝑖𝑛2𝑥 𝑦(𝑡)𝑑𝑡
𝜋

4
0

               (ii) y(x) = 𝜆 ∫ 𝑠𝑖𝑛𝑥 𝑐𝑜𝑠𝑡 𝑦(𝑡)𝑑𝑡
2𝜋

0
 

        (iii) y(x) = 𝜆 ∫ 𝑠𝑖𝑛𝑥 𝑠𝑖𝑛𝑡 𝑦(𝑡)𝑑𝑡
2𝜋

0
     (iv) y(x) = 𝜆 ∫ (5𝑥𝑡3 +

1

−1

4𝑥2𝑡) 𝑦(𝑡)𝑑𝑡. 

 

7.11 ANSWERS 
        

TQ1    y(x) = tanx 

TQ2    y(x) = {
2

2−𝜆
} 𝑠𝑖𝑛𝑥, 𝜆 ≠ 2. 

TQ3     y(x) = cotx + 
𝜋𝜆

2
 . 

TQ4     𝜆1 =
1

𝜋
 , 𝑦1 = 𝑐𝑜𝑠𝑥;  𝜆2 = −

1

𝜋
 , 𝑦2 = 𝑠𝑖𝑛𝑥 . 

TQ5    (i) y(x) = 0      (ii) y(x) = 0      (iii) y(x) = 0     (iv) y(x) = 0 

TQ6    (i) 𝜆 =
8

𝜋−2
 , y(x) = 𝑠𝑖𝑛2𝑥 

            (ii) Eigen value and eigen function do not exist. 

            (iii) 𝜆 =
8

𝜋
 ,   y(x) = sinx 

            (iv) 𝜆 =
1

2
 ,   y(x) = 

5𝑥

2
+

10𝑥2

3
 . 

CHECK YOUR PROGRESS 

        CYQ 1. y(x) = 0 

        CYQ 2. 
8

𝜋−2
 

        CYQ 3. False 

        CYQ 4. y(x) = 0          CYQ 5. y(x) = cosx 

        CYQ6. 4 
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8.1 INTRODUCTION 

In this unit, the solving of a class of both linear and nonlinear 

Volterra integral equations of the first kind is investigated. Here, by 

converting integral equation of the first kind to a linear equation of the 

second kind and the ordinary differential equation to integral equation we 

are going to solve the equation easily. The method of successive 

approximations (Neumann’s series) is applied to solve linear and 

nonlinear Volterra integral equation of the second kind. Some examples 

are presented to illustrate methods. 

 

8.2 OBJECTIVE 

            At the end of this topic learner will be able to understand:  

            (i) integral equation 

            (ii) Fredholm integral equation 

            (iii) initial value problem 

            (vi) Boundary value problem  

            (v) Solution of Fredholm integral equation of second kind with    

                  separable kernel using Method of successive approximation. 

 

8.3 ITERATED KERNELS OR FUNCTIONS 

(i) Consider the Fredholm integral equation of the second kind 

                         y(x) = f(x) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑏

𝑎
       ……. (1) 

then the iterated kernels 𝑘𝑛(𝑥, 𝑡), 𝑛 = 1, 2, 3, … are defined as follows: 

                         𝑘1(𝑥, 𝑡) = 𝑘(𝑥, 𝑡)         …… (2a) 
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And                  
𝑘𝑛(𝑥, 𝑡) = ∫ 𝑘(𝑥, 𝑧)𝑘𝑛−1(𝑧, 𝑡)𝑑𝑧, 𝑛 = 2, 3, …

𝑏

𝑎

𝑘𝑛(𝑥, 𝑡) = ∫ 𝑘𝑛−1(𝑥, 𝑧)𝑘(𝑧, 𝑡)𝑑𝑧, 𝑛 = 2, 3, …
𝑏

𝑎

}       …… (2b) 

(ii) Consider the Volterra integral equation of the second kind 

                         y(x) = f(x) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑥

𝑎
       ……. (3) 

then the iterated kernels 𝑘𝑛(𝑥, 𝑡), 𝑛 = 1, 2, 3, … are defined as follows: 

                         𝑘1(𝑥, 𝑡) = 𝑘(𝑥, 𝑡)         …… (3a) 

And                  
𝑘𝑛(𝑥, 𝑡) = ∫ 𝑘(𝑥, 𝑧)𝑘𝑛−1(𝑧, 𝑡)𝑑𝑧, 𝑛 = 2, 3, …

𝑥

𝑡

𝑘𝑛(𝑥, 𝑡) = ∫ 𝑘𝑛−1(𝑥, 𝑧)𝑘(𝑧, 𝑡)𝑑𝑧, 𝑛 = 2, 3, …
𝑥

𝑡

}       …… (3b) 

 

8.4 RESOLVENT KERNELS OR RECIPROCAL 

KERNEL 

 

(i) Suppose solution of Fredholm integral equation of the second kind 

                         y(x) = f(x) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑏

𝑎
       ……. (1) 

take the form                      y(x) = f(x) + 𝜆 ∫ 𝑅(𝑥, 𝑡;  𝜆)𝑓(𝑡)𝑑𝑡
𝑏

𝑎
       ……. (2a) 

or                                           y(x) = f(x) + 𝜆 ∫ Γ(𝑥, 𝑡;  𝜆)𝑓(𝑡)𝑑𝑡
𝑏

𝑎
       ……. (2b) 

then 𝑅(𝑥, 𝑡;  𝜆) or Γ(𝑥, 𝑡;  𝜆) is known as the resolvent kernel of (1). 

(ii) Suppose solution of Volterra integral equation of the second kind 

                         y(x) = f(x) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑥

𝑎
       ……. (3) 

take the form                          y(x) = f(x) + 𝜆 ∫ 𝑅(𝑥, 𝑡;  𝜆)𝑓(𝑡)𝑑𝑡
𝑥

𝑎
       ……. 

(4a) 

or                                               y(x) = f(x) + 𝜆 ∫ Γ(𝑥, 𝑡;  𝜆)𝑓(𝑡)𝑑𝑡
𝑥

𝑎
       ……. (4b) 
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then 𝑅(𝑥, 𝑡;  𝜆) or Γ(𝑥, 𝑡;  𝜆) is known as the resolvent kernel of (3). 

 

Note:∎ Resolvent kernel is also written as 𝑅(𝑥, 𝑡;  𝜆) = 

∑ 𝜆𝑚−1𝑘𝑚(𝑥, 𝑡)∞
𝑚=1 . 

 

 

8.5 SOME IMPORTANT THEOREMS 

 

Theorem 1. Let 𝑅(𝑥, 𝑡;  𝜆) be a resolvent kernel of a Fredholm integral 

equation. y(x) = f(x) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑏

𝑎
 , then the resolvent kernel 

satisfies the integral equation  

𝑅(𝑥, 𝑡;  𝜆) = k(x, t) + 𝜆 ∫ k(x, z)R(𝑧, 𝑡;  𝜆)𝑑𝑧
𝑏

𝑎
. 

Proof: We know that 𝑅(𝑥, 𝑡;  𝜆) is given by  

                             𝑅(𝑥, 𝑡;  𝜆) = ∑ 𝜆𝑚−1𝑘𝑚(𝑥, 𝑡)∞
𝑚=1     …… (1) 

Where iterated kernel are given by 

                               𝑘1(𝑥, 𝑡) = k (x, t)         …… (2a) 

And                     𝑘𝑚(𝑥, 𝑡) = ∫ 𝑘(𝑥, 𝑧)𝑘𝑚−1(𝑧, 𝑡)𝑑𝑧
𝑏

𝑎
     …… (2b) 

Now, from (1), we have 

  𝑅(𝑥, 𝑡;  𝜆) = 𝑘1(𝑥, 𝑡) + ∑ 𝜆𝑚−1𝑘𝑚(𝑥, 𝑡)∞
𝑚=2  

                   = k(x, t) + ∑ 𝜆𝑚−1 ∫ 𝑘(𝑥, 𝑧)𝑘𝑚−1(𝑧, 𝑡)𝑑𝑧
𝑏

𝑎
∞
𝑚=2  using (2a), (2b) 

                   = k(x, t) + ∑ 𝜆𝑛 ∫ 𝑘(𝑥, 𝑧)𝑘𝑛(𝑧, 𝑡)𝑑𝑧
𝑏

𝑎
∞
𝑛=1     ( setting m - 1=n) 

                   = k(x, t) + ∑ 𝜆𝑚 ∫ 𝑘(𝑥, 𝑧)𝑘𝑚(𝑧, 𝑡)𝑑𝑧
𝑏

𝑎
∞
𝑚=1  

                   = k(x, t) + 𝜆 ∑ 𝜆𝑚−1 ∫ 𝑘(𝑥, 𝑧)𝑘𝑚(𝑧, 𝑡)𝑑𝑧
𝑏

𝑎
∞
𝑚=1  
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                   = k(x, t) +  𝜆 ∫ [∑ 𝜆𝑚−1∞
𝑚=1 𝑘𝑚(𝑧, 𝑡)]𝑘(𝑥, 𝑧)𝑑𝑧

𝑏

𝑎
  

                    (on changing the order of summation and integration)  

                  = k(x, t) +  𝜆 ∫ 𝑅(𝑧, 𝑡;  𝜆)𝑘(𝑥, 𝑧)𝑑𝑧
𝑏

𝑎
,    using (1) 

Therefore 𝑅(𝑥, 𝑡;  𝜆) =  k(x, t)  +   𝜆 ∫ 𝑘(𝑥, 𝑧)𝑅(𝑧, 𝑡;  𝜆)𝑑𝑧
𝑏

𝑎
 . 

 

Note: ∎ The series for the resolvent kernel 𝑅(𝑥, 𝑡;  𝜆) = 

∑ 𝜆𝑚−1𝑘𝑚(𝑥, 𝑡)∞
𝑚=1   …. (1) 

is absolutely and uniformly convergent for all values of x and t in the 

circle |𝜆| < 𝐵−1. 

 

 

8.6 SOLUTION OF FREDHOLM INTEGRAL 

EQUATION OF THE SECOND KIND BU 

SUCESSIVE APPROXIMATIONS 

 

ILLUSTRATIVE EXAMPLES 

Type 1. Determine the iterated kernels (or functions) for  

              y(x) = f(x) + 𝝀 ∫ 𝒌(𝒙, 𝒕)𝒚(𝒕)𝒅𝒕
𝒃

𝒂
.  

Example1. Find the iterated kernel for the following kernel  

                    K(x, t) = sin(x – 2t), 0 ≤ 𝑥 ≤ 2𝜋, 0≤ 𝑡 ≤ 2𝜋. 

Sol. Iterated kernel 𝑘𝑛(𝑥, 𝑡) are given by 

                      𝑘1(𝑥, 𝑡) = 𝑘(𝑥, 𝑡)      ….. (1) 

And     𝑘𝑛(𝑥, 𝑡) = ∫ 𝑘(𝑥, 𝑧)𝑘𝑛−1(𝑧, 𝑡)𝑑𝑧
2𝜋

0
,  ( n = 2, 3, … )     ….. (2) 

From (1),         𝑘1(𝑥, 𝑡) = 𝑘(𝑥, 𝑡) = sin(x – 2t)              ….. (3) 
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Putting n = 2 in (2), we have  

𝑘2(𝑥, 𝑡) = ∫ 𝑘(𝑥, 𝑧)𝑘1(𝑧, 𝑡)𝑑𝑧
2𝜋

0
  

              = ∫ sin(𝑥 − 2𝑧) sin (𝑧 − 2𝑡)𝑑𝑧
2𝜋

0
 , using (3) 

              = 
1

2
 ∫ [cos(𝑥 + 2𝑡 − 3𝑧) − cos(𝑥 − 2𝑡 − 𝑧)] 𝑑𝑧

2𝜋

0
 

              = 
1

2
[−

1

3
𝑠𝑖𝑛(𝑥 + 2𝑡 − 3𝑧) + sin(𝑥 − 2𝑡 − 𝑧)]

0

2𝜋

 

              = 0, on simplification 

∴           𝑘2(𝑥, 𝑡) = 0       …… (4) 

Putting n = 3 in (2), we have 

𝑘3(𝑥, 𝑡) = ∫ 𝑘(𝑥, 𝑧)𝑘2(𝑧, 𝑡)𝑑𝑧
2𝜋

0
 = 0     using (4) 

Hence 𝑘1(𝑥, 𝑡) = sin(x – 2t)     and         𝑘𝑛(𝑥, 𝑡) = 0    for n = 2, 3, 4, …     

Example2. Find the iterated kernel for the following kernel  

                    k(x, t) = 𝑒𝑥𝑐𝑜𝑠𝑡 , 0 ≤ 𝑥 ≤ 2𝜋; a = 0, b = 𝜋. 

Sol. Iterated kernel 𝑘𝑛(𝑥, 𝑡) are given by 

                      𝑘1(𝑥, 𝑡) = 𝑘(𝑥, 𝑡)      ….. (1) 

And     𝑘𝑛(𝑥, 𝑡) = ∫ 𝑘(𝑥, 𝑧)𝑘𝑛−1(𝑧, 𝑡)𝑑𝑧
2𝜋

0
,  ( n = 2, 3, … )     ….. (2) 

From (1),         𝑘1(𝑥, 𝑡) = 𝑘(𝑥, 𝑡) = 𝑒𝑥𝑐𝑜𝑠𝑡              ….. (3) 

Putting n = 2 in (2), we have  

𝑘2(𝑥, 𝑡) = ∫ 𝑘(𝑥, 𝑧)𝑘1(𝑧, 𝑡)𝑑𝑧
𝜋

0
 = ∫ 𝑒𝑥𝑐𝑜𝑠𝑧 𝑒𝑧𝑐𝑜𝑠𝑡 𝑑𝑧

𝜋

0
 , using (3) 

              = 𝑒𝑥𝑐𝑜𝑠𝑡 ∫ 𝑒𝑧𝑐𝑜𝑠𝑧 𝑑𝑧
𝜋

0
  

             = 𝑒𝑥𝑐𝑜𝑠𝑡 [
𝑒𝑧

12+12 (𝑐𝑜𝑠𝑧 + 𝑠𝑖𝑛𝑧)]
0

𝜋
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[ ∵ ∫ 𝑒𝑎𝑥𝑐𝑜𝑠𝑏𝑥 𝑑𝑥 =
𝑒𝑎𝑥

𝑎2+𝑏2
(𝑎 𝑐𝑜𝑠𝑏𝑥 + 𝑏 𝑠𝑖𝑛𝑏𝑥)] 

            = 𝑒𝑥𝑐𝑜𝑠𝑡 { -(1/2) 𝑒𝜋 − (1/2)}       …… (4) 

∴ 𝑘2(𝑥, 𝑡) = (−1)1 1+𝑒𝜋

2
𝑒𝑥𝑐𝑜𝑠𝑡. 

Next putting n = 3 in (2), we have 

𝑘3(𝑥, 𝑡) = ∫ 𝑘(𝑥, 𝑧)𝑘2(𝑧, 𝑡)𝑑𝑧
𝜋

0
 = ∫ 𝑒𝑥𝑐𝑜𝑠𝑧 {(−1)1 1+𝑒𝜋

2
𝑒𝑧𝑐𝑜𝑠𝑡} 𝑑𝑧

𝜋

0
, 

using (3) and (4) 

       = −
1+𝑒𝜋

2
𝑒𝑥𝑐𝑜𝑠𝑡 ∫ 𝑒𝑧𝑐𝑜𝑠𝑧 𝑑𝑧

𝜋

0
 = −

1+𝑒𝜋

2
𝑒𝑥𝑐𝑜𝑠𝑡 (−

1+𝑒𝜋

2
) , as before 

∴         𝑘3(𝑥, 𝑡) = (−1)2 (
1+𝑒𝜋

2
)

2

𝑒𝑥𝑐𝑜𝑠𝑡        …… (5) 

And so on noting (3) (4) and (5), we see that the iterated kernels are given 

by 

𝑘𝑛(𝑥, 𝑡) = (−1)𝑛−1 (
1+𝑒𝜋

2
)

𝑛−1

𝑒𝑥𝑐𝑜𝑠𝑡      , n = 1, 2, 3, ….  

Type 2. Determine the Resolvent kernels or Reciprocal kernel 

𝑹(𝒙, 𝒕;  𝝀) 

            If 𝒌𝒏(𝒙, 𝒕) be iterated kernels then 𝑹(𝒙, 𝒕;  𝝀) = 

∑ 𝝀𝒎−𝟏𝒌𝒎(𝒙, 𝒕)∞
𝒎=𝟏 .  

 

Example 3. Find the Resolvent kernels for the Fredholm integral equation 

having kernel 

                    k(x, t) = 𝑒𝑥+𝑡; a = 0, b = 1. 

Sol. Iterated kernel 𝑘𝑚(𝑥, 𝑡) are given by 

                      𝑘1(𝑥, 𝑡) = 𝑘(𝑥, 𝑡)      ….. (1) 

And     𝑘𝑚(𝑥, 𝑡) = ∫ 𝑘(𝑥, 𝑧)𝑘𝑚−1(𝑧, 𝑡)𝑑𝑧
1

0
,  ( n = 2, 3, … )     ….. (2) 
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From (1),         𝑘1(𝑥, 𝑡) = 𝑘(𝑥, 𝑡) = 𝑒𝑥+𝑡              ….. (3) 

Putting n = 2 in (2), we have  

𝑘2(𝑥, 𝑡) = ∫ 𝑘(𝑥, 𝑧)𝑘1(𝑧, 𝑡)𝑑𝑧
1

0
 = ∫ 𝑒𝑥+𝑧𝑒𝑧+𝑡 𝑑𝑧

1

0
 , using (3) 

              = 𝑒𝑥+𝑡 ∫ 𝑒2𝑧 𝑑𝑧
1

0
 = 𝑒𝑥+𝑡 [

𝑒2𝑧

2
]

0

1

 = 𝑒𝑥+𝑡 (
𝑒2−1

2
).      ….. (4) 

Putting n = 3 in (2), we have  

𝑘3(𝑥, 𝑡) = ∫ 𝑘(𝑥, 𝑧)𝑘2(𝑧, 𝑡)𝑑𝑧
1

0
 = ∫ 𝑒𝑥+𝑧𝑒𝑧+𝑡 (

𝑒2−1

2
)  𝑑𝑧

1

0
  

             = 𝑒𝑥+𝑡 (
𝑒2−1

2
) ∫ 𝑒2𝑧 𝑑𝑧

1

0
= 𝑒𝑥+𝑡 (

𝑒2−1

2
)

2

. As before      …… (5) 

And so on, observing (3), (4) and (5), we may write 

𝑘𝑚(𝑥, 𝑡)  = 𝑒𝑥+𝑡 (
𝑒2−1

2
)

𝑚−1

, m = 1, 2, 3, …             …… (6) 

Now the required resolvent kernel is given by  

               𝑅(𝑥, 𝑡;  𝜆) = ∑ 𝜆𝑚−1𝑘𝑚(𝑥, 𝑡)∞
𝑚=1   

           = ∑ 𝜆𝑚−1𝑒𝑥+𝑡∞
𝑚=1 (

𝑒2−1

2
)

𝑚−1

= 𝑒𝑥+𝑡 ∑ (
𝜆(𝑒2−1)

2
)

𝑚−1
∞
𝑚=1   ….. (7) 

But   ∑ (
𝜆(𝑒2−1)

2
)

𝑚−1
∞
𝑚=1 = 1 +

𝜆(𝑒2−1)

2
+ (

𝜆(𝑒2−1)

2
)

2

+ …… 

Which is an infinite geometric series with common ratio 
𝜆(𝑒2−1)

2
 . 

Therefore ∑ (
𝜆(𝑒2−1)

2
)

𝑚−1
∞
𝑚=1 = 

1

1−
𝜆(𝑒2−1)

2

 = 
1

2−𝜆(𝑒2−1)
 ,  

Provided |
𝜆(𝑒2−1)

2
| < 1      or       |𝜆| <

2

𝑒2−1
         …… (9) 

Using (8) and (9), (7) reduces to 

𝑅(𝑥, 𝑡;  𝜆) = 
2𝑒𝑥+𝑡

2−𝜆(𝑒2−1)
 , provided |𝜆| <

2

𝑒2−1
 . 
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Type 3. Solution of Fredholm integral equation with the help of the 

resolvent kernel. 

Working rule:     let    y(x) = f(x) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑏

𝑎
   ….. (1) 

be given Fredholm integral equation. Let 𝑘𝑚(𝑥, 𝑡) be the mth iterated 

kernel and let 𝑅(𝑥, 𝑡;  𝜆) be the resolvent kernel of (1). Then we have  

        R(x, t;  λ) = ∑ λm−1km(x, t)∞
m=1            ……. (2) 

Suppose the sum of infinite series (2) exist and so R(x, t;  λ) can be 

obtained in the closed form. Then the required solution of (1) is given by 

       y(x) = f(x) + 𝜆 ∫ R(x, t;  λ)𝑓(𝑡)𝑑𝑡
𝑏

𝑎
.      ……. (3) 

Example 4. Find the Resolvent kernels for the Fredholm integral equation  

                    y(x) = x + ∫ 𝑦(𝑡)𝑑𝑡
1/2

0
     and also find the solution. 

Sol. Given   y(x) = x + ∫ 𝑦(𝑡)𝑑𝑡
1/2

0
        …… (1) 

Comparing (1) with y(x) = f(x) + λ ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
1/2

0
 

We have f(x) = x,        λ = 1,       k(x, t) = 1    ……. (2) 

Let 𝑘𝑚(𝑥, 𝑡) be the mth iterated kernel. Then we have 

𝑘1(𝑥, 𝑡) = 𝑘(𝑥, 𝑡)      ….. (3) 

And     𝑘𝑚(𝑥, 𝑡) = ∫ 𝑘(𝑥, 𝑧)𝑘𝑚−1(𝑧, 𝑡)𝑑𝑧
1/2

0
,        …… (4) 

From (3),         𝑘1(𝑥, 𝑡) = 𝑘(𝑥, 𝑡) = 1                        …… (5) 

Putting m = 2 in (4), we have  

𝑘2(𝑥, 𝑡) = ∫ 𝑘(𝑥, 𝑧)𝑘1(𝑧, 𝑡)𝑑𝑧
1/2

0
 = ∫  𝑑𝑧

1/2

0
 = [𝑧]0

1/2
 = 

1

2
      …… (6) 

Putting m = 3 in (4), we have 

𝑘3(𝑥, 𝑡) = ∫ 𝑘(𝑥, 𝑧)𝑘2(𝑧, 𝑡)𝑑𝑧
1/2

0
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= ∫  
1

2
𝑑𝑧

1/2

0
, by (5) and (6) 

= (
1

2
)

2

             ……. (7) 

And so on. Observing (5) , (6) and (7), we find 

 𝑘𝑚(𝑥, 𝑡) = (
1

2
)

𝑚−1

          ……. (8) 

Now, the resolvent kernel R(x, t;  λ) is given by 

R(x, t;  λ) = ∑ λm−1km(x, t)∞
m=1   

                  = ∑ (
1

2
)

𝑚−1
∞
m=1 , using (2) and (8)      …… (9) 

But       ∑ (
1

2
)

𝑚−1
∞
m=1  = 1 + 

1

2
 + (

1

2
)

2

+ (
1

2
)

3

+ …… 

Which is an infinite series with common ratio ½. 

∴ ∑ (
1

2
)

𝑚−1
∞
m=1  = 

1

1−
1

2

 = 2. 

Substituting the above value in (9), we have 𝐑(𝐱, 𝐭;  𝛌) = 2. 

Finally, the required solution of (1) is given by 

y(x) = f(x) + λ ∫ R(x, t;  λ) 𝑓(𝑡)𝑑𝑡
1/2

0
   or   y(x) = x + λ ∫ 2t 𝑑𝑡

1/2

0
 

therefore y(x) = x + 2[
𝑡2

2
]

0

1/2

= x + (1/4) 

hence the required solution is y(x) = x + 
1

2
 . 

Example 5. Solve the following Fredholm integral equations by the 

method of successive approximations   

                    y(x) = 
5𝑥

6
 + 

1

2
∫ 𝑥𝑡 𝑦(𝑡)𝑑𝑡

1

0
. 

Sol. Given   y(x) = 
5𝑥

6
 + 

1

2
∫ 𝑥𝑡 𝑦(𝑡)𝑑𝑡

1

0
        …… (1) 
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Comparing (1) with y(x) = f(x) + λ ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
1

0
 

We have f(x) = 
5𝑥

6
,        λ =

1

2
,       k(x, t) = xt    ……. (2) 

Let 𝑘𝑚(𝑥, 𝑡) be the mth iterated kernel. Then we have 

𝑘1(𝑥, 𝑡) = 𝑘(𝑥, 𝑡)      ….. (3) 

And     𝑘𝑚(𝑥, 𝑡) = ∫ 𝑘(𝑥, 𝑧)𝑘𝑚−1(𝑧, 𝑡)𝑑𝑧
1

0
,        …… (4) 

From (3),         𝑘1(𝑥, 𝑡) = 𝑘(𝑥, 𝑡) = 𝑥𝑡                        …… (5) 

Putting m = 2 in (4), we have  

𝑘2(𝑥, 𝑡) = ∫ 𝑘(𝑥, 𝑧)𝑘1(𝑧, 𝑡)𝑑𝑧
1

0
 = ∫  (𝑥𝑧)(𝑧𝑡)𝑑𝑧

1

0
  

              = xt∫  𝑧2𝑑𝑧
1

0
 = 

1

3
(𝑥𝑡)      …… (6) 

Putting m = 3 in (4), we have 

𝑘3(𝑥, 𝑡) = ∫ 𝑘(𝑥, 𝑧)𝑘2(𝑧, 𝑡)𝑑𝑧
1

0
 = ∫  (𝑥𝑧)(

1

3
𝑧𝑡)𝑑𝑧

1

0
, by (5) and (6) 

              = 
1

3
𝑥𝑡 ∫  𝑧2𝑑𝑧

1

0
 = (

1

3
)

2

𝑥𝑡  

And so on. Observing (5), (6) and (7), we find 

𝑘𝑚(𝑥, 𝑡) = (
1

3
)

𝑚−1

𝑥𝑡 

Now the resolvent kernel is given by 

R(x, t;  λ) = ∑ λm−1km(x, t)∞
m=1  = ∑ (

1

2
)

𝑚−1
∞
m=1 (

1

3
)

𝑚−1

𝑥𝑡, using (2) and 

(8)    

                = xt∑ (
1

6
)

𝑚−1
∞
m=1 = xt[1 +

1

6
+ (

1

6
)

2

+ ⋯ ] 

𝐑(𝐱, 𝐭;  𝛌) = 
𝟔

𝟓
 xt                                               ……. (9) 

Finally, the required solution of (1) is given by 
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 y(x) = f(x) + λ ∫ R(x, t;  λ) 𝑓(𝑡)𝑑𝑡
1

0
   or y(x) =  

5𝑥

6
 + 

1

2
∫

6𝑥𝑡

5
.

5𝑡

6
 𝑑𝑡

1

0
  

therefore y(x) = 
5𝑥

6
 + 

1

2
[

𝑡3

3
]

0

1

= 
5𝑥

6
 + 

𝑥

6
 = x 

hence the required solution is y(x) = x. 

 

8.7 SOLUTION OF VOLTERRA INTEGRAL 

EQUATION OF THE SECOND KIND BU 

SUCESSIVE APPROXIMATIONS 

 

∎ An important theorem 

Theorem 1. Let 𝑅(𝑥, 𝑡;  𝜆) be a resolvent kernel of a Volterra integral 

equation. 

                     y(x) = f(x) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑥

𝑎
 , then the resolvent kernel 

satisfies the integral equation 𝑅(𝑥, 𝑡;  𝜆) = k(x, t) + 

𝜆 ∫ k(x, z)R(𝑧, 𝑡;  𝜆)𝑑𝑧
𝑥

𝑡
. 

Proof: We know that 𝑅(𝑥, 𝑡;  𝜆) is given by  

                             𝑅(𝑥, 𝑡;  𝜆) = ∑ 𝜆𝑚−1𝑘𝑚(𝑥, 𝑡)∞
𝑚=1     …… (1) 

Where iterated kernel are given by 

                               𝑘1(𝑥, 𝑡) = k (x, t)         …… (2a) 

And                     𝑘𝑚(𝑥, 𝑡) = ∫ 𝑘(𝑥, 𝑧)𝑘𝑚−1(𝑧, 𝑡)𝑑𝑧
𝑥

𝑡
     …… (2b) 

Now, from (1), we have 

  𝑅(𝑥, 𝑡;  𝜆) = 𝑘1(𝑥, 𝑡) + ∑ 𝜆𝑚−1𝑘𝑚(𝑥, 𝑡)∞
𝑚=2  

                   = k(x, t) + ∑ 𝜆𝑚−1 ∫ 𝑘(𝑥, 𝑧)𝑘𝑚−1(𝑧, 𝑡)𝑑𝑧
𝑥

𝑡
∞
𝑚=1  using (2a), (2b) 

                   = k(x, t) + ∑ 𝜆𝑛 ∫ 𝑘(𝑥, 𝑧)𝑘𝑛(𝑧, 𝑡)𝑑𝑧
𝑥

𝑡
∞
𝑚=1     ( setting m - 1=n) 
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                   = k(x, t) + ∑ 𝜆𝑚 ∫ 𝑘(𝑥, 𝑧)𝑘𝑚(𝑧, 𝑡)𝑑𝑧
𝑥

𝑡
∞
𝑚=1  

                   = k(x, t) + 𝜆 ∑ 𝜆𝑚−1 ∫ 𝑘(𝑥, 𝑧)𝑘𝑚(𝑧, 𝑡)𝑑𝑧
𝑥

𝑡
∞
𝑚=1  

                   = k(x, t) +  𝜆 ∫ [∑ 𝜆𝑚−1∞
𝑛=1 𝑘𝑚(𝑧, 𝑡)]𝑘(𝑥, 𝑧)𝑑𝑧

𝑥

𝑡
  

                    (on changing the order of summation and integration)  

                  = k(x, t) +  𝜆 ∫ 𝑅(𝑧, 𝑡;  𝜆)𝑘(𝑥, 𝑧)𝑑𝑧
𝑥

𝑡
,    using (1) 

Therefore 𝑅(𝑥, 𝑡;  𝜆) =  k(x, t)  +   𝜆 ∫ 𝑘(𝑥, 𝑧)𝑅(𝑧, 𝑡;  𝜆)𝑑𝑧
𝑥

𝑡
 . 

 

ILLUSTRATIVE EXAMPLES 

Type 1. Determine the resolvent kernels or reciprocal kernel for 

Volterra integral equation 

              y(x) = f(x) + 𝝀 ∫ 𝒌(𝒙, 𝒕)𝒚(𝒕)𝒅𝒕
𝒙

𝒂
.  

Example1. Find the resolvent kernel of the Volterra integral equation for 

the following kernel k(x, t) = 1. 

Sol. Iterated kernel 𝑘𝑛(𝑥, 𝑡) are given by 

                      𝑘1(𝑥, 𝑡) = 𝑘(𝑥, 𝑡)      ….. (1) 

And     𝑘𝑛(𝑥, 𝑡) = ∫ 𝑘(𝑥, 𝑧)𝑘𝑛−1(𝑧, 𝑡)𝑑𝑧
𝑥

𝑡
,  ( n = 1, 2, 3, …)     ….. (2) 

From (1),         𝑘1(𝑥, 𝑡) = 𝑘(𝑥, 𝑡) = 1                   ….. (3) 

Putting n = 2 in (2), we have  

𝑘2(𝑥, 𝑡) = ∫ 𝑘(𝑥, 𝑧)𝑘1(𝑧, 𝑡)𝑑𝑧
𝑥

𝑡
 = ∫ 𝑑𝑧

𝑥

𝑡
 , using (3) 

              = [𝑧]𝑡
𝑥 

              = x – t, on simplification 

∴           𝑘2(𝑥, 𝑡) = 𝑥 − 𝑡       …… (4) 
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Putting n = 3 in (2), we have 

𝑘3(𝑥, 𝑡) = ∫ 𝑘(𝑥, 𝑧)𝑘2(𝑧, 𝑡)𝑑𝑧
𝑥

𝑡
 = ∫ 1. (𝑧 − 𝑡)𝑑𝑧

𝑥

𝑡
    using (3), (4) 

              = [
(𝑧−𝑡)2

2
]

𝑡

𝑥

= 
(𝑥−𝑡)2

2!
        …… (5) 

Putting n = 4 in (2), we have 

𝑘4(𝑥, 𝑡) = ∫ 𝑘(𝑥, 𝑧)𝑘3(𝑧, 𝑡)𝑑𝑧
𝑥

𝑡
 = ∫ 1.

(𝑧−𝑡)2

2!
𝑑𝑧

𝑥

𝑡
    using (3),(5) 

              = 
1

2
[

(𝑧−𝑡)3

3
]

𝑡

𝑥

= 
(𝑥−𝑡)3

3!
        …… (6) 

And so on. Observing (3), (4), (5) and (6) etc, we find by Mathematical 

induction, that 

             𝑘𝑛(𝑥, 𝑡) = 
(𝑥−𝑡)𝑛−1

(𝑛−1)!
 , n = 1, 2, 3, … 

Now by the definition of resolvent kernel we have 

𝑅(𝑥, 𝑡;  𝜆) = ∑ 𝜆𝑚−1𝑘𝑚(𝑥, 𝑡)∞
𝑚=1   = 𝑘1(𝑥, 𝑡) + 𝜆 𝑘2(𝑥, 𝑡) + 𝜆2𝑘3(𝑥, 𝑡) + 

….. 

                  = 1 + 
 𝜆(𝑥−𝑡)

1!
 + 

 [𝜆(𝑥−𝑡)]2

2!
 + 

 [𝜆(𝑥−𝑡)]3

3!
 + …… 

                  = 𝑒𝜆(𝑥−𝑡) . 

Example2. Find the resolvent kernel of the Volterra integral equation for 

the following kernel k(x, t) =𝑒𝑥−𝑡. 

Sol. Iterated kernel 𝑘𝑛(𝑥, 𝑡) are given by 

                      𝑘1(𝑥, 𝑡) = 𝑘(𝑥, 𝑡)      ….. (1) 

And     𝑘𝑛(𝑥, 𝑡) = ∫ 𝑘(𝑥, 𝑧)𝑘𝑛−1(𝑧, 𝑡)𝑑𝑧
𝑥

𝑡
,  ( n = 1, 2, 3, …)     ….. (2) 

From (1),         𝑘1(𝑥, 𝑡) = 𝑘(𝑥, 𝑡) = 𝑒𝑥−𝑡                   ….. (3) 

Putting n = 2 in (2), we have  
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𝑘2(𝑥, 𝑡) = ∫ 𝑘(𝑥, 𝑧)𝑘1(𝑧, 𝑡)𝑑𝑧
𝑥

𝑡
 = ∫ 𝑒𝑥−𝑧𝑒𝑧−𝑡𝑑𝑧

𝑥

𝑡
 , using (3) 

              = 𝑒𝑥−𝑡 ∫ 𝑑𝑧
𝑥

𝑡
 = 𝑒𝑥−𝑡(𝑥 − 𝑡) 

∴           𝑘2(𝑥, 𝑡) = 𝑒𝑥−𝑡(𝑥 − 𝑡)                   …… (4) 

Putting n = 3 in (2), we have 

𝑘3(𝑥, 𝑡) = ∫ 𝑘(𝑥, 𝑧)𝑘2(𝑧, 𝑡)𝑑𝑧
𝑥

𝑡
 = ∫ 𝑒𝑥−𝑧(𝑧 − 𝑡)𝑒𝑧−𝑡𝑑𝑧

𝑥

𝑡
    using (3), (4) 

              = 𝑒𝑥−𝑡 ∫ (𝑧 − 𝑡)𝑑𝑧
𝑥

𝑡
 

              = 𝑒𝑥−𝑡 [
(𝑧−𝑡)2

2
]

𝑡

𝑥

= 𝑒𝑥−𝑡 (𝑥−𝑡)2

2!
        …… (5) 

Putting n = 4 in (2), we have 

𝑘4(𝑥, 𝑡) = ∫ 𝑘(𝑥, 𝑧)𝑘3(𝑧, 𝑡)𝑑𝑧
𝑥

𝑡
 = ∫ 𝑒𝑥−𝑧𝑒𝑧−𝑡 (𝑧−𝑡)2

2!
𝑑𝑧

𝑥

𝑡
    using (3),(5) 

              = 
𝑒𝑥−𝑡

2!
∫ (𝑧 − 𝑡)2𝑑𝑧

𝑥

𝑡
 

              = 
𝑒𝑥−𝑡

2!
[

(𝑧−𝑡)3

3
]

𝑡

𝑥

= 𝑒𝑥−𝑡 
(𝑥−𝑡)3

3!
        …… (6) 

And so on. Observing (3), (4), (5) and (6) etc, we find by Mathematical 

induction, that 

             𝑘𝑛(𝑥, 𝑡) =  𝑒𝑥−𝑡 
(𝑥−𝑡)𝑛−1

(𝑛−1)!
 , n = 1, 2, 3, … 

Now by the definition of resolvent kernel we have 

𝑅(𝑥, 𝑡;  𝜆) = ∑ 𝜆𝑚−1𝑘𝑚(𝑥, 𝑡)∞
𝑚=1    

               = 𝑘1(𝑥, 𝑡) + 𝜆 𝑘2(𝑥, 𝑡) + 𝜆2𝑘3(𝑥, 𝑡) + ….. 

             =  𝑒𝑥−𝑡  +  𝑒𝑥−𝑡  
 𝜆(𝑥−𝑡)

1!
 +  𝑒𝑥−𝑡  

 [𝜆(𝑥−𝑡)]2

2!
 +  𝑒𝑥−𝑡  

 [𝜆(𝑥−𝑡)]3

3!
 + …… 

             = 𝑒𝜆(𝑥−𝑡) [1  +   
 𝜆(𝑥−𝑡)

1!
 +  

 [𝜆(𝑥−𝑡)]2

2!
 +   

 [𝜆(𝑥−𝑡)]3

3!
 +  … ] 

             =  𝑒𝑥−𝑡 𝑒𝜆(𝑥−𝑡) =  𝑒(𝑥−𝑡)+𝜆(𝑥−𝑡) =  𝑒(𝑥−𝑡)(1+𝜆). 
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Type 2. Solution of Volterra integral equation with the help of the 

resolvent kernel. 

Working rule:     let    y(x) = f(x) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑥

𝑎
   …… (1) 

be given Volterra integral equation. Let 𝑘𝑚(𝑥, 𝑡) be the mth iterated kernel 

and let 𝑅(𝑥, 𝑡;  𝜆) be the resolvent kernel of (1). Then we have  

        R(x, t;  λ) = ∑ λm−1km(x, t)∞
m=1            ……. (2) 

Suppose the sum of infinite series (2) exist and so R(x, t;  λ) can be 

obtained in the closed form. Then the required solution of (1) is given by 

       y(x) = f(x) + 𝜆 ∫ R(x, t;  λ)𝑓(𝑡)𝑑𝑡
𝑥

𝑎
.      ……. (3) 

Example 3. Find the Resolvent kernels for the Volterra integral equation  

                    y(x) = 1 + ∫ 𝑦(𝑡)𝑑𝑡
𝑥

0
     and also find the solution. 

Sol. Given   y(x) = 1 + ∫ 𝑦(𝑡)𝑑𝑡
𝑥

0
        …… (1) 

Comparing (1) with y(x) = f(x) + λ ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑥

0
 

We have f(x) = 1,        λ = 1,       k(x, t) = 1    ……. (2) 

Proceeding as in Example 1, we have 

              R(x, t;  λ)  =  𝑒𝜆(𝑥−𝑡) = 𝑒𝑥−𝑡     since 𝜆 = 1, by (2)      …… (3) 

Now the required solution of (1) is given by  

              y(x) = f(x) + 𝜆 ∫ R(x, t;  λ)𝑓(𝑡)𝑑𝑡
𝑥

0
 

or          y(x) = 1 + ∫ 𝑒𝑥−𝑡𝑑𝑡
𝑥

0
, using (1) 

                     = 1 + 𝑒𝑥 ∫ 𝑒−𝑡𝑑𝑡
𝑥

0
 = 1 + 𝑒𝑥 [−𝑒−𝑡]0

𝑥 

                     = 1 + 𝑒𝑥[−𝑒−𝑥 + 1] = 1 – 1 + 𝑒𝑥 
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Hence       y(x) = 𝑒𝑥. 

 

Example 4. Solve the following integral equation by successive 

approximation 

                    y(x) = f(x) + 𝜆 ∫ 𝑒𝑥−𝑡𝑦(𝑡)𝑑𝑡
𝑥

0
 . 

Sol. Given   y(x) = f(x) + 𝜆 ∫ 𝑒𝑥−𝑡𝑦(𝑡)𝑑𝑡
𝑥

0
        …… (1) 

Comparing (1) with y(x) = f(x) + λ ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑥

0
 

We have      k(x, t) = 𝑒𝑥−𝑡                                  ……. (2) 

Proceeding as in Example 2, we have 

              R(x, t;  λ)  =   𝑒(𝑥−𝑡)(1+𝜆)                        …… (3) 

Now the required solution of (1) is given by  

              y(x) = f(x) + 𝜆 ∫ R(x, t;  λ)𝑓(𝑡)𝑑𝑡
𝑥

0
 

              y(x) = f(x) + 𝜆 ∫  𝑒(𝑥−𝑡)(1+𝜆)𝑓(𝑡)𝑑𝑡
𝑥

0
, by (3) 

Type 3. Solution of Volterra integral equation of second kind  with 

the help of the method of successive approximations: 

                             y(x) = f(x) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑥

𝑎
   …… (1) 

Working rule:     let    f(x) be a continuous in [0, a] and k(x, t) be 

continuous for 0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑡 ≤ 𝑥. 

We start with some function 𝑦0(𝑥) continuous in [0, a]. replacing y(t) on 

R.H.S. of (1) by 𝑦0(𝑥) , we obtain 

                            𝑦1(𝑥)  = f(x) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦0(𝑥)𝑑𝑡
𝑥

𝑎
   …… (2) 

𝑦1(𝑥)  given by (2) is itself continuous in [0, a]. proceeding likewise we 

arrive at a sequence of functions 𝑦0(𝑥), 𝑦1(𝑥), … , 𝑦𝑛(𝑥), …, where 
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                             𝑦𝑛(𝑥)  = f(x) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑦𝑛−1(𝑥)𝑑𝑡
𝑥

𝑎
     …… (3) 

In view of continuity of f(x) and k(x, t), the sequence {𝑦𝑛(𝑥)} converges, 

as n⟶ ∞ to obtain the solution y(x) of the given integral equation (1). 

Example 5. Solve the following integral equation by successive 

approximations 

                    y(x) = 1 + ∫ 𝑦(𝑡)𝑑𝑡
𝑥

0
 , taking 𝑦0(𝑥) = 0. 

Sol. Given          y(x) = 1 + ∫ 𝑦(𝑡)𝑑𝑡
𝑥

0
      …… (1)                 

 And                   𝑦0(𝑥) = 0                      …… (2) 

Comparing (1) with y(x) = f(x) + λ ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑥

0
 

Here       f(x) = 1,        λ = 1,        k(x, t) = 1       …… (3) 

The nth order approximation is given by  

                   𝑦𝑛(𝑥) = f(x) + λ ∫ 𝑘(𝑥, 𝑡)𝑦𝑛−1(𝑡)𝑑𝑡
𝑥

0
 

Or               𝑦𝑛(𝑥) = 1 + ∫ 𝑦𝑛−1(𝑡)𝑑𝑡
𝑥

0
, using (3)        …… (4) 

Putting n = 1 in (4) and using (5), we have 

𝑦1(𝑥) = 1 + ∫ 𝑦0(𝑡)𝑑𝑡
𝑥

0
 = 1 + ∫ 0𝑑𝑡

𝑥

0
 = 1 

Next, Putting n = 2 in (4) and using (5), we have 

𝑦2(𝑥) = 1 + ∫ 𝑦1(𝑡)𝑑𝑡
𝑥

0
 = 1 + ∫ 𝑑𝑡

𝑥

0
 = 1 = 1 + x      …… (6) 

Next, Putting n = 3 in (4) and using (6), we have 

𝑦3(𝑥) = 1 + ∫ 𝑦2(𝑡)𝑑𝑡
𝑥

0
 = 1 + ∫ (1 + 𝑡)𝑑𝑡

𝑥

0
 = [𝑡 +

𝑡2

2
]

0

𝑥

 = 1 + x + 
𝑥2

2!
       …… 

(7) 

Next, Putting n = 4 in (4) and using (7), we have 

𝑦4(𝑥) = 1 + ∫ 𝑦3(𝑡)𝑑𝑡
𝑥

0
 = 1 + ∫ (1 +  t +  

𝑡2

2!
)𝑑𝑡

𝑥

0
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     = 1 + x + 
𝑥2

2!
+ 

𝑥3

3!
        …… (8) 

And so on, observing (5), (6), (7), (8) etc, we find 

𝑦𝑛(𝑥) = 1 + x + 
𝑥2

2!
+ 

𝑥3

3!
 + … + 

𝑥𝑛−1

(𝑛 − 1)!
        ……. (9) 

Making n⟶ ∞, we find the required solution is given by  

y(x) = lim
n⟶∞

𝑦𝑛(𝑥)   or  

y(x) = 1 + x + 
𝑥2

2!
+ 

𝑥3

3!
 + …..       or y(x) =  𝑒𝑥. 

CHECK YOUR PROGRESS  

True or false Questions 

Problem 1. The iterated kernels for Fredholm integral equation 

is  𝑘𝑛(𝑥, 𝑡)  = ∫ 𝑘(𝑥, 𝑧)𝑘𝑛−1(𝑧, 𝑡)𝑑𝑧
𝑏

𝑎
 . True/False. 

Problem 2. The resolvent kernel of the Fredholm integral 

equation for            the kernel k(x, t) = 𝑥2𝑡2; a = -1, b =1 is 

R(x, t;  λ) = 
5𝑥2𝑡2

5−2λ
 ;  |λ| < 2. True /False. 

Problem 3. The resolvent kernel of the Volterra integral 

equation for            the kernel k(x, t) = 2 − (𝑥 − 𝑡), 𝑡𝑎𝑘𝑖𝑛𝑔 λ =

1 is R(x, t;  λ) = 𝑒𝑥−𝑡(𝑥 − 𝑡 + 2)True /False. 

Problem 4. The eigen value of homogeneous integral equation 

                         y(x) =  2 ∫ sinx 𝑦(𝑡)𝑑𝑡
𝜋

0
 is  

(a) 1              (b) 2               (c) 3              (d) 4 

Problem 5. Eigen function of y(x) = 𝑐𝑜𝑠𝑥 + 𝜆 ∫ 𝑠𝑖𝑛𝑥 𝑦(𝑡)𝑑𝑡
𝜋

0
 

is? 

Problem 6. Solution of the integral equation y(x) = 
1

2
𝑥3 −

2𝑥 − ∫  𝑦(𝑡)𝑑𝑡
𝑥

0
, 𝑦

0
(𝑥) = 𝑥2. 
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8.8 SUMMARY 
 

1. Iterated kernel or functions 

    For Volterra integral equation  

   The iterated kernels 𝑘𝑛(𝑥, 𝑡), 𝑛 = 1, 2, 3, … are defined as follows: 

                         𝑘1(𝑥, 𝑡) = 𝑘(𝑥, 𝑡)         

And                  
𝑘𝑛(𝑥, 𝑡) = ∫ 𝑘(𝑥, 𝑧)𝑘𝑛−1(𝑧, 𝑡)𝑑𝑧, 𝑛 = 2, 3, …

𝑏

𝑎

𝑘𝑛(𝑥, 𝑡) = ∫ 𝑘𝑛−1(𝑥, 𝑧)𝑘(𝑧, 𝑡)𝑑𝑧, 𝑛 = 2, 3, …
𝑏

𝑎

} 

For Volterra integral equation  

The iterated kernels 𝑘𝑛(𝑥, 𝑡), 𝑛 = 1, 2, 3, … are defined as follows: 

                         𝑘1(𝑥, 𝑡) = 𝑘(𝑥, 𝑡)         

And                  
𝑘𝑛(𝑥, 𝑡) = ∫ 𝑘(𝑥, 𝑧)𝑘𝑛−1(𝑧, 𝑡)𝑑𝑧, 𝑛 = 2, 3, …

𝑥

𝑡

𝑘𝑛(𝑥, 𝑡) = ∫ 𝑘𝑛−1(𝑥, 𝑧)𝑘(𝑧, 𝑡)𝑑𝑧, 𝑛 = 2, 3, …
𝑥

𝑡

} 

2. Resolvent kernel is written as 𝑅(𝑥, 𝑡;  𝜆) = ∑ 𝜆𝑚−1𝑘𝑚(𝑥, 𝑡)∞
𝑚=1 . 

3. The series for the resolvent kernel 

     𝑅(𝑥, 𝑡;  𝜆) = ∑ 𝜆𝑚−1𝑘𝑚(𝑥, 𝑡)∞
𝑚=1   …. (1) 

     is absolutely and uniformly convergent for all values of x and t in the    

     circle  |𝜆| < 𝐵−1. 

4. Solution of Fredholm integral equation with the help of the resolvent  

     kernel. 

5. Solution of Volterra integral equation with the help of the resolvent  

     kernel. 
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6. Solution of Volterra and Fredholm integral equation with the help of  

    successive approximations. 

8.9 GLOSSARY 
 

Integration  

Even, odd functions   

Trigonometric functions 

Differentiation 

First order derivatives 

Second order derivatives 

Expansions of function 

Series  
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8.12 TERMINAL AND MODEL QUESTIONS 

 

Q 1. Find the resolvent kernel for the Volterra integral equations with the 

following  

        kernel k(x, t) = 2x, taking 𝜆 = 1.  

Q 2. Solve the following Volterra integral equation 

       y(x) = 1 + ∫ 𝑥𝑡 𝑦(𝑡)𝑑𝑡
𝑥

0
 by the method of successive Approximations. 

Q 3. Using the method of successive approximations, solve the following 

integral equation with given value 𝑦0(𝑥) of zero-order approximation: 

y(x) =1- ∫ (𝑥 − 𝑡) 𝑦(𝑡)𝑑𝑡
𝑥

0
, 𝑦0(𝑥) = 0. 

Q 4. Using the method of successive approximations, solve the following 

integral equation with given value 𝑦0(𝑥) of zero-order approximation: 

y(x) =2x + 2 -  ∫  𝑦(𝑡)𝑑𝑡
𝑥

0
, 𝑦0(𝑥) = 1. 

Q 5. With the help of the resolvent kernel, find the solution of the integral 

equation 

        y(x) = 1 + 𝑥2 + ∫  
1 + 𝑥2

1 + 𝑡2 𝑦(𝑡)𝑑𝑡
𝑥

0
. 
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8.13 ANSWERS 
        

TQ1    2x𝑒𝑥2−𝑡2
 

TQ2    y(x) = 1 + 
𝑥3

2
 + 

𝑥6

2.5
 + 

𝑥9

2.5.8
 + 

𝑥12

2.5.8.11
 + …. 

TQ3     y(x) = cosx  

TQ4     𝑦(𝑥) = 2 

TQ5    y(x) = 𝑒𝑥(1 + 𝑥2) 

CHECK YOUR PROGRESS 

        CYQ 1. True  

        CYQ 2. True  

        CYQ 3. True  

        CYQ 4. (b) 

        CYQ 5. y(x) = cosx 

        CYQ6. Y(x) = 𝑥2 − 2𝑥. 
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UNIT 9: APPLICATIONS OF INTEGRAL 
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9.1 INTRODUCTION 

We have already learnt about the conversion of boundary value 

problem into integral equations. In this unit we shall consider the initial 

and boundary problems again in the different context. We shall introduce 

the concept of Green’s function and utilize it in converting initial and 

boundary value problems into integral equations. Sometimes we shall be 

able to solve the given initial and boundary value problems completely 

with the help of Green’s function.  

 

9.2 OBJECTIVE 

            At the end of this topic learner will be able to understand:  

           (i) integral equation 

            (ii) Green’s function 

            (iii) initial value problem 

            (vi) Boundary value problem  

            (v) Solution of integral equation using Green’s Function. 

              

9.3 GREEN’S FUNCTION 

Consider a linear homogeneous differential equation of order n: 

                  L [y] = 0                                                             ……. (1) 

Where L is the differential operator 

                  L ≡ 𝑝0(𝑥)
𝑑𝑛

𝑑𝑥𝑛 + 𝑝1(𝑥)
𝑑𝑛−1

𝑑𝑥𝑛−1 + ⋯ + 𝑝𝑛(𝑥)       ……. (2) 

Where the functions 𝑝0(𝑥), 𝑝1(𝑥), … , 𝑝𝑛(𝑥) are continuous on [𝑎, b], 

𝑝0(𝑥) ≠ 0 on [𝑎, b] and the boundary conditions are  

                 𝑉𝑘(𝑦) = 0,   (𝑘 = 1, 2, 3, … , 𝑛)             ……. (3) 
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Where      𝑉𝑘(𝑦) = 𝛼𝑘𝑦(𝑎) +  𝑎𝑘
(1)𝑦′(𝑎) + ⋯ + 𝑎𝑘

(𝑛−1)𝑦𝑛−1(𝑎)  

                    + 𝛽𝑘𝑦(𝑏) +  𝛽𝑘
(1)𝑦′(𝑏) + ⋯ + 𝛽𝑘

(𝑛−1)𝑦𝑛−1(𝑏)        …… (4) 

Where the linear form 𝑉1, … , 𝑉𝑛 in y(𝑎), 𝑦′(𝑎), … , 𝑦𝑛−1(𝑎), 

𝑦(𝑏), 𝑦′(𝑏), … , 𝑦𝑛−1(𝑏) are linearly independent. 

Suppose that the homogeneous boundary – value problem given by (1) to 

(4) has only a trivial solution y(x) ≡ 0.  Then the Green’s function of the 

boundary value problem (1) to (4) is the function G(x, t) constructed for 

any point t, a < t < b, and which has the following four properties: 

(i) In each of the intervals [𝑎, 𝑡) and (t, b] the function G(x, t), considered 

as a function of x, is a solution of (1), that is, 

                                                L [G] = 0        …… (5) 

(ii) G(x, t) is continuous and has continuous derivative with respect to x 

upto order (n - 2) inclusive for 𝑎 ≤ 𝑥 ≤ 𝑏. 

(iii) (n – 1)th derivative of G(x, t) with respect to x at the point x = t has 

discontinuity of the first kind, * the jump being equal to −
1

𝑝0(𝑡)
, 𝑡ℎ𝑎𝑡 is  

              (
𝜕𝑛−1𝐺

𝜕𝑥𝑛−1)
𝑥 = 𝑡 + 0

− (
𝜕𝑛−1𝐺

𝜕𝑥𝑛−1)
𝑥 = 𝑡− 0

 = −
1

𝑝0(𝑡)
        …… (6) 

(iv) G(x, t) satisfies the boundary conditions (3), that is, 

                             𝑉𝑘(𝐺) = 0. (𝑘 = 1, 2, … , 𝑛)        ……. (7) 

Note:∎ if the boundary value problem given by (1) and (4), has only 

trivial solution y(x) = 0, the operator L has a unique Green’s function 

G(x, t). 

∎ if the boundary value problem (1) to (4) is self-adjoint, then Green’s 

function is symmetric, that is, G(x, t) = G(t, x). the converse is also true. 

∎ if at one of the extremities of an interval [a, b] the coefficient of the 

highest derivative vanishes, for example 𝑝0(𝑎)  = 0, then the natural 
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boundary condition for boundedness of the solution at x = 𝑎 is imposed, 

at the other extremity the ordinary boundary condition is specified. 

 

9.4 CONVERSION OF A BOUNDARY VALUE 

PROBLEM INTO FREDHOLM INTEGRAL 

EQUATION 

We shall use the following notations: 

                  L ≡ 𝑝0(𝑥)
𝑑𝑛

𝑑𝑥𝑛 + 𝑝1(𝑥)
𝑑𝑛−1

𝑑𝑥𝑛−1 + ⋯ + 𝑝𝑛(𝑥) 

And 

      𝑉𝑘(𝑦) ≡  𝛼𝑘𝑦(𝑎) +  𝑎𝑘
(1)𝑦′(𝑎) + ⋯ + 𝑎𝑘

(𝑛−1)𝑦𝑛−1(𝑎)  

                                + 𝛽𝑘𝑦(𝑏) +  𝛽𝑘
(1)𝑦′(𝑏) + ⋯ + 𝛽𝑘

(𝑛−1)𝑦𝑛−1(𝑏)        

Suppose G(x, t) is the Green’s function of the boundary value problem 

         L[y] = 0          …… (1) 

 𝑉𝑘(𝑦) = 0,     k = 1, 2, 3, …. , n           ….. (2) 

Involving homogeneous boundary conditions (2) at the end points x = 𝑎 

and x = b of an interval 𝑎 ≤ 𝑥 ≤ 𝑏. 

Result 1. Consider the boundary value problem 

                 L[y] + 𝜑(x) = 0            ……. (3) 

                 𝑉𝑘(𝑦) = 0,     k = 1, 2, 3, …. , n           ….. (4) 

Involving the same homogeneous boundary conditions (2). Here 𝜑(x) is a 

direct function of x. 

*then solution of the boundary problem (3)-(4) is given by the formula  

                  y(x) = ∫ 𝐺(𝑥, 𝑡)𝜑(t)dt
𝑏

𝑎
            …… (5) 
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Result 2. Consider the boundary value problem 

                 L[y] + 𝜑(x) = 0                                   ……. (6) 

                 𝑉𝑘(𝑦) = 0,     k = 1, 2, 3, …. , n           ..….. (7) 

Involving the same homogeneous boundary conditions (2). 

In this result we assume that 𝜑(x) is not a given direct function of x. 

however, 𝜑(x) may also depend upon x indirectly by also involving the 

unknown function y(x), and so being expressible in the form  𝜑(x) = 𝜑(x, 

y(x))             ……. (8) 

   Then the boundary – value problem (6) – (7) can be reduced to the 

following integral equation 

                    y(x) = ∫ 𝐺(𝑥, 𝑡)𝜑(t, y(t))dt
𝑏

𝑎
                      .…… (9) 

Particular case of result (2): 

Let 𝜑(x) = 𝜆 𝑟(𝑥)𝑦(𝑥) − 𝑓(𝑥), where 𝜆 is a parameter. Then, we see that 

the boundary value problem  L[y] + 𝜆 𝑟(𝑥)𝑦(𝑥) = 𝑓(𝑥)     …….. (10) 

                         𝑉𝑘(𝑦) = 0,     k = 1, 2, 3, …. , n           ...….. (11) 

Reduces to the following integral equation 

                 y(x) = 𝜆 ∫ 𝐺(𝑥, 𝑡)𝑟(𝑡)𝑦(𝑡)dt
𝑏

𝑎
 - ∫ 𝐺(𝑥, 𝑡)𝑓(𝑡)dt

𝑏

𝑎
    …… (12) 

where G(x, t) is the relevant Green’s function. In (12), G(x, t) r(t) is not 

symmetric unless the function r(t) is a constant. However, if we write 

                                     {𝑟(𝑥)}
1

2𝑦(𝑥) = Y(x) 

Under the assumption that r(x) is non-negative over (a, b), as is usually 

the case in practice, the equation (12) can be written in the form  

           Y(x) = 𝜆 ∫ 𝑘∗(𝑥, 𝑡)𝑌(𝑡)dt
𝑏

𝑎
 - ∫ 𝑘∗(𝑥, 𝑡)

𝑓(𝑡)

{𝑟(𝑥)}
1
2

dt
𝑏

𝑎
, 

Where 𝑘∗(𝑥, 𝑡) =  𝐺(𝑥, 𝑡){𝑟(𝑥)𝑟(𝑡)}
1

2 is a symmetric kernel.  
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Result 3. When the prescribed end conditions are not homogeneous, 

we shall use a modified method as explained below: 

In this case, Let G(x, t) denote the Green’s function corresponding to the 

associated homogeneous end conditions. We now search for a function 

P(x) such the relation 

         y(x) = P(x) +  ∫ 𝐺(𝑥, 𝑡)𝜑(t)dt
𝑏

𝑎
        …… (13) 

is equivalent to the differential equation       L(y) + 𝜑(t) = 0       …… (14) 

together with the prescribed nonhomogeneous end conditions. 

since           L[∫ 𝐺(𝑥, 𝑡)𝜑(t)dt
𝑏

𝑎
] = - 𝜑(x)                …… (15) 

the requirement that (13) imply (14) leads us to 

                      L[P(x)] = 0                   …… (16) 

Furthermore, since the second term in (13) satisfies the associated 

homogeneous end conditions, we conclude that function P(x) in (13) 

must be the solution of (16) which satisfies the prescribed 

nonhomogeneous end conditions. When G(x, t) exists, then P(x) 

always exists. 

ILLUSTRATIVE EXAMPLES 

Based on construction of Green’s Function  

Example 1. Find the Green’s function of the boundary value problem 

𝑦′′ = 0, 𝑦(0) = 𝑦(𝑙) = 0.  

Sol. Given boundary value problem         𝑦′′ = 0        ……. (1) 

With the boundary conditions:                 y(l) = 0         ……. (2a) 

And                                                           y(l) = 0         ……. (2b) 

The general solution of (1) is                   y(x) = Ax + B             …… (3) 

Putting x = 0 in (3) and using (2a), we get        B = 0                  …… (4) 
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Next, putting x = l in (3) and using (2b), we get      0 = A + B 𝑙    …… (5) 

Solving (4) and (5), we get A = B = 0. Hence (3) yields only the trivial 

solution y(x) = 0 for the given boundary value problem. Therefore, the 

Green’s function exists and is given by 

                        G(x, t) = {
𝑎1𝑥 + 𝑎2,                 0 ≤ 𝑥 < 𝑡
𝑎1𝑥 + 𝑎2,                 𝑡 < 𝑥 ≤ 𝑙 

               ……. (6) 

In addition to the above property (6). The proposed Green’s function must 

satisfy the following three properties:  

(i) G(x, t) is continuous at x = t, that is 

          𝑏1𝑡 + 𝑏2 = 𝑎1𝑡 + 𝑎2        or      (𝑏1 − 𝑎1) + (𝑏2 − 𝑎2) = 0 ….… (7) 

(ii) the derivative of G has a discontinuity of magnitude −
1

𝑝0(𝑡)
 at the point 

x = t, where 𝑝0(𝑥) coefficient of the highest order derivative in (1) = 1. 

Therefore (
𝜕𝐺

𝜕𝑥
)

𝑥=𝑡+0
− (

𝜕𝐺

𝜕𝑥
)

𝑥=𝑡−0
= −1     or   𝑏1 − 𝑎1 = −1  …… (8) 

(iii) G(x, t) must satisfy the boundary conditions (2a) and (2b), that is 

       G(0, t) = 0          so that       𝑎2 = 0                              …… (9) 

And G(𝑙, t) = 0          so that       𝑏1𝑙 + 𝑏2 = 0                    …… (10) 

Using (8), (7) becomes            - t + 𝑏2 − 𝑎2 = 0                  ……. (11) 

Solving (8), (9), (10) and 11, we have 

𝑎2 = 0        𝑏2 = t,            𝑏1 =  −𝑡/𝑙,          𝑎1 = 1 - 𝑡/𝑙     

Therefore    𝑎1𝑥 + 𝑎2 = (1 −
𝑡

𝑙
) 𝑥 =

𝑥

𝑙
(𝑙 − 𝑡) and 

                    𝑏1𝑥 + 𝑏2 = −
𝑡

𝑙
𝑥 + 𝑡 =

𝑡

𝑙
(𝑙 − 𝑥). 

Substituting the above value in (6), the required Green’s function of the 

given boundary problem is given by 



Mathematical Methods  MAT 509 

Department of Mathematics 
Uttarakhand Open University                                                                                                                          181 
 

                             G(x, t) = {
(

𝑥

𝑙
) (𝑙 − 𝑡), 0 ≤ 𝑥 < 𝑡

(
𝑡

𝑙
) (𝑙 − 𝑡), 𝑡 < 𝑥 ≤ 𝑙

           …….. (12) 

Example 2. Construct the Green’s function for the differential equation  

 x𝑦′′ + 𝑦′ = 0 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 conditions. y(x) is bounded as 

 x → 0, 𝑦(1) =  𝛼𝑦′(1), 𝛼 ≠ 0. 

Sol. Given boundary value problem is : x𝑦′′ + 𝑦′ = 0 or 𝑥2𝑦′′ + 𝑥𝑦′ = 0 

Or     (𝑥2𝐷2 + 𝑥𝐷)𝑦 = 0, D≡ 𝑑/𝑑𝑥       …… (1) 

With the boundary conditions:     y(x) is bounded as x → 0        ……. (2a) 

                                                      𝑦(1) =  𝛼𝑦′(1), 𝛼 ≠ 0          ……. (2b) 

To solve the linear homogeneous differential equation (1), we proceed by 

the usual method 

Put       𝑥 = 𝑒𝑧     so that        log x = z      …….  (3) 

Then  xD = 𝐷1  and  𝑥2𝐷2 =  𝐷1(𝐷1 − 1), where  𝐷1 = 𝑑/𝑑𝑧……. (4) 

Using (4),(1) reduces to [𝐷1(𝐷1 − 1) + 𝐷1] y = 0    or   𝐷1
2
y = 0……. (5) 

The auxiliary equation of (5) is  𝐷1
2
 = 0  so that  𝐷1 = 0, hence the solution 

is  

Y = Az + B                 or       y(x) = Alog x + B, by (3)          ……. (6) 

Now  from (6),               𝑦′(𝑥) = 𝐴/𝑥             …… (7) 

From (6) and (7),           y(1) = B        and    𝑦′(1) = A 

Putting these value in (2b) we get          B = 𝛼𝐴 

In view of B.C. (2a), we must take A = 0 in (6). Then A = 0 and B = 𝛼𝐴 

then B = 0. 

Thus A = B = 0. Hence yield the trivial solution y(x) = 0. Therefore the 

Green’s function exist and given by 
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                 G(x, t) = {
𝑎1𝑙𝑜𝑔𝑥 + 𝑎2, 0 ≤ 𝑥 < 𝑡
𝑏1𝑙𝑜𝑔𝑥 + 𝑏2, 𝑡 ≤ 𝑥 < 1

           …….. (8) 

In addition to above property (8), the proposed Green’s function must also 

satisfy the following three properties:  

(i) G(x, t) is continuous at x = t, that is, 

𝑏1𝑙𝑜𝑔𝑡 + 𝑏2 = 𝑎1𝑙𝑜𝑔𝑡 + 𝑎2                    or    

(𝑏1 − 𝑎1) log t + (𝑏2 − 𝑎2) = 0      ……. (9) 

(ii) The derivative of G has a discontinuity of magnitude – 1/𝑝0(𝑡) at the 

point x = t, where 𝑝0(𝑥) = coefficient of the highest power of x in the 

given differential equation = x. thus we have   

  (
𝜕𝐺

𝜕𝑥
)

𝑥=𝑡+0
− (

𝜕𝐺

𝜕𝑥
)

𝑥=𝑡−0
= −1/𝑡     or   𝑏1/𝑡 − 𝑎1/𝑡 = −1/𝑡 

Or                                       (𝑏1 − 𝑎1) = -1              ……. (10) 

(iii) G(x, t) must satisfy the boundary conditions (2a) and (2b), that is 

For (2a) , G(x, t) must be bounded as x → 0, i.e. 𝑎1𝑙𝑜𝑔𝑥 + 𝑎2 must be 

bounded at x → 0, which is possible only if we take  

                                                𝑎1 = 0          …… (11) 

For (2b) we must have        G(1, t) = 𝛼𝐺′(1, 𝑡) 

i.e.       𝑏1𝑙𝑜𝑔1 + 𝑏2     = 𝛼 (
𝑏1

𝑥
)

𝑥=1
      or    𝑏2 = 𝛼𝑏1           …… (12) 

solving (9), (10), (11) and (12), we get  

𝑎2 = 0 ,          𝑏1 = −1,        𝑏2 = − 𝛼       and 𝑎2 = −𝛼 − 𝑙𝑜𝑔𝑡 

Substituting the above values in (8), the required Green’s function is 

                        G(x, t) = {
− 𝛼 − 𝑙𝑜𝑔𝑡 , 0 ≤ 𝑥 < 𝑡
− 𝛼 − 𝑙𝑜𝑔𝑥, 𝑡 < 𝑥 ≤ 1

  . 

 



Mathematical Methods  MAT 509 

Department of Mathematics 
Uttarakhand Open University                                                                                                                          183 
 

∎ Solved example based on result 1: 

Example 3. Use the Green’s function solve the boundary value problem  

                          𝑦′′ + 𝑦 = 𝑥 , y(0) = (𝜋/2) = 0. 

Sol. Given boundary value problem 𝑦′′ + 𝑦 = 𝑥         …… (1) 

With boundary conditions:               y(0) = y(𝜋/2) = 0    ……. (2) 

Consider the associated boundary value problem 

𝑦′′ + 𝑦 = 0    or      (𝐷2 + 1)𝑦 = 0, 𝐷 = 𝑑/𝑑𝑥           ……. (3) 

Subject to boundary conditions     y(0) = 0                ……. (4a) 

And                                                y(𝜋/2) = 0            …… (4b) 

We first find the Green’s of the above mentioned boundary value problem 

given by (3), (4a) and (4b). 

The auxiliary equation of (3) is  𝐷2 + 1  = 0 so that     D = ±𝑖 

Hence the general solution of (3) is      y(x) = A cosx + B sinx      …… (5) 

Putting x = 0 in (5) and using B.C. (4a), we get      A = 0        …… (6) 

Putting x = 0 in (5) and using B.C. (4b), we get      B = 0        …… (7) 

From (6) and (7), A = B = 0. Hence (5) yield only trivial solution y(x) = 

0. Therefore, Green’s function exists for the boundary value problem 

given by (3), (4a) and (4b) and it is given by 

                    G(x, t) = {
𝑎1𝑐𝑜𝑠𝑥 + 𝑎2𝑠𝑖𝑛𝑥,        0 ≤ 𝑥 < 𝑡
𝑏1𝑐𝑜𝑠𝑥 + 𝑏2𝑠𝑖𝑛𝑥,    𝑡 < 𝑥 ≤ 𝜋/2

      …… (8) 

In addition to the above property (8), the proposed Green’s functions must 

also satisfy the following three properties: 

(i) G(x, t) is continuous at x = t, that is 

                  𝑏1𝑐𝑜𝑠𝑡 + 𝑏2𝑠𝑖𝑛𝑡 = 𝑎1𝑐𝑜𝑠𝑡 + 𝑎2𝑠𝑖𝑛𝑡 
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   or               (𝑏1 − 𝑎1)𝑐𝑜𝑠𝑡 + (𝑏2 − 𝑎2)𝑠𝑖𝑛𝑡 = 0              …… (9) 

(ii) the derivative of G has a discontinuity of magnitude – 1/𝑝0(𝑡) at the 

point x = t, where 𝑝0(𝑥) = coefficient of the highest order derivative in (3) 

= 1. thus we have 

    (
𝜕𝐺

𝜕𝑥
)

𝑥=𝑡+0
− (

𝜕𝐺

𝜕𝑥
)

𝑥=𝑡−0
= −1     or  

−𝑏1𝑠𝑖𝑛𝑡 + 𝑏2𝑐𝑜𝑠𝑡 − (−𝑎1𝑠𝑖𝑛𝑡 + 𝑎2𝑐𝑜𝑠𝑡) = -1      or 

             - (𝑏1 − 𝑎1)𝑠𝑖𝑛𝑡 + (𝑏2 − 𝑎2)𝑐𝑜𝑠𝑡 = -1            …… (10) 

(iii) G(x, t) must satisfy the boundary condition (4a) and (4b), that is 

        G(0, t) = 0           so that                 𝑎1 = 0             …… (11) 

And G(𝜋/2, t) = 0           so that                 𝑏2 = 0             …… (12) 

Let 𝑏1 − 𝑎1 = 𝐶1      and                 𝑏2 − 𝑎2 = 𝐶2             ……. (13) 

The (9) and (10) may be written as  

𝐶1 cos t + 𝐶2 𝑠𝑖𝑛𝑡 + 0 = 0             …… (14) 

−𝐶1 sin t + 𝐶2𝑐𝑜𝑠𝑡 + 1 = 0           ……. (15) 

Solving (14) and (15) by cross-multiplication method, we have 

𝐶1

𝑠𝑖𝑛𝑡
=

𝐶2

−𝑐𝑜𝑠𝑡
=

1

𝑐𝑜𝑠2𝑡+𝑠𝑖𝑛2𝑡
   hence 𝐶1 = 𝑠𝑖𝑛𝑡      𝑎𝑛𝑑 𝐶2 = −𝑐𝑜𝑠𝑡 

Therefore 𝑏1 − 𝑎1 = 𝑠𝑖𝑛𝑡, 𝑏𝑦 (13)              ……. (16) 

                 𝑏2 − 𝑎2 = −𝑐𝑜𝑠𝑡, 𝑏𝑦 (13)           ……. (17) 

Solving (11), (12), (16) and (17) we have 

𝑎1 = 0 ,       𝑏2 = 0,        𝑏1 = 𝑠𝑖𝑛𝑡,       𝑎2 = cost 

Substituting these values in (6) we have 

           G(x, t) = {
𝑐𝑜𝑠𝑡 𝑠𝑖𝑛𝑥,        0 ≤ 𝑥 < 𝑡
𝑠𝑖𝑛𝑡 𝑐𝑜𝑠𝑥,    𝑡 < 𝑥 ≤ 𝜋/2

       …… (18)  
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Then we known that the solution of the given boundary value problem (1)-

(2) is given by 

      y(x) = ∫ 𝐺(𝑥, 𝑡)∅(𝑡)𝑑𝑡
𝜋/2

0
              …… (19) 

where ∅(𝑥) = −𝑥 so that ∅(𝑡) = −𝑡, hence the required solution is given 

by 

y(x) = − ∫ 𝐺(𝑥, 𝑡)𝑡𝑑𝑡
𝜋/2

0
 = - [∫ 𝑡𝐺(𝑥, 𝑡)𝑑𝑡 + ∫ 𝑡𝐺(𝑥, 𝑡)𝑑𝑡

𝜋/2

𝑥

𝑥

0
] 

      = -  ∫ 𝑡 𝑠𝑖𝑛𝑡 𝑐𝑜𝑠𝑥 𝑑𝑡 − ∫ 𝑡 𝑐𝑜𝑠𝑡 𝑠𝑖𝑛𝑥 𝑑𝑡
𝜋/2

𝑥

𝑥

0
, using (18) 

     = - cosx ∫ 𝑡 𝑠𝑖𝑛𝑡  𝑑𝑡 − 𝑠𝑖𝑛𝑥 ∫ 𝑡 𝑐𝑜𝑠𝑡  𝑑𝑡
𝜋/2

𝑥

𝑥

0
 

    = - cosx[[−tcost]0
x − ∫ (−cost)dt

x

0
] − sinx [[t sint]x

π/2
− ∫ sint dt

π/2

x
] 

    = - cosx[-xcosx + sinx] – sinx[
𝜋

2
 -xsinx – cosx] 

Thus y(x) = x - 
𝜋

2
 𝑠𝑖𝑛𝑥 . 

∎ Solved example based on result 2: 

Example 4. Reduce the boundary value problem 𝑦′′ + 𝜆𝑦 = 𝑥,  

y(0) = y(𝜋/2) = 0 to the integral equation. 

Sol. Given boundary-value problem is 

 𝑦′′ + 𝜆𝑦 = 𝑥, y(0) = y(𝜋/2) = 0    …… (1) 

We shall first find the Green’s function of the following associated 

boundary value problem 

𝑦′′ = 0       or     𝐷2y = 0, D = d/dx                     …… (2) 

With boundary conditions          y(0) = 0            …… (3) 

Or                                               y(𝜋/2) = 0       ……. (4) 

So the general solution of (2) is y(x) = Ax + B         ……. (5) 
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Putting x = 0 is (5) and using B.C. (3), we get      B = 0         ……. (6) 

Next putting x = 𝜋/2 in (5) and using B.C. (4), we get 

0 = A(𝜋/2 ) + B        ……. (7) 

From (6) and (7), A = B = 0. Hence (5) yields only trivial solution y(x) = 

0. Therefore Green’s function G(x, t) exists for the associated boundary 

value problem given by (2), (3) and (4) and given by 

                                 G(x, t) = {
𝑎1𝑥 + 𝑎2,        0 ≤ 𝑥 < 𝑡
𝑏1𝑥 + 𝑏2,    𝑡 < 𝑥 ≤ 𝜋/2

       …… (8) 

In addition to the above property (8), the proposed Green’s functions must 

also satisfy the following three properties: 

(i) G(x, t) is continuous at x = t, that is 

                  𝑏1𝑡 + 𝑏2 = 𝑎1𝑡 + 𝑎2 

   or               (𝑏1 − 𝑎1)𝑡 + 𝑏2 − 𝑎2 = 0              …… (9) 

(ii) the derivative of G has a discontinuity of magnitude – 1/𝑝0(𝑡) at the 

point x = t, where 𝑝0(𝑥) = coefficient of the highest order derivative in (2) 

= 1. thus we have 

    (
𝜕𝐺

𝜕𝑥
)

𝑥=𝑡+0
− (

𝜕𝐺

𝜕𝑥
)

𝑥=𝑡−0
= −1     or  

             𝑏1 − 𝑎1= -1                                           …… (10) 

G(x, t) must satisfy the boundary condition (2) and (4), that is 

        G(0, t) = 0           so that                 𝑎2 = 0             …… (11) 

And G(𝜋/2, t) = 0           so that                 
𝑏2𝜋

2
+ 𝑏2 = 0             …… (12) 

Using (10) , (9) gives  

−𝑡 + 𝑏2 − 𝑎2  + = 0                          …… (13) 

Solving (10), (11), (12) and (13), we have 
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𝑎2 = 0 ,       𝑏2 = t,        𝑏1 = −(
2𝑡

𝜋
),       𝑎1 = 1 - 

2𝑡

𝜋
 

Therefore     𝑎1𝑥 + 𝑎2 = {1 −
2𝑡

𝜋
} 𝑥    and    𝑏1𝑥 + 𝑏2 = {1 −

2𝑥

𝜋
} 𝑡     

Substituting these values in (8) we have 

                                 G(x, t) = {
(1 −

2𝑡

𝜋
) 𝑥,        0 ≤ 𝑥 < 𝑡

(1 −
2𝑡

𝜋
) 𝑡,    𝑡 < 𝑥 ≤ 𝜋/2

       …… (14) 

Comparing 𝑦′′ + 𝜆𝑦 − 𝑥 = 0 with 𝑦′′ + 𝜑(𝑥) = 0, 𝑤𝑒 ℎ𝑎𝑣𝑒 

𝜑(𝑥) = 𝜆𝑦(𝑥) − 𝑥      so that    𝜑(𝑡) = 𝜆𝑦(𝑡) − 𝑡               …… (15) 

Also, we know that , if G(x, t) is Green’s function of the boundary value 

problem given by (2), (3),(4) then the boundary value problem (1) can be 

reduced to the following integral equation 

y(x) = ∫ 𝐺(𝑥, 𝑡)∅(𝑡)𝑑𝑡
𝜋/2

0
 = ∫ 𝐺(𝑥, 𝑡)[𝜆𝑦(𝑡) − 𝑡 ]𝑑𝑡

𝜋/2

0
 

or     y(x) = 𝜆 ∫ 𝐺(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝜋/2

0
 - ∫ 𝑡 𝐺(𝑥, 𝑡)𝑑𝑡

𝜋/2

0
       …… (16) 

Now, we have 

∫ 𝑡 𝐺(𝑥, 𝑡)𝑑𝑡
𝜋/2

0
 = ∫ 𝑡 𝐺(𝑥, 𝑡)𝑑𝑡

𝑥

0
+ ∫ 𝑡 𝐺(𝑥, 𝑡)𝑑𝑡

𝜋/2

𝑥
 

                           = ∫ 𝑡2 (1 −
2𝑥

𝜋
)  𝑑𝑡

𝑥

0
+ ∫ 𝑡 𝑥 (1 −

2𝑡

𝜋
) 𝑑𝑡

𝜋/2

𝑥
 , using (14) 

                           = (1 −
2𝑥

𝜋
) ∫ 𝑡2 𝑑𝑡

𝑥

0
 + x∫  (𝑡 −

2𝑡2

𝜋
) 𝑑𝑡

𝜋/2

𝑥
 

                           = (1 −
2𝑥

𝜋
) [

𝑡3

3
]

0

𝑥

+ 𝑥 [
𝑡2

2
−

2𝑡3

3𝜋
]

𝑥

𝜋/2

 

                           = −
𝑥3

6
 + 

𝜋2𝑥

24
 

Substituting the above value in (16), we obtain the required integral 

equation 

y(x) = 𝜆 ∫ 𝐺(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝜋/2

0
+

𝑥3

6
  − 

𝜋2𝑥

24
 , where G(x, t) is given by (14). 
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CHECK YOUR PROGRESS  

True or false Questions 

In the following boundary value problem examine whether a 

Green’s function exists or not ? 

Problem 1. y′′ = 0, y(0) = y(1),  y′(0) = y′(1). 

Problem 2. y′′ = 0, y(0) = 0, y(1) = y′(1). 

Problem 3. if the boundary value problem is self-adjoint, then 

Green’s function is symmetric. True/False. 

Problem 4. if the boundary value problem has only trivial 

solution y(x) = 0, the operator L has two Green’s function G(x, 

t).True/False 

Problem 5. When the prescribed end conditions are not 

homogeneous, we shall use a modified method. True/False 

 

 

9.5 SUMMARY 
 

1. If the boundary value problem has only trivial solution y(x) = 0, the 

operator L has a unique Green’s function G(x, t). 

2. If the boundary value problem is self-adjoint, then Green’s function is 

symmetric  

3. When the prescribed end conditions are not homogeneous, we shall use 

a modified method. 
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9.6 GLOSSARY  
 

Integration  

Even, odd functions   

Trigonometric functions 

Differentiation 

First order derivatives 

Second order derivatives 

Expansions of function 

Series  
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9.9 TERMINAL AND MODEL QUESTIONS 

 

Q 1. Find the Green’s function for the boundary value problem 

        
𝑑2𝑦

𝑑𝑥2 + 𝜇2𝑦 = 0, y(0) = y(1) = 0. 

Q 2. Find the Green’s function for the boundary value problem 

        𝑥2 𝑑2𝑦

𝑑𝑥2 + 𝑥
𝑑𝑦

𝑑𝑥
− 𝑦 = 0, y(x) is bounded as x→ 0, y(1) = 0 . 

Q 3. Using Green’s function solve the boundary value problem 

         𝑦′′ − 𝑦 = 𝑥, 𝑦(0) = 𝑦(1) = 0. 

Q 4. Using Green’s function solve the boundary value problem 

         𝑦′′ − 𝑦 = −2𝑒𝑥 ,    𝑦(0) = 𝑦′(0),        𝑦(𝑙) + 𝑦′(𝑙) = 0. 

Q 5. Reduce the following boundary – value problems to the integral   

        equations 𝑦′′ + 𝜆𝑦 = 𝑒𝑥 ,    𝑦(0) = 𝑦′(0),        𝑦(1) = 𝑦′(1). 

 

          

9.10  ANSWERS 

        

TQ1    G(x, t) = {
−

sin 𝜇(𝑡−1)𝑠𝑖𝑛𝜇𝑥

𝜇𝑠𝑖𝑛𝜇
,        0 ≤ 𝑥 < 𝑡

−
sin 𝜇𝑡𝑠𝑖𝑛𝜇(𝑥−1)

𝜇𝑠𝑖𝑛𝜇
,    𝑡 < 𝑥 ≤ 1
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TQ2    G(x, t) = {

𝑥

2
{

1

𝑡2 − 1} ,        0 ≤ 𝑥 < 𝑡

1

2
{

1

𝑥
− 𝑥} ,         𝑡 < 𝑥 ≤ 1

 

TQ3     y(x) = 
sinh 𝑥

sinh 1
− 𝑥 

TQ4     𝑦(𝑥) = sinh 𝑥 + 𝑒𝑥(𝑙 − 𝑥) 

TQ5    y(x) = 𝑒𝑥 +  𝜆 ∫ 𝐺(𝑥, 𝑡) 𝑦(𝑡)𝑑𝑡
1

0
 ,  

            where G(x, t) = {
−(1 + 𝑥)𝑡,        0 ≤ 𝑥 < 𝑡
−(1 + 𝑡)𝑥,         𝑡 < 𝑥 ≤ 1

 

CHECK YOUR PROGRESS 

        CYQ 1. No   

        CYQ 2. No  

        CYQ 3. True  

        CYQ 4. False 

        CYQ 5. True 
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UNIT 10: MODIFIED GREEN’S 

FUNCTION AND ITS APPLICATIONS 

INTO INTEGRAL EQUATION 
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10.1 INTRODUCTION 

The Modified Global Green's Function Method (MGGFM) is an 

integral technique that is characterized by good accuracy in the evaluation 

of boundary fluxes. This method uses only projections of the Green's 

Function for the solution of the discrete problem and this is the origin of 

the term 'Modified' of its name. We shall introduce the concept of Green’s 

function and utilize it in converting initial and boundary value problems 

into integral equations. Sometimes we shall be able to solve the given 

initial and boundary value problems completely with the help of Green’s 

function.  

 

10.2 OBJECTIVE 

            At the end of this topic learner will be able to understand:  

            (i) integral equation 

            (ii) Green’s function 

            (iii) initial value problem 

            (vi) Boundary value problem  

            (v) Solution of integral equation using Green’s Function. 

            (vi) Modified Green’s function 

            (v) Wronskian 

              

10.3 GREEN’S FUNCTION APPROACH FOR 

CONVERTING AN INITIAL VALUE PROLEM 

INTO AN INTEGRAL EQUATION 

Consider the following initial value problem 

              
𝑑

𝑑𝑥
(𝑝

𝑑𝑦

𝑑𝑥
) + 𝑞𝑦 = 𝑓(𝑥)          ……. (1) 
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 y(a) = 0,               𝑦′(𝑎) = 0               …...... (2) 

let           L = 
𝑑

𝑑𝑥
(𝑝

𝑑𝑦

𝑑𝑥
) + 𝑞𝑦 = 𝑝

𝑑2

𝑑𝑥2 +
𝑑𝑝

𝑑𝑥

𝑑

𝑑𝑥
+ 𝑞      …….. (3) 

which is self - adjoint differential operator. Here the function p(x) is 

continuously differentiable and positive and q(x) and f(x) are continuous 

in a given interval (a, b). 

the associated homogeneous second order equation 

Ly = 0         i.e.      
𝑑

𝑑𝑥
(𝑝

𝑑𝑦

𝑑𝑥
) + 𝑞𝑦 = 0       ……. (4) 

Has exactly two independent solutions u(x) and v(x) which are twice 

differential in the interval a < x < b. any other solution of (4) is a linear 

combination of u(x) and v(x) , i.e.  

y(x) = 𝑐1𝑢(𝑥) + 𝑐2𝑣(𝑥) , where 𝑐1𝑎𝑛𝑑 𝑐2 are constants. 

For the self-adjoint operator L, the Green’s formula is given by 

∫ (𝑣𝐿𝑢 − 𝑢𝐿𝑣)𝑑𝑥 = [𝑝(𝑥)(𝑣𝑢′ − 𝑢𝑣′]𝑎
𝑏𝑏

𝑎
       …….. (5) 

In order to convert the initial value problem (1) – (2) into an integral 

equation, we consider the function w(x) given by w(x) = 

u(x)∫ 𝑣(𝑡)𝑓(𝑡)𝑑𝑡 −
𝑥

𝑎
 v(x)∫ 𝑢(𝑡)𝑓(𝑡)𝑑𝑡

𝑥

𝑎
   ….. (6) 

Differentiating both sides of (6) w.r.t. ‘x’ we have 

𝑤′(𝑥) = 𝑢′(𝑥) ∫ 𝑣(𝑡)𝑓(𝑡)𝑑𝑡 + 𝑢(𝑥)
𝑑

𝑑𝑥

𝑥

𝑎

∫ 𝑣(𝑡)𝑓(𝑡)𝑑𝑡

𝑥

𝑎

− 𝑣′(𝑥) ∫ 𝑢(𝑡)𝑓(𝑡)𝑑𝑡 − 𝑣(𝑥)
𝑑

𝑑𝑥

𝑥

𝑎

∫ 𝑢(𝑡)𝑓(𝑡)𝑑𝑡

𝑥

𝑎

 

Or     𝑤′(𝑥) = 𝑢′(𝑥) ∫ 𝑣(𝑡)𝑓(𝑡)𝑑𝑡 − 𝑣′(𝑥) ∫ 𝑢(𝑡)𝑓(𝑡)𝑑𝑡
𝑥

𝑎

𝑥

𝑎
      ……. (7) 

From (6) and (7) we have     w(a) = 𝑤′(𝑎) = 0         …… (8) 

Now, u and v are the solution of (4) 
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Therefore     
𝑑

𝑑𝑥
(𝑝𝑢′) + 𝑞𝑢 = 0     and    

𝑑

𝑑𝑥
(𝑝𝑣′) + 𝑞𝑣 = 0 

Therefore     
𝑑

𝑑𝑥
(𝑝𝑢′) − 𝑞𝑢             and   

𝑑

𝑑𝑥
(𝑝𝑣′) − 𝑞𝑣          ……. (9) 

Using the value 𝑤′(𝑥) given by (7), we have  

𝑑

𝑑𝑥
(𝑝𝑤′) = 

𝑑

𝑑𝑥
[𝑝(𝑥)𝑢′(𝑥) ∫ 𝑣(𝑡)𝑓(𝑡)𝑑𝑡 − 𝑝(𝑥)𝑣′(𝑥) ∫ 𝑢(𝑡)𝑓(𝑡)𝑑𝑡]

𝑥

𝑎

𝑥

𝑎
 

                = 
𝑑

𝑑𝑥
(𝑝𝑢′) ∫ 𝑣(𝑡)𝑓(𝑡)𝑑𝑡]

𝑥

𝑎
 + 𝑝𝑢′ 𝑑

𝑑𝑥
∫ 𝑣(𝑡)𝑓(𝑡)𝑑𝑡]

𝑥

𝑎
 

                         −
𝑑

𝑑𝑥
(𝑝𝑣′) ∫ 𝑢(𝑡)𝑓(𝑡)𝑑𝑡]

𝑥

𝑎
 + 𝑝𝑣′ 𝑑

𝑑𝑥
∫ 𝑢(𝑡)𝑓(𝑡)𝑑𝑡]

𝑥

𝑎
 

                 = 
𝑑

𝑑𝑥
(𝑝𝑢′) ∫ 𝑣(𝑡)𝑓(𝑡)𝑑𝑡]

𝑥

𝑎
 + 𝑝𝑢′(𝑥)𝑣(𝑥)𝑓(𝑥)  

−
𝑑

𝑑𝑥
(𝑝𝑣′) ∫ 𝑢(𝑡)𝑓(𝑡)𝑑𝑡]

𝑥

𝑎
−  𝑝𝑣′(𝑥)𝑢(𝑥)𝑓(𝑥),  

by Leibnitz’s rule 

                 = -qu∫ 𝑣(𝑡)𝑓(𝑡)𝑑𝑡]
𝑥

𝑎
 + qv∫ 𝑢(𝑡)𝑓(𝑡)𝑑𝑡]

𝑥

𝑎
 + p(𝑢′𝑣 − 𝑢𝑣′)𝑓(𝑥) 

Therefore 
𝑑

𝑑𝑥
(𝑝𝑤′) = - q(x) w(x) + p(𝑢′𝑣 − 𝑢𝑣′)𝑓(𝑥), using (6)…… (10) 

Now 
𝑑

𝑑𝑥
[p(𝑢′𝑣 − 𝑢𝑣′)] = 

𝑑

𝑑𝑥
[(𝑝𝑣′)𝑢 − (𝑝𝑢′)𝑣] = (-qv)u – (-qu)v = 0, 

using (9) 

Thus,      
𝑑

𝑑𝑥
{𝑝(𝑢𝑣′ − 𝑢′𝑣)} = 0     so that     p(𝑢𝑣′ − 𝑢′𝑣) = 𝐴     ….. (11) 

Where A is a constant. (11) is Abel’s formula 

Also              𝑢𝑣′ − 𝑢′𝑣 = |
𝑢 𝑣
𝑢′ 𝑣′| = W(u, v)        …….. (12) 

Where W(u, v) is the Wronskian of u and v. since u and v are linearly 

independent solution of (4), we have W(u, v) = 𝑢𝑣′ − 𝑢′𝑣 ≠ 0  …….. (13) 

Using (11) , (10) may be re-written as  

𝑑

𝑑𝑥
{𝑝

𝑑𝑤

𝑑𝑥
} + 𝑞𝑤 = -A f(x)         or    

𝑑

𝑑𝑥
{𝑝

𝑑(−
𝑤

𝐴
)

𝑑𝑥
} + 𝑞(−

𝑤

𝐴
) = f(x)  …... (14) 
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Where           w(a) = 𝑤′(𝑎) = 0   by (8)          …… (15) 

Comparing (14) with (1) , we have y = -w/A so that w = -Ay.  Substituting 

this value of w in (6), we obtain  

-A y = ∫ {𝑢(𝑥)𝑣(𝑡) − 𝑣(𝑥)𝑢(𝑡)}𝑓(𝑡)𝑑𝑡
𝑥

𝑎
   or    

y(x) = ∫
𝑢(𝑥)𝑣(𝑡)−𝑣(𝑥)𝑢(𝑡)

𝐴

𝑥

𝑎
 f(t) dt  or  v(x) = ∫ 𝑅(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡

𝑥

𝑎
   …… (16) 

where      R(x, t) = (1/A) {v(x) u(t) – u(x) v(t)}        ……. (17) 

from (17) we find that R(x, t) = -R(t, x)           ……. (18) 

one can easily verify that, for a fixed value of t, the function R(x, t) is 

completely characterized as the solution of initial value problem 

L R = 
𝑑

𝑑𝑥
{𝑝(𝑥)

𝑑𝑅

𝑑𝑥
} + q(x) R = 𝛿(𝑥 − 𝑡)    …… (19)  

[𝑅]𝑥=𝑡 = 0,      [
𝑑𝑅

𝑑𝑥
]

𝑥 = 𝑡
 = 1/p(t)           …… (20) 

𝑤ℎ𝑒𝑟𝑒  𝛿(𝑥 − 𝑡)    is the Dirac delta function. 

This function describes the influence on the value of y at x due to a 

concentrated disturbance at t. it is called the influence function. The 

function G(x, t) is defined as  

                          G(x, t) = {
0,          𝑥 < 𝑡
𝑅(𝑥, 𝑡), 𝑥 > 𝑡

     ……. (21) 

is known as the causual Green’s function. 

 

Note: when the value of y(a) and y(b) are prescribed to be other 

than zero, then we simply add a suitable solution A u(x) + B v(x) 

of (4) to the integral equation (16) we get Volterra integral 

equation of second kind of the form  

y(x) = A u(x) + B v(x) + ∫ 𝑅(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡
𝑥

𝑎
      …... (22) 

the constants A and B are evaluated by using the prescribed 

initial conditions. 
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ILLUSTRATIVE EXAMPLES 

Example 1. Convert the initial value problem 𝑦′′ + 𝑦 = 𝑓(𝑥) ,   0 < x <1,      

                     y(0) = 𝑦′(0) = 0 into an integral equation. 

 

Sol. Given 𝑦′′ + 𝑦 = 𝑓(𝑥) ,   0 < x <1                    ……. (1) 

        With initial conditions    y(0) = 𝑦′(0) = 0              ……. (2) 

Comparing (1) with 
𝑑

𝑑𝑥
(𝑝

𝑑𝑦

𝑑𝑥
) + 𝑞𝑦 = 𝑓(𝑥) here p = q = 1 

The associated homogeneous equation of (1) is  

𝑦′′ + 𝑦 = 0       or      (D2 + 1)y = 0      …… (3)  

Its general solution is     y = A cosx + B sinx 

Let      u = cosx      and v = sinx       …….. (4) 

Where u and v are linearly independent solution of (3) 

Now A = 𝑝(𝑢𝑣′ − 𝑢′𝑣) = p[cos2x + sin2x] = p = 1 

Therefore    R(x, t) = (1/A){v(x) u(t) - u(x) v(t)} 

                               = sinx cost – cosx sint   = sin(x – t) 

Hence the given initial value problem reduces to the integral equation 

y(x) = ∫ 𝑅(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡
𝑥

0
      i.e.    y(x) = ∫ sin (𝑥 − 𝑡)𝑓(𝑡)𝑑𝑡

𝑥

0
. 

 

Example 2. Convert the initial value problem 𝑦′′ + 𝑦 = 𝑓(𝑥) , 0 < x <1,      

                     y(0) =1, 𝑦′(0) = −1 into an integral equation of second   

                     kind. 

Sol. Here the values of y(0) and 𝑦′(0) are prescribed to be other than zero, 

hence the given initial value problem will transform into Volterra integral 

equation of the second kind of the form 

            y(x) = A u(x) + B v(x) + ∫ 𝑅(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡
𝑥

0
      …... (1) 

            proceed as in Ex. 1 and show that u(x) = cosx,  

v(x) = sinx and R(x, t) = sin(x – t). so (1) reduces to    

 y(x) = A cosx + B sinx + ∫ sin (𝑥 − 𝑡)𝑓(𝑡)𝑑𝑡
𝑥

0
    …... (2) 

putting y = 0 in (2) and using the condition y(0) = 1, we get A = 1. 

Now, differentiating both sides of (2) w.r.t. ‘x’ and using Leibnitz’s rule, 

we obtain 

𝑦′(𝑥) = - A sinx + B cosx + ∫ cos (𝑥 − 𝑡)𝑓(𝑡)𝑑𝑡
𝑥

0
    ……. (3) 

Putting x = 0 in (3) and using the given condition 𝑦′(0) = −1,  
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we get  B = -1. 

Putting A = 1 and B = -1 in (2), the required Volterra integral equation is 

given by 

y(x) = cosx – sinx + ∫ sin (𝑥 − 𝑡)𝑓(𝑡)𝑑𝑡
𝑥

0
. 

10.4 WORKING RULE FOR CONSTRUCTION OF 

MODIFIED GREEN’S FUNCTION 

Given an inhomogeneous equation with boundary conditions: 

L y = 𝜑(𝑥),  𝛼1𝑦(𝑎) + 𝛽1𝑦′(𝑎) = 0,  𝛼2𝑦(𝑏) + 𝛽2𝑦′(𝑏) = 0    … … . . (1)′ 

Consider a linear homogeneous equation of order two 

L y = 0,      where L = p(x)
𝑑2

𝑑𝑥2 +
𝑑𝑝

𝑑𝑥

𝑑

𝑑𝑥
+ 𝑞(𝑥)       ……. (1) 

Together with homogeneous boundary conditions 

                          𝛼1𝑦(𝑎) + 𝛽1𝑦′(𝑎) = 0         …….. (2a) 

                          𝛼2𝑦(𝑏) + 𝛽2𝑦′(𝑏) = 0         ……... (2b) 

With usual assumption that at least one of 𝛼1 and 𝛽1 and one of 𝛼2 and 𝛽2 

are non-zero. 

Suppose that the homogeneous boundary value problem given by (1) , (2a) 

and (2b) has a non-trivial solution y(x). 

Then      ‖𝑦(𝑥)‖ = norm of y(x) = {∫ [𝑦(𝑥)]2𝑑𝑥
𝑏

𝑎
}

1/2

        ……. (3) 

Let         w(x) = y(x)/ ‖𝑦(𝑥)‖ 

So that w(x) is non-trivial normalized solution of the boundary value 

problem given by (1), (2a) and (2b). clearly by definition we have  

‖𝑤(𝑥)‖ = 1      so that     ∫ [𝑤(𝑥)]2𝑑𝑥
𝑏

𝑎
 = 1       …… (4) 

Then, by definition 𝐺𝑀(𝑥, 𝑡) is called the modified Green’s function of the 

given boundary value problem if it satisfies the differential equation  
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       L𝐺𝑀 = 𝛿(𝑥 − 𝑡) – w(x) w(t)          …….(5)′     

For x ≠ 𝑡, (5)′    reduces to L𝐺𝑀 = – w(x) w(t)        …… (5) 

For a given t, let      𝐺𝑀(𝑥, 𝑡)    = {
𝐺1(𝑥, 𝑡), 𝑖𝑓 𝑎 ≤ 𝑥 < 𝑡

𝐺2(𝑥, 𝑡), 𝑖𝑓 𝑡 < 𝑥 ≤ 𝑏
           ……. (6) 

Where 𝐺1 and 𝐺2 are such that 

(i) the function 𝐺1 and 𝐺2 satisfy the equation (5) in their respective 

intervals of definition,  

That is      L𝐺1 = w(x) w(t), 𝑎 ≤ 𝑥 < 𝑡        ……. (7a) 

                 L𝐺2 = – w(x) w(t), 𝑡 ≤ 𝑥 ≤ 𝑏        ……. (7b) 

(ii) 𝐺1 satisfies the boundary condition (2a) whereas 𝐺2 satisfies the 

boundary condition (2b). 

(iii) the function 𝐺𝑀(𝑥, 𝑡) is continuous at x = t,  

        i.e. 𝐺1(𝑡, 𝑡) = 𝐺2(𝑡, 𝑡) ..….. (8) 

(iv) the derivative of 𝐺𝑀(𝑥, 𝑡) with respect to x at the point x = t has a 

discontinuity of the first kind, the jump being equal to 1/p(t). here p(x) is 

the coefficient of d2y/dx2 in (1). 

Thus       (
𝜕𝐺𝑀

𝜕𝑥
)

𝑥=𝑡+0
− (

𝜕𝐺𝑀

𝜕𝑥
)

𝑥=𝑡−0
= 1/𝑝(𝑡)         ……. (9) 

(v) in order that 𝐺𝑀(𝑥, 𝑡) may be symmetric, we must have  

          ∫ 𝐺𝑀(𝑥, 𝑡)𝑤(𝑥)𝑑𝑥
𝑏

𝑎
 = 0          …….. (10) 

Method of reducing the inhomogeneous differential equation (𝟏)′ 

with prescribed homogeneous boundary condition into an integral 

equation. 

The required integral equation is given by  
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y(x) = ∫ 𝐺𝑀(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡
𝑏

𝑎
 + c w(x), where c is an arbitrary constant.     

                                                                                                ……. (11a) 

(11a) may also be re-written in the form 

y(x) = ∫ 𝐺𝑀(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡
𝑏

𝑎
 + w(x) ∫ 𝑤(𝑥)𝑦(𝑥)𝑑𝑥

𝑏

𝑎
           ……. (11b) 

consistency condition for existence of the desired integral equation (11a) 

or (11b) is given by        ∫ 𝜑(𝑥)𝑤(𝑥)𝑑𝑥
𝑏

𝑎
  = 0.                         ……... (12) 

 

ILLUSTRATIVE EXAMPLES 

Example 1. Find the modified Green’s function for the system 

                      𝑦′′ + 𝑓(𝑥) = 0, 𝑦′(0) = 𝑦′(𝑙) = 0,        0 < x < 𝑙. 

And hence transform this boundary value problem into an integral 

equation. 

Sol. Given       -𝑦′′= f(x),          𝑦′(0) = 𝑦′(𝑙) = 0,        0 ≤ x ≤ 𝑙 …… (1) 

Here – (d2/dx2) is self - adjoint operator 

Consider the associated self- adjoint system     -𝑦′′ = 0,  0 ≤ x ≤ 𝑙…... (2) 

With boundary condition                                    𝑦′(0) = 0    ……. (3a) 

                                                                             𝑦′(𝑙) = 0   …….. (3b) 

The general solution of (2) is y(x) = Ax + B               ……… (4) 

From (4),                                𝑦′(𝑥) = 𝐴                      ……… (5) 

Putting x = 0 and x = 𝑙 in (5) and using (3a) and (3b), we get A = 0. Hence 

the boundary value problem given by 92), (3a0 and (3b0 has a non-trivial 

solution y(x) = B, where B is an arbitrary constant. 

Here       ‖𝑦(𝑥)‖ = norm of y(x) = {∫ [𝑦(𝑥)]2𝑑𝑥
𝑙

0
}

1/2
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               = {∫ [𝐵]2𝑑𝑥
𝑙

0
}

1/2

= B√𝑙 

Let         w(x) = y(x)/ ‖𝑦(𝑥)‖ = B/B√𝑙 = 1/√𝑙          ……. (6) 

So that w(x) is non-zero normalized solution of the boundary value 

problem given by (2), (3a) and (3b). clearly by definition we have  

                  ∫ [𝑤(𝑥)]2𝑑𝑥
𝑙

0
 = 1         ……. (7) 

Then, for x ≠ 𝑡 the required modified Green’s function 𝐺𝑀(𝑥, 𝑡) must 

satisfy the equation  

-d2𝐺𝑀/dx2 = -w(x) w(t)    or   d2𝐺𝑀/dx2 = 1/𝑙          …….. (8) 

Then general solution of (8) is of the form 𝐺𝑀(𝑥, 𝑡) = Ax + B + x2/2𝑙 

Hence we take   𝐺𝑀(𝑥, 𝑡)    = {
𝑎1𝑥 + 𝑎2 +

𝑥2

2𝑙
,    𝑖𝑓 0 ≤ 𝑥 < 𝑡

𝑏1𝑥 + 𝑏2 +
𝑥2

2𝑙
,    𝑖𝑓 𝑡 < 𝑥 ≤ 𝑙

     …... (9) 

from (9),         𝜕𝐺𝑀/𝜕𝑥 = {
𝑎1 + x/𝑙, 𝑖𝑓 0 ≤ 𝑥 < 𝑡
𝑏1 + x/2, 𝑖𝑓 𝑡 < 𝑥 ≤ 𝑙

             …… (10) 

in addition to the above property (9), the proposed modified Green’s 

function must satisfy the following properties: 

(i) since 𝐺𝑀(𝑥, 𝑡) must satisfy the boundary conditions (3a) and (3b), (10) 

gives  

(𝜕𝐺𝑀/𝜕𝑥)𝑥=0 = 0       and       (𝜕𝐺𝑀/𝜕𝑥)𝑥=𝑙 = 0        

Therefore   𝑎1 = 0 and 𝑏1 + 1 = 0 so that 𝑎1 = 0 𝑎𝑛𝑑 𝑏1 = −1…. (11) 

(ii) 𝐺𝑀(𝑥, 𝑡) is continuous at x = t, that is  

𝑎1𝑡 + 𝑎2 + 𝑡2/2𝑙 = 𝑏1𝑥 + 𝑏2 + 𝑡2/2𝑙 so that     

(𝑎1 − 𝑏1)𝑡 + 𝑎2 − 𝑏2 = 0    ….. (12) 
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(iii) the derivative of 𝐺𝑀(𝑥, 𝑡) wit respect to x at the point x = t has a 

discontinuity of the first kind, the jump being 1/p(t), where p(x) is the 

coefficient of 𝑦′′ in (1), i.e. p(x) = -1. Thus, 

(
𝜕𝐺𝑀

𝜕𝑥
)

𝑥=𝑡+0
− (

𝜕𝐺𝑀

𝜕𝑥
)

𝑥=𝑡−0
= 1/𝑝(𝑡)          

i.e. 𝑏1 + 𝑡/𝑙 – (𝑎1 + 𝑡/𝑙) = -1     or      𝑎1 − 𝑏1 = 1        ……. (13) 

from (12) and (13)      t + 𝑎2 − 𝑏2 = 0 so that  𝑏2 = 𝑎2 + 𝑡    ……. (14) 

substituting values of 𝑎1, 𝑏1 and 𝑏2 from (11) and (14) in (9), we get 

𝐺𝑀(𝑥, 𝑡)    = {
𝑎2 + 𝑥2/2𝑙,                        𝑖𝑓 0 ≤ 𝑥 < 𝑡

𝑎2 − 𝑥 + 𝑡 + 𝑥2/2𝑙,        𝑖𝑓 𝑡 ≤ 𝑥 ≤ 𝑙
           …….. (15) 

(iv) in order that 𝐺𝑀(𝑥, 𝑡) may be symmetric, we have  

∫ 𝐺𝑀(𝑥, 𝑡)𝑤(𝑥)𝑑𝑥 = 0
𝑙

0
       or     ∫ 𝐺𝑀(𝑥, 𝑡)𝑑𝑥 = 0

𝑙

0
,      as     w(x) = 

1

√𝑙
 

Or            ∫ 𝐺𝑀(𝑥, 𝑡)𝑑𝑥 + ∫ 𝐺𝑀(𝑥, 𝑡)𝑑𝑥 = 0
𝑙

𝑡

𝑡

0
      

Or            ∫ (𝑎2 +
𝑥2

2𝑙
) 𝑑𝑥 + ∫ (𝑎2 − 𝑥 + 𝑡 +

𝑥2

2𝑙
) 𝑑𝑥 = 0

𝑙

𝑡

𝑡

0
, using (15) 

Or             [𝑎2𝑥 + 𝑥3/6𝑙]0
𝑡 + [𝑎2𝑥 −

𝑥2

2
+ 𝑡𝑥 + 𝑥3/6𝑙]

𝑡

𝑙

= 0 

Or            𝑎2  = 
𝑙

3
− 𝑡 +

𝑡2

2𝑙
 

Substituting the above value of 𝑎2 in (15), the symmetric modified 

Green’s function 𝐺𝑀(𝑥, 𝑡) is given by       

 𝐺𝑀(𝑥, 𝑡)    = {

𝑙

3
− 𝑡 + (𝑥2 + 𝑡2)/2𝑙,   𝑖𝑓 0 ≤ 𝑥 < 𝑡

𝑙

3
− 𝑥 + (𝑥2 + 𝑡2)/2𝑙,   𝑖𝑓 𝑡 < 𝑥 ≤ 𝑙

        …….. (16) 

Which may also be re-written as  

𝐺𝑀(𝑥, 𝑡)    = 
𝑙

3
+

𝑥2+ 𝑡2

2𝑙
− {

𝑡,      𝑖𝑓 0 ≤ 𝑥 < 𝑡
𝑥,      𝑖𝑓 𝑡 < 𝑥 ≤ 𝑙

       ……. (17) 
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The above result (16) could have been obtained by inspecting (15) and 

making a judicious choice of 𝑎2. 

Second part: transformation of the given boundary value problem into an 

integral equation. 

The required integral equation is given by 

y(x) = ∫ 𝐺𝑀(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡
𝑙

𝑀
+

𝑐

√𝑙
      or     y(x) = 𝑐′ + ∫ 𝐺𝑀(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡

𝑙

0
 

where 𝑐′ = 
𝑐

√𝑙
 is an arbitrary constant and 𝐺𝑀(𝑥, 𝑡) is given by (16) or 

(17).  

Example 2. Find the modified Green’s function for the system 

                    𝑦′′ = 0,  -1 < x < 𝑙. Subject to the conditions 𝑦(−1) = 𝑦(1)     

                    and 𝑦′(−1) = 𝑦′(1) . 

Sol. Given       -𝑦′′= 0,          -1 ≤ x ≤ 𝑙                         …… (1) 

With boundary condition          y(-1) = y(1)                  ……. (2a)     

                                                  𝑦′(−1) = 𝑦′(1)            ……… (2b)                              

 

The general solution of (1) is y(x) = Ax + B               ……… (3) 

From (3),                                𝑦′(𝑥) = 𝐴                      ……… (4) 

From (3) and (4),  

y(-1) = -A + B ,     y(1) = A + B,     𝑦′(−1) = 𝑦′(1) = 𝐴     …….. (5) 

From (2a) and (5) we ge  - A + B = A + B  so that  A = 0         ……… (6) 

Then (2b), (5) and (6) ⟹ A = A = 0 

Hence the given boundary value problem has a non-trivial solution 

 y(x) = B, where B is an arbitrary constant. 
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Here          ‖𝑦(𝑥)‖ = norm of y(x) = {∫ [𝑦(𝑥)]2𝑑𝑥
𝑙

0
}

1/2

  

                               = {∫ [𝐵]2𝑑𝑥
𝑙

0
}

1/2

= B√2 

Let         w(x) = y(x)/ ‖𝑦(𝑥)‖ = B/B√2 = 1/√2                ……. (7) 

So that w(x) is non-zero normalized solution of the boundary value 

problem given by (2), (3a) and (3b). clearly by definition we have  

                  ∫ [𝑤(𝑥)]2𝑑𝑥
1

−1
 = 1          

Then, for x ≠ 𝑡 the required modified Green’s function 𝐺𝑀(𝑥, 𝑡) must 

satisfy the equation  

-d2𝐺𝑀/dx2 = -w(x) w(t)    or   d2𝐺𝑀/dx2 = 1/2          …….. (8) 

Then general solution of (8) is of the form 𝐺𝑀(𝑥, 𝑡) = Ax + B + x2/4 

Hence we take   𝐺𝑀(𝑥, 𝑡)    = {
𝑎1𝑥 + 𝑎2 +

𝑥2

4
,    𝑖𝑓 − 1 ≤ 𝑥 < 𝑡

𝑏1𝑥 + 𝑏2 +
𝑥2

4
,    𝑖𝑓 𝑡 < 𝑥 ≤ 1

  …... (9) 

from (9),         𝜕𝐺𝑀/𝜕𝑥 = {
𝑎1 +

x

2
, 𝑖𝑓 − 1 ≤ 𝑥 < 𝑡

𝑏1 + x/2, 𝑖𝑓 𝑡 < 𝑥 ≤ 𝑙
             …… (10) 

in addition to the above property (9), the proposed modified Green’s 

function must satisfy the following properties: 

(i) 𝐺𝑀(𝑥, 𝑡) is continuous at x = t, that is  

𝑎1𝑡 + 𝑎2 + 𝑡2/4 = 𝑏1𝑥 + 𝑏2 + 𝑡2/4      so that     

(𝑎2 − 𝑏2) = 𝑡(𝑏1 − 𝑎1)    ….... (11) 

(ii) since 𝐺𝑀(𝑥, 𝑡) must satisfy the boundary conditions (2a) , we must 

have 

−𝑎1 + 𝑎2 + 1/4 = 𝑏1 + 𝑏2 + 1/4      

so that 𝑎2 - 𝑏2 = 𝑎1 + 𝑏1, by (9)          ……. (12) 
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Again 𝐺𝑀(𝑥, 𝑡) must satisfy the boundary conditions (2b) , we must have 

𝑏1 + 1/2 = 𝑎1 - 1/2     so that 𝑏1 - 𝑎1 =−1, by (10)          ……. (13) 

(iii) the derivative of 𝐺𝑀(𝑥, 𝑡) wit respect to x at the point x = t has a 

discontinuity of the first kind, the jump being 1/p(t), where p(x) is the 

coefficient of 𝑦′′ in (1), i.e. p(x) = -1. Thus, 

(
𝜕𝐺𝑀

𝜕𝑥
)

𝑥=𝑡+0
− (

𝜕𝐺𝑀

𝜕𝑥
)

𝑥=𝑡−0
= 1/𝑝(𝑡)          

i.e. 𝑏1 + 𝑡/2 – (𝑎1 + 𝑡/2) = -1     or      𝑏1 − 𝑎1 = −1         

which is the same relation as (13). Thus, we see that the jump condition 

on 
𝜕𝐺𝑀

𝜕𝑥
 is automatically satisfied. 

from (11) and (13)       𝑎2 − 𝑏2 = -t      so that     𝑏2 = 𝑎2 + 𝑡    ……. (14) 

again from (13)             𝑏1 = 𝑎1 − 1                                   ……… (15) 

substituting values of 𝑏2, 𝑏1 given by (14) and (15) respectively in (12) , 

we have 

𝑎2 − (𝑎2 + t) = 𝑎1 + 𝑎1 − 1      so that      𝑎1 = (1 − 𝑡)/2    ……… (16) 

Substituting the value of 𝑏2, 𝑏1 given by (14) and (15) respectively in (9), 

we have 

𝐺𝑀(𝑥, 𝑡)    = {
𝑎1𝑥 + 𝑎2 +

𝑥2

4
,    𝑖𝑓 − 1 ≤ 𝑥 < 𝑡

(𝑎1 − 1)𝑥 + 𝑎2 + 𝑡 +
𝑥2

4
,    𝑖𝑓 𝑡 < 𝑥 ≤ 1

             ……. (17) 

(iv) in order that 𝐺𝑀(𝑥, 𝑡) may be symmetric, we have  

∫ 𝐺𝑀(𝑥, 𝑡)𝑤(𝑥)𝑑𝑥 = 0
1

−1
       or     ∫ 𝐺𝑀(𝑥, 𝑡)𝑑𝑥 = 0

1

−1
,      as     w(x) = 

1

√2
 

Or            ∫ 𝐺𝑀(𝑥, 𝑡)𝑑𝑥 + ∫ 𝐺𝑀(𝑥, 𝑡)𝑑𝑥 = 0
1

𝑡

𝑡

−1
      

Or            ∫ (𝑎1𝑥 + 𝑎2 +
𝑥2

4
) 𝑑𝑥 + ∫ (𝑎2 + 𝑡 + 𝑎1𝑥 − 𝑥 +

𝑥2

4
) 𝑑𝑥 = 0

1

𝑡

𝑡

−1
,   

by (17) 
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After integrating we get 𝑎2 =
𝑡2

4
−

𝑡

2
+ 1/6            ………. (18) 

Substituting the value of 𝑎1 and 𝑎2 given by (16) and (18) respectively in 

(17), the symmetric Green’s function is given by  

𝐺𝑀(𝑥, 𝑡)    = {

(1−𝑡)𝑥

2
+

𝑡2

4
−

𝑡

2
+

1

6
+

𝑥2

4
,    𝑖𝑓 − 1 ≤ 𝑥 < 𝑡

−(1+𝑡)𝑥

2
+

𝑡2

4
−

𝑡

2
+

1

6
+

𝑥2

4
,    𝑖𝑓 𝑡 < 𝑥 ≤ 1

      or 

𝐺𝑀(𝑥, 𝑡)    = {

𝑡2

4
+

𝑥2

4
−

𝑥𝑡

2
+

(𝑥−𝑡)

2
+

1

6
,    𝑖𝑓 − 1 ≤ 𝑥 < 𝑡

𝑡2

4
+

𝑥2

4
−

𝑥𝑡

2
−

(𝑥−𝑡)

2
+

1

6
,    𝑖𝑓 𝑡 < 𝑥 ≤ 1

       or  

𝐺𝑀(𝑥, 𝑡)    = {

(𝑥−𝑡)2

4
+

(x−t)

2
+

1

6
,    𝑖𝑓 − 1 ≤ 𝑥 < 𝑡

(𝑥−𝑡)2

4
−

(x−t)

2
+

1

6
,    𝑖𝑓 𝑡 < 𝑥 ≤ 1

 

Which can be also re-written as  

𝐺𝑀(𝑥, 𝑡)  = 
(𝑥−𝑡)2

4
−

1

2
|𝑥 − 𝑡| + 1/6 . 

 

CHECK YOUR PROGRESS  

True or false Questions 

Problem 1. (
𝜕𝐺𝑀

𝜕𝑥
)

𝑥=𝑡+0
− (

𝜕𝐺𝑀

𝜕𝑥
)

𝑥=𝑡−0
=

1

𝑝(𝑡)
.       True/False 

In the following boundary value problem examine whether a 

Green’s function exists or not ? 

Problem 2. y′′ = 0, y(0) = 0, y(1) = y′(1). 

Problem 3. |
𝑢 𝑣
𝑢′ 𝑣′| = W(u, v) is Wronskian of u and v. 

True/False. 

Problem 4. if the boundary value problem has only trivial 

solution y(x) = 0, the operator L has two Green’s function  

G(x, t).True/False 
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Problem 5. The general solution of y′′ = 0 is y(x) = Ax + B. 

True/False 

 

 

10.5 SUMMARY 
 

1. If the boundary value problem has only trivial solution y(x) = 0, the   

    operator L has a unique Green’s function G(x, t). 

2. If the boundary value problem is self-adjoint, then Green’s function is  

    Symmetric. 

3. When the prescribed end conditions are not homogeneous, we shall use  

     a modified method. 

4. (
𝜕𝐺𝑀

𝜕𝑥
)

𝑥=𝑡+0
− (

𝜕𝐺𝑀

𝜕𝑥
)

𝑥=𝑡−0
=

1

𝑝(𝑡)
 . 

5. Suppose that the homogeneous boundary value problem has a non- 

     trivial solution y(x). 

    Then      ‖𝑦(𝑥)‖ = norm of y(x) = {∫ [𝑦(𝑥)]2𝑑𝑥
𝑏

𝑎
}

1/2

. 

6.  |
𝑢 𝑣
𝑢′ 𝑣′| = W(u, v) is Wronskian of u and v. 

 

10.6 GLOSSARY  
 

Integration  

Even, odd functions   

Trigonometric functions 

Differentiation 

First order derivatives 

Second order derivatives 
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Wronskian 

Linearly independent functions  
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10.9 TERMINAL AND MODEL QUESTIONS 
 

Q 1. Find Modified Green’s function for the system 𝑦′′ = 0, -1 < x < t 

subject to the boundary conditions y(-1) = y(1) and 𝑦′(−1) = 𝑦′(1). 
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Q 2. Find Modified Green’s function for the system 𝑘𝑦′′ + 𝑓(𝑥) = 0,  

       - 𝑙 ≤ x ≤ 𝑙 subject to the boundary conditions y(-𝑙) = y(𝑙) and  

        𝑦′(−𝑙) = 𝑦′(𝑙). 

Q 3. Transform boundary value problem into respective integral equation 

𝑘𝑦′′ + 𝑓(𝑥) = 0, - 𝑙 ≤ x ≤ 𝑙 subject to the boundary conditions y(-𝑙) = 

y(𝑙) and 𝑦′(−𝑙) = 𝑦′(𝑙). 

Q 4. Using Green’s function solve the boundary value problem 

         𝑦′′ − 𝑦 = −2𝑒𝑥 ,    𝑦(0) = 𝑦′(0),        𝑦(𝑙) + 𝑦′(𝑙) = 0. 

Q 5. Reduce the following boundary – value problems to the integral 

equations 

        𝑦′′ + 𝜆𝑦 = 𝑒𝑥 ,    𝑦(0) = 𝑦′(0),        𝑦(1) = 𝑦′(1). 

Q 6. Develop the theory of modified Green’s function in case of self- 

adjoint system where the completely homogeneous system has two 

linearly independent solutions 𝑤1(𝑥) and 𝑤2(𝑥). 

 

          

10.10 ANSWERS 
        

TQ1    𝐺𝑀(𝑥, 𝑡)    = {

(𝑥−𝑡)2

4
+

(𝑥−𝑡)

2
+

1

6
,       − 1 ≤ 𝑥 < 𝑡

(𝑥−𝑡)2

4
−

(𝑥−𝑡)

2
+

1

6
,          𝑡 < 𝑥 ≤ 1

        

TQ2    𝐺𝑀(𝑥, 𝑡)  = 
1

6𝑘
+

(𝑥−𝑡)2

4𝑘𝑙
+

|𝑥−𝑡|

2𝑘
  

TQ3     y(x) = c +∫ 𝐺𝑀(𝑥, 𝑡)) 𝑓(𝑡)𝑑𝑡
𝑙

−𝑙
 

TQ4     𝑦(𝑥) = sinh 𝑥 + 𝑒𝑥(𝑙 − 𝑥) 



Mathematical Methods  MAT 509 

Department of Mathematics 
Uttarakhand Open University                                                                                                                          210 
 

TQ5    y(x) = 𝑒𝑥 +  𝜆 ∫ 𝐺(𝑥, 𝑡) 𝑦(𝑡)𝑑𝑡
1

0
 , where  

           G(x, t) = {
−(1 + 𝑥)𝑡,        0 ≤ 𝑥 < 𝑡
−(1 + 𝑡)𝑥,         𝑡 < 𝑥 ≤ 1

. 

CHECK YOUR PROGRESS 

        CYQ 1. True   

        CYQ 2. No  

        CYQ 3. True  

        CYQ 4. False 

        CYQ 5. True 
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11.1 INTRODUCTION 

The calculus of variation has its origin in the generalization of the 

elementary theory of maxima and minima of the function of a single or 

more variable. Its object is to find extreme or stationary values of 

functionals. The aims of the calculus of variations are: 

a) To explore methods for finding the maximum or minimum of a 

function defined over a class of functions. 

b) Geodesic Curve: To find a geodesic curve on the surface which means 

finding the shortest curve joining two points on the surface. 

c) Brachistochrone Problem: If a smooth body is allowed to slide down 

a smooth curve from point A to B under gravity, then determine the 

curve along which the time taken will be the least. 

d) Minimal Surface: To determine which curve will yield the least area 

of the surface of revolution. 

e) Iso-perimetric Problem: In this problem, we aim to find what a curve 

of a given perimeter will enclose the maximum area. 

 

11.2 OBJECTIVE 

            At the end of this topic learner will be able to understand:  

           (i) Functional 

            (ii) extremum 

            (iii) Euler’s equation 

            (vi) Isoperimetric Problems 

 

11.3 FUNCTIONAL 

A function whose values are determined by one or several functions is 

called functional. Also, we can say a function is a function of function.  

Note 1: If it is required to find the curve y = y(x) where y(x0) = y0  

and y(x1) = y1 such that the given function F (x, y, y’), the definite integral 
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          I[y(x)] =  ∫ 𝐹 (𝑥, 𝑦, 𝑦′ ) 𝑑𝑥
𝑥1

𝑥0
 

is maximum or minimum i.e., extremum. 

This integral is known as functional. 

the calculus of variation deals with the problems of maxima or minima of 

functionals.  

 

11.4 EXTREMAL 

A function y = y(x) which extremizes a functional is called extremal or 

extremizing function. 

 

11.5 EULER’S EQUATION 

 ∎Euler’s Equation 

(a necessary condition for the existence of extremal): 

The necessary condition for functional 

                                     I[y(x)] =  ∫ 𝐹 (𝑥, 𝑦, 𝑦′ ) 𝑑𝑥
𝑥1

𝑥0
 

to be maximum or minimum is that 

                                               
𝜕𝐹

𝜕𝑦
  -  

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
) = 0 

prescribed. 

Proof: Consider the functional  

                                   I[y(x)] = ∫ 𝐹 (𝑥, 𝑦, 𝑦′ ) 𝑑𝑥
𝑥1

𝑥0
                    ……. (1) 

Let y = y(x) be extremal of functional and �̅�(x) be neighbourhood of y(x) 

such that 

                                        �̅�(x) = y(x) + εη(x)                                         ….…(2) 

Where ε is small parameter and η(x) be an arbitrary function such that  
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                                          η(x0) = η(x1) = 0                                           ……..(3)      

From (1), 

                                 I[�̅� (x)] = ∫ 𝐹 (𝑥, �̅�, �̅�′) 𝑑𝑥
𝑥1

𝑥0
                          

Using (2) we get 

                                 I[�̅� (x)] = ∫ 𝐹 (𝑥, y + εη, y′ + εη) 𝑑𝑥
𝑥1

𝑥0
 

Which is function of ε. 

⸫                                 I[ε] = ∫ 𝐹 (𝑥, y + εη, y′ + εη) 𝑑𝑥
𝑥1

𝑥0
 

Or         I[ε] = ∫ [𝐹 (𝑥, y + εη, y′ + εη) +  εη
𝜕𝐹

𝜕𝑦
+ εη′

𝜕𝐹

𝜕𝑦′ + 0( ε2)] 𝑑𝑥
𝑥1

𝑥0
 

where 0(ε2) is term containing ε2 and higher power of ε2, it is called  

Bi Oh  [by Tylor’s theorem of function of several variable]        

⸫                           
𝑑𝐼

𝑑𝜀
 = ∫ [0 +  η

𝜕𝐹

𝜕𝑦
+ η′

𝜕𝐹

𝜕𝑦′ + 0(𝜀)] 𝑑𝑥
𝑥1

𝑥0
 

Or,                          
𝑑𝐼

𝑑𝜀
 = ∫ [ η

𝜕𝐹

𝜕𝑦
+ η′

𝜕𝐹

𝜕𝑦′ + 0(𝜀)] 𝑑𝑥
𝑥1

𝑥0
 

The necessary condition for existence of extremal is 

                                                    (
𝑑𝐼

𝑑𝜀
)

𝜀=0
= 0 

                                 ∫ [ η
𝜕𝐹

𝜕𝑦
+ η′

𝜕𝐹

𝜕𝑦′
] 𝑑𝑥

𝑥1

𝑥0
 = 0 

                  ∫ [ η
𝜕𝐹

𝜕𝑦
] 𝑑𝑥

𝑥1

𝑥0
 + ∫ [ η′

𝜕𝐹

𝜕𝑦′
] 𝑑𝑥

𝑥1

𝑥0
  = 0 

                 ∫  𝜂 
𝜕𝐹

𝜕𝑦
𝑑𝑥

𝑥1

𝑥0
 + [𝜂(𝑥)

𝜕𝐹

𝜕𝑦
]

𝑥0

𝑥1

 - ∫ 𝜂(𝑥) 
𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
) 𝑑𝑥

𝑥1

𝑥0
  = 0 

               ∫  𝜂 
𝜕𝐹

𝜕𝑦
𝑑𝑥

𝑥1

𝑥0
 +0 - ∫ 𝜂(𝑥) 

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
) 𝑑𝑥

𝑥1

𝑥0
  = 0[⸪ η(x0) = η(x1) = 0 ]          

              ∫ 𝜂 [ 
𝜕𝐹

𝜕𝑦
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
)] 𝑑𝑥

𝑥1

𝑥0
 = 0 
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Since η(x) is an arbitrary. Therefore, we have 

                                                  
𝜕𝐹

𝜕𝑦
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
) = 0 

Or                                                𝐹𝑦 - 
𝑑

𝑑𝑥
 (𝐹𝑦′) = 0 

which is required Euler’s equation. This equation is also known as Euler-

Lagrange’s equation. 

 

11.6 OTHER FORMS OF EULER’S EQUATION 

1.                          
𝑑

𝑑𝑥
 F(x, y, y’) =  

𝜕𝐹

𝜕𝑥

𝑑𝑥

𝑑𝑥
 +  

𝜕𝐹

𝜕𝑦

𝑑𝑦

𝑑𝑥
 + 

𝜕𝐹

𝜕𝑦′

𝑑𝑦′

𝑑𝑥
                

Or                                      
𝑑𝐹

𝑑𝑥
 =  

𝜕𝐹

𝜕𝑥
+  

𝜕𝐹

𝜕𝑦
𝑦′ + 

𝜕𝐹

𝜕𝑦′
𝑦"                       …… (1) 

But                              
𝑑

𝑑𝑥
(𝑦′

𝜕𝐹

𝜕𝑦′
) = 𝑦′ 

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
) + 

𝜕𝐹

𝜕𝑦′
 𝑦"               ….… (2) 

On subtracting (2) from (1), we have 

                          
𝑑𝐹

𝑑𝑥
  - 

𝑑

𝑑𝑥
(𝑦′

𝜕𝐹

𝜕𝑦′
) =  

𝜕𝐹

𝜕𝑥
 +  

𝜕𝐹

𝜕𝑦
𝑦′ - 𝑦′ 

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
)               

Or                  
𝑑

𝑑𝑥
[ 𝐹 − 𝑦′ (

𝜕𝐹

𝜕𝑦′
)] - 

𝜕𝐹

𝜕𝑥
= 𝑦′ [ 

𝜕𝐹

𝜕𝑦
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
)] 

                                                          = 𝑦(0)                [by Euler’s equation]       

                                                          = 0 

Hence,           
𝑑

𝑑𝑥
[ 𝐹 − 𝑦′ (

𝜕𝐹

𝜕𝑦′
)] - 

𝜕𝐹

𝜕𝑥
 = 0          

Which is another form of Euler’s equation. 

2. we know that 
𝜕𝐹

𝜕𝑦
 is also known a function of x, y, y’ say φ (x, y, y’) 

⸫                                                  
𝜕𝐹

𝜕𝑦
 = φ (x, y, y’) 

Differentiate w.r.t. x, we get 

                                        
𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
) =  

𝑑

𝑑𝑥
φ (𝑥, 𝑦, 𝑦’) 
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                                                      = 
𝜕φ

𝜕𝑥

𝑑𝑥

𝑑𝑥
 +  

𝜕φ

𝜕𝑦

𝑑𝑦

𝑑𝑥
 + 

𝜕φ

𝜕𝑦′

𝑑𝑦′

𝑑𝑥
               

                                                      = 
𝜕φ

𝜕𝑥
 +  

𝜕φ

𝜕𝑦
𝑦′ + 

𝜕φ

𝜕𝑦′
𝑦"  

                                                      = 
𝜕

𝜕𝑥
(

𝜕𝐹

𝜕𝑦′
)  +  

𝜕

𝜕𝑦
(

𝜕𝐹

𝜕𝑦′
) 𝑦′ + 

𝜕

𝜕𝑦′
(

𝜕𝐹

𝜕𝑦′
) 𝑦"   

                                                      = 
𝜕2𝐹

𝜕𝑥𝜕𝑦′
  +  𝑦′

𝜕2𝐹

𝜕𝑦𝜕𝑦′
 + 𝑦"

𝜕2𝐹

𝜕𝑦′2    

Hence, Euler equation 

                                             
𝜕𝐹

𝜕𝑦
  -  

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
) = 0 becomes      

                                      
𝜕𝐹

𝜕𝑦
 −  

𝜕2𝐹

𝜕𝑥𝜕𝑦′   −   𝑦′
𝜕2𝐹

𝜕𝑦𝜕𝑦′  −  𝑦"
𝜕2𝐹

𝜕𝑦′2  =  0  

Or                                           𝐹𝑦 - 𝐹𝑥𝑦′- 𝑦′𝐹𝑦𝑦′- 𝑦"𝐹𝑦′2 = 0 

 

Note:∎ Every solution of Euler’s equation which satisfies the boundary 

conditions is called an Extremal or a stationary function of the problem.  

 

 

11.7 PARTICULAR CASES OF EULER’S 

EQUATION 

 

Case I: When                                   𝐹 = 𝐹(𝑥, 𝑦) 

 ⸫                                                      
𝜕𝐹

𝜕𝑦′
 = 0. 

Then Euler’s equation 

                                                     
𝜕𝐹

𝜕𝑦
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
) = 0 becomes 

This implies,                                   
𝜕𝐹

𝜕𝑦
−

𝑑

𝑑𝑥
(0) = 0 

                                                           
𝜕𝐹

𝜕𝑦
 =  0  
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ILLUSTRATIVE EXAMPLES 

Example 1.  Extremize 

                                      I[y(x)] = ∫ (𝒙𝒔𝒊𝒏 𝒚 + 𝐜𝐨𝐬 𝒚)  𝒅𝒙
𝟏

𝟎
     

                                                   𝒚(𝟎) = 0,  𝒚(𝟏) = π / 2 

Sol. Here                   𝐹(𝑥, 𝑦, 𝑦′) = 𝑥𝑠𝑖𝑛 𝑦 + cos 𝑦 

By Euler’s equation 

                                                   
𝜕𝐹

𝜕𝑦
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
) = 0 

This implies,                        𝑥𝑐𝑜𝑠 − sin 𝑦 - 
𝑑

𝑑𝑥
(0) =0 

This implies,                              𝑥𝑐𝑜𝑠 − sin 𝑦 =0 

This implies,                                  𝑥𝑐𝑜𝑠 =  sin 𝑦 

⸫                                               tan 𝑦 = 𝑥 

This implies,                                  𝑦 =  tan−1 𝑥  

⸫                            𝑦(0) =  tan−1 0 = 0,       𝑦(1) =  tan−1 𝜋

2
= 1. 

This is required extremal which satisfying given boundary conditions. 

Case II: When                        𝐹 = 𝑀(𝑥, 𝑦) + 𝑦′𝑁(𝑥, 𝑦) 

                                                     
𝜕𝐹

𝜕𝑦
=

𝜕𝑀

𝜕𝑦
+ 𝑦′ 𝜕𝑁

𝜕𝑦
   

                                                         
𝜕𝐹

𝜕𝑦′
= 𝑁(𝑥, 𝑦)   

Hence Euler’s equation 

                                                     
𝜕𝐹

𝜕𝑦
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
) = 0 becomes 

                                            
𝜕𝑀

𝜕𝑦
+ 𝑦′ 𝜕𝑁

𝜕𝑦
 - 

𝑑

𝑑𝑥
[𝑁(𝑥, 𝑦)] = 0 

This implies,                      
𝜕𝑀

𝜕𝑦
+ 𝑦′ 𝜕𝑁

𝜕𝑦
 - [ 

𝜕𝑁

𝜕𝑥
+ 𝑦′

𝜕𝑁

𝜕𝑦
] = 0 
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This implies,                        
𝜕𝑀

𝜕𝑦
+ 𝑦′ 𝜕𝑁

𝜕𝑦
 - 

𝜕𝑁

𝜕𝑥
 - 𝑦′

𝜕𝑁

𝜕𝑦
 = 0 

This implies,                                       
𝜕𝑀

𝜕𝑦
 - 

𝜕𝑁

𝜕𝑥
 = 0 

                                                           
𝜕𝑀

𝜕𝑦
=  

𝜕𝑁

𝜕𝑥
  

This is condition of exactness of differential equation 

                                           𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦 = 0 

Example 2.  Extremize 

                                      I[y(x)] = ∫ (𝒚𝟐 + 𝒚′𝒙𝟐)𝒅𝒙
𝟏

𝟎
     

                                                   𝒚(𝟎) = 0,  𝒚(𝟏) = 1 

Sol. Here                          𝐹 =  𝑦2 + 𝑦′𝑥2 

By Euler’s equation 

                                                   
𝜕𝐹

𝜕𝑦
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
) = 0 

This implies,                                2𝑦 - 
𝑑

𝑑𝑥
(𝑥2) =0 

This implies,                                  2𝑦 − 2𝑥 = 0 

⸫                                               𝑦 =  𝑥  

This is required extremal which satisfying given boundary conditions. 

Case III: When                            𝐹 = 𝐹(𝑥, 𝑦) 

 ⸫                                                
𝜕𝐹

𝜕𝑦
 = 0. 

Then Euler’s equation 

                                                     
𝜕𝐹

𝜕𝑦
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
) = 0 becomes 

This implies,                               0 −
𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
) = 0 

This implies,                                    
𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
) = 0 
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On integrating, we get 

                                                           
𝜕𝐹

𝜕𝑦′
 =  Constant  

                                                      𝐹𝑦′ = constant 

Example 3.  Extremize 

                                       I[y(x)] = ∫ (√𝟏 + 𝒚′𝟐)𝒅𝒙
𝟏

𝟎
     

                                                   𝒚(𝟎) = 0,  𝒚(𝟏) = 1 

Sol. Here                                 𝐹 =  √1 + 𝑦′2     

⸫                                    
𝜕𝐹

𝜕𝑦
 = 0,   

𝜕𝐹

𝜕𝑦′
 = 

2𝑦′

2√1+𝑦′2
 = 

𝑦′

√1+𝑦′2
 

By Euler’s equation 

                                                   
𝜕𝐹

𝜕𝑦
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
) = 0 

This implies,                             0 - 
𝑑

𝑑𝑥
(

𝑦′

√1+𝑦′2
) = 0 

This implies,                                  
𝑑

𝑑𝑥
(

𝑦′

√1+𝑦′2
) = 0 

On integrating, we get 

                                                    
𝑦′

√1+𝑦′2
 = constant = 𝑐1 

⸫                                            𝑦′ = 𝑐1√1 + 𝑦′2           

Squaring, we get 

                                                   𝑦′2 = 𝑐1
2(1 + 𝑦′2) 

                                              (1 - 𝑐1
2) 𝑦′2 = 𝑐1

2 

                                                   𝑦′2  = 
𝑐1

2

1 − 𝑐1
2 

                                               𝑦′ =  
𝑐1

√1 − 𝑐1
2

= 𝑐 (constant)  

⸫                                                    
𝑑𝑦

𝑑𝑥
 = c 

⸫                                               𝑦 = 𝑐𝑥 + 𝑑  

This is required extremal which satisfying given boundary conditions. 

Case IV: When                            𝐹 = 𝐹(𝑥, 𝑦′) 
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 ⸫                                                
𝜕𝐹

𝜕𝑦
 = 0. 

Then Euler’s equation 

                                                     
𝜕𝐹

𝜕𝑦
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
) = 0 becomes 

This implies,                               0 −
𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
) = 0 

This implies,                                    
𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
) = 0 

On integrating, we get 

                                                           
𝜕𝐹

𝜕𝑦′
 =  Constant  

                                                      𝐹𝑦′ = constant 

 

Example 4. Find the curve, the time taken along which the least, 

when velocity at any point of it is v = x. 

Sol. Consider the functional 

                                 I[y(x)] = ∫
𝑑𝑆

𝑣

𝑥1

𝑥0
  = ∫

√1+𝑦′2

𝑥
 𝑑𝑥

𝑥1

𝑥0
        

                                                                    [⸪ ds = √1 + 𝑦′2𝑑𝑥 ] 

Here                                      𝐹 = 𝐹(𝑥, 𝑦′) =  
√1+𝑦′2

𝑥
  

By Euler’s equation 

                                                   
𝜕𝐹

𝜕𝑦
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
) = 0 

This implies,                            0 - 
𝑑

𝑑𝑥
(

𝑦′

𝑥√1+𝑦′2
) = 0 

This implies,                                  
𝑑

𝑑𝑥
(

𝑦′

𝑥√1+𝑦′2
) = 0 

On integrating, we get 

                         
𝑦′

𝑥√1+𝑦′2
 = constant = 𝑐1′                          ….… (1) 

Put                    𝑦′ = tan 𝑡,  i.e.,  
𝑑𝑦

𝑑𝑥
 = tan 𝑡                     ….… (2) 

We get                                                    
tan 𝑡

𝑥 sec 𝑡
 = 𝑐1′ 

This implies,                                        𝑥 =
1

𝑐1′
sin 𝑡 
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This implies,                 𝑥 = 𝑐1 sin 𝑡,   where 𝑐1 = 
1

𝑐1′
                     … (3) 

Now since                                   
𝑑𝑦

𝑑𝑡
 = 

𝑑𝑦

𝑑𝑥
 . 

𝑑𝑥

𝑑𝑡
 

                                                         = tan 𝑡 𝑐1 cos 𝑡 

i.e.,                                                     
𝑑𝑦

𝑑𝑡
 = 𝑐1 sin 𝑡 

Integrating, we get 

                                                    𝑦 =  −𝑐1 cos 𝑡 + 𝑐2 

Or                                                𝑦 − 𝑐2 =  −𝑐1 cos 𝑡                                                      

… (4)                           

From (3) and (4), 

                                  𝑥2 +  (𝑦 − 𝑐2)2 = 𝑐1
2𝑠𝑖𝑛2𝑡 +  𝑐1

2𝑐𝑜𝑠2𝑡 

                                                        = 𝑐1
2 (𝑠𝑖𝑛2𝑡 + 𝑐𝑜𝑠2𝑡 ) 

                                                        = 𝑐1
2 

⸫                                               𝑥2 +  (𝑦 − 𝑐2)2 = 𝑐1
2  

This is required extremal which represent circles. 

Case V: When                            𝐹 = 𝐹(𝑦, 𝑦′) 

Now,                                    
𝑑𝐹

𝑑𝑥
 = 

𝜕𝐹

𝜕𝑦
 . 

𝜕𝑦

𝜕𝑥
 + 

𝜕𝐹

𝜕𝑦′
 . 

𝜕𝑦′

𝜕𝑥
 

or                                            
𝑑𝐹

𝑑𝑥
 = 𝑦′

𝜕𝐹

𝜕𝑦
 + 𝑦"

𝜕𝐹

𝜕𝑦′
  

                                           
𝑑

𝑑𝑥
 (𝐹) = (𝑦′

𝜕

𝜕𝑦
 +  𝑦"

𝜕

𝜕𝑦′
) 𝐹  

 ⸫                                       
𝑑

𝑑𝑥
 = 𝑦′

𝜕

𝜕𝑦
 +  𝑦"

𝜕

𝜕𝑦′
                …..… (1) 

By Euler’s equation 

                                                     
𝜕𝐹

𝜕𝑦
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
) = 0  

 or                                        𝐹𝑦 - (𝑦′
𝜕

𝜕𝑦
 +  𝑦"

𝜕

𝜕𝑦′
) 𝐹𝑦′ = 0      [By (1)] 

or                                    𝐹𝑦 - 𝑦′
𝜕

𝜕𝑦
(𝐹𝑦′)  −  𝑦"

𝜕

𝜕𝑦′
(𝐹𝑦′) = 0 

or                                          𝐹𝑦 - 𝑦′𝐹𝑦𝑦′ −  𝑦"𝐹𝑦′𝑦′ = 0 

Now, multiplying both sides by 𝑦′, we get 

                                        𝑦′𝐹𝑦 - 𝑦′2𝐹𝑦𝑦′ −  𝑦′𝑦"𝐹𝑦′𝑦′ = 0 
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or                                              
𝑑

𝑑𝑥
[𝐹 − 𝑦′𝐹𝑦′] = 0 

Integrating, we get 

                                            F − 𝑦′𝐹𝑦′ =  Constant  

This is required condition for necessary condition of existence of 

extremal. 

Example 5. Show that the general solution of the Euler equation for 

the functional 

                                        ∫
𝟏

𝒚

𝒃

𝒂
√𝟏 + (

𝒅𝒚

𝒅𝒙
)

𝟐

 𝑑𝑥 

is                                          (𝒙 − 𝒉)𝟐 +  𝒚𝟐 =  𝒌𝟐 

Sol. Given the functional is 

                                    𝐼[𝑦(𝑥)] =  ∫
1

𝑦

𝑏

𝑎
√1 + (

𝑑𝑦

𝑑𝑥
)

2

 𝑑𝑥 

                                                  = ∫
√1+𝑦′2

𝑦
 𝑑𝑥

𝑏

𝑎
. 

Here                                         𝐹 = 𝐹(𝑥, 𝑦′) =  
√1+𝑦′2

𝑦
 

The necessary condition of existence of extremal is  

                                                F − 𝑦′𝐹𝑦′ =  Constant  

i.e.,                              
√1+𝑦′2

𝑦
− 𝑦′ 𝑦′

𝑦√1+𝑦′2
 = constant 

or                                   
√1+𝑦′2

𝑦
−

𝑦′2

𝑦√1+𝑦′2
 = constant 

or                                              
(1+𝑦′2

) − 𝑦′2

𝑦√1+𝑦′2
 = constant 

or                                              
1

𝑦√1+𝑦′2
 = constant = 𝑐1′                                     

… (1) 

Put                                          𝑦′ = tan 𝑡,  i.e.,  
𝑑𝑦

𝑑𝑥
 = tan 𝑡                                  

… (2) 

We get                                                    
1

𝑦 sec 𝑡
 = 𝑐1 

This implies,                                         𝑦 =
1

𝑐1
cos 𝑡 

This implies,                𝑦 = 𝑘 cos 𝑡,   where 𝑘 = 
1

𝑐1
                     … (3) 
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Now since                                
𝑑𝑥

𝑑𝑡
 = 

𝑑𝑥

𝑑𝑦
 . 

𝑑𝑦

𝑑𝑡
 

                                                      = −cot 𝑡 k sin 𝑡   [ By (2) and (3)] 

i.e.,                                                     
𝑑𝑥

𝑑𝑡
 = −𝑘 cos 𝑡 

Integrating, we get 

                                                    𝑥 =  −𝑘 sin t + ℎ where h = constant  

or                                                𝑥 − ℎ =  −𝑘 sin t                    … (4)                           

From (3) and (4), we get 

                                  (𝑥 − ℎ)2 +  𝑦2 = 𝑘2𝑠𝑖𝑛2𝑡 + 𝑘2 𝑐𝑜𝑠2𝑡 

                                                        = 𝑘2 (𝑠𝑖𝑛2𝑡 + 𝑐𝑜𝑠2𝑡 ) 

                                                        = 𝑘2 

⸫                                               (𝑥 − ℎ)2 +  𝑦2 = 𝑘2  

This is required extremal which represent circles. 

 

11.8 FUNCTIONAL DEPENDENT ON HIGHER 

DERIVATIVES 

∎ Euler-Poisson Equation 

Consider the functional 

                            I[y(x)] = ∫ 𝐹 (𝑥, 𝑦, 𝑦′, 𝑦", … , 𝑦𝑛 ) 𝑑𝑥
𝑥1

𝑥0
   ….… (1)      

Where values of 𝑥0, 𝑥1, 𝑦(𝑥0), 𝑦(𝑥1), 𝑦′(𝑥0), 𝑦′(𝑥1), … , 𝑦𝑛−1(𝑥0),

𝑦𝑛−1(𝑥1) are prescribed. 

Let y(x) be extremal of (1) and �̅�(x) be neighbourhood of y(x) such that 

                     �̅�(x) = y(x) + εη(x)                                 ….… (2) 

Where ε is small parameter and η(x) be an arbitrary function such that  

                                      

η(x0)  =  η(x1)  =  0

η′(x0) =  η′(x1)  =  0
⋮

η𝑛−1(x0)  =  η𝑛−1(x1)  =  0

}           ….… (3)      

Now from (1), 

                                 I[�̅� (x)] = ∫ 𝐹 (𝑥, �̅�, �̅�′, �̅�", … , �̅�𝑛) 𝑑𝑥
𝑥1

𝑥0
                          

Using (2) we get 
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 I[�̅� (x)] = ∫ 𝐹 (𝑥, y + εη, y′ + εη′, y + εη, … , 𝑦𝑛 + εη𝑛) 𝑑𝑥
𝑥1

𝑥0
 

Using (3), we get      

             ∫  𝜂(𝑥) 
𝜕𝐹

𝜕𝑦
𝑑𝑥

𝑥1

𝑥0
 - ∫ 𝜂(𝑥) 

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
) 𝑑𝑥

𝑥1

𝑥0
 - ∫ 𝜂′(𝑥) 

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦"
) 𝑑𝑥

𝑥1

𝑥0
 + … 

                                    -∫ η𝑛−1(𝑥) 
𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦𝑛) 𝑑𝑥
𝑥1

𝑥0
 = 0         

Or     ∫  𝜂(𝑥) 
𝜕𝐹

𝜕𝑦
𝑑𝑥

𝑥1

𝑥0
- ∫ 𝜂(𝑥) 

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
) 𝑑𝑥

𝑥1

𝑥0
 - [𝜂(𝑥)

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦"
)]

𝑥0

𝑥1

+ 

                   ∫ 𝜂(𝑥)
𝑑2

𝑑𝑥2 (
𝜕𝐹

𝜕𝑦"
) 𝑑𝑥

𝑥1

𝑥0
 + … -[η𝑛−2(𝑥)

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦𝑛)]
𝑥0

𝑥1

 + 

                     ∫ η𝑛−2(𝑥) 
𝑑𝑛

𝑑𝑥𝑛 (
𝜕𝐹

𝜕𝑦𝑛) 𝑑𝑥
𝑥1

𝑥0
  = 0 

Again using (2) and continuing the process, we get 

             ∫  𝜂(𝑥) 
𝜕𝐹

𝜕𝑦
𝑑𝑥

𝑥1

𝑥0
- ∫ 𝜂(𝑥) 

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
) 𝑑𝑥

𝑥1

𝑥0
+∫ 𝜂(𝑥)

𝑑2

𝑑𝑥2 (
𝜕𝐹

𝜕𝑦"
) 𝑑𝑥

𝑥1

𝑥0
 +… 

                             (−1)𝑛 + ∫ 𝜂(𝑥) 
𝑑𝑛

𝑑𝑥𝑛 (
𝜕𝐹

𝜕𝑦𝑛) 𝑑𝑥
𝑥1

𝑥0
  = 0 

This implies, ∫ 𝜂(𝑥) [
𝜕𝐹

𝜕𝑦
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′) + 
𝑑2

𝑑𝑥2 (
𝜕𝐹

𝜕𝑦"
) + ⋯ +

𝑥1

𝑥0

(−1)𝑛 𝑑𝑛

𝑑𝑥𝑛 (
𝜕𝐹

𝜕𝑦𝑛) ] 𝑑𝑥 =0 

Since η(x) is an arbitrary. Therefore, we have 

                               

𝜕𝐹

𝜕𝑦
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′) +  
𝑑2

𝑑𝑥2 (
𝜕𝐹

𝜕𝑦"
) + ⋯ + (−1)𝑛 𝑑𝑛

𝑑𝑥𝑛 (
𝜕𝐹

𝜕𝑦𝑛) = 0  

Or                                𝐹𝑦 - 
𝑑

𝑑𝑥
 (𝐹𝑦′) + 

𝑑2

𝑑𝑥2 (𝐹𝑦") + ⋯ +  
𝑑𝑛

𝑑𝑥𝑛(𝐹𝑦𝑛) = 0 

This is necessary condition for existence of extremal of higher 

derivatives. 

This equation is known as Euler- Poisson equation. 

Particular Case 

1. If                            I[y(x)] = ∫ 𝐹 (𝑥, 𝑦, 𝑦′, 𝑦") 𝑑𝑥
𝑥1

𝑥0
          

Then necessary condition for existence of extremal is 

                                                
𝜕𝐹

𝜕𝑦
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′) +  
𝑑2

𝑑𝑥2 (
𝜕𝐹

𝜕𝑦"
) =  0  

2. If                            I[y(x)] = ∫ 𝐹 (𝑥, 𝑦, 𝑦′, 𝑦", 𝑦′′′) 𝑑𝑥
𝑥1

𝑥0
          

Then necessary condition for existence of extremal is 
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𝜕𝐹

𝜕𝑦
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′) +  
𝑑2

𝑑𝑥2 (
𝜕𝐹

𝜕𝑦"
) −

𝑑3

𝑑𝑥3 (
𝜕𝐹

𝜕𝑦′′′
) = 0  

Example 6. Find the extremals of the functional 

                                      I[y(x)] = ∫ 𝐹[(𝑦")2 − 2(𝑦′)2 + 𝑦2] 𝑑𝑥
𝑏

𝑎
 

Solution: Here             𝐹 =  (𝑦")2 − 2(𝑦′)2 + 𝑦2 

The necessary condition for existence of extremal is  

𝜕𝐹

𝜕𝑦
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
) +  

𝑑2

𝑑𝑥2
(

𝜕𝐹

𝜕𝑦"
) =  0 

This implies,                       2𝑦 −
𝑑

𝑑𝑥
(−4𝑦′) +  

𝑑2

𝑑𝑥2
(2𝑦") =  0 

Or                                          𝑦 + 2
𝑑

𝑑𝑥
(

𝑑𝑦

𝑑𝑥
) +  

𝑑2

𝑑𝑥2 (
𝑑2𝑦

𝑑𝑥2) =  0 

Or                                                 𝑦 + 2
𝑑2𝑦

𝑑𝑥2 +  
𝑑4𝑦

𝑑𝑥4 =  0 

Or                                                 
𝑑4𝑦

𝑑𝑥4 + 2
𝑑2𝑦

𝑑𝑥2 + 𝑦 =  0 

Auxiliary equation is 

                                                          𝑚4 + 2𝑚2 + 1 = 0 

This implies,                                          (𝑚2 + 1)2  =  0 

This implies,                               𝑚2 + 1 = 0,   𝑚2 + 1 = 0 

This implies,                                       m = ± i,  ±i. 

Hence, the solution is 

                                         𝑦 = (𝑐1 + 𝑐2𝑥) 𝑐𝑜𝑠 𝑥 + (𝑐3 + 𝑐4𝑥) 𝑠𝑖𝑛 𝑥  

 

11.9 FUNCTIONAL FOR SEVERAL DEPENDENT 

VARIABLE 

Theorem: The necessary condition for  

                      I = ∫ 𝑭 (𝒙, 𝒚𝟏, 𝒚𝟐, . . . ,  𝒚𝒏, 𝒚𝟏′, 𝒚𝟐′, . . . , 𝒚𝒏′ ) 𝒅𝒙
𝒙𝟏

𝒙𝟎
 

To be extremum is that  

                                 
𝝏𝑭

𝝏𝒚𝒊
−

𝒅

𝒅𝒙
(

𝝏𝑭

𝝏𝒚𝒊
′) = 0;   i = 0,1,2,3,…,n. 
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Particular case 

1.    If                         I = ∫ 𝐹 (𝑥, 𝑦1, 𝑦2, 𝑦1′, 𝑦2′ ) 𝑑𝑥
𝑥1

𝑥0
 

        Then necessary condition for existence of extremal is 

𝜕𝐹

𝜕𝑦1
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦1
′
)  =  0

𝜕𝐹

𝜕𝑦2
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦2
′
)  =  0

 

1.    If                         I = ∫ 𝐹 (𝑥, 𝑦1, 𝑦2,  𝑦3, 𝑦1′, 𝑦2′, 𝑦3′) 𝑑𝑥
𝑥1

𝑥0
 

        Then necessary condition for existence of extremal is 

𝜕𝐹

𝜕𝑦1
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦1
′
)  =  0

𝜕𝐹

𝜕𝑦2
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦2
′
)  =  0

𝜕𝐹

𝜕𝑦3
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦3
′
)  =  0

 

 

Example 7. Find the extremal of the functional 

                   I[y(x), z(x)] = ∫ (𝟐𝒛𝒚 −  𝟐𝒚𝟐 + 𝒚′𝟐 −  𝒛′𝟐) 𝒅𝒙
𝒃

𝒂
 

Sol. Here             𝐹 =  2𝑧𝑦 −  2𝑦2 + 𝑦′2 −  𝑧′2            …..… (1) 

Where y and z are two dependent variables. 

The necessary condition for existence of extremal is  

𝜕𝐹

𝜕𝑦1
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦1
′
)  =  0

𝜕𝐹

𝜕𝑦2
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦2
′
)  =  0

 

From (1), it becomes 

                                                   2𝑧 − 4𝑦 −
𝑑

𝑑𝑥
(2𝑦′) =  0 

and                                                   2𝑦 −
𝑑

𝑑𝑥
(−2𝑧′) = 0 

Or                                                  
𝑑

𝑑𝑥
(

𝑑𝑦

𝑑𝑥
) + 2𝑦  =  𝑧 

and                                                  
𝑑

𝑑𝑥
(

𝑑𝑧

𝑑𝑥
) + 𝑦 =  0 

Or                                 
𝑑2𝑦

𝑑𝑥2 + 2𝑦 =  𝑧                              ……(2) 
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and                             
𝑑2𝑧

𝑑𝑥2  + 𝑦 =  0                                    …..… (3) 

Now differentiate (2) twice w.r.t. x, we get 

𝑑4𝑦

𝑑𝑥4
+ 2

𝑑2𝑦

𝑑𝑥2
 =  

𝑑2𝑧

𝑑𝑥2
 

Using (3), we get  

𝑑4𝑦

𝑑𝑥4
+ 2

𝑑2𝑦

𝑑𝑥2
 =  −𝑦 

i.e,                                                    (𝐷4 + 2𝐷2 + 1)y = 0                 

Auxiliary equation is 

                                                             𝑚4 + 2𝑚2 + 1 = 0 

This implies,                                          (𝑚2 + 1)2  =  0 

This implies,                               𝑚2 + 1 = 0,   𝑚2 + 1 = 0 

This implies,                                       m = ± i,  ±i. 

Hence, the solution is 

                                         𝑦 = (𝑐1 + 𝑐2𝑥) 𝑐𝑜𝑠 𝑥 + (𝑐3 + 𝑐4𝑥) 𝑠𝑖𝑛 𝑥  

Now, 

        
𝑑𝑦

𝑑𝑥
 = −(𝑐1 + 𝑐2𝑥)𝑠𝑖𝑛 𝑥 + 𝑐2 𝑐𝑜𝑠 𝑥 + (𝑐3 + 𝑐4𝑥)𝑐𝑜𝑠 𝑥 +  𝑐4 𝑠𝑖𝑛 𝑥 

       
𝑑2𝑦

𝑑𝑥2 = −(𝑐1 + 𝑐2𝑥)𝑐𝑜𝑠 − 𝑐2 𝑠𝑖𝑛 𝑥 − 𝑐2 𝑠𝑖𝑛 𝑥 − (𝑐3 + 𝑐4𝑥)𝑠𝑖𝑛 𝑥 +

                                       𝑐4 𝑐𝑜𝑠 𝑥 + 𝑐4 𝑐𝑜𝑠 𝑥 

Or    
𝑑2𝑦

𝑑𝑥2 = −(𝑐1 + 𝑐2𝑥)𝑐𝑜𝑠 − (𝑐3 + 𝑐4𝑥)𝑠𝑖𝑛 𝑥 − 2𝑐2 𝑠𝑖𝑛 𝑥 +  2𝑐4 𝑐𝑜𝑠 𝑥 

Therefore, from (2) , we have  

                                                   𝑧 =  
𝑑2𝑦

𝑑𝑥2 + 2𝑦 

                                                𝑧 =   −2𝑐2 𝑠𝑖𝑛 𝑥 +  2𝑐4 𝑐𝑜𝑠 𝑥  

Hence, the required extremals are 

𝑦 = (𝑐1 + 𝑐2𝑥) cos 𝑥 + (𝑐3 + 𝑐4𝑥) sin 𝑥 

and                     𝑧 =   −2𝑐2 𝑠𝑖𝑛 𝑥 +  2𝑐4 𝑐𝑜𝑠 𝑥 . 
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11.10 FUNCTIONAL FOR SEVERAL 

INDEPENDENT VARIABLES 

 

Theorem: The necessary condition for existence of extremals for 

functional 

               I = ∬ 𝑭 (𝒙, 𝒚, 𝒖,  𝒖𝒙, 𝒖𝒚) 𝒅𝒙 𝒅𝒚                  … (1) 

Is                                                     
𝝏𝑭

𝝏𝒖
−

𝒅

𝒅𝒙
(

𝝏𝑭

𝝏𝒖𝒙
) −

𝒅

𝒅𝒙
(

𝝏𝑭

𝝏𝒖𝒙
) = 0  

Or          𝐹𝑢 - 
𝜕𝐹

𝜕𝑥
 (𝐹𝑢𝑥

) - 
𝜕𝐹

𝜕𝑦
 (𝐹𝑢𝑦

)  = 0                                … (2) 

Where u(x, y) is continuous and has continuous derivatives upto the 

second order and is prescribed on the region of integration D. 

Equation (2) is known as Euler-Ostrogradsky Equation. 

Example 8. Dirchlet’s Problem: Find the Euler-Ostrogradsky 

equation for 

                       I[u(x, y)] = ∬ [(
𝝏𝒖

𝝏𝒙
)

𝟐

+ (
𝝏𝒖

𝝏𝒚
)

𝟐

]  𝒅𝒙 𝒅𝒚                              

Where the values of u are prescribed on the boundary C of the 

domain D. 

Sol.            Here 𝐹 =  (
𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑢

𝜕𝑦
)

2

=  𝑢𝑥
2 + 𝑢𝑦

2            ….. (1) 

By Euler-Ostrogradsky Equation 

𝜕𝐹

𝜕𝑢
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑢𝑥
) − 

𝑑

𝑑𝑦
(

𝜕𝐹

𝜕𝑢𝑦
) =  0 

From (1) 

This implies,                       0 −  
𝜕

𝜕𝑥
(2𝑢𝑥) −  

𝜕

𝜕𝑦
(2𝑢𝑦) =  0 

Or                                              
𝜕

𝜕𝑥
(𝑢𝑥) +  

𝜕

𝜕𝑦
(𝑢𝑦) =  0 

Or                                              
𝜕

𝜕𝑥
(

𝜕𝑢

𝜕𝑥
) +  

𝜕

𝜕𝑦
(

𝜕𝑢

𝜕𝑦
) =  0 

Or                                                      
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2  =  0 

This is Laplace equation and its solution gives the required extremal u 

(x, y). 
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11.11 ISOPERIMETRIC PROBLEM 

 

∎conditional Extremum 

There are some problems in which one has to find geometric figure i.e., 

extremum under the given condition, such problems is called 

isoperimetric problems. Such problems is solved by Lagrange’s 

multiplier’s method. 

To find extremals of the functional  

              I[y(x)] = ∫ 𝑓 (𝑥, 𝑦, 𝑦′ ) 𝑑𝑥
𝑥1

𝑥0
                                         … (1) 

Subject the condition (constraint) 

               J[y(x)] = ∫ 𝑔 (𝑥, 𝑦, 𝑦′ ) 𝑑𝑥
𝑥1

𝑥0
 = constant                       … (2)  

Consider                            F = 𝑓 + 𝜆𝑔 

Where 𝜆 is called Lagrange’s multiplier. 

Then by Euler equation, the necessary condition for existence of 

extremal is 

                                        
𝜕𝐹

𝜕𝑦
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
) = 0 

This gives required extremal of functional (1) under the condition (2). 

Example 9. Find the extremal of the functional 

                 I = ∫ (𝒚′𝟐 −  𝒚𝟐) 𝒅𝒙
𝝅

𝟎
 

Under the conditions y(0) = 0, y(𝝅) = 1 and subject to constraint 

                     ∫ 𝒚 𝒅𝒙
𝝅

𝟎
 = 1 

Sol. Let         I = ∫ (𝑦′2 −  𝑦2) 𝑑𝑥
𝜋

0
 

And                            𝐽 = ∫ 𝑦 𝑑𝑥
𝜋

0
 = 1 

Here                    𝑓 =  𝑦′2 −  𝑦2,      g = 𝑦 

Consider                          F = 𝑓 + 𝜆𝑔 

i.e.,                                F = 𝑦′2 −  𝑦2 +  𝜆𝑦                                                                 

… (1) 

Where 𝜆 is called Lagrange’s multiplier. 

By Euler’s equation 
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𝜕𝐹

𝜕𝑦
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
) = 0 

From (1),  

                                            −2𝑦 + 𝜆 − 
𝑑

𝑑𝑥
(2𝑦′) = 0 

or                                        −2𝑦 + 𝜆 − 2 
𝑑

𝑑𝑥
(

𝑑𝑦

𝑑𝑥
) = 0 

or                                                2
𝑑2𝑦

𝑑𝑥2  = 𝜆 − 2𝑦 

or                                                   
𝑑2𝑦

𝑑𝑥2  +  𝑦  = 
𝜆 

2
  

or                                                  (𝐷2  + 1) 𝑦  = 
𝜆 

2
                        … (2) 

 

Auxillary equation is 

𝑚2 + 1 = 0 

This implies,                                              m = ± i 

𝐶. 𝐹.  =   𝑐1 𝑐𝑜𝑠 𝑥 +  𝑐2 𝑠𝑖𝑛 𝑥 

Now,                                                             𝑃. 𝐼. =
1

𝐷2 +1
  

𝜆 

2
 

                                                                              =
𝜆 

2

1

𝐷2 +1
  𝑒𝑎𝑥  

                                                                              =
𝜆 

2

1

0 +1
  𝑒𝑎𝑥  

                                                                              =
𝜆 

2
 

Hence solution of (2) is 

                                                          y = C.F. + P.I.  

i.e.,                           𝑦  =   𝑐1 𝑐𝑜𝑠 𝑥 +  𝑐2 𝑠𝑖𝑛 𝑥 + 
𝜆 

2
                 … (3) 

 

Now,                            y(0)  = 0, This implies,    𝑐1 + 
𝜆 

2
 =  0 

This implies,                                          𝑐1 = −
𝜆 

2
                         … (4) 

 

                                 y(π)  = 1,    This implies,    −𝑐1 + 
𝜆 

2
 = 1 

This implies,                    𝑐1 = 
𝜆 

2
 −  1                            … (5) 
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Solving (4) and (5), we get  

                                       𝑐1 = - 
1 

2
  ,       λ = 1                 … (6) 

Therefore, (3) becomes  

                           𝑦  =   − 
1 

2
 𝑐𝑜𝑠 𝑥 +  𝑐2 𝑠𝑖𝑛 𝑥 + 

1 

2
                   ….... (7) 

Now, from (2), we have 

                                                        ∫ 𝑦 𝑑𝑥
𝜋

0
 = 1 

Using (7), we get 

                                        ∫ [− 
1 

2
 𝑐𝑜𝑠 𝑥 +  𝑐2 𝑠𝑖𝑛 𝑥 +  

1 

2
  ]  𝑑𝑥

𝜋

0
 = 1 

This implies,                      [− 
1 

2
 𝑠𝑖𝑛 𝑥 −  𝑐2 𝑐𝑜𝑠 𝑥 + 

1 

2
 x ]

0

𝜋

  = 1 

This implies,                                   2𝑐2  +  
𝜋 

2
 = 1 

This implies,                                     𝑐2  = 
1 

2
 - 

𝜋 

4
 

Putting value of  𝑐2 in (7), we get 

                                    𝑦  =   − 
1 

2
 𝑐𝑜𝑠 𝑥 +  ( 

1 

2
 −  

𝜋 

4
)  𝑠𝑖𝑛 𝑥 + 

1 

2
               

or                            𝑦  =    
1 

2
 (1 −  𝑐𝑜𝑠 𝑥) +  

1 

4
( 2 −  𝜋) 𝑠𝑖𝑛 𝑥              

This is required extremal.    

CHECK YOUR PROGRESS  

True or false Questions 

Problem 1. The value of  
𝜕𝐹

𝜕𝑦
  -  

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
) = ? 

Problem 2. The value of Laplace equation 
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2  = ? 

Problem 3. Every solution of Euler’s equation which satisfies 

the boundary conditions is called an Extremal or a stationary 

function of the problem. True/False. 

Problem 4. The necessary condition to be extremum is that  

                    
𝜕𝐹

𝜕𝑦𝑖
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦𝑖
′) = 0;   i = 0,1,2,3,…,n. 

  

Problem 5. The general solution of  
𝑑4𝑦

𝑑𝑥4 + 2
𝑑2𝑦

𝑑𝑥2 + 𝑦 =  0 is ? 
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11.12 SUMMARY 
 

1. Euler’s equation: The necessary condition for functional 

                                     I[y(x)] =  ∫ 𝐹 (𝑥, 𝑦, 𝑦′ ) 𝑑𝑥
𝑥1

𝑥0
 

to be maximum or minimum is that 

                                               
𝜕𝐹

𝜕𝑦
  -  

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
) = 0 prescribed. 

 

2. Dirichlet’s Problem: Find the Euler-Ostrogradsky equation for 

                       I[u(x, y)] = ∬ [(
𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑢

𝜕𝑦
)

2

]  𝑑𝑥 𝑑𝑦                              

Where the values of u are prescribed on the boundary C of the domainD. 

3. Theorem: The necessary condition for  

                      I = ∫ 𝐹 (𝑥, 𝑦1, 𝑦2, . . . ,  𝑦𝑛 , 𝑦1′, 𝑦2′, . . . , 𝑦𝑛′ ) 𝑑𝑥
𝑥1

𝑥0
 

To be extremum is that  

                                    
𝜕𝐹

𝜕𝑦𝑖
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦𝑖
′) = 0;  i = 0,1,2,3,…,n. 

 

 

11.13 GLOSSARY 
 

Integration  

Even, odd functions   

Trigonometric functions 

Differentiation 

First order derivatives 

Second order derivatives 

Expansions of function 

Series  
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11.16 TERMINAL AND MODEL QUESTIONS 

 

Q 1. Find the extremal of the functional 

I[y(x)] = ∫ (𝑦2 + 𝑦′2 −  2𝑦𝑒𝑥) 𝑑𝑥
𝑏

𝑎
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Q 2. Find the extremal of the functional 

           I[y(x)] = ∫ (𝑦′2 + 12𝑥𝑦) 𝑑𝑥
1

0
 

              y(0) = 0,     y(1) = 1 

Q 3. Show that the variational problem of extremizing the functional 

            I[y(x)] = ∫ (𝑦 (3𝑥 − 𝑦) 𝑑𝑥
3

1
 y(3) = 4

1

2
,     y(1) = 1 has no solution. 

Q.4 Find the curves on which the functional 

∫
𝑥3

𝑦′2
𝑑𝑥

2

1

 

With y(1) = 0 and y(2) = 3 can be extremized. 

Q 5. A light travel in a medium from one point to another point so that the 

time of travel given by ∫
𝑑𝑠

𝑣(𝑥,𝑦)
 where s is arc length and v(x, y) is the 

velocity of the light in the medium, is maximum, show that path of travel 

is 

 

                 𝑣
𝑑2𝑦

𝑑𝑥2 + [1 + (
𝑑𝑦

𝑑𝑥
)

2

]
𝜕𝑣

𝜕𝑥
- 

𝑑𝑦

𝑑𝑥
[1 + (

𝑑𝑦

𝑑𝑥
)

2

]
𝜕𝑣

𝜕𝑥
 = 0 

Q 6. Find the extremal of the functional 

I[y(x)] = ∫ ((𝑦")2 − 𝑦2 − 𝑥2) 𝑑𝑥
𝜋/2

0
 

Under conditions y(0) = 0, y’(0) = 0,  y(π/2) = 0 and y’(π/2) = -1. 

Q 7. Find the extremals of the functional 

I[y(x), z(x)] = ∫ 𝑦′2 + 𝑧′2 + 2𝑦𝑧) 𝑑𝑥
𝜋/2

0
 

With y(0) = 0,  y(π/2) = 1, z(0) = 0, z (π/2) = -1. 

Q 8. Find the extremizing function for 

I[u(x, y)] = ∬ [(
𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑢

𝜕𝑦
)

2

+ 2𝑢 𝑓(𝑥, 𝑦)]  𝑑𝑥 𝑑𝑦 

Where f(x, y) is known function. 
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Q 9. Find the extremal of the functional I = ∫ 𝑦′2 𝑑𝑥
2

0
 Under the conditions 

y(0) = 0, y(2) = 1   and subject to constraint ∫ 𝑦 𝑑𝑥
2

0
 = 1 

Q 10. Prove that the isometric problem I = ∫ 𝑦′2 𝑑𝑥
4

1
 

Under the conditions y(1) = 3, y(4) = 24 and  

subject to constraint ∫ 𝑦 𝑑𝑥
4

1
 = 36 is parabola. 

 

          

11.17  ANSWERS 
       

1.    𝑦 = 𝑐1𝑒𝑥 + 𝑐2𝑒−𝑥 𝑥

2
𝑒𝑥 

2.    y = 𝑥3 

4.      y = 𝑥2-1 

        6.      y = cos x 

        7.      y = sin x,  z = -sin x  

        8.     (
𝝏𝒖

𝝏𝒙
)

𝟐

+ (
𝝏𝒖

𝝏𝒚
)

𝟐

= 𝑓(𝑥, 𝑦) gives the required extremal u(x, y) 

        9.      y = 
1

2
 x 

CHECK YOUR PROGRESS 

        CYQ 1. 0   

        CYQ 2. 0 

        CYQ 3. True  

        CYQ 4. True  

        CYQ 5. 𝑦 = (𝑐1 + 𝑐2𝑥) 𝑐𝑜𝑠 𝑥 + (𝑐3 + 𝑐4𝑥) 𝑠𝑖𝑛 𝑥 
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UNIT 12:  VARIATIONAL PROBLEMS     

WITH MOVING BOUNDARIES 
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12.1 INTRODUCTION 

Consider the functional 

𝐼[𝑦(𝑥)] = ∫ 𝐹(𝑥, 𝑦, 𝑦′) 𝑑𝑥
𝑥2

𝑥1

 

We have already learned if the boundary is fixed then the necessary 

condition for the existence of extremal is given by Euler’s equation. 

i.e.,                                                     
∂𝐹

∂𝑦
−

𝑑

𝑑𝑥
(

∂𝐹

∂𝑦′) = 0 

or                                                      𝐹𝑦 −
𝑑

𝑑𝑥
(𝐹𝑦′) = 0 

In this chapter, we consider the case when one or both the boundary points 

can move along the curve. 

1.e., if the boundary point (𝑥1, 𝑦1) moves along the curve 𝑦 = Ψ(𝑥) and 

boundary point (𝑥2, 𝑦2) move along the curve 𝑦 = ϕ(𝑥). 

Then, such a problem is known as a variational problem with moving or 

free boundaries. Then our aim is to find the necessary condition for the 

existence of extremal of such problem. 

 

12.2 OBJECTIVE 

             At the end of this topic learner will be able to understand:  

            (i) Transversality Conditions 

            (ii) Orthogonality Conditions 

            (iii) One Sided Variations             

12.3 TRANSVERSALITY CONDITIONS 

Consider the functional 

                        𝐼[𝑦(𝑥)] = ∫ 𝐹(𝑥, 𝑦, 𝑦′) 𝑑𝑥
𝑥2

𝑥1
                                     ….…(1) 
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For the sake of simplicity, let us assume that one of the boundary point 

(𝑥1, 𝑦1) is fixed while the other boundary point (𝑥2, 𝑦2) can move and 

varies from (𝑥2, 𝑦2) to (𝑥2 + δ𝑥2,  𝑦2 + δ𝑦2) on the curve 𝑦 = 𝑓(𝑥). 

And let δ𝑦(𝑎) be variation in 𝑦 as right end points vary. 

Then total variation in 𝐼 is given by 

 △ 𝐼 = 𝐼[𝑦(𝑥) + δ𝑦(𝑥)] − 𝐼[𝑦(𝑥)] 

        = ∫ 𝐹(𝑥, 𝑦 + δ𝑦, 𝑦′ + δ𝑦′)𝑑𝑥
𝑥2+δ𝑥2

𝑥1
− ∫ 𝐹(𝑥, 𝑦, 𝑦′)𝑑𝑥

𝑥2

𝑥1
 

  = ∫ 𝐹(𝑥, 𝑦 + δ𝑦, 𝑦′ + δ𝑦′)𝑑𝑥
𝑥2

𝑥1
+  ∫ 𝐹(𝑥, 𝑦 + δ𝑦, 𝑦′ + δ𝑦′)𝑑𝑥

𝑥2+δ𝑥2

𝑥2
−

                                                                                                           ∫ 𝐹(𝑥, 𝑦, 𝑦′)𝑑𝑥
𝑥2

𝑥1
 

             △ 𝐼 = ∫ [𝐹(𝑥, 𝑦 + δ𝑦, 𝑦′ + δ𝑦′) − 𝐹(𝑥, 𝑦, 𝑦′)]𝑑𝑥
𝑥2

𝑥1
+

                                                                         ∫ 𝐹(𝑥, 𝑦 + δ𝑦, 𝑦′ + δ𝑦′)𝑑𝑥
𝑥2+δ𝑥2

𝑥2
  … (2) 

Now, by mean value theorem of integral calculus, we have   

∫ 𝐹(𝑥, 𝑦 + δ𝑦, 𝑦′ + δ𝑦′)𝑑𝑥
𝑥2+δ𝑥2

𝑥2
= [𝐹(𝑥, 𝑦, 𝑦′)]

𝑥2+θδ𝑥2

𝑥2 δ𝑥2        … (3) 

Where 0 < θ <  1. 

By the virtue of continuity of 𝐹, we may write 

                    [𝐹]𝑥2+θδ𝑥2
= [𝐹]𝑥2

+ ϵ                                               … (4) 

Where ϵ → 0 as δ𝑥2 → 0 and δ𝑦2 → 0. 

The by (3) and (4), we have  

  ∫ 𝐹(𝑥, 𝑦 + δ𝑦, 𝑦′ + δ𝑦′)𝑑𝑥
𝑥2+δ𝑥2

𝑥2
 = [𝐹]𝑥=𝑥2

δ𝑥2.                            … (5) 

Now consider,  

 ∫ [𝐹(𝑥, 𝑦 + δ𝑦, 𝑦′ + δ𝑦′) − 𝐹(𝑥, 𝑦, 𝑦′)]𝑑𝑥
𝑥2

𝑥1
  

 = ∫ [{𝐹(𝑥, 𝑦, 𝑦′) + δ𝑦
∂𝐹

∂𝑦
+ δ𝑦′ ∂𝐹

∂𝑦′ + ⋯ } − 𝐹(𝑥, 𝑦, 𝑦′)] 𝑑𝑥
𝑥2

𝑥1
 

                                                                                [ By Tylor’s theorem ] 
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                     = ∫ [
∂𝐹

∂𝑦
δ𝑦 +

∂𝐹

∂𝑦′ δ𝑦′] 𝑑𝑥
𝑥2

𝑥1
        [ Neglecting higher term ] 

                     = ∫ (
∂𝐹

∂𝑦
δ𝑦) 𝑑𝑥

𝑥2

𝑥1
 + ∫ (

∂𝐹

∂𝑦′
δ𝑦′) 𝑑𝑥

𝑥2

𝑥1
                

                     =∫ (
∂𝐹

∂𝑦
δ𝑦) 𝑑𝑥

𝑥2

𝑥1
+ [

∂𝐹

∂𝑦′ δ𝑦]
𝑥1

𝑥2

− ∫ {
𝑑

𝑑𝑥
(

∂𝐹

∂𝑦′
δ𝑦)} 𝑑𝑥

𝑥2

𝑥1
        

                     = ∫ [{
∂𝐹

∂𝑦
−

𝑑

𝑑𝑥
(

∂𝐹

∂𝑦′
)} δ𝑦] 𝑑𝑥

𝑥2

𝑥1
+ [

∂𝐹

∂𝑦′ δ𝑦]
𝑥1

𝑥2

               … (6) 

Combining (5) and (6), we have 

             △ 𝐼 = ∫ [{
∂𝐹

∂𝑦
−

𝑑

𝑑𝑥
(

∂𝐹

∂𝑦′
)} δ𝑦] 𝑑𝑥

𝑥2

𝑥1
+ [

∂𝐹

∂𝑦′ δ𝑦]
𝑥1

𝑥2

+ [𝐹]𝑥=𝑥2
δ𝑥2        … (7)     

For extremum, we have 

                                                             
∂𝐹

∂𝑦
−

𝑑

𝑑𝑥
(

∂𝐹

∂𝑦′) = 0 

Therefore, (7) becomes 

                     △ 𝐼 = [
∂𝐹

∂𝑦′ δ𝑦]
𝑥1

𝑥2

+ [𝐹]𝑥=𝑥2
δ𝑥2                                  ... (8) 

Since point (𝑥1, 𝑦1) is fixed. 

∴                                                               δ𝑦(𝑥1) = 0 

and it is clear from figure 2.1 that 

                                                      𝐵𝐷 = (δ𝑦)𝑥2
 and 𝐹𝐶 = δ𝑦2 

Further                                                 𝐸𝐶 = 𝑦′(𝑥2)δ𝑥2 

And hence BD = FC - EC gives 

                  (δ𝑦)𝑥2
= δ𝑦2 − 𝑦′(𝑥2)δ𝑥2                                       ... (9) 

Therefore, (8) becomes 

                       △ 𝐼 = [
∂𝐹

∂𝑦′ δ𝑦]
𝑥=𝑥2

+ [𝐹]𝑥=𝑥2
δ𝑥2            

                              = [𝐹𝑦′]
𝑥=𝑥2

[δ𝑦]𝑥=𝑥2
+ [𝐹]𝑥=𝑥2

δ𝑥2      
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                   = [𝐹𝑦′]
𝑥=𝑥2

{δ𝑦2 − 𝑦′(𝑥2)δ𝑥2} + [𝐹]𝑥=𝑥2
δ𝑥2      [ By (9) ] 

                   = [𝐹𝑦′]
𝑥=𝑥2

δ𝑦2 − [𝐹𝑦′𝑦′]
𝑥=𝑥2

δ𝑥2 + [𝐹]𝑥=𝑥2
δ𝑥2            

           △ 𝐼 = [𝐹 −  𝑦′𝐹𝑦′]
𝑥=𝑥2

 δ𝑥2  +  [𝐹𝑦′]
𝑥=𝑥2

δ𝑦2                   ... (10) 

The necessary condition for the extremum is 

                                     △ 𝐼 = 0 

 ⟹                                [𝐹 −  𝑦′𝐹𝑦′]
𝑥=𝑥2

 δ𝑥2  +  [𝐹𝑦′]
𝑥=𝑥2

δ𝑦2  =  0 

Since δ𝑥2 and δ𝑦2 are not independent. 

⟹                                      
 [𝐹 −  𝑦′𝐹𝑦′]

𝑥=𝑥2
=  0

[𝐹𝑦′]
𝑥=𝑥2

 =  0
                   … (11) 

For example, if the boundary point (𝑥2, 𝑦2) moves along the curve 

 𝑦 = ϕ(𝑥) 

∴                                                𝑦2 = ϕ(𝑥2)δ𝑥2                        … (12) 

Then                                           δ𝑦2 = ϕ′(𝑥2) δ𝑥2 

Thus, from (10), we get  

                    △ 𝐼 = [𝐹 −  𝑦′𝐹𝑦′]
𝑥=𝑥2

 δ𝑥2  +  [𝐹𝑦′]
𝑥=𝑥2

 ϕ′(𝑥2) δ𝑥2 

                           = [𝐹 + (ϕ′ − 𝑦′)𝐹𝑦′]
𝑥=𝑥2

δ𝑥2. 

∴              The necessary condition for extremal is 

                                 △ 𝐼 =  0 

⟹                           [𝐹 + (ϕ′ − 𝑦′)𝐹𝑦′]
𝑥=𝑥2

δ𝑥2 = 0 

Since δ𝑥2 is arbitrary. 

[𝐹 + (ϕ′ − 𝑦′)𝐹𝑦′]
𝑥=𝑥2

= 0  

Which is the required condition at the free boundary. 

This is known as transversality condition. 

Particular case:  If boundary point (𝑥1, 𝑦1) moves along the curve 

 𝑦 = Ψ(𝑥) and boundary point (𝑥2, 𝑦2) move along the curve 𝑦 = ϕ(𝑥).  
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Then transversality condition is  

                                          

[𝐹 + (Ψ′ − 𝑦′)𝐹𝑦′]
𝑥=𝑥1

= 0

[𝐹 + (ϕ′ − 𝑦′)𝐹𝑦′]
𝑥=𝑥2

= 0
 

This gives required extremal of functional. 

 

12.4 ORTHOGONALITY CONITIONS 

When F in (1) is given by  

                                                𝐴(𝑥, 𝑦)(1 + 𝑦′2)
1

2 

i.e.,                                    F = 𝐴(𝑥, 𝑦)(1 + 𝑦′2)
1

2 

where 𝐴(𝑥, 𝑦) does not vanish at the movable point 𝑥2. 

In this case (13) reduces to  

                                      𝐴(𝑥, 𝑦).
(1+ϕ′𝑦′)

√1+𝑦′2
= 0  at   𝑥 = 𝑥2 

Since 𝐴(𝑥, 𝑦) ≠ 0 at 𝑥 = 𝑥2, we have 

                                           
(1+ϕ′𝑦′)

√1+𝑦′2
= 0  at   𝑥 = 𝑥2 

Or                       𝑦′ = −
1

ϕ′  at 𝑥 = 𝑥2        i.e.,      ϕ′𝑦′ = −1 

Which is the orthogonality condition. 

 

ILLUSTRATIVE EXAMPLES 

 

Example 1. Find the shortest distance between the parabola 𝒚 = 𝒙𝟐 

and the straight line 𝒙 − 𝒚 = 𝟓. 

Sol. The problem is to find extremal of the function    

                                               𝐼[𝑦(𝑥)] = ∫ 𝑑𝑠
𝑥2

𝑥1
 

or               𝐼[𝑦(𝑥)] = ∫ √1 + 𝑦′2𝑑𝑥
𝑥2

𝑥1
                               … (1) 
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Here                                        𝐹 = √1 + 𝑦′2 

Subject to condition that the point (𝑥1, 𝑦1) moves along the curve 

                                                    𝑦 = 𝑥2 

 

And point (𝑥2, 𝑦2 ) along the curve  

                                     𝑥 − 𝑦 = 5 𝑖. 𝑒. ,  𝑦 = 𝑥 − 5 

Let                                 Ψ(𝑥) = 𝑥2,  ϕ(𝑥) = 𝑥 − 5 

By transversality condition, we have 

                                          

[𝐹 + (Ψ′ − 𝑦′)𝐹𝑦′]
𝑥=𝑥1

= 0

[𝐹 + (ϕ′ − 𝑦′)𝐹𝑦′]
𝑥=𝑥2

= 0
 

Since                     𝐹 = √1 + 𝑦′2,  Ψ(𝑥) = 𝑥2,  ϕ(𝑥) = 𝑥 − 5 

∴           [√1 + 𝑦′2 + (2𝑥 − 𝑦′)
𝑦′

√1+𝑦′2
]

𝑥=𝑥1

= 0                       … (2) 

And       [√1 + 𝑦′2 + (1 − 𝑦′)
𝑦′

√1+𝑦′2
]

𝑥=𝑥2

= 0                         … (3) 

Now, since                               𝐹 = √1 + 𝑦′2 

Then by Euler’s equation. 

                                                 
∂𝐹

∂𝑦
−

𝑑

𝑑𝑥
(

∂𝐹

∂𝑦′) = 0 

⟹                                           0 −
𝑑

𝑑𝑥
(

𝑦′

√1+𝑦′2
) = 0 

Or                                                  
𝑑

𝑑𝑥
(

𝑦′

√1+𝑦′2
) 

On integrating, we get 

                                           
𝑦′

√1+𝑦′2
= constant = 𝑐1

′  

Or                                            𝑦′ = 𝑐1
′ √1 + 𝑦′2 

Squaring on both sides, we get  

                                                𝑦′2 = 𝑐1
′  (1 + 𝑦′2) 

Or                                           (1 − 𝑐1
′ 2) 𝑦′2 = 𝑐1

′2 

Or                                              𝑦′2 =
𝑐1

′2

(1−𝑐1
′2)
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Or                                                 𝑦 
𝑐1

′

√1−𝑐1
′2

 

∴                                                     
𝑑𝑦

𝑑𝑥
= 𝑐1 

On integrating, we get required extremal is: 

                              𝑦 = 𝑐1𝑥 + 𝑐2                                                  … (4) 

∴                           𝑦′ = 𝑐1                                                            … (5) 

Since both end point (𝑥1, 𝑦1) and (𝑥2, 𝑦2) lies on the extremal (4). 

∴                         𝑐1𝑥1 + 𝑐2 = 𝑦1 

⟹                      𝑐1𝑥1 + 𝑐2 = 𝑥1
2               [∴  𝑦 = 𝑥2]                 … (6) 

And                    𝑐1𝑥2 + 𝑐2 = 𝑦2 

⟹                       𝑐1𝑥2 + 𝑐2 = 𝑥2 − 5         [∴  𝑦 = 𝑥 − 5]            … (7) 

Now, put 𝑦′ = 𝑐1 in (2), we get  

                             √(1 + 𝑐1
2) + (2𝑥1 − 𝑐1) 

𝑐1

√1+𝑐1
2

= 0 

Or                          (1 + 𝑐1
2) + 2𝑥1𝑐1 − 𝑐1

2 = 0 

Or                           1 + 2𝑥1𝑐1 = 0                                                     ... (8) 

Similarly, put 𝑦′ = 𝑐1 in (3), we get 

                                       √(1 + 𝑐1
2) + (1 − 𝑐1) 

𝑐1

√1+𝑐1
2

= 0 

Or                                       (1 + 𝑐1
2) + (𝑐1 − 𝑐1

2) = 0 

Or                                              1 + 𝑐1 = 0 

⟹                                                𝑐1 = −1     

Put 𝑐1 = −1 in (8), we get 

                                               1 − 2𝑥1 = 0 

⟹                                             𝑥1 =
1

2
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Putting value of 𝑐1 and 𝑥1 in (6), we get 

                                                 −
1

2
+ 𝑐2 =

1

4
 

⟹                                                𝑐2 =
3

4
     

Putting value of  𝑐1 and 𝑐1 in (7), we get 

                                          −𝑥2 +
3

4
= 𝑥2 − 5 

 ⟹                                     2𝑥2 =
3

4
+ 5 =

23

4
 

⟹                                             𝑥2 =
23

8
     

Hence, we get 

                               𝑐1 = −1,  𝑐2 =
3

4
,  𝑥1 =

1

2
,  𝑥2 =

23

8
 

Therefore, from (4), required extremal is  

                                𝑦 = −𝑥 +
3

4
 

And shortest distance between parabola and straight line is 

                               𝐼 = ∫ √1 + 𝑦′2 𝑑𝑥
𝑥2

𝑥1
 

                                  = ∫ √1 + 1𝑑𝑥
23

8
1

2

                     [∵  𝑦′ = 𝑐1 = −1] 

                                   = √2 [𝑥]1

2

23

8  

                                   = √2 [
23

8
−

1

2
] =

19

8
 √2. 

Example 2. Using only the basic necessary condition δ𝐼 = 0. Find the 

curve on which an extremum of the functional 

                                               𝑰[𝒚(𝒙)] = ∫
(𝟏+𝒚′)

𝟏
𝟐

𝒚
𝒅𝒙

𝒙𝟏

𝟎
,  𝒚(𝟎) = 𝟎 

Can be achieved if the second boundary point (𝒙𝟏, 𝒚𝟏) can move along 

the circumference 

(𝒙 − 𝟗)𝟐 + 𝒚𝟐 = 𝟗 

Sol. Given functional is 
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                              𝐼[𝑦(𝑥)] = ∫
(1+𝑦′)

1
2

𝑦
𝑑𝑥

𝑥1

0
                                    … (1) 

𝑦(0) = 0 

Here,                             𝐹 = 𝐹(𝑦, 𝑦′) =
(1+𝑦′2)

1
2

𝑦
 

Therefore, the necessary condition for existence of extremal is 

𝐹 − 𝑦′𝐹𝑦′ = constant 

√1 + 𝑦′2

𝑦
− 𝑦′

𝑦′

𝑦√1 + 𝑦′2
 =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 Or                              
1+𝑦′2−𝑦′2

𝑦√1+𝑦′2
= constant = 𝑐1

′  

Or                                
1

𝑦√1+𝑦′2
= 𝑐1

′  

Put                               𝑦′ = 𝑡𝑎𝑛 𝑡                                                  … (2) 

∴                                   
1

𝑦 𝑠𝑒𝑐 𝑡
= 𝑐1

′ 

⟹                                 𝑦 =
1

𝑐1
′ 𝑐𝑜𝑠 𝑡 

⟹                                 𝑦 = 𝑐1 ⋅  𝑐𝑜𝑠 𝑡,  where 𝑐1 =
1

𝑐1
′                   … (3) 

Now,                              
𝑑𝑥

𝑑𝑡
=

𝑑𝑥

𝑑𝑦
⋅

𝑑𝑦

𝑑𝑡
 

                                       
𝑑𝑥

𝑑𝑡
   = 𝑐𝑜𝑡 𝑡 (−𝑐1 𝑠𝑖𝑛 𝑡) 

                                        
𝑑𝑥

𝑑𝑡
= −𝑐1 𝑐𝑜𝑠 𝑡 

On integrating, we get  

                                        𝑥 = −𝑐1 𝑠𝑖𝑛 𝑡 + 𝑐2               

Or                                   𝑥 − 𝑐2 = −𝑐1 𝑠𝑖𝑛 𝑡                                … (4) 

Now, squaring and adding (3) and (4), we get 

                                   (𝑥 − 𝑐2)2 + 𝑦2 = 𝑐1
2                                   … (5) 

Now, since                                  𝑦(0) = 0 

Then from (5), we get 

                                                     𝑐2
2 = 𝑐1

2 

⟹                                                𝑐1 = 𝑐2 
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Therefore, equation (5) becomes  

                                               (𝑥 − 𝑐2)2 + 𝑦2 = 𝑐1
2                        … (6) 

Or                                         𝑥2 + 𝑐1
2 − 2𝑐1𝑥 + 𝑦2 = 𝑐1

2                 

Or                                            𝑥2 − 2𝑐1𝑥 + 𝑦2 = 0                        … (7) 

Now, since (𝑥1, 𝑦1) lies on extremal (7) and given curve  

                                                                         (𝑥 − 9)2 + 𝑦2 = 9 

Therefore, we have  

                                              𝑥1
2 + 𝑦1

2 − 2𝑐1𝑥1 = 0                      … (8) 

And                                          (𝑥1 − 9)2 + 𝑦1
2 = 9 

Or                                           𝑥1
2 + 𝑦1

2 − 18𝑥1 = −72 

Now subtracting (8) and (9), we get 

                                               −2𝑐1𝑥1 + 18𝑥1 = 72 

or                                                𝑥1(9 − 𝑐1) = 36 

Or                                                𝑥1(𝑐1  −  9) = −36 

Now tangent at (𝑥1, 𝑦1) to given circle (𝑥 − 9)2 + 𝑦2 = 9 and extremal 

circle (6) are orthogonal to each other. 

∴                                                   𝑚1 ⋅ 𝑚2 = −1 

i.e.,                                          (
𝑥1−𝑐1

𝑦1
) (

𝑥1−9

𝑦1
) = −1 

or                                        (𝑥1 − 𝑐1)(𝑥1 − 9) = −𝑦1
2 

or                                      𝑥1
2 − 9𝑥1 − 𝑐1𝑥1 + 9𝑐1 = −𝑦1

2
 

or                                    𝑥1
2 + 𝑦1

2 − 9𝑥1 − 𝑐1𝑥1 + 9𝑐1 = 0 

or                                     2𝑐1𝑥1 − 9𝑥1 − 𝑐1𝑥1 + 9𝑐1 = 0          [ from(8) ] 

or                                       𝑐1𝑥1 − 9𝑥1 + 9𝑐1 = 0 

or                                       𝑥1(𝑐1 − 9) + 9𝑐1 = 0 

or                                          −36 + 9𝑐1 = 0                          [ from(10) ] 
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or                                                9𝑐1 = 36     

or                                                  𝑐1 = 4     

Putting value of 𝑐1 in (7), we get 

𝑥2 + 𝑦2 − 8𝑥 = 0 

This is required extremal. 

Example 3. Find the shortest distance between the point (𝟏, 𝟎) and the 

ellipse 𝟒𝒙𝟐 + 𝟗𝒚𝟐 = 𝟑𝟔. 

Sol. We have to find shortest distance between 𝐴(1,0) and 𝐵(𝑥2, 𝑦2) 

where B lies on the ellipse. 

                        4𝑥2 + 9𝑦2 = 36                                              … (1) 

The arc length AB of the minimizing curve 𝑦 = 𝑓(𝑥) is given by 

                                    𝐼[𝑦(𝑥)] = ∫ 𝑑𝑠
𝑥2

𝑥1
 

or                                𝐼[𝑦(𝑥)] = ∫ √1 + 𝑦′2𝑑𝑥
𝑥2

𝑥1
                        … (2)      

where the end point 𝐴(1,0) is fixed and the other end 𝐵(𝑥2, 𝑦2) lies  

on (1)                                          

Here                                        𝐹 = √1 + 𝑦′2 

By the Euler’s equation. 

                                                 
∂𝐹

∂𝑦
−

𝑑

𝑑𝑥
(

∂𝐹

∂𝑦′) = 0 

⟹                                           0 −
𝑑

𝑑𝑥
(

𝑦′

√1+𝑦′2
) = 0 

Or                                                  
𝑑

𝑑𝑥
(

𝑦′

√1+𝑦′2
) 

On integrating, we get 

                                           
𝑦′

√1+𝑦′2
= constant = 𝑐1

′  

Or                                            𝑦′ = 𝑐1
′ √1 + 𝑦′2 

Squaring both the sides, we get  

                                                𝑦′2 = 𝑐1
′(1 + 𝑦′2) 

Or                                           (1 − 𝑐1
′ 2)𝑦′2 = 𝑐1

′2 
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Or                    𝑦′2 =
𝑐1

′2

(1−𝑐1
′2)

 

Or                    𝑦 =
𝑐1

′

√1−𝑐1
′2

 

∴                    
𝑑𝑦

𝑑𝑥
= 𝑐1 

On integrating, we get  

                       𝑦 = 𝑐1𝑥 + 𝑐2                                       … (3) 

Which is straight line along the required shortest distance is attained. 

Now since (3) passes through 𝐴(1,0) 

∴                                       𝑐1 + 𝑐2 = 0 ⟹  𝑐2 = −𝑐1 

Then (3) becomes 

                                  𝑦 = 𝑐1𝑥 − 𝑐1              

or                              𝑦 = 𝑐1(𝑥 − 1)                                     … (4) 

Also, it passes through (𝑥2, 𝑦2)                                                                                    

∴                             𝑦2 = 𝑐1(𝑥2 − 1)                                    … (5) 

Now from equation (1), we get   

                         𝑦 =
2

3
√9 − 𝑥2 = Ψ(𝑥)                               … (6) 

By transversality condition for Ψ(𝑥), we have 

                                     [𝐹 + (Ψ′ − 𝑦′)𝐹𝑦′]
𝑥=𝑥2

= 0 

⟹                           [√1 + 𝑦′2 + (
2

3
⋅

1

2

−2𝑥

√9−𝑥2
− 𝑦′)

𝑦′

√1+𝑦′2
]

𝑥=𝑥2

= 0                 

⟹                               √1 + 𝑐1
2 −

2

3
⋅

𝑥2

√9−𝑥2

𝑐1

√1+𝑐1
2

−
𝑐1

2

√1+𝑐1
2

= 0  

⟹                                        1 + 𝑐1
2 −

2

3
⋅

𝑥2𝑐1

√9−𝑥2
2

− c1
2 = 0  

⟹                                                1 −
2

3
⋅

𝑥2𝑐1

√9−𝑥2
2

= 0  

⟹                                               3√9 − 𝑥2
2 = 2𝑥2𝑐1  

Squaring both sides, we get 

                            9(9 − 𝑥2
2) = 4𝑥2

2𝑐1
2                                    … (7) 

Now since the point (𝑥2, 𝑦2) lies on ellipse (1) 
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                         4𝑥2
2 + 9𝑦2

2 = 36                                … (8) 

Now, from (5) and (8), we get 

                                                   4𝑥2
2 + 9𝑐1

2(𝑥2 − 1)2 = 36                       

⟹                                             4(9 − 𝑥2
2) = 9𝑐1

2(𝑥2 − 1)2 

From (7), we get 

⟹                                             4 ⋅
4𝑥2

2𝑐1
2

9
= 9𝑐1

2(𝑥2 − 1)2 

⟹                                            16𝑥2
2 = 81(𝑥2 − 1)2 

⟹                                                (
𝑥2

𝑥2−1
)

2

=
81

16
 

⟹                                                   
𝑥2

𝑥2−1
=

9

4
 

⟹                                                9𝑥2 − 9 = 4𝑥2 

⟹                                                   5𝑥2 = 9 

⟹                                                     𝑥2 =
9

5
 

Now from equation (7), we get 

9 (9 −
81

25
) = 4 ×

81

25
𝑐1

2 

⟹                                                         9 ×
144

25
=

4×81

25
𝑐1

2 

⟹                                                                𝑐1
2 = 4 

⟹                                                                 𝑐1 = 2 

Now putting value of  𝑐1 and 𝑥2 in (5), we get 

                                               𝑦2 = 2 (
9

5
− 1)               

⟹                                               𝑦2 =
8

5
 

Hence, we get the point 

𝐵(𝑥2, 𝑦2) = 𝐵 (
9

5
,
8

5
) 

∴  The required shortest distance AB i.e., the distance between 𝐴(1, 0) 

and 𝐵 (
9

5
,

8

5
) is 

= √(
9

5
− 1)

2

+ (
8

5
− 0)

2
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= √
16

25
+

64

25
 

                                                                 = √
80

25
=

4√5

5
 

 

12.5 VARIATION PROBLEM WITH A MOVING 

BOUNDARY FOR A FUNCTIONAL DEPENDENT 

ON TWO FUNCTIONS 

In many problems arising in mathematics, physics, engineering, 

economics, and other sciences, it is necessary to minimize amounts of a 

certain functional. Because of the important role of this subject, 

considerable attention has been devoted to these kinds of problems. Such 

problems are called variational problems. 

Consider the functional  

  𝐼[𝑦(𝑥), 𝑧(𝑥)] = ∫ 𝐹(𝑥, 𝑦(𝑥), 𝑧(𝑥), 𝑦′(𝑥), 𝑧′(𝑥))𝑑𝑥
𝑥2

𝑥1
             … (1) 

Where the lower point 𝐴(𝑥1, 𝑦1, 𝑧1) be fixed and upper point 𝐵(𝑥2, 𝑦2, 𝑧2) 

move in an arbitrary manner, or along a given curve or surface. 

It is clear that extremum of (1) can be obtained by Euler’s equation 

                                                       
∂𝐹

∂𝑦
−

𝑑

𝑑𝑥
(

∂𝐹

∂𝑦′) = 0 

and                                                  
∂𝐹

∂𝑧
−

𝑑

𝑑𝑥
(

∂𝐹

∂𝑧′) = 0 

The general solution of these equations four arbitrary constant. 

Since the boundary point 𝐴(𝑥1, 𝑦1, 𝑧1) is fixed, it is possible to eliminate 

two arbitrary constants. The other two constant can be determined from 

the necessary condition δ𝐼 = 0 for extremum, where δ𝐼 is the variation of 

𝐼. 

Hence, δ𝐼 = 0 gives 
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Therefore (𝐹 − 𝑦′𝐹𝑦′ − 𝑧′𝐹𝑧′)
𝑥=𝑥2

⋅ δ𝑥2 + (𝐹𝑦′)
𝑥=𝑥2

⋅ δ𝑦2 +

                                                                        (𝐹𝑧′)𝑥=𝑥2
δ𝑧2 = 0               … (2) 

If δ𝑥2, δ𝑦2 and δ𝑧2 are independent. 

Then,                       [𝐹 − 𝑦′𝐹𝑦′ − 𝑧′𝐹𝑧′]
𝑥=𝑥2

= 0 

                           [𝐹𝑦′]
𝑥=𝑥2

= 0 and [𝐹𝑧′]𝑥=𝑥2
= 0              … (3) 

If the boundary point (𝑥2, 𝑦2, 𝑧2) moves along some curve  

𝑦2 = ϕ(𝑥2), 𝑧2 = Ψ(𝑥2} 

Then                                    δ𝑦2 = ϕ′(𝑥2)δ𝑥2 

And                                     δ𝑧2 = Ψ′(𝑥2)δ𝑥2 

Then, we get       

                          [𝐹 + (ϕ′ − 𝑦′)𝐹𝑦′ + (Ψ′ − 𝑧′)𝐹𝑧′]
𝑥=𝑥2

δ𝑥2 = 0 

Since δ𝑥2 is arbitrary, we have  

                          [𝐹 + (ϕ′ − 𝑦′)𝐹𝑦′ + (Ψ′ − 𝑧′)𝐹𝑧′]
𝑥=𝑥2

= 0     … (4)  

This is transversality condition in the problem of extremum of (1). 

Along with the equation 𝑦2 = ϕ(𝑥2),  𝑧2 = Ψ(𝑥2) the condition (4) 

gives the equations necessary for determining the two arbitrary constants 

in the general solution of Euler’s equation. 

Note: If the boundary point 𝐵(𝑥2, 𝑦2, 𝑧2) moves alonga given surface 

𝑧2 = ϕ(𝑥2, 𝑦2) then  δ𝑧2 =
∂ϕ

∂𝑥2
δ𝑥2 +

∂ϕ

∂𝑦2
δ𝑦2 such that the variation δ𝑥2 

and δ𝑦2 are arbitrary. 

In this case (4) reduces to  

                [𝐹 − 𝑦′𝐹𝑦′ + (ϕ𝑥 − 𝑧′) 𝐹𝑧′]
𝑥=𝑥2

δ𝑥2 + [𝐹𝑦′ +

ϕ𝑦𝐹𝑧′]
𝑥=𝑥2

δ𝑦2 = 0 

Since δ𝑥2 and δ𝑦2 are independent, we get 
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                                      [𝐹 − 𝑦′𝐹𝑦′ + (ϕ𝑥 − 𝑧′) 𝐹𝑧′]
𝑥=𝑥2

= 0 

                                                        [𝐹𝑦′ + ϕ𝑦𝐹𝑧′]
𝑥=𝑥2

 =  0 

These two conditions together with 𝑧2 = ϕ(𝑥2, 𝑦2) enable us to determine 

two arbitrary constants in the general solution of Euler’s equation. 

Example 4. Find the extremum of the functional 

                                               𝐼 = ∫ (𝒚′𝟐 + 𝒛′𝟐 + 𝟐𝒚𝒛)𝒅𝒙
𝒙𝟐

𝒙𝟏
 

With y(0) = 0, z(0) = 0 and the point (𝒙𝟐, 𝒚𝟐, 𝒛𝟐) moves over the fixed 

plane 𝒙 = 𝒙𝟐. 

Sol. Here,  

                              𝐹 = 𝑦′2 + 𝑧′2 + 2𝑦𝑧                                         … (1) 

By Euler’s equation 

                                                       
∂𝐹

∂𝑦
−

𝑑

𝑑𝑥
(

∂𝐹

∂𝑦′) = 0 

and                                                  
∂𝐹

∂𝑧
−

𝑑

𝑑𝑥
(

∂𝐹

∂𝑧′) = 0 

From (1), we have 

⟹                                                  2z −
𝑑

𝑑𝑥
(2𝑦′) = 0 

and                                                  2𝑦 −
𝑑

𝑑𝑥
(2𝑧′) = 0 

 

⟹                              
𝑑2𝑦

𝑑𝑥2 − 𝑧 = 0                                         … (2) 

and                              
𝑑2𝑧

𝑑𝑥2 − 𝑦 = 0                                         … (3) 

Now differentiating (2) with respect to x, we get 

                                          
𝑑4𝑦

𝑑𝑥4 −
𝑑2𝑧

𝑑𝑥2 = 0 

Or                                      
𝑑4𝑦

𝑑𝑥4 − 𝑦 = 0                                [ By (3) ] 

Or                                                (𝐷4 − 1)𝑦 = 0 

Auxiliary equation is 

𝑚4 − 1 = 0 



Mathematical Methods  MAT 509 

Department of Mathematics 
Uttarakhand Open University                                                                                                                          254 
 

⟹                                                  (𝑚2 − 1)(𝑚2 + 1) = 0 

⟹                                                       𝑚 = ±1, ±𝑖 

Therefore, solution is 

      𝑦 = 𝑐1 𝑐𝑜𝑠 ℎ 𝑥 + 𝑐2 𝑠𝑖𝑛 ℎ 𝑥 + 𝑐3 𝑐𝑜𝑠 𝑥 + 𝑐4 𝑠𝑖𝑛 𝑥              … (4) 

From (3),  

𝑧 =
𝑑2𝑦

𝑑𝑥2
 

i.e.,        𝑧 =  𝑐1 𝑐𝑜𝑠 ℎ 𝑥 + 𝑐2 𝑠𝑖𝑛 ℎ 𝑥 − 𝑐3 𝑐𝑜𝑠 𝑥 − 𝑐4 𝑠𝑖𝑛 𝑥    … (5) 

Now,                                             𝑦(0) = 0,  𝑧(0) = 0 

⟹                                                       𝑐1 = 𝑐3 = 0 

Now since 𝑥2 is fixed therefore, by condition of moving boundary point 

(𝑥2, 𝑦2, 𝑧2). 

[𝐹𝑦′]
𝑥=𝑥2

= 0 and [𝐹𝑧′]𝑥=𝑥2
= 0 

⟹                                             𝑦′(𝑥2) = 0,  𝑧′(𝑥2) = 0       

Then equation (4) and (5) gives  

𝑐2 𝑐𝑜𝑠 ℎ 𝑥2 + 𝑐4 𝑐𝑜𝑠 𝑥2  = 0 

𝑐2 𝑐𝑜𝑠 ℎ 𝑥2 −  𝑐4 𝑐𝑜𝑠 𝑥2  = 0 

If 𝑐𝑜𝑠 ℎ 𝑥2 ≠ 0 then 𝑐2 = 𝑐4 = 0 

And therefore, an extremum is attained on 𝑦 = 0,  𝑧 = 0. 

But if         𝑐𝑜𝑠 𝑥2 = 0 

Then 𝑐2 = 0 and 𝑐4 remains arbitrary. 

Hence, in this case extremum is 

𝑦 = 𝑐4 𝑠𝑖𝑛 𝑥 

                                                 𝑧 = −𝑐4 𝑠𝑖𝑛 𝑥. 

 

12.6 ONE SIDED VARIATIONS 

In some problems in minima of double integrals the surface over which 

the integral is taken is restricted to lie in a given closed region R. Then it 

may happen that there is no extremal surface bounded by a previously 

given space curve which lies entirely in R, but that there is a surface 
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bounded by the given curve, consisting of an extremal surface and a part 

of the boundary of R, which minimizes the given integral. 

Consider the functional 

                        𝐼[𝑦(𝑥)] = ∫ 𝐹(𝑥, 𝑦, 𝑦′) 𝑑𝑥
𝑥2

𝑥1
                            ….… (1) 

Earlier, we have discussed that the extremal curve passes through end 

point (𝑥1, 𝑦1) and (𝑥2, 𝑦2). 

But in this case, suppose that a restriction is imposed on the class of 

permissible curve in such a way that the curve cannot pass through the 

point of certain R bounded by the curve Ψ(𝑥, 𝑦) = 0. 

In such a problem that extremizing curve C either passes through a region 

which is completely outside R or C consists of arcs lying outside R and 

also consists of parts of the boundary of the region R. 

Since on these parts two-sided variation (unaffected by the region R) is 

possible. We now derive conditions at the points of transition M, N, P and 

Q. 

Now, if co-ordinate of M be (𝑥, �̅�) then the functional can be written as 

                              𝐼 = ∫ 𝐹(𝑥, 𝑦, 𝑦′) 𝑑𝑥
𝑥2

𝑥1
 

                                = ∫ 𝐹(𝑥, 𝑦, 𝑦′) 𝑑𝑥
�̅�

𝑥1
 + ∫ 𝐹(𝑥, 𝑦, 𝑦′) 𝑑𝑥

𝑥2

�̅�
 

                              𝐼 = 𝐼1 + 𝐼2                                               … (2) 

Where                                 𝐼1  = ∫ 𝐹(𝑥, 𝑦, 𝑦′) 𝑑𝑥
�̅�

𝑥1
 

and                                      𝐼2 =  ∫ 𝐹(𝑥, 𝑦, 𝑦′) 𝑑𝑥
𝑥2

�̅�
 

If the point 𝑀(�̅�, �̅�) moves to neighbouring point �̅�(�̅� + δ�̅�, �̅� + δ�̅�) on 

the boundary of region R and if 𝑦 = ϕ(𝑥) be equation of boundary then 

                δ𝐼1 =  [𝐹 + (ϕ′ − 𝑦′)𝐹𝑦′]
𝑥=�̅�

δ�̅� = 0                               … (3) 

Now,                               δ𝐼2 = 𝐼2(�̅� + δ�̅�) − 𝐼2(�̅�) 

                                              = ∫ 𝐹(𝑥, 𝑦, 𝑦′)𝑑𝑥
𝑥2

�̅�+δ�̅�
− ∫ 𝐹(𝑥, 𝑦, 𝑦′)𝑑𝑥

𝑥2

�̅�
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           △ 𝐼2 =  − ∫ 𝐹(𝑥, 𝑦, 𝑦′)𝑑𝑥
�̅�+δ�̅�

�̅�
 

           △ 𝐼2 =  − ∫ 𝐹(𝑥, ϕ(𝑥), ϕ′(𝑥) )𝑑𝑥
�̅�+δ�̅�

�̅�
       [∵  y = ϕ(x)]       … (4) 

Using mean value theorem of integral calculus, we have  

△ 𝐼2 = −[𝐹(𝑥, ϕ, ϕ′)]𝑥=�̅� ⋅△ �̅� + α △ �̅� 

Where α → 0 as △ �̅� → 0. 

Therefore, this gives 

                                            δ𝐼2 = −[𝐹(𝑥, ϕ, ϕ′)]𝑥=�̅� ⋅△ �̅�                                             

… (5) 

Combining (3) and (5), we find that 

                                            δ𝐼 = δ𝐼1 + δ𝐼2  

                                            δ𝐼 = [𝐹(𝑥, 𝑦, 𝑦′) − 𝐹(𝑥, 𝑦, ϕ′) − (𝑦′ −

ϕ′)𝐹𝑦′(𝑥, 𝑦, 𝑦′)]
𝑥=�̅�

⋅ δ�̅� 

With 𝑦(�̅�) = ϕ(�̅�) 

Since δ�̅� is arbitrary. 

Then the necessary condition δ𝐼 =  0 for an extremum reduces to 

                     [𝐹(𝑥, 𝑦, 𝑦′) − 𝐹(𝑥, 𝑦, ϕ′) − (𝑦′ − ϕ′)𝐹𝑦′(𝑥, 𝑦, 𝑦′)]
𝑥=�̅�

=

0             … (6) 

Applying the mean value theorem to this equation, we get 

                            (𝑦′ − ϕ′)[𝐹𝑦′(𝑥, 𝑦, 𝑞) −  𝐹𝑦′(𝑥, 𝑦, 𝑦′)]
𝑥=�̅�

 =  0                        

... (7) 

Where �̅� lies between 𝑞 and 𝑦′(�̅�). 

Assume                                 𝐹𝑦′𝑦′(𝑥, 𝑦, 𝑞) ≠ 0 

In this case 𝑦′(�̅�) = ϕ′(�̅�) because 𝑞 = 𝑦′ only when 𝑦′(�̅�) = ϕ′(�̅�). 

Hence, we conclude that at the point M, the extremal AM meets the 

boundary curve MN tangentially. 
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Example 5. Find the shortest path from the point 𝑨(−𝟐, 𝟑)  to the 

point 𝑩(𝟐, 𝟑 located in the region 𝒚 ≤ 𝒙𝟐. 

Sol. Here we find the extremum of the functional  

              𝐼[𝑦(𝑥)] = ∫ √1 + 𝑦′2𝑑𝑥
2

−2
                                     ... (1) 

Subject to condition that 

𝑦 ≤ 𝑥2,  𝑦(−2) = 3,  𝑦(2) = 3 

Now, here                𝐹 = √1 + 𝑦′                                               … (2)                             

∴      By Euler’s equation 

                                                       
∂𝐹

∂𝑦
−

𝑑

𝑑𝑥
(

∂𝐹

∂𝑦′) = 0 

⟹                                                0 −
𝑑

𝑑𝑥
(

𝑦′

√1+𝑦′2
) = 0 

⟹                                                   
𝑑

𝑑𝑥
(

𝑦′

√1+𝑦′2
) = 0 

On integrating, we get 

                                                  
𝑦′

√1+𝑦′2
= constant = 𝑐1

′   

⟹                                               𝑦′2 = 𝑐1
′2(1 + 𝑦′2) 

⟹                                              (1 − 𝑐1
′2)𝑦′2 = 𝑐1

′2 

⟹                                                𝑦′2 =
𝑐1

′2

1−𝑐1
′2 

Or                                            𝑦′ =
𝑐1

′

√1−𝑐1
′2

= 𝑐2 

Or                                                  
𝑑𝑦

𝑑𝑥
= 𝑐2 

On integrating, we get  

                                 𝑦 = 𝑐1 + 𝑐2𝑥                                           … (3) 

This is required extremal curve where 𝑐1 and 𝑐2 are constant. 
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Now,                                  𝐹𝑦′𝑦′ = [1 + 𝑦′(𝑥)]
3

2 ≠ 0 

Thus, the required extremal will consist not proportion of the straight-line 

AP and QB both tangent to the parabola 𝑦 = 𝑥2 and the position POQ at 

the parabola. 

Let −�̅� and �̅� be the abscissae of P and Q respectively. 

                                                 
𝑐1 + 𝑐2�̅� = 𝑥2̅̅ ̅

𝑐2 = 2�̅�
}                            … (4)  

Since tangent QB passes through (2,3). 

∴                                                𝑐1 + 2𝑐2 = 3                              … (5) 

Solving (4) and (5), we get two values of �̅� 

i.e.,                                      �̅� = 1 and �̅� = 3 

The second value is clearly not possible. 

∴                                                     �̅� = 1 

Therefore, (4) becomes  

                                              𝑐1 + 𝑐2 = 1,  𝑐2 = 2 

⟹                                           𝑐1 = −1,  𝑐2 = 2 

Hence, the required extremal to 

{
−2𝑥 − 2,  if − 2 ≤ 𝑥 ≤ −1

𝑥2,  if − 1 ≤ 𝑥 ≤ 1
2𝑥 − 1,  if 1 ≤ 𝑥 ≤ 2

 

This, clearly minimize the functional. 

CHECK YOUR PROGRESS  

True or false Questions 

Problem 1. The distance between the curve 𝑦1(𝑥) = 𝑥 and 

𝑦2(𝑥) = 𝑥2 on the interval [0, 1] is 
1

4
 True/False. 

Problem 2. The shortest distance between the point 

𝐴(−1, 5) and the parabola 𝑦2 = 𝑥 is √20 True/False. 
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Problem 3. Ttransversality conditions 

                                          

[𝐹 + (Ψ′ − 𝑦′)𝐹𝑦′]
𝑥=𝑥1

= 0

[𝐹 + (ϕ′ − 𝑦′)𝐹𝑦′]
𝑥=𝑥2

= 0
  True/False. 

Problem 4. The shortest distance between the point 

𝐴(−1, 3) and the straight line 𝑦 = 1 − 3𝑥 𝑖𝑠 
1

√110
 True/False. 

Problem 5. When the prescribed end conditions are 

homogeneous, we shall use a modified method. True/False 

Problem 6. The functional ∫ (𝑦′2 + 𝑥2)𝑑𝑥
𝑥2

𝑥1
 with y(1) = 1 

achieves its: 

(a) Weak maximum on all its extremals 

(b) Weak minimum on all its extremals 

(c) Weak maximum on some, but not on all of its extremals 

(d) Weak minimum on some but not all of its extremals 

Problem 7. The shortest distance between the circle 𝑥2 +

𝑦2 = 4 and the straight line 2 𝑥 + 𝑦 =  6 𝑖𝑠 √5 (
6

5
−

2

√5
). 

Problem 8. Extremals of the functional 

 ∫ (𝑦′′2 − 𝑦2 + 𝑥2)𝑑𝑥
π/2

0
 

(a) one parameter family of curves 

(b) two parameter family of curves 

(c) three parameter family of curves  

(d) four parameter family of curves 

 
 

 

12.7 SUMMARY 
 

1. If the functional 

𝐼[𝑦(𝑥)] = ∫ 𝐹(𝑥, 𝑦, 𝑦′) 𝑑𝑥
𝑥2

𝑥1

 

Such that the boundary point (𝑥1, 𝑦1) is fixed and other boundary point 

(𝑥2, 𝑦2) is moving along curve 𝑦 = ϕ(𝑥).  
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Then Euler’s equation. 

                                                         
∂𝐹

∂𝑦
−

𝑑

𝑑𝑥
(

∂𝐹

∂𝑦′) = 0 

And transversality condition. 

[𝐹 + (ϕ′ − 𝑦′)𝐹𝑦′]
𝑥=𝑥2

= 0 

gives extremal. 

2. If the functional 

𝐼[𝑦(𝑥)] = ∫ 𝐹(𝑥, 𝑦, 𝑦′) 𝑑𝑥
𝑥2

𝑥1

 

Such that the boundary point (𝑥1, 𝑦1) moves along curve 𝑦 = Ψ(𝑥) and 

other boundary point (𝑥2, 𝑦2) is moves along curve 𝑦 = ϕ(𝑥).  

Then Euler’s equation. 

                                                         
∂𝐹

∂𝑦
−

𝑑

𝑑𝑥
(

∂𝐹

∂𝑦′) = 0 

And transversality condition. 

 

                                          

[𝐹 + (Ψ′ − 𝑦′)𝐹𝑦′]
𝑥=𝑥1

= 0

[𝐹 + (ϕ′ − 𝑦′)𝐹𝑦′]
𝑥=𝑥2

= 0
 

 

gives the extremal of functional. 

3. If the functional  

                           𝐼[𝑦(𝑥), 𝑧(𝑥)] = ∫ 𝐹(𝑥, 𝑦(𝑥), 𝑧(𝑥), 𝑦′(𝑥), 𝑧′(𝑥))𝑑𝑥
𝑥2

𝑥1
                                     

Such that the point (𝑥1, 𝑦1, 𝑧1) be fixed and point (𝑥2, 𝑦2, 𝑧2) moves in an 

arbitrary manner, or along a given curve or surface. 

𝑦 = ϕ(𝑥),  𝑧 = Ψ(𝑥) 

Then Euler’s equation 

                                                       
∂𝐹

∂𝑦
−

𝑑

𝑑𝑥
(

∂𝐹

∂𝑦′) = 0 

and                                                  
∂𝐹

∂𝑧
−

𝑑

𝑑𝑥
(

∂𝐹

∂𝑧′) = 0 

and transversality condition 

[𝐹 + (ϕ′ − 𝑦′)𝐹𝑦′ + (Ψ′ − 𝑧′)𝐹𝑧′]
𝑥=𝑥2

= 0 

Gives extremal. 
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12.8 GLOSSARY  
 

Integration  

Even, odd functions   

Trigonometric functions 

Differentiation 

First order derivatives 

Second order derivatives 

Expansions of function 

Series  

 

12.9    REFERENCES  

 
1. F. G. Tricomi: Integral equations, Inter science, New York.  

2. P. Hartman: Ordinary Differential Equations, John Wiley, 1964.  

3. I.M. Gelfand and S. V. Francis: Calculus of Variation, Prentice Hall, 

New Jersey.  

4. L. G. Chambers: Integral Equations, International Text Book Company 

Ltd., London.  

5. R.P. Kanwal: Linear Integral Equations, Birkhauser, Inc., Boston, MA, 

1997.  

6. Shair Ahmad and M.R.M. Rao: Theory of ordinary differential 

equations, Affiliated East-West Press Pvt. Ltd., New Delhi, 1999. 

 

 

12.10 SUGGESTED READING 
 

1. E. Kreyszig,(2011), Advanced Engineering Mathematics, 9th edition, 

John Wiley and Sons, Inc.  

2. Kōsaku Y, Lectures on Differential and Integral Equations, Translated 

from the Japanese. Reprint of the 1960 translation, Dover Publications, 

New York, 1991.  

3. Porter D and Stirling D S G, Integral Equations: A Practical Treatment 

from Spectral Theory to Applications, Cambridge University Press 

(1990).  



Mathematical Methods  MAT 509 

Department of Mathematics 
Uttarakhand Open University                                                                                                                          262 
 

4. Lovitt W V, Linear Integral Equations. Dover Publications, New York, 

1950. 

 

 

12.11 TERMINAL AND MODEL QUESTIONS 
 

TQ 1. Use the calculus of variation to find the shortest distance between 

the line 𝑦 = 𝑥 and the parabola 𝑦2 = 𝑥 − 1. 

TQ 2. If 𝑙 is not prescribed show that the extremals corresponding to the 

problem δ ∫ 𝑦′2𝑑𝑥
1

0
= 0, 𝑦(0), 𝑦(𝑙) = 𝑠𝑖𝑛 𝑙 are of the form 

 𝑦(𝑥) = 2 + 2𝑥 𝑐𝑜𝑠 𝑙 where 𝑙 satisfies the transcendental equation  

2 + 2𝑙 𝑐𝑜𝑠 𝑙 − 𝑠𝑖𝑛 𝑙 = 0. 

 TQ 3. If 𝑙 is not prescribed show that the extremals of the problem 

                 δ ∫ [𝑦′2 + 4(𝑦 − 𝑙)]𝑑𝑥
1

0
= 0 𝑦(0) = 2,  𝑦(𝑙) = 𝑙2 

Are of the form 𝑦(𝑥) = 𝑥2 + 2 −
2𝑥

𝑙
. Where 𝑙 is root of equation 

 2𝑙4 − 2𝑙3 + 𝑙 = 0. 

TQ 4. Find the shortest distance between the point 𝐴(−1, 5) and the 

parabola 𝑦2 = 𝑥. 

TQ 5. Find the shortest distance between the point 𝐴(−1, 3) and the 

straight line 𝑦 = 1 − 3𝑥. 

TQ 6. Find the shortest distance between the circle 𝑥2 + 𝑦2 = 1 and the 

straight line 𝑥 + 𝑦 =  4. 

TQ 7. Find the shortest distance between the circle 𝑥2 + 𝑦2 = 4 and the 

straight line 2 𝑥 + 𝑦 =  6. 

TQ 8. Find the shortest distance between the parabola 𝑦2 = 4𝑥 and the 

circle (𝑥 − 9)2 + 𝑦2 = 4. 

    



Mathematical Methods  MAT 509 

Department of Mathematics 
Uttarakhand Open University                                                                                                                          263 
 

12.12 ANSWERS 
        

TQ1    
𝟑√𝟐

𝟖
 

TQ4  √𝟐𝟎 

TQ5  
𝟏

√𝟏𝟎
 

TQ6  𝟐√𝟐 − 𝟏 

TQ7  √𝟓 (
𝟔

𝟓
−

𝟐

√𝟓
) 

TQ8  √𝟖 (𝟐 −
𝟏

√𝟓
) 

CHECK YOUR PROGRESS 

        CYQ 1. True   

        CYQ 2. True  

        CYQ 3. True  

        CYQ 4. False 

        CYQ 5. False 

        CYQ 6. (b) 

        CYQ 7. True 

        CYQ 8. (d) 
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UNIT 13: SUFFICIENT CONDITIONS FOR 

AN EXTREMUM 
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13.1 INTRODUCTION 

The sufficient conditions in the calculus of variations have recently 

received a great deal of attention and it would seem fitting that attempts 

be made to simplify their discussion whenever possible, and to render the 

agreement more exact between the known necessary and the known 

sufficient conditions. Such is the purpose of this paper, which also seeks 

to present the sufficient conditions in compact form. The work will to a 

large extent follow lectures delivered at Göttingen by Professor Hubert, 

1899-1901. In mechanics, Hamilton’s principle and Lagrange’s equation 

can be derived very easily with the help of calculus of variation. In this 

unit learner learnt about the sufficient condition of Legendre to find out 

the nature of extremal. 

  

 

13.2 OBJECTIVE 

            At the end of this topic learner will be able to understand:  

           (i) Proper Field 

            (ii) Legendre condition 

            (iii) Weak and Strong Extremum 

            (vi) Hamilton’s principle 

            (v) Lagrangian of a system 

 

13.3 PROPER FIELD 

A family of curve y = y(x, c) where c is a parameter is said to form a 

proper field in a given region D of the xy-plane if one and only one curve 

of the family passes through every point of the region D. 

∎ Jacobi Condition: consider one parameter family of plane curves 

∅(𝑥, 𝑦, 𝑐) = 0 where c is parameter. 
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For this family c – discriminant is the locus of point of intersection of 

                         ∅(𝑥, 𝑦, 𝑐) = 0 and 
𝜕∅

𝜕𝑐
= 0 

Which include envelope of the family, the locus of cuts and locus of nodal 

points too. 

If we have a pencil of curves with centre at A(𝑥1, 𝑦1) then A(𝑥1, 𝑦1) also 

belongs to this locus. 

Suppose a pencil of extremals passing from A(𝑥1, 𝑦1) such that the 

∅(𝑥, 𝑦) = 0 is the c – discriminant. 

Then the envelope Γ of this pencil of extremals will belongs to 

 ∅(𝑥, 𝑦) = 0. 

Every extremals of the family will touch this envelope Γ . the point 𝐴1 

where the extremal  

y = y(x) touches the envelope is called the conjugate point of A. if 

B(𝑥2, 𝑦2) be a point which lies in between A and  𝐴1 then the extremals 

of the pencil close to AB do not intersect. Hence, it follows that extremal 

close to AB from a central field including the arc AB. 

Now for the extremal A𝐵1 it follows that the conjugate point 𝐴2 of A lies 

in between A and 𝐵1 and the curves of the curves of the pencil closed to 

A𝐵1 intersect. 

Therefore, the extremal A𝐵1 cannot be embedded in a central field. 

Hence, to embed an arc AB of the extremal in a central field of extremals 

it is sufficient that the conjugate point of A does not lie on the curve. 

This is known as Jacobi condition. 

∎ Mathematical Definition: let y = y(x, c) be the equation of pencil of 

extremals with c is parameter and A Centre. The parameter c is regarded 

as slope 𝑦′ = 
𝑑𝑦

𝑑𝑥
 of the extremals at A. 
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The c–discriminant is given by y = y(x, c) and 
𝜕𝑦

𝜕𝑐
 = 0. 

Let u = 
𝜕𝑦(𝑥,𝑐)

𝜕𝑐
 which is a function of x along for every fixed curve of 

family. 

For the extremum of  

                         I[y(x)] = ∫ 𝐹(𝑥, 𝑦, 𝑦′)𝑑𝑥
𝑥2

𝑥1
          ……... (1) 

y = y(x, c) is a solution of Euler’s equation. 

Therefore   𝐹𝑦[𝑥, 𝑦(𝑥, 𝑦); 𝑦′
𝑥

(𝑥, 𝑐)] - 
𝑑

𝑑𝑥
𝐹′

𝑦 [𝑥, 𝑦(𝑥, 𝑐); 𝑦′
𝑥

(𝑥, 𝑐)] = 0 

Differentiating w.r.t. c, we get  

           (𝐹𝑦𝑦 −
𝑑

𝑑𝑥
𝐹𝑦𝑦′)𝑢 −

𝑑

𝑑𝑥
(𝐹𝑦′𝑦′  𝑢′) = 0     ……. (2) 

This is Jacobi equation. 

Let y(x) is a solution of Euler’s equation with equation with c = 𝑐0 for the 

extremal AB. 

Further, if the solution u = 
𝜕𝑦

𝜕𝑐
 vanishes at A(𝑥1, 𝑦1) then Centre of the 

pencil belongs to  

the c – discriminant curve, also vanish at some point of the internal 

 𝑥1 < 𝑥 < 𝑥2 , then the point conjugate to A given by  

                                        y = y(x, 𝑐0) and (
𝜕𝑦

𝜕𝑐
)

𝑐=𝑐0

= 0 

lies on the arc AB of the extremal with B at the point (𝑥2, 𝑦2).  

If there exist a solution of (2) which vanishes for x = 𝑥1 and does not 

vanish at any point in  

𝑥1 ≤ 𝑥 ≤ 𝑥2  then are no points conjugate to A lying on arc AB. 

Thus, the Jacobi condition is satisfied and the arc at the extremal can be 

embedded in a central field of the extremals with Centre at A. 



Mathematical Method  MAT 509 

Department of Mathematics 
Uttarakhand Open University                                                                                                                          268 
 

 

13.4 SUFFICIENT CONDITION FOR 

EXTREMUM (LEGENDRE CONDITION) 

Legendre condition is sufficient condition to find out the nature of 

extremal. 

Consider the functional  

                   I[y(x)] = ∫ 𝐹(𝑥, 𝑦, 𝑦′)𝑑𝑥
𝑥2

𝑥1
          ……... (1) 

With           y(𝑥1) = 𝑦1 , y(𝑥2) = 𝑦2 

Let C be the extremal curve of functional (1) and 𝐶̅ be neighboring curve 

of C. 

Therefore, consider  

                                   𝐼1 = ∫ 𝐹(𝑥, 𝑦, 𝑦′)𝑑𝑥
C

 for extremal curve C and  

                                   𝐼2 = ∫ 𝐹(𝑥, 𝑦, 𝑦′)𝑑𝑥
𝐶̅  for extremal curve 𝐶̅  

Let p = 
𝑑𝑦

𝑑𝑥
 on C 

Consider the auxiliary functional 

 ∫ [𝐹(𝑥, 𝑦, 𝑝) + (
𝑑𝑦

𝑑𝑥
− 𝑝) 𝐹𝑝(𝑥, 𝑦, 𝑝)] 𝑑𝑥

𝐶̅  

The integral in this integration is an exact differentiation of function. 

Therefore  

it is independent of path 

Therefore ∫ [𝐹(𝑥, 𝑦, 𝑝) + (
𝑑𝑦

𝑑𝑥
− 𝑝) 𝐹𝑝(𝑥, 𝑦, 𝑝)] 𝑑𝑥

𝐶̅  

                = ∫ 𝐹(𝑥, 𝑦, 𝑦′)𝑑𝑥
C

     ….... (2) 

Now ∆𝐼 = ∫ 𝐹(𝑥, 𝑦, 𝑦′)𝑑𝑥
𝐶̅ − ∫ 𝐹(𝑥, 𝑦, 𝑦′)𝑑𝑥

C
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              = ∫ 𝐹(𝑥, 𝑦, 𝑦′)𝑑𝑥
𝐶̅ − ∫ [𝐹(𝑥, 𝑦, 𝑝) + (

𝑑𝑦

𝑑𝑥
− 𝑝) 𝐹𝑝(𝑥, 𝑦, 𝑝)] 𝑑𝑥

𝐶̅  

              = ∫ [𝐹(𝑥, 𝑦, 𝑦′)𝑑𝑥
𝐶̅ − 𝐹(𝑥, 𝑦, 𝑝) − (

𝑑𝑦

𝑑𝑥
− 𝑝) 𝐹𝑝(𝑥, 𝑦, 𝑝)]𝑑𝑥 

Or ∆𝐼 = ∫ 𝐸(𝑥, 𝑦, 𝑦′)𝑑𝑥
𝐶̅  

Where E (x, y, p, 𝑦′)  = 𝐹(𝑥, 𝑦, 𝑦′) − 𝐹(𝑥, 𝑦, 𝑝) – (𝑦′ − 𝑝)𝐹𝑝(𝑥, 𝑦, 𝑝) 

This E (x, y, p, 𝑦′)  is called Weirstrass function. 

Now if E ≤ 0, then extremal is maximum. And if E ≥ 0, then extremal is 

minimum. 

This is required Legendre condition. 

 

ILLUSTRATIVE EXAMPLES 

Example 1. Find the Weirstrass function and test the extremal of the 

functional  

                    I[y(x)] = ∫ 𝑦′2𝑑𝑥
𝑎

0
 and y(0) = 0, y(a) = b where a > 0, b > 0. 

Sol. Here          F = 𝑦′2
        ……. (1) 

By Euler’s equation  

𝜕𝐹

𝜕𝑦
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
) = 0 

Therefore         0 - 
𝑑

𝑑𝑥
(𝑦′2) = 0     

Therefore               
𝑑

𝑑𝑥
(𝑦′2) = 0     

On integration, we get  

                               𝑦′2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Or                         (
𝑑𝑦

𝑑𝑥
)

2

 = constant 

Or                          
𝑑𝑦

𝑑𝑥
 = constant = 𝑐1. 
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Again integrating we get  

                                  y = 𝑐1𝑥 + 𝑐2               ……… (2) 

Now,                           y(0) = 0   ⇒ 𝑐2 = 0 

                                    y(a) = b    ⇒ 𝑐1𝑎 = 𝑏  ⇒ 𝑐1 = 
𝑏

𝑎
 

putting value of 𝑐1 and 𝑐2 in (2), we get 

                                    y = 
𝑏

𝑎
𝑥         ……. (3) 

this is required extremal. 

Weirstrass Function 

The Weirstrass function is  

E (x, y, p, 𝑦′)  = 𝐹(𝑥, 𝑦, 𝑦′) − 𝐹(𝑥, 𝑦, 𝑝) – (𝑦′ − 𝑝)𝐹𝑝(𝑥, 𝑦, 𝑝) 

E (x, y, p, 𝑦′)  = 𝑦′3 − 𝑝3 − (𝑦′ − 𝑝). 3𝑝2 

                        = 𝑦′3 − 𝑝3 − 3𝑝2𝑦′ + 3𝑝3 

                        = 𝑦′3 + 2𝑝3 − 3𝑝2𝑦′ 

Therefore E (x, y, p, 𝑦′)  =(𝑦′ − 𝑝)2(𝑦′ + 2𝑝) 

This is required Weirstrass function. 

Now, since E (x, y, p, 𝑦′)  =(𝑦′ − 𝑝)2(𝑦′ + 2𝑝) ≥ 0 

Therefore, extremal is maxima. 

 

13.5 WEAK AND STRONG EXTEMUM 

Consider the functional  

                      I[y(x)] = ∫ 𝐹(𝑥, 𝑦, 𝑦′)𝑑𝑥
𝑥2

𝑥1
          ……... (1) 

With              y(𝑥1) = 𝑦1 , y(𝑥2) = 𝑦2 
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Let C be the extremal curve of the given functional. 

Also, assume that the extremal of curve C is included in a field of 

extremals.  

Ther Legendre condition for weak extremum and strong extremum are: 

∎ Weak Extremum 

1. The curve C is extremal satisfying the boundary condition. 

2.  Jacobi condition must Satisfied. 

3. The Weirstrass function E does not change sign at any point (x, y) close 

to the curve C and for arbitrary values of 𝑦′ close to p(x, y) on the 

extremals. 

4. For weak minimum E ≥ 0 or 𝐹𝑦′𝑦′ > 0 on C and for weak maximum 

𝐹 ≤ 0 or 𝐹𝑦′𝑦′ < 0 on C. 

∎ Strong Extremum 

1. The curve C is extremal satisfying the boundary condition. 

2. The extremal C is embedded in a field of extremals. 

3. At a point (x, y) closed to the curve C and for arbitrary value of 𝑦′, the 

Weirstrass function E does not change sign. 

4. For strong minimum E ≥ 0 or 𝐹𝑦′𝑦′ > 0 at point close to C and also 

arbitrary value of 𝑦′ and for strong maximum E ≤ 0 or 𝐹𝑦′𝑦′ < 0 at points 

closed curve C and also for arbitrary value of 𝑦′. 

 

ILLUSTRATIVE EXAMPLES 

Example 1. Test for the extremal of the functional  

                    I[y(x)] = ∫ (𝑒𝑦′
+ 3)𝑑𝑥

2

0
 and y(0) = 0, y(2) = 1. 
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Sol. Here          F(x, y, 𝑦′)  = 𝑒𝑦′
+ 3        ……. (1) 

By Euler’s equation  

                                  

𝜕𝐹

𝜕𝑦
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
) = 0 

Therefore         0 - 
𝑑

𝑑𝑥
(𝑒𝑦′

) = 0     

Therefore               
𝑑

𝑑𝑥
(𝑒𝑦′

) = 0     

Therefore                𝑒𝑦′
𝑦′′ = 0 

Therefore               𝑦′′ = 0       ( ∵ 𝑒𝑦′
≠ 0) 

On integrating, we get       y = 𝑐1𝑥 + 𝑐2        …… (2) 

Hence the extremal of the given functional is attained only on the straight 

line. 

Now, from (2)  

                       y(0) = 0      ⇒ 𝑐2 = 0 

                       y(2) = 1      ⇒ 2𝑐1 = 1 

therefore      𝑐1 =
1

2
 , 𝑐2 = 0 

then (1) becomes     y = 
1

2
𝑥 

hence the extremal satisfying the boundary condition is y = 
𝑥

2
 which is 

including in the central field of extremals y = 𝑐1𝑥. 

Now,                 F(x, y, 𝑦′)  = 𝑒𝑦′
+ 3     

Therefore          𝐹𝑦′  = 𝑒𝑦′
     and 𝐹𝑦′𝑦′  = 𝑒𝑦′

> 0 for any value of 𝑦′. 

Therefore, by Legendre condition, the given functional is strong minimum 

on extremal y = 
𝑥

2
 . 
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Example 2. Test for the extremal of the functional  

                    I[y(x)] = ∫ (𝑦′2 − 𝑦2)𝑑𝑥
𝑎

0
 and y(0) = 0, y(a) = 0, a > 0. 

Sol. Here          F(x, y, 𝑦′)  = 𝑦′2 − 𝑦2        ……. (1) 

By Euler’s equation  

                                  

𝜕𝐹

𝜕𝑦
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
) = 0 

Therefore         -2y - 
𝑑

𝑑𝑥
(2𝑦′) = 0     

Therefore          
𝑑

𝑑𝑥
(

𝑑𝑦

𝑑𝑥
) + y = 0 ⟹ 

𝑑2𝑦

𝑑𝑥2 + y = 0 

Auxiliary equation      𝑚2 + 1 = 0 

⟹     m = i, - i 

Therefore the general solution is  

                   y = 𝑐1 𝑐𝑜𝑠𝑥 + 𝑐2 𝑠𝑖𝑛𝑥         ……… (2) 

Now,        y(0) = 0     ⟹ 𝑐1 = 0     and    y(a) = 0 ⟹ 𝑐2𝑠𝑖𝑛𝑎 = 0    

Now if a ≠ 𝑛𝜋 , i.e. 𝑠𝑖𝑛𝑎 ≠ 0 

hence we get     𝑐1 = 0   and 𝑐2 = 0   

hence if a ≠ 𝑛𝜋, the extremum is attained only on the straight line y = 0. 

Now, if a < 𝜋, then pencil at extremals y = 𝑐2 sin x with centre (0, 0) for 

the central field. 

And now science F(x, y, 𝑦′)  = 𝑦′2 − 𝑦2 

Therefore               𝐹𝑦′ = 2𝑦′   and 𝐹𝑦′𝑦′ = 2  > 0 for all 𝑦′ 

Therefore, a strong minimum is attained on y = 0 for a < 𝜋.  

For a > 𝜋, extremals y = 𝑐2 sin x neither form a proper field nor form a 

central field. 

Hence, for a > 𝜋, minimum is not attained on y = 0. 
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Example 3. Investigate for the extremal of the functional  

                    I[y(x)] = ∫ (𝑥 + 2𝑦 −
1

2
𝑦′

2
)𝑑𝑥

𝑎

0
 and y(0) = 0, y(1) = 0. 

Sol. Here          F(x, y, 𝑦′)  = 𝑥 + 2𝑦 −
1

2
𝑦′

2
        ……. (1) 

By Euler’s equation  

                                  

𝜕𝐹

𝜕𝑦
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
) = 0 

Therefore         2 - 
𝑑

𝑑𝑥
(

1

2
2𝑦′) = 0     

⟹                    2 - 
𝑑

𝑑𝑥
(

𝑑𝑦

𝑑𝑥
) = 0    ⟹  

𝑑2𝑦

𝑑𝑥2 = 2 

On integrating, we get   y = 𝑥2 + 𝑐1𝑥 + 𝑐2          ……… (2) 

Now,     y(0) = 0   ⟹ 𝑐2 = 0  and   

              y(1) =  0     ⟹  1 + 𝑐1 + 𝑐2 = 0 

⟹          𝑐1 = −1 , 𝑐2 = 0 

Therefore (2) becomes      y = 𝑥2 − 𝑥 

Hence the extremal satisfying the boundary condition is y = 𝑥2 − 𝑥 which 

is included in the central field of extremals y = 𝑥1
2 + 𝑐1𝑥. Whose centre 

at (0, 0) 

Now, since     F= x + 2y + 
1

2
𝑦′2

 

Therefore       𝐹𝑦′ =
1

2
. 2𝑦′ = 𝑦′ 

Therefore      𝐹𝑦′𝑦′ = 1 > 0 

Therefore, by Legendre condition the given functional is strong 

minimum on  

extremal y = 𝑥2 − 𝑥. 

 

13.6 APPLICATION OF THE CALCULUS OF 

                              VARIATION 
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The calculus of variation is widely applied in mechanics, mechanical 

engineering control theory etc. and used in solving some important 

problem in economics. 

In mechanics, Hamilton’s principle and Lagrange’s equation can be 

derived very easily with the help of calculus of variation. 

 

13.7 HAMILTION’S PRINCIPLE 

 A particle moves in a conservative field in such a way that  

                         ∫ (𝑇 − 𝑉)𝑑𝑡
𝑡2

𝑡1
 is extremum, actually a minimum, where T 

is kinetic energy and V is potential energy of the system. 

Proof. Let there be n particles of mass 𝑚𝑖; 𝑖 = 1, 2, 3, … . , 𝑛 and their 

position vectors are  

𝑟𝑖; 𝑖 = 1, 2, 3, … . , 𝑛 relative to co-ordinate system. Let 𝐹𝑖; 𝑖 =

1, 2, 3, … . , 𝑛 be applied force acting on the 𝑖𝑡ℎ particle. 

Then, the equation of the motion of particle are  

             𝑚𝑖
𝑑2𝑟𝑖

𝑑𝑡2 = 𝐹𝑖; 𝑖 = 1, 2, 3, … . , 𝑛         ……. (1) 

And from these equations, we can determine the path 𝑐𝑖; 𝑖 = 1, 2, 3, … . , 𝑛 

transversed by n particles. 

Next, assume that the path of 𝑖𝑡ℎ particle has been varied without changing 

the end points. 

If the variation of the path be 𝛿𝑟𝑖 , sometimes called virtual displacement. 

Then from (1), we get (𝑚𝑖
𝑑2𝑟𝑖

𝑑𝑡2 ) 𝜕𝑟𝑖 = 𝐹𝑖𝛿𝑟𝑖       …….. (2) 

Summing for all particles, we get  

                 ∑ 𝑚𝑖
𝑑2𝑟𝑖

𝑑𝑡2
𝑛
𝑖=1 𝛿𝑟𝑖 = ∑ 𝐹𝑖𝛿𝑟𝑖

𝑛
𝑖=1                  ……. (3) 
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Where right hand side indicates the total work done 𝛿𝑊 under the 

displacement of the path, then 𝛿𝑊 = ∑ 𝐹𝑖𝛿𝑟𝑖
𝑛
𝑖=1                  or      𝛿𝑊 = 

∑ 𝑚𝑖
𝑑2𝑟𝑖

𝑑𝑡2
𝑛
𝑖=1 𝛿𝑟𝑖       …… (4) 

Now, the kinetic energy of the system is  

          T = 
1

2
∑ 𝑚𝑖 (

𝑑𝑟𝑖

𝑑𝑡
)

2
𝑛
𝑖=1      …….. (5) 

Therefore 𝛿𝑇 = ∑ 𝑚𝑖
𝑑𝑟𝑖

𝑑𝑡

𝑛
𝑖=1 𝛿(

𝑑𝑟𝑖

𝑑𝑡
)        = ∑ 𝑚𝑖

𝑑𝑟𝑖

𝑑𝑡

𝑛
𝑖=1 .

𝑑

𝑑𝑡
(𝛿𝑟𝑖)     …… (6) 

But 
𝑑

𝑑𝑡
(

𝑑𝑟𝑖

𝑑𝑡
𝛿𝑟𝑖)     = 

𝑑2𝑟𝑖

𝑑𝑡2  . 𝛿𝑟𝑖 + 
𝑑𝑟𝑖

𝑑𝑡
.

𝑑

𝑑𝑡
(𝛿𝑟𝑖)      

Multiplying both side by 𝑚𝑖 and summing from I = 1 to n, we get  

∑ 𝑚𝑖
𝑑

𝑑𝑡

𝑛
𝑖=1 [

𝑑𝑟𝑖

𝑑𝑡
𝛿𝑟𝑖] =   ∑ 𝑚𝑖

𝑑2𝑟𝑖

𝑑𝑡2  . 𝛿𝑟𝑖
𝑛
𝑖=1  + ∑ 𝑚𝑖

𝑑𝑟𝑖

𝑑𝑡

𝑛
𝑖=1 .

𝑑

𝑑𝑡
(𝛿𝑟𝑖)      

                                = 𝛿𝑇 + 𝛿𝑊      by (4) and (6) 

Hence,      𝛿𝑇 + 𝛿𝑊 = ∑ 𝑚𝑖
𝑑

𝑑𝑡

𝑛
𝑖=1 [

𝑑𝑟𝑖

𝑑𝑡
𝛿𝑟𝑖] 

Integrate w.r.t. t from 𝑡1 to 𝑡2 , we get  

∫ (
𝑡2

𝑡1
 𝛿𝑇 + 𝛿𝑊)𝑑𝑡 = [𝑚𝑖

𝑑𝑟𝑖

𝑑𝑡
𝛿𝑟𝑖]

𝑡1

𝑡2

 = 0 because 𝛿𝑟𝑖 = 0 at 𝑡1 and 𝑡2. 

Therefore ∫ (
𝑡2

𝑡1
 𝛿𝑇 + 𝛿𝑊)𝑑𝑡 = 0      ……. (7) 

Now, if force is conservative then W = -V 

Where     V = potential function. 

Therefore (7) becomes ∫ (
𝑡2

𝑡1
 𝛿𝑇 + 𝛿(−𝑉))𝑑𝑡 = 0       

Or                                 𝛿 ∫ (
𝑡2

𝑡1
 𝑇 − 𝑉)𝑑𝑡 = 0      

From this it can be stated that in a conservative field, a system moves from 

𝑡1 to 𝑡2 in such a way that ∫ (
𝑡2

𝑡1
 𝑇 − 𝑉)𝑑𝑡 is an extremum, actually a 

minimum. 



Mathematical Method  MAT 509 

Department of Mathematics 
Uttarakhand Open University                                                                                                                          277 
 

Hence, we conclude that in a conservative field, a system moves from 𝑡1 

to 𝑡2 in such a way that ∫ (
𝑡2

𝑡1
 𝑇 − 𝑉)𝑑𝑡 is minimum. 

 

13.8 LAGRANGIAN OF A SYSTEM 

The expression       L = T – V     where T is kinetic energy and V is 

potential energy of the system is called Lagrangian.  

 

Note:∎ Lagrangian L is function of the co-ordinate of particle i.e. 

generalized co-ordinate (𝑞𝑖), their velocities (𝑞𝑖) and time (t). 

i.e.     L = L(𝑞1, 𝑞2, … … 𝑞𝑛 , 𝑞1,̇ 𝑞2,̇  ….., 𝑞𝑛 ,̇  t) hence, Hamilton’s 

principle states that for a conservation system. ∫ 𝛿𝐿 𝑑𝑡 = 0
𝑡2

𝑡1
. 

 

13.9 LAGRANGE’S EQUATION 

 

Consider Lagrangian L = L(𝑞1, 𝑞2, … … 𝑞𝑛 , 𝑞1,̇ 𝑞2,̇  ….., 𝑞𝑛) ̇      ….. (1) 

Where 𝑞1, 𝑞2, … … 𝑞𝑛 are generalized co-ordinate of system of particles. 

Now, from (1)      𝛿𝐿 = ∑
𝜕𝐿

𝜕𝑞𝑗
𝛿𝑞𝑗 + ∑

𝜕𝐿

𝜕𝑞�̇�
𝛿𝑞�̇�

𝑛
𝑗=1

𝑛
𝑗=1           ……. (2) 

By Hamilton’s principle ∫ 𝛿𝐿 𝑑𝑡 = 0
𝑡2

𝑡1
  

Using (2), we get ∫ [∑
𝜕𝐿

𝜕𝑞𝑗
𝛿𝑞𝑗 + ∑

𝜕𝐿

𝜕𝑞�̇�
𝛿𝑞�̇�

𝑛
𝑗=1

𝑛
𝑗=1 ]  𝑑𝑡 = 0

𝑡2

𝑡1
 

Therefore ∫ ∑
𝜕𝐿

𝜕𝑞𝑗
𝛿𝑞𝑗𝑑𝑡 + ∫ ∑

𝜕𝐿

𝜕𝑞�̇�
𝛿𝑞�̇�

𝑛
𝑗=1

𝑡2

𝑡1

𝑛
𝑗=1 𝑑𝑡 = 0

𝑡2

𝑡1
 

Therefore ∫ ∑
𝜕𝐿

𝜕𝑞𝑗
𝛿𝑞𝑗𝑑𝑡 + ∫ ∑

𝜕𝐿

𝜕𝑞�̇�

𝑑

𝑑𝑡
(𝛿𝑞𝑗)̇𝑛

𝑗=1
𝑡2

𝑡1

𝑛
𝑗=1 𝑑𝑡 = 0

𝑡2

𝑡1
 

Therefore  

∫ ∑
𝜕𝐿

𝜕𝑞𝑗
𝛿𝑞𝑗𝑑𝑡 +

𝑛

𝑗=1

[∑
𝜕𝐿

𝜕𝑞�̇�
𝛿𝑞�̇�

𝑛

𝑗=1

]

𝑡1

𝑡2

− ∫ ∑
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞�̇�
)

𝑛

𝑗=1

𝑡2

𝑡1

𝛿𝑞𝑗𝑑𝑡 = 0
𝑡2

𝑡1
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Since 𝛿𝑞𝑗 = 0 at 𝑡1 and 𝑡2 

Therefore ∫ ∑
𝜕𝐿

𝜕𝑞𝑗
𝛿𝑞𝑗𝑑𝑡𝑛

𝑗=1 − ∫ ∑
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞�̇�
)𝑛

𝑗=1
𝑡2

𝑡1
𝛿𝑞𝑗𝑑𝑡 = 0

𝑡2

𝑡1
 

Therefore ∫ [∑
𝜕𝐿

𝜕𝑞𝑗
−

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞�̇�
)𝑛

𝑗=1 ] 𝛿𝑞𝑗𝑑𝑡
𝑡2

𝑡1
= 0 

Therefore ∑ {
𝜕𝐿

𝜕𝑞𝑗
−

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞�̇�
)} 𝛿𝑞𝑗

𝑛
𝑗=1  = 0 

Since 𝛿𝑞𝑗 are arbitrary and independent to each other. 

Therefore 
𝜕𝐿

𝜕𝑞𝑗
−

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞�̇�
) = 0 this is Lagrange’s equation. 

 

ILLUSTRATIVE EXAMPLES 

Example 1. Using Hamilton’s principle, find the equation of one 

dimensional harmonic oscillator. 

Sol. A system executing harmonic motion may be referred as harmonic 

oscillator. 

e.g. A simple pendulum when the displacement of the motion is small is 

an example of harmonic oscillator. 

Now, the kinetic energy of harmonic oscillator = 
1

2
𝑚�̇�2 

Potential energy of harmonic oscillator  

V = - ∫ 𝐹 𝑑𝑥 = ∫ 𝑘𝑥 𝑑𝑥 = 
1

2
𝑘𝑥2 

Therefore the Lagrangian     L = T – V 

                                                 = 
1

2
𝑚�̇�2 −

1

2
𝑘𝑥2 

By Hamilton’s principle       𝛿 ∫ 𝐿 𝑑𝑡 = 0
𝑡2

𝑡1
 

Therefore 𝛿 ∫ (
1

2
𝑚�̇�2 −

1

2
𝑘𝑥2) 𝑑𝑡 = 0

𝑡2

𝑡1
 

Therefore ∫ 𝛿(
1

2
𝑚�̇�2 −

1

2
𝑘𝑥2) 𝑑𝑡 = 0

𝑡2

𝑡1
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Therefore ∫ (𝑚�̇�𝛿�̇�  − 𝑘𝑥 𝛿𝑥) 𝑑𝑡 = 0
𝑡2

𝑡1
  

Or             ∫ 𝑚�̇�
𝑑

𝑑𝑡
(𝛿𝑥)𝑑𝑡 − ∫ 𝑘𝑥 𝛿𝑥 𝑑𝑡 = 0

𝑡2

𝑡1

𝑡2

𝑡1
 

Therefore [𝑚𝑥𝛿𝑥̇ ]
𝑡1

𝑡2
− ∫ 𝑚

𝑑

𝑑𝑡
(�̇�)𝛿𝑥𝑑𝑡 − ∫ 𝑘𝑥 𝛿𝑥 𝑑𝑡 = 0

𝑡2

𝑡1

𝑡2

𝑡1
 

Therefore    0 - ∫ 𝑚
𝑑

𝑑𝑡
(�̇�)𝛿𝑥𝑑𝑡 − ∫ 𝑘𝑥 𝛿𝑥 𝑑𝑡 = 0

𝑡2

𝑡1

𝑡2

𝑡1
   [ since 𝛿𝑥 = 0 at 

𝑡1 and 𝑡2] 

Or                ∫ (𝑚𝑥 + 𝑘𝑥)̈   𝑑𝑡 = 0
𝑡2

𝑡1
  

Since 𝛿𝑥 is an arbitrary 

Therefore  𝑚𝑥 + 𝑘𝑥̈   = 0.  

This is required equation of motion of one dimensional harmonic 

oscillator. 

 

CHECK YOUR PROGRESS  

 

Problem 1. The function E (x, y, p, 𝑦′)  = 𝐹(𝑥, 𝑦, 𝑦′) −

𝐹(𝑥, 𝑦, 𝑝)  – (𝑦′ − 𝑝)𝐹𝑝(𝑥, 𝑦, 𝑝) is called ……. 

Problem 2. Extremal is maximum if E ≤ ? 

Problem 3 Extremal is minimum if E ≥ 0. True/False. 

Problem 4. A central field is called a field of extremals, if it is 

not formed by a family of extremals. True/False 

Problem 5. Legendre condition is sufficient condition to find 

an extremal of the functional. True/False 
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13.10 SUMMARY 
 

1. Any family of curve y = y(x, c) in a given region D of xy – plane is said 

to be form Proper Field if one and only one curve of family posses through 

every point of the region D.  

2. A family of curve y = y(x, c) is said to be form central field over domain 

D if: 

    (i) Curves cover D without self intersection. 

    (ii) All curve passes through single point (𝑥0, 𝑦0). 

3. Any family of curve y = y(x, c) passes through a single point (𝑥0, 𝑦0) 

which is not in domain D. then point (𝑥0, 𝑦0) is called centre of pencil of 

curves. 

4. A central field is called a field of extremals, if it is formed by a family 

of extremals. 

5. Legendre condition is sufficient condition to find an extremal of the 

functional. 

6. The function E (x, y, p, 𝑦′)  

                       = 𝐹(𝑥, 𝑦, 𝑦′) − 𝐹(𝑥, 𝑦, 𝑝) – (𝑦′ − 𝑝)𝐹𝑝(𝑥, 𝑦, 𝑝) is called 

Weierstrass function. 

7. Extremal is maximum if E ≤ 0 and Extremal is called minimum if E≥

0. This is Legendre condition. 

13.11 GLOSSARY  
 

Integration  

Even, odd functions   

Trigonometric functions 

Differentiation 

First order derivatives 
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Second order derivatives 

Expansions of function 

Limits   
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13.14 TERMINAL AND MODEL QUESTIONS 
 

Q 1. Define Hamilton’s principle.      
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Q 2. Define Legendre sufficient condition for extremal. 

Q 3. Prove that  
𝜕𝐿

𝜕𝑞𝑗
−

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞�̇�
) = 0. 

Q 4. Define proper field and Jacobi Condition. 

Q 5. Show that the Jacobi condition for the Central field of extremals for  

        I[y(x)] = ∫ (𝑥𝑦𝑦′ + 𝑦2 −
𝑦′2

2
)

𝜋/2

0
𝑑𝑥 , u(0) = 0 where u = 𝛿𝑦 is 

fulfilled. Also Show that for extremals the functional is maximum. 

Q 5. Show that the Jacobi condition satisfied for the extremal of the 

functional  

                 I[y(x)] = ∫ (𝑦′2 + 𝑦2 + 𝑥2)
𝑎

0
𝑑𝑥 which passes through (0, 0) 

and (a, 0). 

Q 6. Investigate for the extremal of the functional  

                    I[y(x)] = ∫ (𝑥 + 2𝑦 −
1

2
𝑦′

2
)𝑑𝑥

𝑎

0
 and y(0) = 0, y(1) = 0. 

Q 7. Test for the extremal of the functional  

                    I[y(x)] = ∫ (𝑒𝑦′
+ 3)𝑑𝑥

2

0
 and y(0) = 0, y(2) = 1. 

13.15 ANSWERS 
        

CHECK YOUR PROGRESS 

        CYQ 1. Weierstrass function  

        CYQ 2. 0  

        CYQ 3. True  

        CYQ 4. False 

        CYQ 5. True 
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UNIT 14:  Variational Method for Boundary 

Value Problems 

(Ordinary and partial differential equation) 
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14.1 INTRODUCTION 

The solution of Euler’s equation with boundary conditions gives 

extremal of functional. This approach gives a method of solving a 

boundary value problem approximately by assuming a trivial solution 

satisfying the given boundary conditions and extremizing the integral 

whose integrated is found from the given differential equation. The 

sufficient conditions in the calculus of variations have recently received a 

great deal of attention and it would seem fitting that attempts be made to 

simplify their discussion whenever possible, and to render the agreement 

more exact between the known necessary and the known sufficient 

conditions.  

  

14.2 OBJECTIVE 

             At the end of this topic learner will be able to understand:  

            (i) Rayleigh – Ritz Method for Ordinary differential equation 

            (ii) Rayleigh – Ritz Method for partial differential equation 

            (iii) Galerkin’s method 

            (vi) Kantorovich Method 

 

14.3 RAYLEIGH RITZ METHOD  

        (For ordinary Differential equation) 

The Rayleigh–Ritz method is a variational method to solve the eigenvalue 

problem for elliptic differential operators, that is, to compute their 

eigenvalues and the corresponding eigenfunctions. It is the direct 

counterpart of the Ritz method for the solution of the assigned boundary 

value problems. The Rayleigh–Ritz method has the advantage of being 

based on minimal, very general assumptions and produces optimal 

solutions in terms of the approximation properties of the underlying trial 

spaces. The theory of the Rayleigh–Ritz method has to a large extent been 



Mathematical Methods  MAT 509 

Department of Mathematics 
Uttarakhand Open University                                                                                                                          285 
 

developed in the context of finite element methods The Rayleigh Ritz 

method utilize the principle of minimizing total potential energy in a 

system and calculus of variations. It employs the use of trial functions that 

satisfy specific conditions, including boundary conditions, to solve 

boundary value problems.  

Consider an ordinary Differential equation  

              𝑎0(𝑥)
𝑑2𝑦

𝑑𝑥2 + 𝑎1(𝑥)
𝑑𝑦

𝑑𝑥
+ 𝑎2(𝑥)𝑦 = 𝑓(𝑥)           ……. (1) 

With boundary condition     y(𝑥1) = 𝑦1, y(𝑥2) = 𝑦2 

In order to solve differential equation (1) by variational method, first we 

construct F(x, y, 𝑦′) in such way that Euler’s equation of functional  

     I[y(x)] = ∫ F(x, y, 𝑦′)dx
𝑥2

𝑥1
                 ……… (2) 

Becomes given differential equation (1). 

Next, the proper choice of 𝑦0(𝑥), 𝑦1(𝑥), 𝑦2(𝑥), …., 𝑦𝑛(𝑥) 

We get    y(x) = 𝑦0(𝑥)+𝑐1 𝑦1(𝑥)+ 𝑐2𝑦2(𝑥)+ ….+ 𝑐𝑛𝑦𝑛(𝑥)        …… (3) 

Out of these functions 𝑦0(𝑥) is the simplest function which satisfy given 

boundary condition 

i.e.       𝑦0(𝑥1) = y(𝑥1) = 𝑦1 

and      𝑦0(𝑥2) = y(𝑥2) = 𝑦2  

and other function 𝑦1(𝑥), 𝑦2(𝑥), …., 𝑦𝑛(𝑥) are linearly independent 

function satisfy homogeneous boundary condition 

            𝑦𝑘(𝑥1) = 𝑦𝑘(𝑥2) = 0; k 1, 2, 3, …. 

i.e.        𝑦1(𝑥1) = 𝑦1(𝑥2) = 0 

             𝑦2(𝑥1) = 𝑦2(𝑥2) = 0 

             ….            ….       ….. 
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             ….            ….       …..  

Now putting the value of y(x) from (3) in (2), we get 

           I = I (𝑐1, 𝑐2, …. , 𝑐𝑛)      

These constants 𝑐1, 𝑐2, …. , 𝑐𝑛 are choose in such a way that I is extremum. 

Therefore by necessary condition for existence of extremal is  

             
∂I

∂c1
=

∂I

∂c2
= ⋯ =

∂I

∂cn
= 0. 

Solving these simultaneous equations, we will to get 𝑐1, 𝑐2, …., 𝑐𝑛 and 

putting these value in (3) we get required solution of differential 

equation (1). 

Remark: The selection of approximate solution may be done from 

solution 

                  y(x) = (𝑐1 + 𝑐2𝑥 + 𝑐3𝑥2 + ⋯ + 𝑐𝑛𝑥𝑛−1)(𝑥 − 𝑥2) 

one term approximation    y(x) = 𝑐1(𝑥 − 𝑥2) and  

two term approximation    y(x) = (𝑐1 + 𝑐2𝑥)(𝑥 − 𝑥2) which gives better 

approximation. 

Obviously, approximate solution of ordinary differential equation are 

linearly independent. 

 

ILLUSTRATIVE EXAMPLES 

Example 1. Solve the boundary value problem 𝑦′′ = 1 subject to 

boundary conditions  

y(0) = 0, y(1) = 0 by Rayleigh-Ritz method. 

Sol. The given differential equation is  

                                                         𝑦′′ = 1            ……….. (1) 

                                                       y(0) = 0, y(1) = 0 

First, we construct F(x, y, 𝑦′) in such a way that the Euler’s equation of 

functional  

                             I = ∫ F(x, y, 𝑦′)dx
1

0
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Becomes given differential equation 𝑦′′ = 1, we choose  

                             F = 𝑦′2 + 2𝑦  for which 𝑦′′ = 1 is Euler’s equation 

By Euler’s equation  

𝜕𝐹

𝜕𝑦
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑦′
) = 0 

Therefore         2 - 
𝑑

𝑑𝑥
(2𝑦′) = 0     

Therefore               1 − 𝑦′′ = 0      ⟹ 𝑦′′ = 1 

Hence the required variational problem is  

                           I = ∫ (𝑦′2
+ 2𝑦  )dx

1

0
               ……… (2) 

Next we assume the trivial solution  

                    y(x) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 

therefore      y(0) = 0 ⟹ 𝑐0 = 0                      ………. (3) 

                    y(1) = 0 ⟹ 𝑐1 + 𝑐2 = 0 ⟹ 𝑐2 = −𝑐1 

therefore trivial solution become  

                       y(x) = 𝑐1(𝑥 − 𝑥2)                  ……. (4) 

therefore        𝑦′(𝑥) = 𝑐1(𝑥 − 2𝑥)   

putting value of y and 𝑦′ in (2), we get  

                      I = ∫ [𝑐1
2 (1 − 2𝑥)2 + 2𝑐1(𝑥 − 𝑥2)]dx

1

0
 

Therefore      
𝑑𝐼

𝑑𝑐1
 = 

𝑑

𝑑𝑐1
∫ [𝑐1

2 (1 − 2𝑥)2 + 2𝑐1(𝑥 − 𝑥2)]dx
1

0
 

                            = ∫
𝜕

𝜕𝑐1
[𝑐1

2 (1 − 2𝑥)2 + 2𝑐1(𝑥 − 𝑥2)]dx
1

0
 

                            = ∫ [2𝑐1 (1 − 2𝑥)2 + 2(𝑥 − 𝑥2)]dx
1

0
 

                            = 2𝑐1 [−
1

2

(1−2𝑥)2

3
]

0

1

 + 2 [
𝑥2

2
−

𝑥3

3
]

0

1

 

                            = 2𝑐1 (
1

6
+

1

6
) + 2 (

1

2
−

1

3
) 

     Therefore    
𝑑𝐼

𝑑𝑐1
    = 

(2𝑐1+1)

3
 . 



Mathematical Methods  MAT 509 

Department of Mathematics 
Uttarakhand Open University                                                                                                                          288 
 

The necessary condition for existence of extremal is  

                
𝑑𝐼

𝑑𝑐1
= 0 

⟹       
2𝑐1+1

3
 = 0       ⟹ 𝑐1 = −

1

2
 

Therefore (4) becomes 

               y(x) = −
1

2
(𝑥 − 𝑥2)           or   y(x) =

1

2
(𝑥2 − 𝑥). 

This is exact solution of the given boundary value problem.              

Note:∎ if we solve 
𝑑2𝑦

𝑑𝑥2 = 1,   y(0) = 0,   y(1) =0. 

Integrate, we get        y(x) = 
𝑥2

2
+ 𝑐1𝑥 + 𝑐2 

                                   y(0) = 0 ⟹ 𝑐2 = 0 

                                   y(1) = 0 ⟹ 
1

2
+ 𝑐1 + 𝑐2 = 0 

                                   ⟹ 𝑐1 = −
1

2
 

Therefore      y(x) = 
𝑥2

2
−

1

2
𝑥     or    y(x) = 

1

2
(𝑥2 − 𝑥) 

Hence y(x) = 
1

2
(𝑥2 − 𝑥) is exact solution. 

Example 2. Solve the boundary value problem 𝑦′′ − 𝑦 + 𝑥 = 0  

(0 ≤ 𝑥 ≤ 1) subject to boundary conditions y(0) = 0, y(1) = 0 by 

Rayleigh-Ritz method. 

Sol. The given differential equation is  

                                                         𝑦′′ − 𝑦 + 𝑥 = 0             ……….. (1) 

     with                                             y(0) = 0, y(1) = 0 

First, we construct F(x, y, 𝑦′) in such a way that the Euler’s equation of 

functional  

                             I = ∫ F(x, y, 𝑦′)dx
1

0
 

Where                   F(x, y, 𝑦′) = 2xy - 𝑦2 − 𝑦′2
. 

Hence the required variational problem is  
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Therefore             I[y(x)] = ∫ (2xy −  𝑦2 − 𝑦′2)dx
1

0
            ……. (2) 

Next, assume the trivial solution is  

                             y(x) =   𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2      ……. (3) 

therefore      y(0) = 0 ⟹ 𝑐0 = 0                       

                    y(1) = 0 ⟹ 𝑐1 + 𝑐2 = 0 ⟹ 𝑐2 = −𝑐1 

Therefore (3) become  

                       y(x) = 𝑐1(𝑥 − 𝑥2)                  ……. (4) 

therefore        𝑦′(𝑥) = 𝑐1(1 − 2𝑥) .  

putting value of y and 𝑦′ in (2), we get  

   I = ∫ [𝑐12𝑥2 (1 − 𝑥) − 𝑥2𝑐1
2

(1 − 𝑥)2 − 𝑐1
2(1 − 2𝑥)2] dx

1

0
 

     = ∫ [2𝑐1 (𝑥2 − 𝑥3) − 𝑐1
2(𝑥2 + 𝑥4 − 2𝑥3) − 𝑐1

2(1 + 4𝑥2 − 4𝑥)]dx
1

0
 

      = [2𝑐1 (
𝑥3

3
−

𝑥4

4
) − 𝑐1

2 (
𝑥3

3
+

𝑥5

5
−

𝑥4

2
+ 𝑥 +

4𝑥3

3
− 2𝑥2)]

0

1

 

      = 
1

6
𝑐1 −

11

30
𝑐1

2. 

Therefore the necessary condition for existence of extremal is  

                                
𝑑𝐼

𝑑𝑐1
= 0 

⟹                 
1

6
−

11

30
2𝑐1 = 0 

⟹                 𝑐1 = 
5

22
  

Put in (4), we get    y(x) = 
5

22
(𝑥 − 𝑥2) 

This is the required approximate solution. 

Example 3. Solve the boundary value problem 

 (1 − 𝑥2)𝑦′′ − 2𝑥𝑦′ + 2𝑦 = 0 subject to boundary conditions y(0) = 0, 

y(1) = 1 by Rayleigh-Ritz method. 

Sol. The given differential equation is  

                     (1 − 𝑥2)𝑦′′ − 2𝑥𝑦′ + 2𝑦 = 0            ……….. (1) 
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     with                                             y(0) = 0, y(1) = 1 

First, we construct F(x, y, 𝑦′) in such a way that the Euler’s equation of 

functional  

                             I = ∫ F(x, y, 𝑦′)dx
1

0
 

Where                   F(x, y, 𝑦′) = (1- 𝑥2)𝑦′2
- 2𝑦2 

Hence the required variational problem is  

Therefore             I[y(x)] = ∫ [(1 −  𝑥2)𝑦′2 −  2𝑦2]dx
1

0
            ……. (2) 

Next, assume the trivial solution is  

                             y(x) =   𝑥 + 𝑐(𝑥 − 𝑥2)      ……. (3) 

be approximate solution which satisfying the given boundary conditions. 

Therefore       𝑦′(𝑥) = 1 + c (1 – 2x). 

Putting value of y and 𝑦′ in (2), we get  

     I = ∫ [(1 − 𝑥2){1 + 𝑐 − 2𝑥𝑐}2 −  2{𝑥 + 𝑐𝑥 − 𝑐𝑥2}2]dx
1

0
 

Therefore, for existence of extremal 
𝑑𝐼

𝑑𝑐
= 0 gives c = 0. 

Putting value of c in (3), we get       

                                              y(x) = x  

this is required solution of given differential equation. 

Note: y(x) = 0 is exact solution of given differential equation. 

 

14.4 RAYLEIGH RITZ METHOD  

        (For Partial Differential equation) 

The German mathematician W. Ritz gave variational approach to solve 

boundary value problem for ordinary and differential equation in 1908. 

The Rayleigh Ritz method utilize the principle of minimizing total 

potential energy in a system and calculus of variations. It employs the use 
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of trial functions that satisfy specific conditions, including boundary 

conditions, to solve boundary value problems. 

This is also known as Rayleigh-Ritz method. 

Consider the boundary value problem  

                                          𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑞𝑢 = 𝑟 

In the region R bounded by the curve C. 

Let u(x) be prescribed on C. 

Then, the corresponding variation problem is to extremize the functional 

is 

            ∫ ∫ (𝑢𝑥
2 + 𝑢𝑦

2 − 𝑞𝑢2 + 2𝑟𝑢)𝑑𝑥 𝑑𝑦
C

 

For which we take the trivial function such that it Satisfy the given 

boundary conditions. 

 

ILLUSTRATIVE EXAMPLES 

 

Example 4. Solve the Poisson’s equation 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = −1 

 In a square defined by |𝑥| ≤ 1, |𝑦| ≤ 1 and u = 0 when x = ±1, y = ±1. 

Sol. Given that       𝑢𝑥𝑥 + 𝑢𝑦𝑦 = −1       …….. (1) 

Compare with         𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑞𝑢 = 𝑟  

We get                     q = 0,   r = -1 

Hence, the corresponding variational problem is to extremize the 

functional is  

                I = ∫ ∫ (𝑢𝑥
2 + 𝑢𝑦

2 − 𝑞𝑢2 + 2𝑟𝑢)𝑑𝑥 𝑑𝑦
R

 

i.e.          I = ∫ ∫ (𝑢𝑥
2 + 𝑢𝑦

2 + 2𝑢)𝑑𝑥 𝑑𝑦
R

                    …… (2) 

where R is square defined by |𝑥| ≤ 1, |𝑦| ≤ 1  
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let      u(x, y) = c (1 - 𝑥2) (1 - 𝑦2)                           …… (3) 

be trivial function which satisfies the given boundary conditions. 

Therefore     𝑢𝑥 = - 2cx (1 - 𝑦2);  𝑢𝑦 = - 2cy (1 - 𝑥2). 

Putting value of u, 𝑢𝑥 and 𝑢𝑦 in (2), we get  

    I = ∫ ∫ [4
1

−1

1

−1
𝑐2𝑥2(1 −  𝑦2) + 4𝑐2𝑥2(1 −  𝑥2)2 − 2𝑐(1 −  𝑥2)(1 −

               𝑦2)]dxdy        

      = 
32

45
(8𝑐2 − 5𝑐)   

Now, for existence of extremal  

            
dI

dc
= 0            ⟹ 

32

45
(16𝑐 − 5)  = 0 

⟹ (16𝑐 − 5)  = 0      ⟹ 𝑐 =
5

16
 

Putting value of c in (3), we get  

u(x, y) = 
5

16
(1 − 𝑥2)(1 − 𝑦2) 

this is the required approximate solution. 

 

14.5 GALERKIN’S METHOD       

The Galerkin’s method of weighted residuals, the most common method 

of calculating the global stiffness matrix in the finite element method, the 

boundary element method for solving integral equations, Krylov subspace 

methods. 

Galerkin’s method is another method to solve any type of boundary value 

problems either linear or non-linear. 

In this method, the boundary conditions are taken homogeneous i.e., of 

the forms  

                   𝑎(𝑥)
𝑑2𝑦

𝑑𝑥2 + 𝑏(𝑥)
𝑑𝑦

𝑑𝑥
+ 𝑐(𝑥)𝑦 = 𝑓(𝑥) 

                   𝑦(𝑥1) = 0  and   𝑦(𝑥2) = 0                                    … (1) 
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If the boundary conditions are not homogeneous, it can be made 

homogeneous by choosing an approximate transformation 

𝑢 = 𝑦 − 𝑦 − 0 −
𝑦1 − 𝑦0

𝑥1 − 𝑥0

(𝑥 − 𝑥0) 

With conditions that  

                       𝑢𝑟(𝑥1) = 0 and 𝑢𝑟(𝑥2) = 0;      𝑟 = 1,2, … , 𝑛 

Further let 

                       𝑦(𝑥) = 𝑐1𝑢1(𝑥) + 𝑐2𝑢2(𝑥) + ⋯ + 𝑐𝑛𝑢𝑛(𝑥)       … (2) 

Be an approximate solution. 

To find the constants 𝑐𝑖
′𝑠; 𝑖 = 1 , 2 , … , 𝑛  

We use the residue function defined as 

               𝑅(𝑥, 𝑐𝑟) = [𝑎(𝑥)
𝑑2

𝑑𝑥2 + 𝑏(𝑥)
𝑑

𝑑𝑥
+ 𝑐(𝑥)] ∑ 𝑐𝑟𝑢𝑟(𝑥)𝑛

𝑟=1 − 𝑓(𝑥)  … (3) 

When      ∫ 𝑅(𝑥, 𝑐𝑟)𝑢𝑟(𝑥)𝑑𝑥
𝑥2

𝑥1
= 0;  𝑟 = 1,2, … , 𝑛                   … (4) 

We can find the value of all constants 𝑐𝑖
′𝑠 using (3) and then putting value 

of these constants in (1), we get required solution. 

 

 

ILLUSTRATIVE EXAMPLES 

 

Example 5. Solve the boundary value problem 

𝑑2𝑦

𝑑𝑥2
+ 𝑦 = 𝑒𝑥 

𝑦(0) = 𝑦 (
π

2
) = 0 

By Galerkin’s method. 

Solution: The given differential equation is  



Mathematical Methods  MAT 509 

Department of Mathematics 
Uttarakhand Open University                                                                                                                          294 
 

𝑑2𝑦

𝑑𝑥2
+ 𝑦 = 𝑒𝑥 

With                  𝑦(0) = 𝑦 (
π

2
) = 0                                         … (1) 

Here given boundary conditions are homogeneous. 

Let approximate solution is 

                          𝑦 = 𝑐1𝑢1(𝑥) = 𝑐1 𝑠𝑖𝑛 2𝑥                               … (2) 

Which satisfy given boundary condition. 

Now we find constant 𝑐1. 

For consider, corresponding residue function by 

                                             𝑅(𝑥, 𝑐𝑟) = (
𝑑2

𝑑𝑥2 + 1) 𝑐1 𝑠𝑖𝑛 2𝑥 − 𝑒𝑥 

                                                           = −4𝑐1 𝑠𝑖𝑛 2𝑥 + 𝑐1 𝑠𝑖𝑛 2𝑥 − 𝑒𝑥 

Where              ∫ (−4𝑐1 𝑠𝑖𝑛 2𝑥 + 𝑐1 𝑠𝑖𝑛 2𝑥 − 𝑒𝑥) 𝑠𝑖𝑛 2𝑥 𝑑𝑥
π

2
0

= 0 

On simplification, we get 

𝑐1 = −
8

15π
(𝑒

π
2 + 1) 

Put in (2), we get 

𝑦(𝑥) = −
8

15π
(𝑒

π
2 + 1) 𝑠𝑖𝑛 2𝑥 

This is required approximation solution. 

14.6 KANTOROVICH METHOD 

 

In his method to reduce a partial differential equation to a system of 

ordinary differential equations, Kantorovich uses a cartesian coordinate as 

an independent variable. For partial differential equations arising from 

variational problems, an alternate formulation is presented, wherein an 

arbitrary function takes the role of the independent variable. This 

procedure should allow the subspace approximating the solution to be 

adapted to the problem at hand. The differential equations are put in a form 
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to minimize regularity conditions on the base functions, e.g., for a second 

order differential equation, piecewise linear base functions will be 

admitted. The set of admissible base functions will be dependent on the 

boundary conditions of the problem. Iterative methods to solve the 

corresponding two-point boundary value problem are discussed. In order 

to solve partial differential equation, Kantorovich method is another more 

efficient method in comparison of Rayleigh-Ritz method. 

In this method, a trivial solution 

𝑢(𝑥, 𝑦) = 𝑓1(𝑥)𝑢1(𝑥, 𝑦) + 𝑓2𝑢2(𝑥, 𝑦) + ⋯ + 𝑓𝑛𝑢𝑛(𝑥, 𝑦) 

                                           = ∑ 𝑓𝑖(𝑥)𝑢𝑖(𝑥, 𝑦)𝑛
𝑖=1  

Is taken. 

Here, 𝑢𝑖(𝑥, 𝑦), ∀𝑖 satisfying the given boundary condition and 𝑓𝑖(𝑥) are 

unknown function of x.  

 

ILLUSTRATIVE EXAMPLES 

 

Example 6. Solve      𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 in a square defined by   |𝑥| ≤ 1, 

|𝑦| ≤ 1 where u(±1, 𝑦) = 1 − 𝑦2 and u(𝑥, ±1) = 0 . 

Sol. Here, the corresponding variational problem is to extremize the 

functional  

I = ∫ ∫ (𝑢𝑥
2 + 𝑢𝑦

2)𝑑𝑥 𝑑𝑦
R

                    …… (1) 

where R is square defined by |𝑥| ≤ 1, |𝑦| ≤ 1  

let      u(x, y) = (1 - 𝑦2)𝑓(𝑥)                           …… (2) 

where f(x) is unknown function to be determined such that f(±1) = 0. 

Therefore           𝑢𝑥 = (1 - 𝑦2)𝑓′(𝑥)       ,         𝑢𝑦 = - 2y f(x). 

Putting value of u,  𝑢𝑥 , 𝑢𝑦 in (2) we get       
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 I = ∫ ∫ [
1

−1

1

−1
(1 −  𝑦2){𝑓′(𝑥)}2 + 4𝑦2{𝑓(𝑥)}2]𝑑𝑥𝑑𝑦         

On simplification, we get  

I = 
8

3
∫ (

2

5
𝑓′2 + 𝑓2) 𝑑𝑥

1

−1
    

And the corresponding Euler’s equation is  

         −
4

5
𝑓′′ + 2𝑓 = 0    or      𝑓′′ −

5

2
𝑓 = 0            ……… (3) 

Auxiliary equation is     𝑚2 −
5

2
 = 0 

⇒    𝑚2 =
5

2
           ⇒   m = ±√

5

2
  

Hence solution of (2) is  

f(x) = A cosh(√
5

2
) 𝑥 + B sinh (√

5

2
) 𝑥 

using boundary condition        f (±1) = 1  

we get      f(x) = 
cosh(√

5

2
)𝑥

cosh(√
5

2
)

 

therefore (2) becomes  

u(x, y) = (1 − 𝑦2)
cosh(√

5

2
)𝑥

cosh(√
5

2
)

 

this is the required solution. 

Example 7. Solve the Laplace equation 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 in a square 

defined by 

   |𝑥| ≤ 1, |𝑦| ≤ 1, when x = 0 on |𝑥| = 1 and u = 1 - 𝑥2 on |𝑦| = 1. 

Sol. The given partial differential equation is 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 

Compare with 𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑞𝑢 = 𝑟 , we get q = 0, r = 0 
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Here, the corresponding variational problem is to extremize the functional 

is 

I = ∫ ∫ (𝑢𝑥
2 + 𝑢𝑦

2 − 𝑞𝑢2 + 2𝑟𝑢)𝑑𝑥 𝑑𝑦
R

                    

i.e.    I = ∫ ∫ (𝑢𝑥
2 + 𝑢𝑦

2)𝑑𝑥 𝑑𝑦
R

                                   …… (1) 

Let     u(x, y) = (1 - 𝑥2)[1 + 𝑐(1 −  𝑥2)]                     …… (2) 

Be trivial function, which satisfy the given boundary condition. 

Therefore      𝑢𝑥 = - 2x[1 + 𝑐(1 −  𝑦2)]   

Therefore      𝑢𝑦 = - 2yc (1 - 𝑥2)    

Therefore (1) becomes 

I =  ∫ ∫ [
1

−1

1

−1
4𝑥2{1 + 2𝑐(1 −  𝑦2) + 𝑐2(1 −  𝑦2)2} + 4𝑦2𝑐2(1 − 2𝑥2 +

𝑥4]𝑑𝑥𝑑𝑦  

Now     
𝑑𝐼

𝑑𝑐
= 0         

Therefore  ∫ ∫ [
1

−1

1

−1
8𝑥2(1 − 𝑦2) + 8𝑥2𝑐(1 −  𝑦2)2 + 8𝑦2𝑐(1 − 2𝑥2 +

𝑥4]𝑑𝑥𝑑𝑦   = 0 

Evaluating the integral, we get      c = 
−5

8
 

Putting value of c in (1), we get 

u(x, y) = (1 − 𝑥2)[1 −
5

8
(1 − 𝑦2)]  

this is required approximate solution. 

Example 8. Find the estimate of the least eigen value of 𝑢𝑥𝑥 + 𝑢𝑦𝑦 +

𝜆𝑢 = 0 in the region R bounded by the circle  𝑥2 +𝑦2 = 1 given that u = 

0 on the boundary. 

Sol. Here, the corresponding Variational problem is to extremize the 

functional is 
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         I = ∫ ∫ (𝑢𝑥
2 + 𝑢𝑦

2 − 𝜆𝑢2)𝑑𝑥 𝑑𝑦
R

        ……. (1) 

Where R is region bounded by 𝑥2 +𝑦2 ≤ 1 

Let       u(x, y) = c (1 - 𝑥2 - 𝑦2) be trivial solution which satisfy the 

boundary condition  

i.e. u = 0 at 𝑥2 +𝑦2 = 1. 

Therefore      𝑢𝑥 = −2𝑐𝑥, 𝑢𝑦 = −2𝑐𝑦 

Putting value of u, 𝑢𝑥  , 𝑢𝑦 in (1) we get 

I = ∫ ∫ [4𝑐2(𝑥2 +  𝑦2) − 𝜆𝑐2(1 − 𝑥2 − 𝑦2)2𝑑𝑥 𝑑𝑦
R

 

Therefore 
𝑑𝐼

𝑑𝑐
= 0  

Therefore ∫ ∫ [8𝑐(𝑥2 +  𝑦2) − 2𝜆𝑐(1 − 𝑥2 − 𝑦2)2]𝑑𝑥 𝑑𝑦
R

 = 0 

Therefore 𝜆 = 
4 ∫ ∫ (𝑥2+ 𝑦2)𝑑𝑥 𝑑𝑦

R

∫ ∫ (1−𝑥2−𝑦2)2𝑑𝑥 𝑑𝑦
R

 

Putting x = r cos𝜃 , y = r sin𝜃 

Therefore      dx dy = r d𝜃𝑑𝑟  

Therefore λ = 
4 ∫ ∫ r2rdθdr

2π
θ=0

1
r=0

∫ ∫ (1−r2)2dθdr
2π

θ=0
1

r=0

 

Therefore λ = 
2𝜋

2𝜋(1/6)
 = 6 

Hence λ = 6 is the required least eigen value. 
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CHECK YOUR PROGRESS  

MCQ/True False Questions 

Problem 1. Extremals of the functional ∫ 𝑦√1 + 𝑦′2𝑥2

𝑥1
 is 

attained on the: (a) Catenary        (b) Parabola        (c) Circle        

(d) Ellipse 

Problem 2. The shortest distance between two points in a 

plane is: 

(a) circle        (b) parabola        (c) Ellipse         (d) straight line 

Problem 3. Euler’s equation for the functional  

∫ [𝑎(𝑥)𝑦′2 + 2𝑏(𝑥)𝑦′ + 𝑐(𝑥)𝑦2]𝑑𝑥:

𝑥2

𝑥1

 

(a) First order linear differential equation. 

(b) second order linear differential equation. 

(c) second order non- linear differential equation. 

(d) a linear differential equation of order more that two. 

Problem 4. Extremal y = y(x) for the variational problem 

             I = ∫ (1 + 𝑦′′2)𝑑𝑥
1

0
 satisfies the ordinary differential 

equation is: 

(a) Homogeneous linear differential equation of fourth order. 

(b) Non-homogeneous linear differential equation of fourth 

order. 

(c)  Homogeneous non-linear differential equation of fourth 

order. 
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(d) Homogeneous linear differential equation of more than 

fourth order. 

Problem 5. Necessary condition for existence of extremal is  

             
∂I

∂c1
=

∂I

∂c2
= ⋯ =

∂I

∂cn
= 0.True/False 

 

Problem 6. In which situation the variational problem 

∫ 𝐹(𝑥, 𝑦, 𝑦′)𝑑𝑥
𝑥2

𝑥1
 ,  

                     y(𝑥1) = 𝑦1 ,                     y(𝑥2) = 𝑦2 becomes 

meaningless: 

(a) When Euler’s equation reduces into identity. 

(b) When y(x) exists but it is not satisfy the given boundary 

condition. 

(c) When f(𝑥, 𝑦, 𝑦′) = 𝑀(𝑥, 𝑦) + 𝑁(𝑥, 𝑦). 

(d) All of the above. 

 

 

14.7 SUMMARY 
 

1. Necessary condition for existence of extremal is  

             
∂I

∂c1
=

∂I

∂c2
= ⋯ =

∂I

∂cn
= 0. 

2. RAYLEIGH RITZ METHOD:  

The Rayleigh–Ritz method is a variational method to solve the eigenvalue 

problem for elliptic differential operators, that is, to compute their 

eigenvalues and the corresponding eigenfunctions. It is the direct 

counterpart of the Ritz method for the solution of the assigned boundary 

value problems. The Rayleigh–Ritz method has the advantage of being 
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based on minimal, very general assumptions and produces optimal 

solutions in terms of the approximation properties of the underlying trial 

spaces. The theory of the Rayleigh–Ritz method has to a large extent been 

developed in the context of finite element methods Consider the boundary 

value problem  

                                          𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑞𝑢 = 𝑟 

In the region R bounded by the curve C. 

Let u(x) be prescribed on C. 

Then, the corresponding variation problem is to extremize the functional 

is 

            ∫ ∫ (𝑢𝑥
2 + 𝑢𝑦

2 − 𝑞𝑢2 + 2𝑟𝑢)𝑑𝑥 𝑑𝑦
C

 

For which we take the trivial function such that it Satisfy the given 

boundary conditions. 

3. Galerkin’s method is another method to solve any type of boundary 

value problems either linear or non-linear. 

4. Kantorovich method:  

In this method, a trivial solution 

𝑢(𝑥, 𝑦) = 𝑓1(𝑥)𝑢1(𝑥, 𝑦) + 𝑓2𝑢2(𝑥, 𝑦) + ⋯ + 𝑓𝑛𝑢𝑛(𝑥, 𝑦) 

                                           = ∑ 𝑓𝑖(𝑥)𝑢𝑖(𝑥, 𝑦)𝑛
𝑖=1  

5. Kantorovich method is more efficient method to solve boundary value 

problem of partial differential equation. 

6. The German mathematician W. Ritz gave variational approach to solve 

boundary value problem for ordinary and differential equation in 1908. 

This is also known as Rayleigh-Ritz method. 

7. The variational problem corresponding to given ordinary differential 

equation is  
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      I = ∫ 𝐹(𝑥, 𝑦, 𝑦′)𝑑𝑥
𝑥2

𝑥1
 where, we construct 𝐹(𝑥, 𝑦, 𝑦′) in say that the 

corresponding Euler’s equation becomes original differential equation. 

8. Note that Poisson’s Equation is a partial differential equation, and 

therefore can be solved using well-known techniques already established 

for such equations. In fact, Poisson’s Equation is an inhomogeneous 

differential equation.   

 

14.8 GLOSSARY  
 

Integration  

Even, odd functions   

Trigonometric functions 

Differentiation 

First order derivatives 

Second order derivatives 

Expansions of function 

Series 

Functional   
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14.11 TERMINAL AND MODEL QUESTIONS 

 

TQ 1. Find the estimate of the least eigen value of  

                      𝑢𝑥𝑥 + 𝑢𝑦𝑦 + λ𝑢 = 0 

In the region R bounded by  |𝑥| ≤ 1, |𝑦| ≤ 1 and 𝑢 = 0 at 𝑥 = ±1 and 

at 𝑦 = ±1. 

TQ 2. Solve the boundary value problem 

                           𝑥2 𝑑2𝑦

𝑑𝑥2 + 𝑥
𝑑𝑦

𝑑𝑥
− 𝑦 = 2𝑥2 

                           𝑦(0) = 0,     𝑦(1) = 1 

By Galerkin’s method. 

 TQ 3. Solve the Poisson’s equation in a circle 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = −1, 𝑥2 +

𝑦2 ≤ 1 when u = 0   

           on 𝑥2 + 𝑦2 = 1. 

TQ 4. Solve the Laplace equation 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 in a square defined by  

|𝑥| ≤ 1, |𝑦| ≤ 1 when 𝑥 = 0 on |𝑥| = 1 and u = 1 - 𝑥2 on |𝑦| = 1. 
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14.12 ANSWERS 
        

       TQ1    λ = 5 

      TQ2 y = 
2

3
𝑥(𝑥 − 1) + 𝑥 

      TQ3 u(x, y) = 
1

4
(1 − 𝑥2 − 𝑦2) 

      TQ4 u(x, y) = (1 − 𝑥2)[1 −
5

8
(1 − 𝑦2)] 

     CHECK YOUR PROGRESS  

     CQ1 (a) 

     CQ2 (b) 

     CQ3 (b) 

     CQ4 (a) 

     CQ5 True  

     CQ6 (d)       
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