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COURSE INFORMATION

The present self learning material “Measure Theory” has been

designed for M.Sc. (Third Semester ) learners of Uttarkhand Open
University, Haldwani.

This course is divided into 14 units of study. This Self Learning
Material is a mixture of Four Block.

First block is Sets and Lebesgue Measure. Which is composed
by Sets and Cardinality, Boolean Algebra, Measure Space and Lebesgue
Measure.

Second block is Measurable functions and Convergence
theorem. In this block  Measurable Functions, Lebesgue Integral of a
Function, General Convergence Theorem and Differentiation of an

integral explained.

Third block is L, Space and Weierstrass approximation

theorem third block is composition of TheL,, space, Theorem in Lebesgue
integration and Weierstrass approximation theorem.

Fourth block is Signed measure and Product measure which is a
collection of Signed measures, Product measure and Relation between
Riemann and Lebesgue.

The basic principles and theory have been explained in a simple,
concise and lucid manner. Adequate number of illustrative examples and
exercises have also been included to enable the leaner’s to grasp the

subject easily.




BLOCK I:
SETS AND
LEBESGUE MEASURE
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UNIT 1: SETS AND CARDINALITY

CONTENTS:

Introduction

Objectives
Sets
Cardinality of sets
Definition
Some examples
Some properties
Relation between the cardinality of a nonempty set and the
cardinality of its power set
Solved Problems
Countable and uncountable sets
Some properties and examples
Glossary
References

1.10 Suggested readings

1.11 Terminal questions

1.12  Answers
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1.1 INTRODUCTION

In the branch of set theory it is always significant to know the number
of elements in a set. For finite set it is always possible to count number of
elements in a set, but for infinite set or countably infinite it is not possible
to count number of elements. Georg Cantor(1845-1918), gave the
generalized definition of cardinality which based on bijective map
between two sets. Later he had given a very important theorem, Cantors

theorem, that associate cardinality of set and its power set.

In this unit we explain about cardinality of sets, countable and

uncountable sets, with illustrative examples.

1.2 OBJECTIVES

After completion of this unit learners will be able to
i. Define the concept of Cardinality of a set.
ii. Describe the different between countable and uncountable set.

iii. Find the applications of countable and uncountable set.

1.3 SET

The concept of “Set Theory” was discovered by German
mathematician Georg Cantor (1845-1918) . He was inspired by working
on “Problems on Trigonometric Series.” It has many applications in other

topics like relations, functions, probability, sequences, geometry etc.
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Definition 1: A setis a collection of well defined objects

A =1{1,2,3}is a set with 3 elements

A set with no element is called null set or empty set

Ais subset of B, denoted by AcB, if all the elements of A are also the
element of B.

Union of sets: AUB = {x:x € Aor x € B}

Union of sets: ABB = {x:x € A or x € B}

Power Set: A set of all the subsets of set is called power set, denoted
by P(A) = {x: xcA}

Any well-defined collection of objects or numbers are referred to
as a set. The number, letter or any other object contained in a set are called
elements of the set. The sets are denoted by capital letters e.g. X,Y, Zor .
The elements are denoted by lower case letters a, b, c, ...., X, y, z. To
indicate that ‘@’ is an element of the set X we use the notationa € X . This
read as “a is in X” or “a belongs to X”. For example

A=1{,35,7,11,1317,20}

INTERVAL:

An open interval does not contain its endpoints, and is indicated

with parentheses.

(a,b) =]a,b[= {xeR:a < x < b}.

A closed interval is an interval which contains all its limit points, and is

expressed with square brackets.
[a,b] = [a,b] = {xeR:a < x < b}.
A half-open interval includes only one of its endpoints, and is expressed
by mixing the notations for open and closed intervals
(a,b] =]a,b] = {xeR:a < x < b}.[a,b) = [a,b[= {xeR:a < x < b}.
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ORDERED PAIR :

An ordered pair (a, b) is a set of two elements for which the order

of the elements is of significance. Thus (a,b) = (b,a)unless a = b.

In this respect (ab) differs from the set{ab}.Again

(a,b)=(c,d)<=a=candb=d.If Xand Y are two sets, then the set of all
ordered pairs (x, y), such that x e Xand y €Y is called Cartesian product

of X and Y. It is denoted by X xY .

RELATION

A subset R of X xY is called relation of X on Y. It gives a
correspondence between the elements of X and Y. If (x, y) be an element of
R, then y is called image of x.A relation in which each element of X has a

single image is called a function.

If X = {1,2,3,4}and Y = {a, b, c}then,

X xY ={(L a),(Lb), L c),(2,a),(2,b),(2,),(3 a),(3b),(3c),(4,a),(4b),(4c)}
R ={(1a),(2,b),(3,¢),(4.b)}

e Rjisarelation as well as a function
e whileR, ={(1,a),(2,b),(2,c), (3,c)}is a relation but not a function

(since 2 has two images).

FUNCTION:

The equation y = x2 gives a rule which determines for each number

X, a corresponding number y.The set of all such pairs of numbers (x, y)

determines a function.

Definition.
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Let X and Y are two sets and suppose that to each element x of X
corresponds, by some rule, a single element y of Y. Then the set of all
ordered pairs (X, y) is called function.The set X is called the domain of the
function. The element y, which corresponds to the element x is called the
value of function at x. It is denoted by f (), read as “f of x”. The set of all
the values of the function is called the range of the function.The term
mapping is also used for a function and we say that the set X maps into the

set Y under the mapping f. We write as f :X —Y and read as “ the
function f which maps X into Y ”. We shall also use the notation
f:y=f(x)to denote “the function f defined by the rule y = f (x)".
Basically function is a rule which binds one set X to another set Y.The rule

is that for all elements of X their should be unique image in Y.

A symbol such as x or y, used to represent an arbitrary element of a
set is called a variable. For example y = f (x).The symbol x which
represents an element in the domain is called the independent variable, and
the symbol y which represent the element corresponding to x is called the
dependent variable. This is based on the fact that value of x can be
arbitrary chosen, then y has a value which depends upon the chosen value

of x.

Real Numbers:

Numbers initiate with Natural Numbers. The natural numbers are

the standard numbers, 1,2,3,.. . with which humans count. Natural

numbers were discovered by Pythagoras (582-500 BC) and Archimedes
(287-212 BC) (both are Greek philosophers and mathematicians). After

Natural Number the integer was introduced in the year 1563
when Arbermouth Holst was busy with his bunnies and elephants

experiment. He stored count of the amount of bunnies in the cage and after
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6 months he saw that the amount of bunnies increased. Then he concludes
the addition and multiplication of a number system then rational number is
defined. In arithmetic, a number that can be considered as the quotient
p/q of two integers such that g # 0. In addition to all the fractions, the
set of rational numbers added all the integers, each of which can be written
as a quotient with the integer as the numerator and 1 as the denominator.
Rational numbers were discovered in the sixth century BCE by
Pythagoras. Later this Irrational numbers are the numbers that cannot be
considered as a simple fraction. It cannot be considered in the form of a
ratio, such as p/q, where p and q are integers, g#0. It is a contradiction
of rational numbers. The Greek mathematician  Hippasus of
Metapontum is the person who invented irrational numbers in the 5th
century B.C., according to an article from the University of
Cambridge. Subsequently real number introduced in the 16th
century, Simon Stevin designed the basis for modern decimal notation,
and asserted that there is no difference between rational and irrational
numbers in this regard. In the 17th century, Descartes invented the term
"real” to describe roots of a polynomial, distinguishing them from
"imaginary” ones. Mathematician Richard Dedekind quarried these
problems 159 years ago at ETH Zurich, and became the first person to
characterize the real numbers. Bob sinclar defined the whole numbers in
1968. Whole Numbers is the subset of the number system that includes of
all positive integers contained zero.In mathematics, areal number is a
value of a continuous amount that can act for a distance along a line (or
alternatively, a number that can be summarised as an infinite decimal
expansion. The set of real numbers is expressed using the symbol R orR.
Real numbers can be consider of as points on an infinitely long line called
the number line or real line, where the points interrelated to integers are
equally spaced. Any real number can be resolved by a possibly

infinite decimal representation.We can write the set of real numbersin the

form of rational and irrational number as, R = Q U Q.
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The main properties of real numbers are as follows:

Closure Property: Ifa, beR,a + beR and abeR. It shows that sum
and product of two real numbers is always a real number.
Associative Property: Ifa,b,ceR, a+ (b+c) = (a+ b)+c and
ax (b xc)=(axb)xc.lt follows that sum or product of any three
real numbers remains the same even when the grouping of numbers is
changed.
Commutative Property: Ifa,beR,a+b=b+a and axb =b X
a. It means that the sum and the product of two real numbers remain
the same even after interchanging the order of the numbers
Distributive Property: Real numbers satisfy the distributive property.
Ifa, b, ceR.

ax(b+c)=(axb)+ (axc)is the distributive property of

multiplication over addition.

ax(b—c)=(axb)—(axc)is the distributive property of

multiplication over subtraction.

If a and b are real numbers, we say that

a > b if a — b is a positive number,

a < bifa — b is a negative number.

A relation involving> or < is known as an inequality. The following

useful laws of inequalities can be easily obtained from the definition.

Ifa > b, then b < a.

Ifa>band b > c, then a > c.
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If a > band ¢ > d, then a + ¢ > b + d. (addition of inequalities).
Ifa>b,then a+c>b +c.
If a > b and c is a positive number, ac > bc.

If a > b and c is a negative number, ac < bc.

Q) If a +c > b, then a > b-c (transposition of a term). A particular
case of transposition is:
If a > b,then —b > —a.

The distance between two points x and a on the real line is denoted by
|x — al, and define as follows :
|x — a| = x — aifx > q,
|x — al = x — aifx < a.
It is the numerical difference between the numbers x and a.
The absolute value|x| of a real number x is defined by
i. x| =xifx>0.
ii. |x|=—-xifx<O.
In particular, (—oo, +00) denotes the set of all ordinary real numbers.
|x| = 0.
|—x| = |x].
|x| =max(x, —x).

—|x| =min(x, —x).

1,y € R, then () [+l = x2 = |—[2.Gi) eyl = Ixl. Iyl Gi) [2] = 2

provided y # 0.

Let A be a nonempty subset of R.

The set is said to be bounded above if three exists a number ueR

such that s < u for all s € S. Each such number u is called an

upper bound of S.
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The set is said to be bounded below if three exists a number weR
such that w < s for all s € S. Each such number w is called an
lower bound of S.
A set is said to be bounded if it is both bounded above and
bounded below. A set is said to be unbounded if it is not bounded.
If A is bounded above, then a number w is said to be supremum
(or a least upper bound) of A if it satisfies the conditions:
If A is bounded below, then a number w is said to be infimum (or
a greatest lower bound) of A if it satisfies the conditions:w is an
upper bound of 4, and

a) u is an upper bound of 4, and

b) If v is any upper bound of A4, then u < v.

If t is any upper bound of 4, then t < w.

The least upper bound or the greatest lower bound may not belong to the

set A.1 is least upper bound of the sets {x: 0 < x < 1},{x:0 < x < 1}and

{1—%:7161\]}.

Completeness Property Of Real Number System: Every nonempty set

of real numbers that has an upper bound also has a supremum in R.

ARCHIMEDEAN PROPERTY:

If x,y € Rand x > 0, then there is a positive integer n such that nx > y.

1.4 CARDINALITY OF SETS

In a set it is always important to know the number of elements in the
set. For finite set it is always possible but for infinite set we need some

well posed definition, which is given in next section.
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1.4.1 DEFINITION

CARDINALITY OF ASET

Cardinality of a finite set S is the number of element in the set, denoted by
|S1.
For example Cardinality of set S = {1,2,3} is 3.

The above definition and notion of cardinality will work only for finite
sets however Cantor in 1880, gave the extended definition of cardinality in

the following way

COMPARISON OF CARDINALITY OF TWO SETS

Let A,B are two sets, then these two sets are said to have same

cardinality written as |A| = |B|, if there exists a bijective map from A to B

We write |A| < |B], if there is an injective map from A to B.

1.4.2 SOME EXAMPLES

Example 1: Show that |2N U {0}| = |N|, where N is set of natural

numbers.

Solution: It is sufficient to show that there exists a bijection from
N to2N .Since we have f:N — 2Nby f(n)=2n-—2, which is a

bijective map.
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Example 2: Cardinality of a finite set A = {1,2,3,4} is 4.

Example 3: The set R of real numbers is uncountable.

Proof. The set R is clearly infinite. Suppose it is countable. Then, there
exists an infinite sequence f, fo, . .. that contains every element of R. We
obtain a contradiction by finding x in R such that x is not f, for any
positive integer n.

For each positive integer i, suppose that the part of the decimal
expansion of f;j following the decimal point is .di1d;dis. . ., where each d;;
isoneof 0, 1, ..., 9. The real number x = 0.x1X2Xa. . . is defined by

x;=5, if d; =6
x; = 6, otherwise
for each positive integer i.

We claim that x cannot be f, for any positive integer n. First of all, x
differs from f, in the then-th digit after the decimal point (i.e., xi = di,).
And, secondly, x is a number with only one infinite decimal expansion so

it can not simply be a second representation of a number that is f, for some

n. This proves the claim, and contradicts the existence of the sequence fi,
fo ...

Therefore, R is uncountable. n

Example: 4:The set Q of rational numbers is countably infinite.

Proof: To show this, we just need to arrange the elements of the set Q in
list form. This is done by arranging the first row consists of the rational
numbers with denominator 1, the second row consists of those with
denominator 2, and so on. In each row, the numerators appear in the order
0, -1, 1, -2, 2, .. ..Only the reduced form of rational numbers has been

considered.
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0/1—»1/1 1/1 —»2/1 2/1 31 3/1
172 —»-1}2 E/s -2/3 3/2 -3/2
1/3 -1/3 /5 -2/5 3/4 -3/4

1/41 -1/4 2/7  -2/7 3/5 -3/5

»
»

It is obvious that starting arrowing with 0 in the above manner we get all
the rational numbers in its path. Hence it shows that set of rational

numbers is countable.

1.4.3 SOME PROPERTIES

We have the following properties of cardinality :
i. If |A| = |B| and |B| = |C| then |A| = |C]|
ii. If |A| = |B], then both |A| < |B] and |4| = |B| holds
If |A] < |B| and |B| < |C|then |A] < |C].
|AuU B| = |A| + |B|, whereANB =@
|Ax B| = |Al|B|
|P(4)| = 21l

1.4.4 CARDINALITY OF SET AND POWER SET

According to the Cantors theorem, for any set A, we have |A| <
|P(A)|.Hlustration: If A = {1,2}, then obviously |A| = 2. Also since
P(A) = {0,{1},{2},{1,2}}, we have |[P(A)| =4 > 2 = |A|.

CHECK YOUR PROGRESS

1. What is the cardinality of set S = {1,2,3,4}? Explain your answer.
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2. Show that set of even and set of odd non negative integers have same

cardinality

1.5 COUNTABLE AND UNCOUNTABLE SETS

A set which is either finite or has the same cardinality as the set of natural
numbers is called countable set . A set having same cardinality as the set of
natural numbers is also called Countably infinite set. A set which is not

countable is called uncountable set.

1.6. SOME PROPERTIES AND EXAMPLES

Examplel: The set A = {a, b, c} is countable set
Example2: The set of all integers Z is countable set

Verification: Since we have a function f: N — Z defined by (n) =

+1 . .
nT, ifnisodd o o
2in , Which is a bijective map.
—~ ifniseven

Example3: The sets of natural numbers N, integers Z and set of rational

numbers Q are Countably infinite sets.
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Example4: The sets of real numbers R uncountable or infinite set.

Properties of countable and uncountable sets

Subset of a countable set is a countable set

Union and intersection of two countable sets are countable sets
The power set of natural numbers, 2! is an uncountable set (In
view of Cantors theorem)

Set of rational number is countable set
1.7 SUMMARY

This unit is an explanation of
I Definition of Cardinality of sets.

ii. Definition and examples of countable and uncountable set

1.8 GLOSSARY

Set.

Relation

Function.

Number System and its properties.
Cardinality

Countable and uncountable set
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1.10 TERMINAL QUESTIONS

1. Show that the following two sets have equal cardinality
A={3x:x €7}, B={7x:x€ 7}
2. Show that the sets (0,1), (1, ) are two infinite sets have same
cardinality.

3. Which of the following sets is countable
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a) (1,8)

b) Set of rational numbers

c) Set of irrational numbers

If cardinality of power set of A is 16 then cardinality of A is
a) 6

b) 4

c) 2

d) 8

1.12 ANSWERS

CHECK YOUR PROGRESS:
1. There are four element in the set so cardinality of set is 4
2. Both sets have same cardinality. Define appropriate bijective
map as f(n) = n — 1 nis even positive integer

. True

TERMINAL QUESTIONS:

1. Define suitable bijective map

2. Since we have map £:(0,1),- (1,), by f(x) = % which is

bijective and hence the sets (0,1)and(1, ) have same
cardinality.

. (b)

. (b)
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UNIT 2: BOOLEAN ALGEBRA

CONTENTS:

Introduction
Objectives

Boolean ring
o-ring

Boolean algebra
o-algebra of sets
Set function

Solved Problem
Summary

Glossary
References
Suggested Readings
Terminal Questions

Answers

2.1 INTRODUCTION

The topic of Boolean algebra is a branch of algebra first
introduced by George Boole that involves mathematical logic. The
motivation to study Boolean algebras comes from an interest in set
theory. In previous unit we have defined the set, countable set and
discussed about cardinality of set. In this unit we will discuss about

Boolean ring of sets, Boolean algebra of sets and o-algebra of sets.
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2.2 OBJECTIVES

After completion of this unit learners will have the deep understanding
of

Boolean ring of sets

o-ring of sets

Boolean algebra of sets

o-algebra of sets

Set function

2.3 BOOLEAN RING (RING OF SETS)

Let X be any set. Let & be a non-empty class of subsets of X then % is

said to be Boolean ring or ring of sets, if

A BE#Z=AUBE R
A BEB=A-BE R

Note: From the above definition it is clear that if 98 is Boolean ring
and A, B e & then

I. @ € B, since A-A=@

ii. ANB and AAB also lies in &, Since ANB=A - (A—B).
Therefore ANB € #BasAe Band A-B € &.
Again AAB= (A—B) U (B—A). Therefore, AABe .
Also by induction it can be shown thatUiL, A;, NiL; A; € %, for all
A € B.

Example 2.1The class { ¢} is trivial example of ring of sets.
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Example 2.2 Let X be any set then the class of all subsets of X (i.e.,
power set of X) are also trivial example of Boolean ring of sets.
Example 2.3 Let X=R . Let & be a set of all finite subsets of R then
2 forms a Boolean ring of sets (ring of sets).

Let A,B e 8= A,B are finite subset of R.
Therefore A UB is also a finite subset of R = A UB € %.
Also, A—B is finite= A—-B €%

Hence & is Boolean ring of sets.

2.4 0-RING

A Boolean ring 4 is called o-ring, if it is closed under the formation of
countable union i.e.,

A (iF1,2,3..)€ B= U2, A € B.

We can also define o-ring as follow:
Let X be any set. Let & be a non-empty class of subsets of X then % is

said to be o-ring, if

Ai (i=1,2,3...)€ B = Ule Ai € X
A BEB=A-Be R

Remark: Every o-ring is a Boolean ring.

Example 2.4 Let X=R . Let & be a set of all countable subsets of R

then % forms a o-ring.

Let A; (i=1,2,3... )= A, (i=1,2,3...) are countable subset of R.
Since we know that countable union of countable sets is countable.
Therefore U;2, Ajis also a countable subset of R = U2, A; €.
Also, for any A,Be %, A—B is countable= A—B €%
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Hence % a o-ring of sets.

Note: Every Boolean ring need not be a o-ring.

For counter example we can see the example 2.3, which forms Boolean
ring but not o-ring.

Take A,={n};n=1,2,3...

Each A, is finite having exactly one element hence A, €%; n=1,2,3...
But U2, A,=N, which is not finite = Z is not closed under countable
union.

Hence 8 is not a o-ring.

Theorem 1. Intersection of two Boolean ring is a Boolean ring.

Let B;,B, be any two Booleanring and A, B € B; N B,,
Then A€ B, N B, = A€ B, and A€ B,, (1)
Be B, N B, =B€ B;and BE B,.  ...(ii)
Thus A, B € B; and A, B € B,. But B, and B, are Boolean rings.
Combining (i) and (ii), we have
A-BeE B, NnB, and AUB € B, N B, = B; N B, forms a Boolean

ring.

2.5 BOOLEAN ALGEBRA (OR ALGEBRA OF
SETS ORAFIELD)

Let X be any set. Let & be class of subsets of X then & is said to
be Boolean algebra of subsets of X, if
i. PERB
ABe#s=AUBE %
AEB = A€ € &B; Where A°=X—-A.
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Note: From the above definition it is clear that if & is Boolean algebra
of subsets of X and let A,BE % then

X ERB

IfA A, ....A € Fthen A;U - - - UA,ER
IfA, ..., A,€ZRBthenA; N - - NAER
IfA BE#thenA—B€ER

Since pe and X = ¢, it follows that X €.

For (ii) we have A;U - UA, = A U (A;- - - UA, )EZ (by induction)
Then (iii) follows by complementation: A;N - - - NA,=(A] U---U
AS) € which is in & because each Af€ .

For (iv) we have A — B = A NB¢€is in %, because A,B°€A.

Example 2.5 The collection {@, X} is a trivial example of algebra of

subsets of X.

Example 2.6 The set P(X) of all subsets of X is a algebra.

Example 2.7 Let X be an infinite set, and & be the collection of all

subsets of X which are finite or have finite complement. Then # is an

algebra of sets.

Note: Every Boolean algebra is a Boolean ring.

Hint: Use AAB=(A—B) U (B—A) and (A—B)=A NB¢, (B—A)= B NA°.

2.6 o-ALGEBRA OF SETS

Let X be an arbitrary set. A collection & of subsets of X is
called a oc-algebra (sometimes also called a o-field) on X if the

following conditions are satisfied simultaneously:
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(i) X ER.
(i) For each Ae#B— A°€R

(iii)  For each infinite sequence {A;} 2, of sets that belong to 8 =

Note: condition (iii) is equivalent to the following condition:

For each infinite sequence {A;}2,of sets that belong to %=
N2, A;€A....(check by Reader)

Remark:
(i) Condition (i) in both the definitions of algebra and c-algebra can be

replaced by saying that 98 is non-empty.

(if) Each c-algebra is an algebra on X. But the converse is NOT true in

general.

(iii) The empty set belongs to any algebra or c-algebra.

Example 2.8 Let X be any set and 8 be the power set P(X) of X. Then

2 is a o-algebra on X

Example 2.9 Let X be any set and & = {@, X}. Then £ is a c-algebra
on X.

Example 2.10 Let X be an infinite set and 2 be the collection of all
finite subsets of X. Then & is NOT an algebra (because X does not
belongs to &) and hence NOT a c-algebra.

Example 2.11 Let X be an infinite set and 2 be the collection of all
subsets A of X such that either A or ACis finite. Check that & is an

algebra but is NOT a c-algebra. This is an exercise
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Example 2.12 Let X be any set and # be the collection of all subsets
A of X such that either A orA€ is countable. Check that A is a o-
algebra.

Example 2.13 Let X be a uncountable set. Let & be the collection of
all countable subsets of X. Then A'is NOT an algebra (because X does
not belongs to &) and hence NOT a c-algebra.

2.6.1 CONSTRUCTION OF o-ALGEBRAS

In this subsection, we will see how to construct a c-algebra out of a

given (arbitrary) collection F of subsets of a given set X.

Theorem 2: Let X be a set and F be an arbitrary collection of subsets

of X. Then there exists a smallest o-algebra 98 on X that contains F.

Proof: Let C be the collection of all c-algebras on X that contain F .
Clearly then C is non-empty since it contain the c-algebra P(X) which
is the power set of X. Take the intersection of all c-algebras in C, this
intersection will be a c-algebra (verify by reader), call it 4. It is now

easy to check that & has the required properties.

Definition: Given a set X and an arbitrary collection F of subsets of
X. The smallest c-algebra on X that contains F is unique (the proof of
uniqueness follows from the proof of theorem 2 above) and is called
the s-algebra generated by F, often denoted by o(F). By the phrase
‘smallest c-algebra on X that contains F’, we mean a c-algebra on X
that includes F and every c-algebra on X that includes F also includes
it.
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A natural question that arises after looking at the statement of exercise
2.4 is that if we replace the term ‘intersection’ by the term ‘union’ in
the statement of exercise 2.4, does the new statement hold true? The
answer to this is NO in general. As an example, take X = {1, 2, 3}, C;
={X, 0, {1}, {2, 3}} and C, = {X, @, {2}, {1, 3}}. Then check that
both C, and C, are c-algebras but C;UC, is NOT.

2.6.2 THE BORELo-ALGEBRA

In this subsection, we will discuss an important example of a 6-

algebra on R.

Definition: Let F(R) be the collection of all open subsets of R.Let
B(R) = o(F(R)). We call #B(R) the Borel 6-algebra on R. Elements
of B(R) are called the Borel subsets of R.. We denote this c-algebra
by #B(R).

2.7 SET FUNCTIONS

Let X be a set. Let % be a non-empty class of subsets of X then
a set function on & is a function p with domain # and codomain

[—OO, OO] i.e., |J-: ,%—)[—OO' OO]

Remark: It is typically assumed that p(E)+u(F) is always well defined
for all E,FE %, or equivalently, thaty does not take on both —co and o

as valves.

Note: A set FEZ is called null set (with respect to pn ) if p(F)=0.

Whenever p is not identically equal to either —oo or + oo then it is

typically also assume that u(@)=0 if @€ 2.
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COMMON PROPERTIES OF SET FUNCTIONS:

A set functionp: #B—[—oo, o] is said to be

(i) Non-negative: if p takes valves in [0, oo].

(if) Finitely additive: We say that p is finitely additive if, for any
family A4, ..., A €% of mutually disjoint sets such that UL, A; € B,we
havep(Uiz; Ai)=Xis; H(A)).

(iii) Countably additive or o-additive: We say that p is c—additive if,
for any sequence (A,) <% of mutually disjoint sets such that
UZ; Aj € B, we have 1 (U2, Aj)=X2; n(A).

Remark:

(i) Any o—additive set function on Z is also finitely additive.

(i) If p is additive and A, B €%, and A > B,

then w(A) = u(B) +u(A\ B). Therefore, u(A) > u(B).

It is also called p is monotone with respect to inclusion, i.e. AS B =
n(A) < u(B).

(iii) For any sequence (A,) % of mutually disjoint sets such that

Uj2, A; € %, then for set function P we have p (U2, A)=>X2, n(A)).

Definition: Let X be a set. Let % be a c-algebra of subsets of X then a
set function p: B—[—o0, ] is said to be measure if following

condition holds:

(i) u(@)=0.

(if) Non-negativity: For all A€ &, u(A) >0
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(iii) Countably additive or e-additive: For any sequence (A,) €% of

mutually disjoint sets, we have p(U2; Aj)=22, n(A)).

Remark: If the condition for non-negativity is dropped, and p takes on

at most one of the valves of +oo, then p is called a signed measure.

Example 2.14: Let X be a nonempty set and x € X. Define, for every
A € P(X),

_(1;ifx € A
6X(A)‘{o; ifx & A

Then 8,is a measure in X, called the Dirac measure.

Definition:
0] A c-additive set function p : % — [0, «] is called finite,
if w(X) < oo.

A o-additive set function g : % — [0, =] is called o-
finite, if there exists a sequence (A,)SZ such that

Up—; A, = Xand pu(A,) <o vn eN.

2.8 SOLVED PROBLEM

Example 2.15 Let X be an infinite set and 2 be the collection of all
subsets A of X such that either A or ACisfinite. Show that 2 is an
algebra but is NOT a c-algebra.

Sol. # forms an algebra of subsets of X since

(1) Pe R, as @ is empty hence it is finite.
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(i1) Let A,B € 8. Then there are four cases:

Case(i) If AB both are finite subsets of X then AUB is finite
=>AUBE Z.

Case(ii) If A is finite and B€is finite subsets of X then (AU
B) ¢=A°NB€ is finite (since B€ is finite)=(A U B) ‘€ %.

Case(iii) If ACis finite and B is finite subsets of X then (AU
B) ¢=A°NB¢ is finite (since A is finite) =(A U B) ‘€.

Case(iv) If ACis finite and BF€is finite subsets of X then AU B€ is

finite.

From above four cases,

we have either (AUB) or (A U B) € is finite > AUBE £.

(iii) Let A€ B = either A or ASis finite >A°€ .

Hence & forms a algebra of subsets of X.

If we take A,={n}; n=1,2,3... then U;_; A,=N, which is infinite= %

is not a c-algebra.

Example 2.16Let X =N, consider % = {A € P(X) | A is finite, or A€ is
finite }.

Define vl B — [—00,00] defined asu(A) =
(A); if A is finite

{00 ; if AC is finite
forms a set function. Then p forms a set function.

Where #(A) represent number of element in A.

Department of Mathematics
Uttarakhand Open university Page 28




Sol. It is clear that (L : 8 — [—o0,00] forms a function and p(@)=0.

Example 2.17Let X={a, b, c, d} and let ={9, {a, b}, {c, d}, {a, b, c,
d}} then 2 forms a Boolean algebra.

Example 2.18Let X be a set and A is subset of X then {@, A, X\A, X}
is a simple c-algebra generated by the subset A.

Example 2.19Let X = R, # = {A c R|A is a union of finitely many
intervals of the type (a, b], (a, ®©) or (—oo, b]}. It is easy to check that
each set that belongs to 8 is the union of a finite disjoint collection
intervals of the 3 types mentioned above. Check that A is an algebra
over X, but it is NOT a c-algebra on X (because intervals of the type
(c, d) are unions of sequences of sets belonging to &, but do not

themselves belong to %B).

Example 2.20 In X = [0, 1), the class & consisting of @, and of all

finite unions A = Uj.,[ai, bi) with 0 < a;<b;<aj;; <1, is an algebra.
Sol. For A= UjL,[ai,bi) we have A°= [0, a;) U[bs,a,)U---U

[b,, 1) €4, Moreover, in order to show that &8 is stable under finite

union, it suffices to observe that the union of two (not necessarily
disjoint) intervals [a, b) and [c, d) in [0, 1) belongs to %.

CHECKYOUR PROGRESS

Every o-ring is a Boolean ring. True/False

. Let %Bbe a set of all finite subsets of R then & does not forms a
Boolean ring of sets. True/False
Every Boolean ring is a o-ring. True/False

Every Boolean algebra is a Boolean ring. True/False
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Let < be a an algebra of subsets of X then if A, BE % then AABe
2. True/False

LetX be a uncountable set. Let 28 be the collection of all countable
subsets of X. Then A is an algebra of subset of X. True/False

The intersection of an arbitrary collection of c-algebras on X is not

a o-algebra on X. True/False

Any o-additive set function on % is also finitely additive.

True/False

2.9 SUMMARY

This unit is complete combination of
i.  Definition of generalisation of Boolean ring and it’s
properties.
o-ring and it’s properties
Concept of Boolean algebra and it’s related results.
Definition of o-algebra of sets and it’s properties.

Definition of set function and it’s properties.

2.10 GLOSSARY

Set.

Subset.

Ring of sets.
o-ring.

Boolean algebra.

o-algebra.

N o g ~ w0 D P

set function.
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2.13TERMINAL QUESTIONS

1. Let & be a Boolean ring of sets. Then prove that
Q) 2 1s closed under finite intersection.
(i)  Ais closed under finite union.

2. Let X be any set. Let & be a non-empty class of subsets of X then
show that 48 is a Boolean algebra of subsets of X iff

Q) PERB

(i) A Be#B=ANBe R

(ili)  AeB = A° € B, Where A°=X-A.

3. Let & be a an algebra of subsets of X then show that if A,Be &
then AABE .

4. Let X be a set. Then show that intersection of an arbitrary collection

of o-algebras on X is a o-algebra on X.

6. Let X be asetand A, B c P(X) then Show that, if & is a c—algebra,
then o(%) = A.
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2.14 ANSWERS

CHECK YOUR PROGRESS
1. True
False
False
. True
. True
. True
False

. True
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UNIT 3: MEASURE SPACE

CONTENTS:

Introduction
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Outer Measure
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Suggested Readings
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Answers

3.1 INTRODUCTION

In mathematics, the concept of a measure is a generalization
and formalization of geometrical measures (length, area, volume) and
other common notions, such as magnitude, mass, and probability of
events. In this unit we will discuss about measure, outer measure,
measurable sets, example of non-measurable sets and some properties

of measure.
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3.2 OBJECTIVES

After completion of this unit learners will have the deep understanding
of

Outer Measure

Measurable sets

Non measurable sets

Example of Non measurable sets.

3.3 OUTER MEASURE

Definition: Let X be a set and P(X) be the power set of X. An outer
measure on X is a set function
u* : P(X) — [0, o] which satisfies all the three properties mentioned
below:

a) u (9)=0.

b) IfAc B C X, then p* (A) < p* (B). (monotonicity of pu* )

c) If{A,} is an infinite sequence of subsets of X, then

W (Upeqr Ap) <02, 1* (Ap). (countable subadditivity of p*).

Remark:
1. The domain of an outer measure is not any arbitrary c-algebra,

it is always the power set c-algebra.

2. For any set X, a measure on P(X) is always an outer measure,

but the converse is not true in general. We will soon see some
example (In fact, an outer measure can fail to be a measure

because the countable additivity might fail to hold!).
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Example 3.1: Let X be any set and pu* : P(X) — [0, o] be given by:
w )=

Check that p * is an outer measure.

0; if A is countable
1; otherwise

Definition:The Lebesgue outer measure m* on R:

Let | be a nonempty interval of real numbers. We define its
length, #(1), to bewif | is unbounded and otherwise define its length to
be the difference of its endpoints. For a set A of real numbers, consider
the countable collections {1} y, of nonempty open, bounded intervals
that cover A, that is, collections for which AUy, I. For each such
collection, consider the sum of the lengths of the intervals in the
collection. Since the lengths are positive numbers, each sum is
uniquely defined independently of the order of the terms.

We define the Lebesgue outer measure of A, m*(A), to be the
infimum of all such sums, that is

m - (A) = InfEZ, (1) A € U L}
It follows immediately from the definition of outer measure that
m*(@) = 0.
Moreover, since any cover of a set B is also a cover of any subset of B,

outer measure is monotone in the sense that

if ACB, then m*(A) < m*(B).

Theorem 3.1: A countable set has Lebesgue outer measure zero.

Let C be a countable set enumerated as C= {cy} x=-

Lete>0. For each natural number k, define I, = (¢, — €/25*1, ¢, +
e/2K),

The countable collection of open intervals {I.} x-,covers C.
Therefore 0 < m*(C)<Xi., £(Iy)) =Xie, €/2%=¢.

This inequality holds for eache>0. Hence m* (C) = 0.
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Remark: TheLebesgue outer measure of an interval is its length

(verify by learner).

Theorem 3.1 The Lebesgue Outer measure is translation invariant, that
is, for any set A and number vy,
m*(A+y) = m*(A).

Proof: Observe that if{I;} ;—, is any countable collection of sets, then
{I} k= covers Aif and only if {I + y} x=,covers A+y.

Moreover, if each I is an open interval, then each I .+ y is an open

interval of the same length and so Y., £ (1))=Y p 1 £(Ix + ¥).

The conclusion follows from these two observations.

3.4 MEASURABLE SETS

Definition: Let X be a set and p* be an outer measure on X. A subset
B of X is said to be pu* -measurable (or measurable set) if

W (A)= u(ANB)+ p" (AN B)
holds for each subset A of X.

Note(i)it follows from the defining properties of an outer measure that
W (A)<sp (ANB)+p (AN B)
holds for any two subsets A, B of X. Thus to check for the u*-
measurability of a subset B of X, we only need to check that u* (A) >
W (AN B)+p* (ANBY)....uueee. (3.1)
holds for each subset A of X. But if p* (A) = oo, the inequality 3.1
anyways holds true.
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So the p* -measurability of a subset B of X can be verified by checking
that inequality 3.1 holds true for each A € X which satisfies g * (A) <

0,

(if) A Lebesgue measurable subset of R is one that is measurable with

respect to the Lebesgue outer measure m*.

Theorem 3.2 Let X be a set and p* be an outer measure on X. Then
each subset B of X which satisfies u* (B) =0 or p* (B¢ ) =01is p* -

measurable i.e., Any set of outer measure zero is measurable.

Proof :
Case(i): if p* (B) =0.

Then by the property of outer measure we have,
W (A)<p* (ANB)+ ' (AN BY).....(3.2)
Also;u* (AN B) +u* (AN B¢)<u* (A) + u* (B)

= W (ANB)+p" (ANB®)<p” (A) (asp” (B)=0)
Now using equation 3.2 and 3.3 we have,
W (A) =p" (AN B) +p" (AN B°)
holds for any subsets A of X.

=B is measurable with respect to outer measure p*on X.

Case(ii) : if uw* (B€)=0

Then by the property of outer measure we have,
W (A)sp (ANB)+p (ANB)
= (AN B+ p* (AN (BS)).....(3.2)
Also,
(AN B)+ ' (ANBE) =" (ANB) +p* (AN (BY)®)
<p* (BY) + w'(A) =" (A) (asp” (B)=0)
= (AN B)+p* (AN BS) <p*(A)....(3.3)
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Now using equation 3.2 and 3.3 we have,
W (A)=p" (ANB)+p* (AN BC)
holds for any subsets A of X=B is measurable with respect to outer

measure p*on X.

Notation:
Let X be a set and p* be an outer measure on X. Then the M,-denotes
the collection of sets that are measurable with respect to outer measure

uwon X.
Recall the Lebesgue outer measurem™ on R. We denote by M- the
collection of all Lebesgue measurable subsets of R, i.e., all subsets of

R which are measurable with respect to the outer measure m*.

Exercise: Let X be a set and u* be an outer measure on X. Let M- be

the collection of all u*-measurable subsets of X. Then M- is a o-

algebra.

Theorem 3.3: The union of a finite collection of measurable sets is

measurable.

Proof: As a first step in the proof, we show that the union of two
measurable sets E; and E, is measurable. Let A be any set. First using

the measurability of E;, then the measurability of E,, we have

m*(A) = m*(ANE,;) + m*(ANE;°)
m*(ANE,) + m*([ANE; ] N E,)+ m*([ANE, ] N E,°).

There are the following set identities:
[ANE;“] NE,* = AN [E; UE,]"
and
[ANE;]U [ANE;° N E,) )= AN [E; UE,].
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We infer from these identities and the finite sub additivity of outer
measure that
m*(A) = m*(ANE;) + m*([ANE;“] N E,)+m* ([ANE;°] N E,©)
=m*(ANE,) + m*([ANE;] N Ey)+m*(A N [E; U E,]°)
> m*(AN [E; U E,]) + m*(A N [E; U E,]°).

Thus E; U E, is measurable.

Now let {E\} 1=, be any finite collection of measurable sets. We prove
the measurability of the union Uy_, Ex, for general n, by induction.
This is trivial for n = 1. Suppose it is true for n — 1.

Thus, since

UR=1 Ex = {URZ1 Ex} UE,,

and we have established the measurability of the union of two

measurable sets, the set Ug-, Exis measurable.

3.5NONMEASURABLE SETS

We have defined what it means for a set to be measurable and

studied properties of the collection of measurable sets.

The set that fail to be measurable is called Non measurable set.

We know that if a set E has outer measure zero, then it is
measurable, and since any subset of E also has outer measure zero,
every subset of E is measurable. This is the best that can be said
regarding the inheritance of measurability through the relation of set
inclusion: we now show that if E is any set of real numbers with
positive outer measure, then there are subsets of E that fail to be

measurable. For this we need some important result.
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Theorem 3.4: Let E be a bounded measurable set of real numbers.
Suppose there is a bounded, countably infinite set of real numbers A
for which the collection of translates of E, {A + E},c5 , IS disjoint.
Thenm*( E) = 0.

Proof: The translate of a measurable set is measurable.
Thus, by the countable additivity of measure over countable disjoint
unions of measurable sets,
m’ [Upea(r + E)] =Xpeam™ (A + E)......(3.4)

Since both E andA are bounded sets, the set U,ea(A + E) also is
bounded and therefore has finite measure.
Thus the left-hand side of (3.4) is finite.
However, since measure is translation invariant, m* (A + E) = m*( E)
> (0 for eachA € A .
Thus, since the set A is countably infinite and the right-hand sum in

(3.4) is finite, we must have m*( E) = 0.

Definition: For any nonempty set E of real numbers, we define two

points in E to be rationally equivalent provided their difference

belongs to Q, the set of rational numbers.

e |t is easy to see that this is an equivalence relation, that is, it is
reflexive, symmetric, and transitive. We call it the rational
equivalence relation on E. For this relation, there is the disjoint
decomposition of E into the collection of equivalence classes.
By a choice set for the rational equivalence relation on E we
mean a set Cg consisting of exactly one member of each
equivalence class. We infer from the Axiom of Choicethat there
are such choice sets. A choice set Cg is characterized by the

following two properties:
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the difference of two points in Cg is not rational,

ii. for each point x in E, there is a point c in Cgfor which x = ¢ + q,
with q rational. This first characteristic property of Cx may be
conveniently reformulated as follows:

For any set ACQ, {A + Cg}yea IS disjoint........(3.5)

3.6 EXAMPLE OF NONMEASURABLE SETS

Example 3.2: Any set E of real numbers with positive outer measure
contains a subset that fails to be measurable.

Proof :By the countable sub additivity of outer measure, we may
suppose E is bounded.

Let Cg be any choice set for the rational equivalence relation on E.

We claim that Cg is not measurable.

To verify this claim, we assume Cgis measurable and derive a
contradiction.

Let A be any bounded, countably infinite set of rational numbers.
Since Cg is measurable, and, by (3.5), the collection of translates of
Cgby members of Ao is disjoint, it follows from the theorem 3.4 that
m( Cg) =0.

Hence, again using the translation invariance and the countable
additivity of measure over countable disjoint unions of measurable

sets,

m" [Ujea(A + Cg)] = Xaeam™ (A + Cg)

To obtain a contradiction we make a special choice of A.
Because E is bounded it is contained in some interval [-b, b]. We
choose

A =[-2b, 2b] N Q.
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Then A is bounded, and is countably infinite since the rationals are

countable and dense.

We claim that

E SUxe[-2b,2b]n @ (A + CE) (3.6)

Indeed, by the second characteristic property of Cg, if x belongs to E,
there is a number c in the choice set Cg for which x = ¢ + q with g
rational.

But x and ¢ belong to [-b, b], so that g belongs to [-2b, 2b].Thus the
inclusion (3.6) holds.

This is a contradiction because E, a set of positive outer measure, is not
a subset of a set of measure zero.

The assumption that Cg is measurable has led to a contradiction and

thus it must fail to be measurable.

Theorem 3.5: There are disjoint sets of real numbers A and B for
which
m*(A U B) < m*(A) + m*(B).

Proof: We prove this by contradiction.

Assume m*(A U B) = m*(A) + m*(B) for every disjoint pair of sets A
and B.

Then, by the very definition of measurable set, every set must be
measurable.

This contradicts the preceding example.
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3.7 SOLVED PROBLEM

Example 3.3 Let X be any set and p* : P(X) — [0, o] be given by:

0; ifA =0
1; otherwise

w =1

Check that p*is an outer measure.

Example 3.4: The sets @ and X are measurable with respect to every

outer measure pon X.

Sol.
Since ¥ (A)= w* (ANQ)+ pu* (AN Q)
= (@) + pw(ANX)

W (9) + u (A)

0+ pw (A)= p (A
holds for any subsets A of X=@is measurable with respect to every
outer measure p*on X.
Similarly,

(A= (ANX)+ p" (ANX)
= (A)+ p(ANY)

W (A) + u (9)

w (A)+0= u* (A)
holds for any subsets A of X=X is measurable with respect to every

outer measure pon X.

Example 3.5: Let X be any infinite set and p* : P(X) — [0, «] be
given by:

0; if A is finite

1; otherwise

w ) =

Check that pu* is NOT an outer measure.
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Sol.

Let X=N. Take A,={n}; for n=1,2,3...

Then p*(A,)=0 for n=1,2,3... (since each A, is finite).
Also Up-, Ap=N.

Now,

W(Upz1 Ap) = p°(N)=1

And 1 W (AL)=0; (since each p* (A,)=0)
Hence countable subadditivity of u*does not hold for this.

Therefore p* is not outer measure.

CHECK YOUR PROGRESS

The domain of an outer measure is any arbitrary o-algebra.
True/False
For any set X, a measure on P(X) is always an outer measure.
True/False
3. Acountable set has Lebesgue outer measure non-zero. True/False

. The union of a finite collection of measurable sets is measurable.
True/False

. Acountable set has Lebesgue outer measure zero . True/False
If m*(A) =0, then m*(AUB) =m*(B). True/False
If a set E has outer measure zero, then it is not measurable.
True/False

. The union of a countable collection of measurable sets is

measurable. True/False
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3.8 SUMMARY

This unit is complete combination of
i.  Definition and example of outer measure and it’s
properties.
Measurable sets and it’s properties
Definition of Non measurable set.

Example of Non measurable sets.

3.9 GLOSSARY

. Outer Measure.
Measurable set.
Non measurable sets.
. o-algebra.

Lebesgue outer measure
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3.12 TERMINAL QUESTIONS

By using properties of outer measure, prove that the interval [0, 1]
is not countable.
Let A be the set of irrational numbers in the interval [0, 1). Prove
that m*(A) =1
Prove that if m*(A) =0, then m*(AUB) =m*(B).
Prove that the outer measure of an interval is its length

. The union of a countable collection of measurable sets is
measurable.

Prove that Every interval is measurable.
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7. Show that if a set E has positive outer measure, then there is a
bounded subset of E that also has positive outer measure.
Show that a set E is measurable if and only if for each e> 0, there
is a closed set F and open set O for which F € E € O and m*(O-F)

<e.

3.13 ANSWERS

CHECK YOUR PROGRESS

False
True
False
True
True
True

False

1.
2.
3.
4.
5.
6.
7.
8.

True
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UNIT 4: LEBESGUE MEASURE

CONTENTS:

4.1 Introduction
4.2 Objectives
4.3 Lebesgue Measure
4.4 Definition
4.4.1 Existence of Lebesgue Measure
4.4.2 Lebesgue Outer Measure
4.4.3 Properties of Lebesgue Measure
4.5 The Borel - Cantelli Lemma
4.6 The Cantor set and the Cantor — Lebesgue Function
4.7 Solved Examples
4.8 Summary
4.9 Glossary
4.10 References
4.11 Suggested readings
4.12 Terminal questions
4.13 Answers

4.1 INTRODUCTION

In measure theory, a branch of mathematics, the Lebesgue

measure, named after French mathematician Henri Lebesgue, is the
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standard way of assigning a measure to subsets of higher dimensional
Euclidean n-spaces. For lower dimensions n=1, 2 or 3 it coincides with the
standard measure of length, area or volume. In general, it is also called n-
dimensional volume or simply volume. It is used throughout real analysis,
in particular to define Lebesgue integration sets that can be assigned a
Lebesgue measure of the Lebesgue- measurable set A is here denoted by
[(A).Henri Lebesgue described this measure in the year 1901 which, a
year after was followed up by his description of the Lebesgue Integral.

Bernhard Riemann Henri Léon Lebesgue
(17-09- 1826 to 20 -07- 1866) (28-06-1875 to 26-07-1941)
Ref 4.1

https://www.wikipedia.org/

The length I(I) of an interval I is defined to be the difference of the

endpoints of I if I is bounded, and coif | is unbounded. Length is an

example of a set function, that is, a function that associates an extended
real number to each set in a collection of sets. In the case of length, the
domain is the collection of all intervals. In this chapter we extend the set

function length to a large collection of sets of real numbers. For instance,
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the "length™ of an open set will be the sum of the lengths of the countable
number of open intervals of which it is composed. However, the collection
of sets consisting of intervals and open sets is still too limited for our
purposes. We construct a collection of sets called Lebesgue measurable
sets, and a set function of this collection called Lebesgue measure which is

denoted by m.

4.2 OBJECTIVE

After Completion of this unit learners will be able to

Define Measure of a set.
Define the concept of Lebesgue Measure.
Evaluate the different type of Lebesgue Measure with example.

Numerical Problems on Lebesgue Measure.

4.3 LEBESGUE MEASURE

Definition : The restriction of the set function outer measure to the class

of measurable sets is called Lebesgue Measure.

It is denoted by m, so that E is a measurable set , its Lebesgue measure ,
m(E) is defined by

m(E) = m*(E).

Note - The countable collection of the sets {E} }r-, is said to be ascending
provided for each k , E}, € E,,,, and said to be descending provided for

eachk , Ex .4 € Ey.
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4.4 DEFINITIONS

441 LEBESGUE MEASURE

Existence of Lebesgue Measure-There exist a collection M of subsets of
R (the measurable sets) and a function m: M — [0, o) satisfying the
following conditions-
i. Everyinterval I € R is measurable , with m(I) = [(]).
ii. IfE < R isameasurable set, then the complement E€ = R —E is
also measurable.
For each sequence {E,, } of measurablesets in R, the union U,.cy Ex,

is also measurable. Moreover, if the sets {E,,} are pairwise disjoint
' then m(UneN En) = ZnEN m(En)-

4.4.2 LEBESGUE OUTER MEASURE

A subset E of R is said to be Lebesgue measurable if for each set A we
have-

m*(A) = m*(ANE) + m*(ANE®).
In this case, the outer measure m*(E) of E is called the Lebesgue
Measure of E, and denoted by m(E).
The arbitrary subset A of R that appears is the criterion is known as a test
set.
Note that

m*(ANE) + m*(ANES) > m*(4)

Automatically since m* is subadditive. Thus a set E is Lebesgue

measurable if and only if
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m*(ANE) + m*(ANE®) < m*(4)

For every test set A.

443 PROPERTIES OF LEBESGUE MEASURE

Proposition (1): Union of two measurable sets — If E and F are

measurable subset of R, then EUF is also measurable.

Proof- Let A c R be atest set. Since E is measurable we know that

m*(4) = m*(ANE) + m*(ANE®) (i)
Also if we used AN(EUF) as a test set, we find that

m*(AN(EUF)) = m*(ANE) + m*(ANE°NF) (i)
Finally, Since F is measurable , we know that

m*(ANES) = m*(ANE°NF) + m*(ANESNF®) (iii)
Combining equation (1),(2) and (3) together yields
m*(A) = m*(AN(EUF) + m*(ANE°NF°)

Since ECNF¢ = (EUF°®), this proves that EUF is measurable.

Corollary : Intersection of two Measurable Sets. If E and F are
measurable subset of R, then ENF is also measurable.

Proof: Since E and F are measurable, their Complements E€ and F€ is
also measurable. It follows that the union ECUF°€ is measurable and the

complement of this is ENF.

Proposition (2):Countable Additivity-

Let {E; } be a sequence of Pairwise disjoint measurable subset of R . then

the union Uyey E is measurable , and m(Uken Ex) = 2ken M(Ey).

Proof: LetA € R be atest set, and let U = Uyep Ex-
We wish to show that m*(4) = m*(ANU) + m*(ANU°).
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Foreachn € N, Let U,, = U}=, Ex by the proposition (2), each U,, is
measurable, so m*(4) = m*(ANU,) + m*(ANUS).
But each U, € U, so TNU¢ < ANUg, and hence
m*(4) = m*(ANU,) + m*(ANU°).
Thus it suffices to show that m*(ANU,) - m*(ANU) asn — .
To prove this claim, observe first that
m*(ANU,) = m*(ANU,NE) + m*(ANU,NEY)
= m*(ANEy) + m* (ANUj_4).
For each k By induction, it follows that

m*(ANU,) = ) m*"(ANEy)

For each n. Then

Z m*(ANE,) = m*(ANU,) < m’(ANU) < Z m*(ANEy),
k=1

kEN

Where the last inequality follows from the Countable subadditivity of m”.

By the squeeze theorem, we conclude that

lim m*(ANU,) = m*(ANU) = Z m*(ANEy),

n —oo

Which proves that U is measurable. Moreover, in the case where A = R,

the last equation gives

m(U) = Z m(Ey).

keN
The continuity of Measure-Lebesgue Measure possesses the following

continuity properties:
(i) If {A,}7-, isanascending collection of measurable sets then.

(m UAk) = Ill_)rg m(A). (1)

k=1
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(i) If {B}r-, is a descending collection of measurable sets and
m(B,) < oo, then

m([ | Bo) = Jim m(40).2)
k=1

Proof: (i) If there is an index K, for which m(4,,) = o, then by the
monotonicity of measure , m(Up-, Ax) = o0 and m(A4;) = oo for all K >
K. Therefore (1) holds Since each side equals co. It remains to consider
the case that m(A4;) < oo for all k.

Define A, = ¢ and then define C, = A,~A,_, for each k> 1. By
construction, since the sequence {4} =, is ascending,

{Ce)v= isdisjointand Up-; A = Up=; Cx -

By the countable additivity of m,

m (O Ak) =m (lj Ck) = i m(Ag~Aj-1) 3)
k=1

k=1 k=1
Since, {A;}r=, is ascending , we infer from the excision property of

measure that

o)

> M~ A) = ) mA) = m(Ay-y)]
k=1

k=1

n

= lim > [m(4) ~mAe )] @)

k=1
= Ai_r)go[m(An) —m(4y)].

Since m(4,) = m(¢) = 0, (1) follows from (3) and (4).

(i))- we define D, = B;~By, for each k . Since the sequence {B;}r-, is
descending, the sequence {Dy}r-; is ascending . By part (i),

m (U Dk) = 111_)1‘{)10 m(Dy,).

k=1

According to De Morgan’s Identities,
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CJD LOOJ[B1~BR] B~ ﬂBk
k=1 =

On the other hand , by the excision properties of measure, for each k, since
m(By) < o,m(D;) = m(B,) — m(By,). Therefore

m (191~ N Bk) = lim [m(B,) — m(B,)]

k=1

Once more using excision we obtain the equality (2).

For a measurable set E, we say that a property holds almost
everywhere on E, or it holds for almost all x € E, provided there is a
subset E, of E for which m(E;) = 0 and the property holds for all x €
E~E,.

A set X of real numbers is said to have (Lebesgue) measure zero.
Measure is a mathematical precise generalization of length/area/volume.
So in this sense a measure zero set is one with volume zero, quasi with no
interior. It is just too fine-grained, to thin, or too flat (depending on the
dimension) to have any positive value as its length/area/volume. The

cantor set are uncountable set has measure zero.

The Lebesgue measure of any countable set (no matter whether finite

or infinite) is 0.
The set Q of rational numbers is countably infinite and, therefore,

countable. Any subset of a countable set is countable and has measure 0;

therefore, [0; 1] N Q is countable with measure 0.

4.5 THE BOREL - CANTELLI LEMMA
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Let {Ey }i=, be a countable collection of measurable sets for which

Y=g M(Ey) < oo

Then almost all x € R belong to at most finitely many of the E;’s.

Proof For each n, by the countable subadditivity of m,

m(IU Ek) < ;m(Ek) < oo,

=n

Hence, by the continuity of measure,

m(ﬂ EkD = lim m(U Ek) < lim Z m(E,) = 0.
k=n " " k=n

n=1 k=n

Therefore almost all x € R fail to belong to N;_[Ux~,, Ex] and therefore

belong to at most finitely many Ejs.

The set function Lebesgue measure inherits the properties possessed by
Lebesgue outer measure.

For future reference we name some of these properties.

(Finite Additivity) For any finite disjoint collection {E,}}., of

measurable sets,

Monotonicity) If A and B are measurable sets and A € B, then
m(A) < m(B).

(Excision) If, moreover, A € B and m(A) < oo, then
m(B~A) = m(B) — m(4),
So that if m(4) = 0, then
m(B~A) = m(B).

Department of Mathematics
Uttarakhand Open University




(Countable Monotonicity) For any countable collection {E;}r-, of

measurable sets that covers a measurable set E.

m(E) < Z m(E,).
k=1

Countable monotonicity is an amalgamation of the monotonicity and

countable subadditivity properties of measure that is often invoked.

Remark- In our forthcoming study of Lebesgue integration it will be
apparent that it is the countable additivity of Lebesgue measure that
provides the Lebesgue integral with its decisive advantage over the

Riemann integral.

4.6 THE CANTOR SET AND THE CANTOR
LEBESGUE FUNCTION

We have shown that a countable set has measure zero and a Borel set
is Lebesgue measurable. These two assertions prompt the following two

questions.

Question 1 If a set has measure Zero, is it also countable?

Question 2 If a set is measurable, is it also Borel?

The answer to each of these questions is negative. In this section we

construct a set called the Cantor set and a function called the Cantor-

Lebesgue function .

Department of Mathematics
Uttarakhand Open University




Consider the closed, Bounded interval I = [0,1]. The first step in
the construction of the Cantor set is to subdivide I into three intervals of
equal length 1/3 and remove the interior of the middle interval, that is, we
remove the interval (1/3,2/3) from the interval [0,1] to obtain the closed
setCy, which is the union of two disjoint closed intervals , each of length
1/3:

¢, =1, 1/3]U[2/3, 1].

We now repeat this “open middle one-third removal” on each of

the two intervals in C, to obtain a closed set C,, which is the union of 22

closed intervals, each of length 1/32:

¢, = [0,1/9] U[2/9, 1/3] U[2/3, 7/9] U[8/9,1].

We now repeat this “open middle one-third removal” on each of
the four intervals in C,to obtain a closed set C5, which is the union of
23 closed intervals, each of length 1/33. We continue this removal
operation countably many times to obtain the countable collection of sets
G, -

We define the Cantor set C by

C = ﬂ Ck'
k=1

The collection {C; }7-, possesses the following two properties:

{Ci 37, is a descending sequence of closed sets;
For each k, C,is the disjoint union of 2* closed intervals, each of
length 1/3k.

Proposition 4 The cantor set C is a closed, uncountable set of measure
zero.
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Proof-The intersection of any collection of closed sets is closed. Therefore
C is closed.

Each closed set is measurable so that each C;, and C itself is measurable.

Now each Cy is the disjoint union of 2% intervals, each of length 1/3%, so

that by the finite additivity of Lebegue measure,
m(Cy) = (2/3)".
By the monotonicity of measure,
since m(€) < m(C,) = (2/3)%, for all k, m(C) = 0.
It remains to show that Cis uncountable.
To do so we argue by contradiction.
Suppose C is countable.
Let {c,}r=, be an enumeration of C.
One of the two disjoint Cantor intervals whose union is C, fails to contain
the point c,; denote it by F;.
One of the two disjoint Cantor intervals in C, whose union is F; fails to
contain the point c,; denote it by F,.
One of the two disjoint cantor intervals in C, whose union is F; fails to
contain the point c,; denote it by F,.
Continuing in this way, we construct a countable collection of sets
{Fi}r=1, Which , for each k, possesses

the following three properties:

0] F) is closed and F; ., € Fy;
(i) (i) Fp € Cy; and
(”l) Ck e Fk'

Form (i) and the Nested Set Theorem we conclude that the intersection
Ny= Fx is nonempty.

Let the point x belong to this intersection. By property (ii),
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ﬂFkQﬂCk=C,

k=1 k=1
And therefore the point x belongs to C.However, {c;}r-, is an
enumeration of C so thatx = c,, for some index n.
Thusc, = x € N, Fx € F,.
This contradicts property (iii).
Hence € must be uncountable.

A real-valued function f that is defined on a set of real numbers is
said to increasing, provided f(u) < f(v) whenever u < v

and said to be strictly increasing, provided f(u) < f(v)
whenever u < v.

We now define the Cantor — Lebesgue function, a continuous,
increasing function ¢ defined on [0,1] which has the remarkable property
that, despite the fact that ¢ (1) > ¢(0), its derivative exists and is zero on
a set of measure 1.

For each k, let O, be the union of the 2% — 1 intervals which have
been removed during the first k stages of the Cantor deletion process.
Thus ¢, = [0,1]~0.

Define 0 = Uy-, Oy.

Then, by De Morgan’s Identities, € = [0,1]~0.

We begin by defining ¢ on O and then we define it on C.

Fix a natural number k. Define ¢ on O, to be the increasing function on
0, Which is constant on each of its 2 — 1 open intervals and takes the

2% — 1 values

(1/2%,2/2k,3/2, ... [2¥ — 1]/2F}.

Thus, on the single interval removed at the first stage of the deletion

process, the prescription for ¢ is

p(x)=1/2 if x€(1/3,2/3).
On the three intervals that are removed in the first two stages, the
prescription for ¢ is
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1/4  ifx e (1/9, 2/9)
px)=<2/4 if x€(3/9,6/9) =(1/3,2/3)
3/4 ifx€(7/9, 8/9)

We extend ¢ to all of [0,1] by defining it on C as follows:
@(0) =0 and @(x) = sup{p(t) | t € O N[0, x)}if x € C~{0}.

4.1 THE CANTOR SET AND THE CANTOR
LEBESGUE FUNCTION

Example 1:  Show that for any set A, m*(A) = m*(A4 + x) where A +

x = [y + x : y € A], that is: outer measure is translation invariant.

Solution: For each e > 0 there exists a collection [I,,] such that A < U1,
and m*(A) = X 1(I,) — €. But clearly A +x < U(I, + x). So, for each
em(A+x) <Y, +x)=X1lI) <m"(A)+e. So m(A+x)<
m*(4). But A = (A + x) — x so we have m*(4) < m*(4 + x).

Example 2: For any sequence of sets {E;}, m*(U2; E;) < X2, m*(Ey).

Solution: For each i, and for any € > 0, there exists a sequence of

intervals  {I;;,j =1,2,...} such that E; cUj,l;; and m"(E) >

24 U00;) =5 Then U2, E; € U2, U, 1

ij» that is : the sets [1; ;] form

a countable class covering U;2, E;. So

m* (O Ei) < i (1) < im*(Ei) + €.

i=1 ij=1 i=1

But € is arbitrary and the result follows.
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Example 3: Show that, for any set A and any € > 0, there is an open set 0
containing A and such that m*(0) < m*(4) + €.

Solution: Choose a sequence of intervals I,, such that A € U; -, I, and

wor 1) = < m*(A). I I, = [a, by), let I, = (ay —

€
on+1’

b,,) so that

ACUZ, I,

Hence if 0 = U,~; I, O isanopen setand

m*(0) < Z (1) = Z 1) + % <m'(4) + e

Example 4: Suppose that in the definition of outer measure , m*(E) =
inf Y. 1(1,,) for sets E € R, we stipulate

I, open,

In = lan, by),

I, = (an, by,

I, closed

or mixtures are allowed, for different n, of the various types of

intervals. Show that the same m* is obtained.

Solution:
In case (ii) we obtain the Definition of m* write the corresponding m* in

case (i), m;,. in case (iii), m; in case (iv), m;, in case (V).

We show that each equals m;,.

Consider mg, the proof in other cases being similar.
From the definition,

My (E) < mg(E)

To prove the converse :
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for each € > 0 and each interval I,, let I, be an open interval containing I,,
with I(1},) = (1 + e)1(1,,).

Suppose that the sequence {I,,} is such that E € Uy, I,

and

mm (E) < X532, L) — €.

Then

mp(E)+e=>(1+¢e)?

ey L(Iy) but E € UpZ; I, .A union of open intervals, so
my(E) < (1 +e)my,(E) +e(1+¢),

for any € > 0, s0o mi(E) < m;,(E), as required.
Example 5: Every interval is measurable.

Solution: We may suppose the interval to be of the form [a, o) then by
theorem . the result for the other types of interval. For any set A . We wish
to show that
m*(4) > m*(Aﬂ(—OO, a)) + m*(Aﬂ[a, 00)).
Write A, = AN(—o,a) and
A, = AN|a, ).
Then for any € > 0 thereexist interval I,, such that write I, =
I,N(—=o0,a) and I,, = I,N[a, ),
so that 1(I,) = L(1}) + L(I,).
Then
A S Upr I, A€ USL L

So, m*(Ay) + m*(4;) < X2, 1) + X, (1)

< Zzan) <m'(4) +e

Example 6: The Constant functions are measurable.
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Solution:  Depending on the choice of a, the set [x: f(x) > a], where 'f’
is constant is the whole real line or the empty set.

Example7: The characteristic function y, of the set A, is measurable iff

A is measurable.

Solution: Depending on a, the set [x : y,(x) > a] = A.

R or ¢ and the result follows.

Example 8: Continuous functions are measurable.

Solution: If 'f" is continuous , [x: f(x) > «a] is open and therefore,

measurable

4.8 SUMMARY

This unit is an explanation of
I. Definition of measure of a set.
ii. Lebesgue measure defined with examples.
iii. The Cantor set and The Cantor- Lebesgue Function.

iv. Existence of Lebesgue Measure.

4.9 GLOSSARY

i. The Real Numbers Sets

il. The Natural and Rational Numbers
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Sequences

Functions

Countable and Uncountable Sets
Lebesgue measure defined with examples.

The Cantor set and The Cantor- Lebesgue Function.

CHECK YOUR PROGRESS

There not exist a non-measurable subset of R whose complement in R

has outer measure zero? True or False.

There exist two non-measurable sets whose union is measurable? True
or False.

If £: [0, 1] — R is continuous a.e., then f is not measurable. True or
False.

If £:[0,00) — R is differentiable, then £ is measurable. True or
False.

The characteristic function of the Cantor set is Lebesgue integrable

in [0, 1] but not Riemann integrable? True or False.
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4.12 TERMINAL QUESTIONS

Q-1 Which of the following(s) is /are correct ?

a) Singleton set is measurable.
b) Measure of Singleton set is zero.

¢) Countable Set is measurable.
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d) Measure of countable set is zero.

Q-2 Which of the following (s) is are correct?

a) Closed Set is lebesgue measure
b) Closed Set is not lebesgue measure
c) Open Set is lebesgue measure

d) Open Set is not lebesgue measure

Q-3 Let {f,,} be a sequence of measurable function with the same domain,
then

a) Inf{fi, fo, ..., fn} is measurable.

b) Inf{fi, f>, ..., f»} is not measurable.

c) Inf £, is measurable.

d) Inf £, is not measurable.

Q-4 Which of the following (s) is are true?
a) The set [0,1] is not countable.

b) The set [0,1] is countable.

c) M*[0,1]=1

d) M*[0,1] =0

Q-5 Which of the following (s) is are true?

a) The set of rational number is lebesgue measurable.

b) The set of rational numbers have lebesgue outer measure equal to
zero.

c) The set of rational number is not lebesgue measurable.

d) The set of rational numbers have lebesgue outer measure equal to one.

Q-6 |If cisconstant and 'f’ is measurable real-valued function, then

Department of Mathematics
Uttarakhand Open University Page 68




a) f + cis measurable.
b) f + cis not measurable.
C) cf is measurable.

d) cf is not measurable.

Q-7 Let {f,,} be a sequence of measurable function with the same domain,
then

a) sup{fi, f2, -, fn} IS measurable

b) sup{fi, fo, ---, fn} IS not measurable

C) sup f, is measurable

d) sup f, is not measurable

Q-8 If S is lebesgue measurable set, then
a) Eachtranslate S + k is also measurable
b) Each translate S + k are not measurable
c) S+ k is measurable, if for some set A

m*(4) = m*(AN(S + k) + m*(AN(S + k)©)

d) S+ k is measurable , if for some set A, m*(4) = 0

Q-9 Which of the following (s) is/are true?

a) The interval [a, o) is measurable
b) Every interval is measurable
c) Everyopen setin R is measurable

d) Every closed set in R is measurable
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Q-10Which of the following(s) is/are correct?

a) If f is measurable, then |f] is measurable.

b) If f is a measurable function on[a, b] and if k € R, then f + k and kf
are measurable.

c) Constant function are measurable.

d) None of the above

Q-11Given following statements

I The set [0,1] is not countable

Il If E; and E, are lebesgue measurable, so E; UE, is also a lebesgue
measurable.

a) Only I istrue

b) Only Il is true

c) Both I and Il are true

d) Neither I nor Il are true

Q-12Given following statements
I The length of an interval | is the difference of end points of the interval.

Il The lebesgue outer measure of an interval is its length.

a) Only I is true
b) Only Il is true

c) Both I and Il are true
d) Neither I and Il is true

Q-13 Which of the following subsets of R has positive lebesgue measure?
a) A={X€eQlo<x<1}

b) B =[0,)

c) Set of natural numbers

d) [0,1)U(2,3)
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Q-14 Which of the following subsets of R? has positive lebesgue

measure?

Q) A={(y| x*+y*=1}

b) A={(,y)| x*+y* <1}

c) A={(xy)| x*+y*>1}

d) None of the above has positive lebesgue measure

Q-15 Which one of the following is true?

a) Intersection of two lebesgue measurable sets is lebesgue measurable
set.

b) Intersection of two lebesgue measurable sets is not lebesgue
measurable set

c) Botha) and b)

d) Neither a) and b)

Q-16. What is Lebesgue measure with example?..........c.cccoovvvviiinnnnnn,

Q-17 What is the difference between Lebesgue measure and Lebesgue

(o]0 | =T 1T U TR
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4.13 ANSWERS

CHECK YOUR PROGRESS

. True.
. True.
False
. True
5. False
TERMINAL QUESTIONS:
1. ab,c.d
2. ac
. a,C
. a,c
. a,b
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BLOCK II:

MEASURABLE FUNCTIONS
AND

CONVERGENCE THEOREM
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UNIT 5: MEASURABLE FUNCTIONS

Introduction
Obijectives
Measurable functions
Step Function
Simple functions
Summary
Glossary
References
Suggested readings
Terminal questions

Answers

5.1 INTRODUCTION

Before this unit we have explained about Sets and Lebesgue
Measure. In this unit we are mainly describing about measurable
function and it’s properties. In measure theory, a measurable
function is a function between the underlying sets of two measurable
spaces that preserves the structure of the spaces: the preimage of
any measurable set is measurable. Inreal analysis, measurable
functions are used in the definition of the Lebesgue integral.
In probability theory, a measurable function on a probability space is

known as a random variable.

5.2 OBJECTIVES

After completion of this unit learners will be able to
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i. Define the concept of Measurable functions.
ii. Describe the notion of step function.
iii. Explain the concept of simple function.

5.3 MEASURABLE FUNCTIONS

Measurable functions are in some sense comparable to
continuous functions in topology. They play an important role in the
study of measure and integration. We will have instances where not all
sets are measurable. We will see that many sets which arise in a natural
way in certain constructions are measurable.

There are many sets which have infinite measure. For instance,
the entire real line R has infinite measure, any unbounded interval in R
has infinite measure, and so on. Also, we have functions taking values
in the extended real number system, i.e. they take values «o or —oo. To
avoid any kind of restriction on the function, we shall consider the
extended real number system, i.e. we include c and — o in the real

number system with the following conventions:

b 4+ o = oo where b is any real number or b = o,

b X oo = cowhere b > 0,
b X oo =—o0 Where b < 0,00 X 00 =00,0 X 00 =0.

Similar kind of algebra can be done using —o in place of «. It is to be
noted that oo + (—o0) is not defined. Using these conventions we can

easily handle functions or measures taking infinite values.

We now define the notion of Lebesgue measurable function.

Definition 1: Suppose f is an extended real valued function which is
defined on a  measurable  set E.f is  called
Lebesgue measurable function or simply a measurable function

if it satisfies the following:
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for each real number a, the set {x: f(x) > a} is measurable.
We will now see equivalent definitions of a measurable functions. The

following result gives equivalent definitions of a measurable function.

Proposition 1:

For an extended real valued functionf whose domain is
measurable, the following statements are equivalent:

I.  f is a measurable function, i.e. for each real number o the
set {x: f(x) > a} is measurable;
For each real number a the set {x:f(x) = a} is
measurable;
For each real number a the set {x:f(x) < a} is
measurable;
For each real number a the set {x:f(x) < a} is
measurable.

As a consequence,

v. For each extended real number « the set {x: f(x) = a} is
measurable.

Proof:

Let us suppose the domain f is D.
We first show that (i) = (iv).

One easily sees that

e fx) < afy =D ~{x: f(x) > a},

i.e. the set {x: f(x) < a}

is the complement of the set {x: f(x) > a}in D.

As the difference of two measurable sets is measurable, we obtain the
desired implication.

On similar lines,
we obtain the implications (iv) = (i) and (ii) = (iii).
We now show that (i) = (ii).

This follows from the observation that

{x: f(x) = a} = N{x: f(x) > a—1/k}.
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As the intersection of a sequence of measurable sets is measurable, we
obtain the desired implication.

On similar lines, we obtain the reverse implication (ii) = (i) by
observing that

e f) > a} =uy {x:f() 2 a+1},
and the fact that union of a sequence of measurable sets is measurable.
So far we have shown that the first four statements are equivalent.
We now establish that if f is measurable, then the set {x: f(x) = o} is
measurablefor each extended real number a.
If « is a real number,
then
x:f(x)=a}={x:f(x) = a}n{x: f(x) < a}.
Now using (ii) and (iv) and the fact that intersection of two measurable

sets is measurable, we obtain the desired result for « real.

We now consider the case when a = oo.
Observe that {x: f(x) = oo} = N, {x: f(x) > k}.

Using (i) and the fact that the intersection of a sequence of measurable
sets is measurable we get the desired result.

On similar lines we can deal with the case o = —oo.

Remark 1:
Restricting ourselves to the class of measurable functions, the most
important set associated with them are measurable.

We now give some examples of measurable functions.

Example 1:

Constant functions are measurable.

Solution:
Let f be a constant function, say f(x) =c and a € R.\We need to
show that {x:f(x) > a} is measurable.Ifa < c, the set{x: f(x) >

a}equals the whole real line R and if a > ¢, thenthe set {x: f(x) > a}
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equals empty set. Hence, in both the situations, the set {x: f(x) > a} is

measurable and so is f.

We now show that a continuous function defined on a measurable set is

measurable.

Example 2:

A continuous function on a measurable set D is measurable.

Solution:
Let f be a continuous function having measurable domain D.
We need to show that for each a € R,{x €D:f(x)>a} is

measurable.
Observe that, {x € D: f(x) > a} = f~(a, ).

As f is continuous, f~!(a, o) is an open set in the relative topology

onD.

By definition of relative topology, f~*(a, ) = D N 0, where O is an
open set in R.

Hence, {x € D: f(x) > a} = f"(a,0) =D N O.

This implies that fis measurable.

Proposition 2:
Suppose f and g are two measurable functions defined on the same
measurable domain D. Then the following sets are measurable:
i. E,={xeD:f(x)<g)}
i. E,={xeD:f(x)=gx)}
iii. E;={x€D:f(x)>g)}
iv. E,={xeD:f(x)<gkx)}
V. Es={x€D:f(x) = g(x)}

Proof: Suppose x € E;.
Then f(x) < g(x).
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By density of rationals Q in R, there exist some r € Q such that f(x) <

r < g(x).
As rationals are countable, we can express the set E; as E; =

Ureg {{x €D:f(x) <r}n{x €D:g(x) >}

(i) and (iii) from Proposition 1 above implies the set{x € D: f(x) <
r}n{x € D: g(x) > r} is measurable.

As countable union of measurable sets is measurable, therefore the set
E; is measurable.

Parts (ii)-(v) are left as simple exercises.

The following properties tells us that certain operations performed on
measurable functions lead again to measurable function. In the next
result, we will see how we can enlarge the class of measurable

functions by doing some kind of algebra.

Proposition3:
Let c be any real number and f and gbe two measurable realvalued
functions defined on the same measurable domainD. Then f+ ¢, cf,

f+ g, g—f, and fg are also measurable.

Proof:
In order to prove this result, we shall use the condition (iii) of
Proposition 1. Observe that,

ef)+ec< ay={:f(x) <a-—c},
As f is given to be measurable, so f + c is measurable by equivalent
definition of a measurable function.
We now show that cf is measurable.
If the constant ¢ = 0, then from Example 1, c¢f is measurable.
If ¢ > 0, then the set {x: cf(x) > a} = {x: f(x) > ¢ ta} which is a
measurable set as f is given to be a measurable function.
A similar argument shows that cfis measurable when ¢ < 0.
We now show the sum function f + g to be measurable.
If f(x)+g(x)>a, then f(x) >a—g(x)and by the density of
rationalsQ in R, there is a rational number rsuch that
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a—glx)<r<fx).
Observe that,

{x:f(X)+g(x) >a} =U,eq {x: f(X) >rin{xia—7r < gx)})
By the countability of rationals, we obtain the set on the right hand side
to be measurable and so f + g is measurable.

As—g = (—1)gand g is measurable, so —gis also measurable.

As aresult, we have f — g = f + (—g) is also measurable.

Observe that, fg = % [(f +9)* = (f —9)*]
It is sufficient to show that f? is measurable whenever f is
so.Consider the set {x: f2(x) > a}.
If @ < 0, then this set equals entire real number R as square of any real
number is always bigger than a negative real number and so the given
set is measurable.
However, if « > 0,
then observe that

{e: f2(x) > a} = {x: f(x) > Va} U {x: f(x) < —Va}
which is a measurable set as f is measurable.

Hence, we conclude that fg is a measurable function.

We now show that the pointwise supremum, infimum, limit
superior and limit inferior of a sequence of measurable real valued

functions is again measurable.

Proposition 4:
Suppose {f,} is a sequence of measurable functionsdefined on the
same measurable domain E. Then the following holds:

i sup f;is measurable for each n;
1<jsn

inf f; is measurable for each n;
1<jsn

iii. sup f, Is measurable;
n

iv. inf f,, is measurable;
n

V. lim sup,, f,, IS measurable;
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lim inf,, f;, is measurable.

We need to show that for each a€R,{xE€

E: sup f; (x) > a} is a measurable set.

1<jsn

It is a simple consequence that {er: sup f; (x) >

1<jsn
a} =U; f;(x) > a.

As finite union of measurable sets is measurable, therefore,

sup f; is measurable for eachn.

1<jsn

Recall that, for any real valued functionhdefined on D c
R, inf h(x) = —sup —h(x).
X€D

X€ED

Hence, inf f; = —sup(—f;) and using (i), inf f; s
1<j=n 1<js<n 1<jsn

measurable.

On similar lines to (i),{x: sup f,, (x) > a} =U, {f,(x) >

a}. As countable union of measurable set is measurable,

therefore, sup f,, is measurable.
n

On similar lines to (ii), inff,, = —sup —f,. Using (iii),
n n

inf f;, is measurable.
n

Recall that, lim sup,, f,, = inf(sup fj>. Applying (iii) and
n\>

j=n

(iv), lim sup,, f,, is measurable.
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Vi. Recall thatlim inf, f, = —lim sup,(—f,) and using

(v),lim inf,, f,, is measurable.

The pointwise limit of a sequence of measurable real valued
functions is again measurable.

However, the pointwise limit of a sequence of continuous real
valued functions may not be continuous, i.e., the pointwise
convergence is not enough to guarantee the continuity of the limit
function.

For continuity, of the limit function, we need to have a strong form

of convergence, viz. uniform convergence.

We now define a property to hold almost everywhere with the help of

Lebesgue measure.

A property holds almost everywhere (a.e.) if the set of points

where it fails to hold has measure zero.

In particular, if f and g are two functions having the same
domain, then saying that f = g a.e. means mE = 0, where E is the
set E = {x: f(x) # g(x)}.

We now see some consequence of this a.e. property. In some

sense, this property is contagious.

Proposition 5:
Suppose f is a measurable function and f = g a.e., then g is also a

measurable function.

Proof: Suppose E is the set E = {x: f(x) # g(x)}.

By given hypothesis, mE = 0.
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We need to show that for each «, the set {x: g(x) > a} is measurable.

Observe that, the set {x: g(x) > a} may be expressed as the disjoint

union of the following sets:

xigx)>ay={x:f(x) >alU{{x € E: glx)>a}~{x€

E:g(x) < a}}.

As f is measurable, so the set {x: f(x) > a} is measurable.

Also, we know that subsets of measure zero set are measurable, so the
other two sets on the right hand side are also measurable

since mE = 0.

Therefore, the set {x: g(x) > a} is measurable for each a.

Hence, g is a measurable function.

54 STEP FUNCTION

Definition 1: (Step function)

A real valued function ¢ defined on an interval [a,b] is called a
step function if there is a partition of [a,bla=t, <t; <<
t, = b such that for each 1 < i < n, ¢ assumes only one value in the

open interval (t;,t;41)-

The greatest integer function on a bounded interval in R is an
example of step function.

We will see in the exercise section that every step function on a
measurable set is measurable.

If A is any set, we define the characteristic function, y, of the set A to
be the function given by

_(lifxeA
XA(x) - {0' lfx &A

Example 1:
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The characteristic function y, is measurable if and only if A is

measurable.

Solution:

Depending on the choice of a, we shall see that {x: y,(x) > a} equals
R, A or empty set @.

If a < 0, then it is clear that {x: y,(x) > a} = R.

If0 < a <1,then {x: y,(x) > a} = A.

Finally, if @« = 1, then {x: y,(x) > a} = @.

It follows that y, is measurable if and only if A is measurable.

An immediate consequence of above example is that,the existence of a
non-measurable set implies the existence of a non-measurable
function. We now list some simple properties of the characteristic

function.

Properties of Characteristic function:
I Xo = 0, xg = 1, i.e characteristic function of the empty set
is 0 and that of the whole domain is 1.
If A and B are two sets such that A c B, then y, < x5.
If {E,} are disjoint subsets of the set E such that E =

U, Ep, then yg = Zﬁ:lXEn

XAOB - XA .XB

Xpop = Xg+ g =%, Ap

X .=1—X

4= A

Proof of the properties:

I The proof of properties (i) is obvious.

ii. If x € A, then ¥ ,(x) = 1. Also, x e Bas A c B, s0 45(x) = 1.
Therefore, y4 < x5.

We will see the hints to the proof of properties (iv)-(vi) in the

exercises.
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5.5 SIMPLE FUNCTIONS

Simple functions are going to play an important role in the study of

integration of real valued functions.

Definition 1:
A real-valued function ¢ is called simple if it assumes only a finite

number of different values.

If @is simple and takes values a4, a,, -, a, then ¢ may be expressed

as

P(x) = Xty aif (%),
whereA; is the set

A ={x:p(x) =a;},A;nA; =@, for i # jand U; A; equals domain
of ¢.
Using the result (v) in Proposition 1, the sets A; are measurable if the
simple function ¢ is measurable.
In the next example, we show that the simple functions are closed

undertaking sum and product.

Example 1: Suppose f and g are two simple functions defined on A c

R. Then f + g and fg are also simple function.

Solution:

As f, g are simple functions,
so let f(x) = X%y aiX 4, (%)
and g(x) = X7, bi¥ 5, (x), where U; A; =U; B; = A.

Let C;j =A;nBj.Now A; cA=U;B; and therefore, A4; =A4;nN

(U; By) =Y; Cyj.
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On similar lines, B; =U; C;;. As the (;; are disjoint, therefore,

XAl-(x) = 7=1XCij(x) and !XB](X) = :ZIXCU('X)

This implies that, f(x) =X}, X% a4, (x) and g(x) =
;L=1 Zﬁlbj Xcij(X).
Hence, (f +9)(x) = Xj Zi2a(ai + b)) X ;(x)  and  (fg)(x) =

j=12i=1 aibj X ¢, .(x) are simple functions.

CHECK YOUR PROGRESS

Write true or false for the given statements:

Each subset of R is measurable.

Every real valued function is a measurable function.

Every step function is a simple function.

Every simple function is a step function.

If £ is a continuous function a.e. on an interval[a, b] c R, then
f is measurable.

Almost everywhere limit of a sequence of measurable functions
is not a measurable function.

The set of points on which a sequence of measurable functions
{gn} converges is measurable.

If f and g are measurable, then max{f, g} is also measurable.
If f and g are measurable, then min{f, g} is also measurable.

If £ is measurable and g is continuous onR, then go f is
measurable.

The characteristic function y,of a set Ais measurable if and

only if A is measurable.
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If A and B are any two sets, then X,,5 = 4, + Xgholds in

general.
If A =U, A,,thenX, =3, A, holds in general.

X, is a monotone function for every subset A c R.

56 SUMMARY

Measurable functions play an important role in the study of
measure and integration. They are more general than continuous
functions. Many sets which arise in a natural way in some
constructions happens to be measurable.The almost everywhere (a.e.)
property allows certain abnormal behavior to hold on a set of measure
zero. Simple functions assume only finitely many different values and
may be expressed as finite linear combinations of characteristic

functions on disjoint sets. Simple functions are closed undertaking

sum, difference and products. The characteristic function plays an

important role in the study of measurable functions as simple functions
are based on them. It satisfies additive properties for disjoint union of

sets.

5.7 GLOSSARY

The Real Numbers Sets
Countable and Uncountable Sets
Lebesgue measure defined with examples.

Measurable functions
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5.10 TERMINAL QUESTIONS

1. Prove parts (ii)-(v) of Proposition 2.
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Show that if f is a measurable function and E is a measurable

subset of the domain of f, then the function obtained by

restricting f to E is also measurable.

Show that every continuous function on the real line R is
measurable.

Show that monotone functions are measurable.

Show that every step function on a measurable set is
measurable.

Show that the difference of two simple functions is again a
simple function.

Show that

I XAHB XA . XB

i Xyup = A+ Xp =X, Xy
ii. Xi=1- 4,
Prove that every step function is simple, however, its converse

may not be true.

5.11 ANSWERS

CHECK YOUR PROGRESS

. False
ii. False
iii.  True
Iv. False
V. True
Vi. False
vii.  True
viii.  True
IX. True
X. True
Xi. True
xii.  False
xiii.  False
xiv.  True
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Hint to Terminal Questions

1. (i) E, =D ~E; and use the fact that difference of two
measurable set is measurable.
(iii) Similar argument as in the proof of Proposition 2(i).
(iv) E, =D ~E; and use the fact that difference of two
measurable set is measurable.
(v) Es =E,nE; and use the fact that intersection of two
measurable sets is measurable.
2. This is immediate.
3. For each @ € R, {x: f(x) > a} is an open setand so
measurable.
4. Suppose f is monotone and D be set of discontinuities of f.
Then D is at most countable and hence of measure zero.f |,
is measurable on D and f|.p is measurable as f is
continuous over there. Combining we get measurability of f.
Suppose f is a step function with a measurable domain
D = [a,b] and f assumes finitely many values by, by, -+, b, on D.
For each a € R, {x: f(x) > a} turns out to be measurable in each
of the three situations:
i. a <min{by, by, -, by}
ii. a = max{by, by, -, by}
iii. min{b,, b,, -+, b,} < @ < max{b,,b,, -+, b,}

Analogous to Example 1 in Section 5.3

(i) Xanp = X4 Xp ifand only if 4,q5(x) = £, (x) 4p(x). In
both the situations when x € An B and when x ¢ A N B equality
holds.

(iNXqup = Ag+ A — 4, Xp if and only if 4, p5(x) = £,4(x) +

Xp(x) — X4 (x) Xg(x). In both the situations when x e AUB and
when x ¢ A U B equality holds.

(iii) It can be done on similar lines.
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8. Astep function takes only finitely many different values on an interval

[a,b] where [a,b] is partitioned into finitely many disjoint sub-
intervals. Characteristic function over rationals is simple but not a step

function.
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6.1 INTRODUCTION

“I have to pay a certain sum, which I have collected in my pocket.

| take the bills and coins out of my pocket and give them to the creditor in
the order | find them until | have reached the total sum. This is the
Riemann integral. But | can proceed differently. After | have taken all the
money out of my pocket | order the bills and coins according to identical
values and then | pay the several heaps one after the other to the creditor.
This is my integral.” -Henry Lebesgue wrote to Paul Montel.
...amongst the many definitions that have been successively proposed for
the integral of real-valued functions of a real variable, | have retained only
those which, in my opinion, are indispensable to understand the
transformations undergone by the problem of integration, and to capture
the relationship between the notion of area, so simple in appearance, and
certain more complicated analytical definitions of the integral.

One might ask if there is sufficient interest to occupy oneself with
such complications, and if it is not better to restrict oneself to the study of
functions that necessitate only simple definitions.... As we shall see in this
course, we would then have to renounce the possibility of resolving many
problems posed long ago, and which have simple statements. It is to solve
these problems, and not for love of complications, that | have introduced
in this book a definition of the integral more generalthan that of Riemann.

--H. Lebesgue, 1903

Henry Lebesgue with cover page of his

masterpiece. ; SUR LINTEGRATION

https://en.wikipedia.org/wiki/Henri Lebesg

ue
Fig 6.1.
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Henri Lebesgue was born in Beauvais, France, in 1875. The
French mathematician Henri Leon Lebesgue developed the Lebesgue
integral to overcome the shortcomings of the Riemann integral. The
Lebesgue introduced his integration theory in his 1902 dissertation,
"Integral, Length, Area", which is a generalization of the Riemann integral
usually studied in elementary calculus. Lebesgue partitioned the rather
than the of a function.

Let us understand a particular but important difficulty arising with
Riemann integral: Limits of continuous functions.
Suppose {f;,} is a sequence of real continuous functions defined on [0,1].
Suppose that lim,,_,, f,,(x) = f(x) exists for every x, then what is the
nature of the limiting function f?
If we suppose that the convergence is uniform, f is then everywhere
continuous and things goes simple. However, dropping the assumption of
uniform convergence, things may change drastically and the issues that
arise can be quite subtle. For example, one can construct a sequence of
continuous functions {f,,} converging everywhere to f so that

i 0 < fu(x) <1 forall x.

ii. The sequence f,, (x) is monotonically decreasing as n — oo.

iii. The limiting function f is not Riemann integrable.
However, in view of (i) and (ii), the sequence [ 01 fn(x)dx converges to a

limit. So it is natural to ask: what method of integration must be adopted

to integrate f and obtain the desired one

flf(x)dx = lim flﬁ(x)dx?

Lebesgue integration solves this problem.
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6.2 OBJECTIVE

After Completion of this unit learners will be able to
I Define Lebesgue Integral for nonnegative function.
ii. Define the concept of general Lebesgue Integral
iii. Understand the Fatou’s Lemma.
iv. Evaluate the different type of Lebesgue Integral with
example.
Solve Problems on Lebesgue Integration .

6.3 RIEMANN INTEGRAL

Let us recall some definitions related to the Riemann integral. Let
f be a bounded real-valued function defined on the interval [a, b] and let
a=§ <§ < <$=>b
be a subdivision of [a, b].
Then for each subdivision we can define the sumsS = Y1, (& — &_1)M;
ands = Xi; (& — &i-)my
where M; = sup f(x),m; = inf_ f(x).

1<x<é; 1<xs;

Now, we define the upper Riemann integral of f by REf(x)dx =inf S

with the infimum taken over all possible subdivisions of [a, b].

Similarly, we define the lower integral

b
Rf f(x)dx = sup s.
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The upper integral is always bigger than or equal to the lower integral, and
if the two are equal we say that f is Riemann integrable and, we call this

common value the Riemann integral of f. We shall denote it by

R[] f(x)dx.
By a step function we mean a function 1 which has the form
Y(x) = ¢ éio <x <
for some subdivision of [a, b] and some set of constant c;. Practically
anybody's definition of an integral we have

n

[(wert = atei-en)

i=1

With this in mind we see that

b b
Rf f(x)dx = infj WY(x)dx

for all step functions ¥(x) = f(x). Similarly,

b b
Rf f(x)dx = supf @ (x)dx

for all step functions @ (x) < f(x).

6.3.1 LEBESGUE INTEGRAL

The Lebesgue Integral of a nonnegative measurable simple function

Definition 1:

The function yy defined by

1 ¢ E

is called the characteristic function of E. Note that characteristic function

xgOf E is measurable if and only if the set E'is measurable.
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Definition 2:

A linear combination @ (x) = XiL; a;xg,(x)

is called a simple function if the sets E; are measurable.

This representation for ¢ is not unique. However, we note that a function
@ i1s simple if and only if it is measurable and assumes only a finite
number of real values.

If ¢ is a simple function and {a,, ..., a,,} the set of nonzero values of ¢,
then @ = Y a;xa,

where 4; = {x: p(x) = a;}.

This representation for ¢ is called the canonical representation, and it is
characterized by the fact that the A; are disjoint and the a;are distinct and

nonzero.

Definition 3:

Let @be a nonnegative measurable simple function on R, we define the

integral of ¢ by

n

[ owax =" aameap

i=1

when ¢ has the canonical representation ¢ = Y\, a; x,. We sometimes

abbreviate the expression for this integral to [ ¢. If E is any measurable

set, we define the Lebesgue integral of ¢ over E, denoted as fE @, by

L§0=f§0')(13

It is often convenient to use representations which are not canonical, and

the following lemma is useful:
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Lemma 1:
Let ¢ = i a;xg,, be nonnegative measurable simple function, withE; N

E; = @ fori # j. Then
f‘P = Z a;m(E;)
i=1
Proof:

Theset A, = {x:p(x) = a} = Uy, E;.
Therefore, am(Ay) = Y.q,=qc a;m(E;) by the additivity of m, and so

f(p(x)dx = Zam(Aa)
= Z a,m(E;).

Proposition 2:
Let ¢ and ¥ be nonnegative measurable simple functions and a >
0,b = 0. Then

[@osom=a[o+s[v

and if ¢ > a.e., then
Joz]v

Proof:

Let {A4;} and {B;}be the sets in canonical representations of ¢ and . Let
A, and B, be the sets where ¢ and i are zero. Then the E; obtained by
taking the intersections A; N B; form a finite disjoint collection of

measurable sets, and we may write
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N

¢ = z ArXE,
k=1
N

lp = z kaEkJ

1
and so ap + by = Y(aay + bby) X,
hence [ (ag + b)) = af ¢ + bJ  follows from Lemma 1. To prove

the second statement, we note that

[o-[w=[w-w=0

since the integral of a simple function which is greater than or equal

to zero a.e. is nonnegative by the definition of the integral.

Remark:
It follows from this proposition that, if ¢ =}i_;a;xz,,
then ¢ = Ya;m(E;), and so the restriction of Lemma 1 that the sets

E; be disjoint is unnecessary.

Let f be a bounded nonnegative real-valued measurable function
and E a measurable set of finite measure. By analogy with the Riemann

integral, if exists, we consider for nonnegative measurable simple

functionsy the number sup [ ¥ to be Lebesgue integral. How can we
Psf

extend this for nonnegative extended real valued measurable functions
over unbounded measurable sets? The answer is given by the following

proposition.

Proposition3:
Let f be nonnegative extended real valued measurable function then there
is an increasing sequence {i,, Jof nonnegative measurable simple functions

such that {i,,(x)} converges tof (x)a.e.
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Proof:
Let f be nonnegative measurable. For nin N, let
E,={x €eR:f(x)>n},
andfor 1<k <n-2",
k-1
o
Then E,and each E,, ,are measurable, disjoint, and have union R. Thus,

<f(x)<2£n}

En’k={x ER:

The simple functions defined by 1, = %2 %XEM( + nyg,

are non-negative measurable function on R.
We show that y,, (x) = f(x) for eachx, and ¥, (x) < ¥,,4+1(x) for eachx,
vn > 1.

Let F = {x € X: f(x) = oo}

Case I-

If x € F, then f(x) = « . Therefore, for each n
fx) =n,

that is x € F,, for each n, therefore

Y, (x) = n foreachn > 1,
Yn(x) =n<(n+1) =P (x)
and Y, (x) > o = f(x).

Case II-

Ifx € F, then 0 < f(x) < oo.
Let m be a natural number suchthat m -1 f(x) <m

Then 1 (x) = L (x) =2+, Pm_1(x) = (m - 1)

__ (m-1)-2™

We have f(x) > (m—1) = ——,

2m
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—-1)-2m
Pn0 = B2 ) = ).

Thus, P;(x) <P, (x) < S P2 (1) < Py ().
Then, m—1<f(x)<mgn
Since, f(x) < n.

We have, 1, (x) = =

Where < flx) < z—n

Hence < flx) <

2n+1

It follows that elther < f(x) <2

2n+1

27’l+1 f( ) < 27’1+1

Therefore, either y,,,,(x) = ?:Hf = ;nl = Pn(x)

2k—3 -
Or¢n+1(x) 2n+1 2n+1 = 2_71 = lpn(x)

Thus,
Yrp1(x) = Pp(X)Vn > m

Hence, {1, (x)};r=; is an increasing sequence. It remains to show that

P (x) = f(x). For nx>m ) we have
Yn(x) = —Where— <fx) < z_n

Therefore 0 < f(x) — Y, (x) < .

Thatis |f(x) — ¥ (x)] < Zin‘v’n >m

it follows that ¥,,(x) - f(x)as n - o,

This completes the proof of proposition.

6.3.2 LEBESGUE INTEGRAL OF A NONNEGATIVE
MEASURABLE SIMPLE FUNCTION
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Definition4:
If £ is a nonnegative extended real valued measurable function defined on

R, we define the (Lebesgue) integral of f over R by

jf(x)dx = supflp(x)dx

for all nonnegative measurable simple functions ¢ < f.

Definition5:

A nonnegative measurable function fis called integrable or summable if

[ f(x)dx < oo.

6.2.3 The General Lebesgue Integral

The positive part f*of a function fis defined as the function f* = f v 0;
that is,f * (x) = max{f (x),0}.

Similarly, we define the negative part f~by f~=(—f)VvO0. If fis
measurable, so are f*and f~. We have
f=ft=fand Ifl = f*+f.

With these notions in mind we make the following definition.

Definition6: A measurable function f is said to be integrable over R if

f*and f~both are integrable overR. In this case we define

[r={r-]r
6.3.4 Existence of Lebesgue Integral

i. Iff f* = coand [ f~ < oo, wetake [f = oo
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If [f* < wand [ f~ =o0,wetake [f=— o
In case if [f* = oo =[f", we say that Lebesgue integral

does not exist.

Definition 6:
A measurable function £ is said to be integrable over a measurable subset

Eof Rif f - yz is integrable overR. The Lebesgue integral,in this case, is

denoted by [, fand is defined as

Lf=jfwg

Proposition5:

Let f and g be integrable over E. Then

i. The function cfis integrable over E, and [ cf = cJ . f.

ii. The function f + g is integrable over E, and

Lf+g=Lf+L9

iii. If f < gae,then fEf < ng.

iv. If A and B are disjoint measurable sets contained in E, then

ha =14 0s

Proof: Part (i) follows directly from the definition of the integral. To
prove part (ii), we first note that if f; and f, are nonnegative integrable
functions with f = f; — f,, then f* + f, = f~ + f;.We have

[re+[n=[r+[n

andso [ f=[f*=[f"=[A-]f
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But, if f and g are integrable, so are f*+g*and f~+g~, and (f +
9 =(*+g")—(f"+g7). Hence

[e+ro =[or+g0-[o+g0
“Jrefo=fr-fe
=ff+fg.

Part (iii) follows from part (ii) and the fact that the integral of a

nonnegative integrable function is nonnegative. For (iv) we have

f =ffXAUB

=ijA+JfXB
=Ll

It should be noted that f + g is not defined at points where f = oo and

AUB

Remark:

g = —oo and where f = —co and g = oo. However, the set of such points
must have measure zero, since f and g are integrable. Hence the

integrability and the value of [ (f + g) are independent of the choice of

values in these ambiguous cases.

If , we write f; f instead of f[a,b]f' The following proposition shows that

the Lebesgue integral is in fact a generalization of the Riemann integral.

Proposition6:
Let f be a bounded function defined on [a, b].

If fis Riemann integrable on [a, b], then it is measurable and

R Lb f(x)dx = Lb f(x)dx.
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Proof: Since every step function is also a simple function, therefore
conclusion is straightforward.
Lebesgue gave the following necessary and sufficient condition for the

Riemann integrability of a bounded function.

Proposition7:
A bounded function f defined on [a, b]is Riemann integrable if and only

if the set of points at which f is discontinuous has measure zero.

Monotone Convergence Theorem:

Let(f,) be an increasing sequence of nonnegative measurable

functions, and let f = limf, a.e. Then

j-f:limffn.

Proposition8:

If f and g are nonnegative measurable functions, then
i Jgef=cl. fie>0.
e f+g=Jf+/; 9
Iff <gae,then [ f</[ g

Proof: The parts (i) and (iii) follow directly, and part (ii) follows by
proposition 3: there are increasing sequence {1, }and {¢, }of nonnegative
measurable simple functions such that {1,,}and {¢,,} converges tofand

ga.e. respectively, and then applyingMonotone Convergence Theorem.

6.3.5 Fatou's Lemma
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Proposition (Fatou's Lemma):
If (f,)is a sequence of nonnegative extended real valued measurable
functions.Then

[, <1im | £,

Proof:We havelim f, = sup,s(infesn fi)

Let In = Infk>n fk = inf{fn; fn+1) fn+1J }, then
0< gn <Gnt1Vn > 1.

Therefore,

limf, = supg, = lim g,(~ g, < gn41Yn).
n>1 n—-oo

ApplyingM.C.T. to {(g,,), we have,

f limf, = j lim g,
n—-oo

= lim | g,
n—oo

~tim [ g, <1im [ 7,

This completes the proof of Fatou’s Lemma.

Remark: Fatou's Lemma has the weakest hypothesis: We need only that
fbe bounded below by zero (or more generally by an integrable function).
Consequently, the conclusion of Fatou's Lemma is weaker than that of the
others: We can only assert [ f < lim[ f,. The Monotone Convergence
Theorem is something of a hybrid: It requires that the f,, be bounded from
below by zero (or an integrable function) and above by the limit function
f itself. Of course, if f is integrable, this isa special case of the Lebesgue
Convergence Theorem, but the advantage ofFatou's Lemma and the
Monotone Convergence Theorem is that they are applicable even if f is
not integrable and are often a good way ofshowing that f is integrable.
Fatou's Lemma and the MonotoneConvergence Theorem are very close in
the sense that each can be derived from the other using only the fact that

integration is positive and linear.
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Problems:

1. Show that if f is integrable over E, then so is |f| and

| =)

2. Does the integrability of |f| imply that of f ?

6.4 SOLVED EXAMPLES

Examplel:

_ (0 x irrational
I () = {1 x rational

then R [* f(x)dx = b —aand R [ f(x)dx = 0,

This shows that f is not Riemann integrable.

Example 2:
) =

Then,l/) =1- X]R~Q +0- XQ

if x is irrational
ifx is rational

Therefore, [ ¥-dm =1-m(R~Q)+0-0

= 0O
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if x is irrational
if x is rational

(ii) Let w(x) = {(1’

Then 11/)=OXR~Q+1XQ

Therefore, [, pdm =0-m(R~Q) +1-0
=0-0+0=0.
Example 3: Show that the Monotone Convergence Theorem need not

hold for decreasing sequences of functions.

Solution:
Letf,(x) =0ifx <n,f,(x) = 1forx >n.Then

fan=0: X(=com] T 1 X(no0)

Then f,, is nonnegative decreasing sequences of functions, and we have

limf, =0 but [f, = : Therefore

o =limf f, # [ limf, =0.

Thus, MCT does not hold for decreasing sequence of functions.

Exampled: Show that the strict inequality may hold in Fatou’s Lemma.

Solution:
Let the sequence (f,,)be defined by f,(x) =1ifn<x<n+1, and
fn(x) = 0 otherwise. Then
fo = X[nn+1)
and
limf, =0,and [f, =1Vn>1
Therefore, [ lim f, =0 < 1=lim[ f,, thatis, [ limf, < lim [ f,.
Thus, strict inequality holds in Fatou’s Lemma.

Example5: Show that theintegrabilityof |f|does not imply integrability
off.
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Solutions: Let E be a non-measurable subset of [0,1]. Define

_(—1 ifxeE
F@={1" iret

Then
If| = 1vx€e[0,1].
Thus, |f| being a constant function, is integrable but f is not even a

measurable function.

ifx <O

Example 6: Let f(x) = {2 XS 0 find [ 1.

Solutions:

Oforx<1
Let P(x) = {1 forx > 1

Then 0 < ¥(x) < f(x)
Y =0 X1t 1 X1
jl/)= 0.co+1-00
=04 o0

= O

Wehave, [ f =sup{/¢¥: 0< ¥ <

f,Yis measurable simple function }

Thus, fR f = oo,
6.5 SUMMARY

This unit is an explanation of
i Definition of Lebesgue integral.
ii. Lebesgue integrals defined with examples.
iii. Existence of Lebesgue integral.

iv. The Fatou’s Lemma.
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6.6 GLOSSARY

The Riemann Integral

The Natural and Real Numbers
Sequences

Simple Functions

Lebesgue integral

Monotone convergence Theorem.

The Fatou’s Lemma.
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6.9 TERMINAL QUESTIONS

1. Which of the following(s) is /are correct ?
a) Arreal valued constant function issimple.
b) Riemann integrable function is Lebesgue integrable.
c) Characteristic function of countable set is integrable.
d) An extended real valued constant function is integrable.

2. Which of the following (s) is are correct?
a) Lebesgue integrable function is Riemann integrable.
b) Fatou’s Lemma hold for every sequence of measurable
functions.
c) MCT holds for increasing sequence of measurable
functions.
d) A continuous function on a bounded set is Lebesgue

integrable.

Q-3 Which of the following (s) is are correct?
a) Sum of two simple function is simple.
b) Positive part of a simple function is simple
c) Negative part of integrable function is integrable

d) Every Riemann integrable function is measurable.

Q-4 Which of the following (s) is are true?
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The set of discontinuity of Riemann integrable function
has a non-measurable set.

The identity function is integrable.

Every measurable function which is bounded above is
integrable.

Every real valued constant function is integrable

Q-5 Which of the following (s) is are true?

a)
b)

c)

d)

Every measurable bounded function is integrable.

The positive part of a bounded non-measurable function
is integrable.

An extended real valued function which is zero almost
everywhere is integrable.

The set of irrational numbers is not Lebesgue

measurable.

Q-6 If cisconstant and isf integrable function, then

a)
b)
c)
d)

cf is measurable.
cfis not measurable.
cfis integrable .

|f1is integrable.

Q-7 Let fbe a measurable function defined over a measurable set E, then

a)

integrability of |f| imply that of f

b) f is integrable over E, then so is |f]

c)
d)

|l fl< g If1

|f] is always integrable.

Q-8 If fisanonnegative measurable function, then [ f =

a)
b)

sup/ ¢ over all simple functions ¢ < f

sup/ ¢ over all simple functions ¢ > f
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¢) inf[ ¢ over all simple functions ¢ < f

d) inf [ ¢ over all simple functions ¢ > f

Q-9 Which of the following (s) is/are true?
a) Integrals over sets of measure zero are zero
b) Integrals of zero over any measurable set is zero
c) Complement of a non-measurable set is measurable.

d) Interior of a non-measurable set is measurable.

Q-10 A bounded function f on [a, b] is Riemann integrable if and only if

a) the set of points at which f is discontinuous has
measure zero

b) the set of points at which f is continuous has
measure zero

c) the set of points at which f is discontinuous has
measure positive

d) the set of points at which f is continuous has

measure positive

Q-11Let f be a nonnegative measurable function. Then consider the
following statements
I. [ f=0implies f = 0 ae.
Il. £ =o0aeimplies[f=0
Then
a) Only I is true
b) Only Il is true
c) Bothland Il are true
d) Neither I nor Il are true

Q-12Consider the following statements
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The product of two characteristics functions of finite measures
is integrable.
1. The sum of two integrable function is integrable. Then
a) Only | istrue
b) Only Il is true
c) Both Il and Il are true
d) Neither I and Il is true

Q-13 Consider the following statements
l. A function integrable over a set is integrable over its subsets.
1. A function integrable over a set is measurable over its subsets.

Then

a) Only I istrue

b) Only Il is true

c) Both I and Il are true

d) Neither I and Il is true

Q-14Which one of the following is true?

a) Integral of a simple function does not depends on its representations as
linear combination of characteristic function.
Lebesgue integral is defined for extended real valued constant
function.
Both a) and b)
Neither a) and b)

6.10 ANSWERS

Department of Mathematics
Uttarakhand Open University Page 113




Department of Mathematics
Uttarakhand Open University Page 114




UNIT 7:
GENERAL CONVERGENCE THEOREM
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7.1 INTRODUCTION

In measure theory, Lebesgue’s dominated convergence theorem
provides sufficient conditions under the almost everywhere convergence
of a sequence of functions implies convergence in the L' norm. Its power
and utility are two of the primary theoretical advantage of Lebesgue

integration over Riemann integration.
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The Lebesgue Dominated Convergence Theorem is an important
result in measure theory and real analysis, which provides conditions
under which the limit of a sequence of measurable functions can be
exchanged with the integral.

In the mathematical field of analysis, Dini's theorem says that if a
monotone sequence of continuous functions converges pointwise on a
compact space and if the limit function is also continuous, then the
convergence is uniform.This is one of the few situations in mathematics
where pointwise convergence implies uniform convergence; the key is the
greater control implied by the monotonicity. The limit function must be
continuous, since a uniform limit of continuous functions is necessarily
continuous.

The continuity of the limit function cannot be inferred from the
other hypothesis.In mathematics, more specifically measure theory, there
are various notions of the convergence of measures.

For an intuitive general sense of what is meant by convergence of
measures, consider a sequence of measures u, on a space, sharing a

common collection of measurable sets. Such a sequence might represent

an attempt to construct 'better and better' approximations to a desired

measure u that is difficult to obtain directly. The meaning of 'better and
better' is subject to all the usual caveats for taking limits; for any error
tolerances > 0, we require there be N sufficiently large for n>Nto
ensure the 'difference’ between unand w is smaller than e.

Various notions of convergence specify precisely what the word
'difference’ should mean in that description; these notions are not

equivalent to one another, and vary in strength.
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7.2 OBJECTIVES

After completion of this unit learners will be able to

Learners will understand the general convergence in measure.
ii. Explain the concept of Dini’s theorem.
iii. Explain the dominated convergence theorem

7.3DOMINATED CONVERGENCE THEOREM

Definition.
Let (X, B, u ) is called measure space and f be a non-negative measurable
function on X. Then Lebesgue integral of f with respect to u over X,
denoted by [ f du is defined by
Jfdu=sup{fdu:0<yp<f,
Y is a simple measurable function on X}.

Definition.
Let (X, B,u ) is called measure space and f be an extended real valued
measurable function on X then Lebesgue integral of f with respect to p

over X, denotes by [ f du is defined in the following ways.

If [ f*du=[f du=oo,then [ f du is not defined.
If [ f*du = oo, [ fdu =0, then [ f du = co.

Theorem.

Let (X, B,u ) be a measurable space and iy be a non-empty simple
measurable function on X define 9(y)E=/ ydu for all E € B. Then 9 ()
is a measure on X.
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Theorem.

Lebesgue Monotone Convergence Theorem. Let (X, B, 1) be a measure
space and {f,} be an increasing sequence of non-negative functions on X.
Then

n—-oo n—oo

Fatou’s Lemma.
Let (X, B, u) be a measure space and {f,} be a sequence of non-negative
measurable function on X. Then

[ lim fodu < lim [ fodu

Lebesgue Dominated Convergence Theorem:

The Lebesgue Dominated Convergence Theorem is an important result in
measure theory and real analysis, which provides conditions under which the
limit of a sequence of measurable functions can be exchanged with the integral.In
simpler terms, if we have a sequence of functions that converge pointwise almost
everywhere and are dominated by an integrable function, then the limit of the

integrals is the integral of the limit function.

The Lebesgue Dominated Convergence Theorem is a powerful tool in measure
theory and is commonly used in probability theory, integration theory, and other
areas of mathematics where the convergence of sequences of functions is studied

in the context of integration.

Theorem 7.3.1. Lebesgue Dominated Convergence Theorem.

Let (X, B, u) be a measure space and {f,} be a sequence of extended real
valued measurable function on X such that {f,(x)} converges to point wise
for all x € X. then g be a non-negative measurable summable function on
X such that |fa(X)] < g(x) forall x e Xand V n > 1.
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Then [ lim fndu= lim [ fndu

Proof. Since {fn(x)} converges to f(x) for all x € X, therefore
f(x) = lrilr_r)lfn(X) for all x € X

Therefore, f is measurable function on X and

[fa(X)| < g(x) for all x € X

andvn>1,

-g(x) <fn(X) <g(x), forallx € X, n > 1.

Fa(X) + g(X) = 0 and g(x) — fa(x)= 0,

for all x € X.

Hencef,+g >0

J(f +9) du= ] lim (fo+0) du
= J lim (fut 6) d

< lim [(fn+g) du

[fdu+[gdus<lim [fadu+[gdu.

Since g is non-negative summable on X, therefore 0 < [ g du<ocothen

[fdu< %i_r)gloffndu....(l)

similarly, g~ 0, [ (g — /)dy = J lim (g — ) du
(g = du= [ lim (g ) du
f g du [ f du < lim (g ~ ) dus (By Fatus lemm)
Jgdu-[fdu=lim [(g+(-f)) du
= [ g dut lim (f —fn dp)
= [ g du- lim (f fndu)
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Jgdu-Jfdu<[gdu-lim(ffndu)

Hence lim [ fodu < [fdu  ....(Q2)

Now by equation (1) and (2) we get
lim [ fodu<[fdu< lim [ fndu...3)

Hence lim [ fndu exists
n—->oo

and lim [ fodu=[fdu={lim fndu
n—->oo n—oo

7.4 DINI’S THEOREM

Dini's Theorem is a result in real analysis that provides
conditions for the uniform convergence of a sequence of functions to its
limit function. The theorem is named after the Italian mathematician
Ulisse Dini, who first proved it in the late 19th century. Dini's Theorem is
particularly useful when dealing with sequences of continuous functions
converging to a continuous limit function.

Suppose (fn) is a sequence of continuous functions defined on a
closed interval [a, b] and converging pointwise to a function fon [a, b]. If
the pointwise convergence is monotonic, meaning that

frr1(X)< fa(X) for all x € [a,b] and n is the natural numbers,
and the limit function f is also continuous, then the convergence is
uniform on [a, b].

In other words, if you have a sequence of continuous functions on
a closed interval, and they converge pointwise to a continuous function in
a monotonic fashion, then the convergence is not only pointwise but also

uniform.
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Dini's Theorem is particularly valuable because it provides a
situation where you can guarantee the uniform convergence of a sequence
of functions. This is important in various areas of mathematics, including
analysis and the study of convergence properties of functions. The
theorem has applications in real analysis, functional analysis, and other
fields were understanding the behaviour of sequences of functions is

crucial.

Egorofl's Theorem

Assume E has finite measure. Let {f.} be a sequence of
measurable.functions on E that converges pointwise on E to the real-
valued function f.Then for eache> 0, there is a closed set F contained in E
for which

{f.} — funiformly on F and m( E~ F) <e.

Losin's Theorem

Let f be a real-valued measurable function on E. Then for each &> O,
thereis a continuous function g on R and a closed set F contained in E for
which

I=gonFandm(E~F)<E.

Dini’s Theorem

Let {fn} be an increasing sequence of continuous functions on [a, b] which

converges pointwise on [a, b] to the continuous function f on [a, b]. Then

theconvergence is uniformon [a, b].

7.5CONVERGENCE IN MEASURE
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We have considered sequences of functions that converge
uniformly, that converge pointwise,and that converge pointwise almost
everywhere. To this list we add one more mode ofconvergence that has
useful relationships both to pointwise convergence almost everywhereand
to forthcoming criteria for justifying the passage of the limit under the
integral sign.

Converge in measure:

Let {fn}be a sequence of measurable functions on E and f a measurable
functionon E for which f and,each in is finite a.e. on E.

The sequence {fn} is said to converge inmeasure on E to | provided for

each > 0,

lim m {x € E: | fa(x) — f(X) | >¢} = 0.
n —oo

When we write {f.}— f in measure on E we are implicitly
assuming that f and each f,, is measurable, and finite a.e. on E.
Observe that if {f,.}— f uniformly on E, and f is a real-valued measurable
function on E, then {f,}—f in measure on E since fore> 0,
the set {x € E: | fa(X) — f(X) | >} is empty for n sufficiently large.

However, we also have the following much stronger result.

Theorem?7.5.1.
Assume E has finite measure. Let{f,}be a sequence of measurable
functions on E that converges pointwise a.e. on E to fand f is finite a.e. on

E. Then {f,}— f in measure on E.

Proof. First observe that f is measurable since it is the pointwise limit

almost everywhereof a sequence of measurable functions.
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Let y> 0.
To prove convergence in measure we lete>0 and seek an index N such
that m {x € E: | fa(x) — f(X) | >y} <e for alln > N.

Egoroff's Theorem tells us that there is a measurable subset F of E with
m(E ~ F) <e such that {f,}— f uniformly on F. Thus, there is an index N
such that | f, — f| <y on Fforall n > N.

Thus, all n = N, {x € E: | fa(x) — f(X) | >y} SE ~ F, So the above
expression holds for this choice of N.
The above Theorem is false if E has infinite measure. The following

example showsthat the converse of this theorem also is false.

Example7.5.2. Consider the sequence of subintervals of [0, 1], {I,,} which

has initial termslisted as

[0,11,[0,1/2],[1/2,1],[0,1/3],[1/3,2/3], [2/3,11,[0, 1/4],
[1/4,1/2],[1/2,3/4],[3/4.1] ...

For each index n, define f, to be the restriction to [0, 1] of the

characteristic function of I,.

Let f be the function that is identically zero on [0, 1].
We claim that (f,,) -» f is measure Indeed, observe that lim ¢ (I,) =0
n — oo

since for each natural number m,

__ m(m+1)
= . ,

Thus, for0 <e < 1,since{x € E:|f(x)- f(x)| > e} S I,.

0 < limmx € E:| u(x)- f(X)| > &} < lim € (I) =

fn>14+-4+m

then ¢ (1,,) <%.
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However, it is clear that there is no point x in [0, 1] at which {f,(x)}
converges to {f (x)} sincefor each point x in [0, 1], f,,(x) = 1for infinitely

many indices n, while f(x) = 0.

Theorem7.5.3. (Riesz) If{f.}— f in measure on E, then there is a

subsequence {f.} thatconverges pointwise a.e. on E to f.

Proof. By the definition of convergence in measure, there is a strictly

increasing sequence ofnatural numbers {ny} for which
m {x € E: | fi(x) — f(x) | >§} % forall j > nk.
For each index k, define
Ex={x € E:| fuc— (x) | >3
Then m{Ex} < iand therefore).;-; m{Ek}<co.

The Borel-Cantelli Lemma tellsus that for almost all x € E, there is an
index K(x) such that x & Ex if k > K(x), that is,

| fok— T(x) | < < for all k > K(x).

Therefore,

klim fi(X) = f(X).

Corollary7.5.4. Let {f.} be a sequence of nonnegative integrable

functions on E. Then lim [ fn = 0. If and only if {f,}— 0 in measure on E

n—->oo

and {fn} is uniformly integrable and tight over E.

7.6 SOLVED EXAMPLE

Example

. _(2n, if x € [1/2n, 1/n]
Define f(x) ‘{ 0, ifx € [0, 1] — [1/2n, 1/n]
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Fa(0) =0
n“fio fn(0) =0 =1(0)
Letx € [0, 1], x> 0.

By Archimedean property, there is a natural number where n such that %<

X, therefore x e_f[%,%] forallm >n.

Hence f,(x) =0, and lim fn =0,
n—->oo
and [ lim frndu=0
n—->oo

[fadx=2n[> ——]=1.

Then lim [ fndu=1.

This implies that

0=flim fodp < lim [ fodp=1.

Hence Fatus lemma satisfied
0=f7li_§£10fndu¢%i_r)£10ffndu=l.

Lebesgue Dominated convergent theorem is not satisfied.
Suppose there is a non-negative summable function on [0, 1] such that
9(x) = fa(x),

therefore

909 = fa(X) = 2n if € [5-, -]

g(x) =2, ifx € [1/2, 1],

and g(x) = 4, if x € [1/4, 1/2],

g(x) = 6, if x € [1/6, 1/3],

g(x) = 8, if x € [1/8, 1/4].....,

[} g(x) = 1+1+1+1+,...

Therefore g is not summable, this is a contradiction, There is no g such
that |fa(X)| < g(x) for all x e X =[0, 1] foralln > 1

CHECK YOUR PROGRESS
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If f be a nonnegative measurable function on R.Then lim [f<[f .
n—-oo

True/False
A measurable function f on E is said to be integrable over Eprovided |

f |integrable over Ethen| f = [ f*+ [ f~.True/False
Is the Converse of Lebesgue dominating convergent theorem is true.

True/False

Is the converse of Dini’s theorem is true. True/False.

7.7 SUMMARY

This unit is complete combination of
i.  Concept of convergence in measure.
ii.  Concept of Lebesgue dominated convergence theorem .

iii.  Concept of Dini’s theorem.

7.8 GLOSSARY

Measure space.
convergence in measure.
Dominated convergence theorem.

Dini’s theorem.
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https://terrytao.files.wordpress.com/2012/12/gsm-126-tao5-measure-book.pdf
https://terrytao.files.wordpress.com/2012/12/gsm-126-tao5-measure-book.pdf

7.11 TERMINAL QUESTIONS

Let {f.} — fin measure on E and g be a measurable function on E that
is finite a.e. on E. Show that {fn}— g in measure on E if and only iff =
ga.e.onE.
. Show that linear combinations of sequences that converge in
measureon a set of finitemeasure also converge in measure.
. Show that the Monotone Convergence Theorem may not hold for
decreasing sequences of functions.
Let E be a set of measure zero and define f = co on E.
Show that [ f =0.
Let f be a measurable function on E. Then f*and f* are integrable over
if and only if if|f| is integrable over E.
6. Let I be integrable over E and C a measurable subset of E. Show that
If =If xe
7. Let Let{fn} be a sequence of integrable functions on E for which f,—f

a.e. on E and f is integrable over E. Show that [ | f —f, | — 0 if and
only if lim [ | fal=[1f1.

7.12 ANSWERS

CHECK YOUR PROGRESS
1. False
2. false
3. false
4. True
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8.1 INTRODUCTION

The fundamental theorems of integral and differential calculus, with
respect to the Riemann integral, are the workhorses of calculus. In this
chapter we formulate these two theorems for the Lebesgue integral. For a

function f on the closed, bounded interval [a, b], when is
b 1
I f =fb)- f(a)
Assume £ is continuous. Extend f to take the value f(b) on (b, b + 1], and

for 0 < h< 1, define the divided difference function Diff,f and average
value function AVfon [a, b] by

Diffi f(x) = 2225 and Ava £ = [ £(6)d for all x € [a, b].

A change of variables and cancellation provides the discrete formulation

of (i) for the Riemann integral:

[} Diffnf=Avn f(b) — Avh f(a).

The limit of the right - hand side as h —» 0" equals f(b) — f(a). We prove a
striking theoremof Henri Lebesgue which tells us that a monotone
function on (a, b) has a finite derivative almost everywhere. We then
define what it means for a function to be absolutely continuous and prove
that if f is absolutely continuous, then f is the difference of monotone
functions and the collection of divided differences, {Diffnf}o<n< 1, is
uniformly integrable. Therefore, by the Vitali Convergence Theorem, (i)
follows for fabsolutely continuous by taking thelimit as h — 0" in its
discrete formulation. If f is monotone and (i) holds, we prove that f must
be absolutely continuous. From the integral form of the fundamental
theorem,

e we obtain the differential form, namely, if f is Lebesgue integrable

over [a, b], then ;—x [f;f] = f(x) for almost all x € [a, b]
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8.2 OBJECTIVES

After completion of this unit learners will be able to

Learners will understand the fundamentals of measure theory.
ii. Explain the concept of convergence in measure theory
iii. Define the Differentiation in measure space
iv. Explain the Absolute continuity in measure.

Define the convex and bounded variation function.

8.3CONTINUITY OF MONOTONE FUNCTIONS

Recall that a function is defined to be monotone if it is either
increasing or decreasing. Monotone functions play a decisive role in
resolving the question posed in the preamble. There are two reasons for
this. First, a -theorem of Lebesgue asserts that a monotone function on an
open interval is differentiable almost everywhere. Second, a theorem of
Jordan tells us that a very general family of functions on a closed, bounded
interval, those of bounded variation, which includes Lipschitz functions,
may be expressed as the difference of monotone functions and therefore
they also are differentiable almost everywhere on the interior of their
domain. In this brief preliminary section, we consider continuity

properties of monotone functions.

Theorem 8.3.1. Let f be a monotone function on the open interval (a, b).
Then f is continuous except possibly at a countable number of points in (a,
b).
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Proof. Assume f is increasing. Furthermore, assume (a, b) is bounded
and f is increasing on the closed interval [a,b] otherwise, express
(a, b) as the union of an ascending sequence of open, bounded intervals,
the closures of which are contained in (a, b), and take the union of the
discontinuities in each of this countable collection of intervals. For each
XoE (a,b), f has a limit from the left and from the right at x,,.
Define x = o~

f(xo) = Xligno_f(x) =sup {f(x) |a<x<xo }.

f(xo") = Xlif(r}Hf(x) =inf { f(xX) | o< x<b }.
Since f is increasing, f(xo) < f(xo").
Then the function f fails to be continuous at X,
if and only if f(xo") < f(xo"),
in which case we define the open “jump” interval J(x,) by

J(x0) = {y | f(x0) <y < f(x0")}-

Each jump interval is contained in the bounded interval [f(a), f (b)] and the
collection of jump intervals is disjoint.

Therefore, for each natural number n, there are only a finite

number of jump intervals of length greater than %

Thus, the set of points of discontinuity off is the union of a
countable collection of finite sets and therefore is countable.
Theorem.1.2. Let C be a countable subset of the open interval (a, b). Then
there is an increasing function on (a, b) that is continuous only at points in
(a, b) ~C.

8.4 DIFFERENTIABILITYOF MONOTONE
FUNCTIONS

A closed, bounded interval [c, d] is said to be non degenerate

provided ¢ < d.
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A collection F of closed, bounded, nondegenerate intervals is said
to cover a set E in the sense of Vitali provided for each point x in E and

€> 0, there is an interval I in F that contains x and has £(1) <€.

Lemma8.4.1. The Vitali Covering Lemma
Let E be a set of finite outer measure and Fa collection of closed, bounded
intervals that covers E in the sense of Vitali. Then for each €> 0, there is
afinite disjoint subcollection {lx}«x=1 of F for which

mE ~ U%_, I] <€.

Lemme 8.4.2.

Let f be an increasing function on the closed, bounded interval [a, b].

Then, for each a> 0,

m*{x€(a, b) | Df(x)=> « } -i[f(b) - f(a)]

and
m*{x€&(a, b) | Df(x) = } = 0.

Theorem8.4.3. Lebesgue's Theorem
If the function f is monotone on the open interval (a, b), then it is

differentiable almost everywhere on (a, b).

Let f be integrable over the closed, bounded interval [a, b].
Extend f to take the value f(b) on (b, b+ 1]. For 0 <h <1, define the

divided difference function Diff,f and average value function AV, f of [a,
b] by

Diffif(x) = L and Avy f(x) == [7*" F(¢)dt for all x € [a, b].

By a change of variables in the integral and cancellation, foralla < u<v

<b,[” Diffaf = Avnf(v) — Avif(u).

Department of Mathematics
Uttarakhand Open University Page 133




Corollary 8.4.4.
Let 1 be an increasing function on the closed, bounded interval [a, b].
Then f'is integrable over [a, b] and

[ F < f(b) - f(a). sin

Remark 8.4.5. For a continuous function f on a closed, bounded interval
[a, b] that is differentiable on the open interval (a, b), in the absence of a
monotonicity assumption on f we cannot infer that its derivative f ' is

integrable over [a, b].
8.5 FUNCTIONS OF BOUNDED VARIATION

Lebesgue's Theorem tells us that a monotone function on an open
interval is differentiable almost everywhere. Therefore, the difference of
two increasing functions on an open interval also is differentiable almost
everywhere. We now provide a characterization of the class of functions
on a closed, bounded interval that may be expressed as the difference of
increasing functions, which shows that this class is surprisingly large it
includes, for instance, all lipschitz functions.

Let f be a real-valued function defined on the closed, bounded
interval [a, b] and P = (Xo,X1, ... , Xk} be a partition of [a, b]. Define the

variation of f with respect to P by

k
V(Ep) = D IfGD - fr— D

and the total variation of f on [a, b] by
TV(f) =sup {V(f, P) | P a partition offa, b]}
For a subinterval [c, d] of [a, b], TV(fic, a) denotes the total variation of the

restriction off to [c, d].

Department of Mathematics
Uttarakhand Open University




Bounded Variation: A real-valued function f on the closed, bounded
interval [a, b] is said to be bounded variation on [a, b]provided
TV(f) < .

Example: Let f be an increasing function on [a, b]. Then f is of bounded
variation on [a, b] andTV/(f) = f(b) - f(a).

Indeed, for any partition P = (Xo, . . ,X«} of [a, b],

V(f, p) = X, If(xi) - f(xi — 1| = (b) — (a).

Lemma 8.5.1. Let the function f be of bounded variation on the closed,
bounded interval [a, b]. Then f has the following explicit expression as the
difference of two increasing functions on[a, b]

f(x) = [ f(x) + TV(fa, x1)] - TV(fla, 1) V X € [a, b].

Theorem 8.5.2. Jordan's Theorem A function f is of bounded variation
on the closed, bounded interval[a, b] if and only if it is the difference of

two increasing functions on [a, b].

Proof. Let f be of bounded variation on [a, b]. The preceding lemma
provides an explicit representation of f as the difference of increasing
functions. To prove the converse, let f= g - h on [a, b] for any partition
P=(xo, .., X} of [a, b],

V(f, p) = XK, If(xi) - f(xi — 1)
= Yo llg(xi) = g(xi — 1)] + [h(xi) — h(xi — 1)]|
< ¥k lg(xi) — glxi — D+ Xk lh(xi) — h(xi — 1|

V(f, p = [9(b) — g(a)] + [h(b) —h(@)].
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Thus, the set of variations of f with respect to partitions of [a, b] is
bounded above by [g(b) — g(a)] + [h(b) — h(a)] and therefore f is of
bounded variation of [a, b].

We call the expression of a function of bounded variation f as the
difference of increasing functions a Jordan decomposition of f.

Corollary 8.5.3. If the function f is of bounded variation on the closed,
bounded interval [a, b] then it is differentiable almost everywhere on the

open interval (a, b) and f' is integrable over [a, b].

Proof: According to Jordan's Theorem, f is the difference of two
increasing functions on [a, b]. Thus, Lebesgue's Theorem tells us that f is
the difference of two functions which are differentiable almost everywhere
on (a, b). Therefore, f is differentiable almost everywhere on (a, b). The

integrability of ' follows by above corollary.

8.6 DIFFERENTION OF AN INTEGRAL

Let f be a continuous function on the closed, bounded interval [a,
bland [ Dif fn f = Avaf(v) — Avif(u)
take a = u andb = v to arrive at the following discrete formulation of the
fundamental theorem of integral calculus.
[ Diffn = Aif(b) - Avnf(a).
Since f is continuous, the limit of the right-hand side as h— 0" equal f(b) —

f(a). We now show that if f is absolutely continuous, then the limit of the

left -hand side as h— 0" equals f; f" and thereby establish the fundamental

theorem of integral calculus for the Lebesgue integral.
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Theorem 8.6.1. Let the function f be absolutely continuous on the closed,
bounded interval [a, b]. Then f is differentiable almost everywhere on (a,
b), its derivative f' is integrable over [a, b] and

[} = f(b) - f(a).

Theorem 8.6.2. A function f on a closed, bounded interval [a, b] is
absolutely continuous on[a, b] if and only if it is an indefinite integral over
[a, b].

Corollary 8.6.3. Let the function f be monotone on the closed, bounded
interval [a, b] Then f is absolutely continuous on [a, b] if and only if

[} = f(b) - f(a).

Theorem8.6.4. Let f be integrable over the closed, bounded interval [a, b].
Then

d X o _
— I, f =f(x) for almost all x€ (a, b).

8.7 ABSOLUTELY CONTINUOUS FUNCTION

A real-valued function f on a closed, bounded interval [a, b] is
said to be absolutely continuous on [a, b] provided for each €> 0, there is
a 6>0 such that for every finite disjoint collection {ax, b«} intervals in (a,
b),

If Y %_1[bx - a] <6 then X7 _, | f (bk) — f(ax)| <€.

The criterion for absolute continuity in the case the finite collection of
intervals consists of a single interval is the criterion for the uniform
continuity of f on [a, b]. Thus, absolutely continuous functions are

continuous. The converse is false, even for increasing functions.
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Example8.7.1.The Cantor-Lebesgue function ¢ is increasing and
continuous on [0, 1], but itis not absolutely continuousindeed, to see that

@ is notabsolutely continuous, let n be a natural number.

Theorem8.7.2. If the function f is Lipschitz on a closed, bounded interval

[a, b], then it is absolutely continuous on [a, b].

Proof. Let ¢ > 0 be a Lipschitz constant for f on [a, b], that is,

[f(u) — f(v)] < c|u—v|forallu, v € [a, b].
Then, regarding the criterion for the absolute continuity of f, it is clear that
§==

C
responds to any > 0 challenge.
There are absolutely continuous functions that fail to be Lipschitz the

function f on [0, 1], defined by f(x) = v/x for 0< x < 1, is absolutely

continuous but not Lipschitz.

Theorem 8.7.3.Let the function f be absolutely continuous on the closed,
bounded interval [a,b]. Then f is the difference of increasing absolutely

continuous functions and, in particular, is of bounded variation.

Theorem 8.7.4.Let the function f be continuous on the closed, bounded
interval [a, b]. Then f is absolutely continuous on [a, b] if and only if the
family of divided difference functions {Diffif}o<n< 1 is uniformly

integrable over [a, b].

Remark: For a non degenerate closed, bounded interval [a, b], let Fui,
Fac, Fev denote the family of functions on [a, b] that are Lipschitz,
absolutely continuous, and of bounded variation, respectively. We have

the following strict inclusions FLip € Fac € Fev.
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8.8 CONVEX FUNCTONS

Throughout this section (a, b) is an open interval that may
be bounded or unbounded.
A real-valued function ¢ on (a, b) is said to be convex provided for each
pair ofpoints X1, X2 in (a, b) and eachA with 0 < 1 <1,
@e(A X1+ (1- 1) x2) < Ap(x1) + (1-1) x2.
If we look at the graph of ¢, the convexity inequality can be formulated
geometrically by saying that each point on the chord between (x1, ¢(X1))
and (Xo, @(x2)) is above the graph of .
Observe that for two points x1<x in (a, b), each point x in (X1, X2) may be

expressed as

X2 — X
x2 —x1°

Thus, the convexity inequality may be written as

X= A Xy + (1- 1) X2 where A =

Px)—@((x1) < @ (x2)
x—x1 - x2

:‘z(x) for xa< X < x2 in (a, b).

Therefore, convexity may also be formulated geometrically by saying that
for x1< X < Xz, the slope of the chord from (x1, @(x1)) to (X, @(x)) is no

greater than the slope of the chord from (x, @(X)) to (X2, @(x2)).

Theorem 8.8.1. If ¢ is differentiable on (a, b) and its derivative ¢ ' is
increasing, then ¢ isconvex. In particular, ¢ is convex if it has a

nonnegative second derivative ¢ " on (a, b).

Example 8.8.2. Each of the following three functions is convex since each
has a non negative second derivative:

(). @(x) =x?on (0, o) for p=> 1.

(i)). @(x) =e*on (-0, ).

(iii). @(x) =In-on (0, ),
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Corollary 8.6.3. Let ¢ be a convex function on (a, b). Then ¢ is
Lipschitz, and thereforeabsolutely continuous, on each closed, bounded
subinterval [c, d] of (a, b).

Theorem 8.6.4. Let ¢ be a convex function on (a, b). Then ¢ is
differentiable except at acountable number of points and its derivative ¢ '

is an increasing function.

Theorem 8.6.5. Jensen's Inequality Let ¢ be a convex function on (-oo,
o), f an integrable function over [0, 1] and oof also integrable over [0, 1].
Then,

o ([ f(x)dx) < f (@ 0 DX dx.

8.9 MEASURE SPACE

Let X be a non-empty set and B be a ¢ — algebra of subsets of X.
A function p on B into nonnegative extended real number i.e. u:B - [0,
oo] is said to be measure on X if.
. pu(e)=0.
i u is countable additive i.e. Ane B for all n € N, Ann Am =@, m
# N,
i (Un=1 An) = Xpzq u(A).

Let X be a non-empty set, B be a ¢ — algebra of subsets of X and u is a

measure on X then (X, B, u ) is called measure space.

Example 8.9.1.
Let X any non-empty set and B = {¢, X }, Bis smallest o — algebra of
subsets of X. Define u: B — [0, o] ,u(e) =0, and u(X) =1
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Let An=@ = Ay,

AN An =@ =AiN A;

and Am=X=A, UVAn=AlUA =@ U X=X
Then

u(e U X) =u(X) =1and u(p) + u(X) = 0+1=1.
Therefore u(p U X)) = u(p) + u(X)=1.

Hence u is measure on X.

Example 8.9.2. Let X be a non-empty set and B = P(X), Define p on B by

u(A) = A, where A denotes numbers of elements in A for all A € B =

P(X), i.e.

um =

Then p is measure on X and this is known as Counting measure.

Number of elements in A, where A is finite set
oo, when A is infinite set

Properties of Measure 8.9.3

i A measure p is finitely additive, i.e. A1, A2, As,..., An€ B, AN

A=, forl<k<n,1<I<nandk = I This implies that,
M( Uk=14k) = Xk=1 1(AQ).

A measure u is additive, i.e. A, BeBand An B =@ then u
(AU B)=p(A) +u(B)
Measure u is monotonic i.e. A, B € B, and A c B then u(A) <
u(B).
A measure u is countably sub additive i.e. An€ B foralln € N
then pu(Un=; An) < X5 u(An).
A measure is finitely sub additive i.e. Ai, Az, As... An€ B,
then u(Uf—; A0 < Xty (AW,
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8.10 MEASURABLE FUNCTION

Let R be the set of all real numbers an extended real valued
function f is said to be Lebesgue measurable function if each real number
atheset { x € R: f(x) > a} is a Lebesgue measurable subset of R,

i.e. f1(a, o] € Mn,

where Mn, is the o — algebra of all Lebesgue measurable subset of R.

The function f is said to be Borel measurable function if for each real
number a the set { x € R : f(x) > a} is Borel set, i.e. f1(a, o] € B, where

B is the smallest o — algebra containing all open subset of R.

Theorem 8.10.1. Every continuous function on R into itself is Borel

measurable hence Lebesgue measurable function.

Example 8.10.2. Define f: R - R by
F(x) = x for all x € R.
F is an identity function, let a be any real number {x € R : f(x) > a}=
(a, ) = f1(a, o) € B, fis boral measurable hence Lebesgue measurable,
identity function is Boral measurable Hence Lebesgue measurable

function.

Theorem 8.10.3. Let (X, B) be a measurable space and f be a real valued
function on X. Then the following are equivalent.
1. {xe X:f(x) >a }e B for each real number a.

. {xe X :f(xX) = a}e B for each real number a.

2
3. {x € X:f(x) <a}e B for each real number a.
4

. {xe X :f(xX) < a}e B for each real number a.
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Theorem 8.10.4. Let (X, B) be a measurable space let f and g be
measurable function on X. Then
1. Cfis measurable function on X for all c € R.
F + g is measurable function on X.
F? is measurable function on X.
F.g is measurable function on X.
If f is measurable function on X then | f | is measurable function on

X but not converse.

Theorem 8.10.5. Let (X, B) be a measurable space let f and g be extended
real valued measurable function on X then
1. F Vg is measurable function on X.

F A g is measurable function on X.

2
3. F*is measurable function on X.
4

F- measurable function on X.

8.11 SOLVED EXAMPLES

Example 1. Let X any non-empty set and B = {¢, X }, B is smallest o —
algebra of subsets of X, Define u: B — [0, ]

u(p) =0,and u(X) =1

Let An=¢@ = A;, Ain An=¢@ = Ain Acand Amn = X = Az, UAL = AU A;
=pU X=X

Then u(p U X)) = u(X) =1 and u(ep) + u(X) = 0+1=1. Therefore u(p U
X) = u(ep) + p(X)=1.

Hence u is measure on X.
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Example 2. Let X be a non-empty set and B be a o — algebra of subsets of

0, ifx¢gA

1, if x € AforaIIA

X. Let x € X define px: B — [0, o] by ux(A) = {

€ B.

Then ux(A) is a measure on X and is called point mass at x.

Example 3. Let X be a non-empty set and B = P(X), Define u on B by
u(A) = 4, where A denotes numbers of elements in A for all A € B =
P(X), i.e.

um) =1

Then p is measure on X and this is known as Counting measure.

Number of elements in A, where A is finite set
oo, when A is infinite set

CHECK YOUR PROGRESS

Is the Vitali Covering Lemma does extend to the case in which the covering
collection consists of non degenerate general intervals. True/False

Let f be continuous on R. Is there an open interval on which f is
monotone. True/False

Is the f an increasing bounded function on the open, bounded interval (a,
b).True/False

Is a continuous function f on [a, b] is lipschitz if its upper and lower
derivatives are bounded. True/False

Let f and g be of bounded variation on [a, b].Then TV(f + g)= TV(f) +
TV(g). True/False
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8.12 SUMMARY

This unit is complete combination of
Definition of measure space and measurable function.
Concept of differentiation and bounded variation.

Definition of absolute continuity and convex functions.

8.13 GLOSSARY

Measure space.
Measurable function.
. Convex function.
Differentiation of monotone functions.
Function of bounded variation.

. Absolute continuity.
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8.16 TERMINAL QUESTIONS

1. Show that there is a strictly increasing function on [0, 1] that is

continuous number in [0, 1].
Let f be continuous on R.Is there an open interval on which f is
monotone?

. Compute the upper and lower derivatives of the characteristic function
of the rational.

. Show that the linear combination of two functions of bounded
variation is also of bounded variation. Is the product of two such
functions also of bounded variation?
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. Show that both the sum and product of absolutely continuous functions
are absolutely continuous.
. State and prove a version of Jensen's Inequality on a general closed,

bounded interval [a, b].

8.17ANSWERS

CHECK YOUR PROGRESS

. True
. True
. True
. True

False
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UNIT 9: THE L? — SPACES
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9.1 INTRODUCTION

Recall that an -algebra (usually denoted by 4) of subsets of
set of real numbers R is a collection of subsets of real numbers that

contains the empty set and is closed with respect to the formation of

complements in ® and with respect to the formation of countable
unions and therefore by De Morgan’s Identities to the formation of
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intersections. The collection of measurable sets of real numbers is a

g-algebra. The restriction of the set function outer measure to the
class of measurable sets is called Lebesgue measure and it is
denoted by m. Throughout this unitEdenotes a measurable set of real

numbers. Define F to be the collection of all measurable extended real-
valued functions on E that are finite almost everywhere on E. Define two

functions fand g in / to be equivalent, and write f~g , provided

fi(x) = g(x) for almost all x in E.

It is obvious that relation ~ is an equivalence relation that is it is

reflexive, symmetric and transitive. Hence it induces a partition of Finto

a disjoint collection of equivalence classes, which we denote by f/*.

[t is easy to see that //* has a natural linear structure.

Given two functions f and g in F, their equivalence classes [f]
and [gland real number ¢ and d, we define the linear combination
c[f] + d[g] to be the equivalence classes of the functions in F that
takes the value cf (x) + dg(x) at the points x in E at which f and g
take finite value at x.

These linear combinations are well defined such that they are
independent of the choice of the representatives of the equivalence
classes. The zero element of this linear structure is the equivalence

class of the functions that vanish almost everywhere on E.

A subspace of a linear space is the subset of that space which is

closed with respect to formation of linear combination, there is a

natural family (L7 (E)),.,. .. Of subspaces of f/~.
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For simplicity and convenience, we refer to the equivalence

classes in f/~as functions and denote them by f rather than
[f].Therefore, to write f~g means that f—g  vanishes almost
everywhere on E.

This simplification imposes the obligation to check consistency

when defining concepts for theL”-Spaces. For instance, it is meaningful to
assert that a sequence f,, in L7 (E) converges pointwise almost everywhere
on E to a function f in L?(E)since if g, = f,for all n andf & g, then,

since the union of a countable collection of sets of measure zero also is of

measure zero, the sequence g, also converges pointwise almost

everywhere on E to g.

9.2 OBJECTIVES

After the completion of this unit learners will be able to

Define the concept of L”-Spaces.
Describe that L”-Spaces are linear spaces.

Explain and prove various inequalities like Young’s inequality,
Holder's inequality, Cauchy-Schwarz inequality, Minkowski’s
inequality.

After reading solved examples learners should be able to try the

problems.

9.3 PRELIMINARIES, NORMED LINEAR SPACE
AND L? —SPACES
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Definition 1:

For 1 < p < oo, by LP(E), we mean a collection of equivalence classes
[£] for which [fI? is integrable. Thus

f elP(E) = [IfIP <.

Sometimes we denote the collection of such functions by the symbol L¥.

Definition 2:

A measurable function f on measurable set E is said to be an essentially
bounded function if there exists M, > 0 such that

|f(x)| < M, for all most all x € E.

We define L*(E) to be the collection equivalence classes [f] for which f
is essentially bounded functions on E.

Therefore f € L*(E) < there exists M, > 0 such that |f(x)| = M,for

almost all x € E.

Definition 3:

For E a measurable set, 1< p <oo, and a function f in L (E), we denote

IFll, = (If17) e, and for p =0, lIfll., = inf {M; >0

|f(x)] = M,for almost all x € E}.

We prove that L? (E) is a vector space over E.

Theorem 1:

For 1= p =< o, LF(E) is a vector space over E.

Proof: Let 1= p = o, for f,g € L*(E), and ¢ € R we note that
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If +gl < Ifl + lgl < 2.max{lfl.|gl}.
Therefore for p = oo, we have

If + gll.. < 2.max{lIfll...llgll..} < oo
lefll.. = ellfll.. < oo

And for the case 1 = p < oo, we have
|f +gl? = 2.max{|f?, |g]"}

Then

o =
If +gl7 < 2. Il ] lgl }<
J 17+ o < 2maxt] 171 | 191y < o0

Hence f + g € L¥ (E). Further

Llcﬂ” - cLIfI*’ﬂim-

Using these, all axioms of a vector space can be proved. Therefore L?(E)
is a vector space over R.

When the vector spaces R* and R® are considered in the usual way,
we have the concept of the length of a vector in R* andR*associated with

each vector.

These are clearly elementary examples of vector spaces which
gives us a deeper understanding of these vector spaces equipped with
length. When we turn to other (possibly infinite-dimensional) vector
spaces, we might hope to get more insight into these spaces if there is
some way of assigning something similar to the length of a vector for each
vector in the space. Accordingly, we look for a set of axioms which is

satisfied by the length of a vector in R* andR?e

This set of axioms will define the "norm" of a vector and

throughout this unit we will mainly learn about some important example
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of normed vector spaces. Now we give the definition of normed vector

spaces.

Definition 4:

Let X be a linear space. A real valued functional ||. || on X is called a

norm provided for each f and g in X and each real numberc,

(The triangle inequality)

If +gll < lIf I+ ligll

(Positive homogeneity)

lef Il = 1clllf I

(Non negativity)

Ifll = 0and lIf]l = Oifandonlyif f = 0,

Moreover, the ordered pair (X, || ||) is called a normed vector space or
normed linear space.

A useful variation of triangle inequality is

If = glll < lf —gll

For anyf,.*_l}' in X.
This also shows that a norm is a continuous function.

Examplel:

Let IV be the set of natural numbers, A be the collection of all the subsets
of Nand 1 be the counting measure on N, then every real valued function

on IV is measurable. Hence, in this case, for anyp = 1,
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IP(N) =1P(N)=1P
Herel“is the space of all bounded sequences in Rand for
1 < p < oo, [Pis the space of all sequences (@) in R such

that) o1 la, |? < oo.

Example2:

Let [a,b] be a closed, bounded interval. Then the linear space of
continuous real- valued functions on[ﬂ',i b] is denoted by C[a, b].
Since each continuous function[a,b]takes a maximum value for

f € la, b], we can define

”f”max — Inaxxe[a,bﬂf(xn

We will prove in the section of solved problems that ||f ||ma;{is a norm.

Definition 5:

Let P = 1 and g be any two positive real numbers such that

1 1
~ 4 -=1
p q

Then @ is called conjugate top?. For example, if P = 2, then ¢ = 2,

thus 2is self-conjugate number.

9.4 THE INEQUALITIES OF YOUNG, HOLDER
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AND MINKOWSKI

The following inequality is named after William Henry Young.
William Henry Young was an English mathematician. Young's inequality
for products is a mathematical inequality about the product of two
numbers and can be used to prove Holder's inequality. The standard form
of the inequality is the following:

Young’s inequality:

Let a, bbe non-negative real numbers and P, q € (1, 00) be such that

1
q

a? b9
ab < — + —.
P q
Proof:
It is worth to note that function @, defined by
'113(-1') — E‘x, X € R,is a convex function, that is, for every X,V € R
and 0 < A < 1,

¢(Ax + (1 = Dy) < 19(x) + (1 = Do ().
Putting
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Now consider X = 0,y = 0

such that

x y
a=ePand b = eq,
that is,
x = In(a?) and,y = In(b?)
and therefore we have

in(aP) m®P)  pin(aP) (9 Hin(p9)
e P 1 < +
p q q

Therefore

aP? b4
ab < —+ —.
P q

The German mathematician Otto Ludwig H6lder(1859-1937) worked in
analysis and group theory. He proved this inequality in 1884. Holder

inequality is one of the fundamental inequalities between integrals and an

indispensable tool for the study of LP -spaces

Holder'sinequality:

Let E beameasurableset 1 < p < 0, q

the conjugate of the P
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I1ff belongsto LP (E)

and 9 belongs to L7 (E)

L*(E)

then their product belongs to

f 7.9l < I, lgll,.
and E

Proof.

First consider the casep = 1, and P = ©9,it is easy to see that
inequality holds. Now consider 1 < p << ©0,then 1 < q < o0,

First note that if one of ||jc||:,;r or ||3§'||q||3§}'||,;I is 0 or @2, then

inequality holds. Hence suppose that,
0<|lfll, <coand 0 <llgllg <oo<llglly < oo

Now putting @ = i and b = gl
e lgll,

forx € E [N Young’s inequality, we get,

fl1 gl f1P gl
. < 5+ .
£l Nlglle — pIIfIL,  allglly

Now taking integrals over E', we get

— o [1gl s —— [ 17 + ——— [ 11
: gls——— + — g |9
71, Tl Je 2 = A S’ " aligliJe

1 1
:—_l_—
P 4
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=1

Therefore

fE Fal < IF 1, ligll,.

The most important special case of above theoremiswhenp = q¢ = 2,

and that is called Cauchy-Schwarz inequality

The Cauchy-Schwarz  inequality (also  called Cauchy—Bunyakovsky—

Schwarz inequality) is an upper bound between two functions in
1?2 (E)space in terms of the product of the function norms. It is

considered one of the most important and widely used inequality in
functional analysis and measure theory. Baron Augustin-Louis
Cauchy was a French mathematician, engineer, and physicist who made
pioneering contributions to several branches of mathematics, including
mathematical analysis and continuum mechanics while Karl Hermann
Amandus Schwarz was a German mathematician, known for his work in

complex analysis.

Cauchy-Schwarz inequality:

If f belongs to L? (E) and 9 belongs to 1?(E)
['(E)

then their product belongs to and

f|f.g| < 1 lo-lgll».
E

The following inequality is named after the German mathematician
Hermann Minkowski the Minkowski inequality establishes that the LP.
Spaces are normed linear space. In fact Minkowski inequality is the

triangle inequality in LP -Spaces.
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Minkowski’s inequality:

LetE be a measurable set 1= p=o

If f and g belongs to LP (E) then so does their sum f + g, and,

moreover
If +4gll, < If +gl,

Proof: Forthecase P = 1,and P = ©0,it is easy to see that inequality

holds from inequality| £ + g| < |fl + |gl. Now consider

11
1 < p < o,andq > 1 such that » + 5:1. If

If + gllp = 0, then we are done. Hence assume that
If + gllp, # 0. Now

f|f 4 gl? =f|f + glPtf + gl
E E

< L|f+g|p‘1|f| +LL|f + glP gl

Now by Holder inequality, we have

2 2
J;_If +glPfl < IFl, (L|f + g|*3p-”q)" — WFlllIf + gl
and,

1

= P

) q =
f|f+g|P-l|g| < ||g||p(f|f+g|*ﬂ-”q) — IFILIIF + glI°
E E

Thus
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p p
Llf +glP <IFILIF + gl + IFIIIf + gl

P
= (I llp+ Ngli)IIf + gl

P p
Now cancelling out || f +.»_z,'r||'f,:r as ||f +g||g + 0, we obtain

If +gll, < IIf +gll,.

Theorem 2:(L? (E), || |, )is a normed linear space -
Proof:

To prove that (LP (E), || ||p) is a normed linear space, we have to prove
that

i. lIfll, = 0.
In particular ||f||p = 0 ifand only if f = 0 almost

everywhere

i. leflly = Ielllfllp
i. If+gll, <IIfll; +1F1p

1
since [fl = Oandso [Ifl, = (fE|f|p) /p > 0.
Further f =0 = ||f||p = 0 Againiff =0 Ellld”f”p =0
thenf = 0.

lefIl, = Llcflp _ |c|L|f|p= ellifl,.

And lcflle = lelllfll.
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Further by Minkowski inequality we have
1f + gllp < Ifllp + I llp. Thus (ZP (E), Il ,) is a normed

linear space.

9.5 SOLVED PROBLEMS

Problem 1:

Let E be a measurable set of finite measure and

1<p, <p, = oo
Then LP2 (E) © LP1(E).Furthermore,

IFll,, < clIfll,,

forall f in LP2 (E),

P2—Pi1
where ¢ = [m(E)] P1Pzif p, < o0

1
and € = [m(E)]plifpg = 00,

Solution:

Suppose Pz = ©O,

Define p =$} 1 and let g be the conjugate of P that
1

1 1
is—+—=1.
p q
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Let f belongs to LP2 (E’) and ¥ gbe the characteristic function of E then
by Holder inequality we have

1

fE fPr = fE F1P1 e < ( fE |f|p2)p2 ( L |xE|Q)q = lIf 15 m(E)]2

Therefore

1

P1 P1
(Llflpl) = [Ifll,,[m(E)] 2 < oo

For the P> = ©2 sinceE be a measurable set of finite measure it means
m(E) < oo therefore

(Llflpl) < lIfIZ. m(ED.

Hence LP2(E) © LP1(E).

Remark:
Neither containment holds in general (if E is not of finite measure).
For example,

let E = R, the set of real number with Lebesgue measure. Now suppose

1 g
O ECE

0, x <1
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and

1
g(x)Z[/\Ei U{Xi:l.

0, otherwise

Since

2 1 B
1712 = —2— —| =1

1712 :J; -

| - f " = llog @ = o,

o0

and

1 1
lgll5 = f — = [log(x)]j isnotfinite,
B X
0

E =f
R

Therefore f € L2 (R)\L*(R) and g € L* (R)\L?(R).

Problem 2:

1fp,q € (0,1),p + g = 1,thenshowthat| f|P.|g|? € L*(E).
Solution :

Let F = |fIP G =, |gl*

Department of Mathematics
Uttarakhand Open University Page 164




1
andH:_; p ,
2 B

then F € L¥(E)

and &G € LH(E)

101
andthen—+—-=1
a f

and

so by Hélder inequality

fIP 1gl? = |fIP.1g]? € L*(E).

Problem 3:

Show that in Young’s inequality there is equality if and only if

aP? = b1.

Solution:

p B
Suppose f(a) = a? + P ab,

treating b as independent of .

Then equality holds if and only if
flla)=aP ™ —b

and

f'la)=0

impliesh = aP~ 1.

Furtherf”(a) — (,L‘r —1)aP? = 0.
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Therefore the minimum value of function f isoath = aP~ 1.

Hence equality holds if and only if a? = b .

Problem 4:

Show that in Holder’s inequality there is equality if and only if there are
constants@ and [, not both zero, for which @|f|P? = Blg|? almost

everywhere on E.

Solution:

Suppose there are constants @ and ,-'3 , not both zero, for which
15:1’|)C|*T"‘r = £|g|q almost everywhere on E. Without loss of generality,

assume 5 # 0. Thus we have

fivai= [onfgref = o = e

since a|f [P = Blg|?

aoLlflpzﬁnglq.....(Z)

Hence by (1) and (2) we get

lgll\a
f|f g —f|f|p(”jf“p) — £ 1. lgll,.

If f or g are zero then converse holds. So suppose thatf # 0 andg # 0
and
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L £l = IF 1y liglly . (3)

Then (3) can be rearranged as

[y 2, (o) e i)

Almost everywhere on E. Thus

(JLy 1, (loly' 2o
Ifll,/) " \lgllg/ "a lIfl,lgllg

By problem 3 (condition for equality in Young’s inequality) we get

(r1,) ~(r,)

1 1

Where & = and p = —7-
171 A lgllg

Problem 5:

Prove that for [ inCla, b],

”f”max — Inaxxe[a,bﬂf(x”

is a norm.

Solution:

i | —— maxxe[a’b]lf(x)l = Qifand only if f = Qand
triangle inequality and positive homogeneity are easy to verified.
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Problem 6:

If f € L?[0,1], then show that
1

fﬂ x| < [ f llf(x)lzdxr.

Solution: If f, g € L?[0,1], then by Cauchy-Schwarz inequality, we
get

I gll < NIfllllgll 2

Or
J:Ifyldx < U:|f|2dxr U:|g|2dx]

1
2

Taking g(x) = 1 forall xin[0,1] we get

J:Ifldxi [Llwfixf

Since

o - [[nra] -

So we get
1
2

J:f(x)dx < J:|f(x)|dx < U:|f(x)|2dx
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Therefore
1

J; Fx| < [ f llf(x)lzdxr.

Problem 7:

1fp = 1 and letlim,, . [[f, — fll, = Othen prove that

lim,, oo llfa Il = NIl

Solution:

since we know that |||, [l, — Ifll,,| < 1, —fll,, so

im0 | 11l — Nl | < Timy oo [0 I, — ML, | = O
and therefore liI‘I‘l].,l_m.b|||fm||1.:r — ||f||p| = (0 which implies that

lim,, o llfa Il = NIl

9.6 SUMMARY

This unit provides an explanation of

Normed linear spaces like of Lp-Spaces

Describe the examples of LP -Spaces.

Proof of various inequalities like Young’s inequality, Holder's
inequality, Cauchy-Schwarz inequality, Minkowski’s inequality.

Relation of inclusion between L¥ -Spaces.

After reading solved examples learners should be able to try the
problems

9.7GLOSSARY
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Function: A function f from a set X to a set Y is an assignment of
an element of Yto each element of X. The set X is called the
domain of the function and the set Y is called the co domain of the

function. If the elementyinYis assigned toxinXby the

function f, one says thatfmapsxto y, and this is commonly

writen ¥ = f(x).

In this notation, x is the argument or variable of the function. A
specific element x of X is avalue of the variable, and the
corresponding element of Y is the value of the function at x, or

the image of x under the function.

Equivalence classes:

An equivalence relation is a relation that satisfies three
properties:  reflexivity, symmetry, and transitivity. Equivalence
classes partition the set S into disjoint subsets. Each subset
consists of  elements that are related to each other under the
given equivalence relation.

Measurable set:

If (X, Z‘)is a measurable space, whereZ' is a 0 -algebra of

subsets of X then elements of 2 is called measurable set.
Conjugate numbers

LP -Spaces.

almost everywhere:
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A property of a measurable spaceXis said to hold almost

everywhere if the set of points in Xwhere this property fails is
contained in a set that has measure zero.

Continuous function:

A continuous function can be formally defined as a function
f:X — Y where the pre-image of every open set in Xis open

inY". More concretely, a functionf(X) in a single variable Xis

said to be continuous at pointXgif f(xo) is defined, so that Xgis

in the domain of f withlimx_}xﬂf(x) exists and

limx—}xﬂf(x) — f(xﬂ)

Measurable function:

A measurable function is a function between the underlying sets of
two measurable space that preserves the structure of the spaces that

is the preimage of any measurable set is measurable.

Thatis if (X,Z) and (¥, I")are two measurable space then a
function f: (X, Z) —> (Y. F)is called a measurable function if
foreach E € I’

fTAE)={xeX:f(x)eY}eZ
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CHECK YOUR PROGRESS

Question 1: Prove that
T

-1 3
fx4 sinx dx < m4.

0

Question2: If1 = p; < p, < oo,

Then prove that [P1 C P2 Moreover this inclusion is proper.

Question 3: Assume (E) < o For f € L* (E), show that

limy e llfll, = 11f oo

Question 4: If [ in L*(E) and g in L (E) then prove that
f.g € ME)and|lf. gll = lIf 1l llgll .

Question 5: Give an example of a function which belongs to L= (R)but

notin L2 (R).

Question 6: Show that norm is a continuous function.
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9.10 TERMINAL QUESTION

Questionl: Is For 1< p < o, LP (E') a vector space over R.
Question 2: IsForp < 1, LP (E) anormed linear space over R.

Question 3: IsFor 1< p < o, LP (E') a normed linear space over R.

Question 4: Is C[a, b] a normed linear space, where normed is defined

o I lmin = Minseta )| Fl, £ ¢ c[a, ]

9.11 ANSWERS

CHECK YOUR PROGRESS

Answer 1: Use Cauchy-Schwarz inequality.
Answer 2: Suppose{@, } € [P1then). |, |P1 < oo. It means

there exists a natural number 711 such that| a, |p1 < 1foralln = m.
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Since P; < P therefore |a,, |P2 < |a,,|Piforall m = m and so

= la,|P2 < oo.< ¥  |a,|Pt < co. Hence proved.

1
For proper inclusion let {a,, } = {—} for each natural number n.
nP1

Answer 3: Use problem 1.

Answer 4: Since|g| = ||g||m almost everywhere on E and
1f-gl < |flllglle-

Answer 5:The characteristic function of [0, 00] that is X'[0,co].

Answer 6:Use the triangle inequality| Il f — gll| < IIf — gl

TERMINAL QUESTION

Answers 1: Yes
Answers 2: No as triangle inequality for norm is not satisfied.

Answers 3:Yes
Answer 4: No
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10.1 INTRODUCTION

Completeness of reals may be formulated by asserting that
if {a,} is a sequence of real numbers for which
limn,m—}m la, —an| =0,
there is a real number @ such that

lim,_.la, —al = 0.

There is a corresponding completeness property for the Lebesgue integral.

For E measurable set and 1 < p < 0, define LP (E) to be the

collection of measurable functions f for which |f |:'5r is integrable over

E.

It {f,,} is a sequence of functions in LP (E’) for which

lim |fn _fm|p — U,

n,m—co

there is a function f in LP (E) such that
llm|fn _f|33 = 0.
n—oo

This is the Riesz-Fischer theorem, the centerpiece of this unit. The Riesz-

Fischer theorem is named for mathematicians Frigyes Riesz and Ernst

Fischer who independently published the result for special case p = 2

in 1907.
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The Riesz-Fischer theorem usually described a number of results for

convergence of Cauchy sequence in LP (E).

Most often Riesz-Fischer theorem is considered to state that L¥ (E ) are
complete, where E is a measurable subset of reals that is every Cauchy
sequence in a LP (E)converges to a function in LP (E).In this unit we
show that, for P = 1, LP (E )are complete. Furthermore, there are
some consequence of Riesz-Fischer theorem which in turn also give
necessary and sufficient conditions for the convergence in LP (E ) norm

for a sequence that converges pointwise.

10.2 OBJECTIVES

After the completion of this unit learners will be able to

I Define the Cauchy sequence, rapidly Cauchy sequence.

ii. Understand the concept of completeness for LP (E).

Understand the concept of convergence in LP (E ) and pointwise

convergence.

Define Uniform integrable function, tight function on a measurable
set E.

State necessary and sufficient condition for the equivalence of

convergence in L? (E ) and pointwise convergence.

Explain examples and counterexamples.

Department of Mathematics
Uttarakhand Open University




10.3 PRELIMINARIES

Recall some important results and definitions useful in this unit

Lebesgue monotone convergence theorem:

Let {f,,} be an increasing sequence of nonnegative measurable functions
on E.

If {f,} = [pointwise almost everywhere on E, then

lim fn=Lf

—
n CDE

Lebesgue dominated convergence theorem:

Let {f,,} be a sequence of measurable functions on E.
Suppose there is a function @ that is integrable over E and

dominates{ f,, } on E in the sense that

|f,,] < g forann.
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If {f,} = f pointwise almost everywhere on E, then f is integrable

over E and

lim | f, = ff.
n—oo E E

Fatou lemma:

Let { 1.} be a sequence of nonnegative measurable functions onE.

If{fa}—=f pnintwise,thenf
E

= limian’fn.
E

Minkowski’s inequality:
Let E be a measurable set, 1 < p < oo Iff and g belong to LP (E)

then so does their sum f + g, and, moreover,

If+gll, < IIf +gl,.

Egoroff’sTheorem:

Suppose E has a finite measure. Let {fn} be a sequence of measurable
function on E that converges pointwise on E to the real valued functionf.
Then for eachE= 0, there is a closed set F Contained in E for which

{fn} = funiformalyon Fand m(E~F) <€,

where m is Lebesgue measure.

The Vitali Convergence theorem:

Department of Mathematics
Uttarakhand Open University Page 179




Let{ [, Jbe a sequence of functions on E that is uniformly integrable and

tight over EIf {f,,} — f pointwise on E. Then

fis integrable over Eand lim | f, = ff.
E

—
n DD-E

10.4 RIESZ - FISHER THEOREM

Definition 1: Convergent sequence in LP (E)

Let {f;,}be a sequence of functions in L¥ (E), then {f,,} is said to be

convergent to a function f in LP (E) provided

nlEnm“fn _f”p =0

Or if for given
e =0 dnyg EN

such that

n=ng = lify —fll, <e

Definition 2: Cauchy sequence in LP(E)

Let E be a measurable set and {f;,} is a sequence of functions in

LP (E), then {fn} is said to be Cauchy sequence, if for given

e =0, 3 nyg €N such that
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m,n =n, = |If, — full, < €

A normed linear space X is said to be complete provided every Cauchy

sequence X in converges to a function in X. A complete normed linear

space is called a Banach space.

Proposition 3:

Let X be a normed linear space. Then every convergent sequence in X is

Cauchy. Moreover, a Cauchy sequence in X converges if it has a

convergent subsequence.
Proof: Let{f,} — f inX

By triangle inequality in norm,

”fm_fn”: ”fm_f-l'f_fn”
= ”fm _f” + ”fn _f”

for all m, N.Therefore {f},} is Cauchy.

Now let {fn} be a Cauchy sequence in X that has a subsequence

{fn,.} which converges in Xtof.

Suppose€ = 0. Since {f,} is Cauchy, we may choose N such that

1fn — full < zforallm,n = N.But {f,} convergesto f, we

may have K such that ;; = N and
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£
1o = fll= 3

then by triangle inequality we have for n = N
Ifu = F1 = foo = fr + Fon — 1l
<|fo = faell + fe = fll <e

Thus {fp,} —= f inX.

Definition 4:

Let X be a normed linear space. A sequence {f,,} in X is said to be
rapidly Cauchy provided there is a convergent series of positive numbers

Y1 € for which

| fer1 — frll < €f forank.

It is useful to note that if {f,,} is a sequence in a normed linear space

and sequence of nonnegative numbers {{1 k} has the property that

| frr1 — fill < ag

Then, since

fo+ie — fn = }!:;:_l(f:f+l — fj) orall 1, K, and therefore,

we have
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n+k—1 oo

||fn+k_ fn”':—: Z ||)+:F+l_f:?|| ‘_:Zﬂj

j=n j=n

forall 1, k.

Proposition 5: Let X be a normed linear space. Then every rapidly

Cauchy sequence in X is Cauchy. Furthermore, every Cauchy sequence

has a rapidly Cauchy subsequence.

Proof: Let {f,,} be arapidly Cauchy sequence in X and X, € a

convergent series of nonnegative numbers for which

I fer:r — frll < €2

for all K.

Thus, we have
n+k—1 oo

frsse = fall < Z ”f;ﬂ—f}” EZEJ?

j=n j=n
for all 10, K.
Since the series
D1 € converges, therefore the series

Y, €xalso converges and so {f,} is a Cauchy.
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_ 1
Now assume that {f,,} be a Cauchy sequence in X. For € = - there

exists 1y = 0 such that

1
”fn _ fm” < =
2
foralln, m = ny.

1
Now for € = —5there exists 1 = 1 such that
2

1
”fn _ fm” < 2_2

foralln, m = n,.

1
Again for € = —7there exists 3 = 113 such that
2

1

foralln, m = ns.

Therefore, we have a subsequence {/, k} of sequence {f;;} such that

”fn;Hl _fnk” = 2_1}{ forallk = 1.

Theorem 6 (The Riesz-Fischer):

Let E be a measurable set, andl < p < 0. Then LP (E) is a Banach

space.
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Proof: First, we consider thecase 1 < p << co.Let {f,} bea

Cauchy sequence in LP (E'). By Proposition 5 there is a subsequence

{fn,.} ofsequence {f,} such that

”fnkﬂ — f“k”p < zik foralk = 1.7

Therefore {f n k} is a rapidly Cauchy sequence.By Proposition 5 to prove

{fa} converges, it suffices to that {f,, } converges in L? (E'). Now

consider the following two series

oD

fnl(x) + Z (f”k+1(x) - fnk(x))

k=1

And

oD

| f, OO + Z | (Fap, G — fir, @)

k=1

The corresponding partial sums are as follow

m

S1n () = fo, 0+ D (fus ) = o, @)

k=1
— fnm+1(x

Son (0) = fa, ()| + k = 100 (F,, G0) = £, 0|
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Since {ngm (JE)} is an increasing sequence of nonnegative real numbers

so the limit

g(x) =1lims,
n—oo

= | £, ()| + z ‘(fnkﬂ(x) — fnk(x))‘

k=1
always exists and g(Jr:) could be 40 at some point of E.

Now we claim that g belongs to LP (E). By the triangle inequality in
L? (E) we have

1m

”521 - ||fn1 Z ”( ﬂk+1 f“k(x))u

k=

Therefore, we have

m

1
152, llp < 1fig L+ D = < o], +1

k=1
Therefore

oo

Hence, we have

1m3ﬁ@qugmum+1){m"mmmm

m—oo
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Since {ngm (JE)} is an increasing sequence of nonnegative real numbers

so by Lebesgue monotone convergence theorem, by(1) we have

p
ng|p=L?}1iggﬂ|Sz,m| =nlti_I}QDL|Sz,m|p

<(Ifll, +1) <

Which shows that g belongs to LP (E). It also implies that g is finite

almost everywhere on E. It means that ngm (x) converges almost

everywhere on E and therefore S'Lm (X) converges to a finite value

f(x):
f(x) == liin Sy, (x) = liin f,, ()

Now we claim that

limm—:»m”fnm — f ||?:r = 0 and f belongs to L? (E).
For we note that

2 p p
o — I < (2max{f, s, })" < (29)".
Since (Zg)p is measurable on E, applying Lebesgue dominated
convergence theorem, we have

” =o.

lim L|fnm—f|p=L lim |f, —f

m—oe m—oo

This implies that
lim |15, ~ £, =0
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And hence for € = 1 there exists a natural number N such that

||fnm — f”p << 1 forallm = N and therefore we have

Il < oy = £l + I ll, < 2+ 1y Il i

implies that f belongs to LP (E).

Now for the case P = ©2 we use the fact that a function is greater than

its essential supremum only on a set of measure of zero.

Let {f,,} bea Cauchy sequence in L* (E") . Define

Apm = X EE:Nfn(0) — £ > Nlfy — finlloo)

and

B = (x € E: 1, ()] > Il fulle}:

Thenif Eg = A, m U By, then Eyy is the set of measure zero and

{fa (x)} is a Cauchy sequence for each X € E ~Ey, with limit f(x),

say. Define f arbitrarily on E.

Since {f, }is a Cauchy sequence in L™ (E), given € = 0 there exists
N suchthat |lfy — finllee < €forn,m = N . So for

x € E~Eplfy () — fn (Ol < lIfy = finlloo < €,and letting
n— o,weget ||f — fi,llcc < €andalso

Ifll .o < llfinlloe + €, and hence f belongs to 1 (E).

In conclusion we proved that for 1 < p < oo, LP (E)is a Banach

space.
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Remarks:

Let IV be the set of natural numbers, A be the collection of all the subsets
of N and L be the counting measure on IV, then every real valued

function on IV is measurable. Hence, in this case, for anyp = 1,

1P (N) = IP(N) = P

Herel “is the space of all bounded sequences in Rand for
1 < p < oo, [Pis the space of all sequences (@) in R such

that) o1 |a, [P < oo.

Remarks:

Since the functionfdefined in the proof of The Riesz-Fischer theorem is

the pointwise limit of rapidly Cauchy sequence {f“k} Therefore it is

worth to note that every rapidly Cauchy sequence inL? (E ) converges
both with respect to L? (E ) norm and pointwise almost everywhere on E

to a function in LP (E).

Hence, we have following corollary.

Corollary 7:

Let E be a measurable set, and 1 < p < oo If {f,} — fin

LP (E), then there is a subsequence of {f;, Jconverges pointwise almost

everywhere on Eto f.

Proof:
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Let {f,, }be a Cauchy sequence inL? (E). According to Proposition 5,
there is a subsequence {fnk}of {fn} that is rapidly Cauchy. The Riesz-
fisher theorem tells that {fﬂk} converges to a function f in LP (E )both
with respect to the LP (E") norm and pointwise almost everywhere onE.
According to Proposition 3 the whole Cauchy sequence converges to fwith

respect to theL? (E') norm.

The following example shows that a sequence {f,} in LP (E) that
converges pointwise almost everywhere on Eto f in LP (E) will not in

general converge in LP (E)
Example 8:

ForE = [0,1], 1 < p < 00 and each natural number

1
Let fr =1 /PX(0 13-

The sequence converges pointwise on E to the function that is identically

zero but does not converge to zero function with respect to

theL? (E)normas || f,, — 0||p = 1.

The following theorem gives a necessary and sufficient condition for the

convergence in L? (E ) norm for a sequence that converges pointwise.
Theorem9:

Let E be a measurable set,and 1 < p << o0 If {f,,} is a sequence in

LP (E' ) that converges pointwise almost everywhere onE to the function
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fin LP (E), then
{fn} = fin LP(E)

if and only if

lim |fn|P—f|f|P

n—oo

Proof:

By possibly excising from E a set of measure zero, we may assume f and
each f ,is real-valued and convergence is pointwise on E.We have from

Minkowski inequality that for each n,

1,1, — NIl | < NIE, — £l
Therefore if{f,,} — f in LP (E)

Then we have

lim |fn|P—f|f|P

n—=C

To prove the converse part suppose

lim |fn|P—f|f|P

n—=C

Now define a function ¢)(t) = tP forall t.

Then @ is a convex function as its second derivative is nonnegative and

therefore, we have
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O (a i b) < ¢(a) -2I- () forall a, b.

2
Thus

la|? + |B|? ja —b|F
— = (0 foralla, b.
2 2

Therefore, for each natural number n, a nonnegative measurable function

h., is defined on E by

b () = Ifn(ﬁr:)lp;r f P fn(XJz—f(x) P .

forall xin E.

since h,, — |f|? Pointwise on Ewe get from Fatou’s lemma

f|f|p£1imian’hn
’ I GOP + 1FGOIP
= lim inff JS
- 2

ful) = F))°
2

. . fn(x)_f(x) g
= J;?Ifli’jr — thllpL >

Therefore

o P
lim sup J’ fa (Jc)z fx) <0
E

Hence, we have {f,,} — f in LP (E).
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10.5 THEOREM ON LEBESGUE INTEGRATION

Definition 10: A nonnegative measurable function f on a measurable set

E is said to be integrable over E provided

fw’ <0

Theorem 11 (Chebyshev’s inequality):

Let f be a nonnegative measurable function on E. Then for any A > 0

m{x € E | f(x) = A} E%Lf.

Proof:

Define {3} = {x € E|f(x) = A

First suppose m{E;} = oo.

Let Il be a natural number. Define E;LJH = E; N [—n., n.] and

Lljﬂ — ‘1 IEE_.]‘I'

ThenW/,, is a bounded measurable function such that closure of set

fx € E|f(x) =+ 0} is finite.
Further 0 < W, < fonE forallnand
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Am(E;,) = Lwn.

Now we infer from continuity of measure that
o = A m(Ey) = A. lim m(E,,,) = lim fwn < J’f.
o n—wJE E

Thus, Chebyshev’s inequality holds as both sides equal to infinity.

Now consider the case M (E3) < oo.

Now define a function h = A. g, that is abounded measurable function

and0 < h < fonE.

By the definition of the integral of f overE,we have

ﬁ.m(E;L)thiiJ;f.

Now by dividing both side by A, we get

m{x € E | f(x) = A} E%Lf

Theorem 12: Letfhea nonnegative measurable function on E. Then
ff = 0 ifand onlyif f= 0 almosteverywhere.
E

Proof: First assume that

[r-o

Then by Chebyshev’s inequality, for each natural number n, we have

Department of Mathematics
Uttarakhand Open University Page 194




1
mi{x € E|f(x) =—}=0.
n
Now by countable additivity of Lebesgue measure we have
m{x € E | f(x) = 0} =0,

For the converse part suppose that

f = 0 almost everywhere on E.

Let ¢ be a simple function and h abounded measurable function for

which0 < & < h < fonE.

Thus @ = O almost everywhere on E and therefore fE ® = 0.Since

this holds for all suchh we infer that

[r -

Proposition 13:Let fhea nonnegative measurable function on E.

Then f is finite almost everywhere on E.
Proof:

Let I1 be a natural number. By Chebyshev’s inequality and monotonicity

of measure we have

m{xEE|f(K)=m}-=_im{xEE|f(x)l_:=n.}*_ilff.
nlJg

But fEf is finite and therefore m{x € E | f(x) = oo} = 0.

Beppo Levi’ Lemma:
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Let {f }be an increasing sequence of nonnegative measurable function

on E. If the sequence of integrals {fE fn}is bounded, then {f,}

converges pointwise on Eto a measurable function f that is finite almost

everywhere on E and also

lim fnszc:m_

—
n DD-E

Proof: Every monotone sequence of extended real number converges to

an extended real number. Since {fn}is an increasing sequence of
extended real valued function onE, we may define the extended real

valued nonnegative pointwise on E by

f(x) = lim £, (x)

forallx € E.

According to Lebesgue monotone convergence theorem

(£ |7

But the sequence of real numbers {IE fn} is bounded, its limit is finite

and so fE f < 0. Thus f is finite almost everywhere on E.
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Proposition 14: Let fhea nonnegative measurable function on E. If

AandBare disjoint measurable subsets of E then

ot =L+ br

In particular, if E is a set of measure zero, then

Lf B E-wﬁﬂf'

That is called excision formula. excision formula.

Proof: Additivity over domains of integration follows from linearity as it

did for bounded functions on sets of finite measure.

The excision formula follows from additivity over domains and the
observations that by Theorem 12, the integral of a nonnegative function

over a set of measure zero is zero.

Theorem 15: Let fbe integrable over E. Then fis finite almost

everywhere on E and

Lf B E-"»E{,f -

IfE, € Eandm(E) = 0
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Proof:

Theorem 13 tells that | f | is finite almost everywhere on E.Thus { is finite

almost everywhere on E. Further by excision formula, we get the result.

Definition 16:

A family F of measurable functions on E is said to be uniformly integrable

over Eprovided for each €= 0 there isa 0>0 such that for eachf € F,
ifA € E is measurable and m(4) < §, thenf 1f] <
E
€.
Definition 17:

A family F of measurable functions on E is said to be tight over
Eprovided for each €= 0 there is a subset of finite measure

Ey © E such that

f |f] <€ foreachf € F
E~E,

Proposition 18:

Let E be set of finite measure and & = 0O then Eis the disjoint union of a

finite collection of sets, each of which has measure less than®O.
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Proof: By the continuity of measure, we have

lim m(E~[—-n,n]) = 0.

n—oo
Choose a natural number Mg for which m(Em[—n.ﬂ, n.,,:,]) < d.

By choosing a finite enough partition of [—115, T15] so we can express
E N [—ng, ng] as the disjoint union of a finite collection of sets each

of which has measure less than ©.

Proposition 19:

Let f be a measurable function on E. 1ff is integrable over E, then for

each €= 0 thereisa 0>0 for which

if A € E is measurableand m(4) < S,thenJ’ 1f] <
E

€.
Conversely,

in the case m(E) << o0 jfforeach €= 0 thereisa 0>0

fE |f] <€ suchthat

A € E ismeasurableand m(A4) < o, then f is integrable

over E.
Proof:

It suffices to prove it for positive part of the functionf. Hence assume that

f > 0 First assume that I is integrable over E. Let €= 0. By the
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definition of nonnegative integrable function, there is a bounded function

fe such that closure of {x € E | fz(x) # 0 } s finite and for which

Oi:fei:fDHE

And
UELf—J;fEr::;

Sincef — f= = OonE.

If A S E is measurable then by linearity and additivity of the integral

| r=] fe= | -ra<]1r -1

But f= isbounded. Choose M = 0 for which M = f- = O onE.

Therefore if A © E  is measurable, then

Lfr::LfE+ ;EM.m(}l)+§.

=
For O :ﬁ we have done. Now for converse part suppose

m(E) < oo if for each €= 0 there is ad>0 for which fE|f| <€
suchthat A € E is measurableand m(4) < oo,
Let 8o = 0 respond to the E= 1. Since M(E) < o, then by

Proposition 18 we can express E as the disjoint union of finite collection

of measurable subsets { E ;{}ﬁ:l each of which has measure less than 0,
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therefore we have,
N

k=1"Ek

It follows that iffL is a nonnegative measurable function for which closure

of{x € E|f(x) # 0}and0 < h < fonE, then [ h < N.

This implies that { is integrable.

Example 20: Let g be nonnegative integrable function. Define

F ={f | fismeasurableonEand |f| < gonE}.

Then the family F is uniformly integrable.

This follows from Proposition 19 with f replaced by g and by the
observation that for any measurable subset A of E, by the monotonicity of

integration. If f is into F, then

[1r1< g

Proposition 21:
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{f1 }1:=1 be afinite collection of functions, each of which is integrable

over E.

Then {f% } =4 is uniformly integrable.

Proof:

Let E=> 0. For 1 < k < n by Proposition 19, there is a 8;, = 0 for

which if ACSE is measurable and m(4) < 0; then

Lw <e

Now defined = min, <<, {8} then this is the required & for given
€= 0 regarding the criterion { f3 }3i—; to be uniformly integrable.

Note that The Vitali Convergence theorem tells us that if sequence of

measurable functions is uniformly integrable and tight over and converges

pointwise almost everywhere on E tof then f is integrable overE.
The following Propositions are the consequences of The Vitali

Convergence theorem that is useful to give another necessary and

sufficient condition for the equivalence of pointwise convergence and

L? (E) norm convergence for sequence of functions in LP (E)

Proposition 22:Let E be of finite measure. Suppose {h, } is a sequence

of nonnegative integrable functions that converges pointwise almost

everywhere on Etoh = 0.
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Then

lim | h, =0

n—o Jg

if and only if

{h;} is uniformly integrable over E.

Proof:

Assume that{h, } is uniformly integrable over E, then by

Vitali convergence theorem

suppose that

lim | h,, =0

n—=Coo E
and €= 0.

We may have a natural number N for which if . = N then

John <€

Therefore, since A © E is measurableand 1 = N,

thean h, <€.

According to Proposition 18 and 19, the finite collection{hj-,1 ﬁ;f is

uniformly integrable over E.

Let for given €= 0 there is 6=0 regarding uniform integrability of

family {h, JN_1.
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We infer that same © = O serves for the criterion for uniform

integrability of {h,, }.
Proposition 23:

Let {h_n} be asequence of nonnegative integrable functions on E.

Supposefh_n(x)} — Ofor almost allx € E. Then

lim | h, =0

— 0
n E

if and only if { i, } is uniformly integrable and tight over E
Proof:

If {h,,} is uniformly integrable and tight overE,
thenlim,,_, o fE h, =20

By the Vitali Convergence Theorem. Conversely,

supposelimﬂ_,mf hn = 0.Pick a natural numberN such that
E

J’hncze
E

for all 1 = N. As we will see in Problem 1 that finite collection of

functions {hn}¥=1 is tight. We can therefore find a set of finite

measure E¢ a subset of Esuch thathmEﬂ|hn| <€ foralln < N.

Since
| < [ 1l <€
E~E, E
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forall n = N.

Therefore we conclude that {h,, }is tight over E. For the proof of

uniform integrability of {h,, }is same as in proof of Proposition 22.

We note that Theorem 9 gives a necessary and sufficient condition for the
convergence in LP (E )norm for a sequence that converges pointwise.
Now we are in position to give another necessary and sufficient condition
for the convergence in  LP (E) norm for a sequence that converges

pointwise.

Theorem 24: Let E be a measurable set and 1 < p << o and
suppose {f,,} beasequencein LP (E)that converges pointwise almost

everywhere on E to the function fin L? (E).

Then {f,} = f in  LP(E)if and only if {|f,]|P} uniformly

integrable and tight over E.
Proof:

The sequence of nonnegative integrable functions{| f,, — f ¥}

converges pointwise almost everywhere on E to zero function. According

to Proposition 23, we have

lim | |f, —fIP =0

n—oo E

if and only if {| f,, — f |PJis uniformly integrable and tight over E.

However, we infer from the following that for all natural number n,
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fo = FIP < 22(1517 + I£17)

and {|f,|? < 2P{|f,, — fIP + | f]?Jaimost everywhere on E. By
assumption | f|P is integrable over E and therefore{|f,, — f 1P} s
uniformly integrable and tight over E if and only if the sequence

{]f,.|P} is uniformly integrable and tight over E.

10.6 SOLVED PROBLEMS

Problem 1:

Let {fx } =1 be a finite family of functions each of which is uniformly

integrable and tight overE.

Show that {f } 3= is uniformly integrable and tight over E.

Solutions:

For eachf;t-, by Theorem 15 we find a set of finite measureE;, of E

that satisfies E_,‘”Eﬂ|,‘f,1l-|:":r < 0, Define Eg = U}_; E;  Then

(m(E}y) = m(U{Ek) = > m(E) < m}
k=1 k

=1

And hence we have ijﬂ|f,1t.|?'7r < E-wEk|f3*'|p < for each K.
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This implies that{ /5 } ;1= is tight.

Further { f3, }1:— is uniformly integrable overEby Proposition 21.

Problem 2:

Let E be a set of measure zero. Show that if f is bounded function onE
ande f=0.

Solution:

Since any set contained in a set of measure zero is of zero measure,

therefore for any real number ¢ = Othe set

[x € E|f(X) < ¢} C E is measurable. Thereforef is measurable.

Since f is bounded so there isa M > 0 such that| f (x)] < M, so we

have

LIfIELMEM.m(E)c:M.OzO

Problem 3:

Let E be a set of measure zero and define f = 0 on E. Show that
f.f =0

Solution:

Let h be a bounded, measurable, non-negative function on

EThen0 < h < fon E and by Problem 2. Therefore fE f=0.
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Problem 4:

Let {a,, } be a sequence of nonnegative real numbers. Define the function

fonE = [1, o) by setting f(x) = @, ifn < x < n+ 1. Show
that [ f = Zi=y @n.
Solution:

Let fo = Lk=1 Ak X[k k+1)-

Then {f;, }is a sequence of simple measurable functions on E that

converges to f.

Therefore by Lebesgue monotone convergence theorem we have

M [+ 4]
7= tm [ fo=tim [ > aexpouen = . an
E n—=wJg noeJE =

n=1

Problem 5:

Let fbe integrable over E and gbe a bounded measurable function on

E.Show that f. g is integrable over E.
Solution:

Given thatg is a bounded measurable function on E, so there is a

M > O suchthat |f(x)] < M, so we have

Llf.gl ELI)‘IMEM.LIﬂ::m.

Therefore f. g is integrable over E.
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Problem 6:

Provide an example of a Cauchy sequence of real numbers that is not
rapidly Cauchy.

0, ifn=1

Solution: Definefl;, = 11
L

Therefore {a,, } is convergent and hence is Cauchy.

We note that .

If possible, let {@,,} be rapidly Cauchy, then there is Efor kK > 1

such that| @11 — @y | <€% and

oD

S e

k=1

_ 1 2
BUtl {In+l — {ln| — E {Ej{

1
This implies that — <<€ which in turn implies that
n

(& &] 1 (5 &)
S S ae
n

k=1 k=1

which is a contradiction. Hence{an} is not rapidly Cauchy.
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CHECK YOUR PROGRESS

Question 1:Prove that for 1 < p < o0, [P is a Banach space.
Question 2:Let the sequence of functions {f;,} and {gy, Ybe uniformly
integrable over E. Show that for any O and B the sequence of linear
combination {otf;; + Bgy} also is be uniformly integrable over E.
Question 3:Give an example of a sequence of function in LP (E) that
is convergent in  LP (E )but not pointwise convergent to a function in
LP (E).

Question 4:Give examples of a Cauchy sequence and a rapidly Cauchy

sequence of real numbers.

10.7 SUMMARY

This unit provides an explanation of

Completeness of LP (E).

Cauchy sequence and Rapidly Cauchy sequence

Describe the results regarding uniform integrable function and
tight function.

Proof of Riesz-Fischer Theorem.

Necessary and sufficient condition for pointwise convergence and

norm convergence in LP (E).

Relation between convergence in  LP (E), and pointwise

convergence of sequence of integrable functions.
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vii.  After reading solved examples learners should be able to try the

problems

10.8 GLOSSARY

Complete space.
The space LP (E),

Cauchy sequence

Rapidly Cauchy sequence

Uniform integrable function and tight function.
Riesz-Fischer Theorem.

Norm convergence.

Pointwise convergence.
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10.11 TERMINAL QUESTIONS

Question 1:1s a Cauchy sequence a rapidly Cauchy sequence?

Question 2:Has a Cauchy sequence a rapidly Cauchy sequence?

Question 3:1s a rapidly Cauchy sequence a Cauchy sequence?

Question 4:Are pointwise convergence and norm convergence equivalent

in LP (E),in general?

Question 5:1s LP (E),complete?

Question 6:ls it true that if {f,,} be a Cauchy sequence in LP (E),then

is a subsequence {fnk}of {fn} that is rapidly Cauchy and {f“k}

converges to a function f in LP (E),both with respect to the

L? (E),norm and pointwise almost everywhere on E?

Department of Mathematics
Uttarakhand Open University Page 212




Question 7:1f {f,,} converges pointwise to a functionf in
LF(E),then{fn}—)f in LP (E),if and only if {| f,.1P} uniformly

integrable and tight over E.(True/False)

10.12 ANSWERS

CHECK YOUR PROGRESS

Answers 1: Use properties of convergent series.

Answers 2:Use definitions

Answers 3: ffk(X) = {1 U

, otherwise

Defined in the [0,1). The sequence {ffk} converges to zero function in

Lp([{],l)) for 1 < p < ©0 but not convergent to zero function

pointwise.

Answers 4: Refer to problem 6.

TERMINAL QUESTIONS

Answers 1:No

Answers 2: Yes
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Answers 3:Yes

Answers 4:No

Answers 5:Yes

Answers 6:Yes

Answers 7: Yes
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Unit 11:
__THE WEIERSTRASS APPROXIMATION THEOREM

CONTENTS:
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11.3 Preliminaries
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11.5 Stone Weierstrass Approximation Theorem
11.6 Solved Problems

11.7 Summary

11.8 Glossary

11.9 References

11.10 Suggested readings

11.11 Terminal questions

11.12 Answers

11.1 INTRODUCTION

In this unit we focus on the famous theorem of Weierstrass which tell us about
approximation of continuous real-valued functions defined on closed intervals by polynomials.
This theorem important as it has a important consequence in analysis as well as generalized form
discovered by mathematician Stone. The latter theorem is far reaching extension of Weierstrass

Approximation Theoremand known as Stone Weierstrass Approximation Theorem.
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11.2 OBJECTIVES

After the completion of this unit learners will be able to

State and prove Weierstrass Approximation Theorem

State and prove Stone Weierstrass Approximation Theorem.

Understand the concept of separability, separation of points, Algebra and function spaces
of continuous functions.

State necessary and sufficient condition for the denseness of an algebra in a C(X).

Explain examples and counterexamples.

11.3 PRELIMINARIES

In this section, we collect some results and definitionsthat will be used in this unit.

Definition 1: A Hausdorff space is a topological space X in which for any two distinct points x

and y of X there exist disjoint open sets U and V suchthat x € U and y € V.

Definition 2: Atopological spaceX is said to be first countable provided there is a countable base
at each point. The space X is said to be second countable provided there is a countable base for

the topology.

Urysohn’s Lemma: Let A and B be disjoint closed subsets of normal topological space X. Then
for any closed bounded interval[a, b], there is a continuous real-valued function fdefined on X

that takes values in[a, b],whilef = aonAand f = bonB.

Definition 3: Atopological spaceX is said to be compact provided every open cover of X has a

finite subcover.

Definition 4: A normal space is a topological space X in which for any two disjoint closed

subsets C and D of X there exist disjoint open sets U and V suchthat C c Uand D c V.

Definition 5: A topological spaceX is said to be separable provided X has a countable dense

subset.
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A topological space is said to be metrizable provided the topology is induced by a metric. Not
every topology is induced by a metric. Since we know that a metric space is normal, so certainly
the trivial topology on a set with more than one point is not metrizable. It is natural to ask if it is
possible to identify those topological spaces that are metrizable. In the case the topological
spaceX is second countable, there is the following pretty well known necessary and sufficient

criterion for metrizability.

Urysohn’s Metrization Theorem:LetX be a second countable topological space. Then X is

metrizable if and only if it is normal.

Definition6: If n is a positive integer and k an integer such that 0 < k < n then the binomial

coefficient ) is defined by

n!
(k) “k(n-k)!

Definition7: The polynomial B,, — one for each n — defined by

n

Bu(x) = z () x - (3)

k=0

are called the Bernstein polynomial associated with f.
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11.4 THE WEIERSTRASS APPROXIMATION THEOREM

The Weierstrass Approximation Theorem

The following theorem is one of the jewels of classical analysis.
Let us consider a closed interval [a, b] on the real line and a polynomial
p(x) =ay+ a;x + -+ a,x™,

with coefficients in reals and defined on [a, b]. We will use the fact that such polynomial is a
continuous real valued function and limit of any uniformly convergent sequence of such

polynomial is also a continuous real function.

Further we know that being a closed and bounded subset of set of reals,[a, b] is compact and

since set of real is Hausdorff, therefore [a, b] is compact and Hausdorff space.

In general, for a compact Hausdorff spaceX,consider the linear spaceC(X)of continuous real

valued functions onXwith the maximum norm that is defined as follows

Ifllmax = max{lf (|| x € X}

Note that f attains its maximum value on X as X is compact.

It is important to note thatC (X)has a product structure not possessed by all linear spaces, namely,
the productf. gof two functionsf and ginC(X)is again inC(X). A linear subspaceA of C(X)is
called an algebra provided the product of any two functions inAalso belongs toA.A collection A
of real -valued functions on X is said to separate points in X provided for any two distinct points
x and y in X, there isanf in A for which f(x) # g(y) we observe that since X is compact and
Hausdorff, it is normal, so we infer from Urysohn’s lemma that whole algebra C(X) separates

the points in X.
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Now we are set to prove famous theorem due to Weierstrass which explores a very interesting

topological structure of space of continuous functions defined on [a, b].

Several proofs this classic theorem are known, and the one we present here is perhaps as concise

and elementary as most.

Theorem (The Weierstrass Approximation Theorem):
Let f be a continuous real-valued function on a closed bounded interval [a, b].Then for eache >

0 there is polynomial p with real coefficients for which|f (x) — p(x)| < efor all x in [a, b].In

other words, the collection of polynomials is dense in Cla, b].

Proof: First, we prove that it suffices to prove the theorem for the particular case a = 0 and b =
1, the conclusion follows at onceon taking p to be constant polynomial defined by p(x) = f(a).
Without loss of generality we assume that a < b. Now we observe that x = [b — a]x’ + a gives
a continuous mapping of [0,1]onto [a, b] so that the function g defined as g(x") = f([b — a]x’ +

a) is acontinuous real function defined on [0,1]. If we prove theorem for the case =0 and b =

1, then there exists a polynomialp’ defined [0,1] on such that |9(x’) - p’("')| < eforall x"in

[a, b].Therefore,we have |f(x) —p' (g) < eforall x in [a, b]; and define a polynomialp by

p(x) =p’ (g) in order to prove theorem in the general case. Accordingly, we may assume
a =0 and b = 1. Now we prove the theorem by finding a Bernstein polynomial with required
property.

We know that

S ()0 4 1 = 1 O

k=0

Now if we differentiate (1) with respect to x, we get

Zn: (Z) [kx*=1(1 — x)" % — (n — k)x*(1 — x)" 1]

k=0
)x"‘l(l —x)"*1(k—nx)=0

Department of Mathematics
Uttarakhand Open Universitye Page 219




and multiplying through by x(1 — x)we get

n

k=0

On differentiating (2) with respect to x and considering x*(1 — x)™* as one of the two factors

in applying the product rule, we get

k=0

Applying (1) to (3) we get

Zn: (Z)xk‘l(l — )"k (k—nx)’=n

k=0

And on multiplying this through by x(1 — x) we get

Zn: (:)xk(l — )" *(k — nx)? = nx(1 — x)

k=0

And on dividing both side byn?, we get

n

S marsf 22

k=0

Identities (1) and (4) will be our main tools to show thatB,, (x)is uniformly close to f(x) for all

sufficiently large n. Now by using (1) we have

n

OO = By(x) = z (1) e =0mk G0 - £ (%)]

k=0
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So that

n

() = Ba()] < 2 ()< =0 | =7 (5] 5

k=0
Being continuous on [0,1], f is uniformly continuous on [0,1]. So we can find a § > 0Osuch
that|x — £ < 6= |00 - £ (5)| <&
We now split the sum on the right of (5) into two parts, denoted by Xand X’, where X is the sum
of those terms for which |x - §| < dand where X’ is the sum of remaining terms. It is easy to see
that £ < § Now we complete the proof by showing that if n is taken sufficiently large, then ¥’
can be made less than § independently of x. Sincef is bounded, there exists a positive real

number Ksuch that |f(x)| < K forall x in [0,1].

From this it follows that

Y < 2K.3 (Z) xk(1 — x)nk

Where the sum on the right side -denote it byZ” — is taken over all ksuch that |x — §| > 6.1t
now suffices that if nis taken sufficiently large, thenZ”can be made less thaniindependently

ofx.Therefore identity (4) shows that

- x(1—x)
- n

523"

- x(1—x)

Z"
né?

Sincethe maximal value of x(1 — x) on [0,1]is % so we have

” 1
T 4ns?
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. K
If we take any integer n greater than E.,then

< iandZ' < g, |f(x) — B,(x)| < eforall x in [0,1]so theorem is proved.

11.5 STONE-WEIERSTRASS APPROXIMATION THEOREM

The Stone-Weierstrass Approximation Theorem

Before going to prove the theorem, a few words concerning the strategy are in order.

SupposeX is compact and Hausdorff, it is normal. We infer from Urysohn’s lemma that for each

pair of disjoint closed subsets A and B of Xand for0 < € < % there is a functionfinC(X)for

which

f=sonA f=1-onBands<f<1->onx.

Therefore, if |h — f] < § on, we have

h<eonA h>1—eonBand 0<h<1lonX (D).

Lemma: Let X be compact Hausdorff space and Aan algebra of continuous functions on X that
separates the points and contains the constant functions. Then for each closed subsetF ofX and
point x, belonging to X~F, there is a neighborhoodUof x,that is disjoint from Fand has the

following property: for eache > 0, there is a function h in Afor which
h<eonUh>1—€eonFand 0<h<1onX

Proof:We claim that for each point y in F, there is function g,, in A for which

gy(x9) =0,9,(y) >0and 0<g, <1lonX.....Q3)

Since Aseparates points, there is a function f in Afor which f(x,) # f(y). The function
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NI cOM)
P = f = @]

max

belongs to Aand satisfies (3). Since g,, is continuous, there is a neighborhood N,, of y on which
g, takes only positive values. However, F is a closed subset of compact space X and henceF is

compact.Therefore, we may have a finite collection of these neighborhoods{N,,,....N,, } that

1’

covers F.

Define the function g in Aby

Then
g(xo) =0,g>00nFand 0<g<1lonX
Since g is continuous on X so it attains a minimum valuec > 0 on X

such that g = ¢ on F. By possibly multiplying it by a positive number, we may suppose ¢ < 1.

On the other hand, g is continuous on x,, so there is a neighborhoodof x, for which g < % on U.

Thus g belongs to the algebra Aand
g<sonUandg=conF,and0<g<1lonX

Now we claim that (2) holds for this choice of neighborhoodU. Let € > 0. By Weierstrass

Approximation Theorem, we can find a polynomial p such that

p <€ on [O%] p>1—eon[c1],and 0 < p < 10n[0,1]......(6)

Since p is a polynomial and f belongs to the algebra A, the composition h = pog also belongs to
A. By (5) and (6) we conclude that

h<eonU h>1—-—eonFand 0<h<1lonlkX.
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Lemma:Let X be compact Hausdorff space and A an algebra of continuous functions on X that
separates the points and contains the constant functions. Then for each closed subsetsA and B of

X and € > 0, there is a function h in A4 for which
h<eonA,h>1—eonBand 0<h<1lonX.

Proof: By the preceding lemma, in the case F = B, for each point x in A, there is a
neighborhoodN,, of x that is disjoint from B and has the property (2). Being a closed subset of

the compact space X, A is compact, and hence there is a finitecollection of neighborhoods

_ n
{Ny,, ---- Ny, } that covers A. Now we choose €, for which 0 < €, < € and (1%) >1—¢€. For

1 <i<n,since N,, has the property (2) with B = F, we choose h; € Asuch that
hi<%°on Ny, hi>1—¢0nB,and 0 <h; <1.

Now we define h = h;.h,..h,on X. Then h belongs to the algebra AasAis closed

1—60

underproduct. Now since for each , 0 < h < 1 on X. Also for eachi, h; > on B, so h >

n

_ n
(1 ne") > 1 — e on B. Finally, for each point in A, there is an index i for which x belongs to

N,,. Therefore h;(x) S%’< eand since for the other indices j,0 < h;(x) < 1. Hence, we

conclude that h(x) < e.

Theorem (The Stone Weierstrass Approximation Theorem):Let X be compact Hausdorff
space and A an algebra of continuous functions on X that separates the points and contains the
constant functions. Then Ais dense in C(X).

Proof:Let f belongs to C(X). Definec = ||f|l,nax-If We can arbitrarily closely uniformly

approximate the function

f+c

TP by the functions in A, we can do the same for f. Therefore we may assume that, 0 <

f < 1lon X. Suppose n > 1 is a natural number. Now we consider the uniform partition
% nT_l 1} of [0,1] into n intervals. Fix j, 1 < j < n. Define
- .
Aj={x€X|f(x) s7-}and B; = {x € X | f(x) = 2}
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Since f is continuous,A; and B; are closed and disjoint subsets. By the preceding lemma, with
A= A;, B=B;and € > % there is a function g; in the algebra A for which
g;(0) < ~if F() ST ;0 > 1—~if £(x) 2 Land

0<gj<1lonX

Define

Then g belongsto A.We claim that

If = gllmax <
Once this claim established, proof of the theorem is complete, since given € > 0, we can select a
natural number n such that% < e and therefore [|f — g|l,nax < € Now to verify (2) we first show
that

if0<k<1landf(x) <= theng(x) <=+-

Indeed forj = k + 1, ...n, since f(x) < fl flx) <= and therefore g;(x) < . Thus

Thus (3) holds. A similar argument shows that

(k—1)

if 1<k <nand™2 < £(x), then — 2L G0 e (4)

(k 1)

For x in X, choose k, 1 < k < n, suchthat—— < f(x) < % From (3) and (4) we have

3
FG) — (o)l <

Now we conclude this unit with the following consequence of Stone-Weierstrass Approximation

Theorem.
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Theorem (Riesz’s Theorem):Let X be compact Hausdorff space then C (X)is separable if and
only ifXis metrizable(that is there is a metric that induces the topology ofX).

Proof:First suppose that Xis metrizable and therefore u be a metric that induces topology on X.
Then X, being a compact metric space, is separable. Let a countable dense subset{x,} of X. For
each natural number n define f,, (x) = u(x, x,) for all x in X. Since u be a metric that induces
topology on X, and f,, is continuous. We infer from denseness of {x,} that the family {f,}
separates points in X. Define f; = 1 on X. Now let P be the collection of polynomials, with real
coefficients, in a finite number of f;, where 0 < f; < o. Then P is an algebra that contains the
constant function and separates points in X as it contains each f,. Now we infer from Stone
Weierstrass Theorem, Pis dense in C(X).But the collection of functions fin P that
arepolynomials with rational coefficients is a countable set that is dense in P.Hence C(X) is
separable.

For the converse part, suppose C(X) is separable. Let {g,} be a countable dense subset of C(X).

For each natural number n define

0, = (x € X1 a(0) >3}

Then{0, }1<n<iS @ countable collection off open sets. We claim that every open set is the union
of subcollection of {0,,}1<n<w,and therefore X is second countable. But X, being compact and
Hausdorff, is normal. The Urysohn’s Metrization Theorem tells us that Xis metrizable.

To verify second countability, let the point x belongs to the open set 0. Since X is normal, there
is an open for which x € Uand U is contained in closure of 0. By the Urysohn’s Lemma, there
isa g in C(X)such that g(x) = 1 on U and g = 0 on X~0. By the denseness of {g,,} in C(X),

there is a natural number n for which |g — g, | < %on X. Thereforex € 0,, € 0. This completes

the proof.

11.6 SOLVED PROBLEMS

Problem 1: Prove that collection of polynomials with rational coefficients is countable.
Solution: Let P be the collection of polynomials with rational coefficients and P, be the

collection of polynomials of degree n with rational coefficients. Then there is one-one and onto
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map from P, to the cartesian product of n copies of set of rationals that isQ,,. Therefore each P,

P= UP"
n=1

is also countable as countable union of countable set is countable.

is countable and so

Problem 2: Let X be compact subset of real numbers, then show that € (X) is separable.
Solution:Let P be the collection of polynomials with rational coefficients, then P separates the
points in X and contains constant functions (constant polynomials) then by Stone-Weierstrass
Theorem P is dense in C(X), further P is countable by Problem 1, therefore P is countable and
dense in C(X). Hence C(X) is separable.

Problem 3: Let Abe the vector space generated by the functions

1, sinx, sin’x,...,sin™x,....

defined on [0, g].Then show thatA is an algebra and dense inC [0, g]

Solution: Since A is algebra as product of two functions in Ais in A and also sin x separates the

points in [0, g] likewise A separates the points, therefore by Stone-Weierstrass Theorem, A
isdense in C [0, g]

Problem 4: Show that the algebra generated by the set {1, x2} is dense in €[0,1] but fails to be
dense in C[—1,1].

Solution:Since A is algebra as product of two functions in Ais in and also x?separates the points
n [0,1], likewise separates the points, and contains the constant functions, therefore by Stone-
Weierstrass Theorem, A dense in C[0,1]. But for any f in the uniform closure ofAwe have
f(=1) = (1), thereforeAis not dense in C[—1,1].

Problem 5: Let X be compact Hausdorff space and Ais an algebra then uniform closure of Ais
also an algebra.

Solution:By the inequality

”fngn - fg”max = ”f”max”gn - g”max + ”g”max”fn - f”max
We conclude that f, g, — fg uniformly, so uniform closure of Ais also an algebra.
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Problem 6:Let Abe the algebra generated by the functions
1,x, x2defined on [0,1].Then show thatA is dense in C[0,1].

Solution: A separates the points and contains constant functions, therefore by Stone-Weierstrass
Theorem, A is dense in C[0,1].

CHECK YOUR PROGRESS
Question 1:For a compact metric space X, the space C(X) is separable metric space. True/false
Question 2:C[—10,—5] is separable.True/False
Question 3: SupposeA is an algebra generated by the functions

sin x, sin?x,...,sin™x,.... defined on [0, %] Then Ais dense in ¢ [0, g] True/False

Question 4: Weierstrass Approximation Theorem is a consequence of Stone Weierstrass

Approximation Theorem. True/False

Question 5:C(X)is separable if and only ifXis

Question 6:A space is said to be separable if it has a

Question 7: SupposeA is an algebra generated by the functions

1, cosx, cos?x,...,cos"x,.... defined on [0,1]. Then Ais in C[0,1].

Question 8: Let X be compact Hausdorff space and A an algebra of continuous functions on

X.Then necessary condition for A to be dense in C(X) is A

Question 9:The collection of all polynomials is

Question 10: Let X be compact Hausdorff space andf be a continuous function then f attains it
and .... values.

Question 11: Let Abe the algebra generated by the functions2,x, x?

defined on [0,1].Then show thatA is in C[0,1].

Question 12: Let Abe the algebra generated by the functions

x, x%defined on [0,1]. Then show thatA is in C[0,1].

11.7 SUMMARY

This unit provides an explanation of

I Weierstrass Approximation Theorem
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Stone Weierstrass Approximation Theorem
Interesting problems regarding algebra generated by different functions.

11.8GLOSSARY

Compact Hausdorff space.

Normal space

Separable space

Dense subset

Metrizable space

Cla,b], C(X)

Uniform convergence and uniform closure.

Bernstein polynomials.
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11.11 TERMINAL QUESTIONS

Question 1: Show that C[a, b] is separable.
Question 2: Show that C[a, b] separates the points in [a, b].
Question 3:SupposeA is an algebra generated by the functions

1, e*, ,e?*,e3*,.......e™ defined on [—1,1]. Since e*separates the points in [—1,1], likewise A

separates the points, therefore by Stone-Weierstrass Theorem, A is dense in C[—1,1].
Question 4:Prove that C (X) is an algebra.

Question 5:1f a topological space X is equipped with indiscrete topology, then show that C(X)

does not separate the point in X

11.12 ANSWERS

CHECK YOUR PROGRESS
Answers 1:True

Answers 2:True

Answers 3:False

Answers 4:True

Answers 5:Metrizable

Answers 6:Countable dense subset
Answers 7:Dense

Answers 8:Separates the points and contains the constant functions
Answers 9: Countable

Answers 10:Maximum, minimum
Answers 11:dense
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Answers 12:not dense

TERMINAL QUESTIONS
Answers 1:By Weierstrass approximation TheoremC|a, b] is separable.

Answers 2:Since[a, b] is normal topological space so by Urysohn’s Lemma, C[a, b] separates

the points in [a, b].
Answers 3:SupposeA is an algebra generated by the functions
1, e*, ,e?*, e3%, ......e™ defined on [—1,1]. Then show that Ais dense in C[—1,1].

Answers 4:By the definition € (X) and the fact that product of two continuous functions is again

a function so C(X)is an algebra.

Answers 5:If a topological space X is equipped with indiscrete topology, then show that

C (X)contains only constant functions so C(X) does not separate the point in X.
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UNIT 12:
SIGNED MEASURES

CONTENTS:

12.1 Introduction
12.2 Obijectives
12.3 Signed Measure
12.4 Hahn’s Lemma
12.5 Hahn Decomposition Theorem
12.6 Jordan Decomposition Theorem
Radon-Nikodym Theorem
12.8 Lebesgue Decomposition Theorem
12.9 Summary
Glossary
References

Suggested readings

12.1 INTRODUCTION

A signed measure is defined as an extended real-valued countably
additive set function on a g-algebra and then shown to be the difference of
two positive measures. Further, the Radon-Nikodym derivative of a signed
measure with respect to a positive measure is defined as a function which
we integrate with respect to the latter to obtain the former. The existence
of the Radon-Nikodym derivative is then proved under the assumption that
the former is absolutely continuous with respect to the latter and that both

are o -finite.
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Johann Otton Marcin

Radon Nikodym
(16 December 1887 (13 August 1887
— 25 May 1956 ) —4 May 1974 )

Ref: https://mathshistory.standrews.ac.uk
Fig 1.1

12.2 OBJECTIVES

After completion of this unit learners will be able to

Define the concept of Signed measure.
ii. Obtain Hahn Decomposition.
iii. Obtain Jordan Decomposition
iv. Obtain Radon-Nikodym Theorem

Obtain Lebesgue Decomposition Theorem
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12.3 Signed Measure

A function u that associate an extended real number to certain sets is
referred to as a set function.

Definition Let X be a set and M be o- algebra of subsets of X. The pair
(X,M) is called measurable space. A set E c X is a member of M then it
is called measurable.

Definition An extended real-valued nonnegative set function u: M —
[0, o] for which u(¢) = 0 is called measure if it is countably additive in
the sense that for any countable disjoint collection {E}} of measurable

sets,

w( 0 B = ) (B
k=1
A measurable space (X,.#) with a measure u defined on M is referred to

as a measure space (X, M, ().

Now we look at certain examples of measure spaces.

Example-1.
(R, % m) is a measure space, where R is real numbers set, & is the

collection of real number sets that are Lebesgue measurable, and m is the

Lebesgue measure.

Example-2.
(R, #,m) is a second example of a measure space, in which m is

Lebesgue measure and Z is the set of Borel sets of real numbers.

Example-3.
For any given set one may construct a counting measure. Let X be a set

and M be collection of subsets of X that is .« = 2X. A set function
u: A — [0, 0] such that
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#(E), E is finite
o |, otherwise

n(E) ={

is called counting measure and (X, .4, ) is called counting measure

space.

Example-4.
For any given o- algebra one may construct a Dirac measure. Let M be a

o- algebra of subsets of X. A set function &,:.4 — [0, ] such that
1, EE
5a(E) = { .

0, otherwise
is called Dirac measure and (X, -#,6,) is called Dirac measure space.

Example-5.
Let X be an uncountable set and C = {E c

X: either E is countable or its complement is countable}. Verify that it

isaao- algebra. A set function p:.# — [0, ] such that

(E) = {0, E is countable
H 1, E€ is countable

is a measure and (X, C, w) is called measure space.

SIGNED MEASURE: THE JORDAN AND HAHN
DECOMPOSITIONS

Let (X, -4, 1) and (X, 4, u,) be two measure spaces. Let u =
ci1iq + cyu, be a linear combination of y, and u, with ¢;,c, € R. It is
interesting to observe that u is qualified as a measure if ¢; and c, are
positive. In order to deal with other possibilities of coefficients, we
consider a particular case u = y; — u, with ¢; = 1 and ¢, = —1. Easy to
see that in this case u can not able to maintain non negativity. Secondly
u(E) = pu(E) — uy(E) is not even defined when both p,(E) = =
U2 (E). We now provide the following definition keeping above points in

mind.
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Definition:

Let (X, M) be a measurable space. An extended real valued set function
V:M — [—oo,00] with the following characteristics:

I At most, one of the values out of —co and oo are assumed by v.

ii. v(¢) is zero.

iii. For any countable disjoint collection {E}} of measurable sets,

[oe)

v( 0 Ee) = ) v(E)

k=1

Where the series Y-, v(E)) converges absolutely if v(kL_J1 E,) < oo.

A signed measure is generalization of a measure.

It is easy to understand that a signed measure is the difference of two
measures, one of which is finite. The Jordan Decomposition Theorem will
reveal in due course that each signed measure is actually the difference
between two of such measures.

A measurable set A is called positive with respect to v if v(E) = 0 for
every measurable subset E of A.

Similarly, A measurable set B is called negative with respect to v if
v(E) < 0 for every measurable subset E of B.

A measurable set C is called null with respect to v if v( E) = 0 for every
measurable subset E of C.

The difference between a set of measure zero and a null set should be
carefully noted.

A set of measure zero can be the union of two sets whose measures are not
zero but are the opposite of each other, even though every null set must
have a measure zero.

A set is null with regard to a measure if and only if it has measure zero.
For a signed measure we do not have monotonicity results. However we

do have following monotonicity-like result.
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Exercise-1.

Let A c B. If [v(B)| < oo then |v(4)] < oo.

Proposition-1.

Let (X,M,v) a signed measure space. Each measurable subset of a
positive set is positive. The union of a countable collection of positive

sets is also positive.

Proof.
By definition of positive set, each measurable subset of a positive set is

positive. Let A =Y A, with v(4,) = 0. Let E be a measurable subset of

A. Define
E, = EnA,
E,=(ENA)—(A;UA,UA3U..UA,)) Vk=>2.
By construction each E, is subset of positive set A; so v(E,) = 0.

Moreover, collection {E} } is disjoint collection. Then

[ee)

v(E) =v( U E) = Z V(E,) = 0.

k=1

Hence, A is a positive set.

12.4 HAHN’S LEMMA

Let v be a signed measure on (X,M) and E € M where 0 < v(E) < oo.

Then there exists a positive set set A c E with positive measure.

Proof.
If E is a positive set, then we are done. If E is not positive, then E is not

positive, then it has a subset of negative measure. Let m, be the smallest
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natural number for which there is a measurable set out of which there is a
measurable set of measure less than —mi . Let E; c E with v(E;) < ;1—1
1 1

Inductively  define  natural numbers m,,m,ms,..,m, and

E\,E, E;, ...,E, such that for 1 <k <n, my is the smallest natural

k-1
number for which there is a measurable subset of E — | E, of measure
r=1

k-1
less than —~ and E, is a subset of E — U E, for which v(E},) < L Ifthe
mp r=1 my

n
process terminates at some point n € N, then set A=E — U E, is a
r=1
positive subset of E. If the process does not terminates, define A = E —

oo n co (o]
U E.. ThenE =AU (U E,).Since U E, € M and U E, c E, then
=1 r=1 r=1 =1

T T

—OO<V<CJEr)=§:V(ET) < ) %

r=1 r=1 r=1

So my;, — oo. Now we show A is positive. Let B c A be measurable. Then

k-1
BcACE —( 8] Er> for each k € N. Since m;, is the smallest natural
r=1

k-1
number such that there is a measurable subset of E — ( L Er) of measure
r=1

less than — — so ——— < v(Ey) < —-L then it must be that v(B) >
my mg—1 my

m_11' Since this holds for all k € N and m;, — o, then v(B) = 0. So 4 is
o

a positive set. Moreover, E = AU( ole E.) so v(E)=v(4)+
r=

v (El Er) > 0 and since v (r§1 Er) <0sov(A) > 0.

12.5 HAHN DECOMPOSITION THEOREM

The Hahn Decomposition Theorem. Let v be a signed measure on
(X, M). Then there is a Hahn decomposition of X.
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Proof. Without loss of generality, suppose +oc is the infinite value
omitted by v (otherwise, replace v with —v and follow this proof). Let P

be the collection of positive subsets of X and define
A =sup{v(E)| E€P}. Then A > 0since @ € P. Let {Ac}}>, be a

sequence of positive sets such that A = limg_... ¥(Ax) (which exists by the
definition of supremum). Define A = U2, A;. By Proposition 1, set A

is a positive set, and so A > 1(A) (by the definition of supremum). Also,
for each k € N, A\ A, C A and so v(A\ Ax) > 0 since A is positive. Thus

v(A) = v(Ax) + (AN Ax) = (Ax). Hence #(A) > A. Therefore
v(A) = A, and A < oo since A does not take on the value +oc.

Let B = X\ A. ASSUME B is not negative.

Then there is a subset E of B with positive measure. So by Hahn's Lemma
there is Ey C B such that Ep is positive and #(Ep) > 0. But then ALJ Ey is

a positive set by Proposition 1  and by additivity,
V(A Ey) = v(A) + v(Ey) > A, a CONTRADICTION to the definition of

A (notice that A < o¢ is needed here). So the assumption that B is not
negative is false and hence B is a negative set. Therefore {A, B} is a
Hahn decomposition of X.

12.6 JORDAN DECOMPOSITION THEOREM

Theorem If i is a signed measure on a measurable space
(X..A), there exist positive measures p™ and p~ such that p =
put—p~ and p* and p~ are mutually singular. This decomposition
s unique.

Proof. Let E and F be negative and positive sets, resp., for u
sothat X = EUF and ENF = 0. Let u*(A) = u(AnN F),
1 (A) = —pu(AnN E). This gives the desired decomposition.

If o = v* — v~ is another such decomposition with v*, v~
mutually singular, let £’ be a set such that v*(E’') = 0 and
Department of Mathematics
Uttarakhand Open University Page 240




v ((E")) =0. Set F' = (E")°. Hence X = E'UF' and E'NF' = (.
If AC F', then v (A) < v (F') =0, and so
wA) =vH(A)—v (A)=vT(A) >0,

and consequently F” is a positive set for p. Similarly, E’ is a nega-

tive set for u. Thus E’, I’ gives another Hahn decomposition of X.
By the uniqueness part of the Hahn decomposition theorem, FAF'

is a null set with respect to pu. Since v*(E’') =0 and v~ (F') =0,

if A e A, then
vT(A)=vT(ANF)Y=vT(ANF")—v (AN F')
WANF) = pu(ANF)=pu"(A),
and similarly v~ = u~.

The measure
| =p" + p

is called the total variation measure of p.

12.7 THE RADON — NIKODYM THEOREM

This theorem is a result in measure theory that expresses the relationship

between two measures defined on the same measurable space.
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Suppose f is non-negative and integrable with respect to u. If we
8 8

define v by
V(A) = / fdpu,
A

then v is a measure. The only part that needs thought is the
countable additivity. If A,, are disjoint measurable sets, we have

vt = [ fdu=3" [ fau=Y" v(dn)
Ju, A Sl ‘

Indn n=1"4 1=1

Moreover, v(A) is zero whenever p(A) is zero.

In this unit we consider the converse. If we are given two
measures i and v, when does there exist f such that

u{.r'l}—f fdp,
A

holds? The Radon-Nikodym theorem answers this question.

Definition A measure v is said to be absolutely continuous
with respect to a measure pu if ¥(A) = 0 whenever p(A) = 0. We
write v < .

Proposition Let v be a finite measure. Then v is absolutely
continuous with respect to pu if and only if for all ¢ there exists §
such that p(A) < d implies v(A) < ¢.

Proof. Suppose for each =, there exists 4 such that pu(A) < 6
implies v(A) < . If u(A) = 0, then (A) < ¢ for all £, hence
v(A) =0, and thus v < L.

Suppose now that v < u. If there exists an £ for which no
corresponding 4 exists, then there exists Ej such that u(Ey) < 2%
but ¥(Ey) > . Let F =N, U™  FE). Then

n=1 k=n

=&

p(F) = lim p(UpZ, Ex) < lim

n— o n—00
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v(F) = lim v(UZ, Ex) > &

¥

This contradicts the absolute continuity.

Lemma Let ;v and v be finite positive measures on a mea-
surable space (X, A). Either p L v or else there exists € > 0 and
G € A such that p(G) > 0 and G is a positive set for v — ep.

Proof. Consider the Hahn decomposition for v — £ . Thus there
exists a negative set FE,, and a positive set F,, for this measure,
" ) | . | -
v(E) <p(E,) < ;“{h“} < —u(X).
Since v is a positive measure, this implies v(E) = 0.

E, and F,, are disjoint, and their union is X. Let F = U, F,, and
E=n,E,. Note E° =U,E% =U,F,, = F.

For each n, E C FE,,. so

v(E) < v(Ey) < Lu(E,) < Lu(X).

Since v is a positive measure, this implies v(FE) = 0.

One possibility is that p(E“) = 0, in which case p L v. The
other possibility is that (<) > 0. In this case, u(F,) > 0 for
some n. Let £ = 1/n and G = F,,. Then from the definition of F,,
(5 is a positive set for v — gp. 0

We now are ready for the Radon-Nikodym theorem.

Theorem Suppose jt is a o-finite positive measure on a mea-
surable space (X, A) and v is a finite positive measure on (X, A)
such that v is absolutely continuous with respect to pu. Then there
erists a p-integrable non-negative function f which is measurable
with respect to A such that
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v(A) = /f(l/l
JA
for all A € A. Moreover, if g is another such function, then f = g

almost everywhere with respect to yu.

The function [ is called the Radon-Nikodym derivative of v with
respect to g or sometimes the density of v with respect to p, and
is written f = dv/dp. Sometimes one writes

dv = fdpu.
The idea of the proof is to look at the set of f such that

J 4 fdp < v(A) for each A € A, and then to choose the one such
that J\ fdp is largest.

Proof. Step 1. Let us first prove the uniqueness assertion. For
every set A we have

/{f —g)dp=v(A)—-v(A) =0
A
then we have f — g = 0 a.e. with respect to pu.

Step 2. Let us assume g is a finite measure for now. In this step

we define the function f. Define
F = {_r,f measurable : g > 0, /

JA

F is not empty because 0 € F. Let L = sup{[gdu : g € F},

and let g, be a sequence in F such that [ g,dp — L. Let h, =

max(g; In)-

We claim that if ¢, and g, are in F, then hs = max(g;.g2) is

gdp < v(A) for all A e A}.

also in F. To see this, let B = {z : g,(x) > g2(x)}, and write

/ ho dp / ho dp + / ho dp
JA JANB J ANB*
/ g1 dp + / g2 dp
JAnB JANB:

< v(AN B) + v(AN B°)
= v(A).

/

)
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Therefore hy € F. By an induction argument, h,, is in F.
The h,, increase, say to f. By monotone convergence, [ fdu =L

and

[ fdp < wv(A)
J A

for all A.

Step 3. Next we prove that f is the desired function. Define a
measure A by

AMA)=v(A) - / f dy.
JA
A is a positive measure since f € F.

Suppose A is not mutually singular to g. By Lemma . there
exists £ > 0 and G such that GG is measurable, u(G) > 0, and G is

a positive set for A — ep. For any A € A,

v(A) - / fdpu=MA)Z MANG) 2 epu(ANG) = / exc du,
JA JA

v(A) 2 /1(f+ exe) dp.
Hence f + exy¢ € F. But
f (f+exe)dp =L +u(G) > L,
X

a contradiction to the definition of L.

Therefore A L pu. Then there must exist H € A such that
p(H) =0 and A(H) = 0. Since v < pu, then v(H) = 0, and hence

AMH)=v(H) - / fdp=0.
JH

This implies A = 0, or ¥(A) = [, fdpu for all A.

Step 4. We now suppose pu is o-finite. There exist F; T X such
that pu(F;) < oo for each 7. Let p; be the restriction of pu to Fj,
that is, p;(A) = u(A N F;). Define v;, the restriction of v to F;,
similarly. If p;(A) = 0, then p(A N F;) = 0, hence v(AN EF;) = 0,
and thus v;(A) = 0. Therefore v; < p;. If f; is the function such
that dv; = f; dp;, the argument of Step 1 shows that f; = f; on F;

Department of Mathematics
Uttarakhand Open University Page 245




if 2 < j. Define f by f(z) = fi(x) if x € F;. Then for each /

V(AN F;) = v / fidu; = / fdpu.

Letting i — oc shows that f is the desired function. 0

We now are ready for the Lebesque decomposition theorem.

12.8 LEBESGUE DECOMPOSITION THEOREM

Theorem Suppose p and v are two finite positive measures.
There exist positive measures A, p such that v = A+p, p is absolutely
continuous with respect to pr, and A\ and p are mutually singular.

Proof. Define F and L and HII]‘-JHI{I f as in the proof of the
Radon-Nikodym theorem. Let p(A) = [, fdp and let A = v — p.
Our construction shows that

/ fdp < v(A),
JA

s0 A(A) = 0 for all A. We have p+ A = v. We need to show p and
A are mutually singular.

If not. by Lemma . there exists £ > 0 and F € A such that
p(F) > 0 and F is a positive set for A — =u. We get a contradic-
tion exactly as in the proof of the Radon-Nikodym theorem. We
conclude that A L pu. 0

12.9 SUMMARY

This unit provides an explanation of
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I.  Concept of Signed measure.

ii. Hahn Decomposition Theorem.

iii. Jordan Decomposition Theorem.
iv. Radon-Nikodym Theorem

v. Lebesgue Decomposition Theorem

12.10 GLOSSARY

Complete space.

The space LP(E),
Cauchy sequence
Norm convergence.
Pointwise convergence.
o- algebra.

Measurable space
Measure u

Measure space (X,M, p).

CHECK YOUR PROGRESS

Fill in the Blanks:
1. Let X be asetand M be of subsets of X. The pair (X,M) is
called measurable space.
The Hahn decomposition theorem is based on the notions of
measurable sets.
The Jordan decomposition states the existence of two nonnegative

measures and which are mutually
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The Radon — Nikodym Theorem expresses the relationship between
two ........defined on the

Lebesgue's decomposition theorem states that for every two

a measurable space there exist two o-finite signed measures .

The following statements is true or false

Hahn decomposition is unique. True \False

Signed measureis a generalization of the concept of

(positive) measure by allowing the set function to take negative values,
I.e., to acquire sign. True\False

. The difference of two measures, one of which only assumes finite
values, is a signed measure. True\False.

. The Radon—-Nikodym theorem essentially states that, under certain
conditions, any measure can be expressed in this way with respect to
another measure on the same space. True\False

. Lebesgue decomposition not gives a very explicit description of

measures. True\False
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12.13TERMINAL QUESTIONS

. What is the signed measure of the Jordan Decomposition

® Show that if ¢(E) = | 7 du where f f du is defined, then ¢ is a signed measure.
E

B Give an example showing that a Hahn decomposition is not unique.

w0 Show that if ¥(E) = J fdu for each E € § , where f is non-negative and measurable,
E

and f = c° on a set of positive y-measure, then v is not o-finite.

s> Show that the condition: u o-finite, is necessary in the Radon-Nikodym Theorem.
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®» Show that if y and v are measures such that » < u and » L p, then v is identically zero.

12.14ANSWERS

CHECK YOUR PROGRESS

o- algebra.
positive, negative.
singular.

Measures, same measurable space.

False
True

True

1
2
3
4
5 o-finite signed measures.
6
7
8
9

True
10 False
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UNIT 13:
PRODUCT MEASURE

CONTENTS:

13.1 Introduction

13.2 Objectives

13.3 Product Measure

134 Fubini’s Theorem

13.5 Tonelli’s Theorem

13.6 Solved Problems

13.7 Summary

13.8 Glossary

13.9 References
Suggested readings
Terminal questions

Answers

13.1 INTRODUCTION

Lebesgue measure has been defined on the line. We now present a technique for
building measures in many product spaces, including n-dimensional Euclidean spaces and
the plane. One of the most significant theorems in measure theory is the Fubini’s theorem,

which permits one to vary the order of integration.
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Guido Fubini

(19 January 1879 —6 June 1943)
Ref:

https://mathshistory.st-andrews.ac.uk/Bio

graphies/Fubini/pictdisplay/

Fig 1.1

13.2 OBJECTIVES

After completion of this unit learners will be able to

i. Define the concept of Product Measure.
ii. Evaluate the iterated integrals.
iii. Understand role of Fubini’s theorcom.

iv. Follow Tonelli ’s theoreom.
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13.3 PRODUCT MEASURE

Let (X, @, p) and (Y, ®, v) be two complete measure spaces, and
consider the direct product X x Yof Xand Y. IfA=X and B< Y,
we call 4 x B a rectangle. If A ¢ @ and B € ®, we call 4 x B a mea-

surable rectangle. The collection ® of measurable rectangles is a

semialgebra, since

(Ax B)N(CxD)=(ANC)x (BN D)

~(A x By=(A x B)U (A x B)VU (4 x B).
If A x Bis a measurable rectangle, we set

A(A x B) = uA - vB.

Lemma: Let{(A; x B;)} be a countable disjoint collection of measurable

rectangles whose union is a measurable rectangle A x B. Then

MA x B) =) AA; x By).

Proof: Fix a point x € A. Then for each y ¢ B, the point {x, y>
belongs to exactly one rectangle A4; x B;. Thus B is the disjoint

union of those B; such that x is in the corresponding A4;. Hence

Z VB; - y4(x) = vB - x4(x),
since v is countably additive. Thus by the corollary of the Monotone

Convergence Theorem, we have
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Z J."B.' " Xa; dpt =J""(E' A4 dp

Y vB;- uA; =vB - uA. |

The lemma implies that 4 has a unique extension to a measure

on the algebra ®’ consisting of all finite disjoint unions of sets in ®.
Cnratlli:ﬂdﬂr; Theorem allows us to extend A to be a complete measure
on a g-algebra § containing ®.

This extended measure is called the product measure of g and v
and is denoted by u x v. If u and v are finite (or o-finite), so is u x .
If X and Y are the real line and u and v are both Lebesgue measure,
then u x v is called two-dimensional Lebesgue measure for the
plane.

The purpose of the next few lemmas is to describe the structure of

the sets which are measurable with respect to the product measure

u x v. If E 1s any subset of X x Y and xa point of_}r.’, we define the

x cross section E, by
E.={y:<{x,y> ¢ E},
and similarly for the y cross section for y in Y. The characteristic

function of E_ is related to that of E by

1Y) = xelx, y).
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We also have (E), = ~(E,) and (J E,), = U (E,), for any collection
{E.}-

Lemma: Let x be a point of X and E a set in®_;. Then E_ is a
measurable subset of Y.

Proof: The lemma is trivially true if E is in the class ® of mea-

surable rectangles. We next show it to be true for E in ®,. Let

E = | J E;, where each E; is a measurable rectangle. Then
i=1

xedY) = xe(x, y)

= Sup xg(x, ))

= sup x{Eﬂr{ y}'

Since each E; is a measurable rectangle, y, () is a measurable func-
tion of y, and so yz, must also be measurable, whence E, is measur-

able.

a0
Suppose now that E = () E; with E; € ®,. Then

i=1

XE. = XElX, ))
= inf yg(x, y)
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= i':lf I[E;},{ y),

and we see that y;_ is measurable. Thus E, is measurable for any

Ee®;. |

Lemma: Let E be a set in ®R,; with u x v(E) < co. Then the

function g defined by
Q[X] = VEJ:

is a measurable function of x and

J‘g du = u x v(E).

Proof: The lemma is trivially true if E is a measurable rectangle.
We first note that any set in ®, is a disjoint union of measurable

rectangles. Let (E;) be a disjoint sequence of measurable rectangles,
and let E = |J E;. Set

gi(x) = v[(E;),].
Then each g; is a nonnegative measurable function, and

§=Zgi*

Thus g is measurable, and by the corollary of the Monotone Con-

Department of Mathematics
Uttarakhand Open University Page 256




vergence Theorem , we have

Jgd#=z.[g;d#

=2 1 x V(E)
= u x v(E).

Consequently, the lemma holds for E ¢ &, .

Let E be a set of finite measure in ®,;. Then there is a sequence
(E;) of sets in ®, such that E;,, < E; and E = [} E;. It follows
that u x v(E,) < oo. Let g{x) = v[(E;).].

Since

J.gl dyu =p x v(E,) < o0,

we have g,(x) < co for almost all x. For an x with g,(x) < co, we
have <¢(E..> a decreasing sequence of measurable sets of finite
measure whose intersection is E.

Thus we have
g(x) = v(E,) = lim v[(E)),]
= lim g(x).
Hence

gi—>g ae.,
and so g i1s measurable. Since 0 < ¢, < g,, the Lebesgue Convergence

Theorem implies that
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Ig dp = lim J.g.- du

=lim u x v(E))
= u x v(E). [

Lemma: Let E be a set for which u x v(E)=0. Then for
almost all x we have W(E,) = 0.

Proof: There is a set F in ®,; such that E<S F and p x v(F) = 0.
It follows that for almost all x we have wF,) = 0.

But E, < F,, and so vE, = 0 for almost all x since vis complete. |

Proposition: Let E be a measurable subset of X x Y such that
u x v(E) is finite. Then for almost all x the set E, is a measurable
subset of Y. _Thefum:tiﬂn g defined by ”
g(x) = v(E,)

is @ measurable function defined for almost all x and

J‘g du = pu x v(E).

Proof: There is a set F in ®,; such that E < F and
u x vWF)=u x v(E).
Let G = F ~ E. Since E and F are measurable, so is G, and
ux v(F)=pu x v(E) + u x v(G).
Since u x v(E) is finite and equal to u x v(F), we have u x v(G) = 0.
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Thus we have vG, = 0 for almost all x. Hence
g(x) =vE, =vF_ ae.;

sO g is a measurable function, and

J‘gdu=#><v(F}

=pux v(E). |

13.4 FUBINI’S THEOREM

Theorem (Fubini): Let (X, @, u) and (Y, ®, v) be two complete
measure spaces and f an integrable function on X x Y. Then
i. For almost all x the function f, defined by f(y) = f(x, y) is an
integrable function on Y.
1. For almost all y the function f? defined by f*(x) = f(x, y) is an
integrable function on X.

II"

ii. | f(x, y) dv(y) is an integrable function on X.
Jy
r‘

f(x, ¥) du(x) is an integrable function on Y.

JX
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. L[Lfdv] dy =L S u)=L [Lfd,u] dv.

Proof: Because of the symmetry between x and y it suffices to

prove (i), (ii), and the first half of (iii). If the conclusion of the theorem
holds for each of two functions, it also holds for their difference, and

hence it is sufficient to consider the case when f is nonnegative.
Theorem is true if f is the characteristic function of a measurable
set of finite measure, and hence the theorem must be true iffis a
simple function vanishes outside a set of finite measure. Each non-

negative integrable function f is the limit of an increasing sequence
{¢p,» of nonnegative simple functions, and, since each ¢, is integra-
ble and simple, it must vanish outside a set of finite measure. Thus f,
is the limit of the increasing sequence {(¢,),> and is measurable. By

the Monotone Convergence Theorem

jf (x, y) dv(y) = lim _IA Pulx, y) dv(y),
Y Y

and so this integral is a measurable function of x. Again by the

Monotone Convergence Theorem

J. |:J.fdv] du = lim | [jcp,, dv] du
x LJy Jx LJv

~

= lim @, du x v)
Jx <y

=J S xv). 1
XxY
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In order to apply the Fubini Theorem, one must first verify that f
is integrable with respect to u x v; that is, one must show that fis a
measurable function on X x Y and that [|f]d(u x v) < co. The
measurability of fon X x Y is sometimes difficult to establish, but in
many cases we can establish it by topological considerations.
In the case when u and v are o-finite, the integrability of f can be

determined by iterated integration using the following theorem:

13.5 TONELLI’S THEOREM

Theorem (Tonelli): Let (X, @, u) and (Y, ®, v) be two o-finite

measure spaces, and let f be a nonnegative measurable function on

X x Y. Then
i. For almost all x the function f, defined by f(y) = f(x, y) is a

measurable function on Y.
". For almost all y the function f” defined by f*(x) =f(x, y) is a

measurable function on X.

f(x, y) dv(y) is a measurable function on X
Y

f(x, y) du(x) is a measurable function on Y.
X

‘ |:'|Afdv:|d,u=‘[~ fd(;:xv]=J~|:J~fd_u:|dv.
X ¥ X=Y Y X

Proof: For a nonnegative measurable function f the only point in

the proof of last Theorem where the integrability of /' was used was to
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infer the existence of an increasing sequence {¢,» of simple functions
each vanishing outside a set of finite measure such that f= lim ¢, .

But if 4 and v are o-finite, then so is u x v, and any nonnegative

measurable function on X x Y can be so approximated. ||

13.6 SOLVED PROBLEMS
Example  Show that if u and v are o-finite measures, then u X v as
wxon =] wrom=[ wre,

for each V€ § X g, is the only measure on § X I giving to each measurable
rectangle A X B the measure u(A) v(B).

Solution: The required measure must have value E u(A;) v(B;) on the elementary
=1

n
set which decomposes into disjoint measurable rectangles asU (4; X B;). Now
=1

u X v clearly takes the correct value on measurable rectangles and it is a measure

on & so it takes the correct value on the sets of & and indeed is clearly a g-finite

measure on the g-algebra & Hence, $(&)= § X g is unique..

Example : Let X=Y = [0,1], § = § = B. Take u = m on the Borel subsets
of [0,1], and for v take the counting measure on [0,1], that is, W(F) = Card E.

Take V = [(x.¥) x =1’.(x.J’)EX>(_ Y1. Then Vis § X E?-measuiablc. forifn
is any positive integer put ;=[G — 1)/n,j/n],j=1,...,nand V, = (I} X I,)V

...U(I, X I,). So V, ismeasurable, and so therefore is V' = n V.. However
n=]
dv du=0 but d dv=1.
,[Y ,[XXV u=0 J-x uLxV v
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Example i: The condition f € L' (u X v) in Fubini’s theorem is necessary if
the order of integration is to be interchangeable.

Solution: Take X, Y, §, I as in the last example and let u = v = m, restricted
to [0,1]).Let0<a; <...<a, <...<1,lima, = 1. For each n choose a con-

1
tinuous function g, such that [¢t: g,(¢) # 0] € (a,, ®,,, ) and also_'. g dt=1.
0

Let Ax,y) = );1 En(¥Ngp(x) — gnsy (x)). For each (x, y) only one term in this

series can be non-zero, so f is well defined. Also fis measurable, indeed f is con-

tinuous except at (1,1). But

1 1 o=
-[ fx,y)dx = ID n;l En(YNgn(x) —8nsy (x)) dx =

= g..(r)(f g e = f " &nu1 dx)= 0

for each y. However

1 = 1
| fenw= )L 6@ gm0 | s v=60),

1 1
0 fn dx 'fo fix,y) dy = 1 and the iterated integrals are therefore unequal.

However, Fubini’s theorem is not contradicted since f is not integrable. For,
writing [; = (ay, &, ), we have

ety = 1 [ 1)) 8n0X6n@) — gnes Gl

XL n=1
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-LJ oy ) 83 () x &y

- ;:1 j;’x{’ * j; lgf(yxxf(x)'—gfﬂ () dx dy

o1 X1

= oo,

CHECK YOUR PROGRESS

Fill in the Blanks:
1. If A x B is a measurable rectangle then A(4 X B) =
If u x v(E) = 0thenv(E,) = 0 for
theorem allows to interchange the order of integration.
Fubini’s theorem enables to calculate integrals with respect to measure.

To apply Fubini’s theorem one must verify that f is ............ w.rt. g Xv.

The following statements is true or false
If X =Y =0, 1] then each Borel set is measurable in X x Y. True/False
In Fubini’s theorem f,.(y) is an integrable function on Y for almost all x. ~ True/False
A function f is measurable w.r.t. u x v if f is measurable on X x Y and [ |f|d(u x v) = o.
True/False
9. The collection of measurable rectangles is a semi algebra.  True/False

10. If u x v is a two dimensional Lebesgue measure on R? then d(u X v) = dxdy. True/False

13.7 SUMMARY
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This unit is an explanation of
I. Definition of Product measure.
Different type of iterated integrals.

The idea of interchanging order on integration.

13.8 GLOSSARY

Measure

Product Measure

Iterated Integrals
Integrability of a function
Fubini’s theorem

Tonelli’s theorem
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13.11 TERMINAL QUESTIONS

1. What is product measure
2. Define two dimensional product measure for the plane
If E is a subset of X x Y and x € X then define x —cross section
Let x be a point of X and E a set in R, 5. Show that E,, is a measurable subset of Y

If E isasetin Rys With u X v(E) < co. Show that g(x) = v(E,) is a measurable

function

If uxv(G) =0 forasetG.Show that v(G,) = 0 for almost all x

State Lebesgue Convergence theorem

State and prove Monotone convergence theorem

Give an example that o —fiiniteness of u is not necessary in Tonelli’s theorem

. Give an example that we cannot remove hypothesis that f is integrable in Fubini’s
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13.11 ANSWERS

CHECK YOUR PROGRESS

u(A)v(B)

for almost all x
Fubini’s
Product
integrable
True

True

False

1
2
3
4
)
6
7
8
9

True

RN
o

True
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14.1 INTRODUCTION

There are many kinds of integrals. The Riemann integral is historically the first one
invented and is perhaps the simplest. In this unit we characterize Riemann integrable

functions.

Georg Friedrich

Bernhard Riemann
(17 September 1826 — 20 July 1866)

Ref:

https://mathshistory.st-

andrews.ac.uk/Biographies/Riemann/pict

display/

Fig 1.1

Henri Léon Lebesgue
(28 June 1875 — 26 July 1941)

Ref:

https://mathshistory.standrews.ac.uk/Biog

raphies/Nikodym/pictdisplay/

Fig 1.2
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14.2 OBJECTIVES

After completion of this unit learners will be able to
i. Define the concept of Riemann Integral.
ii. Define the concept of Lebesgue Integral.

iii. Evaluate the different type of Integralst.
iv. Describe the notion of measure zero set

See that Lebesgue Integral is more powerful than Riemann integral.

14.3 RIEMANN INTEGRAL

Definition: A partition P = {aq, xy, ....2, } of the interval [a, b] is a finite
set of numbers g, . ... 2, such that

Q=T <x < <, =>"I
Definition: Let P and €) be partitions of [a. b]. We say that ) is a reline-
ment of Pif P Q).
Definition. Let x; ;,7; € P, where P is a partition of [a,b]. For f a bounded

function on [a, b], define

mi(f) =inf{f(z) | x € [z;—1, 7] }.
M(f)=sup{flz) |z € [z, 2]},

and Azr; = x; — x;,_1. Let

T

S(f:Py = Mi(f)Az; and S(f; P) =Y mi(f)Az:.
i=1

i=1
S(f; P) and S(f; P) are the upper Riemann sum and lower Riemann sum, respec-
tively, of f on [a, b] with respect to partition P.
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Definition. With the notation above, suppose T; € [x;_1,x;]. Then

m
S(f;P) =) f(@)Ax
i=1
is a Riemann sum of f on [a,b] with respect to partition P.
Definition. With the notation above, define
S(f) = illf{?(f‘. P) | P is a partition of [a,b|} and
S(f) =sup{S(f; P)| P is a partition of [a, b|}.
F( f)and S(f) are the upper Riemann integral and lower Riemann integral, respec-

tively, of f on [a,b).

Definition. Let f be bounded on [a,b]. Then f is said to be Riemann integrable
on [a.b] if S(f) = S(f). In this case, S(f) is called the Riemann integral of f on

‘H. Ir.r'. {11']L1}1i‘:|

E{,f}—j .J"{-f'J”'-*'—/ g

MNote. First, let’s i‘.\:]}]nt't' some conditions related to the in1[‘3_';t'.'1|:'|]'|1_‘|.' of .I" o 'rf.hl_

Notice that these conditions are merely restatements of the definition and that the

proofs follow from this definition, along with properties of suprema and infima.

14.4  CRITERION FOR RIEMANN INTEGRABILITY

Theorem Riemann Condition for Integrability.
A bounded function [ defined on |a,b] is Riemann integrable on |a, b if and only if

for all £ =0, there exists a partition P(s) of Iu. h: such that
S(f: P(e)) — S(f: P(e)) <.
Definition. Let P = {xg,xy,29,...,1,} be a partition of [a,b]. The norm (or

mesh) of P, denoted || P||, is
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|P|| = max{x; —xiy |i=

Theorem A bounded function f is Riemann integrable on [a,b] if and only
if for all € > 0, there exists 8(c) > 0 such that if P is a partition with || P|| < 4(¢)
then

S(f:P)—=S(f; P) <=
Theorem.

If f is continuous on |a,b|, then [ is Riemann integrable on |a,b|.

Proof. Since f is continuous on [a,b], then f is uniformly continuous on |a, b

Let £ > 0. Then by the uniform continuity of f, there exists 4(c) > 0 such that

if z,y € |a,b] and |z — y| < d(=), then

[flz) — fly)] < 5 - ot
Let P = {xy, 11,72 r,} be a partition of [a,b] with ||P|| < &(g). On [r;_,. x4].

f assumes a maximum and a minimum (by the Extreme Value Theorem), say at

.i': -'I[III! .I":‘l ['l'ﬁ]]i"t'ti"\'["‘l_\'. rrll”."\

(b—a)=-c.

h—n

S(f:-P)—S(f: P) = gits (! ~»-:;” T =
S(f:P) - S(f; P) ;;_rf.f.; @) A h_“;jin

So f is Riemann integrable on |a, b|. "
Note. We now introduce a new idea about the “weight” of a set. We will ultimately
see that the previous result gives us. in some new sense, a classification of Riemann

integrable functions.
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14.5 LEBESGUE INTEGRAL

Definition. The (Lebesgue) measure of an open interval (a,b) is b — a. The
measure of an unbounded open interval is infinite. The measure of an open interval
I is denoted m(”.

Definition. A set E C K has measure zero if for all £ > 0, there is a countable

collection of open intervals {1y, I, I3, ...} such that

E cC U=, l; and Zm{f,} < £,
1=1

Theorem The union of a countable collection of sets of measure zero is a set
of measure zero.

Proof. Let E, C R have measure zero and put £ = U, E,. Let ¢ = (0. Then
for {‘-21{:11 n there exist a countable collection {-I wk tiey of open intervals such that
E, C U= I, and Zﬂ_f{f"‘*.] < 5. Now { Lk} 18 again a countable union of
open intervals and F C Uy I, such that S i lIn k) < . Hence E has measure
zero, [

Lemma Let 0 < f:[a,b] — R be a Riemann integrable function with ]: f=0.
Then for all ¢ > 0 the set {x € [a,b] : f(x) > ¢} has content zero.

Proof. Let ¢ > 0 and denote by E the set {x € [a,b] : f(x) = ¢}. Let € > 0. Then
there exists a partition P = {.r'.. r',,} of [ﬂ_h] such that {(P. f) < € - e, where

U(P. f) denotes the Riemann upper sum corresponding to P, i.e.,
1]
UP. f) =Y MAaz,
]

where
M; =sup{f(z):x € [x;_1, 2] }.
Denote [ {i: EN [..l', !_..l',] =+ ‘.’J} If i € I, then M; = ¢. Henece we have
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e-c>=U(P,f) = Z M Ax; = :'Z Az,

ief ief
From this it follows that >, I([xi—y,z;]) = }_,.; Ax; < €. Since E is covered by
{lzizq.a;] 2 ¢ € I}, it follows that E has content zero. [J
We say that a property P holds almost everywhere (abbreviated by a.e.) on

la, b], if the set {x € [a.b] : P fails for x} has measure zero.

Corollary Let 0< f:|a, bl — R be a Riemann integrable function with If =
(. Then f is zero a.e. on [a,bl.

Proof. The set {x € [a,b] : f(x) # 0} = U532 {x € [a,b] : flx) = +}, which is by

n=1

the above lemma a countable union of sets of content zero and has thus measure

AET0.

14.6 LEBESGUE THEOREM

Theorem (Lebesgue). A bounded function f : |a, bl — R is Riemann integrable
if and only if it is continuous a.e. on [a.b)].

Proof. Assume first that f is Riemann integrable on [a.b]. Let {P,} be a sequence
of partitions of [a.b] with Py € Py+, and such that the mesh |Py| — 0 as k — oc.
Let ¢ the upper function for f corresponding to Py and by ¢ the corresponding

lower function. Then ¥ (x) 1< f(x) < ¢p(x) | for all z € [a,b) and L: e T Jf:j

and ]I:I o | L': f. Let g(x) = limg .~ ¥ () and h(z) = limg .~ ¢p(x) for x € [a,b].
It follows now that v.(x) < g(x) < f(x) < h(z) < dy(x) for x € [a,b). Hence we

] L

afh I 1] f_l b o] !‘l
/ e = [ g = [ff"j[ f_j h < / h-:_;/ D .
= Wl o il o a of il wf il

& a4 - F.l
Letting & — oc we conclude that ¢ and h are Riemann integrable and that _f:l q =

I: h fjf As h = g it follows from Corollary that g = h a.e. Hence the set

E = {z € |a,b] : g(x) # h(x)} U U, Pr has measure zero. We claim that f is
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continuous on [a, b\ E. Let xy € [a,b] "\ E and let € > 0. Then g(xo) = h(xzp)
implies that there exists k € M such that ¢y (xg) — Unlxg) < €. Now op — oy is

constant in a neighborhood of xg. since 29 ¢ Py.. Hence there exists § > 0 such

that gp(x) — p(x) = @p(xn) — Y (xg) for all |z — zp| < 4. For |z — xp| < § we now
have
—€ < (o) — drlxo) < flx) — flzo) < drlzo) — Yrlza) <,

which shows that f is continuous at . This completes the proof that f is continu-
ous except for a set of measure zero. Assume now that f is continnous on [a, b)Y E,
where £ has measure zero. Let € > () and M such that |f(x)| < M on [a,b]. Then
|flx) = fly)| < 2M for all x,y € [a,b]. Since E has measure zero, there exists open
intervals 1y, Iz, ... such that B C U, T, and > I(I,) < 55. Forall & € [a.b] \ F

BN

there exists an open interval J, with & € J(x) such that |f(z) — fly)| < _}h‘—aj for

all y, z € J, Ma,b], since fis continuous at such z. Now {I }U{.J, : = € [a,b]\ E}
is an open cover of [a,b], so by compactness of [a,b] there exists a finite cover
(I} DU { e, s @ € [a, b\ EY} of [a,b]. Let P = {a=tgy,...,tn = b} be the
partition of [a, b] determined by those endpoints of { I }¢_, and {J,, : x; € [a, b\ E'},
which are inside [a,b]. For each 1 < j < N the interval ({;_1,¢;) is contained in

some [ or some J, . Let J={j:(t;_1.t;) C I for some k}. Then we have that

N
UP, ) — LP,[) =3 Alty) -sup{f(z) — f(y) : 2.y € [tj-1, 1]}

i=1

<SOA)-2M £ ST Al)

JET JEJ 2(b—a)

£

¥ £ —
M4 (b—a) g =

= 20— a)

Hence f is Riemann integrable. [
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14.7  SOLVED PROBLEMS

Example
Let [a,b] = [0,2]. Let P = {0,1.2} and @ = {0,1/2,1,2}. Then Q is

a refinement of P. The subintervals determined by P are [0, 1] and [1,2].

The subintervals determined by @ are [0,1/2],[1/2,1], and [1,2]. Note that
0,1 = [0,1/2] U [1/2

Erample
Let f be defined on [0, 1] by

0 il x is irrational.

fla) = { 1 il & is rational

We show S(f) =0 and S(f) =

Tyt be a partition of [0.1]. Any interval [z;_,x;
contains both rational and irrational points, so

mi(f)=0and M;(f) =1, i=1,...n.

Thus

Tl

ﬁf,f':f"’]=Zm (f)Ar; Z[}&: =

i=1 i=1

Tl

S(f;P) =) Mi(f)Ax; = Zlﬂn,—

=1 p=1

since the sum of the subintervals,” Ax;. is equal to the length of the in-
terval [0,1]. Thus for any partition P, S(f; P) = 0 and S(f; P

h ) = 1 so that
S(f)=0and S(f)=1.
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Example
We show that a finite set has measure zero. Let {4

set and let € = 0 be given. Then

Lé i
{[.!.‘| EM | Ej[lx

is an open cover of {ry,..,xn}. There are N infervals each of measure 55 so

that the open cover has measure N 55 = ¢€/2.

CHECK YOUR PROGRESS

Fill in the Blanks:
A partition P = {x,, Xy, X3, ..., X} 0f [a, b] is a set such that
The normof P = {x,, x4, X3, ..., X} is defined as
S(f,P) =
A function f is said to be Riemann integrable on [a, b] if
If £ is continuous on [a, b], then f is
The following statements is true or false
The Lebesgue measure of an open interval (a,b) isb — a. True \False
A subset of a set of measure zero can have non zero measure. True \False
The union of a countable collection of sets of measure zero is a set
of measure zero. True\False

A countable set has measure zero. True\False.

14.8 SUMMARY

This unit is an explanation of
Riemann Integral.
Criterion for Riemann Integrability.
Lebesgue Integral.

Lebesgue characterization for Riemann Integrability.
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14.9 GLOSSARY

Partition

Bounded Functions
Riemann Integral
Measure

Measure zero set
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http://libgen.rs/search.php?req=Elias+M.+Stein&column=author
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14,12 TERMINAL QUESTIONS

What is Riemann integral

What is Lebesgue integral

What is Riemann’s condition for integrability
What do you mean by a set of measure of zero
Construct a countable set with measure zero
Construct an uncountable set with measure zero

Construct a function on [a, b] such that measure of its discontinuities is

Which integral is suitable to integrate a broader class of function? Justify
Discuss role of uniform convergence in convergence theorem for Riemann

integration

14,13 ANSWERS

CHECK YOUR PROGRESS

a=2x) < x3 <xp <-+< x, =b.

[IP]]| = max{x;- x;_;|i = 1,2,3,...,n}.
S(f; P) = ¥M;(f)Ax; and S(f; P) = ¥my(f)Ax;.
If lower integral = upper integral.

Riemann integrable.

True

False

True

© 00O N o o B~ W DN -

True

=
o

True.
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	COMMON PROPERTIES OF SET FUNCTIONS:
	A set functionμ: ℬ⟶[−∞,∞] is said to be
	(i) Non-negative: if μ takes valves in [0,∞].
	(ii) Finitely additive: We say that µ is finitely additive if, for any family ,A-1., ..., ,A-n.∈ℬ of mutually disjoint sets such that ,∪-i=1-n.,A-i.∈ℬ,we haveµ(,∪-i=1-n.,A-i.)=,i=1-n- µ(.,A-i.).
	(iii) Countably additive or σ-additive: We say that µ is σ–additive if, for any sequence (,A-n.) ⊂ℬ of mutually disjoint sets such that ,∪-i=1-∞.,A-i.∈ ℬ, we have µ (,∪-i=1-∞.,A-i.)=,i=1-∞- µ(.,A-i.).
	Remark:
	(i) Any σ–additive set function on ℬ is also finitely additive.
	(ii) If µ is additive and A, B ∈ℬ, and A ⊃ B,
	then µ(A) = µ(B) +µ(A \ B). Therefore, µ(A) ≥ µ(B).
	It is also called µ is monotone with respect to inclusion, i.e. A ⊆ B ⇒ µ(A) ≤ µ(B).
	(iii) For any sequence (,A-n.) ⊂ℬ of mutually disjoint sets such that  ,∪-i=1-∞.,A-i.∈ ℬ, then for set function  µ we have µ (,∪-i=1-∞.,A-i.)≥,i=1-∞- µ(.,A-i.).
	Definition: Let X be a set. Let ℬ be a σ-algebra of subsets of X then a set function μ: ℬ⟶[−∞,∞] is said to be measure if following condition holds:
	(i)  µ(∅)=0.
	(ii) Non-negativity:  For all A∈ ℬ, µ(A) ≥0
	(iii) Countably additive or σ-additive: For any sequence (,A-n.) ⊂ℬ of mutually disjoint sets, we have  µ(,∪-i=1-∞.,A-i.)=,i=1-∞- µ(.,A-i.).
	Remark: If the condition for non-negativity is dropped, and µ takes on at most one of the valves of  ±∞, then µ is called a signed measure.
	Example 2.14: Let X be a nonempty set and x ∈ X. Define, for every A ∈ P(X),
	,δ-x.(A)= ,,1; if x ∈ A-0;if x ∉ A..
	Then ,δ-x.is a measure in X, called the Dirac measure.
	Definition:
	(i) A σ-additive set function µ :ℬ → [0, ∞] is called finite,
	if µ(X) < ∞.
	(ii) A σ-additive set function µ :ℬ → [0, ∞] is called σ-finite, if there exists a sequence (,A-n.)⊆ℬ such that  ,∪-n=1-∞.,A-n. = X and µ(,A-n.) < ∞ ∀n ∈ℕ.
	Example 2.15 Let X be an infinite set and ℬ be the collection of all subsets A of X such that either A or ,A-c.isfinite. Show that ℬ is an algebra but is NOT a σ-algebra.
	Sol. ℬ forms an algebra of subsets of X since
	(i) ∅∈ℬ, as ∅ is empty hence it is finite.
	(ii) Let A,B ∈ℬ. Then there are four cases:
	Case(i) If A,B both are finite subsets of X then A∪B is finite ⇒A∪B∈ℬ.
	Case(ii) If A is finite and ,B-c.is finite subsets of X then (,A∪B) -c.=,A-c.∩,B-c. is finite (since ,B-c. is finite)⇒(,A∪B) -c.∈ℬ.
	Case(iii) If ,A-c.is finite and B is finite subsets of X then (,A∪B) -c.=,A-c.∩,B-c. is finite (since ,A-c. is finite) ⇒(,A∪B) -c.∈ℬ.
	Case(iv) If ,A-c.is finite and ,B-c.is finite subsets of X then ,A-c.∪,B-c. is finite.
	From above four cases,
	we have either (A∪B) or (,A∪B) -c. is finite ⇒A∪B∈ℬ.
	(iii) Let A∈ℬ ⇒ either A or ,A-c.is finite ⇒,A-c.∈ℬ.
	Hence ℬ forms a algebra of subsets of X.
	If we take ,A-n.={n}; n=1,2,3… then ,∪-n=1-∞.,A-n.=ℕ, which is infinite⇒ℬ is not a σ-algebra.
	Example 2.16Let X =ℕ, consider ℬ = {A ∈ P(X) | A is finite, or ,A-c. is finite }.
	Define µ :ℬ → [−∞,∞] defined as µ,A.= ,,#,A.; if A is finite-∞ ; if ,A-c. is finite..
	forms a set function. Then µ forms a set function.
	Where #(A) represent number of element in A.
	Sol. It is clear that µ :ℬ → [−∞,∞] forms a function and µ(∅)=0.
	Example 2.17Let X={a, b, c, d} and let ℬ={∅, {a, b}, {c, d}, {a, b, c, d}} then ℬ forms a Boolean algebra.
	Example 2.18Let X be a set and A is subset of X then {∅, A, X\A, X} is a simple σ-algebra generated by the subset A.
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