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COURSE INFORMATION

The present self-learning material “Advanced Linear Algebra” has been
designed for M.Sc. (Second Semester) learners of Uttarkhand Open University,
Haldwani. This self learning material is writing for increase learner access to high-quality
learning materials. This course is divided into 14 units of study. The first five units are
devoted to vector space & subspace and the application of linear algebra to solve the
various types of matrix problem. Unit 6 and Unit 7 are focussed on the topic of quotient
space and linear function. The aim of Unit 8, 9 and 10 are to introduce the various
application of eigen values, eigen vectors and minimal polynomial to solve the linear
equations. Unit 11 explain the Jordan canonical form to understand the application of
nilpotent matrix and use of minimal polynomial. Unit 12 and Unit 13 explain the most
essential too in linear algebra name as inner product space and operators. Unit 14 will
explain the theory of bilinear form. This material also used for competitive examinations.
The basic principles and theory have been explained in a simple, concise and lucid
manner. Adequate number of illustrative examples and exercises have also been included

to enable the leaners to grasp the subject easily.
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UNIT-1: VECTOR SPACE AND SUBSPACE
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1.1 INTRODUCTION

As we know many physical properties like velocity of a moving object, displacement, force applied
on a body etc involve both magnitude and direction and such physical notions which involve both
magnitude and direction is called a “vector”. A vector is represented by an arrow whose length
and direction denotes the magnitude of the vector and the direction of vector respectively.

The idea of a vector space developed from the notion of ordinary two- and three-dimensional
spaces as collections of vectors {u, v, w, ...} with an associated field of real numbers {a,b,c, ... }.
Vector spaces as abstract algebraic entities were first defined by the Italian mathematician
Giuseppe Peano in 1888. Peano called his vector spaces “linear systems” because he correctly
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saw that one can obtain any vector in the space from a linear combination of finitely many vectors
and scalars—av + bw + .. + cz.

Giuseppe Peano

Italian mathematician and glottologist Giuseppe
Peano was born on August 27, 1858, and passed
away on April 20, 1932. He was the inventor of
mathematical logic and set theory, and he wrote
more than 200 books and papers. He also
contributed a great deal of notation to these fields.
The Peano axioms are the basic axiomatization of

the natural numbers, named after him.
Reference

(https://en.wikipedia.org/wiki/Giuse
ppe_Peano)

1.2 OBJECTIVES

In this unit, we will

Define vector spaces

Develop the properties of vectors

Establish important results apply to all vector spaces
Understand subspace with examples

Define basis and dimension of vector space

VECTOR SPACE

The following defines the notion of a vector space V and F is the field of scalars.
Definition- Let IV be a nonempty set with two operations

0] Vector addition: Ifany u,v e Vthenu+v €V
(i) Scalar Multiplication: Ifany u e Vand k € Fthenku €V

DEPARTMENT OF MATHEMATICS
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Then V is called a vector space (over the field F) if the following axioms hold for any vectors if
the following conditions hold

[Si] (u+v)+w=u+ (v+w)foranyvectors u,v,w € V

[S2] there exists a vector denoted by ‘0’ in V/, such that, forany u €V,
u+0=0+u=u
Here ‘0’ is called zero vector
for each u € V there exists a vector denoted by ‘ — w’ in V such that
u+(—u)=0=(—u)+u

Here * — ' is called additive inverse of vector ‘v’
[Ss] u+v=v+u foranyvectorsu,v eV
[P1] k(u+v)=ku+ kv, forany u € V and for any scalar k € F
[P2] (ki + ky)u = kqu + kyu, forany u € V and for any scalar k,,k, € F
[Ps] (kyiky)u = kq(k,u), forany u € V and for any scalar k,,k, € F
[Ps] 1.u =wu, forany u €V and for unitscalar 1 € F

The elements of the fiels F are called scalars and the elements of the vector space V are called
vectors.

NOTE: (i) The conditions [S1] —[S4] concerned with additive structure of ¥ and can be
summarized by saying that V is a commutative group under addition.

(if) The vector space V over the field F is denoted by V (F).
Cancellation Law for vector addition

Theorem 1.1: If u, v and w are vectors in a vector space V such that u + w = v + w, then
u=mv.

Proof. There exists a vector w’ (additive inverse of w) in V such that

w +w’ = 0 (from [S3])

DEPARTMENT OF MATHEMATICS
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Therefore,
u=u+0=u+ W+ w) (from (1.3.1))
= (u+w)+w (from[S1])
It is given that u + w = v + w, hence
u=WwW+w)+w
=v+ w+w) (from][Si1])
=v+0 (from (1.3.1)
SuU=v (from [S2])
Theorem 1.2: Let V be a vector space over field F. then

Q) Foranyscalark e Fand0 € V, k0O =0
(i) For 0" € F and any vectoru € V,0"u = 0
(iii) Foranyke Fandanyu €V, (—k)u = k(—u) = —(ku)

Proof. (i) Let k € F and 0 € V/, then

kO + kO =k(0+0) (from [P4]

= kO
= k0+ k0 =k0+ 0 (from [S2])
Using Cancellation Law for vector addition, we get k0 = 0
(i) Let0* € Fand u €V, then
0'u+0"u=(0"+0")u (from [P4])

= 0"u

=>0u+0u=0u+0
Using Cancellation Law for vector addition, we get 0*u = 0

(iii) Let k € F and u € V then ku € V (by scalar multiplication property)

DEPARTMENT OF MATHEMATICS
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Hence, there exists a unique element —(ku) € V such that

ku+ (—(kw) =0 (from [Sg] )

Now, ku + (—=k)u = [k + (=k)]u =0"u =0
i.e., (—ku) is additive inverse of ku.
Hence, (—ku) = —(ku) (as inverse of vector is unique)
Now, k(—u) = k[(=1)u] (as (=Du = —u)
= [k(—=D)]u (from [P3] )
= (—k)u

Hence, (=k)u = k(—u) = —(ku)

1.4 EXAMPLES OF VECTOR SPACE

In this section we can learn about some important examples of vector space which will be used
throughout the text.

Space F"

Let F be any arbitrary field. The notion F" is frequently used to denote the set of all n-tuples of
elements in F. Then, F™ is a vector space over F using the following operations:

Q) Vector addition:
(al, az, ETIR LY an) + (bl’ bz, ETIRIIEEY bTL) = (al + bl’ az + bz, TTTRTTREY an + bTL)
(i) Scalar Multiplication:

k(as,az, oo, ay) = (kaq, kay, ... ..., kay,)
The zero vector in F™ is the n-tuple of zeros i.e. 0 = (0,0, ... ... .....,0) and
the additive inverse of a vector (a,, a,, ... ... ....., a,) is defined by
—(ag,ay, i cee e, @) = (—Aq, =gy e e e, — Q).

Matrix space M, «n

DEPARTMENT OF MATHEMATICS
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The set of all m X n matrices with entries from a field F is a vector space, which we denoted by
M, (F) with the following operations:

Matrix addition: For A, B € M, x,,(F)
For instance,
1 2 4 2 5 4
3 0|+ 5 4 [=| 8 0] in M3y,(R)
3 3 -13 -1 -10 2
Matrix multiplication: For A,B € M,,,«,(F)and c € F
(CA)ij = C(AU) fori<i<mandl1 S] <n

For instance,

4 1 -8 =2

-1 -2 2 4

Polynomial Space P(x)

Let P(x) denote the set of all polynomials of the form p(x) = ¢y + c1x + c3x2% + -+ + ¢ x™
where m = 1,2, ..... and ¢, ¢4, ..., ¢,y € F (F is field). Then P(x) is vector space over F with
following operations:

(i) Vector Addition: Let p(x) = ¢ + c1x + c,x2 + -+ + ¢, x™ and
q(x) =dy + dyx + dyx? + -+ dpx"

be polynomials such that ¢, ¢4, ..., ¢, dg, d4, ..., d,, € F.

Suppose m < n and we define ¢;,11 = Cpyz = - = ¢, = 0. Then

p(x) = co+ c1x + %% + -+ CpX™ + Copp 1 X+ i x ™2 4+ s o™
Then p(x) + q(x) = (cog + dy) + (c; +dy)x + (c; + dy)x? + -+ (¢, + d)x™

(i)  Scalar Multiplication: Let p(x) = c¢q + c1x + ¢c3x% + - + ¢, x™ be a polynomial such
that ¢y, ¢y, ..., ¢y € F and forany k € F |, then
kp(x) = kcg + keyx + keyx? + -+ + kepx™

Polynomial space P, (x)

DEPARTMENT OF MATHEMATICS
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Let B, (x) denote the set of all polynomials of the form B, (x) = ¢o + ¢1x + c;x% + -+ + ¢,x™ and
Co» C1, -, Cn € F (F is field). Then P, (x) is vector space over F with following operations:

0) Vector Addition: Let p(x) = ¢g + ¢;x + ¢,x2 + - + ¢,x™ and
q(x) =dg + dyx + dyx? + - + dpx™
be polynomials such that ¢y, ¢y, ..., cp, dg, d4, ..., d,, € F. Then
p(x) + q(x) = (cog +dy) + (c1 + d)x + (¢, + dy)x? + -+ (cp + dy)x™
(i)  Scalar Multiplication: Let p(x) = ¢y + ¢;x + c,x% + -+ + ¢,x™ be a polynomial such
that ¢y, ¢4, ..., c, € F and forany k € F , then
kp(x) = kcg + kcyx + kepx? + - + kepx™

Ex.1.1. LetS = {(xq,x2):xq,x2 € R}. For (xq1,x2), (y1,¥2) € S and ¢ € R, define
(x1,%x2) + (Y1, ¥2) = (x1 + y1,x2 — y2) and c(xq, x3) = (cxq,cx;). Is S vector space?
Sol. Letu = (x1,%x2),v=1,¥2), w=(24,2,). Now,
w+v)+w=((r1,%2) + O1,¥2)) + (21, 2)

= (%1 + Y1, %2 = ¥2) + (21, 22)

= (1 + Y1+ 21,% — Y2 — 22)

Now,

ut+ @+w)=(x,x)+ ((3’1»3’2) + (szz))

= (x1,%2) + 1 — 21, Y2 — 23)
=1+ y1—21,% — (V2 — 22))
= +y1— 2z, %, -y, +2z) #F(Uu+v)+w
Since [Si] fail to holds, S is not a vector space with given operations.
Ex.1.2. LetS = {(xq,x2):xq,x2 € R}. For (x1,x2),(y1,¥2) € S and ¢ € R, define
(x1,x2) + (1, ¥2) = (x4 + y1,1) and c(xq, x3) = (cxq,1). IS S vector space?
Sol. Let 0 = (0,0) (zero vector) and u = (x4, x,), then

0+u=1(0,0)+(x1,x) =(0+x,1) = (x1,1) #u
. ___________________________________________________________________________________________|
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Since [S2] fail to holds, S is not a vector space with given operations.

CHECK YOUR PROGRESS

Label the following statements as true or false

1. Every vector space need not contains a zero vector.(F)

2. If V is a vector space then (a + b)(x + y) = ax + ay + bx + by forany x,y €
Vandanya,b € F.(T)

3. A vector space has unique zero vector.(T)

1.5 LINEAR COMBINATIONS

Definition. Let V be a vector space over a field K. A vector v in V is a linear combination of
vectors (x4, X2, X3, , Xp) In V if there exist scalars a4, a,, az, , @, in K such that

v=a1xq+ax; +azxs+---+a,x,

Examples

1. Suppose we want to express u = (3,7, —4) in R3 as a linear combination of the vectors
xl = (1r213)! x2 = (21317)1 x3 = (3)5)6)
We seek scalars a, b, c such thatu = ax; + b x, + ¢ x5

3 1 2 3]
ie.| 7|=al| 2|+b| 3|+ | 5| or

—4 3 7 6
a+2b+3c=3
2a+3b+5c=7
3a+7b+ 6c=—4
Reducing the system to echelon form yields
a+2b+3c=3
—b— c=1

b — 3c =-13
implies that a + 2b +3c =3

-—b— c=1
—4c =-12

I ———

DEPARTMENT OF MATHEMATICS
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Back-substitution yields the solutiona = 2,y = —4,z = 3. Thus, u = 2x; — 4 x, + 3 x3.

SPANNING SETS

Let V be a vector space over K. Vectors x,, x,, X3, , X, InV are said to span V or to form a
spanning set of V if every v in IV is a linear combination of the vectors x;, x,, x3, , Xp, 1.6 0f
there exist scalars a4, a,, as, , @y In K such that

V=aq1X;+ax, +aszxs+ -+ anx,.

Example:

Consider the vector space V = B, (t) consisting of all polynomials of degree less than equal to n.
Clearly every polynomial in P,(t) can be expressed as a linear combination of the n + 1
polynomials 1,¢,t2,t3; ...; t™ . Thus, these powers of ¢ form a spanning set for B, (t) .

1.6 SUBSPACE

In this section we can learn about subspace of vector space.

Definition: Suppose that IV and S are two vector spaces that have identical definitions of vector
addition and scalar multiplication, and that S is a subset of , S < V. Then S is a subspace of V.

Another Definition: A subset S of a vector space V is called a subspace of V if the following two
properties are satisfied:

Q) If u,vareinSthenu + visalsoinsS.
(i) If kisascalarand w isin S then ku is also in S.

NOTE: Every vector space V has at least two subspaces:V itself and the subspace consisting
of the zero vector of V. These are called the trivial subspaces of V/.

Theorem 1.3: Show that a subspace of a vector space is itself a vector space.
Sol. All the axioms of a vector space hold for the elements of a subspace.

Theorem 1.4: Show that W is a subspace of VV ifand only if ku + v € W forall u,v € W and k €
R.

Proof. Let W is a subspace of V.
If u,v € W and k € R then ku € W and therefore ku + v € W.

Conversely, suppose that for all u,v € W and k € R we have ku + v € W.

DEPARTMENT OF MATHEMATICS
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In particular, if k = 1thenu+v e W.Ifv= 0thenku+v=kueWw.

Hence, W is a subspace of V.

1.6.1 EXAMPLE OF SUBSPACE

The following section provides a criterion for deciding whether a subset S of a vector space V is a
subspace of V.

Subspace of R3

We know that R3 is a vector space. Let W, be any plane passing through the origin, as given in
Fig. 1.5.1.1.

Fig. 1.5.1.1.

Now, we can see that (0,0,0) € W; (As we assumed W; passing through the origin).

Suppose that vectors a,b € W,. Then a and b may be viewed as arrows in the plane
W;emanating from origin O, as in given figure. The sum a + b and any multiple ka of a also lie
in the plane W,. Hence, W, is a subspace of R3.

Subspace of €3

We know that €3 is a vector space. Now, consider the subset

X1
W2={x2‘=3x1+5x2+7x3=0
X3

As we can see that W, < €3 . Now we check the conditions of subspace

DEPARTMENT OF MATHEMATICS
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X1 41
Q) Let x,y € W, such that x = Xz] and [Yz . Now
X3 Y3

X1 Y1 X1+y1
x+y=|X2|+ |Y2| = | X2tV
X3 Y3 X3+Yy3
as follows
3(xy +y1) + 50 +¥2) + 7(x3 +y3) = (3x1 + 5%, + 7x3) + 3y, + 5y, + 7y3)
=0+0
=0

Hence, x +y € W,

X1
(i) Let x € W, suchthat x = [Xz] and k is a scalar. Now

X1 kxy
kx =k [xz] = [kle
x3 kX3

X3

as follows
3kxy + 5kx, + 7kxs = k(3x; + 5x, + 7x3)
=k.0
=0
Hence, € W, , which implies that W, satisfies all the conditions of subspace.
Obviously zero vector is in W,.
Hence W, is subspace of C3.
Subspace of Square Matrices:

Consider the vector space of matrices of order n X n.

DEPARTMENT OF MATHEMATICS
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One possible subspace is the set of lower triangular matrices. As X + Y and cX are lower
triangular if X and Y are lower triangular and the zero matrix is in given subspace.

Another is the set of symmetric matrices. As X + Y and cX are lower triangular if X and Y are
lower triangular, and they are symmetric if X and Y are symmetric. Of course, the zero matrix is
in given subspaces.

Subspace of the vector space of all functions defined on [a, b].
Let D([a, b]) be the collection of all differentiable functions on [a, b].

Let f; and f, are differential functions on [a,b] and k € R, then kf; + f, is also differentiable
function on [a, b]. Hence, D([a, b]) is a subspace of all functions defined on [a, b].

Ex.1.3. Consider a Vector Space V(R) as set of all real valued function over R.
V = {f: R — R}. Then which of the following is\are Subspace of V(R).

Q) W, ={f:f(x) = Bf(—x)} V x € Rand B is given constants over R
(i) W, = Setof all integrable functions
(ili) W3 = Set of all non continuous functions

Sol. (i) We know that V(R) is a vector space. Now, consider the subset
Wy ={f:f(x) = Bf(=x)}Vx €R,
As we can see that W; < V(RR) . Now we check the necessary conditions of subspace.

Let f; and f, € W, and k € R, then

(kfy + [2)(x) = kfi () + f,(x) = kBfi(—x) + Bfo(—x) = B(kfi(—x) + fo(—x)) = B(kfy +
f2)(=x) € W;.

Hence, W, is a subspace of V(F).

(i) Let W, be the collection of all integrable functions.
Let f; and £, are integrable functionson R, and k € R,
then kf;, + f, is also integrable functions on R.

Hence, W, is a subspace of V (F).

(i)  Let W5 be the collection of all integrable functions.

Consider non-continuous functions f; and f, such that

______________________________________________________________________________________________________________|
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1, -1,
=11 cercqm A@={1" Ler- o
Now, (f; + f2)(x) = fi(x) + f,(x) = 0, continuous function.
Therefore, (f; + f2)(x) € W5. W5 is not vector space.

Ex.1.4. Consider a Vector Space R3(R). Then which of the following is\are Subspace of
R3(R).

Q) W, ={(x,y,z):ax+ by +cz=0}, abc ER
(i) W, ={(x,y,2):x = 0},
@iy Wy={xyz):x+y+z=1}

Sol. (i) We know that R3(R) is a vector space. Now, consider the subset
W, ={(x,y,z):ax + by + cz =0}, a,b,c ER
As we can see that W, € R3(R).
Now we check the necessary conditions of subspace.
Let (xq,y1,21) and (x;,y,,2,) € W; and k € R, then
k(x1,¥1,21) + (X2, Y2, 22) = (kxy, ky1, kzy) + (X2, Y2, 23)
= (kx1 + x5, ky, + y,,kz, + z,).
Now, let a, b, c € R then
k(kx; +x3) + b(ky, +y,) + c(kzy + z3)
=k(ax;+by,+czy)+(ax, +by,+¢cz,) =k.0+0=0
which implies that k(xq, y1,21) + (x2,V2,2,) € W;

Hence, W, is a subspace of R3(R).

(i)  We know that R3(R) is a vector space. Now, consider the subset
W, ={(x,y,z):x = 0}

As we can see that W, € R3(R). Now we can see thatif k = —1 € R
Let (xq,y1,2,) € W, such that x; = 0 then

(=D (x2,¥2,22) = (—%1, Y1, 21)

As we know that x; = 0 = —x; < 0.
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ThUS, (—1)(x1,y1, Zl) $ Wz.
Therefore, W, is not a subspace of R3(R).

(ili)  We know that R3(RR) is a vector space. Now, consider the subset
W ={(x,y,z2):x+y+z=1}

As we can see that W, € R3(R). Now we can see that (0,0,0) & Ws.
Therefore, W; is not a subspace of R3(R).

Ex.1.5. Consider a Vector Space M,,(R). Then which of the following is\are Subspace of
M, (R).

Q) W, ={4Ae€M,(R):A=DbA}, b isgiven real number
(i) Wy,={AeM,(R:4A=4}

(i) W3 ={A4€ M,(R):det(A) = 0}.

(iv), W,={AeM,(R):XL, Y Kja;=1}K;€eR

Sol. (i) We know that M,,(R) is a vector space. Now, consider the subset
W, ={AeM,(R):A=kA}, k isgiven real number
As we can see that W; € M,,(R) . Now we check the necessary conditions of subspace.
Let A;and A, e W, and a, B € R, then
aA, + BA, = abAy; + BbAy = b(aAy + BAy) = b(aA; + BA,) € W,
Hence, W, is a subspace of M,,(R).
(if) We know that M,,(R) is a vector space. Now, consider the subset
W,={AeM,(R):A=4)}
As we can see that W, < M, (R) . Now we check the necessary conditions of subspace.
Let A, and A, e W, and a, f € R, then
al; + fA, = aAy + Ay = b(aA, + A,y € W,.
Hence, W, is a subspace of M,,(R).
(iii) We know that M,,(R) is a vector space. Now, consider the subset
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W; = {4 € M,,(R): det(A) = 0}
As we can see that W; < M,,(R) . Now we check the necessary conditions of subspace.

1 0

Consider A; = [0 0

] and 4, = [g (1)] We can see that det(A;) = 0 and det(4,) = 0.

Hence, A4, A, € W;. Now

A+ A, = [(1) 8] + [8 2 :[é (1’] and det(4, + A,) # 0,

which implies that A; + A, € W,
Hence, W5 is not a subspace of M,, (R).
(iv) We know that M,,(R) is a vector space. Now, consider the subset
W, ={A€M(R): X, X7 Kija;; = 1},K;; ER
As we can see that W, < M, (R).
Now we can see that [8 8] ¢ Wyas Yy Xieg Kija;j=0#1

Therefore, W, is not a subspace of M,,(R).

CHECK YOUR PROGRESS

Label the following statements as true or false

1. Every vector space need not contains a zero vector.(F)

2. If Visavector space then (a + b)(x + y) = ax + ay + bx + by forany
x,y €EVandanya,b € F.(T)

3. A vector space has unique zero vector.(T)

1.6.2 INTERSECTION OF SUBSPACES

Theorem 1.7: Let W, and W, be two subspaces of a vector space V then the intersection W
N W, is also a subspace of V
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Proof. Let W, and W, be two subspaces of a vector space V.
We show that the intersection W; n W, is also a subspace of V.
Clearly, 0 € W; and 0 € W; (because W, and W, be two subspaces). Hence 0 € W; n W,.

Now suppose w; and w, belong to the intersection W; n W,.

Thenwy; w, € Wy and wy; w, € W, .

For any scalars ,b € K , aw, + bw, € W; and aw; + bw, € W,. (because W; and W, be two
subspaces).

Thus, aw; + bw, € W; N W,. Therefore, W; N W,is a subspace of V.
The above result generalizes as follows.

Theorem 1.8: The intersection of any number of subspaces of a vector space V is a subspace
of V.

1.7 LINEAR SPAN

Let VV be a vector space over a field K. A vector v in VV is a linear combination of vectors
(%1, x5, X3, , Xy) In V if there exist scalars a4, a,, as, ,an IN K suchthat = ayx; + a,x, +
a3x3 + b + anxn .

The collection of all such linear combinations, denoted by span(x,, x,, x3, , Xn) Or span(x;) is
called the linear span of x,, x5, x3,

More generally, for any subset S of V, span(x;) consists of all linear combinations of vectors in S
or, when S = @, span(S) = {0}. Thus, in particular, S is a spanning set of span(S).

Theorem 1.9. Let S be a subset of a vector space V.

0] Then span(S) is a subspace of V that contains S.
(i) If W is a subspace of V containing S, then span(S) € W

Proof. (i) Let S be a subset of a vector space VV such that S = {x;, x,, x5,
We can see that the zero vector i.e. 0 belongs to span(S), as 0 can be written as

0 =0xq + 0x, + Ox3 + -+ + Ox,, .
|
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Furthermore, let u and u' belong to span(s), i.e.,

U =ax; +azx; +azxs+ -+ apx,.

u' = byxy + byxy + byxg + -+ byxy,

Then,u+u' = (a; + by)x; + (a, + by)x, + (a3 + b3)x3 + -+ (a, + by)x,
which implies that u + u’ belong to span(S)

and for any scalar k € K,

ku = ka,x; + ka,x, + kazxz + -+ ka,x, .

which implies that ku belong to span(s).

So, we conclude that span(S) is a subspace of V.

Example

a) Let v, be any nonzero vector in V = R3. Then span(v,) consists of all scalar multiples of
v;. Geometrically, span(u) is the line through the origin O and the endpoint of u, as shown in Fig.
1.7.1(a).

b) Let u and v be vectors in V = R3 that are not multiples of each other. Then span(v,, v,)
is the plane through the origin O and the endpoints of v, and v, as shown in Fig. 1.7.1(b).

c) Consider the vectors e; = (1,1,1),, e, = (1,1,0), e; = (1,0,0) inV = R3

Row Space of a Matrix

Fig. 1. Linear span

Let B = [b;;] be an arbitrary m X n matrix over a field K. The rows of 4,
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Ry = (by1,b12,b13, cev ooy b19); Ry = (b1, b33, D23,y v ooy bop), oo

(bimts bmzs bz v vee e oy bn);

may be viewed as vectors in K™; hence, they span a subspace of K™ called the row space of B and
denoted by rowsp(B). That is,

rowsp(B)=span(R;, R,; ..., Ry).

Analagously, the columns of B may be viewed as vectors in K™ called the column space of B
and denoted by colsp(B). Observe that colsp(B) = rowsp(AT).

1.8 LINEAR INDEPENDENCE

Let V be a vector space over a field K. The following defines the concept of linear dependence and
independence of vectors over K. This notion plays an vital role in the theory of linear algebra and
in mathematics in general.

Definition. The vectors (uy,u,, us, .....,uy,) in V are linearly dependent if there exist scalars
(aq,a3,as, .....,ay) in K, not all of them 0, such that a;u; + a,u, + azus +---..+a,u, =0
Otherwise, we say that the vectors are linearly independent.

Consider the vector equation
x1u1 + xZuz + x3U3 + St

where the x’s are unknown scalars. This equation always has the zero solution x; = 0; x, = 0; ...
; X, = 0. Suppose this is the only solution; that is, suppose we can show: x;u; + x,u, + x3uz +
o F XU, = 0 implies x; =0,x, =0,x3 =0,.....,x, = 0. Then the vectors u; =0,u, =
0,u; =0,.....,u, = 0 are linearly independent, On the other hand, suppose the equation (1.8.1)
has a nonzero solution; then the vectors are linearly dependent.

NOTE

1. A set S = (uq,uy,us, .....,u,) of vectors in V is linearly dependent or independent
according to whether the vectors u,, u,, us, ....., u, are linearly dependent or independent.

2. An infinite set S of vectors is linearly dependent or independent according to whether there
do or do not exist vectors uq, u,, us, ....., U, in S that are linearly dependent.

3. Suppose 0 is one of the vectors uq, u,, ug, ....., u, say u; # 0. Then the vectors must be
linearly dependent, because we have the following linear combination where the coefficient of
1.uy +O0uy, +Oug ++--..+0u, =0
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4. If a set S of vectors is linearly independent, then any subset of S is linearly independent.
Alternatively, if S contains a linearly dependent subset, then S is linearly dependent.

Example

1. Let u; = (1,1,0),u, = (1,3,2),us = (4,9,5). Then uy,u,,u; are linearly dependent,
because

3u, + 5u, — 2us = 3(1,1,0) + 5(1,3,2) — 2(4,9,5) = (0,0,0) = 0

Ex. 1.6. Let V be the vector space of functions from R into R. Show that the functions f(x) = e*,
g(x) = sint and h(x) = x? are linearly independent.

Proof. LetV be the vector space of functions from R into R. Now we will show that functions
f(x) =e*, g(x)=sinxand h(x) = x? are linearly independent.

Let a, b and ¢ are unknown scalars such that

af + bg +ch=0=ae*+bsinx +cx?=0,Vx € R.

Thus, in this equation, we choose appropriate values of x to easilygeta = 0,b = 0,c =
For example

i) Substitute x = 0 to obtain ae® + bsin0 +c02 =0=>a =0
ii) Substitute x = w and a = 0 to obtain 0e™ + bsinmt + cnt? =0=>¢c =0

N 2
iii)  Substitute x = ~anda = 0,c = 0to obtain Oez + bsinZ+0>" =0=bh =0

Hence f(x) =e*, g(x) = sint and h(x) = x? are linearly independent.

Ex. 1.7. Let P;(R) be the vector space of set of polynomials of degree less than equal to 3 defined
on R. Show that set S={1+x+x%7+x311+x+x%+x3,13 +4x} are linearly
independent.

Proof. Let P;(R) be the vector space of set of polynomials of degree less than equal to 3 defined
onRandletS ={1+x+x%7+x3 11+ x + x? + x3,13 + 4x}. Now we will show that set S
is linearly independent.

Let a, b, c and d are unknown scalars such that

al+x+x)+b(7+xN+c(1l+x+x>+x3)+d(13+4x) =0
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>(@+7b+11c+13d)+ (a+c+4d)x+ (a+c)x?+(b+c)x3 =0

= (a+7b+ 11c + 13d) = 0;

(a+c+4d) = 0;

Using (3) in (2), wegetd =0

From (3) and (4), wegeta = b = —c

Using (5) in (1), weget a=b =c = 0.

Hence, set S = {1 + x + x%,7 + x3,11 + x + x% + x3, 13 + 4x} are linearly independent.

LEMMA-Suppose two or more nonzero vectors vy, v,, s, ....., Uy, are linearly dependent. Then
one of the vectors is a linear combination of the preceding vectors; that is, there exists k > 1
such that

Vi = C1Vq + CoVUy + .-l +Ck_1vk_1

1.9 SUMMARY

We discussed about vector space and subspace with the help of illustrative examples.

1.10 GLOSSARY

Set: is the mathematical model for a collection of different things
Scalar: is an element of a field which is used to define a vector space

Vector: aterm that refers to elements of some vector spaces.
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1.13 TERMINAL QUESTIONS

(TQ-1) Define Vector space
(TQ-2) Define Subspace
(TQ-3) Give Example of Vector Space.

Choose one of correct Choioce:
(TQ-4) If A and B are square matrices of the same order, then tr(AB) =

(@ tr(A + B)
(b) tr(A)tr(B)

(©) tr(BA)

(d tr(A) + tr(B)

(TQ-5) If A and B are square matrices of the same order, then (AB)T =
(@) ATBT
(b) BT. AT

(c) AT +BT
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@ (BA"

(TQ-6) Let V be the vector space of functions from R into R. Show that the functions f(x) = e”,
g(x) =sint and h(x) = x? are

1.14 ANSWERS

(TQ-4) (c) (TQ-5) (b) (TQ-6) linearly independent
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UNIT-2 BASIS AND DIMENSION

CONTENTS
2.1  Introduction
2.2 Objectives
2.3 Basis
2.4 Dimension
2.5  Application to matrices, rank of a matrix
2.5.1. Basis finding problems
2.5.2 Application to homogeneous systems of linear equations
Sum and Direct Sum
Coordinates
Summary
Glossary
References
Suggested Readings
Terminal Questions

Answers

2.1 INTRODUCTION

In previous unit we studied about vector space, In this unit we will try to understand basis and
dimensions.

We turn now to the task of assigning a dimension to certain vector spaces. Although we usually
associate 'dimension’ with something geometrical, we must find a suitable algebraic definition
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of the dimension of a vector space. This will be done through the concept of a basis for the
space. One of the useful features of a basis B in an n —dimensional space V' is

that it essentially enables one to introduce coordinates in V analogous to the 'natural
coordinates' X; of a vector x = (xy,...,x,) in the space F™. In this scheme, the coordinates
of a vector a in V relative to the basis B will be the scalars which serve to express a as a linear
combination of the vectors in the basis.

Many mathematical terms, including "matrix" (in

1850), "graph" (in the sense of a network),

"discriminant,” and "totient" (for Euler's totient

function @(n), were created by Sylvester. He is also

credited with solving Sylvester's problem and a

result on the orchard problem in discrete geometry,

and discovering Sylvester's determinant identity in

matrix theory, which generalizes the Desnanot—

Jacobi identity. His body of scientific writings fills

four volumes. The Royal Society of London awarded

Sylvester the Copley Medal, its highest honor for James Joseph Sylvester

scientific achievement, in 1880, and in 1901 it @ Septem_ber 1814 - 15 March 1897)
o ] . (reference:

instituted the Sylvester Medal in his memory, t0 pips://en.wikipedia.org/wiki/James_Joseph_Sylv
promote mathematical research following his ester

passing in Oxford.

2.2 OBJECTIVES

In this unit, we will,

Define basis with examples
Understand dimension of vector space

2.3 BASIS

Aset S ={uq,uy us,....,u,} of vectors is a basis of V if it has the following two properties:

(1)  Sis linearly independent.
2 S spans V.

OR
- __________________________________________________________________________________________|
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Aset S ={uq,uy, us,....,u,} of vectors is a basis of /' if every v € V can be written
uniquely as a linear combination of the basis vectors.

Example: (1) Standard basis for R™ is

e; = (1,0,0,....,0,0),e, = (0,1,0, ....,0,0), ...., e, = (0,0,0, ....,0,1)

(2) Standard basis for Matrices M, is

o ollo ol [z ollo

3 The infinite set {1, x, x?, ... ..., x™1, ... } form basis for P, the space of all polynomial.

Theorem 1.1. Let V denote a vector space and S = {uq, uy, us, ....., U,,} a basis of V.

a) Any subset of IV containing more than n vectors must be dependent.
b) Any subset of IV containing less than n vectors cannot span V.

Proof. (a) Let S; = {v,, vy, V3, ....., v, } @ subset of V where n > m.

Now we will prove that W is dependent.

Since S is a basis, we can write each v; in term of elements in S.

Now, there exists constants ¢;; with 1 < i <nand1 < j < m such that
Vi = CjyUy + CipUy + -+ + CimUyy - Consider the linear combination
Yi=1dv; = Xio1di(crug + Uy + o+ Ciplhyy) = 0

So we solve

(dlcllul + d1C12u2 + -+ dlclmum =0
d2C21u1 + dzszuz + -+ dzclmum = 0

where d,, d,, ..., d,, are unknowns

dncnlul + dncnzuz + -+ dncnmum =0

Here we can easily observe that the number of unknowns is less than number of equation.
Hence given Homogeneous equation system will have a nontrivial solution.
Hence S; is dependent.

(b) Let S; = {vy,v,, V3, ....., v, } asubset of V wheren < m.
I ——
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Now we will prove that S; does not span V.

Let we assume that it does span V and show this would imply that S is dependent.
Now, there exists constants ¢;; with1 < i <mand1 < j < nsuch that

U; = Cj1v1 + Cjpvy + -+ + cin vy, - Consider the linear combination

Yz djwy = ¥, di(cj1vy + vy + o+ Cpy) = 0

So we solve

( d1C11 + d1C12 + -+ dlcln = 0
J d2C21 + d2C22 + -+ dzCZn = O

where d,, d,, ..., d,, are unknowns

ldncnl +d,Cna + o+ dCpn =0

Here we can easily observe that the number of unknowns is more than number of equation.
Hence given Homogeneous equation system will have a nontrivial solution.

Hence S is dependent, but it can’t be possible since it is a basis.

Thus our assumption is wrong, S; does not span V.

Theorem 1.2 Let V be a vector space such that one basis has m elements and another basis
has n elements. Then m = n.

Proof. Assume that S is a basis of V with n elements and S* is another basis with m elements.
We need to show that m = n.

Since S is a basis, S* being also a basis implies that m > n.
If we had m > n, by the theorem, S* would be dependent, hence not a basis.

Similarly, since S* is a basis, S being also a basis implies that n = m. The only way we can
havem > nandn = misifm = n.

CHECK YOUR PROGRESS: 1

1: Prove that every basis of a vector space V has the same number of elements.

2: Any subset of VV containing more than n vectors must be
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2.4 DIMENSIONS

Let V denote a vector space. Consider a basis of IV has m vectors (therefore all bases will have
m vectors), m is called the dimension of V . We can write dim(V ) =

A vector space V is said to be finite-dimensional if there exists a finite subset of I which is a
basis of V. If no such finite subset exists, then V' is said to be infinite-dimensional.

NOTE:
1: If VV is just the vector space consisting of {0}, then we say that dim(V) =

Examples:

1. R™, the set of all ordered pairs (x,y) where x and y are in R. We have already seen
that the standard basis for R? is {(1, 0,0, ....,0), (0, 1,0, ...,0), (0, 0,1, ...,0), ..., (0,0,0, ...,1)}.
This basis has n elements, therefore, dim(R" ) = n.

2. PB,, the set of polynomials of degree less than or equal to n. Similarly, the standard basis
for P, is {1,x,x2, .......,x™} . This basis has n + 1 elements, therefore dim(P,) = 1.

3. Ms,, the set of 3 X 2 matrices. A basis for M, is 6.

Ex.1.8. Find a basis and the dimension of  subspace W =
a+b+c
2a+b+3c+d
b+c+d
2a+2c+d

:a,b,c,darereal

Proof. It is given that

a+b+c
W = 2a+b+3c+d :a,b,c,d arereal
b+c+d

2a+2c+d
Now
a+b+c 1 1 0
2a+b+3c+d —q 1 3 1
b+c+d 1 1 1
2a+2c+d 0 2 1

Here we can see that W = span{v,, v, v3, v,} where

1 1 1 0

_ 12 _ |1 _ 13 |1
VU, = 0 y Uy = 1 y V3 = 1 y Vg = 1
2 0 2 1
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V1, Uy, U3, U, are linearly independent.
Hence basis of W = {v,,v,, v3,v,} and dimension is 4.
NOTE:
If V is spanned by a finite set, then I is said to be finite-dimensional, and the dimension
of V, written as dim V, is the number of vectors in a basis for V.
The dimension of the zero vector space {0) is defined to be zero.
If V is not spanned by a finite set, then V is said to be infinite-dimensional.

Theorem 1.4 Let H be a subspace of a finite-dimensional vector space V. Any linearly
independent set in H can be expanded, if necessary, to a basis for H. Also, H is finite-
dimensional and dim H < dimV.

Proof. Let H = {0}, then clearly dim H = 0 < dim V.

Let H # {0} and S = {xy, x5, ..., X, } be any linearly independent set in H.
If S spans H implies S is a basis of H.

otherwise there exist some x,,,; in H which is notin S.

Then {x1, X3, ..., X;m, Xm+1} Will be linearly independent as no vector in the set can be a linear
combination of vectors that precede it.

We can keep expanding S to a larger linearly independent set in H as long as the new set does
not span H.

However, the number of vectors in an expansion of S that is linearly independent can never be
greater than the dimension of V.

Hence the expansion of S will span H and therefore will be a basis for H,and dim H < dim V.
NOTE:
1: Above theorem is also natural counterpart to the spanning set theorem.

Theorem 1.5. Let V be a p-dimensional vector space, p = 1. Any linearly independent set
of exactly p elements in V is automatically a basis for V. Any set of exactly p elements that
spans V is automatically a basis for V.

Proof. From Above theorem we conclude that, a linearly independent set S of p elements can
be extended to a basis for V.

But that basis must contain exactly p elements, since dimV = p.

So S must already be a basis for V.
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Let we assume that S has p elements and spans V.
Since V is nonzero, a subset S’ of S is a basis of V (by the Spanning Set Theorem).

Becausedim V = p, S ' must contain p vectors. Therefore = S’ .

2.5 APPLICATION TO MATRICES, RANK OF A MATRIX

Suppose A be any m,, matrix over a field K. As we know that that the rows of A may be viewed
as vectors in K, and that the row space of A, written rowsp(A), is the subspace of K,, spanned
by the rows of A.

Rank of matrix A: The rank of a matrix A, written rank(4), is equal to the maximum number
of linearly independent rows of A or, equivalently, the dimension of the row space of A.

The Dimensions of Nul A and Col A:

The dimension of Nul A is the number of free variables in the equation Ax = 0, and the
dimension of Col A is the number of pivot columns in A.

As we know vectors in K™ and that the column space of A, written colsp(A), is the subspace
of K™ spanned by the columns of A. Although m may not be equal to n—that is, the rows and
columns of A may belong to different vector spaces—we have the following fundamental
result.

Theorem 1.6: The maximum number of linearly independent rows of any matrix A is
equal to the maximum number of linearly independent columns of A. Hence, the
dimension of the row space of A is equal to the dimension of the column space of A.

Ex.1.9. Find the dimensions of the null space and the column space of

1 -2 2 3 -1

—36—11—7‘
2 -4 5 8 -4

-3 6 -1 1 -7
Proof. LetA=|1 -2 2 3 -1
2 -4 5 8 -4

Now we reduce above matrix in echelon form

-3 6 -1 1 0
1 -2 2 3 0|MyCs—>Cy+Cy+cs)
2 -4 5 8 0
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(by R3 > Ry + R, + R53)

(by R3 » Ry + R, + R3)

01
0
01
0
0
0

0
0| (byR; > Ry + R, +R5)
0

6
0

0

6 -1 1 0

0 1 2 Ol(bsz_)%)
0 0 0 0

There are three free variables—x,, x4, and xs. Hence the dimension of Nul A is 3.

Also, dim Col A = 2 because A has two pivot columns.

2.5.1 BASIS FINDING PROBLEMS

An echelon form of any matrix A gives us the solution to certain problems

about A itself.

(bsz 4 RZ - 2R1, R3 4 R3 - 3R1 and R4 4 R4_ - 3R1)

] 1 3
(by R, » R, — R3) ~F)é 3 éﬂ (by R, » %Rg) (pivots are circled)
] 0 0 O
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1 2 1 3
LletB=]|0 1 3 0] then B is echelon form of matrix A.
0 0 0 1

We solve the following four problems about the matrix A, where C,; C,; Csand C, denote its
columns:

(a) Find a basis of the row space of A.

(b) Find each column C,, of A that is a linear combination of preceding columns of A.
(c) Find a basis of the column space of A.

(d) Find the rank of A.

Answer:

(a) We can see that A and B are row equivalent, so they have the same row space. Also, B is in
echelon form, hence its nonzero rows are linearly independent and therefore form a basis of
the row space of B. Thus, they also form a basis of the row space of A. i.e.

basis of row space of A. i.e. basis of row sp(4): (1,2,1,3),(0,1,3,0),(0,0,0,1)

(b) Let M, = [C4, C, Ci]., the submatrix of A consisting of the first k columns of A.

Then M, _,and M, are, respectively, the coefficient matrix and augmented matrix of the vector
equation

X1C1 + xZCZ + -+ xk_le_l = Ck

As we know that the system has a solution, or, equivalently, C, is a linear combination of the
preceding columns of A if and only if rank (M) = rank(M;,_,)where rank (M,;) means the
number of pivots in an echelon form of M,.

Now the first k column of the echelon matrix B is also an echelon form of Mk.
Hence, rank (M3) = rank(M,) = 2 and rank (M,) = 3
Thus,C; is a linear combination of the preceding columns of A.

(c) The fact that the remaining columns C;, C,, C, are not linear combinations of their respective
preceding columns also tells us that they are linearly independent. Thus, they form a basis of
the column space of A. That is,
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1] [2 3
basis of colsp(A): g ) g , 161
4] 181 112

Observe that C;, C,, C, C4 may also be characterized as those columns of A that contain the
pivots in any echelon form of A.

(d) Here we see that three possible definitions of the rank of A yield the same value.
(i) There are three pivots in B, which is an echelon form of A.

(i) The three pivots in B correspond to the nonzero rows of B, which form a basis of the row
space of A.

(iii) The three pivots in B correspond to the columns of A, which form a basis of the column
space of A.

Thus, rank (A) = 3.

2.5.2 APPLICATION TO HOMOGENEOUS SYSTEMS OF
LINEAR EQUATIONS

Consider a homogeneous system AX = 0 of linear equations over K with n unknowns.

As we know that the solution set W of a homogeneous system AX = 0 in n unknowns is a
subspace of K™, hence W has a dimension.

Theorem 1.7: The dimension of the solution space W of a homogeneous system AX = 0 is
n, , where n is the number of unknowns and r is the rank of the coefficient matrix A.

Proof. In the case where the system AX = 0is in echelon form, it has precisely n _ r free
variables, say x; ; Xi, ; ...; Xi_ -

Let v; be the solution obtained by setting xi; =1 (or any nonzero constant) and the remaining
free variables equal to 0.

As we clearly see that the solutions vy; vy; ...; vy, are linearly independent.

Hence, they form a basis of the solution space W.
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CHECK YOURB PROGRESS 2

a+b+ 2c
2a+b+3c+d

b+c+3d

at+c+d

1: Find a basis and the dimension of subspace W = :a,b,c,d arereal

-1 6 -1 1 -7
2: Find the dimensions of the null space and the column spaceof [ 1 -1 2 2 -1
2 -4 4 7 —4

2.6 SUM AND DIRECT SUMS

Let U and W be subsets of a vector space V. The sum of U and W, written U + W, consists of
all sums u + w where ue U and we W'. i.e.,

U+ W ={v:v=u+w,where ue U and we W

Now suppose U and W are subspaces of V.

Then one can easily show that U n W is a subspace of V.

As we know that U n W is also a subspace of V.

The following theorem relates the dimensions of these subspaces.

Theorem 1.8: If W, and W, are finite-dimensional subspaces of a vector space V, then
W ,+W, is finite-dimensional and

dimW,; + dimW, = dim W{nNnW,) + dim (W, + W,).
Proof. As we know if W is a subspace of a finite-dirnensional vector space V,
every linearly independent subset of W is finite and is part of a (finite) basis
for W and dimW < dim V.

Hence W; N W, has a finite basis {a,, ..., a,} which is part of a basis

{a4,...,ax, by, ..., by} fOr W,

and part of a basis
{aq,...,ax, Cq, ..., Cp } fOr W,
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The subspace W, + W, is spanned by the vectors
ay, .-, Ay b1, ooy by, €1, e, Cpy

and these vectors form an independent set.

Let

Xxia; + X yibj+Xz.c, =0

which implies

— X ZrCr = 2 X0 + 2 Yjb;

Hence }: z,.c, belong to W;.

As Y z,.c, also belongs to W, it follows that

2 zp¢r = X diay

for certain scalars dg, ...., d.

As the set is independent, each of the scalars z, =

Therefore

Y. x;a; + X yjbj = 0 and because {ay,...,ax, by, ...., by} the set is also an independent set,
each x; = 0 and each y; = 0.

Hence {a4,...,ax, by, ..., by, €4, ..., C } IS als0 a basis for W, + W.
Hence

dimW; + dmW, = (k + m)+ (k + n)
=k+(m+k+n)

Direct Sums: The vector space V is said to be the direct sum of its subspaces U and W, denoted
by V. =U @ W if every vinV can be written in one and only one way as v = u + w where
u€elUandw € W.

General Direct Sums: The notion of a direct sum is extended to more than one factor in the
obvious way. That is, V is the direct sum of subspaces W;; W,; ...; W, , written

V=w,&® W,dD
]
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if every vector v € V can be written in one and only oneway as v = w; + wy + -+ + w,

wherew; € Wywy, € Wy, ... ;w, € W,

2.7 COORDINATES

Let V be an n —dimensional vector space over K with basis S = {u;; u,; ...; u,}. Then any
vector v in V can be expressed uniquely as a linear combination of the basis vectors in S, say

v = a1u1 + azuz + __+ anun

These n scalars aq; a,; ...; a, are called the coordinates of v relative to the basis S, and they
form a vector [a;; a,; ...; a,] In K™ called the coordinate vector of v relative to S.

We denote this vector by [v],, or simply [v] when S is understood.

Therefore,

[vs] = lay, az, .., az]

Ex. Consider the vector space P, (t) of polynomials of degree < 2. The polynomials

pi=t+1, py=t—1, p3=(t—1)% =t* -2t + 1formabasis S of P,(t). Find the
coordinates.

Proof. The coordinate vector [v]of v = 2t? — 5t + 9 relative to S is obtained as follows.

Setv = xp; + yp, + zp; using unknown scalars x, y, z, and simplify:

2t2—=5t+ 9=x(t+ 1) +y(t—1) +z(t> =2t + 1)

=xt+x+yt—y+zt?— 2zt +z

=zt’+ (x+y—22)t+ (x—y +2)
Then set the coefficients of the same powers of t equal to each other to obtain the system
z=2, x+y—2z=-5x—y+z=9
The solution of the system is x = 3,y = —4,z = 2. Therefore,

v = 3p; — 4p, + 2p; and hence; [v] = [3,—4,2].
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NOTE:

There is a geometrical interpretation of the coordinates of a vector v relative to a basis S for
the real space R™, which we illustrate using the basis S of R® in above example. First consider
the space

R3 with the usual x, y, z axes. Then the basis vectors determine a new coordinate system of R3,
say with x,, o, z, axes, as shown in Fig.2. i.e.,

(1) The x,-axis is in the direction of u; with unit length ||u,|].
(2) The y,-axis is in the direction of u, with unit length ||u,]|.
(3) The z,-axis is in the direction of u; with unit length ||us]].

Then each vector v = (a, b, c) or, equivalently, the point P(a,b,c) in R® will have new
coordinates with respect to the new x,, y,, z, axes. These new coordinates are precisely [v]s,
the coordinates of v with respect to the basis S.

2.8 SUMMARY

We discussed about basis and dimension of the vector space and also with the help of them
solve number of illustrative examples.

GLOSSARY

Basis
Dimension
Coordinates
Direct sum
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2.12 TERMINAL QUESTIONS

(TQ-1) Define basis.
(TQ-2) Define Dimensions.
(TQ-3) Give example of basis.

Choose one of correct Choioce:

(TQ-4) Let U and W be subspaces of a vector space then

a)
b)
c)
d)

U+V is subspace of V

U and W are contained in U+W
W+W=Ww

All of the above

DEPARTMENT OF MATHEMATICS
UTARAKHAND OPEN UNIVERSITY

PAGE 38




ADVANCED LINEAR ALGEBRA MAT-505

(TQ-5) The coordinate vector of v = (a,b,c) in R® relative to (a) the usual basis E =
{(1,0,0),(0,1,0), (0,0,1)} is

a) [a, b, —c]

[a/2,b/2,c/2]

[2a,2b, 2c]

[a, b, c]
(TQ-6) Does the vectors v; = (—3,7) and v, = (5,5) form a basis for R2.
a). Data not complete

No

Yes

Not in R?

(TQ-7) Are the vectors v; = (2,0,—1),v, = (4,0,7),and v3 =(—1,1,4) linearly
independent inR3?

a) linearly dependent
linearly independent
Data not complete

none of the above

2.13 ANSWERS

Answer of check your progress 1:
2: Linearly dependent
Answer of terminal question
(TQ-4) (d)

(TQ-5) (d)

(TQ-6) (c)

(TQ-7) (a)
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UNIT-3: LINEAR TRANSFORMATION

CONTENTS:

3.1 Introduction

3.2  Objectives

3.3 Homomorphism of vector space or linear transformation
3.4  Some special linear transformation
3.5 Isomorphism of vector space

3.6  Summary

3.7  Glossary

3.8  References

3.9  Suggested Readings

3.10 Terminal Questions

3.11 Answers

3.1 INTRODUCTION

By much, the idea of a matrix did not come before the idea of a linear transformation. Sylvester
only used the name "matrix" to refer to an array of integers in 1850, despite the fact that matrices
are implicitly mentioned in Cramer's work on determinants (1750), Euler's (1760), and Cauchy's
(1829) work on quadratic forms. Though he did not work with them much, Cayley began to
construct a theory about them in 1857, when he found that every matrix satisfies an equation of
its own order and defined “characteristic values".

Around the same period, the idea of linear transformations is mentioned implicitly in Grassman's
Ausdehnungslehre (1844), and particularly in Hamilton's work on quaternions (1845-1849),
which heavily relied on quaternions' capacity to describe rotations in space. Motivated by the
idea of describing forces in statics, Darboux presented the first axiomatization of vector spaces in
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1875. This one looked very different from the current one. Furthermore, Peano provided an
essentially modern axiomatization in 1888, but like Sylvester, he did not do much with it and few
people took notice of it.

A key idea in mathematics is linear transformation, especially when it comes to linear algebra. It
IS a mapping that maintains the scalar multiplication and vector addition operations between two
vector spaces. A function that takes a vector and converts it into another vector in a fashion that
is consistent with the vector space's structure is known as a linear transformation.

Hermann Gunther Grassmann German  polymath  Hermann  Gunther
Grassmann (15 April 1809 — 26 September
1877) was renowned both as a mathematician
and linguist in his day. In addition, he was a
publisher, general scholar, and physicist. Not
much was known about his mathematical
efforts until he was in his sixties. His approach
was both ahead of and better than the idea that
is currently understood as a vector space. He
presented the Grassmannian, a space that
parameterizes every linear subspace of k
15 April 1809- 26 September 1877 Sllimensions in an n-dimensional vector space

https://en.wikipedia.org/wiki/Hermann_Grassmann

3.2 OBJECTIVE

After reading this unit learners will be able to

e Understand the basic concept of linear transformation.
e Visualized the concept of homomorphism and isomorphism in vector space.
e Implement the important theorem of linear transformation.

3.3 HOMOMORPHISM OF VECTOR SPACE OR LINEAR
TRANSFORMATION

Definition: Let U(F) and V(F) be two vector spaces. Then the mapping f :U —V is called a
homomorphism or a linear transformation of U into V if they satisfy the following properties,

(1) f(a+p)=Ff()+f(P), Va,peU
|
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(i) f(ax) =af (&) Va €U

The conditions (i) and (ii) can also be combined into the single condition i.e.,

f (aa+bp) =af (a) +bf (B), Va,be F and Ve, f €U

If f is @ homomorphism of U into V , then V is called a homomorphic image of U.
Theorem 1: If f be a homomorphism of U (F)into V (F), then

(i) f (0) = 0'where 0 and 0 are the zero’s of vector U and V respectively.

(i) f(—a)=—Ff(x)VaeU

Proof (i): Let o eU. Then f (a) €V . Since 0 is the zero vector of V , therefore
f(a)+0 = f(a)=f(a+0)= f(x)+ f(0).

Now V is an abelian group with respect to addition of vectors.

(@) +0 = f(ax)+ f(0)

=0 =f(0) [By left cancellation rule]

(i) If « €U, then « €U . Also we have

0 =f(0) = fla+(-a)] = () + f(~a).

Now f(a)+ f(~a) =0 = f(~a) =additive inverse of f(c)
= f(-a)=—1(a)
Another definition of linear transformation:

Definition: Let U(F) and V(F) be two vector spaces over the same field F. A linear
transformation from U into V is a function T from U into V such that

T(aa +bp) = aT (a) +bT(B) (1)

forall ,finUandforall a,beF.
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The condition (1) is also called linearity property.

Linear operator: Let V(F) be a vector space. A linear operator on V is a function T from V
into V such that

T(aa+bp) =aT(a)+bT(B), forall o,V and a,beF
Thus T is a linear operator on V if T is linear transformation from V into V itself.

Example 1: The function T :V,(R) - V,(R)

Defined by T(a,b,c) = (a,b)va,b e R is a linear transformation from V,(R) into V,(R).

Let & =(a,,b,c),f=(a,,b,,C,) €eV;(R)
If a,beR, then
T(aa+bp) =T[a(a,,b,,c,) +b(a,,b,,c,)]
=T (aa, +ba,,ab, +bb,,cc, +bc,)
= (aa, +ba,,ab, +bb,) [by def. of T]
= (aa,, ab,) + (ba,, bb,)
=a(a,,b)+Db(a,,b,)
=a(a;,b,c)+b(a,,b,,c,)
=aT (a)+bT(B).
Hence T is a linear transformation from V,(R) into V, (R)

Example 2: Let V(F)be the vector space of all mxn matrices over the field F. Let Pbe a
fixed mxmmatrix over F, and let Q be a fixed nxnmatrix over F . The correspondence T
from V into V defined by

T(A)=PAQ V AeV

is a linear operator on V .
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If Ais an mxn matrix over the field F, then PAQis also an mxn matrix over the field F .
Therefore T is a function from V into V . Now let A BeV and a,b e F . Then

T(aA+bB) =P(aA+bB)Q [By definition of T]
= (aPA+DbPB)Q=aPAQ-+bPBQ=aT(A)+bT(B)

So, T is a linear transformation from V into V . Thus T is a linear operator on V .

3.4 SOME SPECIAL LINEAR TRANSFORMATION

Some important linear transformation:

1. Zero transformation: Let U (F) and V (F) be two vector spaces. The function T, from
U into V defined by, T(a) =0  (from zero vector of V)Va €U, is a linear transformation
fromUinto V. Let a,fcUanda,beF.Then ac+bsecU.
We have T(aa+bg)=0

a0+b0=aT(a)+bT(p).

.~ Tis a linear transformation and we will denote it by 0.

2. Identity transformation: Let V(F) be a vector space. The function | from V into V
defined by I (&) = V a €V s a linear transformation from V into V .

If o, eV and a,b e F,then aa+bp eV and we have

| (ax +bp) =al(a)+bl(p)

.. I'is a linear transformation from V into V . This transformation is called as identity operator
on V and denoted by 1.

3. Negative of a linear transformation: Let U(F) and V(F) be two vector spaces. The
function T be the linear transformation from U into V . The correspondence —T defined by
(-T) (@) =T ()] Y €U is a linear transformation from U into V .

Since T(a) eV = -T(a)] eV , therefore —T is a function from U into V .

Let o, S €U and a,be F. Then ax +bpB €U and we have

-T)(aax+bp) =T (ax +bp)] [By definition]

=-aT () +bT ()] [.. T is a linear transformation]
=a[-T(2)]+b[-T(B)]=al(-T)a]+bI(-T)Al

.. T is a linear transformation from U into V . The linear transformation —T is called the

negative of the linear transformation T .
Some properties of linear transformation:
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Theorem 2: Let T be a linear transformation from a vector space U (F) into a vector space
V(F). Then

Q) T (0) = 0'where 0 on the left hand side is zero vector of U and 0 on the right hand side is
zero vector of V.

(i) T(-a)=-T(a)Va eU

@iy T(@-p)=T(a)-T(p) Va,pecU

(iv), TEo+aa,+..+aa)=aTl(y)+a,T(a,)+..+a,T(x,)

Where o, a,,...,a, €U and a,,a,,...,a, € F

Proof (i): Let « €U . Then T(«) €V . We have

T(x)+0=T(x) [.. 0 is zero vector space of V and T(«) €V ]
=T(a+0) [.. 0 is zero vector space of U ]

=T(a)+T(0)

Now in the vector space V , we have

T(ax)+0=T(a)+T(0)

= 0=T(0), by left cancellation law for addition in V .

Note: When we write T (0) =0, there should be no confusion about the vector 0. Here T is a
function from U into V . Therefore if 0 €U, then its image under T i.e., T(0) eV . Thus in
T(0) =0, the zero on the right hand side is zero vector of V.

(i)  Wehave Tla+(-)]=T(a)+T(-) [..T isalinear transformation]

But T+ (—a)]=T(0)=0eV [By (i)]

Thus in V, we have

T(x)+T(-a)=0

=>T(a)=-T(-a)

(i)  T(a-p)=Tla+ (=P

=T(a)+T(-p) [--T is a linear transformation]
=T(@)+T(-5)

=T(a2)-T(B)

(iv)  We shall prove this result using induction method on n, the number of vectors in the
linear combination a,«, +a,a, +...+8,,,.

Suppose T (a,, +a,, +...+a, 0, ) =aT () +3,T () +...+a, 4T (2, 4) (D)
Then, T(a,o +a,0, +...+a, 1, )

=Tl +a,a, +...+8,,0,,)+a,a,]

=[aT () +a,T () +...+a, T (x,1)]+a,T(x,)
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=aT()+a,l(a,)+..+a,,T(a,,)+a,T(,)

Now the proof is complete by induction method. Since the result is true when the number of
vectors in the linear combination is 1.

Example 1: Show that the mapping T :V,(R) —V,(R) defined as

T(a,a,,a;) =(3a, —2a, +a,,a, —3a, —2a,) is a linear transformation from V,(R) to V, (R)

Proof: Let o = (a,,a,,3,), f =(b,,b,,b;) €eV;(R).

Then T(x)=T(a,,a,,8,) =(3a, —2a, +a,,a8, —3a, —2a,)

And T(5)=T(b,b,,b;)=(3b, —2b, +b,,b, —3b, — 2b,).

Let a,beR. Then aa +bpg eV,(R). We have

T(aa +bp) =Tla(a,,a,,a,) +b(b;, b,, b;)]

=T (aa, +bb,,aa, +bb,,aa, +bb,)

= (3(3aa, +bb,) —2(aa, +bb,) + aa, +bb,,aa, +bb, —3(aa, +bb,) —2(aa, + bb,))

= (a(3a, —2a, +a;) +b(3p, —2b, +Db,),a(a, —3a, —2a,) +b(b, —3b, —2b,)

=a(3a, —2a, +a,,a —3a, —2a,) +b(3b, —2b, +b,,b, —3b, —2b,)

=aT (@) +bT(p)

Example 2: Show that the mapping T :V, (R) — V,(R) defined as
T(a,b)=(a+b,a—b,b)

is a linear transformation from V, (R) into V,(R) .

Solution: Let the vectors a = (a,,b,), 5 =(a,,b,) eV,(R).

Then T(a) :T(a:l.’bl) = (a1 +b1!a1 _bllbl) and T(B) =(a, +b,,a, —b,,b,).

Also let a,be R. Then ac+bg eV, (R) and

T(aa+bp)=T[a(a,,b,) +b(a,,b,)]

=T (aa, +ba,,ab, +bb,)

= (aa, +ba, +ab, +bb,,aa +ba, —ab, —bb,,ab, +bb,)

=a(a +b,a —b,b)+b(a, +b,,a, —b,,b,)

=aT (a) +bT(p)

.~ T is a linear transformation from V,(R) into V,(R).

3.5 ISOMORPHISM OF VECTOR SPACE

Definition: Let U (F) and V (F) be two vector spaces. Then a mapping f :U —V is called an

isomorphism of U onto V if
Q) f is one-one
I ———————
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(i) f isonto

(i) f(aa+bp)=af(a)+bf (B)Va,beF,a, fecU

Also then the two vector spaces U and V are said to be isomorphic and symbolically we write
UF)=V(F).

The vector space V (F)is also called the isomorphic image of the vector space U (F). If f is
homomorphism of U (F)into V(F), then f will becomes an isomorphism of U into V if f is
one-one. Also in addition if fisonto V ,then f will become an isomorphism of U onto V .

Isomorphism of finite dimensional vector space:

Theorem 1: Two finite dimensional vector spaces over the same field are isomorphic if and only
if they are of the same dimension.

Proof: First suppose that U (F)and V (F) are two finite dimensional vector spaces each of

dimension n. Then to prove that U(F) =V (F).

Let the sets of vectors {&,, @,, @,...,, }and {3, 5,, Bs,---, B, }are the bases of U and V
respectively.

Any vector « €U can be uniquely expressed as

a=ao +a,a, +..+a,a,

Let f :U —V be defined by

f(a)=a,4,+a,p3,+..+a,0,.

Since in the expression of « as a linear combination of {¢,, @,, «;,...,a, }the scalars a,, a,,...,a,

are unique, therefore the mapping f is well defined.

i.e., f()isauniqueelementofV .

f is one-one: We have

f(ao +a,0, +...+a,a,) = (oo, +b,a, +...+b.,)

=apf+a,pb +..+a,b,=bp +b,5 +..+0b,0,

= (a,—b)p, +(a,-b)B, +..+(a, —b )3 =0 [zero vector of V ]

=a —b =0a,-b,=0,..,a,—b, =0 because

B, By, B, are linearly independent

=a =hb,a, =h,,..,a, =b,

=au +a,a, +..+a,a, =ba +ba, +...+b «,

.. T is one-one.

f is linear transformation: We have

fla(ay + a0, +...+a,,) +b(br, +b,a, +...+b.x,)]

= f[(aa, +bb), +(aa, +bb,)a, +...+ (a3, +bb,), )]
I ———————
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= (aa, +bb) g, + (aa, +bb,) S, +...+ (aa, +bb,) 5,)]

= a(aiﬂl + azﬁz +...t anﬂn) + b(buBl + bzﬁz +..t bnﬂn)
=af (o +a,a, +...+a,a,) +bf (b, +b,, +...+b,x)
.. fis linear transformation.

Hence f is an isomorphism of U into V .

Thus U =V
Conversely, Let U(F) and V (F) be two isomorphic finite dimensional vector spaces. Now we

have to prove that dimU =dimV .
Let dimU =n. Let S = {al,az,...,an} be a basis of U . If f isan isomorphism of U onto V, we

shall show that S = {f (o)), T(ay),-., f(an)} is a basis of V . Then V will also be a finite

dimensional n. First we will show that S is linearly independent.

Let a f(a,)+a,f(a,)+..a,f(a,)=0 (Zero vector of V')

= f(ao +a,a, +..a,a,)=0 [-.- f isalinear transformation]

= ao +3,a, +..a,a,=0 [ fisone-oneand f(0)=0,where 0cU ]

=a =0,a,=0,.a, =0 since o;,a,,...,a, are linearly independent. Hence S is linearly
independent.

Now we have only to prove that L(S') =V . For it let any vector S €V can be expressed as a
linear combination of the vectors of the set S'. Since f isonto V , therefore 5 eV = there
exists  eU such that f(a)= /4.

Let a =c, +C,a, +...+C 1,

Then g = f(a)= f(c,, +C,, +...+C,,)

=c, f(a)+c,f(a,)+...+C, T ()

Thus pis a linear transformation of the vector of S .

Hence V =L(S).

-.S'is a basis of V . Since S contains n vectors, therefore dimV =n

Note: While proving the converse, we have proved that if f is an isomorphism of U onto V ,
then f maps a basis of U onto a basis of V .

Theorem 2: Every n—dimensional vector space V (F) is isomorphic to V, (F).

Proof: Let {&,, @,,...,a,} be any basis of V (F). Then every vector « €V can be uniquely
expressed as

a=ao +a,a,+..8,¢,,8 €F

The ordered n—tuple (a,,a,,...,a,) €V, (F).
1 ——
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Let f:V(F)—>V,(F) bedefined by f(a)=(a,a,,..,a,).
Since in the expression of « as a linear combination of «,,,,...,«, the scalars a,,a,,...,a, are
unique, therefore f () is a unique element of V, (F)and thus the mapping f is well defined.
f isone-one: Let o =ao, +a,0, +...+a,a, and S =ba, +b,a, +...+ b, be any two
elements of V. We have f(a)= f(f)
= f(aoy +a,a, +...+a,2,) = (b, +b,a, +...+b.,)
= (a,a,,...,a,) =(,b,,....b,)
=a =Db,a,=h,,.,a, =b,
=a=p0
Hence, f is one-one.
fisonto V,(F): Let (a,a,,...,a,) be any element of V,(F). Then there exists an element
a +a,a, +..+a,a, €V (F) suchthat f(ae, +a,a, +...+a,a,) =(a,a,,...,a,).
- fisontoV, (F).
f is linear transformation: If a,b e F and «, # €V (F) we have
f(aa+bp) = fla(a,y + 0,0, +...+a,2,) + b0y, + b, +...+ D, )]
= f[(aa, +bb), + (aa, +bb,)a, +...+ (aa, +bb,)e, ]
=(aa, +bb,,aa, +bb,,...,aa, +bb,)
= (aa,, aa,,...aa,) + (bb,,bb,,...,bb.)
=a(a,a,,..a,)+b(b,b,,...,b,)
=af (o, +8,0, +...+a,2,) +bf (b, +b,cx, +...+b,,)
=af () +bf ()
.. T is a linear transformation.
.~ fis an isomorphism of V(F) onto V,(F).
Hence V(F) =V, (F).
Solved Example
Example 1: Show that the mapping f :V,(F) —V,(F) defined by
f(a,a,,8;) = (a,a,)
Is a homomorphism of V,(F) onto V, (F).

Solution: Let o =(a,,a,,a;) and S = (b, b,,b;) be any two elements of V,(F). Also let a,bbe

any two elements of F . We have
f(aa +bp) = fla(a, a,,8;) +b(b;,b,, b;)]
=a(a,,a,)+b(b,b,) =af (a,a,,8;) +bf (b, b,, b,)

C_________________________________________________________________________________|
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=af () +bf ()

.. T isalinear transformation.

To show that f is onto V, (F). Let (a,,a,) be any element of V, (F). Then (a,,a,,0) eV,(F) and
we have f(a;,a,,0)=(a;,a,). Therefore fisonto V,(F).

Example 2: Let V(R) be the vector space of all complex numbers a +ibover the field of reals
Rand let T be a mapping from V(R)to V,(R)defined as T(a+ib)=(a,b). Show that T is an

isomorphism.
Solution: Tis one-one: Let a¢=a+ib,f=c+idbe any two members of V(R). Then

a,b,c,d eR.
We have
T(ax) =T(B) = (a,b)=(c,d)
—a=c,b=d=a+ib=c+id
=a=p
.. T is one-one.
T is on-to: Let (a,b) be an arbitrary member of V,(R). Then there exist a vector a+ib eV (R)
such that T(a+ib) = (a,b) . Hence T is onto.
T is linear transformation: Let ¢ =a+ib, f=c+id be any two members of V(R) and k,,k,
be any two elements of field R. Then
ki +K, B =k (a+1ib) +k,(c+id) = (k,a+Kk,c) +i(k,b+k,d)
We have
T (ke +k, 1) = (kja+Kk,c) +i(kb+k,d), by definition of T
= (k,a, k,b) + (k,c, k,d) =k, (a,b) +k,(c,d)
=k T(a+ib)+k,T(c+id)
= kT (a) +k,T(P)
Hence T is a linear transformation.

Thus T is an isomorphism.
Example 3: If V is a finite dimensional vector space and f is an isomorphism of V into V ,

prove that f must map V onto V .
Proof: Let V(F)be a ndimensional vector space. Let f be an isomorphism of Vinto V i.e., f
is a linear transformation and f is one-one. Now we have to prove that f isonto V .

Let S ={a,,a,,...,, | be abasis of V . First we will prove that

S ={f(a), f(a,),.., f(an)} is also a basis of V . We claim that S'is linearly independent. For
itlet, a, f()+a,f(a,)+...+a,f(r,)=0 (zero vector of V')

= flay +a,a,+...+a,2,) =0 [-- f is linear transformation]
___________________________________________________________________________________________________________________|
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=ao +a,a, +...+a,a,=0 [~ f isone-one and f(0)=0]
=a =0,a, =0,..,a, =0since ,,,...,, are linearly independent.

.S is linearly independent.

Now V is of dimension nand S'is linearly independent subset of V containing nvectors.

Therefore S must be a basis of V . Therefore each vector in V can be expressed as a linear

combination of the vectors belongingto S'.
Now we shall show that fis onto V. Let « be any element of V. Then there exist scalars

C;,Cy,...,C, such that

a=cf(a)+c,f(a,)+...+¢,f(a,)

= f(c, +C,, +...+C )

NowS ={o,,,,....a,} and f —image of this element is « . Therefore fisonto V. Hence fis

an isomorphism of V onto V .
Example 4: If Vis a finite dimensional and f is a homomorphism of V onto V prove that f

must be one-one and so, an isomorphism.
Solution: Let V(F)be a finite dimensional vector space of dimension n.Letfbe a

homomorphism of V onto V i.e., f is a linear transformation and f is onto V . To prove that f
iS one-one.

Let S ={a,,,,...,a, }be a basis of V . We shall first prove that S ={f (&), f (@,),..., f ()} is

also a basis of V . We claim that L(S) =V . The proof is as follows:
Let « be any element of V . We shall show that « can be expressed as a linear combination of
f(), f(a,),..., f(er,). Since fis onto V, therefore « €V implies that there exist €V such

that f ()=« .Now g can be expressed as a linear combination of «;,@,,...,«, . Let

p=ao +a,a, +..+taq,

Then, ¢ = f(p) = f(a +a,a, +...+a,2,)

=af(y)+a,f(e,)+..+a,f(,)

Thus o has been expressed as a linear combination of f(«), f(,),..., f(«,).

Therefore L(S)=V.

Since V is of finite dimension n and S 'is a subset of V containing nvectors and L(S)=V,

therefore S must be a basis of V. Therefore each vector in V can be expressed as a linear

combination of vectors belonging to S and S'is linearly independent. Now we shall show that
f is one-one. Let y and ¢ be any two elements of V such that

y=ca, +C,a, +..+C.a,, 0 =0, +d,a, +...+d ,

n~*n?
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We have f(y)= f(9)

= f(cy +C,0, +...+C,) = f(dyr, + dyr, +...+d, )

=cf(y)+c,f(a,)+...+C f(x,)=d,f()+d,f(ex,) +...+d, T ()
=(,—-d)f()+(c,—-d,)f(e,)+...+(c,—d,)f(e,)=0

=c -d,=0,c,-d,=0,..,c,—d, =0

Since f(a,), f(a,),..., T (e,) are linearly independent

=c¢, =d,,¢,=d,,..,.c,=d,

=>y=0

.. T is one-one.

.. fis an isomorphism of V onto V .

Example 5: If V is finite dimensional vector space and f is a homomorphism of V into itself
which is not onto prove that there is some « = 0in V such that f(«)=0.

Solution: If f is a homomorphism of V into itself, then f(0)=0. Suppose there is no non-zero
vector «in V such that f(«)=0. Then f is one-one. Because

f(B)="1()

= f(p)-f(»)=0

= f(B-7)=0

=p-y=0=p=y

Now V is finite dimensional and f is a linear transformation of V into itself. Since f is one-one,
therefore f must be onto V. But it is given that f is not onto. Therefore our assumption is
wrong. Hence there will be a non-zero vector « in V such that = f («) =0.

Example 6: Define linear transformation of a vector space V(F)into a vector space W(F).
Show that the mapping T : (a,b) —» (a+2,b +3)

of V, (R) into itself is not a linear transformation.

Solution: We have to prove that the mapping

T:(a,b) > (@a+2,b+3)

Of V, (R) into itself is not a linear transformation.

Take a=(12)and £ =(13) as two vectors of V,(R) and a=1b=1 as two elements of the
field R.

Then ac+bfB=1(1,2)+1(1,3)=(12)+ (1 3) =(2,5)

By the definition of the mapping T, we have

T(aa+bp)=T(2,5) =(2+2,5+3)=(4,8)

Also T(a)=T([L2)=(1+2,2+3)=(3,5)
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And T(S)=T(13)=@1+2,3+3)=(3,6).

saTl(a)+bT(8) =1(3,5) +1(3,6) = (3,5) + (3,6) = (6,11)

From equation (1) and (2), we see that

T(aa+bp) #aT(a)+bT(p)

Hence T is not a linear transformation.

Example 7: Let f be a linear transformation from a vector space U into a vector space V . If Siis

a subspace of U , prove that f(S) will be a subspace of V .
Solution: Since U (F) and V (F) are two vector space over the same field F . The mapping f is

linear transformation of U into V i.e.,
f :U —V such that

f(aa+bp)=af (o) +bf (B) Va,be Fand a, U

Let Sbe a subspace of U. Then to prove that f(S)is a subspace of V. Let a,be F and
f(), f(B) e f(S) where a, S €S.

Since S is a subspace of U , therefore a,be Fand o, €S = aa+bBeS

= f(aa+bp) e 1(S)

= af (o) +bf (B) € (S) [~ f(aa+bp) =af (o) +bf (B) ]
Thus a,be Fand f(«), f(B) e f(S)

= af (o) +bf (B) € (S)

Hence f(S)is a subspace of V .

Example 8: If f:U —V is an isomorphism of the vector space U into the vector space V , then
a set of vectors {f(«), f(,),..., f(e,)}is linearly independent if and only if the set
{a,, a,,...,, }1s linearly independent.

Solution: U(F) and V(F) are two vector spaces over the same field Fand fis an

isomorphism of U into V i.e.,
f :U -V such that

fisl-1land f(aa+bp)=af(a)+bf(f) VabeFandV «,fcU

Let {«,,,,...,a }be a subset of U. First suppose that the vector «,,«a,,...,«, are linearly
independent. Then to show that the vectors f(«,), f («,),..., f («,) are also linearly independent.
We have

af(y)+a,f(a,)+...+a,f(a,)=0 where a ,a,,...,a, € F

= f(ao, +a,0,+..+a,2,)=0 [~ f is linear information]
= f(ay +a,a, +...+a,a,)=1(0) [+~ f(0)=0]

=ao +a,a,+..+a.a =0 [ fis1-1]

=a, =0,a, =0,...,a, =0 since the vectors ¢,,,,...,«, are linearly independent.
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Hence the vector f(«,), f(,),..., f(e,) are also linearly independent.

Conversely suppose that the vectors f(«,), f(a,),..., f(e,) are linearly independent. Then show
that the vectors «,, «,,...,, are also linearly independent.

We have

ao +a,a, +...+a.a, =0 where a,,a,,....a, € F

= fay +a,a, +...+a,a,)=1(0)

=af(y)+a,f(a,)+..+a f(x)=0 [~ f is linear information]

=a =0,a,=0,..,a =0

Since the vectors f(«,), f(,),..., f(e,) are linearly independent. Hence the vectors
a,,a,,...,a, are also linearly independent.

Check your progress

Problem 1: Verify that the mapping T : F* — F*defined by,
T(X,Y,2)=(X—y+22X+Yy—12z,—Xx—2y) is a linear transformation.

Problem 2: Verify that the mapping T :V,;(R) —V,(R)defined by T(a,b,c)=(a—b,a—c) isa
linear transformation.

Problem 3: Show that the mapping T : R> — R®defined as T(a,b) = (a—b,b—a,—a) is a linear
transformation from R? into R®.

3.6 SUMMARY

In this unit, we have learned about the important concept of linear algebra like, linear
transformation, homomorphism and isomorphism in vector space. Given that they maintain a
vector space's structure; linear transformations are advantageous. Therefore, under certain
circumstances, a lot of qualitative evaluations of a vector space that is the domain of a linear
transformation may automatically hold in the image of the linear transformation. These essential
tools are very important to solve many matrices related problems. The overall summarization of
this units are as follows:

> Two finite dimensional vector spaces over the same field are isomorphic if and only if
they are of the same dimension.
> Every n—dimensional vector space V (F) is isomorphicto V,(F).
I ———
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3.7 GLOSSARY

> Linear transformation
> Homomorphism
> Isomorphism
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3.10 TERMINAL QUESTION

Long Answer Type Question:

1. Let T :V,(R) > V,(R) be defined as
T(a,b)=(b,a), show that T is an isomorphism.
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If fis an isomorphism of a vector space V onto a vector space W, prove that f maps a
basis of V onto a basis of W.

If f:U —V isanisomorphism of the vector space U into the vector space V , then a set
of vectors f (&), f(,),..., f(«,)is linearly dependent in V if and only if the set
o, 0,,...,a, 1 linearly dependent in U .

Prove that a finite dimensional vector space V (R) with dimension V =n is isomorphic to
R".

Let V be a finite dimensional vector space. If f :V —V is a one-one linear
transformation, show that f is an isomorphism of V onto itself.

If T is a linear operator on a finite dimensional vector space V , show that T is one-one if
and only if T is onto.

Define the following.
(i Linear transformation
(i) Homomorphism
(iii)  Isomorphism
Short answer type question:
1. Show that the mapping T : F* — F? defined by,

T(X,y,2)=(X—y+2z,2X+Y,—X—2Yy +22) is a linear transformation.

Which of the following functions T : R* — R?are linear transformation
a. T(a,b)=(1+a,b)

b. T(a,b)=(b,a)

C. T(a,b)=(a+b,a)

Show that the T : R® — R®is a liner transformation defined by,

TXY,2)=(X+2y—-2,y+2,X+Yy—22)

4. Show that the mapping T :V,(R) — V,(R) defined by
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T(XY,Z,W)=(X—Y+Z+W,X+2Z—W,X+Yy+3z—3w) is a linear transformation.
Show that the mapping T :V, (R) -V, (R) defined by
T(a,b) =(b,0) Va,b e Ris a linear transformation.

Show that the mapping T :V,(R) — V,(R) defined by,
T(XY,2)=0@XX—Y,2X++Y+2)V(X, Y, z) €V,(R) is a linear transformation.

Show that the mapping T : R®* — R*defined by T(a,b,c) =(0,a,b)vVa,beRis a linear
transformation.

Fill in the blanks:
Zero transformation is a
Negative of a linear transformation is
Identity transformation is a

If T is a linear transformation then T (a — f) =

Two finite dimensional vector spaces over the same field are isomorphic if and only if
they are of the same

Every n—dimensional vector space V (F) is isomorphic to

3.11 ANSWERS

Answer of short answer type question

2. (a) T is a linear transformation. (b) T is a linear transformation
(c) T is a linear transformation.

Answer of fill in the blank question

1: Linear transformation : Linear transformation

3: Linear transformation : T(a)-T(p)

5: Dimension : V. (F)
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UNIT-4: RANK NULLITY THEOREM

CONTENTS:

4.1  Introduction

4.2  Objectives

4.3  Range of a linear transformation

4.4 Null space of a linear transformation
4.5 Rank and nullity of a linear transformation
4.6  Summary

4.7  Glossary

4.8  References

4.9  Suggested Readings

4.10 Terminal Questions

411 Answers

4.1 INTRODUCTION

In 1878, Frobenius established a matrix's rank, and in 1884, Sylvester established a matrix's nullity.
The rank—nullity theorem is a linear algebraic theorem that states:

. The dimension of the domain of a linear transformation f is the sum of the rank of f (the
dimension of the image of f) and the nullity of f (the dimension of the kernel of f).

The number of columns of a matrix M is the sum of the rank of M and the nullity of M.

It follows that either surjectivity or injectivity implies bijectivity for linear transformations of
vector spaces of equal finite dimension.
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‘  Rank A) =

10000
01000
00010
00001 o -
00000 domkeer |

dim

. Nullty (A)= 1

Rank-nullity theorem

https://byjus.com/maths/rank-and-nullity/
https://en.wikipedia.org/wiki/Rank%E2%80%93nullity_theorem

4.2 OBJECTIVES

After the completion of this unit learners will be able to:

e Understand the concept of range and null space of a linear transformation
e Visualized the concept of rank and nullity

4.3 RANGE OF A LINEAR TRANSFORMATION

Definition: Let U(F) and V(F) be two vector spaces and let T be a linear transformation from
U into V . Then the range of T written as R(T) is the set of all vectors of £in V such that
L =T(x)forsome ain U.

Thus the range of T is the image set of U under T i.e.,
Range(T)={T(a) eV :a U}

Theorem 1: If U(F) and V (F) are two vector spaces and T is a linear transformation from U
into V , then the range of T is a subspace of V .

Proof: Obviously R(T) is a non-empty subset of V .
I ———
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Let g, 5, € R(T). Then there exist vectors «,,,in U such that T(«,) = £, T(«,) = 5,.
Let a,bbe any elements of the field F . We have

ap +bp, =aT (o) +bT(r,) =T (ae, +ba,) [-- T is linear transformation]
Now U is a vector space. Therefore ¢, r, €U and a,be F = ag, +ba, €U
Consequently T(ae, +bea,) =ap, +ap, e R(T).

Thus a,be Fand g, 5, e R(T) = apf, +bp, e R(T).

Therefore R(T) is a subspace of V .

4.4 NULL SPACE OF A LINEAR TRANSFORMATION

Definition: Let U(F) and V (F) be two vector space and T is a linear transformation form U
into V . Then the null space of T written as N(T) is the set of all vectors « in U such that
T () =0 (zero vector of V). Thus

NT)={aeU :T(x)=0eV}.

If we regard the linear transformation T from U into V as a vector space homomorphism of U
into V , then the null space T is called the kernel of T .

Theorem 2: If U(F) and V(F) are two vector space and T is a linear transformation from U
into V , then the kernel of T or the null space of T is a subspace of U .

Proof: Let N(T)={a €U :T(a)=0eV}.

Since T(0) =0V , therefore at least 0 € N(T). Thus N(T) is non-empty subset of U .
Let &;,a, € N(T). Then T(e;) =0 and T(e,)=0.

Let a,be F.Then ag, +ba, €U and

T(ay +ba,) =aT () +bT(,) [T is a linear transformation]

=a0+b0=0+0=0eV
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cag +ba, e N(T)
Thus a,be Fand ¢o,,a, e N(T) = aa, +ba, € N(T). Therefore N(T) is a subspace of U .

Theorem 1: Let T be a linear transformation from a vector space U (F) into a vector space
V(F). If U is a finite dimensional, then the range of T is a finite dimensional subspace of V .

Proof: Since U is finite dimensional, therefore there exist a finite subset of U , say {«,, @, ,..., &, }
which spans U .

Let S eRange of T . Then there exist « in U such that

T(x)=p.

Now o €U = 3a,,4a,,...,a, € F such that

a=ao +a,0,+..+a,qa,

=>T(o)=T(ay +a,a, +...+a,2,)
=p=al(y)+a,l(a,)+...+a,T(x,) .. (D)

Now the vectors T(«,),T(a,),...,T(ez,) are in range of T. If Sis any vector in the range of T,

then from (1), we see that S can be expressed as linear combination of T(«,),T(,),...,T(e,)-

Therefore the range of T is spanned by the vectors T (), T (r,),..., T ().

Hence the range of T is finite dimensional.

4.5 RANK AND NULITY OF A LINEAR TRANSFORMATION

Definition: Let T be a linear transformation from a vector space U (F) into a vector space V (F)
with U as finite dimensional. The rank of T denoted by p(T) is the dimension of the range of T
i.e.,

p(T) =dimR(T)
The nullity of T denoted by v(T) is the dimension of the null space of T i.e.,
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v(T) =dimR(T)

Theorem 2: Let U and V be vector space over the field F and let T be a linear transformation
from U into V . Suppose that U is finite dimensional. Then

rank(T) + nulity(T) =dimU

Proof: Let N be the null space of T. Then N is a subspace of U . Since U is finite dimensional,
therefore N is finite dimensional. Let dim N = nulity(T) =k and let {«,, @, ,...,, } be a basis

for N.

Since {o,, a,,...,, } s linearly independent subset of U , therefore we can extend it to form a

basis of U . Let dimU =n and let {«,, «,,..., &, & o4 ., ¢, } D€ @ basis for U .

The vectors T(e,), T(a,),..., T(), T (@ 1), T () areinrange of T. We claim that
{T (1), T (), T ()} is a basis for the range of T .

(i)  First we shall prove that the vectors

{T(.1), T(.0)se-s T ()} Span the range of T .

Let e range of T . Then their exists « €U such that T(a) = 4.
Now a €U = 3a,,a,,...,a, € F such that

a=ao t+a,a, +..+a.a, €k

=>T(a)=T(ay +a,0, +...+a,,)
=p=al(y)+a,T(a)+..+aT(x)+a.,T(,)+..+a,T(x,)

[
vy, 00, € N =T () =0,...,T(e) =0]

. the vectors T (e, ;),.... T (e,) span the range of T .

(if)  Now we shall show that the vectors T(e,,,)..... T () are linearly independent.

Let ¢, ,,...,C, € F such that

Cul () +...+C.T(,) =0

=T(C ) +--+Cx,) =0

= C ¥y +---+Cx, € NUll space of Ti.e.,, N

=C, 4O, +..+Ca, =ba, +b,a, +...+ b, forsome b,b,,....b, e F

[--each vector in N can be expressed as a linear combination of vectors «;, a,,..., «, forming a
basis of N ]

C___________________________________________________________________________________|
DEPARTMENT OF MATHEMATICS

UTARAKHAND OPEN UNIVERSITY PAGE 62




ADVANCED LINEAR ALGEBRA MAT-505

=bao, +b,a, +...+ b, —C, 0, —...—C,x, =0

=b =b,=..=b =, =..Cc,=0

[, 0,0, ., , are linearly independent being basis for U ]
=the vector T(e,,,) +...+T(a,) =0 are linearly independent.

.. The vector T (¢, ,),..., T («,) =0 form a basis of range of T .

. rank T =dim of range of T =n—k
sorank (T)+nullity (T)=(nh—-k)+k=n=dimU .

Note: If in place of the vector space V, we take the vector space U i.e., if T is a linear

transformation on an n dimensional vector space U , even then as a special case of the above
theorem,

p(T)+v(T)=n.

Example 1: Find the range, rank, null-space and nullity of the linear transformation

T :V,(R) > V,(R), defined by T(a,b)=(a+b,a—b,b).

Solution: Since we have given that T is linear transformation from V, (R)to V,(R) . Since
{@0),(0,1)}is a basis for V, (R).

We have T(1,0)=(1+01-0,0) =(1,1,0)
and T(0,1) =(0+10-10)=(-11).

The vector T(1,0),T(0,1) span the range of T . Thus the range of T is the subspace of V,(R)
spanned by the vectors (1,1,0),(1,—11).

Now the vectors (1,1,0), (1-11) €V,(R) are linearly independent because if X,y € R, then
X(11,0) + y(1,—11) = (0,0,0)

= Xx(11,0) + y(L-11) = (0,0,0)
= (X + yi X— y’ y) = (01010)
|
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= (x+y,x-y,y)=(0,00)
=2X+y=0,x—y=0,y=0=x=0,y=0

.. the vectors (1,1,0), (1,—11) form a basis for range of T . Hence rank T =dim of range of T =2
Nullity of T =dim of V,(R) —rank T=2-2=0

- null space of T must be the zero subspace of V, (R).

Otherwise: (a,b) enull space of T

=T (a,b) =(0,0,0)

= (a+b,a—b,b)=(0,0,0)

=a+b=0,a-b=0,b=0

=a+b=0,a-b=0b=0

=a=0b=0

.(0,0) is the only element of V,(R) which belongs to null space of T .
.. null space of T is the zero subspace of V, (R).

Example 2: Let T be the linear transformation from F*into F?defined by
T (X, Xy, X5) = (X — X, +2X5, 2X, + X, — X5,—X, —2X,) . Describe the null space of T .

Solution: Let a = (X, X, X;), 8= (Y, ¥, Ys) € F°. Then
T (@) =T (X, X, %), T(B) =T (Y1 ¥2» ¥s)
T(a) = (X, — X, +2X5, 2% + X, — X3, — % —2X,) and

TB) ==Y, +2Y5, 2y, + Y, = ¥Y35,— ¥, — 2Y,)

Also let a,b e F Then aa +bp e F® and
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aa+bfB =a(x, X, X;) +b(Yy, Yz, ¥s)
= (ax1 + va ax, + bYZ!axa + bY3)
Now by definition of T, we have

T(aa +bp) = ([ax, +by,]-[ax, + by, ]+ 2[ax, +by,], 2[ax, +by,]+ax, + by, —[ax; +by,],

- [ax1 + byl] - 2[axz + byz])

= (a[X, — %, + 2%, ]+ bly, — Y, +2Y,],a[2% + X, =X, ]+ 0b[2y, + Yy, — Y,],a[-X% —2%,] +b[-y, —2Y,])

= (a(xi - Xz + 2X312X1 + X2 - X3!_Xl - 2X2) + b(Yl - yz + 2y3:2y1 + Y2 - y3’_y1 - 2y2)
=aTl(a)+bT (L)
. Tis a linear transformation from F3into F3.

Now (X, X,, X;) € null space of T
< T (X, X, %) =(0,0,0)
< (X — X, +2%5,2% + X, — X;,— X, —2X,) =(0,0,0)

S X =X, +2%X; =0,
2X; + X, = X3 =0, .. (D)
- X, —2X, + 0%, =0,

-.the null space of T is the solution space of the system of linear homogeneous equation (1). Let
Abe the coefficient matrix of the equation (1). Then

1 -1 2
A=|2 1 -1| [Performing the elementary row operation R, - R, -2R,R, > R, + R/]
-1 -2 0

This last matrix is in the Echelon form. Its rank A =3 =the number of unknowns in the equations
(1). Hence the equation (1). Hence the equations (1) have no linearly independent solutions.
Therefore x, =0, x, =0, x, =0 is the only solution of the equations (1). Thus (0,0,0) is the only
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vector which belongs to the null space of T . Hence the null space of T is the zero subspace of
F2.

Example 3: Let V be the vector space of all nxn matrices over the field F, and let B be a
fixed nxn matrices over the field F, and let B be a fixed nxn matrix if

T(A)=AB—-BAVAeV
Verify that T is a linear transformation from V into V .

Solution: If A€V, then T(A)=AB-BAeV because AB—BA isalso an nxn matrix over the
field F. Thus T is a function from V into V .

Let A, A, eVand a,beF . Then aA +bA, eV and

T(aA +bA,) = (aA +bA,)B —B(aA +DbA)

— aAB+bAB—aBA —bBA, =a(AB—BA)+b(A,B—BA)
=aT(A)+bT(A,)

.. Tis a linear transformation from V into V .

Example 4: Let V be an n-dimensional vector space over the field F and let T be a linear
transformation from V into V such that the range and null space of T are identical. Prove that n
is even. Also give an example of such a linear transformation.

Solution: Let N be the null space of T. Then N be the null space of T. Then N is also the
range of T.

Now p(T)+o(T) =dimV

i.e. Dimension of range of T + Dimension of null space of T =dimV =n
i.e. 2dimN =n ['.-rangeof T =null spaceof T =N ]

i.e., N iseven.

Example of such a transformation:

Let T:V,(R) —>V,(R) be defined by
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T(a,b)=(b,0)VabeR.

Let =(a,h),f=(a,,b,)eV,(R) and let x,y eR

Then T(xa +yp) =T[x(a,, b)) + y(a,,b,)]

=T(xa, +ya,, X +yb,) = (xb, + yb,,0)

= (xby, 0) + (yb,,0) = x(b,,0) + (yb,,0) = x(b;,0) + y(b,,0)
=xT(a,,b)+yT(a,,b,) = xT(a) + yT(5)

~.T is a linear transformation from V,(R) into V,(R).
Now {(1,0), (0,1)} is a basis of V,(R).

We have T (1,0) = (0,0) and T(0,1) = (1,0)

Thus the range of T is the subspace of V,(R) spanned by the vectors (0,0) and (1,0) . The vector
(0,0) can be omitted from this spinning set because it is zero vector. Therefore the range of T is
the subspace of V, (R) spanned by the vector (1,0) . Thus,

Range of T ={a(1,0):ac R}={(a,0):aR}.

Now let (a,b) e N (The null space of T).

Then (a,b) e N = T(a,b) =(0,0) = (b,0) = (0,0) = b =0.
~.null space of T ={(a,0):a € R}.

Thus range of T =null space of T .

Also we observe that dimV,(R) = 2, which is even.

Example 5: Let V be a vector space and T is a linear transformation from V into V . Prove that
the following two statements about T are equivalent.

(i) The intersection of the range of T and the null space of T is the zero subspace of V
i.e.,, R(T)NN(T) ={0}.
(ii) T[T(2)]=0=T(a) =0.
I ———
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Solution: First we shall show that (i) = (ii)
We have T[T(«@)]=0=T(a)e N(T)

= T(a) e R(T) " N(T)

= T () =0 because R(T) " N(T) ={C}.

Now we will show that (ii) = (i).

Let e z0and a e R(T) " N(T).

Then ¢ e R(T)and a e N(T).

Since a € N(T), therefore T («) =0.

Also ¢ eR(T)=3p eVsuchthat T(B) =« .

Now, T(B) =«

=TT (B]=T(a) =0

Thus 34 €V such that T[T(S)]=0but T(8)=a #0.

This contradict the fact that the given hypothesis (ii).
Therefore there exist no & € R(T) W N(T) such that e = 0.

Hence R(T) " N(T) ={0}.

Check your progress

MAT-505

[vaeV =T(ax)eR(T)]

[From (1)]

Problem 1: Check the rank and nullity of the matrix

3
2
-1 -2 5 4
Let us reduce this in row reduced echelon form

Applying Ry — Ry + (-3)R; and Rz — R3 + Ry
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1 2 3

1 -7 =7

0 -1 7 7
Applying R3 — R3 + Ry

1 1 2 3
A~ 10 1 -7 -7
0 0 0 0
ApplyingCs - C2+ C;,C3 —» C3 + (—2)C| and C4 — Cyq + (—3)01

1 0 0 0
A~ 1|0 1 -7 -7
0 0 O 0
ApplyingC3 —» C3+7C;and C4— C4+ 7C5

0
A~ 1
0

Clearly, rank(A) = 2 and nullity(A) = 2

Therefore, rank(A) + nullity(2) = 2 + 2 = 4 = Number of columns.
Problem 2: Check the nullity of the matrix

3 4 3
9 12 9
3 4

Solution: Given matrix

4 3
A= 2 9
4 1
Applying elementary operations, Ry (-3) and Ry (-1)
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=

0 O
0 -2

Applying elementary operations, R3(-%)

[1
A~ |0
0

3
0
0
e

3
A~ 0
i 1
Applying elementary operations, C,4, we get
A ™
Applying elementary operations, Cy(-3), C3(-4) and C4(-3) we get
1 0
A~ |0 0
0 0

Thus, Rank of matrix A = 2 and Nullity = Number of columns —rank =4 -2 = 2.

46 SUMMARY

In this unit, we have learned about the one of the important concept in linear algebra name as rank
and nullity theorem. After the completion of this unit these important about the rank and nullity:

An invertible matrix has a rank equal to its order, and its nullity is equal to zero.

In the row-reduced echelon form of the given matrix, rank is the number of leading columns
or non-zero row vectors; nullity is the number of zero columns.

The dimension of A's null space, also known as the kernel of A, determines a matrix's
nullity.

Assuming A is an invertible matrix, null space (A) has the value {0}.

The number of non-zero eigenvalues in a matrix represents its rank, while the number of
zero eigenvalues establishes the matrix's nullity.
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4.7 GLOSSARY

Range space
Null space
Rank
Nullity

4.8 REFERENCES

Gel'fand [.LM. Lectures on linear algebra (1989), Courier Corporation.

Kenneth Hoffman & Ray Kunze, Linear Algebra (2" edition)(2015), Prentice-Hall.
David C. Lay, Linear Algebra and its Application (3" Edition) (2007) Pearson Education
Asia, India Reprint.

Seymour Lipshutz and Marc Lipson, Schaum’s outlines “Linear Algebra” (3"
Edition)(2012), Mc Graw Hill Education.

J.N. Sharma and A. R. Vasistha, Linear Algebra (29"" Edition) (1999), Krishna Prakashan.

SUGGESTED READING

Minking Eie & Shou-Te Chang (2020), A First Course In Linear Algebra, World
Scientific.

Axler, Sheldon (2015), Linear algebra done right. Springer.
https://nptel.ac.in/courses/111106051
https://archive.nptel.ac.in/courses/111/104/111104137
https://byjus.com/maths/rank-and-nullity/

https://old.sggu.ac.in/wp-content/uploads/2020/07/Linear-AlgebraTY _506.pdf

4.10 TERMINAL QUESTION

Long Answer Type Question:

1: If T is a linear transformation from U into V , then prove that the range of T is a subspace
of V.
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If T is a linear transformation from U into V , then prove that the null of T is a subspace
of U.

Define the following.

Q) Range of linear transformation

(i) Null space of linear transformation

(iii)  Kernel of a linear transformation

State and prove the rank and nullity of a linear transformation.

Let V be a vector space and T is a linear transformation from V into V . Prove that the
following two statements about T are equivalent.

The intersection of the range of T and the null space of T is the zero subspace of V i.e.,
R(T) A N(T) ={0}.
T[T(a2)]=0=T () =0.

Short answer type question:

1: If T is a linear transformation from U into V . If U is a finite dimensional, then the range
of T is a finite dimensional subspace of V .

Let Tbe the linear transformation from V,(F)into V,(F) defined by
T(x,y,2) =(X—y+2z,2x+Yy—2z,—x—2y). Describe the null space of T .

Fill in the blanks:

1: The number of linearly independent row or column vectors of a matrix is the of the
matrix

The dimension of the null space or kernel of the given matrix is the of the matrix
For any matrix A of order m by n, rank(A) + = number of columns in A

The nullity of an invertible matrix is
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4.11 ANSWERS

Answer of short answer type question:

2: null space of T is the zero subspace of V,(F).

Answer of fill in the blank question:
1: Rank
3: nullity(A)
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UNIT-5: CHANGE OF BASES
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5.1

INTRODUCTION

A coordinate vector, which is a series of n scalars, can uniquely represent any element of a vector
space using an ordered basis of a vector space of finite dimension n in mathematics. The coordinate
vector representing a vector V on one basis differs, in general, from the coordinate vector
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representing V on the other basis when two separate bases are taken into account. Every assertion
expressed in terms of coordinates with respect to one basis must be changed into an assertion
expressed in terms of coordinates with respect to the other basis. This is known as a change of
basis.

The change-of-basis formula, which describes the coordinates relative to one basis in terms of

coordinates relating to the other basis, leads to this kind of conversion. This formula can be stated

using matrices.
Xog = AX

o] new

where A is the change-of-basis matrix (also known as the transition matrix), which is the matrix
whose columns are the coordinate vectors of the new basis vectors on the old basis; "old" and
"new" refer to the firstly defined basis and the other basis, respectively; and X, and X, are the

column vectors of the coordinates of the same vector on the two bases.

LN@gJ

New vectors (red) are obtained by a linear combination of one basis of A vector with two distinct bases (red and purple
vectors (purple). Should they exhibit linear independence, these establish ~ arrows).

a novel basis. The linear transformation known as the change of basis is

the result of the linear combinations connecting the first basis to the https://en.wikipedia.org/wiki/Change_of_basis
other.

5.2 OBJECTIVES
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After reading this unit learners will be able to

Understand the concept of change of basis.

Implement the application of theorems related to change of basis.

Understand the concept of similarity of matrices.

Trace of matrices and determinant of linear transformation in finite dimensional vector

space

5.3 CHANGE OF BASIS

Suppose V is an n—dimensional vector space over any field F . Let B and B’ be two ordered
basis for V . If « is any vector in V , then we are now interested to know its relation between the

coordinates with respect to B and its coordinates with respectto B .

Theorem 1: Let V(F) be an n—dimensional vector space and let B and B’ be two ordered

bases for V . Then there exist a unique nxn invertible matrix A having entries from F such
that

1) [els = Ala],

2) [a], = A'al;
for every vector ain V .
Solution: Let B ={a,,,,...,a,} and B ={B,, B,,.... B,}. Then there exists a unique linear
transformation T from V into V such that
T(a;)=pB;,1=12,...,n (D)
Since T maps a basis B onto a basis B, therefore T is necessarily invertible. The matrix of T
relative to B i.e., [T]; will be a unique nxn matrix with element in F . Also this matrix will be
invertible because T is invertible.
Let [T]; = A=[a],.. Then,

T(aj)=zn:aijaj,j=1,2,...,n ... (2

Let X, X,,..., X, be the coordinates of « with respectto B and vy,,V,,...,y, be the coordinates of
a with respect to B . Then

a=Yif+Y,5+.+ Y. B, = Zyjﬂj
-1
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[From (1)]

[From (2)]

n
Also, a =) xa;.

i=1

n

X o= Zaijyj because the expression for « is a linear combination of elements of B is unique.
j=1

Now [a] is a column matrix of the type nx1. Also [«] is a column matrix of the type nx1.

The product matrix Ala] . will also be of the type nx1.

The i"entry of [a] =X =D &Y,
j=1

=i"entry of Ala], .

~lalg = Ale],

= A'[al; = A" Alal,

= A'[a], = o],

= A'[al, = [a], -

Note: The matrix A=[T], is called the transition matrix from B to B . It express the coordinates

of each vector in V relative to B in terms of its coordinates relative to B .
Working rule to write the transition matrix from one basis to another:

Let B={a,, a,,;,....,a,} and B ={B,, B,, Bs..-., B,} be two ordered bases for the n-dimensional
vector space V(F). Let A be the transition matrix from the basis B to the basis B'. Let we

consider T be the linear transformation from V into V which maps the basis B onto the basis B .
Then Ais the matrix of T relative to Bi.e., A=[T];. So, in order to find the matrix A, we should

first express each vector in the basis B as a linear combination over F of the vectors in B. Thus
we write the relations

B=aya tapa, +..+aya,
B, =apoy +aya, +..+ 3,0,

p,=a,0 +a,a, +..+a,a,
|
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Then the matrix A=[a;]. ., i.e., Aisthe transpose of the matrix of coefficients in the above

ij dnxn

relations. Thus,

8, &, .. &,
dy,y a4, ... 4y,

a, a, .. a,
Now suppose « is any vector in V . If [«]; is the coordinate matrix of « relative to the basis B

and [a]B- its coordinate matrix relative to the basis B’ then,

[a]s = Ala],

and [@], = A™[a]s.

Theorem 2: Let B ={a,,@,, a,..,a, } and B ={B,, B,, Bs,.-, B,} be two ordered bases for an
n—dimensional vector space V (F). If (X, X,,...,X,) is an ordered set of nscalars, let

a =Y xaand B=) x[. Thenshow that, T(a) = A,

i=1 i=1
Where, T is the linear operator on V defined by
T(x)=p4,1=12,..,n.

Proof: We have T(a) = T(Z xiai]

i=1

[T is linear]

54 SIMILARITY OF MATRICES

Definition: Let A and B be square matrices of order n over the field F . Then B is said to be
similar to A if there exist an nxn invertible square matrix C with elements in F such that
B=C'AC

Theorem 2: The relation of similarity is an equivalence relation in the set of all nxn matrices
over the field F.

Proof: If Aand Bare two nxn matrices over the field F, then B is said to be similar to Aif
there exists an nx ninvertible matrix C over F such that,

B=C"AC.
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Reflexive: Let Abe any nxn matrix over F . We canwrite A=1"Al, where | is nxn unit
matrix over F .
- Aissimilarto A because | is definitely invertible.

Symmetry: Let A be similar B. Then there exists an nxn invertible matrix P over F such that
A=P'BP

= PAP ' =P(P'BP)P*

= PAP'=B

= B=PAP*

=B=(P")'AP!

[-Pis invertible means P~ is invertible and (P™) " =P]

= B issimilarto A.

Transitive: Let A besimilarto B and B be similarto C. Then

A=P'BP

and B=Q'BQ,

where Pand Q are invertible nxn matrices over F .

We have A=P'BP=P*(Q'CQ)P

A=(P7Q™)C(QP)

A=(QP)"'C(QP)

[.. Pand Qare invertible means QP is invertible and (QP)™" =P'Q™"]

S Aissimilarto C.

Hence similarity is an equivalence relation on the set of nxn matrices over the field F .

Theorem 3: Similar matrices have the same determinant.
Proof: Let us consider the matrix B is similar to the matrix A. It means there exist an invertible

matrix C such that

B=C'AC

= det B = det(C " AC) = (detC *)(det A)(detC)

= det B = (detC*)(detC)(det A) = det B = (detC 'C)(det A)
= det B = (det 1)(det A) = det B =1(det A) = det B = det A.

5.4.1 SIMILARITY OF LINEAR TRANSFORMATION

Definition: Let A and B be linear transformation on a vector space V(F). Then B is said to be
similar to A if there exist an invertible linear transformation C on V such that

B=CAC™
Theorem 4: The relation of similarity is an equivalence relation in the set of all linear
transformations on a vector space V (F).
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Proof: If Aand B are two linear transformation on the vector space V (F), then B is said to be
similar to Aif there exists an invertible linear transformation C on V such that

B=CAC™
Reflexive: Let Abe any linear transformation on V such that we rewrite,

A= 1Al where | denote the identity transformation on V .
- Aissimilarto A because | is definitely invertible.

Symmetry: Let A issimilar to B. Then there exist an invertible linear transformation P on V
such that

A=PBP*
= P*'AP =P *(PBP*)P

=P'AP=B=B=P"'AP

=B=P'AP ") = B issimilarto A.

Transition: Let A be similar to Band also B is similarto C.

Then, A=PBP™

and B=QCQ™

where P and Q are invertible linear transformation on V .

We have B=CAC™" =P(QCQ )P

=(PQ)IC(Q P ™) =(PQIC(PQ)*

.. A besimilarto C.

Theorem 5: Let T be a linear transformation on an n—dimensional vector space V (F) and let
B and B be two ordered basis for V . Then the matrix of T relative to B'is similar to the matrix
of T relative to B.

Proof: Let B={a,,,,...a,} and B ={B,, B,,.... B,}-

Let A=[a;]
and C =[c;]

be the matrix of T relative to B

nxn

be the matrix of T relative to B . Then

nxn

T(aj):zn:aijai,jzl,Z,...,n .. (D

and T(ﬂj)zzn:cijﬂi, i=12,..n  ...(2)

Let S be the linear operator on V defined by
S(OCJ)ZﬂJ,j:l,Z,,n ...(3)

Since S maps a basis B onto a basis B, therefore S is necessarily invertible. Let P be the matrix
of Srelativeto B. Then P is also an invertible matrix.

If, P =[p;],... then
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S(a;) =D pya;, j=12,...,n
i=1

We have,
T(B;)=T[S(«;)] [From (3)]

:T(Z pkjakj [From (4), on replacing i by k which is immaterial]
k=1
[T is linear]

[From (1), on replacing j by k]

Also, T(B;) = Zn:ckjﬂk [From (2), on replacing i by k]
=3¢, S(e) [From (3)]

- cka D, [From (4), on replacing j by k]

i=1

[Zn: pikajjai ... (6)

n
k=1
i

i=1

From (5) and (6), we have

n

Z@aikpkj]ai =Z[Z pikck,-jai

i=1 \ k=1

= Zaik Pej = Z PikCy
k=1 k=1
= [ ][ Pi Jon = [Pik Jnn [Ck j 1nn [By def. of matrix multiplication]
= AP =PC
=P'AP=P'PC [ P exists]
=P'AP=IC=P*AP=C
= Cissimilarto A
Note: Suppose B and B are two ordered basis for an n—dimensional vector space V(F). Let T
be a linear operator on V . Suppose A is the matrix of T relative to B and C is the matrix of T

relatives to B'. If P is the transition matrix from the basis B to the basis B, then C = P*AP.
When we already know the matrix of T with respect to basis B, this solution will allow us to find

the matrix of T with respect to basis B .
I ———
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Theorem 6: Let V be an n-dimensional vector space over the field F and T,, T, be two linear
operator on V . If there exist two ordered B and B for V such that [T,]; = [T.], ., then show that

T, issimilarto T,.
Proof: Let B ={a,,a,,...a,} and B' = {8, B,..... . }.
Let [T,]s = I.Tl]B' = A=[a;],.,. Then

T(a) =D a,a,j=12,..n
i=1

and Tl(,BJ.)=Zn:aij,Bi, i=12,...,n

Let S be the linear operator on V defines by
S(a;)=p;,1=12,..,n

Since S maps a basis of V onto a basis of V , therefore S is invertible.

We have T,(8;) =T,[S(«a;)]
= (T;S)(«))

Also, TZ(ﬂj) = Zn:aijﬂi
:iaijs(ai)

= S(Zn: aijaij
i=1

= S[Tl(aj)]

= (ST)(«;)
From (4) and (5), we have
(TZS)(aj) = (STl)(OCj). j=12,..,n
Since T,S, ST, agree on a basis for V , therefore we have
T,S=ST,
=T,58'=ST,S* =T, =ST,S™*
=T,=ST,S" =T, issimilarto T,

. (Q2)

. 3)

[From (3)]
(4

[From (2)]

[From (3)]

[--Sis linear]

[From (1)]
.. (5

5.5 DETERMINANT OF LINEAR TRANSFORMATION IN

FINITE DIMENSIONAL VECTOR SPACE
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Let we assume that T be a linear operator in n —dimensional vector space V (F)and B, B are two
ordered basis for V , then [T]g,[T], are two similar matrices. As we know that similar matrices

have same determinant. This allows us to define in the manner that follows:

Definition: Let T be a linear operator on n—dimensional vector space V (F). Then, with respect
to any ordered basis for V , the determinant of T equals the determinant of the matrix of T .
Following the discussion above, our definition of T 's determinant is reasonable since it is a
unique element of F.

Definition (Scalar transformation): In a given vector space V (F), a linear transformation T

on V is referred to be a scalar transformation Ton Vif, T(a) =caVa €V , where c is fixed
scalarin F.

If the linear transformation T is equal to the scalar c, then we rewrite T =cl , where | is the
identity matrix.

5.6 TRACE OF A MATRIX

Definition: Let A be n order square matrix over a field F. The trace of A is the total sum of the
elements of A that lie along the principal diagonal. Mathematically we define trace of the matrix

by
tr(A) =D a; =a, +a,, +...+a,
i=1
Some fundamental properties/theorems of the trace of a matrix are as follows:
Theorem 7: Let Aand B be two square matrices of order nover afield Fand A e F. Then
(1) tr(AA) = Atr(A)
(2) tr(A+B)=tr(A)+tr(B)
(3) tr(AB) =tr(BA)
Proof: Let A=[a;;],., and B=[b;;]
(1)  Wehave 1A =[4a;;],., by def. of multiplication of a matrix by a scalar.

nxn *

~tr(AA) = Zn:/la“ = i_zn: a;,; = Atr(A)

(2) Wehave A+B=[a;; +b;]

nxn

~tr(A+B) = Zn:(a“ +,;) = Zn:a“ + Zn:b“ =tr(A) +tr(B)

n
where ¢;; =Y a b, .

k=1

3) We have AB =[c;]

nxn
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Also BA=[d;]

nxn?

n
where d;; = > b, a,;
k=1

Now tr(AB) =) c; =
i=1

[interchanging the order of summation in the last sum]

=d, +d,, +...+d,, =tr(BA)

Theorem 8: Trace of the similar matrices are same.

Proof: Let us consider that T be the linear operator in a n —dimensional vector space V(F). If B
and B are two ordered basis for V then, [T],, [T], are the similar matrices. Also similar matrices

have the same trace. Also we know that similar matrices have the same trace. This allows us to
define in the manner that follows:

Definition (Trace of linear transformation): Let T be a linear operator in vector space V(F) of
dimension n. In that case, the trace of T is the matrix of T with respect to any ordered basis for V.

Based on the previous explanation, our definition of the trace of T is reasonable since it is a
distinct element of F.

Solved Examples

Example 1: Find the matrix of the linear transformation T on V,(R) defined as
T(a,b,c)=(2b+c,a—4b,3a)

With respect to the ordered basis B and also with respect to the basis B where,

(i) B={0,0),(0,1,0),(0,0,1)}

(ii) B ={(111),(11,0),(10,0)}

Answer (i): We have,

T(0,0)=(0,1,3)=0(10,0)+1(0,1,0) +3(0,0,1)

T(0,1,0)=(2,—4,0)=2(1,0,0)—-4(0,1,0) + 0(0,0,1)

and T(0,0,1) =(1,0,0) =1(1,0,0) + 0(0,1,0) +0(0,0,1) .

Thus, by the definition of T with respectto B, we have
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2 1

1 -4 0

3 0 O
Note: In order to find the matrix of T relative to the standard basis B, it is sufficient to compute
T(@0,0), T(0,1,0) and T(0,0,1). There is no need of further expressing these vectors as linear
combinations of (1,0,0), (0,1,0) and (0,0,1). Obviously the coordinates of the vectors T (1,0,0)
, T(0,1,0) and T(0,0,1) respectively constitutes the first, second and third columns of the matrix

[T]s-
(i) We have T(L11) =(3,—3, 3)

Now our aim to express (3,—3, 3) as a linear combination of vectors in B'. Let

(a,b,c)=x(@111)+y(10)+2(1,0,0)
=(X+Yy+2z2,X+VY,X)

Then, x+y+z=a,Xx+y=b,x=c

i.e, Xx=c,y=b-c,z=a-b

putting a=3,b=-3 and c=3in (1), we get

x=3,y=—6and z=6.

~T@LY)=(3-33)=3(L1L1)-6(L10)+6(L0,0)

Also, T(L1,0)=(2,—3,3).

Putting a=2,b=-3 and c =3in (1), we get

T(1,1,0) = (2,—-3,3) =3(1,1,1) — 6(1,1, 0) +6(1, 0,0)

Finally, T(1,0,0)=(0,13).

Putting a=0,b=1and c=3in (1), we get

T(1,0,0)=(0,1,3) =3(111) - 2(1,0,0) —1(1,0,0)
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3 3 3

~[Tl, =|-6 -6 -2|.
6 5 -1

Example 2: Let T be the linear operator on R®defined by

T (X, Xy, X5) = (8% + X3,—2X, + X,, — X, + 2X, +4X,;) . What is the matrix of T in the ordered basis
{a,,a,,a,} where o, =(1,0,1),, =(-1,2,1) and o, =(2,1,1) ?

Solution: By definition of T , we have
T(y)=T(10,1)=(4,-273).

Now our aim is to express (4,—2,3) as a linear combination of the vectors in the basis
B={a,,a, a,}. Let

(a,b,c) =xa, +ya, + 24
=x(10,1)+y(-121)+2(211)
=(X—y+22,2y+7,X+Y+2)

Then, Xx—y+2z=a,2y+z=b,x+y+z=c

Solving these equations, we get

—a—-3b+5¢c b+c-a b-c+a
X = Y= Z=

4 4 2

Putting a=4,b=-2,c=3 in (1), we get

17 3
~T(ey) = ?al —Zaz —Za3

AlsoT(e,) =T(-1,2,1) =(-2,4,9) . Putting
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a=-2,b=4,c=9 in (1), we get x=37:r),y=§, z=—Z

4 2

5 7
T(a,) :Ial +Z“2_Ea3

Finally T(e,)=T(2,1,1) =(7,—3,4). Putting,

a=7,b=-3,c=4in (1), we get x:l—zl,y:—g,z=0

11 3
~T(a,) = Eal —Eaz +0a,

11

3
2

0

Example 3: Let T be a linear operator on R® defined by
T (X, Xy, X3) = (BX, + X5, — 2%, + X,,— X +2X, +4X;) . Prove that T is invertible and find the a
formulafor T .

Solution: Suppose B is the standard ordered basis for R*. Then B ={(1,0,0),(0,1,0),(0,0,1)}. Let
A=[T]; i.e. let Abe the matrix of T with respect to B. First we shall compute A.

We have
T(1,0,0)=(3,-2,—1)
T(0,,0)=(0,1,2)
T(0,0,1) = (1,0,4)

And
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3 0
~A=[T],=|-2 1 0.
1 2

Now T will be invertible If the matrix [T]; is invertible.

3 01
We have detA=|Al=-2 1 0/=3(4-0)+(-4+1)=9
-1 2 4

Since det A = 0, therefore the matrix Ais invertible and consequently T is invertible.

Now we shall compute the matrix A™. For this let us first find adj A.
The cofactors of the elements of the first row of Aare
1 0}-2 01-2 1| .

) ) e, 4,8—-3
2 41-1 4|-1 2

The cofactors of the elements of the first row of Aare
‘0 1‘ ‘ 3 1‘ ‘ 3 0

ie, 2,13 -6
2 41-1 4 |-1 2

The cofactors of the elements of the first row of Aare

1 0 -2 0-2 1

‘O 1‘ ‘3 lHB

o .
‘ ie, -1, -2,3

4 8 -3
.. Adj A=transpose of the matrix | 2 13 -6
-1 -2 3

MAT-505
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4 2 -1
8 13 -2
-3 -6 3

AT =iAdj A=l
det A

Now I.T_l]B = (I.T]B)_l =A™
We shall now find a formula for T™*. Let o =(a,b,c) be any vector belonging to R*. Then
I.Til(a)]s = I.Til]B[a]B

4 2 -1fa 4da+2b-c
8 13 -2|b :% 8a+13b-2c
-3 -6 3 |c —-3a-6b+3c

Since B is the standard ordered basis for R?,

T Ha)=T"(a,b,c) :%(4a+2b—c,8a+13b—2c,—3a—6b+3c).

Example 4: Let T be the linear operator on R®defined by
T (X, X, X3) = (BX, + X3, — 2%, + Xo,—X, + 2X, +4X;)

Q) Find the matrix of T in the standard ordered basis B for R®.
(i) Find the transition matrix P from the ordered basis Bto the ordered basis

B ={a,,a,,a,}where o, =(1,0,1),a, =(-1,2,1) and a, =(2,1,1). Hence find the
matrix of T relative to the ordered basis B .

Solution (i): Let A=[T];. Then

3
A=-2 1
-1 2

(i)  Since B is the standard ordered basis, so, the transition matrix P from Bto B can
written as
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Now [T], =P'[T],P.
Now we compute matrix P, then we find that detP = —A.

1

Therefore P = — = Adj P = 1
detP 4

1 1

[-17 -35 -22
6
0

Example 5: Let T be the linear operator on R?defined by
T(x,y) = (4x—-2y,2x+y)

Compute the matrix of T relative to the basis {e,, c, } where o, = (L1), , = (-1,0).
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Solution: By def. of T, we have

T()=TLY=(273

Now, we express the vector (2,3) as the linear combination to the basis {al, az}.

Let (a,b) =X + yo, =X(1,1D) + y(-1,0) =(X—-y,X).

Then x—y=a,x=Db

Solving these equations, we get

x=b,y=b-a
Putting a=2,b=3in (1), weget x=3,y=1
~T(e) =3, +1a, .. (2)
Again T(e,) =T(-10) =(-4,—2). Putting a=—4,b=-2in (1), we get x=-2,y =2.
~T(a,) =20, + 202, ...(3
From the relation (2) and (3), we see that the matrix of T relative to the basis {a,,a,} is
_ {3 - 2}

1 2

Example 6: Let T be a linear operator on R?defined by:

T(x,y)=(2y,3x-y)

Find the matrix representation of T relative to the basis {(1,3),(2,5)}.

Solution: Let ¢, =(1,3) and, =(2,5) . By def. of T, we have
T(r,)=T(13)=(2.3,3.1-3)=(6,0)
And T(e,)=T(2,5)=(2.53.2-5)=(10,1).

Now our aim is to express the vectors T(¢,) and T(«,) as linear combinations of the vectors in

the basis {a;, @, }
|
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Let (a,b) = pe, + o, = p(L,3)+q(2,5) =(p+29,3p +50q).
Then p+2q=a,3p+5q=D>b

Solving these equations, we get

p=-5a+2b,g=3a-b

Putting a=6,b=0 in (1), we get p=-30,q=18.

~.T() =(6,0) =—-30¢, +18¢,
Again putting a=10,b =1 in (1), we get

p=-48,0=29

~T(e,) =(10,1) =48, + 29, .. (3)

From the relations (2) and (3), we see that the matrix of T relative to the basis {al, az} is

-30 -48
18 29

Example 7: Show that the vectors o, =(1,0,-1), ¢, =(1,2,1), &, = (0,—3,2) form a basis for R®
. Express the each standard basis vector in the linear combination of the vectors of o, ,, oz .

Solution: Let a,b, c be scalars such that,

aa, +ba, +ca; =0

ie, a4, 0,—-1)+b( 2,1 +c(0,-3,2)=(0,0,0)

i.e.,, (@+b+0c,0a+2b—-3c,—a+b+2c)=(0,0,0)
i.e., a+b+0c=0

O0a+2b—-3c=0

—a+b+2c=0
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The coefficient matrix A of these equation is,

1 1 0
0 2 -3|.
-1 1 2

1 1 0
We have detA=| Al=|0 2 -3 =1(4+3)-1(0-3)=7+3=10
11 2

Since det A= 0, therefore the matrix Ais non-singular and rank A=3 i.e., equal to the number
of unknowns a,b,c.Hence a=0,b=0,c=0 is the only solution of the equation (1). Therefore,

the vectors o, a,,aare linearly independent over R. Since dimR® =3, therefore the set

{a,, a,,a;} containing three linearly independent vectors form a basis for R®.

Now let B={e,e,e,} be the ordered standard basis for R®. Then
e, =(1,0,0),e, =(0,1,0),e, =(0,0,1). Let B ={a;, ,,z;}. We have

o, =(10,-1) =1e, +0e, —1le,

a, =(1,21) =1e +2e, +1e,

o, =(0,-3,2)=0e, —3e, + 2e,

If Pis the transition matrix from the basis B to the basis B', then

1 1 0
P=|0 2 -3
11 2

Let us find the matrix P. For this let us first find Adj P. The cofactors of the elements of the
first row of P are

—3‘ ‘0 —SHO 2

ie,7,32.
1

2 -1 2|}-1

The cofactor of the elements of the second row of P are
]
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‘1 OHl O‘ ‘1

ie,—2,2,-2
1 21 2 -1 j

The cofactor of the elements of the third row of P are

o 1 01 1.
,— , ie,—3,3,2.

2 -3 0 =30 2
7 3 2 -2

.. Adj P =transpose of the matrix| -2 2 -2|=(3 2 3
-3 3 2 2 -2 2

7 —2 -3
pto—t adip=lls 2 3

detP 10
¢ 2 _2 2

Now, e, =1e, +Oe, +Oe,.

1
.. Coordinates matrix of e, relative to the basis B=|0|.
0

1
. Coordinates matrix of e, relative to the basis B' =[e,]. =P™(0
0

.
S =—at—a, t—a,.
10 10 % 10°°
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Also [e,], =

Check your progress

Problem 1: If T be the linear operator on R?defined by T(a,b) = (a,0) then write the matrix of
T in the standard ordered basis B ={(1,0),(0,1)}.

Also if B ={(1,1),(2,1)} is another ordered basis for R*, find the transition matrix P from the
basis B'. Hence find the matrix of T relative to the basis B .

Problem 2: If the matrix of a linear transformation T on V, (C), with respect to the ordered basis

11
B={(10),(0,1)}is L J , what is the matrix of T with respect to the ordered basis

B ={(L1),L-1)3}?

Problem 3: Is it true that only matrix similar to the identity matrix | is itself.

5.7 SUMMARY
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In this unit, we have learned about the important concept of change of basis, similarity of matrices,
determinant and trace of matrices. The overall summarization of this units are as follows:

The coordinates of each vector in V relative to the basisB can be expressed to the
coordinates relative to the basis B .

The relation of similarity is an equivalence relation in the set of all nxn matrices over the
field F

Similar matrices have the same determinant

The relation of similarity is an equivalence relation in the set of all linear transformations
on a vector space V (F).

Trace of the similar matrices are same.

GLOSSARY

Change of basis

Similarity of matrices

Determinant of linear transformation
Trace of matrices
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5.11 TERMINAL QUESTION

Long Answer Type Question:

1. Find the matrix relative to the basis o, = (Eg—lj y Oy = (E—Z—Z)

33 3 3 3 3

o = (%—%—%) of R®, of the linear transformation T : R® — R*®whose matrix relative to

2 00
the standard basisis [0 4 O
0 0 3
Find the co-ordinates of the vector (2,1,3,4) relative to the basis vectors ¢, =(1,10,0),
a,=@0011), a;=(2,0,0,2), &, =(0,0,2,2)
If F be afield and V, the set of all polynomials in x over F of degree <5.If D:V -V’
is defined by D[f(x)]= f (X), where f (x) is the derivative of f(x), show that Dis a
linear transformation on V . Find the matrix of D in the basis {1, x, x*, x*, x"}.
Let V be the vector space of those polynomial functions from the reals into itself which
have <3.Let B={f, f,, f,, f,} where f,(x)=x""(1<i<4). Then show that B forms a
basis for V . For any real number t let g,(x) = (x+t)"". Show that B' ={g,,9,, 95, 9,} is

also a basis for V . If Dis the differentiation operator on V , write the matrices of D in the

ordered bases B and B'.
If Aand B are nxncomplex matrices, then show that AB —BA=1 is impossible.

Let T be a linear operator on R® defined by T(X,V,z) = (8X+2,—2X + y,—X+ 2y +4z).
Prove that T is invertible and find a formula for T,
Let T be a linear transformation on an n—dimensional vector space V(F) and let B and

B be two ordered basis for VV . Then show that the matrix of T relative to B is similar to
the matrix of T relative to B.

Short answer type question:

1. If Tand S are similar linear transformation on a finite dimensional vector space V(F),
detT =detS.
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If A and B are linear transformation on the same vector space and if at least one of them
is invertible, then AB and BAare similar.

If two linear transformations Aand Bon V (F)are similar, then show that A*and B? are
also similar and if A, Bare invertible, then A™ B™ are also similar.

Show that identity matrix (1) is the only matrix similar to itself.

Consider the vector space V(R) of all 2x 2 matrices over the field R of real numbers. Let

11
T be the linear transformation on V that sends each matrix X onto AX, where A= L J

. Find the matrix of T with respect to the ordered basis B = {o,, a,, a5, 2, } for V where
10 01 00 00
alz ’a2: ’agz 'a4:
00 00 10 0 1
6. Prove that similar matrices have the same determinant.

Fill in the blanks:

1. The relation of similarity is an relation in the set of all nxn matrices over
the field F

Similar matrices have same
The sum of the diagonal element of any square matrix

The trace of similar matrices are

5.12 ANSWERS

Answers of check your progress:

10l [t2] . [-1-2
mB:L o}P_L J’U]B{l 2

2 0
[Tl {o o}
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3: Matrix similar to | is | itself
Answers of long answer type question:

2 2]

(2134) =, +%a3 +§0{4

Answer of fill in the blanks questions:
1: Equivalence 2: Determinant : Trace of the matrix

Same 5: tr(BA) : det(A) +det(B)
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UNIT-6: QUOTIENT SPACE

CONTENTS
6.1  Introduction
6.2  Objectives
6.3  Quotient space
6.4  Dimension of Quotient space
6.5  Direct sum of spaces
6.6 Disjoint subspaces
6.7  Dimension of a direct sum
6.8  Complementary subspaces
6.9  Direct sum of several subspaces
Co-ordinates
Summary
Glossary
References
Suggested Readings
Terminal Questions

Answers

6.1 INTRODUCTION

Let X = R? be the standard Cartesian plane, and let Y be a line through the origin in X
. The space occupied by all X lines that are parallel to Y is known as the quotient space X/Y. In
I ———
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other words, lines in X that are parallel to Y make up the elements of the set X/Y. Because their
difference vectors belong to Y, the points along any given such line will satisfy the equivalence
relation. This provides a geometric method of visualizing quotient spaces. The quotient space can
be more often described as the space of all points along a line through the origin that is not parallel
to Y by re-parameterizing these lines. The set of all co-parallel lines or, alternatively, the vector
space made up of a plane that only crosses the line at the origin can be used to represent the quotient
space for R® by a line through the origin.

6.2 OBJECTIVES

After reading this unit learners will be able to

e Understand the concept of quotient space.
Implement the application of dimension of quotient space.
Understand the concept of direct sum of subspaces.
Visualized and understand the concept of disjoint subspaces, complementary subspaces,
direct sum of several subspaces and co-ordinates in a vector space.

6.3 QUOTIENT SPACE

In this section we will discuss about the quotient space.

Definition: Let W be any quotient subspace of a vector space V(F). Also let « be any element of
V . Then the set

W+a={7/+a:yeW}

is called the a right coset of W in V generated by « . Similarly the set,
a+W :{a+7/:7/eW}
is called the left coset of W in V generated by « .

Here, it is obvious that W +« and « +W are both subsets of V . Since in addition V is
commutative, therefore we have W +a = a +W . Thus we shall call W + « as simply a coset of
W in V generated by «.

The following results about the cossets to be remembered.

(i) We have 0 eV and W +0=W . Therefore W itself is a coset of Win V .
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(ii) aeW=>W+a=W

Proof : First we shall prove that W + « —W . Let y + « be any arbitrary element of W + .
Then y eW . Now W is a subspace of V . Therefore,

yeW,aeW=y+aeW

So, each element of W + « is also element of W . Hence W + o W .
Now we have only to prove that W cW +«.

Let W . Since W is a subspace, therefore

oW =-aeW

Thus, feW, —aeW = f—a W . Now we can write,
p=(-a)+aeW +a since f—aeW.
Thus feW = €W +a . Therefore W cW + «

Hence W =W +ain W + «

(iii) If W+« and W + S are two cosets of W in V , then

W+a=W+p<a-LeW
Proof: Since 0 €W, therefore 0+ a €W +« . Thus

aeW+«o.

Now, W+a=W+f=aeW+/f
Sa-eW+(F-5)
>a-eEW+0=a- LW

Conversely, a— W =W +(a—- ) =W
=>WH+[(a-p)+[L]1=W+

DEPARTMENT OF MATHEMATICS

UTARAKHAND OPEN UNIVERSITY PAGE 103




ADVANCED LINEAR ALGEBRA MAT-505

=>W+a=W+/
Let V /W denotes the set of all cosets of W in V i.e., let
VIW={W+a:aeV}

We have just seen that if o« — €W, then W +a =W + £. Thus a coset of W in V can have
more than one representation.

Now if V (F) is a vector space, then we shall give a vector space structure to the set V /W over

the same field F . For this we shall have to define addition in VV /W i.e., addition of coset of W in
V and multiplication of a coset by an elelement of F i.e., scalar multiplication.

Theorem 1: If W is any subset of a vector space V (F), then the set V /W of all cosets W + «
where « is any arbitrary element of V, is a vector space over F for the addition and scalar
multiplication compositions defined as follows:

W+a)+W+8)=W+(a+p)Va,BeV
and aW +a) =W +aa;acF,aeV.
Proof: We have o, f eV = a+ eV
Also aeF,aeV = aaeV.

Therefore W + (o + ) €V /W and also W + aa €V /W . Therefore, V /W is closed with regard
to the aforementioned definitions of scalar multiplication and coset addition. Initially, we will

demonstrate that these two compositions are well-defined, meaning they are not dependent on
the specific representative selected to signify a coset.
LetW+a=W +a,a,a €V

and W + B=W + 3,8, eV

wehave W +a =W +a =a—-a €W

andW +8=W+8 =p-F W

Now W is a subspace, therefore
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a—a eW,B-fF eW=(a—a)+(B-F)eW
= (a+p)—(a +p)eW

= (a+p)—(a +B)eW
=W +(a+B) =W +(a + )

SW+a)+W+L)=W+a)+W ++3)

Therefore addition in V /W is well defined.

Again, a eF,a—a eW=a(a—a)eW

—aa—-aa €W
=W +aa=W +aa
.. scalar multiplication in V /W is also defined.

Commutativity of addition: Let W + o, W + 3 be any two elements of \V /W . Then
W +a)+W+B) =W +(a+ ) =W +(8+a)

— W+ )+ W +a)

Associativity of addition: Let W +c,W + 8,W + y be any three elements of \/ /W .Then
W+a)+[(W+B)+W +)]=W +a) +[W + (B +7)]

=W +[a+(B8+7)]

=W +[(a+ ) +7)]

=W +(a+B1+W +7)

=[W+a)+W + B+ W +7)

Existence of additive identity: If O is the zero vector of V ,then W +0=W eV /W . If W + «
is any element of V /W, If W + « is any element of V /W , then
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W+0)+W+a)=W+(0+a)=W +«
- W +0=W is the additive identity.

Existence of additive inverse: If W + « is any element of V /W, then
W+ (—a) =W —a eV /W

then W + (—a) =W —a €V /W . Also we have,
W+a)+W—-a)=W+(a—a) =W +0=W
~.\W — ¢ is the additive inverse of W + « .
Thus V /W is an abelian group with respect to addition composition. Further we observed that if
a,beF and W +a,W + eV /W, then
L aW+a)+W+p)]=aW +(a+p)]
=W +a(a+ ) =W +(aa +ap)
=aW +a)+aW + f)
2. (a+b)W +a)=W +(a+b)a
=W +(aa +ba)
=W +aa)+W +ba)
=aW +a)+bW + )

3. (@)W +a) =W +(ab)a =W +a(ba)

= aW +ba) = a]p(W + )]

4. IW+a)=W+1la=W +a
*. Across the field F in these two compositions, V/W is a vector space. The quotient space of V

with respect to W is known as the vector space V/W. The zero vector in this vector space is
denoted by the coset W.
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6.4 DIMENSION OF QUOTIENT SPACE

In this section we will discuss about the dimension of the quotient space.
Theorem 2: If W be a subspace of a finite dimensional vector space V (F), then

dim(V /W) =dimV —dimW
Proof: Let m be the dimension of the subspace W of the vector space V (F). Let

S={a,a,,...,a,}

be a basis of W. Since S is a linearly independent subset of V. Let

S ={a,,y,....ay, By, Py B} be abasis of V. Then dimV =m+1

~dimV —dimW =(m+1)-m=1

So, we have to prove that dimV /W =1

For it, let we claim that the set | cosets

S;=\W+B8.W+5,,..W+45}

Is a basis of V /W .

First, we will show that the set S;is linearly independent. Also the zero vector of V /Wis W .

Let we consider, a( W + £)+a, W + 5,)+..+aW + 5) =W

=>W+ap8)+W+a,58)+..+W+a8)=W+0
=>W+((ap +a,6,+..+a,4)=W+0

=aqpf +a,0 +..+ab W

=apf +a,0, +..+a b =ba +b,a, +...+ b, [Since any vector can be written as a linear
combination of its basis vector]

=>apf +a,b,+..+a 4 -ba, —b,a,—...—b,, =0

=a, =0,a, =0,...,a =0 because the vectors g, f,,.... 5, &, a,,...,a, are linearly independent.
.. The set S, is linearly independent.

Now, we have only to prove that L(S,) =V /W . Let W + « be any element of V /W . The vector
a €V can be expressed as

a=co +Ca, +...+C.a,+d,f +d, 6, +...+d,5

=y+d,p +d,p, +..+d,8, where y =c, +C,, +....+C ,a,, €W
So,W+a=W+(y+dp +d,5,+..4,3)
=W+y)+df +d, B, +..4, 4
=W +(d,f +d,5,+..d,5) [y eW=W4+y=W]
=W+d,B)+W +d,8,)+...+ W +d, )
=d,W+4)+d,W+p,)+..+d W+ 3)
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Thus any element W + « of V /W can be expressed as a linear combination of S, .
~VIW =L(S,)

.S, isabasis of V/W.

~dimV /W =I

Hence the theorem.

6.5 DIRECT SUM OF SPACES

In this section we will learn about the direct sum of spaces

Definition: Let V(F) be the vector spaces and let W,,W,,...,W, be subspaces of V. Then V is
said to be the direct sum of W,,W,,...,W_ if every element « €V can be written in one and only

onewayas a =a,,Q,,...,a, Where

o, W, a, eW,,...,a, eW,

If a vector space V (F)is a direct sum of its two subspaces W, and W, the we should have not only
V =W, +W, but also that each vector of V can be uniquely expressed as sum of an element of W,
and an element of W, . Symbolically the direct sum is represented by the notation V =W, ®W,.

Example 1: Let V, (F) be the vector space of all ordered pairs of F. Then W, ={(a,0):a < F}
and W, ={(0,b) : b € F} are two subspaces of V, (F). Obviously any element x,y €V, (F) can be
uniquely expressed as sum two elements from which one of them belongs to W, and other element
will be belong in W, . The unique expression is defined by (x,y) =(x,0) + (0, y). Thus V, (F)is

the direct sum of W, and W,. Only the zero element (0,0) is the only common element in both W,
and W, .

6.6 DISJOINT SUBSPACE

Definition: Two subspaces W, and W, of the vector space V (F) are said to be disjoint if their
intersection is the zero subspace i.e., W, "W, ={0}.

Theorem 3: The necessary and sufficient conditions for a vector space V (F) to be a direct sum
of its two subspaces W, and W, are that

(1) V =W, +W, and
. ___________________________________________________________________________________________|
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@iy W, nW, ={0} i.e., W, and W, are disjoint

Proof: (Necessary condition) Let V be the direct sum of its two subspaces W, and W, . Then
element of V is expressed uniquely as sum of the element of W, and element of W, . Therefore
we have V =W, +W,.

Let if possible 0= a eW, "W,. Then o eW,,a eW,. Also « €V and we can write
a=0+a where 0eW,, a €W,
And o =0+« where a eW,,0 eW,,.

Thus a €V can be expressed by two different ways as a sum of an element belongs to W, and an
element of W, . This is contradict the fact that V be the direct sum of W, and W, . Hence 0 is the
only common vector in the both subspaces W, and W, i.e., W, "W, ={0}.

Therefore, the condition is necessary.

Sufficient condition: Let V =W, +W, and W, "W, ={0}. Then we have to show that V is the
direct sum of W, and W, .

Since V =W, +W,, then each element of V can be expressed as linear sum of the elements of W,

and W, . So, we have to prove that this expression is unique. For it we assume that,
a=o,+a,,aeV,a eWN,a, eW,

And a=4+p,, <V, [ eWN, S, €W,. Now we only to prove that o, = g, and «, = f3,
We have o, +a, = B, + f3,

=a-f=p-a

Since W, is subspace, therefore

o, €W, B eV, = — B eV,

Similarly, g, —a, eW,.

soy =P =6 —a, eW, NW,
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But we know zero vector is only common vector in W, and W, i.e., {0} e W, "W, . Therefore
oa,-pB=0=a=0.Al0 f,-a,=0=>a,=p,.

Thus each vector o €V is uniquely expressible as sum of an element of W, and an element of
W, .

Hence V =W, ®W,.

6.7 DIMENSION OF ADIRECT SUM

Theorem 4: If V(F) be a finite dimensional vector space and V (F) is a direct sum of two
subspaces W, and W, then dimV =dimW, +dimW,

Proof: Let dimW, =mand dimW, =1. Also let the sets of vectors

S, ={a,,,...,a,} and S, ={f,, p,..... 4} be the bases of W, and W, respectively.

dimW, + dimW, =m+1.
In order to prove that dimV =m+ 1. We claim that the set
S=S,US, ={a,a,,....a,, B, B, i} isabasis of V .

First we will prove that the set S is linearly independent. Let
ao +a,a, +..+a,a, +bp +b,B, +..+b 5 =0

=ao +a,a,+..+a,a,=—0L0 +b,6,+..+b4).

Now ao, +a,a, +...+a,a, €W,

And — (b5 +b,06, +...+b 3) eW,
Thus, ao + a0, +...+ a,a,, €W, "W,

and — (b S, +b,[, +...+b,5) eW, "W, . Since V is the direct sum of W, and W, . Therefore 0 is
the only vector belonging to W, "W, . Then we have

ao +a,a, +..+a.a,=0bg +b,5, +...+b 4 =0
]
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As we know both the set {o;, @,,...,a,} and {3, 5,,..., 4} are linearly independent therefore we
have,

a =0a,=0,.,a,=0,b =0,b,=0,...,b =0
Therefore Sis linearly independent.
Now we have to show that L(S) =V . Let the vector « be any arbitrary element of V . Then,
o =an element of W, +an element of W,
=a linear combination of S, + a linear combination of S,

=a linear combination of element of S.

.S is basis of V . Therefore dimV =m+1

Hence the theorem

Theorem 5: Let V be a finite dimensional vector space and let W, and W, be subspaces of V
such that V =W, +W, and dimV =dimW, +dimW,. Then V =W, ®W,.

Proof: Let dimW, =1 and dimW, =m. Then,

dimV =1+m

Let S, ={e,,,,....,o,} be abasisof W, and S, ={f,, f5,,..., B,.} be the basis of W, . First, we
will prove that S, U S, is a basis of V .

Let o €V . Since V =W, +W,, therefore we can rewrite
a=y+06 where y eW,6 eW,.

Now » eW, can be write as a linear combination of elements of S, and & €W, can be write as
linear combination of the element of S,. Thus each vector « €V can be written as linear
combination of the element of S, US, .

=V =L1(S,US,).
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Since dimV =1+m and L(S, uS,) =V, it means number of distinct element in S, U'S, cannot
be less than 1+ m. Thus S, US, is a basis of V . Therefore, the set

{o,0,,....e,, B, Py, B} 18 linearly independent.

Now we have to prove that W, "W, ={0}.

Let @« eW, N"W,. Then o, eW, "W, . Then a eW,,x eW,.
Therefore, o =, + 8,0, +...+ ¢,

and a=b g +b,B3, +...+b,. 5,

forsome a’sand b’se F .

Lao ta,o, +..+taa =b g +b,p, +... b, B

=ao +a,a,+..+aa -bp -b,p,—..—b B, =0

=a, =0,a, =0,..,84 =0,b,=0,b, =0,...,b, =0

=a=0

~ W, W, ={0}.

6.8 COMPLEMENTARY SUBSPACES

Definition: Let W, and W, be the subspaces of the vector space V (F). Then the subspace W, is
called the complement of W, in V if V is the direct sum of W, and W, .

Theorem 6: (Existence of complementary subspaces) Corresponding to each subspaces W, of

a finite dimensional vector space V (F), there exists a subspace W, such that V is the direct sum
of W, and W, .

Proof: Let dimW, =m. Letthe set S, ={&, «,,...,,,} be the basis of W, . Since S, is a linearly
independent subset of V , therefore S, can be extended to form a basis of V. Let the set

S={a.,a,,...a,, B, b,.... A} beabasis of V .
. ___________________________________________________________________________________________|
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Let W, be the subspace of V generated by the set

Sz :{ﬂliﬂZ""’ﬂl}'

We shall prove that V is the direct sum of W, and W, . So, we have to show that V =W, +W,
andW, "W, ={0}.

Let « be any element of V . Then we can express
«a =a linear combination of element of S .

= a linear combination of element of S, + a linear combination of S,

= an element of W, + an element of W,

SV =W, +W,.

Again let W, "W, . Then £ can be expressed as a linear combination of S,and also as a
linear combination of S,. So we have

p=ao +a,a,+..+a,a, =b [ +b,6,+...+b
L tay,a, +..taga, —bp b6, —..—b B =0

=a =0,a,=0,.,a,=00Db =0,b, =0,...,b, =0. Since , ,,...,,,, B, p>,-... 5, are linearly
independent.

.. f =0 (Zero vector)
Thus, W, UW, ={0}.
Now we can say that V is the direct sum of W, and W, .

Theorem 7: If W, and W, are complementary subspaces of a vector space V , then the mapping
f which assign to each vector g in W, the coset W, + £ is an isomorphism between W, and
VIW,.

Proof: We have given that,
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V =W, ®W,

And f:W, -V /W, such that

f(B)=W,+ 4V BeW,

We shall show that f is an isomorphism of W, onto V /W, .

(i) f isone-one: If g, B, eW,, then

f(B)=1(5,) =W, + 58 =W, + 5, [By definition of f ]

=B -6, W,
= B - B, W, NW, [ B, — B, €W, because W, is subspace]
=p-5,=0 [-W, "W, ={0}]
=h=5
.. f is one-one.

(i) f isonto: Let W, + o be any cosetin V /W, , where « €V . Since V is direct sum of W,
and W, , therefore we can write

a=y+p where y eW,, S eW,

This gives y =a— W,

Since o — p eW,, therefore W, + o =W, + 3

Now f(B)=W,+ /=W, +a [By def. of f]

Thus, W, + o eV /W, = 3 f €W, such that

f(B) =W, +«

= f is onto.

(i) f islinear transformation: Let a,be Fand g, 3, €W,. Then
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Let f(ap, +bg,)=W,+ (@B, +bg,)
=W, +ap)+ (W, +bs,)
=aW, + ) +bW, + 4,)
=af (B)+bf (83,).

Therefore f is a linear transformation.

Hence f is an isomorphism between W, and V /W, .

Theorem 8: (Dimension of quotient space) If W is subspace of dimensional mofa n—
dimensional vector space V , then the dimension of the quotient space V /W is n—m.

Proof: As we have given that W is a subspace of vector space V . It means there exist a subspace
W, of V such that V =W @W,.

Also, dimV =dimW +dimW,

Or, dimW, =dimV —dimW =n-m
Thus by the theorem 7, we have
VIW =W,

~dimV /W =dimW, =n—-m

6.9 DIRECT SUM OF SEVERAL SUBSPACES

We will now talk about the direct sum of many subspaces. In order to accomplish this, we must
first define the idea of subspace independence, which is comparable to the disjointness requirement
of two subspaces.

Definition: Suppose W,,W,,...,W, are subspaces of the vector space V. We shall say that

W, W,,..., W, are independent if o, r,,...,¢, =0,; €W, implies that each ¢, =0.

Some important properties:

DEPARTMENT OF MATHEMATICS
UTARAKHAND OPEN UNIVERSITY

PAGE 115




ADVANCED LINEAR ALGEBRA MAT-505

If V(F)be a vector space and W,,W,,...,W, are subspaces of the vector space V such that
W =W, +W, +...+W, . Then following are the equivalent

W, W,,...,W, are independent.

Each vector & eW can uniquely expressed inthe form o =, + @, +...+ ¢, With ¢; eW,
fori=12,..,k

For each 1,2 <i <k, the subspaces W, is disjoint from the sum (W, +W, +...+W,,).

If V(F) be a vector space and W,,W,,...,W, are subspaces of the vector space V . Suppose
that V =W, +W, +...+W, and that W, n(W, +W, +...+W_, +W,, +...+W,) ={0} for
ever i=12,...,n. Prove that V is the direct sum of W, ,W,,...,W,.

If V(F) be the finite dimensional vector space and let W,,W,,...,W, be subspace of V then

these statement are equivalent.
V s the direct sum of W,,W,,...,W, .

k
If B, isabasisof W,,i=12,...,k, then the union B:UBi is also a basis for V .
i=1

If a finite dimensional vector space V (F) is the direct sum of its subspaces W,,W,,...,W, ,
then dimV =dimW, + +dimW,

6.10 CO-ORDINATES

Let V(F) be afinite dimensional vector space and consider B ={«,, @,, ..., &, } be an ordered basis

for V . When we refer to an ordered basis, we indicate that the vectors of B have been listed in a
precise manner; that is, the vectors that are fixed and occupy the first, second, ..., n'™ positions in
the set B.

Let o €V . Then there exists a unique n-tuple (X, X,,...,X,) of scalars such that

n
A = X0 + Xy + oo X0y = DX
i=1

The n—tuple (X, X,,...,X,) is called the n—tuple of co-ordinates of « relative to the ordered
basis B.The scalars x. is called the i coordinates of « relative to the ordered basis B . Then nx1
matrix,

DEPARTMENT OF MATHEMATICS
UTARAKHAND OPEN UNIVERSITY

PAGE 116




ADVANCED LINEAR ALGEBRA MAT-505

Is called the coordinate matrix of « relative to the ordered basis B . Here, we use the symbol [«],
. For the coordinate matrix of the vector « to the ordered basis B.

It should be emphasized that the vector « 's coordinates are unique only for a specific ordering of
B for the same basis set B. There are various ways to arrange the base set B. A modification in B's
ordering could result in a change in « ’s coordinates.

Solved examples

Example 1: Prove that the set S ={(1,0,0),(1,1,0), (111} is a basis of R*(R) where R is field
of real numbers. Hence find the coordinates of the vector (a,b,c) with respect to the above basis.

Solution: As we know that the dimension of the vector space R*(R) is 3. If the given set S is

linearly independent, then S will form basis of R*(R). Let us consider any scalars (x,y,z) in R

such that,

x(1,0,0) + y(1.1,0) + z(111) =0 =(0,0,0)
= (X+y+zy+1212)=(0,0,0)
=>X+y+2=0,y+z=0,z=0
=x=0,y=0,z=0

= S is linearly independent.

Thus, S is basis of R*(R).

Now to find the coordinates of (a,b,c) with respect to the ordered basis S. Let p,q,r be scalars
in Rsuch that

(a,b,c) = p(1,0,0) +q,10) +r(@11)
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= (a,b,c) = p(1,0,0) +q(1,1,0) + r(L11)
= (a,b,c)=(p+q+r,g+r,r=c)

= p+q+r=a,q+r=>br=c
=r=c,q=b-c,p=a->b

Hence the co-ordinates of the vector (a,b,c) are (p,q,r) i.e., (a—b,b—c,c).

Check your progress

Problem 1: If V(F) be a finite dimensional vector space and V (F) is a direct sum of two subspaces W,
and W, , then dimV =

Problem 2: Find the coordinates of the vector (2,1,—6) of R®relative to the basis o, = (1,1,2),
a, =(3,-10), 2, =(2,0,-1).

Problem 3: Check the necessary and sufficient conditions for a vector space V (F) to be a direct
sum of its two subspaces W, and W, .

6.11 SUMMARY

In this unit, we have learned about the important concept of quotient space, dimension of quotient
space, direct sum of spaces, disjoint subspaces, complementary subspaces and co-ordinates of
vector spaces. The overall summarization of this units are as follows:

> If V(F) is a vector space, then we shall give a vector space structure to the set VV /W over
the same field F .
dim(V /W) =dimV —dimW
If a vector space V (F)is a direct sum of its two subspaces W, and W, the we should have
not only V =W, +W, but also that each vector of V can be uniquely expressed as sum of
an element of W, and an element of W,
Two subspaces W, and W, of the vector space V(F) are said to be disjoint if their
intersection is the zero subspace.
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> The necessary and sufficient conditions for a vector space V (F) to be a direct sum of its
two subspaces W, and W, are that
J V =W, +W, and
J W, "W, ={0} i.e., W, and W, are disjoint
If W, and W, be the subspaces of the vector space V(F). Then the subspace W, is called
the complement of W, in V if V is the direct sum of W, and W, .
Corresponding to each subspaces W, of a finite dimensional vector space V (F), there
exists a subspace W, such that V is the direct sum of W, and W, .

GLOSSARY

Quotient space

Dimension of Quotient space
Direct sum of spaces
Co-ordinates
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6.15 TERMINAL QUESTION

Long Answer Type Question:

1. Let W, and W, be two subspaces of a finite dimensional vector space V . If
dimV =dimW, +dimW, and W, "W, ={0}, prove that V =W, ®W, .

Show that the set S ={(1,0,0), (1,1,0),(1,1,1)} is a basis of C*(C) where C is the field of
complex numbers. Hence find the coordinates of the vector (3+4i,6i,3+7i) in C* with
respect to the mentioned basis.

Let B={x.,,a;} be an ordered basis for R®, where
a, =@,0,-1),x, =111, =(10,0).Obtain the coordinates of the vector (a,b,c)in the

ordered basis B.
Let V be the vector space of all polynomial functions of degree less than or equal to two
from the field of real number R into itself. For a fixed teR, let

9,(x) =1,0,(x) = X +1,0,(X) = (x+1t)°. Prove that {g,,d,,9,} is a basis for V and obtain
the coordinates of ¢, (x) + ¢ X +C,X” is the ordered basis.
Let V be a finite-dimensional vector space and let W,,W,,...,W, be subspaces of V such that
V=W +W, +..+W, and dimV =dimW, +dimW, +...+dimW,. Then show that
V=W, ®W, &...®W,

If W is any subset of a vector space V (F), then show that the set V /W of all cosets

W + a where « is any arbitrary element of V, is a vector space over F for the addition
and scalar multiplication compositions defined as follows:

W+a)+W+8)=W+(a+p)Va,BeV

and aW +a)=W +aa;acF,aecV

Show that if W be a subspace of a finite dimensional vector space V (F), then
dim(V /W) =dimV —dimW

If W, and W, are complementary subspaces of a vector space V , then show that the
mapping f which assign to each vector g in W, the coset W, + 4 is an isomorphism
between W, and V /W, .

I ———
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Short Answer Type Question:

1. If V(F) be a finite dimensional vector space and V(F) is a direct sum of two subspaces
W, and W, , then prove that dimV =dimW, +dimW,
Prove that the set S ={(1,0,0), (1,1,0), (1,1,1)} is a basis of R*(R) where R is field of real
numbers. Hence find the coordinates of the vector (a,b, c) with respect to the above basis.
Construct three subspaces W, , W, , W, of a vector space V so that V =W, ®W, =W, ®W,
but W, =W,.
If V be a finite dimensional vector space and let W, and W, be subspaces of V such that
V =W, +W, and dimV =dimW, +dimW,. Then show that V =W, ®W, .
Prove that dim(V /W) =dim(V) —dim(W).
Corresponding to each subspaces W, of a finite dimensional vector space V(F), there
exists a subspace W, such that V is the direct sum of W, and W, .

Fill in the blanks:

1. The dimension of quotient space V /W is

2. The field of any vector space and its quotient space is

3. Two subspaces W, and W, of the vector space V (F) are said to be disjoint if
4

If V(F) be a finite dimensional vector space and V (F) is a direct sum of two subspaces
W, and W,, then dimV =

If a finite dimensional vector space V (F) is the direct sum of its subspaces W,,W,,...,W, ,
then dimV =

6.16 ANSWERS

Answers of check your progress:
1 dimW, +dimW,

(-718,-15/8,17/4)

V =W, +W, and W, "W, ={0} i.e., W,and W, are disjoint
Answers of long answer type question:

2. (3-2i,-3-1,3+7i) . (b—c,b,a-2b+c)
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c,—ct+ct?c —2ct,c
0 1 2 1 2 2

Answer of short answer type question

1. (a—b,b—c,c)
2. Take vector space V = R* and W, ={(a,0):a € R}, W, ={(0,a) : a € R} and
W, ={(a,a):aeR}

Answer of fill in the blanks questions:

1. dimV —dimW 2. Same 3.
4., dimW, +dimW, 5. dimW, + +dimW,
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UNIT-7: LINEAR FUNCTION

CONTENTS
7.1  Introduction
7.2  Objectives
7.3 Some overview on linear transformation
7.4 Linear functional
7.4.1 Some special linear functional
7.4.2 Properties of linear functional
Dual spaces and dual bases
Reflexivity
Annihilators
Summary
Glossary
References
Suggested Readings
Terminal Questions

Answers

7.1 INTRODUCTION

See Linear function (calculus) for the definition of this term in that context.

The word "linear function™ in mathematics refers to two different but related concepts:
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e A linear function, or polynomial function of degree zero or one, is defined in calculus and
related fields as a function whose graph is a straight line. The term "affine function™ is
frequently used to distinguish such a linear function from the other idea.

A linear function is a linear map in linear algebra, mathematical analysis, and functional
analysis.

A linear function from the real numbers to the real numbers in calculus and related
mathematical domains is a function whose graph in Cartesian coordinates is a non-vertical line in
the plane. The fact that the change in the output is proportionate to the change in the input is a
defining characteristic of linear functions.

.| y-intercept

slanted) line

44

Graph of the linear function: y(x)= -x+2

7.2 OBJECTIVES

After reading this unit learners will be able to

Understand the basic difference between linear functional and linear transformation.
Visualized some special types of linear functional and properties of linear functional.
Implementation the concept of dual space.

Visualized and understand the important theorems of linear functional and dual space.
Understand the concept of reflexivity and annihilators.

SOME OVERVIEW ON LINEAR TRANSFORMATION
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In the previous unit we have already learned about the linear transformation. To learn the basic
difference between linear transformation and linear function we initially recall or summarized
about the linear transformation briefly.

Definition: Let U and V are two vector space then a mapping T: U — V is called a Linear
Transformation if it satisfies the following condition:

LVXYyeU T(x+y)=T()+T(y)
2.V x€eU,a €R, T(ax) = aT(x)

Definition: Let T: U — V and S: U — V be two Linear Transformation then the sum of T and S is
denoted by T + S and definedas T+S: U —» V

T+S)(X)=T(X)+S(X)VxeU

Example1 7 :R? - R?, T(Z) = (v + y,x — y,0), S: R? 5 R?, S(7) = (z — y,z + y, 2x),
then find (T + S).

Solution:
(T+S)(z)=T(z)+ S(x)
z+y,z—y,0)+(z -y z+y,2z)

=
=(r+y+z—y,r—y+z+y,0+2x)
= (2z,2x,2x)

Definition: Let T: U —V be a Linear Transformation and let « be a scalar then the scalar
multiplication of a linear transformation T by a denoted by o7 and defined as aT :U —V

(aT)(X) =aT(x), ¥V xeU
Definition: The set f all Linear Transformation from U to V is denoted by L(U, V).
LU,V)={T |T :U -V isa linear transformation}

Definition: Let T: U —V be a linear transformation and let S:V —W be a linear transformation
then, the composition of S and T is denoted by SoT and defined as SoT: U — W.

SoT = S(T(x)),Vx eU

Theorem 1: Prove that the sum of two linear transformations is also linear transformation.
]
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OR
If T,SeL(U,V)thenprovethatS+TeL(U,V).

Proof: Here T, Se L(U,V)i.e T: U — Vand S: U— V are linear transformation and we have
to prove

S+ T: U — Visalso linear transformation.
(i) Let T, € Utoprovethat (S+T)Z+7) = (S+ 1))+ (S+T)(9)

(S+T)(T+7) =SET+7)+T(T+7)
= (S(Z)+ S@)) + (T(T) + T (7))
= S(@) +T(T) + SH) +T(@)
=(S+T)@) +(S+ 1))

(ii) Let o« € Rand let x € U to prove that (S + T)(aZ) = a(S + T)(T).

(S + T)(ax) = S(az) + T(aT)
= aS(Z) + aT(T)
=a(S(Z)+ T(7))
=a(S+T)(z)

So from (i) and (ii) S + T : U — V is also linear transformation

Theorem 2: If T e L(U,V) and « € R then prove that aT € L(U,V)

Proof: Here T :U —V s a linear transformation and « be a scalar to prove that oT :U —V is
a linear transformation.

(i) Let x,y € U to prove that (aT)(T +7) = (oT)(T) + (aT)(7)

(aT)(@+7) = T(T+7))
= a(T(z) +T(7))
= oT(Z) + oT(y)
— (aT)(®@) + (aT)(@)
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(ii) Let x € U and let (3 be a scalar 3 € R to prove that (oT)(5T) = 5((aT)(T))

From (i) and (ii) oT : U — V is a linear transformation.
Theorem 3 The composition of two linear transformation is also a linear transformation.

OR
IfT € LIU,V)and S € L(V,W),then prove that SoT € L(V,W).

Proof: Here T € L(U,V),soT : U — V is a linear transformation and S € L(V.W) so
SV — W is a linear transformation.

And we have to prove that SoT : U — W is also linear transformation.
(i) Let T,5 € U to prove that (SoT)(T +7) = (SoT)(T) + (SoT) (7).

(SoT)(Z +7) = S(T(Z +7))
— S(T(@) +T(7))
— S(T(@)) + S(T(7))
— (SoT) (%) + (SoT) ()

(ii) Let T € U and let o be a scalar to prove that (SoT)(aT) = a((SoT)(T)).

(SoT)(ax) = S(T(ax))
= S(aT(7)))
— a(S(T(7)))
— a((SoT)(@))

DEPARTMENT OF MATHEMATICS SAGE 127
UTARAKHAND OPEN UNIVERSITY




ADVANCED LINEAR ALGEBRA MAT-505

So from (i) and (ii) SoT : U — W is a linear transformation.

Example2 Let T : R? - R T(z,y) = (z —y,z +1y), S : R2 5 R% S(z,y) = (z +y,z —y)
then find SoT and ToS.
Solution: Let (z,y) € R?

(SoT)(z,y) = S(T(x,))
=Sz —y,z+7y)
=@@-y+trtyr—y—z-—y)
= (2z, —2y)

(ToS)(z,y) = T(S(z,))
=T(z+y,x—vy)
=(z+y—-zr+yrty+z—y)
= (2y, 2z)

7.4 LINEAR FUNCTIONAL

Definition: Consider a vector space V(F). It is known that a vector space over F can be thought of
as the field F. This is F(F) or F!, the vector space. We'll just refer to it as F. A linear functional on
V is a linear translation from V into F. The independent definition of a linear functional will now
be provided. In this unit, we often take R to be a filed in terms of F.

Definition: Let V(F) be a vector space. A mapping from V into F is said to be a linear functional
on V if,

f(ac+bp) =af (@) +bf (B) ¥V a,be F and ¥V o, feV

If f is a linear functional on V(F), then f(«)is in F for each « belonging to V . Since f(«)is a
scalar, therefore a linear functional on V is a scalar valued function.

Example 3: Let V,(F) be the vector space of ordered n-tuples of the elements of the field F.
Let X, X,,..., X, be n-field elements of F.

If «=(a,a,,...,a,) eV, (F).

Let f be a function form V,(F) into F defined by

f(a) =xa, + X8, +...+ X4,
. ___________________________________________________________________________________________|
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Let g =(b,b,,..,b,) eV, (F).If a,beF, wehave

f(aa+bp) = fla(a, a,,....a,) +b((b,,b,,....b,)
= f(aa, +bb,aa, +bb,,...,,aa, +bb,)
=X, (aa, +bb,) + x,(aa, +bb,),....+x,(aa, +bb,)

=af (a,,a,,..,a,)+bf (b,b,,....b,)
=af () +bf ()
Hence f isa linear functional on V, (F)

Example 4: We will now present a important illustration of a linear functional.

We shall prove that the trace function is a linear functional on the space of all nxn matrices over
a field F.

Let n be a positive integer and a field. Let V (F) be the vector space of all nxn matrices over F.

If A=[a;],, €V, thenthe trace of A is the scalar.

nxn

n
trA=a, +a, +..+a, =, a.
i=1

Therefore, the scalar that results from summing the components of A that are located along the
principal diagonal is the trace of A.

The trace function is a linear functional on V because if

a,beF and A=[g;],.,,B=[b;],, €V, then

tr(aA+bB) =tr(afa;],., +blb;],.,) = tr([aa; +bb;],..)

== (aa, +bb,) =a> a, + b, =a(rA) + b(trB)

7.4.1 SOME SPECIAL LINEAR FUNCTIONAL
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Zero functional: Let V be a vector space over the field F . The function f from Vinto F
defined by

f(a)=0VaeV

is a linear functional on V.

Proof: Let ,f €V and a,b e F . We have
f(aa+bp)=0
=a0+b0=af (a)+bf (p)

.. fisalinear function on V. It is called the zero functional and we shall in future denoted it by 0
2. Negative of linear functional: Let V be a vector space over the field F. Let f be a linear
functional on V. The correspondence —f defined by

f)a)=-f(@)]VaeV

is a linear functional on V.

Proof: Since f(a) e F = —f(«) € F, therefore —f is a function from V into F.

Let a,beF and «, €V . Then

(-f)aa+bp)=-f(ac+bp)] [By definition of —f]

— [af (@) +bf (B)] [ Since fis a linear functional]
=a[-f ()] +b[-f(B)]
=a[(-f)a]+bl(-1)A]

-.— f isalinear functional on V.

Properties of linear functional

7.4.2 PROPERTIES OF LINEAR FUNCTIONAL

Theorem 4: Let f be a linear functional on a vector space V (F). Then
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Q) f (0) =0 where 0 on the left hand side is zero vector of V , and 0 on the right hand side is

zero element of F.
(i) f(—a)=—f(e)VaeV.

Proof: Let ¢ eV . Then f(a)eF.

We have f(a)+0=f(a)eF [--0 is zero element of F]
=f(a+0) [0 is zero element of V]
= f(a)+ f(0) [~ f isalinear functional]
Now F is a field. Therefore,

f(a)+0= f(a)+ f(0)

= f(0) =0, by left cancellation law for addition in F.

(i)  Wehave fla+(-a)]= f(a)+ f(-a) [~ f isa linear functional by (i)]
But fla+(-a)]=f(0)=0

Thus in F, we have

f(a)+ f(-a)=0

= f(a)=—f(-)

7.5 DUAL SPACES AND DUAL BASES

On a vector space V(F), let V ' be the set of all linear functionals. This set is sometimes denoted as
V*. Our current goal is to apply a vector space structure over the same field F to the set V '. We
must appropriately define addition in V ' and scalar multiplication in V ' over F in order to do this.

Definition: The set of all linear functional from V to F is denoted by L(V, F) or V".

Note:

The set of all linear functional from V' to R is denoted by L(V,R) or V.
LV,R)=V*={f/f:V — Ris a linear functional}
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Theorem 5: (State and prove the existence theorem of dual basis)

Statement: Let B = {vy, v, ..., v,} be a basis for a vector space V.let V* be a dual space of V,
suppose f1, fo, .. fa € V" such that

filu;) =1 i=]
=0 i) ij=12..

Then prove that B* = { f1, f».... [.} is a basis for V™.

Proof: Here B :-{?..11, Vo, . ... Un} be a basfsfbr’a vector sp;qr:e V and V* be a dual space of V,
and fy, fo, ... f, € V™ such that

filv;)) =1 i=j
—0  i#£j i,j=12...n

we have tp prove B* = { [1. fo.... fu} is a basis for V*.

(i) First we shall prove that B* is Linearly Independent

Consider,

arfitagfot...+anfn=0 where ; €R, i=1,2,...,n.
(arfi +aofo+ ...+ a, fu)(v1) = 0(vy)
(arfi)(v1) + (aafo)(vr) + ...+ (@ fu)(v1) =0

oy (fr)(v1) + aa(fo)(vr) + oo+ an(fo)(v1) =0
(1) +ag(0)+ ... +a,(0) =0
a(1)=0

v = ﬂ

Similarly, we can prove as =0, a3 =0,...,a, = 0.
so B* ={fi, f2,... fu} is Linearly Independent.

(ii) Now we have to prove that [B*] = V*.

we know that [B*] C V*.
so only to prove V* C |B7|
take f € V*, so f : V — Ris a linear functional.
Suppose,
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flvp) = an, where oy €R, i=1,2,...,n.
Let us define a function ¢ : V — R such that

t,f)=(]‘1_f1 +ﬂ"2f2 +...t fIn.;‘rr:

Now,

O(v) = (o fi+aofo+...+a,fn)(vy)
= (a1 fi)(v1) + (@2 fo)(v1) + ... + (@n fu)(v1)
= ay(fi)(v1) + aa(fo)(v1) + ... + an(fu)(v1)
=a(l) + a2(0) + ...+ a,(0)

d(v1) = o

Similarly, we can prove

(i’(?--'n) = Oy
So, ¢(v;) =a;, wherei=1,2,...n

also here

so by equation (2)

f = Q’]_f] + Q'Qf*z + ...+ (1'n,fn
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so by equation (2)

f=a1fitasfo+...+anfs
f€(B]
L,r* g [B*]

B =V
so from (i) and (ii) B* = {f\. fo,... .} is a basis for V*.
Definition: Let V be a vector space and V" be dual space of a vector space V. Let dimV =n then

dimV™ =n and basis B" ={f, f,,..., f. } of V corresponding to a basis B ={v,,v,,..,v,} of a
vector space V is called a dual basis for a vector space V .

Example 5: Discuss about the dual basis corresponding to a basis {(2,1), (3,1)} of R?.

Solution: As we know that R?is a vector space.

- dimR? = 2

Let (R%)* be a dual space of R2.

- dim(R%)* = 2

Also here B = {(2,1),(3,1)} is a basis for R
let vy = (2,1) and v2 = (3,1)

to find B* = { f1, f»} a dual basis for R?.
Define function f, : R? — R such that

filz,y) =ax+by, a,beR

filz,y) = ax + by
fi(vy) = ax + by

fi(2,1) =2a+0b
1=2a+Db
2a+b=1
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filz,y) = ax + by
filvz) = ax + by
fi(3,1) =3a+b
0=3a+0b
3a+b=0

Solve equation (3) and (4) we get a = —1.
Substitute a = —1 in equation (3) we get b = 3.
So,we get

filz,y) = —x + 3y

Now, we define function f, : R? — R such that

falz,y) =cx+dy, c,deR

fal,y) = cz + dy
fa(v1) = cx + dy
f2(2,1) =2¢+d
0=2c+d
2e4+d=0

falw.y) = cx + dy
fo(v2) = cx + dy
f2(3,1) =3c+d
1=3c+d
3ce+d=1
Solve equation (5) and (6) we get ¢ = 1.

Substitute ¢ = 1 in equation (5) we get d = —2.
So,we get

f2|:3-'--, y) =x — 2y

Thus B* = { [, f>} is a dual basis for B? .
where,

filz,y) = —x+ 3y

MAT-505
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falz,y) =2 -2y

Example 6: Discuss about the dual basis corresponding to a basis {(1,0,1), (1,1,0),(0,1,1)} of R®.

Solution: As we know that R®is a vector space.

S dimR? =3

Let (R*)* be a dual space of R®.

o dim(R*)* =3

Also here B = {(1,0,1),(1,1,0),(0,1,1)} is a basis for R,
let vy = (1,0,1), vo = (1,1,0) and vz = (0,1, 1)

to find B* = { f1, fo, fa} a dual basis for R®

Letvy = (1,0,1),v5 = (1,1,0) and v3 = (0,1,1)

to find B* = { f1, fa, fa} a dual basis for R>.

Define function f, : R* — R such that

filz,y,z) =az+by+cz, a,b,ceR

filz,y,2) = ax + by + cz
filv1) = az + by + ¢z
£i(1,0,1) =a+c
l=a+c
a+c=1

filz,y,z) = ax + by + ¢z
filvz) = azx + by + ¢z
fi(1,1,0) =a+b
O=a+b
a+b=20

—b

= ar + by + cz
=ar+by+ecz
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from equation (8) a = —b in equation (7) we get

b—c= -1

-1
solve equation (9) and (10) we get b = -5

-1 1
Substitute b = - in equation (8) we get a = 7

1
from equation (9) we get ¢ = 5
Thus we get,
1 1 1
fl('?-".y-. ;’) - E-r - §y + 5.,.,
1
filz,y,z) = 5(:}: —y+ z)

Similarly we define function f, : R* — R such that

fo(z,y,2) =ax+by+cz, a,b,ceR

ax + by + cz

axr + by + cz

a+c

a+c
a+c=0

a+b=1

folz,y,2) = ax + by + cz
fa(vs) = ax + by + ¢z
£2(0,1,1) =b+c
0=b+e
b+e=10
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from equation (11) a = —¢ in equation (12) we get

b—c=1

solve equation (13) and (14) we get b =

1
2’
c=

1 - 1
Substitute b = 7 in equation (14) we get
from equation (11) we get a = X

Thus we get,

1 1 1
Fa(w,y,2) = 52+ 5y — 52
1
ha(w,y,2) = 5(a+y —2)

Now we define function f5 : R* — R such that

fa(r,y,z) =az+by+cz, a,bceR

falz,y,2) = ax + by + cz
fa(v1) = ax + by + ¢z
f3(1,0,1)=a+c
0=a+c
a+c=10

a = —C

falz,y,z) = ax + by + cz
fa(v2) = az + by + ¢z
f3(1,1,0) =a+b
O=a+b
a+b=20

falz,y,2) = ax + by + cz
fa(vz) = az + by + ¢z
£2(0,1,1) = b+c
l=b+c
b+ec=1
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from equation (15) a = —c in equation (16) we get

b—ec=10

1
solve equation (17) and (18) we get b = 5
1
Substitute b = — in equation (17) we get ¢ = 5
from equation (15) we get a = _?
Thus we get,

-1 1 1
alr. Y. 2) = —IT+ =y + =z
falz,y. 2) 2 2J 9

fo(y2) = 5(-z +y+2)

Thus B* = {1, f2, fa} is a dual basis for R® .

where, _
filz.y.2) = s(z—y+2)

fol@,y,2) = (@ +y — 2)

falz,y,z) = %(—I +y+ z)

Theorem 6: Let {v,,V,,...,v,} be a basis for V and {f,, f,,..., .} be a basis for V" then

prove that for any v € V'

v= filv)vy + fo(v)va + ...+ fu(v)v,

and forany f € V*
f=fl)fi+ fva)fa+ ...+ flon)fa

Proof: Since B={v,,V,,...,v, } is a basis of a vector basis for V and B" ={f,, f,,..., f,} be a basis

for V~

.. B is linearly independent and [B] =V and
B* is linearly independent and [B*] = V*
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(i) Let

veV

veV = [B]

v € [B]

v=ov +ate+...+apy,, Yo, ER, i=1,2,...n

fi(v) = filayvy + agvs + . .. + a,vy)
= filayvy) + filogvs) + ... + filanvy,)
= aq(fi(v1)) + az(fi(v2)) + ... + an(fi(vn))
= 1(1) + a2(0) + . .. + a,(0)

filv) =a

Similarly we can prove that,

f2(v) = a
f:i-(?") = (g

flnl:?":l -

Substitute this values in equation (19) we get,

U= fl(")l“l RE f'.’(li)l".? +...4+ fn(l')l'n

fev:
feV =[P
fe[B]
f=afi+af,..

f(n) = (anfi +aofo...+anfn)(vy)
= (a1 f1)(v1) + (a2 fe)(v1) + ... + (anfn)(v1)
= a1 (fi(v1)) + a2(fa(v1)) + ... + an(fa(v1))
=a1(1) + a(0) + ... + a,(0)

fv) =

Similarly we can prove that,
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f("n) = iy

Substitute this values in equation (20) we get,

f — f(l.l)fl T f(l_’)fl s K o f(l‘n)fx

7.6 REFLEXIVITY

Every vector space V has a dual space V that contains all linear functionals on V , as we know.
And now V  is a vector space as well. It will therefore likewise have a dual space (V') made up

of linear functionals on V. For the sake of convenience, we will refer to this dual space as V" and
term it the second dual space of V.

Note: If V is finite-dimensional then dimV =dimV =dimV . Which means these are isomorphic
to each other.

Theorem 7: Let F be the field in a finite dimensional vector space V. If @ €V and L_on V defined

by L, (f) = f(a)V f €V isalinear functional on V'i.e, L, €V . Also the mapping a — L is an

isomorphism of Vonto V' .

Proof: Let ¢ eV and f eV, then f(a)is a unique element of F. Then L, defined by
L, (f)=f(a)Vvf eV

is a mapping from V ‘into F.

Let a,beFand f,geV . Then

L, (af +bg) = (af +bg)(a) = (af )(«) + (bg)()

= (af )(a) + (bg)(@) [By (1)]

= af (o) + bg(x) [By the property of scalar multiplication in linear functional]
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=a[L,(f)]+bL,(9)  [By ()]

Thus L, is a linear functional on V and thus L, eV .

Now we assume that ¢ be the function from V into V" defined by,
o)=L, VaeV.

First we will prove that ¢ is one-one: If «, f €V, then
#(a) = 4(P)

=L, =L, =L, (f)=L,(f)vf eV’

= f(@)=f(B)V eV [From (1)]

= f(a)-f(B)=0VfeV = fa-p)=0VfeV
=a-p=0

[By the theorem that if o — 3 # 0, then there exist linear functional f onV suchthat f(a— ) #0
. Here we have f(a— ) =0vf eV so a— S must be 0]

=a=p
= ¢ IS one-one.
Now we will prove that ¢ is a linear transformation:
Let @, eV anda,be F. Then,
plaa+bp)=L,,..p [By definition of ¢]
Foreach f V', we have
Loy () = f(acr +bp)
= af (o) + bf (B) [From (1)]
______________________________________________________________________________________________________________|
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=alL, (f)+bL,(f) [From (1)]

= (aL,)(f) +(bL,)(f) = (aL, +bL,)(f)
“ Loy = 2L, +bL, =ag(a) +bg(p)
So, #(aa +bp) =ag(a) +bp(B).
Hence, ¢ is linear transformation from V into V. Since ¢ is on-to also.
Hence ¢ is an isomorphism from V into V.
Note: The above theorem is called the natural correspondence between V and V". It is significant
to remember that the aforementioned theorem not only demonstrates that V and V" are
isomorphic—this much is evident from the fact that they have the same dimension—but also that
an isomorphism is the natural correspondence between them. We refer to this characteristic of

vector space as reflexivity. We have therefore demonstrated that every finite-dimensional vector
space is reflexive in the aforementioned theorem.

7.7 ANNIHILATORS

Definition: Let V be a real vector space and S be a non-empty subset of a vector space V, then the
set {f eV |f(x)=0,vxeS} is called an annihilators of a set S and it is denoted by

S°={f eV"| f(x)=0 VxeS}

Theorem 7 Let S be a non-empty subset of a vector space V, then prove that S° is a subspace

of V*.

Proof: Here S is a non-empty subset of a vector space V.
let V' be a real vector space and V'* be a dual space of a vector space V.

S ={feV*/f(zx)=0,YzeS)
0(z)=0, Vze S
0es”
§'# ¢
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(i) Let fy. f» € S°,we have to prove that f, + f, € S°
Here f,, f» € S°
So fi(x) =0, falz)=0, VzeS

(fi + f2)(z) = fi(z) + fo(x)
=0+0
=0
fitfaes’

(ii) Let o be a scalar and let f € S then to prove that af € S.
Here f € S"s0 f(z) =0, Yz € 8§

(af)(@) = af(x)
=l
=0

af € §°

So from (i) and (ii) S is a subspace of dual space of V*.

Note: If S = 0 then S* = V™.

Check your progress

Problem 1: Check the dual basis of the basis set B ={(1,—1,3),(0,1,—1),(0,3,— 2)} for the vector
space V,(R).

Problem 2: If the vectors o, = (L,11), e, = (1,1, -1), 2, = (1, —1,—1)} form the basis of V,(C). If
{f,, f,, f,} is the dual basis and if & =(0,1,0), then find the value of f, (), f,(«), f;().

Problem 3: Check the dual basis of the basis set

B ={(10,0),(0,1,0),(0,0,1)} for V,(R)

7.8 SUMMARY

In this unit, we have learned about the important concept of linear transformation, linear functional,
some special types and properties of linear functional, dual spaces, dual basis, reflexivity and
annihilator. After completion of this unit learners will be able to:
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>
>
>
>

Find out the basic differences between the linear transformation and dual function.
Conceptualized some special linear functions and their properties.
Find out dual basis of any vector space corresponding to any given basis.

Implement the concept existence theorem of dual basis.

GLOSSARY

Linear Transformation
Linear functional

Dual basis
Annihilator
Reflexivity
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7.12 TERMINAL QUESTION

Long Answer Type Question:

1. If f is a linear functional on an n-dimensional vector space V(F), then show that the set of
that subspace.
If V is a vector space over the field F and let f be a non-zero linear functional on V and let

N be the null space of f. For a fix «, in V which is not in N. Prove that for each «in'V
there is a scalar ¢ and a vector £ in N such that o =ce, + . Prove that c and Sare
unique.

If V is a vector space over the field F. Let f, and f, be linear functional on V. The function
f, + f, defined by

(f,+ £,)(@) = f(a) + () Y eV isa linear functional on V. If ¢ is any element of F,
the function cf defined by

(cf)a) =cf(@)Va eV

is a linear functional on V. the set V . The set V of all linear functional on V, together with
the addition and scalar multiplication defined as above is a vector space over the field F.

State and prove the existence theorem of dual basis.
Let V be the n-dimensional vector space over the field F and let B ={¢,,,,....,¢,} be a

basis for V. Then there exist a uniquely determined basis B ={f,, f,,...., f. } for V such
that f;(a;) = 5. Consequently, the dual space of n-dimensional space is n-dimensional.
Find the dual basis of the basis set B ={(1,—2,3),(1,—11),(2,—4,7)} of V,(R) .

Short answer type question:

Prove that sum of two linear transformations is again a linear transformation.
Prove that composition of two linear transformations is again a linear transformation.

Let T:R> > R%*sit,, T(X,y)=(x—y,x+Yy) and S:R*> - R?s.t,, S(X,¥) = (X+Y,X—Y)
then show that the compositions SoT and SoT are equal.

Define the linear functional and some special types of linear functional.

Show that trace function is a linear functional on the space of all nxn matrices over a

field F.
C___________________________________________________________________________________|
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If f is a non-zero linear functional on a vector space V and if x is an arbitrary scalar, does
there necessarily exist a vector « in 'V, such that f(a)=x?
Let V be an n-dimensional vector space over the field F. If « is a non-zero vector in 'V,
there exist a linear functional f on V such that f («) #0.
If the vectors o, =(1,1,1),, = (1,1, -1),; = (1,—1,—1)} form the basis of V,(C). If
{f,, f,, f,} is the dual basis and if « =(0,1,0), then find the value of f,(), f,(a), f;(e).
9. Check the dual basis for the set B ={(1,0,0),(0,1,0),(0,0,1} for V,(R) .
Fill in the blanks:
1. Sum of two linear transformations is also

2. Composition of two linear transformations is also
3. Negative of the linear functional is also a

7.13 ANSWERS

Answers of check your progress:

1: fL(x,y,2)=x, f,(x,y,2) =7x—-2y -3z, f,(X,y,2) =-2x+y+z, i.e, the set {f, f,, f,}
is the dual basis of B.

1

fi(a) =0, f,(a) :%’ fy(a) :_E

3: f,(X,y,2) =-3x—-5y—2z, f,(X,y,2) =2X+V, f,(X,y,2) =Xx+2y+z ie., the set
{f,, f,, f,} is dual basis.

Answer of long answer type questions:

1: The dimension of that subspace is n-1.

B :{f1v fz’ fs}

f,(X,y,z) =-3x-5y-2c, f,(X,y,2) =2x+y, f;(X,y,2) =X+ 2y + 2z
Answer of short answer type questions:
1

fi(a) =0, f,(a) :%’ fy(a) :_E

The set {f,, f,, f,} is dual basis
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f(X,y,2) ==3x-5y -2z, f,(X,y,2) =2X+Vy, f,(X,y,2) =X+ 2y +z.

Answer of fill in the blanks questions:
1: Linear transformation : Linear transformation

Linear functional
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UNIT-8: LINEAR OPERATOR

CONTENTS
8.1 Introduction
8.2  Objectives
8.3  Linear operator
8.4  Range and null spaces
8.5  Matrix representation of linear operators
8.6  Linear operator in different basis
8.7  Matrix operator and change of basis
8.8  Summary
8.9  Glossary
References
Suggested Readings
Terminal Questions

Answers

8.1 INTRODUCTION

The idea of a linear operator, which is
essential to linear algebra together with the
idea of a vector space, is used in many
different areas of mathematics and science,
most notably analysis and its applications. G.
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Peano provided the first definition of a linear Giuseppe Peano
. 27 August 1858-20 April 1932 (aged 73)
operator as we know it tOdaY- https://en.wikipedia.org/wiki/Giuseppe_Peano

We covered bases and how to alter a vector's basis representation in the previous units. The
representation (the n-tuple of components) was multiplied by the appropriate matrix, which
represented the relationship between the two sets of basis vectors, in order to achieve this change
of basis. It's crucial to keep in mind that the vector itself does not change while thinking about the
change of basis operation only the coordinate system in which it is written does.

Linear operators will be discussed in this unit. Although they will also be described in terms
of a matrix multiplication, linear operators are functions on the vector space that differ
fundamentally from changes of basis. A linear operator, often known as a linear transformation, is
a method that converts a given vector into a completely other vector. As we will see, linear
operators have the ability to change a vector in one space into a different vector in the same space,
implicitly conduct a change of basis, or simply transform a vector in one space into another.

8.2 OBJECTIVES

After reading this unit learners will be able to

Understand the basic difference between linear functional, linear transformation and
linear operator.

Visualized the matrix representation of linear operator.

Implementation of linear operator in different basis.

Visualized and understand the important of matrix operator and change of basis.

LINEAR OPERATOR

Linear operator is the special case of a linear transformation. Sometimes, linear transformation is
also called linear operator. All that a linear operator does is assign a vector, which may or may
not be in the same linear vector space, to another vector. Additionally, it needs to meet the linearity
requirements. To be precise, we provide the definition that follows:

Definition 1: Let V(F) be a vector space. A linear operator on V is a function T from V into V
such that
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T(aa+bp) =aT(a)+bT(B), forall o,V and a,beF

Thus T is a linear operator on V if T is linear transformation from V into V itself.

Definition 2: Linear Operator (Transformation): An operator A from linear vector space X to
linear vector space Y, denoted A:X — Y , is linear if,

A(or X1+ o2 X2 ) = onAX1 + o2 AXz

forany x1 X2, X, and scalars o1 and ao.

8.4 RANGE AND NULL SPACES

A linear operator, denoted by A:X — Y in the definition above, can also be represented as Ax =y
, and it generates the vector y €Y . This operation yields a vector y that is considered to be within

operator A's range; it is also sometimes referred to as the image of x in Y, where x is the preimage
of y. Although linear operators generally have multidimensional ranges, the idea of an operator's
range is comparable to that of scalar functions. These ranges will be vector spaces that are linear
in nature.

Range space: The range space of an operator A: X —Y, denoted by R(A), is the set of all
vectors y; € Y such that for every y, € R(A) there existan x € X such that Ax=y.

It is claimed that operator A is onto, or surjective, if its range contains all of space Y. A is said to
be one-to-one, or injective, if it maps elements in X to unique values in Y, that is, if x, = X, implies
that A(x,) = A(x,). Operator A is also invertible if it is bijective, which occurs when it is both one-
to-one and onto. When an operator A is invertible, it means that there is another operator,
A™1:Y — X, such that A™*(A(x))=x and A™(A(y))=y. Then, A™A is represented as I, and

AA*as I,, which are the identity operators in the corresponding spaces. A: X — X is an

example of how A maps a space into itself. In this case, we just write A*A=AA"=1.

It is frequently necessary to determine which vector, out of all the ones in x € X, will map to the
zero vector in Y. Because of this, we define the identity operators in their respective spaces as the
null space of an operator.

Null space: The null space of operator A, denoted by N(A), is the set of all vectors x;, € X such
that A(x,)=0:
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N(A) = {x € X | Ax, =0}

8.5 MATRIX REPRESENTATION OF LINEAR OPERATORS

To be more inclusive, we will talk about the matrix representation of linear operators that have the
potential to modify the vector's basis as well. This is evidently required when discussing an
operator that manipulates vectors in a one-dimensional space and yields vectors in a different
dimension. It is obvious that both vectors could not be adequately described by a single basis.

Let xe X" and y € X ™ be two vectors, one from an n-dimensional space and the other from an

m-dimensional space. We shall obtain a matrix representation A for an operator A: X" — X™,
that converts a vector in one space into a vector in another. Indicate the two spaces' arbitrary bases
as

v} ={v.V,,...,v,} for space X"
And

{u}=4{u,,u,,...,u. } for space X"

By extending x as a representation in its basis as x = zr;:lajvj and applying the linearity property

of the operator A,

y=AX= ZaJVjJ = ZL“J‘A(VJ)
i1

This straightforward but significant result means that, given the basis vectors in which x is
expressed, we can determine the influence of A on any vector x. Another way to express equation
(1) in vector-matrix notation is as follows:
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It is now evident that every vector Av; exists in the range space X™ by definition. Then, it can be

extended in the basis defined for that space, {u,}, just like any other vector in that space. This
extension provides

m
Avj =2 L au;

for a certain set of ajj coefficients. Using coefficients f,,y can also be directly expanded in terms
of its own basis vectors.

y== zirilﬂiui

Substitute equation (3) and (2) in (1), we can write

y= Zn:aj(zm: aijaj]ui = ZLﬂiui

By changing the order of summation in this expression, we obtain

But because of the uniqueness of any vector’s expansion in a basis, the expansion of y in {u,}
must be unique. This implies that

B, :ZT a.a. Yi=ltom

=1 U]

The expression (6) above can be seen by the learners to be a matrix-vector multiplication. Actually,
this is the way we'll often use the outcome. If o =[a, «,---a,] is the representation of x € X"

inthe {v,} basisand B=[B, B, --B.] is the representation of y e X™ in the {u;} basis, then,

using our new matrix representation for operator A, we can determine this representation of y using
the matrix multiplication S = A«x.
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That is, the coefficient from (2) is the (i, j)" element of the (mx n) matrix A, which explains how

basis vectors from one space are transformed into the basis of the range space via the operator A.
This implies, of course, that before defining the matrix representation for any linear operator, the
bases of each space must be given. A comparison between (2) with (7) generally leads to the
following conclusion:

The representation of the vector that results from A operating on the j" basis vector of X",
where this new vector is expanded into the basis of the range space, can be formed as the j"

column of the matrix representation of any linear operator A: X" — X™. To put it another
way, the j™column of A is just Av,, expressed as a representation in the basis {u;}.

As we will see in the following examples, this is a very helpful characteristic. It gives us a practical
means of ascertaining the matrix representation of any given linear operator.

The range and null spaces computation is also affected by the linear operator's matrix
representation. As we will demonstrate in this unit (definition of null space), the linear operation
y = Ax can be viewed numerically as,

y = AX
X

= [al a, u-an] Z

X,

Where a, denotes the i column of the matrix A and x; is the i" component of the vector x or of

its representation. Consequently, the span of all of A's columns can be used to represent the range
space if it represents the space of all possible values of Ax. This suggests that the rank of matrix A
is equal to r(A) =dim(R(A)), which is the dimension of the range space of operator A. Similarly,
the space containing all solutions to the simultaneous linear equations can be used to represent the
null space of operator A.
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As a result, g(A) =dim(N(A)), which is the dimension of operator A's null space, equals the
nullity of matrix A.

Example 1: (Related to rotation matrices)

Consider a linear operator A: R* — R*function, as seen in Figure 1, takes a vector x and rotates
it by an angle @ counterclockwise.2. The linear operator that carries out these planar rotations on

any vector in R? can be represented by a matrix. Test this matrix by rotating the vector x =[1 2]

by an angle 8 =30".

Figure 1: Vector x is transformed by Operator A converts the vector x into a vector y = Ax, which is just x rotated
(by angle @ counterclockwise).

Solution: Each space's basis and the operator's impact on those basis vectors are necessary to
determine the matrix representation of any operator. The standard basis vectors displayed in Figure
1 will be employed.
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Figure 2: The effect of operator A on the basis vectors.

Basic trigonometry allows us to determine by decomposing the rotated vectors Ae: and Ae2 along
their original basis directions, e; and e>.

sin®

] , cosO
Ae; =cos0-¢; +sin0- e, =[€1 ; 83}|: }

. , —sinB
Ae, = —sin0-e; +cos0-e, =[e] ; 81]{ :|

cos®

Therefore, the matrix representation of 4 is
cosB —sin®
A=| .
sin® cos0
Keep in mind that every column in this A-matrix is only the matching representation from the
previous (1).

Applying this to the vector x = [1 Z}T , we get
cos30° —sin30°|[ 1 -0134
Ax = . =
sin30°  cos30° || 2 223
Figure 3 provides verification of this rotation.
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€]

>

Figure 3: Pictorial representation of vector rotation.
Example 2: Composite Rotations: Roll, pitch and Yaw

We looked at plane rotations above. Three-dimensional rotations are another option. It's important
to keep in mind that rotations around three different axes are feasible in three dimensions.
Depending on which axis was chosen to represent the rotational axis, different matrices are
employed to describe these rotations. Figure 4 shows the three possible rotations around ez, ez, or
€s.

These rotations about coordinate axes can be applied sequentially to create an arbitrary three-
dimensional rotation, although such sequences wouldn't be special. There are typically an endless
number of distinct axis rotation steps that can be taken to get from one three-dimensional
orthonormal frame to another if the orientation of one is applied arbitrarily to the other.

To create the composite rotation matrix that rotates a coordinate system by 6, around e1, ¢,around

e, and 6, around es, in that sequence, find the change of basis matrices for the three component
rotations.
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Op: roll angle
0p: pitch angle
Oy: yaw angle

33,93

Figure 4: Axis rotations for pitch, roll, and yaw

Solution: As with the planar rotation example in Figure 2, the individual matrices can be
determined by looking at the rotations in the plane in which they occur and decomposing the
rotated axes in that plane. Equation may be used to get the change of basis matrix for each rotation
using those same planar decompositions. This change of basis matrix can also be thought of as a
rotation operator on a vector.

1 0 0 cosBp 0 sinBp
Rp=10 cosbyp -—sinB, Rp = 0 1 0

0 sinB, cosO, -sinB, 0 cosB,

cosfly —smé 0
Ry =|sinfly cosf 0O
0 0 1
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The composite rotation can be expressed as the product of the roll, pitch, and yaw rotations that
are applied to a vector x in that order.

| cosOy cosBp cosOysinBpsindy —sinfy cosB p
=| sinBy cosB, sinB,sin0,sin0, +cosBy cosb

| —smn0p cosOpsindy

cosBysinbpcosOy +sinbysinby
sin0y sinB p cosO , —cosOy sinB,

cosO pcosBp

For free-floating objects whose orientation is best defined with regard to inertial coordinate frames,
such as aircraft, missiles, spacecraft, and submarines, such rotations are helpful. There are some
differences in rotations about body-centered coordinate axes.

8.6 LINEAR OPERATORS IN DIFFERENT BASES

We shall pay special attention to transformations from a space into itself, such A: R" — R" in the
upcoming chapter. This will, of course, result in a square (nxn) matrix and may also perform a
basis change at the same time. Denote such an n-dimensional space with basis {v} by writing X,

. The matrix A that modifies X, — X, is referred to as a transformation in the basis {v}.

For the time being, we will no longer be referring to vectors in a basis, but since a vector's
representation will always change in tandem with its basis, it is reasonable to assume that an

operator's representation on a vector will also alter in tandem with the basis. Hence, A represents

the operator that converts vectors stated in a different basis, {v}. By using this notation, we may

A A

state that y= Ax and y = Ax, where y and x are obviously vectors represented in basis {v}.

The current topic of discussion is how to convert an operator's matrix representation from one
basis to another. The change of basis matrices created in the preceding unit will be used for this.

Using the change of basis matrix B, we can write y = By and x = Bx. Using these changes of
basis we have.
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§ =A%
By = ABx

y= B ' ABx

B™' must exist because it is an (n x n) change of basis matrix and of full rank.
Comparing this to the expression y = Ax , we see that

A=B"'4B
Equivalently, if we denote M = B~ . then A= MAM ™! , Or
A=M"am

A similarity transformation occurs when the basis of a matrix representation of a linear operator is

changed. There is a claim that A is similar to A and vice versa.

8.7 MATRIX OPERATORS AND CHANGE OF BASIS

Examine the linear vector space X comprising polynomials in s with real coefficients and a degree
less than four across over the field of reals. The operator A: X — X that takes such vectors v(s)

and returns the new vectors w(s) = Vv (s) + 2v (s) +3v(s) ( where prime denotes differentiation

in s) is a linear operator (as is differentiation in general). The matrix form of this operator in two
bases will be found in this example,

fe,} = {33, 52, s, 1} ={e,(5), e,(s), e5(s), e5(s)}

{e}1= {33 —s2 st -, 51, 1} ={2,(s). &,(5). &(5). 24(s)}

as well as the transformation between the two.
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Solution:
First we will determine the effect of A on the basis vectors {e;} :

Ae, = e['(s)+2e] (s)+3e,(s)

=65+ 65> +35°

:[ﬁ’l €, &3 94]

Ae, = e}(s)+2el(s)+3e,(s)

=2+4s+3s”

:[e, e, e, eq]

Ae; = ej(s)+2e;(s)+ 3eq(s)
=2+3s

=[€| Ez EJ 84]

Aey = e;(s)+2e,(s)+3e,(s)
=3

:[fl € €3 ‘-’4]
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We obtain the matrix by taking the four columns of coefficients in these four forms.

We can check this result by applying this transformation to the vector v(s) =s® +1, whose

representation in {e,} is v=[01 0 1]" . Multiplying this representation of wby matrix A

results in

Applying the transformation by direct differentiation gives
W(s) = AV(S) =V'(s) + 2V (s) + 3v(s) = 3s* + 45 +5

which is clearly the same vector as computed in (2) above.

In what way does this operator manifest itself in the distinct base {é}? There are two techniques

to ascertain the response. Either we can apply a similarity transformation on the matrix A that was
previously computed in (1), or we can derive the matrix transformation directly in this basis.

Initially, after determining the basis matrix change between the two bases, we need to calculate
the expansion.

Upon closer examination, it becomes evident that calculating the inverse relationship is less
complicated:
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e =€ —e :[el

83233_84 = €|

e, =e, :[eI e,

We get at the inverse matrix since this is the inverse relationship, M = B™. By gathering the
coefficient columns, this matrix is

From which we can compute.
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Now using the formula A= B AB, we find that

]’3

We may now find the effect of the original operator on vectors that have already been expressed
in the {e_i} basis in order to verify this result by determining A in a different method. Finding

the expression for \7(5) , or the same vector v but in the "bar" basis, should come first:

Which is simply the matrix-vector notation for
1.e_2(s) +1.e_3(s)+ 2.e_4(s) =(s?=9)+(s-1)+2=5"+1=v(s)

Now applying the matrix operation in the {e_i} basis,
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Writing this representation out explicitly in terms of the “barred” basis vectors,

AV(s)(s) = 3e,+ 7e,+12.e, = 3(s® — ) + 7(s —1) +12(1) = 352 + 4s + 5

It is, naturally, just what we would anticipate: the identical vector that we calculated in Equation
(2). Stated otherwise, we have proven that the Figure 5 is commutative. "Commucative diagrams”
illustrate how various paths, each signifying a sequential action or transformation, lead to the same
outcome. One executes the action stated next to the arrow, in the indicated direction, to move from
one vector to another. In case an arrow needs to be traversed "against™ or in reverse, the inverse

transformation is employed. This graphic can be used to show that A=BAB™.

A=BAB"!

~

w
3

-
N,

Figure 5: Commutative diagram showing different paths to the transformed vector w.

Check your progress

Problem 1: Show that the transformation T: V2(R) — V2(R) defined by T(a, b) = (a+b,a) V a, b
€ R is a linear operator.

Solution: To show that T is a linear transformation, we need to prove that,
For any X, y € V2(R)

T(x +y) =T(x) + T(y) and T(ax) = aT(x) where a is a scalar in field.

Let (X1, y1) and (X2, y2) are arbitrary elements of V2(R)

TI(X1, y1) + (X2, ¥2)] = T[(X1 + X2, Y1 + ¥2)] = (X1 + X2 + y1 + Y2, X1 + X2) .....>1)

USER KAMLESHDEPARTMENT OF
MATHEMATICS UTARAKHAND OPEN PAGE 166
UNIVERSITY




ADVANCED LINEAR ALGEBRA MAT-505

T(X1, Y1) + T(X2, Y2) = (X1 + Y1, X1) + (X2 + Y2, X2) = (X1 + X2 + Y1 + Y2, X1 + X2) .....(i1)
From (i) and (ii), we get T[(X1, Y1) + (X2, Y2)] = T(X1, y1) + T(X2, ¥2)

Now, T[a(x1, y1)] = T(axs, ay2) = (axa + ayi, ax1) = a(xa1 + y1, X1) = aT (X1, y1).

=~ T is a linear transformation.

Problem 2: Given a linear operator T on V3(R) defined by T (a, b, ¢) = (2b + ¢, a— 4b, 3a)
corresponding to the basis B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Find the matrix representation of T.

Solution: Now, T(1,0,0)=(2x0+0,1-4x0,3x1)=(0,1,3)
=0(1, 0, 0) + 1(0, 1, 0) + 3(0, 0, 1)
T(0,1,0)=(2x1+0,0-4x1,3x0)=(2,-4,0)

=2(1, 0, 0) -4(0, 1, 0) + 0(0, 0, 1)
AndT(0,0,1)=(2x0+1,0-4x0,3x0)=(1,0,0)

=1(1, 0, 0) + 0(0, 1, 0) + 0(0, 0, 1)

Then, the matrix representation of T with respect to the basis B is

0 2 1
[T;B]l=|1 -4 0
30 0

8.8 SUMMARY

This unit has covered some of the foundational mathematics required to comprehend state spaces.
In this case, the idea of a linear operator proved crucial. We introduce the linear operator technique
as an alternative to thinking in terms of matrix-vector multiplication as it is used in matrix theory.

This provides a far deeper understanding of geometry for some of the fundamental math operations
we have been carrying out all along. Certain ideas in control systems and linear system theory
cannot be properly grasped without this approach. Other important concepts introduced in this unit
were:
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>

It is possible to write any linear operator as a matrix, and any matrix can be conceptualized
as an operator. Therefore, it should be evident that even though we emphasize the
geometric comprehension of linear operators, our outdated computing techniques and
habits are still valuable. Conceptualized some special linear functions and their properties.

The linear operators are expressed in certain bases, which are either expressly stated or
inferred from their context. Operations involving matrix multiplication can be used to alter
these bases.

GLOSSARY

Linear Operator
Rotation matrices
Composite rotation
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8.12 TERMINAL QUESTION

Long Answer Type Question:

1. Show that mapping T: V3(R) — V3(R) defined by T(a, b,c) =(a,b,c) Va,b,ceRisa
linear operator.
Show that the given subset of vectors of R® forms a basis for V3(R).
{(1,0,-1), (1, 2, 1), (0, -3, 2)}.
Given a linear operator T on V3(R) defined by T(a, b, ¢) = (2b + ¢, a—4b, 3a)
corresponding to the basis B = {(1, 1, 1), (1, 1, 0), (1, 0, 0)}. Find the matrix
representation of T.

Short Answer Type Question:

1. Show that the mapping T : F* — F? defined by,
T(X,y,2)=(X—y+2z,2X+Y,—X—2Y +22) is a linear operator

Which of the following functions T : R*> — R”are linear operator
a. T(a,b)=(1+a,b)

b. T(a,b)=(b,a)

c. T(a,b)=(a+b,a)

Show that the mapping T :V,(R) -V, (R) defined by

T(a,b) =(b,0) Va,b e Ris a linear operator.

Show that the mapping T :V,(R) — V,(R) defined by,
T(XY,2)=0@XX—-Y,2X++Y+2)V(X, Y, z) €V,(R) is a linear operator.

Show that the mapping T : R* — R*defined by T(a,b,c)=(0,a,b)vVa,beRis a linear
operator.

8.13 ANSWERS

Answer of short answer type questions:
2 (a) T is a linear operator.
(b) T is a linear operator
(c) T is a linear operator.
I ———
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UNIT-9: CHARACTERISTIC AND MINIMAL

POLYNOMIAL OF AN OPERATOR
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9.1 INTRODUCTION

Generally, our focus on a polynomial reflects our interest either in its degree or coefficients from
F. If we focus on the coefficient of highest degree of a polynomial, and try to make it a unit of
the field F, then resultant polynomial is called monic polynomial. Such polynomials are
relatively easy to factorize. One of such example is characteristic polynomial of linear operator
or in particular, a matrix (square). All the roots of this equation are called eigen value or
characteristic value or latent root. Now we try to find a non-zero vector v € V such that T(V) =

CV, where C is eigen value of T. We study Cayley-Hamilton theorem, which states that a

linear operator satisfies its characteristic equation. Then we try to find a minimal polynomial
I ———————
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which is also satisfied by T. This inter-relationship produces many standard results. Since a
diagonal matrix is always easy to study so, we try to diagonalize every square matrix. But there
are certain rules, which elaborate us the possibility and limitations of this concept.

Further we try to decompose a vector space into independent subspaces. Also, there are a
variety of results on the projections.

9.2 OBJECTIVE

After studying this chapter, you will understand —

Eigen value, eigen vector.
Characteristic and minimal polynomial.
Diagonalizable operators.

Invariant and independent subspaces.
Projection on a vector space.

CHARACTERISTIC AND MINIMAL POLYNOMIAL

Let T be a linear operator on a finite dimensional vector space V(F).

1) A polynomial p(x) € F[x] is called a monic polynomial, if the coefficient of the highest
power of x in p(x) is unity. Thus p(x) = x® + a;x® 1 + ... + a,_;x! + a, € F[x] is a monic

polynomial.
2 The linear operator T satisfies the monic polynomial p(x) if,
p(M=T"+a,T" 1+ .. +a, ;T'+a,1=0.
If p(T) =0, then we say that the polynomial p(x) annihilates T.
3) Let T be a linear operator on a finite-dimensional vector space V(F). A monic polynomial
p(x) € F[x] of lowest degree such that p(T) = 0 is called a minimal polynomial for T over F.

4 In a similar manner, we can define minimal polynomial for a square matrix A.

Theorem 1: Let T be a linear operator on a finite-dimensional vector space V(F). Then the
characteristic and the minimal polynomials for T have the same roots, except for multiplicities.

Proof: Let p(x) be the minimal polynomial for T, so that p(T) = 0. Suppose ¢ be a root of p(x),
sothatp(c)=0.

Claim: We shall prove that c is a root of the characteristic polynomial of T (i.e. ¢ is an eigen
value of T). As c is a root of p(x).

DEPARTMENT OF MATHEMATICS
UTARAKHAND OPEN UNIVERSITY

PAGE 171




ADVANCED LINEAR ALGEBRA MAT-505

= (x —c) divides p(x) in F[x]. so by division algorithm, there exist q(x) € F[x]
such that

pP(x) = (x—c) q(x) ; deg q(x) < deg p(x) (1)

As p(x) is the minimal polynomial for T and deg q(x) < deg p(x). So q(T) = 0.
= there exists some 0 # v € V, such that
q(T) (v) # 0.

Suppose x = q(T) (v) # 0. Then from equation (1), we have
p(T) = (T —cl) a(T)
(T-chq(T)=0,asp(T)=0.

(T—cl) a(T)(v) = 0(v) = 0.
(T—cl) (x) =0.
T(x) —cl(x) =0.
T(X) = cx.
= c is an eigen value of T.

So c is a root of characteristic polynomial of T.

Step I1: Let ¢ be a root of the characteristic polynomial of T, i.e. ¢ is an eigenvalue of T. Then
there exists 0 # v € V, such that

T(v) =cv.
Since p(x) is a polynomial, p(T)(v) = p(c)(v)
= p(c)(v)=0 as p(T)=0.

p(c)=0asv #0.
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Hence c is a root of the minimal polynomial for T.

Theorem 2: Let T be a diagonalizable linear operator on V and let c,, ...., cx be the distinct
eigenvalues of T. Then the minimal polynomial for T is the polynomial

p(X) =(X—cq) ..... (X — cg).

Proof: Since we know that each eigen value of T is a root of the minimal polynomial for T.
Hence each of cq, ...., ¢y is a root of the minimal polynomial for T.

= each of the polynomials (X — c;), ....., (x — ci) is a factor of the minimal polynomial

for T. Hence the polynomial p(X) = (X — ¢;) ..... (x — cx) will be the minimal polynomial for T, if
p(T) = 0. Let v be an eigen vector of T. Then

(T—-cl) (v) =0, forsomei,l =i=Kk.
It follows that,
(T—cyD) .... (T —cgl) (v) =0, for each eigen vector v. ...(D)

As T is diagonalizable, there exists a basis [ of V, consisting of eigenvectors of T. Using this in
equation (1), we get

(T—cD) ... (T—cxl) () =0, ¥V XEV.
p(M) =(T—ciD).... (T—ckl) =0.
Hence p(x) = (X — ¢;) ..... (x — ¢x) is the minimum polynomial for T.

Note: Above theorem tells us that, if T is a diagonalizable linear operator, then the minimal
polynomial for T is a product of distinct linear factors.

Theorem 3: The minimal polynomial of a linear operator T divides its characteristic polynomial.
Proof: Let p(x) be the minimal polynomial of T.

= pMm=0,

Let f(x) be the characteristic polynomial of T. Then by Cayley-Hamilton theorem, f(T) = 0. Let c
be a root of f(x). Then by Division Algorithm,

f(x) = (X —¢) p(x) + q(x) (D
]
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where q(x) € F[x] and either g(x) =0 or deg q(x) < deg p(x). Suppose q(x) # 0. Then deg
q(x) < deg p(x). Then from equation (1), we have

f(T) = (T —cl) p(T) +q(T)
=  0=(T-cl)0+q(T)
= q(T)=0.
Contradiction! So our assumption was wrong.
= q(x) = 0.
Then from equation (1), we have f(x) = (x — c¢) p(x)
= p(x) divides f(x).

Example 1: Let T be a linear operator on R® which is represented in the standard ordered basis
1 2 0

by the matrix A=(2 1 —6]. Prove that the characteristic polynomial of T is same as the
2 -2 3

minimal polynomial of T.

Solution: We can derive eigenvalues 5, 3, -3 of A as in the previous chapter. So characteristic
polynomial of T is f(x) = (X —5) (x — 3) (x + 3).

Since all characteristic values of T are distinct, so the minimal polynomial for T is

p(x) = (x=5) (x=3) (x +3).
Hence f(x) = p(x).

Example 2: Let T be the linear operator on R® which is represented in the standard ordered basis
-9 4 4

by A= -8 3 4]. Find the minimal polynomial for T.
-16 8 7

-9 —x 4
Solution: We can easily find |A —xI|=| -8 3—x
—16 8 7—x

So, f(x) = det (A —xI) = (x —3) (x + 1)°.
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So eigenvalues of T are 3, -1, -1.
Hence minimal polynomial is either p(x) = (x — 3) (x + 1) or p(x) = (x — 3) (x + 1).

Case (i): Let p(x) = (x —3) (x + 1) = x> — 2x — 3 then p(A) = A’ — A —3l.

9 4- 4
Now, A?= ] [ ]
16 8 7 16 8 7

AZ= 16 9 8]
-32 16 17

-15 8 8 -18 8 8 3 00
So p(A)=|-16 9 8|—|-16 6 8|— |0 3 0
-32 16 17 -32 16 14 0 0 3
-15 8 8 15 -8 -8
pA=|-16 9 8|+[16 -9 -8
-32 16 17 32 —-16 -—-17
p(A) = 0.
So p(x) = (x — 3) (x + 1) is the minimal polynomial. Now there is no need of second case.

Example 3: Let T be the linear operator on C? which is represented in the standard ordered

basis by the matrix A = [(1) _01] Find the minimal polynomial for T.

Solution: The characteristic polynomial for T is det (A — xI) = |_1x

values of T are x = + I, — i. Since both eigen values are distinct . So minimal polynomial is

_1| = x? + 1. So eigen
—x

pP(X) = (X —i) (X +1i) =x%+ 1.

Verification: p(A) =A%+ 1= [(1) _01] [(1) —01] + [é

[ Sltlo 1=l

Example 4: Let V be a finite-dimensional vector space. Find the minimal polynomials for the
operators | and O, where 1 is the identity operator and O is the zero operator on V.

Solution: (i) I(x) = x
I ———————
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Let p(X) =x—1thenp(l)=1-1=0.

So obviously p(x) = x — 1 is the minimal polynomial for I.
(i) Let p(x) = x then p(0) = 0.

So p(x) = x is the minimal polynomial for O.

Example 5: Let T be the linear operator on R® which is represented in the standard ordered
2 1 0

basis by the matrix. A=10 1 —1] . Find the minimal polynomial for T.
0 2 4

2—x 1 0
Solution: |JA-xll=| 0 1-x -1 | =(x-2)*(3-x)="f(x).So eigen values are 2, 2,
0 2 4—x
3. So possible minimal polynomials are either p(x) = (3 — x) (X — 2) or p(X) = (3 —X) (X — 2)?

Casel:Let p(X)=(B-x)(x-2)

1 -1 07[0 1
p(A):(3I—A)(A—2I)=[0 2 1”0 —1 —1]

0 -2 -—-11lo 2

0 2 1
p(A)=[0 0 0|#0.
0 0 O

So p(x) = (3 —x) (x — 2) is not the minimal polynomial.
Case 11: Now p(x) = (3 —X) (x — 2)% It can be easily verified that p(A) = (31 — A) (A —21)? =0.
So this is the minimal polynomial of T.

Example 6: Prove that the minimal polynomial of a linear operator T is a divisor of every
polynomial that annihilates T.

Solution: Let p(x) be the minimal polynomial for T and h(x) be any polynomial that annihilates
T.

Claim: We shall prove that p(x) divides h(x).

Since p(x), h(x) € F[x]. So by Division Algorithm in F[x] , there exist two polynomials g(x),
r(x) € F[x] such that
I ———————
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h(x) =p(x) a(x) + r(x)
where either r(x) =0 or deg r(x) < deg p(x) .
So, h(T) = p(T) a(T) + r(T)
= 0=0+r(T) = rMm=o
If r(x) #0,thenr(T)=0 = r(x) isthe minimal polynomial.
Contradiction! So r(x) =0, is the only choice. Then,

h(x) = p(x) q(x)

= p(x) divides h(x).

9.4 INVARIANT SUBSPACES

Let T be a linear operator on a vector space V(F). A subspace of V/(F) is said to be invariant
under T (or W is T-invariant) if T(W) & W. We can also say, W is invariant under T if T(X) €

W, forall x e W .

Example 7: If T is any linear operator on a vector space V, then prove that ker (T) and Range
(T) are invariant subspaces of V.

Solution: (i) We know that ker T={vEV : T(V)=0}. Since T(0) =0 € ker T. For any x €
ker T, T(x) = 0 € ker T.

=TX)EkerT,¥xekerT.

Hence ker T is an invariant subspace of V.

(i) Let R(T) be the range of T. So for any x € R(T) , 3 some v € V such that x = T(v)
~T(X)= T(T(v)) =T(vy) ,vi=T(v) EV
= T(X) ER(T) ¥ x € R(T).

Hence Range T is an invariant subspace of V.
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Example 8: Let T be a linear operator on a finite-dimensional vector space V(F) and let ¢ be an
eigenvalue of T. Prove that the eigenspace W, is invariant under T.

Solution: Here W.={ v € V : T(v) =cv}. Forany v € W, , we have T(v) =cv
= T(T(v)) = T(cv).
= T(T(v)) =c T(v)

If we take T(v) = vy, then

T(v1) =cvi = vi € W. OR T(v) € W, . So W, is invariant under T.

Example 9: Prove that the space generated by (1, 1, 1) and (1, 2, 1) is an invariant subspace of
R3under T, where T(X, Y, z2) = (X +y -z, X+Vy,X+y—2).

Solution: Suppose W be the subspace of R® generated by (1, 1, 1) and (1, 2, 1). So
W={a(,1,1)+B(121):a,BeR}

Given linear transformation is
TXY,2)=(X+ty—-z,x+y,x+y-2) ...(1)

So0T(1,1,1)=(1,2,1) W, and
T(1,2,1)=(2,32)=(11,1)+ (12 1) €W.
IfweW. Thenw=a(1,1,1)+( (1,2 1)
So, Tw)=aT(1,1,1)+ B T(L 2 1) €W.
= TWEWVYWEW.

So W is invariant subspace of R3 under T.

Example 10: Let T be a linear operator on R? whose matrix representation in the standard basis

IS [(2) ;] Let W be the subspace generated by e1 ={ (1, 0)}. Prove that W is invariant under T.

Solution: As we know, standard basis of R?(R) is {(1, 0), (0, 1)}. Lete1 =(1,0), e2 == (0, 1).
So by given matrix, T(e1) =2e1+ 0e2and T (e2) = le1 + 2e>.
I ———————
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Given that
W=L{ei}={aer:ax€R}= {a(l,0):aeR}
For any x € W, we have X = ae;
T(x) = T(cte1) = a T(e1) = cx (2e1 + Oey)
TX)=2ae; EWas2aeR.
=T(X)EWVXEW,
= W is invariant under T.

Example 11: Show that the subspace spanned by two subspaces, each of which is invariant
under a linear operator T on V, is itself invariant under T.

Solution: Let W1 and W- be two invariant subspaces of V under T. So

T(W1) €W;1 and T(W2) €W ..(1)

Let W be the subspace of V spanned by W1 U W . So from the vector spaces chapter, we know
that W = W1 + W,

Claim: W is invariant under T. Let w € W, then w = w1 + w2 where w1 € W1, w2 € W2, Then
T(w1) € W1 and T(wz2) € W» ...(2)

So T(w) = T(wy +wz) =T(w1) + T(wz2) EW.
Thus TW)EW V weW.

Hence W is invariant under T.

Example 12: Let T be a linear operator on a vector space V. If every subspace of V is invariant
under T, then prove that T is a scalar multiple of the identity operator 1 on V.

Solution: Step I: Let v # 0 and v € V be arbitrary. Suppose W = L{v} ={av:a € F }. Then
obviously W is a subspace of V(F). By given hypothesis T(W) & W . We can write v = 1v
where lEF.SoveW = T(V)EW
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Hence T(v) = av, for some « € F. (D)
Again, suppose w € W be arbitrary . Then w = Bv for some p € F.

= T(w)=T(Bv) =B T(v) =B (av) ;  using (1)

T(w) = (Ba) v = (aB) v=c(Bv)

TWw)=aw Vv WEW | 2)

So foreveryw € W, T is a scalar multiple of the identity operator | on V.

Step I1: If v € W. Then obviously v, v' are linearly independent.

Let W' = L{v'}. Since, W' is a subspace of V, so by the given hypothesis, W' is invariant under T
i.e. T(W") € W:'. As discussed in equation (1) , we have

T(V)=a'v', forsome o’ EF. ... (3)
Let W" =L {v-V'}. As argued above, we have T(v—V') =y (v—V') forsome vy E F
T(V)-T(V)=yv-yv
= av—a'Vv' =yv-yVv', using equations (1) and (3)
= (x— YV +(y—a')v' =0.
But v and V' are linearly independent.
= a— y=0,and y—a' =0.
= a=y=a .
Putting o in equation (3), we get
TV)=aVv' V VEW.
From (2) and (4), we have T(X) =aXx VXEV.

= TX) =al(x) = (xl) (X) ¥XE V.
I ———————
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Hence T=al ,a € F.

Example 13: Let T be a linear operator on R?. Let its matrix in the standard ordered basis is

[1 -1

5 9 ].Then

Q) Prove that the only subspaces of R? invariant under T are R? and the zero subspace.
(i) If U is the linear operator on C?, the matrix of which in the standard ordered basis is A,
show that U has 1-dimensional invariant subspaces.

Solution: (i) Suppose W be any proper subspace of R? such that W is invariant under T. Then
obviously dimW =1.

= W is spanned by some 0 #=w € W.
Since W is invariant under T. So T(w) € W ¥ w € W. Let T(w) = cw, for some ¢ € R.
= cisan eigenvalue of T.

All the eigenvalues of T are given by

1—x

1 |_y2_ _
e B S e

|A—x||:|

x=-(31iV7) €R.
= c € R, acontradiction !

Hence there does NOT exist any proper subspace of R? which is invariant under T.

= Only subspaces of R? invariant under T are R? and {0}.
(i) As discussed above, eigenvalues of U on C? are

a=:(3+iV7) €C; ©=;(3-i7) €C.
Now W, ={VvEV:T(v)=cwv }.

Claim: W¢_ is invariant under T. For any v € W, , we have T(v) = c1v.
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T(T(v)) = T(cwv)
= T(MVv)=ciT(V)
Let T(v)=v1
= T(v)=cvi
=  ViEW, OrT(V)EW, ¥VEW,,.

So W is invariant under T. Similarly, we can show that W, is also invariant. Also dim W, =
dimW,, = 1.

Theorem 4: Let T be a linear operator on a finite-dimensional vector space V(F). Let W be an

invariant subspace of T. Then T has a matrix representation [13 ]é] where A is matrix of

restriction of T on W.

Proof: Let B; = { wy ,...., w; } be a basis of W. Since w, ,...., w, are linearly independent
vectors of V, they can be extended to form a basis of V. Suppose B={w; ,...., Wy, Vq ,...., Vg }

be a basis of V. Given that W is invariant under T, so T(x) € W, for each x € W .Let us define a
mapping Ty : W—=W by

Tw (X)=T(X) ¥XEW . (1)

Definitely Ty, will be a linear operator. Here Ty is called restriction of T on W. From equation
(1), we have

T(Wl) = TW (Wl) =ad;1wp + ...t A Wr

T(Wz) = TW (Wz) = d2 W + ...t A Wr

T(Wr) = TW (Wr) =a Wyt
Also we have
T(Vl) = b11W1 + ...+ brlwr + C11V1 + ...+ CSlvs

T(Vz) = b]_le + ...t brzwr + C12V1 + ... T Cgo Vg
|
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T(VS) = blSW]_ + ...t bI‘SWI‘ + C1sV1 + ...t CssVg
From these equations, we obtain
di1 v Arr
[Twlg,=| ¥~
ary v A TXT
d;; ct Air by

_lar1 - apr b1
T =19 . 0 o

| 0 O CSI
by; - byg

whereB=| - :

bry o Dbrs Cs1

Here A is the matrix of restriction of T on W.

Theorem 5: Let T be a linear operator on a finite-dimensional vector space V(F). Let W and U

be invariant subspaces of T such that V = W @ U. Then T has a matrix representation [g\ %]

where A and C are the matrices of restriction of T on W and U respectively.

Proof: Let B, ={wy ,...., w, } be a basis of Wand 3, ={ v, ,...., v } be a basis of U. Given
that V=W @& U.SoWn U ={0}. SodimV =dim W + dim U.

Hence B ={ w; ,...., W, V4 ,...., Vg } is basis of V. As W is invariant under T. So T(x) € W, for
each x € W. Let us define, Ty, : W =W by Ty (X) = T(X) ¥ x € W . Then obviously, Ty is a
linear operator on W. Here T,, is restriction of T on W.

Now, T(w;) = Tyw (Wy) =a;;wy +....+ap Wy

T(Wr) = TW (Wr) =a;wy ..

a1 0 Arr
Hence [Twlg, = ™~ f[=Asay
drp  *t Apr
- - -
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€11 = Cis
Similarly [Tylg,=| ¢ ™ ¢ |=C,say
Cs1 ** Css
Then it can be easily observed that
[311 o Apr o - 0 ]

_lapy - a 0 -« 0
[Tlp = r0 Orr Ci1 = Cis

[ - . |
lo e 0 Cgp cSSJ

Example 14: Let V be the vector space of all polynomials in x over F, of degree < 5. Let T : V—
V be defined by, T(1) = x>+ x4, T(X) =x+ 1, T(x?) =1, T(x®) = x3+ x? + 1, T(x*) = x4, T(x°) = 0.

Q) If W is the linear span of {1, x?, x*}, show that W is invariant under T.
(i) Also find the matrix of T in a suitable basis of V.

Solution: (i) LetweW, = w=a+Bx>+yx* ; a, B,y €F. We have
T(w) = T(ed + Bx® +yx*)
=aT(1) +BTEA) + v T(xY)
=a (X2 +xh + B+ yx?
=Bl+ax®+ (a+y)x*EW
So T(w) e W, foreachw € W
= W is invariant under T.

(i) We shall find the matrix of the restriction of T on W. A basis of W is B; = {1, x?, x*}.

Tw(1) = T(1) = x* + x* =01 + 1.x* + 1.x*
So Tw(x?) = T(x?) = 1 =11+ 0x%+ 0x*; ....(1)
TwExH = TExH= x* =01+ 0.x% + 1.x*

01 0
Hence [Twlg=|1 0 0| =A,say.
1 0 1
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Now we find the matrix of T relative to the basis B = { 1, x2, x*, x, x3, x> }. So we have

T(x)= x+1 = 1.1 + 0.x> + 0.x*+ 1.x+ 0.x3 + 0.x°
Tx3)=x3+x*+1 = 1.1 + 1.x> + 0.x*+ 0.x+ 1.x3+ 0.x°} ....(2)
T =0 = 0.1+ 0.x2 + 0.x*+ 0.x+ 0.x3+ 0.x°

From equations (1) and (2), the matrix of T with respect to the basis f3 is

[ 0 0 | 0
1 ¢ 0 0
1 ¢ 0 0

0 |
0 P00
L0 0

1 1 0 1 0 0
whereB=10 1 0|,C=]0 1 O0].
0 0 O 0 0 O

Example 15: Let V be the vector space of all polynomials of degree less than or equal to six. Let
W be the subspace of V spanned by { 1, x?, x* , x® }. Let D be the differential operator on V i.e.

D (x) = = (f(x)).

Q) Show that W is not invariant under D.
(i)  LetT =D?, where D?f(x) = ;—; (f(x)). Show that W is invariant under T.

(iii)  Find the matrix of Ty in a suitable basis of W, where Ty is the restriction of T on W.
(iv)  Find the matrix of T in a suitable basis of V.

Solution: (i) Since W is spanned by { 1, x?, x* ,x®}. S0 {1,x% x*,x*}cW. Now x2 EW,
but D(x?) = % (x?) =2x € W. So W is not invariant under D.

(i) Letf(x) EW.Thenf(x)=o;.1+ 0y x> +a3.x* +a,.x% ;o4 E F
= DfX)=0+2a,.x +403.x3 +6 ay. x°
= D?f(x) =2 a, + 12 at3. x% + 30 . x*

Given D> =T, s0 T f(X) = (2a,).1 + (12 a3) x% + (30 oy) x* + 0.x° €W
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Hence T(f(x)) € W, for each f(x) E W .

Hence W is invariant under T = D2,

(iii)  Abasisof Wis B; = {1, x?, x*, x® }. We have
Tw(1) = D?(1)= 0 = 0.1 + 0.x*> + 0.x*+ 0.x°
Tw(x?) = D?(x?) = 2 = 2.1 + 0.x% + 0.x*+ 0.x°
Tw(x*) = D?(x*) = 12x? = 0.1 + 12x? + 0.x*+ 0.x°

Tw(x®) = D?(x®) = 30x* = 0.1 + 0.x% + 30x*+ 0.x°

Hence, the matrix of Ty, in the basis 3; of Wis A =

(iv) Now, we find the matrix of T, relative to the basis B = { 1, x?, x* , x°, x , x3
Here T = D?

T(1) = 0= 01+ 0.x> + 0.x*+ 0.x°+ 0.x+ 0.x> + 0.x°
Tx?®)=2 = 21+ 0.x> + 0.x*+ 0.x°+ 0.x+ 0.x> + 0.x°
T(xY) = 12x> = 0.1 + 12.x*> + 0.x*+ 0.x°+ 0.x+ 0.x3 + 0.x°
T(x®) = 30x* = 0.1 + 0.x% + 30.x*+ 0.x®+ 0.x+ 0.x3+ 0.x°
T(x) 0 = 01+ 0.x2+ 0.x*+ 0.x°+ 0.x+ 0.x3+ 0.x°
T(x3) 6x = 0.1 + 0.x*> + 0.x*+ 0.x°+ 6.x+ 0.x3+ 0.x°

T(x°) = 20x3 = 0.1 + 0.x2 + 0.x*+ 0.x®+ 0.x+ 20.x3 + 0.x°

0

0 0
0 0
0 0

“lo ¢!

6 0
0 20
0 O
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whereC=|0 0 20

060]
0 0 O

9.5 DIRECT SUM DECOMPOSITION

Independent subspaces: The subspace Wi, ...., Wi of V(F) are called independent if for x; €

W;;1=1,2,.....k,wehave x; +x, +.... + X, =0,
= x;=0, Vi=12, ...,k

Theorem 6: Let V be a finite-dimensional vector space over F. Let Wy, ...., Wy be subspaces of
Vand W =W, + .... + Wy . Then the following conditions are equivalent:

Q) Wi, W, ..., Wy are independent.

(i) WnW + ..+W_)={0}forallj;2=j=k

(iii)  If By is an ordered basis of W;, 1 =i =<k, then B = {B, ...., Bx } is an ordered basis of
W.

Proof: Step I: We shall prove (i) = (ii). Suppose W;, ...., Wy be independent subspaces of
V(F).

LetxeW; N (W, + ...+ Wi_y);2<j<=k ThenxeW;andx e Wy + ...+ W,_,; .
SoxEWjandx =x; + ....+xj_q, Where x; EW, forI=1,2,...,j -1

= X1+ . T X +(-X)=0.

= X1 =0, ....,xj-1 =0, x=0; since Wy, ...., Wy are independent.

= x=0.
So, Wyn(Wy+ ...+Wi_)={0} 2=j=k

Step 11: Now we prove (ii) = (iii).

Let B; ={ b} , b}, ..., by } beabasisof W;;1=1,2, ..., k.

Claim: 8 ={B;, ...., Bk } is a basis of W.
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(a) First we shall show linear independence of elements of .
Let Z 1((11 b1 + 0(2 bz ..t O(iji ili ) = 0’ a]l EF.
or YK w;=0 where Wi:Z] Lol bl €W,

or wytwy, + .+t we =0,

= w; =0 fori=1,2,.....k, because if, j is the largest +ve integer
such that w; # 0, then wy + w, + ... + w; =0 = W= wy LWy
= w;EW; N (W, + ...+ W_y); by part (ii)

= W]:0

Now foreachi,w; =0 = Z].d;I oc} b} = 0. Since B; is a linearly independent set for each i,

therefore a} =0; Vv j=1,2,....d; and¥ i=1,2, ...,k .Thus § is a linearly independent
subset of W.

(b) Now we shall prove that  spans W. Let x e W =W, +.... + Wy be arbitrary.
Then x =YX, w; , where w; € W;. As B; is a basis of W;, so w; = 2] 1111 bl . )\} €F.

So, x= X, X Albl, VxEW.
= B spans W.

Hence B is a basis of W.

Step 111: Now we shall show (iii) = (i).

Suppose wy +....+wi =0,0r Y&, w; =0.

As B is a basis of W;, so w; = Z] JAbl AEF.

= Z] 1}\}b‘—O
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= A} =0,¥vj=1,2,...,d; ; ¥ i=1,2, ...,k as B is a basis of W, so linearly
independent.

= w; =0, foreachi=1,2, ... k.
= W;,.., Wy are independent.

Example 16: Prove that if W;,W,, W5 are independent subspaces of V, then W; N W, =0, for i #
J:1,]=1,2, 3. Give an example to show that its converse may not be true.

Solution: For i # j , we have W = Zj3=1Wj . Since W;, W,, W; are independent . So by previous
j#1
theorem, W; N W, € W; N 2, W; = {0}. Hence W; n W; = {0} fori#jand i,j=1,2,3.
j£1

Conversely, letus take V=R3*R),W; =L {(1,0,0)=¢; }

W,=L{(0,1,0)=e, } and W; =L { e; +e, }. Obviously W, n W, = {0} .
Let x € W; N W5. Then x € W, and X € W;.
= X=ae; and x = (e; +e,) where o, ER.
= ae; = Pe; + Pe;
= (x — B)e; —Be, =0.
But e; and e, are linearly independent vectors.

= a—F=0and E=0.

Similarly we can prove that W, n W; = {0}. Now suppose X € W5 . Thenx=v (e; +e,) ;YE
R.

= X=ve, +ye, EW; + W,.
|

DEPARTMENT OF MATHEMATICS

UTARAKHAND OPEN UNIVERSITY PAGE 189




ADVANCED LINEAR ALGEBRA MAT-505
So Wy S W, + W,.
= Wy N (W, +W,)=W; = {0}

= W;, W,, W; are NOT independent subspaces.

9.6 PROJECTION ON A VECTOR SPACE

A linear operator E on a vector space V is called a projection if E> = E. It means E is
independent.

Theorem 7: If E is a projection on a vector space V(F), then V = R @ N, where R is the range
space of E and N is the null space of E.

Proof: Here E is a linear operator. So
R={EX):xeV}and N {x € V: E(x) =0}

Step I: Here we shall prove that x € R = E(X) = X. So by definition, X € R = x = E(y) for some
y ER.

So E(x)=E(E(y)) = EXy) =E(y) as E*=E.

= E(x) = E(y) = x.
Conversely , x =E(X) = X €R.

Step I1: Here we shall prove that V =R + N and R n N = {0}. Let x € V be arbitrary. Then we
can write

x = E(x) + (X — E(X)) (1)
Here E(x) €R. Also  E — (x — E(x)) = E(x) — E2(x) = E(x) - E(x) = 0.

=  x-EXEN.

So XER+N ¥x€V.

Hence V =R + N. Again, let x € R N N be arbitrary.
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= XE€R and x € N.

Now XER = x=E(X)andx €N = E(x) =0.

Thus x = 0.

= R n N ={0}.

Finally V=R @ N.

Note: (1) If V =R @ N, then we say that E is the projection on R along N .

(2) We discussed that x € R <= E(X) = x. Also V =R@® N. so each v € V is uniquely
expressibleasv=r+n,wherereRandn € N. SoE(v) =E(r+n)=E(r)+E(n)=r+0=r.

Hence if E is the projection on R along N, then for each v € V, such thatv=r+n, E(v) =r.

3) Any projection E on V is diagonalizable.

We have already discussed that V = R@® N. Let { v4, ...., v.} be a basis of R and {v.,4, ....,
vn} a basis of N. Then B = {vq, ...., Vi, Vp4q, ...., Vo IS @ basis of V = R@ N. Hence the

matrix of E with respect to the basis [ is the diagonal matrix,

[Elg = [(I) g] , LS 1 r unit matrix.

Example 17: A linear operator E on V is a projection if and only if | — E is a projection.
Solution: Let E be a projection. Then E> = E. So

(1-E2=(1-E)(I-E)=IP—E—E +E?

=1-2E+Easl?=1 and E’=E.
|-E

= | — E is also a projection.
Conversely, let | — E be a projection. Then (1-E)>=1-E
= I2-2E+E?=1-E
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E2=2E-E

= E is also a projection.

Example 18: If E1 and E> are projections on V such that E:E> = E>E1. Prove that E:E> and E1 +
E> — E1E2 are projections.

Solution: Given that E{1E> = E2E ... (1)

Now, (E1E2)? = (E1E2) (E1E2) = Ex(E2E:1) E2 = Ea(E1E2)E>
= £}

(E1E2)? =EiE; as E2=E:; and EZ=E;

= E1E> is also a projection.

Now, (E1 + E2 — E1E2)? = (E1 + E2 — E1E) (E1 + E2 — E1E))
= E2+E1E;—E2Ex+ E2E1 + E2 — EsE1E2 — E1E2E1 — E1E2 + E1E2E1 By
=E;+E1Ey—E1Es+ E1E2+ Eo—E1E2 —E? E; — E1 E2 + E2 E2
—Ei+EiEo-EiE2+E1Ec+E2-E1E2-E1 E2 - E1Ex + E1E2
=E1+E;-EiE2

So, E1 + E2 — E1E> is also a projection.

Example 19: Let V be a real vector space and E be a projection on V. Prove that | + E is
invertible and also find (1 + E) 1.

. . . . . 1 1 - .
Solution: Since E is a linear operator. So «E isalso ¥ o € R. Let @ = 5-S0 SEis also a linear
operator.

Now(I+E)(If§) = I(If§)+E(|*§)

E 1
=l--+E--E?
2 2
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(I+E)(1-2E) =1.

Similarly, we can prove, (I —% E)(U+E)=1.

So | + E isinvertibleand (I +E)"1=1->E.

Example 20: If E is the projection on R along N, then prove that | — E is the projection on N
along R.

Solution: Since E is the projection on Ralong N. So V=R @® N,
Claim: We shall prove that: Range space of (I — E) = N and null space of (I - E) = R.
(i) Aswe know, forany x € R, x = E(x). So (I -E) (x) = I(x) — E(X) = x — x =0.
= X € ker (I — E).
= R < ker (I - E). e (D)
Now for any x € ker (I — E), we have, (I — E) (x) =0.
= I(x) — E(x) = 0.
x —E(X) =0, as | is identity operator.
x=E(x). So xER
= ker (I1-E) ER. ... (2)
Hence from equations (1) and (2), we have, R = ker (I -E) = null space of (I — E).

(i) SinceV=R ® N, soeachv €V isuniquely expressible asv =r+n, where rE R and
n € N.ie. r=E(r) and E(n) =0.

So,E(V)=E(r+n)=E(r)+E(n)=r+0=r.
=3 (I-BE)(v)=I(v)-E(v)=v-r=n€eN.
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So range space of (I —E) & N.
Conversely, let n € N, then E(n) =0.
So(I-E)(n)=1(n)—E(n)=n-0=n.
= n € range space of (I — E).
= N € range space of (I — E). e (4)
From equations (3) and (4), we obtain, N = range space of (I — E).
Step 11: Now,

(1-E2=(1-E)(I-E)=1(1-E)—E(I - E)

=P-E-E+E2

(1-E)?=1-E,as E2=E.
Also V=R ® N =N & R. Hence | — E is the projection on N along R.
Example 21: If E is a projection and f is a polynomial, then f(E) = al + bE. Discuss it.
Solution: Suppose f(X) =ap + a;X + a,x? +.... + a,x" € F[X] .

So, f(E)=agl+aE+ayE2+a3E3+....+a,E"

= apl+a;E+a,E+azE+....+a,E, as E2=E.

= agl+(a; +a, +taz+....+ay)E.
=al + bE, wherea=a,, b=a; +a, +....+a,.

Example 22: Find a projection E which projects R? onto the subspace spanned by (1, -1) along
the subspace spanned by (1, 2).

Solution: Let W; and W, be subspaces of R? spanned by (1, -1) and (1, 2) respectively. So W; =
{x(1,-]):x ER}and W, ={y(1,2):y ER}

Step I: We shall prove that S = {(1, -1), (1,2)} is a linearly independent set. Suppose
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a(l,-1)+B(1,2)=0,
a+ B=0.
—a+ 2 =0.

1 1

Coefficient matrix = A = [_1 2] R>—+R2+R;

“lo 3l

So rank of A = 2. Hence above equation system has only one solutioni.e. a = =0.So S = {(1, -
1), (1, 2) } is a linearly independent set.

Step 11: The standard ordered basis of R? is {e1 = (1, 0), e2= (0, 1)}. Let (a,B)=a(1,-1) +b
1, 2).

a+b=a
—a +2b=F

Onsolving , we get b="*F a=2-F

20— B

So (@, 8)=(*57) @D +(57) @2
If a=1,B=0,we get

(1,0) = =(1,-1) += (1,2)
If «=0,F =1, we get

0,1) = == (1,-1) ++ (1, 2)

Also from equation (1), we conclude

(a,B)= aer+Beo=(255) (1, -1) + (57) LD EW + W ..

3 3

So R?=W; + W>,
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It can be easily proved that Wi n' W2 = {(0, 0)}. Hence R? = W1 B W,

Step I11: As we know if V = R @ N, then the projection E on R along N is given by E(v) =,
where v € V has a unique representation v =r + n; r € R, n € N. Hence by equation (4), the

projection E on W1 along W> is given by E : R? » R?, where E(«, B) = (Za; B) 1,-1)

20 — B-2a
3 7 3

= E,B)=(

) . ¥ (a, B) ERZ

Note: Here we observe that, E(1, -1) = (1, -1) and E(1, 2) = (0, 0).

Hence W1 is range of E and W2 is the null space of E.

Example 23: Assume that E be a projection on VV and T be a linear operator on V. Prove that —

Q) The range of E is invariant under T ifand only if ETE =T E.
(i) Both the range and null space of E are invariant under T ifand only if ET=TE

Solution: Given that E is a projectionon V,so V=R & N.
Here R =E(v)=rangeof E
N = ker E.
Q) Let the range of E be invariant under T. Then
TR)cR = T(E(V)) € E(v).
= T(E(X)) EE(V),¥XE V.
So T(E(X)) = E(vy), for some v, € V.
= (TE) (X) =E(vy) ¥XEV. ... (1)
Now (E T E) (x) = E(T E(X)) = E(E(vy)) = E? (vo) = E(vy).
= (ETE)(X)=(TE)(xX) ¥ x €V ;using (1).
= ETE=TE.

Conversely, et ETE=TE.
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(TE)X)=(ETE)(X),¥ x €V.
T(E(x)) = E(T E(x))
=E (x4),where x; =(TE) (X) E V.
= T(E(X)) EE(V) ¥ X E V.
= T(E(V)) € E(v).
Hence the range of E is invariant under T.
(i) Since E is a projectionon V, so V=R & N, where
R={veV:E(v)=v} andN=kerE={VvEV:E(V)=0}
Necessary condition: Suppose R and N both be invariant under T. Then
T(R) = Rand T(N) = N. ... (2

Claim: We shall prove that E T = T E. Let v € V be arbitrary. Since V=R® N,sov=r+n,
wherer ER and n € N.

Also E is a projection, so E(v) =r. ....(3)

From equation (2), we have,
T(r) ER and T(n) EN.
E(T(r)) = T(r) and E(T(n)) = 0.
(ET) (v) = E(T(v)) = E(T(r + n)) = E(T(r) + T(n) )
= E(T(r)) + E(T(n)) = T(r) + 0, ; using (4)
= T(r) = T(E(V)). ; using (3)
= ETMV=(TE)(V) ¥vEV.

Hence ET=TE.
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Sufficient condition: Let ET=TE. Then ETE=E(E T) =E?> T = E T. So by part (i) we
conclude that range of E i.e., R is invariant under T.

Claim: Null space of E i.e. N is invariant under T i.e. T(N) & N.
For any n € N, we have E(n) = 0.

SOET=TE = (ET) (n) =(TE) (n).

= E(T(n) =T(E(n)) = T(0) =0.

= T(N)EN ¥ nEN.

= N is invariant under T.

Example 24: Let V = W1 & W> , where W1 and W- are subspaces of V. If E; is the projection on
W1 along W2 and E; is the projection on W> along W1, then prove that,

(i) E1+Ex=1. (i) EiE2=E2E1=0.

Solution: Given that V = W &6 W> . So each v € V is uniquely expressible as v = w; + w,; w;
[ = W1 y Wy c WZ .

(i) Since Ez is the projection on W, along W, . So
E1(v) = w;.

Similarly, Ea(V) = w,.

Now (E1 + E2) (V) = E1(v) + E2(V) =w; + w, = V.

= (E1+Ex) (v)=1I(v) ¥ VEV.

Hence Ei1+Ex2=1.

(i) Now  EiE2=Ei(1-Ey), by part (i)

=E; - E?

= E1 - Eq1, as E1 is projection E1E> = 0.
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Similarly, E2E1 = 0.

Example 25: If a diagonalizable operator has only eigenvalues 0 and 1, then prove that it is a
projection.

Solution: Given that, linear operator, say T, is diagonalizable. Then there exists a basis B = { vy,

..., Vp} Of V such that, [T]g = diag (cq, ...., ¢y ) , Where cq, ..., ¢, are eigen values of T. But 0
and 1 are only eigenvalues of T.

Suppose ¢;=....=cy=1landcpyiy=....=c, =0. ...
Let us take v € V as arbitrary. So

V= Vit T 0V + Cmg1Vimer T oooe T 0V o EF

T(V) = T(yvy+ ...t 0V + A1 Vipger T -ooo T AV )

=ay T(v) + .ot oy T(Vi) + A T(Vipgq) + .o g T(Vy)

=y (€1V1) + oooo T 0y (CmVim) + Qi1 (Cmp1Vme1) + oo T 0y (CqVn), Where T(vy) =
c;v;. Now using equation (1), we get

TV) =oqvy + .o + 0y Vi

= T?(v) = T(T(V)) = T(oyvy + .... + Ay Vi)

= T(oqvy+ .. T AVim) + Cmet (Cng1Vme1) + ..o + & (Cpvy), Where ¢y =....=c¢p

T2(v) =T(oqvy + ..oo + Vi) + Cpaq T(Ving1) +ove + 0ty T(Vy)

=T(oyvy + oo Vi + Oy 1Vingq +oeee T 0 Vy )
TXv) =T(V) ¥VEV.
= T?°=T.
= T is a projection.

Example 26: Let T be a linear operator on a finite-dimensional vector space V(F). Let R be the
range of T and let N be the null space of T. Prove that R and N are independent if and only if V =
RGO N.

I ———————
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Solution: If part : Suppose V=R @ N. It meansV =R + Nand R n N = {0}.
Claim: We shall prove that R and N are independent.

Letr+n=0,whererERandn€N. ...
Then, T(r + n) = T(0).

= T(r) + T(n) =0.

= T(r) +0=0.

= renN.

So, reRnNN={0} = r=0.

So from equation (1), n = 0.

= r+n=0impliesr=0,n=0.

= R and N are independent subspaces of V.

Only if part: Let R and N be independent subspaces of V.
Claim: V = R & N. By rank-nullity theorem (Sylvester’s law), we have

rank (T) + nullity (T) =dimVie. dimR+dimN=dimVandV =R+ N. Everyv €

V is expressibleasv=x+y; X € R,y € N. We shall prove uniqueness of this representation.

Suppose v =x; +y; also, where x; ER,y; EN
= X+y=x;+y; of (X—x%x1)+(y-y;)=0.
But R and N are independent subspaces.
= X—x; =0and y-y; =0.
= X=x; and y= yj.

VEX+Y=X; ty;1.
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representation is unique.
= V=R®N.

Projection on a subspace: Let V =W, &€& W, , where W; and W, are subspaces of a vector
space V(F). Then each v € V is uniquely expressible as v = w; + w, , where w; € W; and w,
£ W, . The projection on W; (along W) is defined as a linear operator E on V such that E(v) =
w; . Also two subspaces W; and W, of V are called independent if W; n W, = {0}.

Example 27: If E1 and E> are projections onto independent subspaces, then prove that E; + E> is
also a projection .

Solution: Step I: Suppose Ei1 and E2 be projections onto independent subspaces W; and W,
respectively. By definition, V=W, & W] andV=W, & W, ¥YVEYV,

So, Ei(v) =w,; wherev=w,; +wj; w; € W; ,w; € W] and Ex(v) =w, wherev=w, +wj ;
w, € W, , w; € W, . Now suppose v € V be arbitrary.

Then (E1E2) (V) = E1(E2(V)) = E1(wy). .. (D)
Now two cases may arise:
Case (i): If w, =0, then Ez(w,) = E1(0) =0.

Case (ii): If w, #0, then w, &€ W,, because W; and W, are independent; consequently W;
W, ={0}.SinceV=W,; & W/ and w; € W;, = w, EW].

So Ei(wy) = E1(0 + w,) = 0. Hence from (1), we have (E, E2) (v) =0, ¥ v E V.
= EiE> =0.

Similarly, we can prove that E;E; = 0.

Step 11: Finally, (E1 + E2)? = (E1 + E2) (E1 + E) = Eq (E1 + Ey) + E2 (E1 + E2)

=E1E1+E1Ex+ ExE1+ E2E>
=E?+0+0+E5=E1+E>,

= E: + E2 is a projection .
I ———————
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Example 28: Let V be a vector space over F and W;, W,, ....., Wy be subspaces of V. Then
V=W, @W, D ...&0W,,ifandonly ifthere existk linear operators
E,, E,, ..... Ex onV such that —

(i) Each E; is a projection i.e. EZ = E;.

(i)  E;{Ej=0fori=].

@iii) I1=E;, +E, +....+ E;.

(iv)  Therangeof E;isW; fori=1,2,...., k.

Proof: Necessary Condition: LetV =W, @ W, & ..... & W, . Then each x € V is uniquely
expressibleas X =x; +x, +....+tx+t ...+ X X E W, 1<i<k

Let us define a mapping E; : V—+V such that

Ei(X) = x; . ... (1)

Claim: We shall prove that E; is a linear operatoron V ¥ i. Letx,y € Vand «, € F. So
Y=y +ty, ... tyito vy EWL, LSSk

On the basis of equation (1), we have
Ei(ax + By ) = ax; + By; = a Ej(X) +BE;(y).

E;isalinear operatoronV;¥i=1,2,.... k.

Now Ef(x) = E; (Ei(X)) = E; (x;) ,

= x;
E; (x).
EZ(x) = Ei(%) , VX € V.
= E; is a projection, ¥ i=1,2,..... k.

(i)  Fori # j, we get
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(Ei Ej) (X) = Ei(E;(X)) = E; (x;) = 0=0 (x).

= E; E; =0, fori+#j.
(ili)  Forany x € V, we see that
(E;+Exy+ ...+ Ep) X)=Eq®)+.... tEx(®) =x4 + ...+ x = 1(X).
=  E;+E,+...+* Eg=L
(iv) Rangeof E;={Ei®): XEV}={x:XEW,; }=W,.
Sufficient Condition: Here, we have given (i) — (ii) conditions.
Claim: We shall prove that V=W, & W, & ..... B W;.
Let x € V be arbitrary.
Then from condition (iii), we have
I(X)=(E; +E, +.....+ E}) (X).
X=E;(x)+....+Ex(x).
X=Xq + ...+ X
SoV=W, +.... + W,
Uniqueness: Letx =z; +z, +.....+ 7, ; z; € W; = Range E;. Since z; € Range E; , so
zi =Ei(t) ; HEV. ...
S0 Ei(®) = Ei(z, +.....+ zx) =Ei(z1) +.... t Ei(z) + .... + Ei(zy).
= Ei(E1(ty) +.... + Ei(Ei(t) + .... T E;(Ex(ty)), by (3)
= (EiEy) (ty) +.... +(E{E)) (t) + ... + (E{Ey) (ty).
=0+....+E3(;) +0....+0.

Xi:Ei(Zi): Z; v i:1,2,....,k.
_____________________________________________________________________________________________________________|
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This proves uniqueness of (2). Hence
V=W, W, S ... 5B W,
Theorem 8: Let T be a linear operator on a vector space Vand V=W, @ W, @ ..... @ W;.
Define E;(v) = Ej(x; +.....+ xi) =X; € W,. Then—

Q) Each E; is a projection on V.
(i)  EEj=0,fori#].
@iii) I1=E;+....+ Ey.

A necessary and sufficient condition that each W; is invariant under T is that T E; = E;T for all i
=1,2,....k

Proof: Conditions (i), (ii) and (iii) can be verified from previous theorem.

GivenV=W, 8W, & ..... B W,. ... (1)

Necessary condition: Suppose each W; be invariant under T,i=1, 2, .....k.
So T(W,) EW,, fori=1,2, ...k .2
Since I=E;+....+ Eg, so
I(V) =(E{ +....4 E) (V) =E;(v) +.... + Ei(v)
V=xX; +....t X by (1)
Now, T(V)=T(xq +....% xi) =T(xq) *+..... + T(xg)
TV)=y; +....+yi+...t yx ;where y; =T(x;) EW;; by (2)
So E;(T(v)) =Ei(y; +....Ty; +...F yx)
=E Qo+ . tEE)t.... TE (i)
=0+....+ty;+0+....+0 =y
= T(x;)
T E;(Vv).
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ETWV)=(TE)(v) ¥YVeV.
= E;T=TE; foralli=1,2,....,k
Sufficient Condition: Let TE; =E;T, foralli=1,2,....,k

Claim: We shall prove that each W; is invariant under T. Suppose w; € W; be arbitrary. By
given definition in statement, E;(w;) = w; .

So T(w;) = T(E;(wy)) = (T E;) (wy) = (EiT) (wy)
= E; (T(w;)) ERange E; = W; .

Thus T(w;) EW; ¥ w; € W,.

Hence W; is invariant under T, for I =1, 2, ...., k.

Theorem 9: If T is a diagonalizable operator on a finite-dimensional vector space V and if cq,
...., Ci are distinct eigenvalues of T, then there exist linear operators E,, ...., Ex on V such that:

(I) T= C1E1 +.L Tt CkEk.
(i) 1=E;+.. +E.

(iif)  E;Ej=0 fori#]j.
(iv)  EZ=E;, foreachi.
(V) The range of E; is the eigenspace of T associated with the eigenvalue c; of T.

Proof: Let W; be the eigenspace of T corresponding to the eigenvalue ¢; ;i=1, 2, ....
have W; ={vE T(V) =c;v } (D)

Given that T is a diagonalizable operator. So
V=W, &W,H ... EW,.

Let us define E; : V—V such that
E; (V) = E; (x1 +.....%7 X) =X;.

Claim: We have already proved conditions (ii) — (v). Now we prove condition (i). Let v € V be
arbitrary.
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I =E;+....+Ex = I(vV)=(E{t.... +Ey) (V).
v=E;(v)+....+ Eg(v).
= V=y; +....+ yx  Wwhere y; = E; (v) € Range E; =W, .
But y; € W;, so by equation (1), we have
T(y;) = ¢ y;, foreach i.
Now T(v) = T(y; +....+ yi)
=T(y1) +.... + T(yx)
=Cyrt .. FC Yk s using (2)
= E;(v) + ...+ e Ex(v), asy; =E; (V)
TV) = (qEit....+tcEp)(v) ¥V vEV.
= T=cE;+....+cx Ex.
Note: Converse of above theorem is also true. We shall prove it in next theorem.

Theorem 10: Let T be a linear operator on a finite-dimensional vector space V(F). Let cq, ....
cx be distinct scalars and E4, ...., Ex be non-zero linear operators on V such that:

(|) T:C1E1+....+Ck Ek'
(i) 1=Eq+..+E.
(i) E;E =0 fori=].

Then T is diagonalizable with c,, ...., ¢ as its eigenvalues. Further E? = E; , for each i and
Range E; = eigenspace of T associated with c;.

Proof: From (ii) and (iii) conditions, we have

Ei=E;1=E; (E;+....+E)=EE; +....+E3+ ...+ E;E

=0+...+E>+....+0.
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This is condition (iv).

Now, T E; = (c1E; +.... + ¢E{ + ... + ckEy) E;
= ¢ Ef = ¢E;

= (T—¢l) E; =0, foreach i.

As E; # 0, there exists some v; € V such that E; (v;) # 0.

So (T—c¢l) Ey(v)=0 for each i.

= T(Ei(v)) = ci(Ei(V)) ; Ei(vi) #0.

= c; is an eigenvalue of T for each i.

If ¢ is any scalar, then
(T—cl)=(c,E; +.... t cgEx ) —C(E;+ .... + Ex)
(T—cl)=(c; —C)E;+.... +(cx —C) Ex. ... (1)

If ¢ is an eigen value of T, then there exists some 0 # v € V, such that
Tv=cv or (T-cl)(v)=0.
(c; —C) Eq(v) +....+ (cx—c¢) Ex(v) =0, using (1)
Ej[(cq —C) Eq(v) +....+(ck —C) Ex(v) ] =E; (0)=0.
(c1 =€) Ej Eq(v) +.... +(ck —C) Ej Ex(v) = 0.

(c—Cc)EjEj(v)=0, as E;E=0, fori#].

(cj—C)E} (v)=0 or (g-c)E(v)=0;j=1,2,....k

If we take E; (v)=0forallj=1,2,....,k , then
|=E;+....+E = |(V)=E1(V)+....+Ek(V)

= v=0+....+0=0. Contradiction !
]
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So E;j (v) # 0 for some j. Using equation (2), we get (c; —¢) = 0, for some j.
= ¢g=c, forsomej.
Hence cq, ...., ¢k are the only eigenvalues of T.
Let W; =Range of E; = E;(v), fori=1,2, ...,k
Then I=E;+....+Ey.
I(V) =E{(v) +.... +Ex(v) ; YVEV.
VEW, +....+ W, YVEV.
V=W, +.....+ W,

Also conditions (ii) — (v) are satisfied. So we have,
V=W, &W, D .. 5EW
= dimV =dimW; +.... + dim W .
Step I1: Now we shall show that —
W; = eigenspace of T correspondingtoc;,¥i=1,2,...., k.
Then from previous knowledge, T is diagonalizable.

Let W, denotes the eigenspace of T corresponding to the eigenvalue c; .

Claim: We shall prove that W, = W;

Let x € W, be arbitrary. Then, T(x) = ¢ix ;1=i=k
(c1E1 +.... t ckEx ) (X) = ¢; I(X) ; using condition (i)
CGEiX)t ...t cgEx (X) = ¢ [E1(X) +.... T Ex (X) ]
(c;—¢)Ei(x) +....+(cx—¢;) Ex(X) =0.

(Cj — Ci) E] (X) =0, for aHJ =1,2,...., k.
I ———————
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But ¢j—¢; #=0for j#i.
So E;(x)=0 , j#i.
I=E;+....+Ex ,S0
I(X) = E{(x) +.... + Ex(X) .
Xx=E; (X) ; using (4)
X € Range of E; = W,.
W, © W;.
Again, let 0 # x e W; = R(E;) .
Then x=E;(y;)-
As proved above, we have T E;(y;) = ¢; E;(¥) .
= T(X) = ¢;x , where x = E;(y;) #0.
X € W,

W, © W, ...(6)

W; = W, = eigenspace of T correspondingto ¢; ;i =1,2,.....k.

T is diagonalizable.

Theorem 11: If T is a linear operator on a finite-dimensional vector space V(F) and minimal
polynomial p(x) of T is a product of distinct linear factors i.e. p(x) = (X —c¢;) (X —¢3) .....(x — k)
, Where ¢4, ...., ¢y are distinct, then T is diagonalizable.

Proof: Let us define k polynomials as

(x-c2) (x=c3) (X - k)
(c1-c2) (c1-¢3) mn(c1 - )

p1(X) =

(x-c1) (x-¢3) (X =)
(ca-c1) (c2-¢3) m(c2 - ) '

p2(X) =
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(x-c1) (X=€2) (X = Ck—1)
(ck - 1) (Ck = €2) wn(Ck = Clm1)

pr(X) =

We observe that , p;(c1) = p2(cy) = .... = px(cx) = 1 and for other values, these are zero i.e.

L=
pi(c,-)={0, iij (D)

Giventhat p(X) = (X—c;) X —¢3) .....(Xx — ¢x) ,
So deg pi(x) < degp(x) ; i=1,2,....k

Step I: Let W be the vector space of all polynomials over F of degree < k. We shall prove that
p1(X), p2(X), ...., px(X) € W are linearly independent.

Let oypi(X) +o,p(X)+ ...t o p(X) =0 ; a; EF.

= a1P1(Ci) + azpa(c) + ... + o pr(c) = 0.
= a;=0 ¥Vi=1,2,...,k using (1)
Since dimW =k. So { p;(x), ...., px(X)} is a basis of W.
As1 €W .So3 A €F such that,
1=2p1(X) + ... + A pr(X).
Putting X = ¢; on both sides, we get
1=2Apa(ci) + oo F A prlcy) = Ay 5 using (1)

A=1fori =1,2,...,k

= l=p;xX)+....+ pr(X).
Since XEW,s0 Xx= B;pi(X)+....+tBxpx(X); Bi EF.
Putting x =¢; , we get

¢ = Bypa(ci) + ... + Bk px(ci) = By using (1)
e
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= Bi=c ¥ i=1,2,... .k

So X =c1p1(X) * .... + cx pr(X). ....(3)

Step Il: Let pi(T) =E; for i=1,2,...., k. If possible, let E; = 0 for some j, then p;(T) =0
and deg p;(x) < deg p (x) , but this is a contradiction to the minimality of p(x). So E; # 0
for all j.

Now putting x =T in equations (2) and (3), we get
| =py(T)+ ...+ pi(T) = Eq+ ...+ Ey (4
and T=c;p;(T)+....+cx p(T) =c;E; +.... + cx Ex ....(5
Since p(x) is the minimal polynomial of T, so p(T) = 0. ....(6)
Here we remember that p(x) divides p,(X) p,(x), etc or in general p(x) divides
pi(X) p;(x) , forall i#j

So by Division Algorithm, 3 g(x) € F[x], such that

pi(X) p;(x) = p(x) q(x).

pi(T) p;(T) = p(T) q(T) =0 forall i+ ] ;using (6)

= E; E;=0 foralli#j. ...(7

If we use equations (4), (5), (7), then from the knowledge of previous theorems, we conclude
that —

T is diagonalizable with c4, ...., ¢ as its eigenvalues.
Theorem 12: Let T be a linear operator on a finite-dimensional vector space V(F). Then T is
diagonalizable if and only if the minimal polynomial for T has he following form

p(X) = (X—c1) (X—c3) .....(x — cx),

where c4, ...., ¢ are distinct elements of F.
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Proof: Necessary Condition: Let T be diagonalizable . Let c4, ...., ¢ be distinct eigenvalues of
T. Since we know that any eigenvalue of T is a root of the minimal polynomial for T. So each of
the polynomials X — ¢4, X — c,, ....., X — C, IS a factor of the minimal polynomial for T. Hence
the polynomial p(x) = (X — ¢;) .....(x — cx) will be the minimal polynomial for T, if p(T) = 0. Let
v be any eigenvector of T. Then (T —c;I) .....(T —cx 1) (v) =0, for all eigenvectors v of T. Since
T is diagonalizable, there exists a basis £ = { v4, ...., vi} consisting of eigenvectors of T. As

shown above,
(T—c;D) ....(T—c 1) (v}) =0, fori =1,2, ..., k. (D)
Let X € V be arbitrary. Then
X=oyvy o tagvk s o EF
So, (T—c)(T—-cyl) ...(T—=c )x=0, foreachx V.
=  (T-c¢) ...(T—¢ 1)=0, onV.
= p(T) =0.
Hence p(X) = (X —¢1) ..... (x — cy) is the minimal polynomial for T.
Sufficient Condition: It has been proved in the previous theorem.

Check your progress

Problem 1: Find the minimal polynomial for the matrix A = [(1) 8]

Problem 2: Find the minimal polynomial for the matrix A= |2 2 -1

31—1]
2 2 0

Problem 3: Give an example of a matrix whose characteristic and minimal polynomials are
same.

Problem 4: Give an example of a matrix whose characteristic and minimal polynomials are
NOT same.
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9.7 SUMMARY

After the study of this chapter, we have learnt about the difference between the characteristic
polynomial and minimal polynomial. Then we studied about invariant subspaces of a vector
space. After that we discussed direct sum decomposition of a vector space. At last we learned
about projection on a vector space and a lot of exercises to have a good command over various
concepts.

GLOSSARY

Invariant Subspaces: Let T be a linear operator on a vector space V(F). A subspace of
V/(F) is said to be invariant under T (or W is T-invariant) if T(W) S W,

Independent subspaces: The subspace W, ...., Wy of V(F) are called independent if —
forx, eW;;i=1,2,....k wehavex; +x, +.... + x, =0,

=  x=0, Vi=12, ...,k

Projection on a Vector Space: A linear operator E on a vector space V is called a
projection if E? = E. It means E is independent.
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9.11 TERMINAL QUESTION

Long answer type question:
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If T is any linear operator on a vector space V, then prove that ker (T) and Range (T) are
invariant subspaces of V.

Example: Let V be the vector space of all polynomials of degree less than or equal to six.
Let W be the subspace of V spanned by { 1, x?, x* , x® }. Let D be the differential

operator on V i.e. D f(x) = < ((x)).

Show that W is not invariant under D.
Let T = D?, where D? f(x) = ;—; (f(x)). Show that W is invariant under T.

Find the matrix of Tyy in a suitable basis of W, where Tyy is the restriction of T on W.
Find the matrix of T in a suitable basis of V.

Let V be a finite-dimensional vector space over F. Let W, ...., Wy be subspaces of V and
W =W, + .... + Wy . Then the following conditions are equivalent:

Wi, W, ..., Wy are independent.

wWyn (W, + ...+ W_;)={0}forallj;2<j=k

If B; is an ordered basis of W;, 1 < i <k, then f = {B4, ...., Bx } is an ordered basis of
W.

If E is a projection on a vector space V(F), then prove that V = R @ N, where R is the
range space of E and N is the null space of E.

Short answer type question:

1: Let T be a linear operator on a finite-dimensional vector space V(F). Then prove that the
characteristic and the minimal polynomials for T have the same roots, except for
multiplicities.

Prove that the minimal polynomial of a linear operator T divides its characteristic
polynomial.

Prove that the minimal polynomial of a linear operator T is a divisor of every polynomial
that annihilates T.

If a diagonalizable operator has only eigenvalues 0 and 1, then prove that it is a
projection.

LetA=|1 0

001]
0
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Prove that the characteristic polynomial and minimal polynomial are identical for A.
Let T be a linear operator on R? defined by ~ T(X,y)=(X+Yy, X +Y).

Find the minimal polynomial for T.

Show that similar matrices have the same minimal polynomial.

Find the characteristic and minimal polynomials for the matrix A = |[—1 2

5 —6 —6]
3 —6 —4

9.12 ANSWERS

Answers of check your progress:

1. X(x —1)

2. (x—1)(x—2)2.

Answer of long question

Answers of terminal questions:

5: X (X—2) : x-1) (x-2).
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UNIT-10: EIGEN VALUES AND EIGEN VECTORS

CONTENTS

10.1 Introduction

10.2 Objectives

10.3 Basics of linear operators
10.4 Eigen values & Eigen vectors
10.5 Diagonalizable operators
10.6 Basis of diagonalizable operators
10.7 Summary

10.8 Glossary

10.9 References

10.10 Suggested Readings

10.11 Terminal Questions

10.12 Answers

10.1 INTRODUCTION

In the last unit, we focused on Inner Product Spaces. Now again, we emphasize on Vector
Spaces. After the study of Linear Transformation, we have studied some properties of a linear
operator. Here, we shall elaborate these concepts and matrices help us in a great deal. Basis of a
matrix and its role to understand eigen values and eigen vectors will be discussed in detail.
Besides this, diagonalisation process and required conditions will be discussed thoroughly.

10.2 OBJECTIVES

After the study of this chapter, learner shall understand:
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Linear operators and their properties.

For finite-dimensional vector spaces, T can be represented as a matrix.
How can we convert square matrix into diagonal matrix?

Role of basis of a linear transformation in diagonalisation.

BASICS OF LINEAR OPERATORS

In this section, we shall discuss linear operators (T) on a finite-dimensional vector space V(F).
We know that a linear operator T on a vector space V(F) is a mapping T: V — V, such that

Tax+By) =aTX)+BT(y) ¥ X, yeEVanda, EF.

We have already studied following important properties of such a linear operator T:

Q) T is non-singular (i.e. one to one) if and only if ker(T) = {0}.
(i) Tisinvertible < T is non-singular < T is onto.
(iii)  Tissingular < ker T # {0}

10.4 EIGEN VALUES & EIGEN VECTORS

Now, we shall define eigen value and eigen vectors of T as:

Eigen Values of T: Let T be linear operator on a vector space V(F). A scalar o € F is called an
eigen value or characteristic value of T, if there exists some V # 0, v € V such that, T(v) = av.

Eigen Vector: If a is an eigen value of T, then v € V such that T(v) = a v is called an eigen
vector or characteristic vector belonging to c.

Eigen space: The set of all eigenvectors of T belonging to an eigenvalue « is called an
eigenspace of T, belonging to a. It is represented as W. Hence

W, ={veV . T(v)=av}

Example 1: Let T : R? = R? be a linear operator defined be T(x, y) = (2x +y, X + 2y). By trial
and error method, we find one eigen value of T and corresponding eigen vector.

We observe that T(1,1)=(3,3)=3(1,1)
Or T(2,2) =(6,6)=3(2,2)
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Here 3 is an eigenvalue of T and (1, 1) , (2, 2) € R?are corresponding eigenvectors.

Also T(3,-3) = (3, -3) = 1(3, -3)
So here 1 is eigenvalue of T and (3, -3) € R? is corresponding eigenvector.

Example 2: Let T : R® — R3 be a linear operator whose matrix with respect to the standard basis

1 0 0
{e1=(1,0,0),e2=(0,1,0),e3=(0,0,1) }isA=|o 1 n].
00 1

So, T(e1) =e1=1ex
T(e2) =e2=1le;
T(e3) =0=0es

We observe that 1, 1 and 0 are eigenvalues of T and corresponding eigenvectors are e, e2 and e3
respectively.

Note: Now we discuss the eigenspace W1 corresponding to eigenvalue 1. So Wi ={v E R3:
T(v) =1.v}. Letv € R3. then there exist c, B, ¥y € R such that

v=oaey+ Per+ yes
SoveW; iff T (aer+ Pex+ yes)=1(ce1+ Pe+ ves)
iff aT(el)+PT(e2)+yT(es)= cer + Ber+ yes
iff oei+ Pex+ y.0es=aer+ Per+ ves
iff yes=0 or y=0

SoWi={ae;+ Per:a, P €R }. Inthe same way, we can show that the eigenspace Wo,

corresponding to eigenvalue ‘0’ is
Wo={ves:YER}
Theorem: Let T be a linear operator on a vector space V(F).

Q) If 0+ v EVisan eigenvector of T, then a € F satisfying T(v) = av is unique.
___________________________________________________________________________________________________________________|
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(i) The eigenspace W corresponding to an eigen value o € F is a subspace of V(F).
@iy  wy=ker(T—- al).

Proof: (i) As we know, for uniqueness; we always consider two values and show that both are
equal i.e. value is unique. Suppose, if possible, there exist ¢, B € F such that T(v) = av and

T(v) = Bv

= aff =fv or (x—PB)v=0
Butv #0, so

a—pf=0 or a=f
Hence a« is unique.
(i) We know that W, ={veEV :T(v)=av}

Claim: W_ is a subspace of V(F). As T(0)=0 = T(0)=a0 .So0€& W, ie W, isnon-
empty. Letvi, v €W, and a, b € F. then

T(vi))=avy and T(v2) =av
Now, T (avy + bvy) = aT(vy) + b T(v2) ; as T is linear
= a(avy) + b(avy)
T (avy + bvo) = a(avy) + b(ctvz)
So, avi + bvz is an eigenvector, corresponding to eigenvalue .
Hence avi +bv,EW,_, ¥Yvi, V2 EW_; a,bEF.
Hence W_ is a subspace of V(F).
(iii) By definition,
W,={veVv:T(v)=av}

So W, ={veEV:T(v)=ualv} where |l is identity operator
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={veV:T()=(al) v}
={veEV:(T—al)v=0}
Hence W, =ker (T— al).

Theorem: Let T be a linear operator on a finite-dimensional vector space V(F). Then a € Fis
an eigenvalue of T if and only if T— a I is singular.

Proof: Necessary Condition: Let a be an eigenvalue of T. Then there exists some 0 #v € V,
Such that, T(v) = av

= T(v) =« l(v) where I is identity operator.
= T(v) = (« (V)
= (T—al)(v)=0, where v # 0.
Sov € ker (T — aI). We already know that O € ker (T — « 1). So, ker (T — a ) # {0}.
Hence T — al is singular.
Sufficient condition: Let T — «al be singular operator .
= ker (T — al) # {0},
= there exists some 0 # v € V, such that (T — al) (v) = 0.
= T(v) —al(v) =0.
T(V) = av, where I(v) = v.
So, @ is an eigenvalue of T.

Note: (1) If T is singular, then ‘0’ is always an eigenvalue of T. AsT—0I =T, it can be
obviously observed.

2 Till now, we have understood that if T is a linear operator on a finite-dimensional
vector space, then the following statements are equivalent:
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Q) a is an eigenvalue of T.
(i) The operator T — « | is singular or non-invertible.
(i)  det(T—al)=0.

Characteristic values and Characteristic polynomial of a matrix:

Suppose T be a linear operator on a finite dimensional (say dim V = n) vector space V(F). Let B
be an ordered basis for V and let A be the matrix of T with respect to the basis B i.e. A=[T]g.

For any scalar a € F, we have
[T-al]lg=[Tlg—a[l]g
= A—al, wherelisn X nunit matrix.

So det(T — et 1) =det [T —a I]p = det (A — a I). Hence « is a characteristic value of T if and only
if det (A—al)=0.

Note: From above discussion, we conclude that —

(i) LetA=[a;laxn: a; €F. Ascalara € Fis called an eigen value of A if
det(A —al) = 0.
(i) LetA=[a;],«n; a; €F. Thenthe polynomial f(x) = det (A —«a 1) is called the

characteristic polynomial of the matrix A.

The equation f(x) = 0 is called the characteristic equation of the matrix A. Here we observe
that a € F is an eigen value of the matrix A if and only if f(ct) = 0.

Similar Matrices: Let A = [a;;],, . » and B = [b;],, ., and P = [c;;],,» » Where a;;, by;, ¢;; € F.

Then A and B are called similar matrices if, there exist a matrix P such that
A =P1BP, whereP is non-singular matrix.

You might have studied that similarity of matrices is an equivalence relation i.e. it is reflexive,
symmetric and transitive.

Theorem: Similar matrices have the same characteristic polynomial and hence the same
characteristic values.
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Proof: Let us consider two square matrices A and B of n x n order. Then A and B are similar i.e.
there exists an non-singular matrix P such that
B=P'AP.
So,B-xI=P*AP-xI=P*AP-xP!IP
=Pt (A-xI)P.
So, det (B — xI) = det (P (A—xI) P)
1

= det (A —xI) det P

det P
det (B — xI) = det (A —xI).
= A and B have the same characteristic polynomials and consequently same eigenvalues.

Note: (1) You have studied in the chapter ‘Linear Transformation’ that, if T be linear operator
on an n-dimensional vector space. If B, B' are two ordered bases of V such that A = [T]g and B =

[T1g’ , then there exists a non-singular matrix P (over F) such that B = PLAP.

(2) Let T be a linear operator on a finite-dimensional vector space V(F). then the characteristic
polynomial of T is det(A — xI) , where A is the matrix of T in any ordered basis for V.

(3) If Tis alinear operator on an n-dimensional vector space and if A = [T]g with respect to an

ordered basis [ for V, then A is an n X n matrix and so det (A — xI) is a polynomial of degree n.
Hence T cannot have more than n distinct eigenvalues.

(4) The eigenvalues of a linear operator defined on VV(F) may not belong to F. For example, let T
be a linear operator an R?(R), whose matrix with respect to the standard ordered basis is

0 1]
-1 0

A=|
The characteristic polynomial of A'is det (A —xI) =0

= X*+1=0
This equation has no roots in R (though, its roots x = £ i € C).
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Cayley-Hamilton Theorem for a linear operator: Every linear operator T on an n-dimensional
vector space V(F) satisfies its characteristic equation f(x) =0, i.e. f(T) = 0.

Proof: Let A be the matrix of T with respect to any basis  of V. So, A =[T]

Hence for matrices, Cayley-Hamilton theorem states that every square matrix satisfies its
characteristic equation. Hence if f(x) = det(A — xI) = a5 + a;x + a,x>+ ..... + a, X" =0, is the

characteristic equation of A, then
f(A) =a,l +a,A+a,A’+.....+a, A"=0

= ag[l]g+ay[Tla+a, [T?]g+....+a, [T"]g=[0]g

= [f(M1g=[01g

Hence f(T) =a, Il +a,T+a, T2+ ....+a, T"=0

Example 1: Find the eigen values, eigen vectors and eigen spaces of A = [3 'ﬂ

Solution: Step-1: Characteristic equation of A is |JA—xl|=0

= |7* 1‘20 or x)~1=0orx=+1
1 —Xx

Hence eigenvalues of A are {+1, -1}.
Step-11: An eigenvector X, corresponding to the eigenvalue 1 is given by

AX=aX or (A-al)X=0.

Herea=1 and X = EL]

-1

So, (A—al)X = | )

= Xy =X,

We can take any value for solution. Let x, = x, = 1. Then an eigen vector corresponding to o =
lis
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X:Ej:[l ™.

Again eigenvector for cc = —1 is

A-apx=0 o [} 1]1[]=[0]

= X +x% =0

If x,=1,thenx, =-1

. . . 1
So an eigenvector corresponding to e = —1is X = [_ 1]

Step-111: The two eigenspaces W1 and W_; are given by

le{a[ﬂ:aER}and w_lz{ﬁ[ﬂ BERD}.
Example 2: Let T : R3—R? be a linear operator, where

T(e1) =5e1—6e2—6e3; T(e2) =-e1+4ey+2e3; T(e3) =3e1—6e2—4e3
Find the characteristic values of T and compute the corresponding eigenvectors.
Solution: On the basis of given relations, the matrix of T is

5 —-1 3
A=|—-6 4 —6]
-6 2 —4

So the characteristic equation is det (A — xI) = 0.

S5—x -1 3
-6 4-—x -6 |[=0.
—6 2 —4 —x

On solving, we get x =1, 2, 2. So eigenvalues of T are 1, 2, 2.

Case-1: An eigenvector corresponding to @ = 2 is given by

(A—2)X=0
I
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3 —1 3][*1] [0
= |-6 2 —6||x|=]0
-6 2 -—ellxl lo

Now R, =+ R> + 2R1 and R3 =+ Rz + 2R,

3 —1 31[7*1 0
= 0 0 0 21=10
0 0 0l X3 0
Since rank of coefficient matrix = number of non-zero rows = 1. So, n—r or 3—1 =2 variables
can be given arbitrary values.
Sowe have  3x1—Xx2+3x3=0 (D)
If we take xs = 0, we get one arbitrary solution X =[1 3 0]T.

If we take x2 =0, weget X=[1, 0, —1]T.

So, two eigenvectors corresponding to « = 2 are

1 1
X1=13] and Xz= D]
0 -1

Case-11: Now eigenvector corresponding to ct = 1 is

(A-NX=0

4 —1 3][*] [0
= |-6 3 —6||*2[=]0
-6 2 —s5llxl lo

RlH%,Weget

1 =X 211 10
i
-6 2 —5|t3l 10
R2—=R2+6R; and R3z— Rs+6R:
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-

Rz~ =Rz and Rs— 2Rs

de | o

B3| B |
B3| b3 |

1 - 2]mxiq o
44x_

o 1 -—1|[*2[F]|0

o 1 -1l (o

R:—+ R3— Rz, we get

1 —= 2xaq o0
44?[—

0o 1 -—1||*2|=|0

o o olftsd Lo

Hence rank of coefficient matrix is 2. So only 3 — 2 = 1 variable can be given arbitrary value.

% 3x
Now xl—%+T“:O and 0 + X2 —x3=0

Letxs=AER, thenxp = 4

A 3a i
So X1= =73 =73

SoX=[x; x; xa]T:[_?l A }'-]T:[_:;l 1 1]7=[-1 2 21"
Example 3: Show that the eigen values of a diagonal matrix are exactly the elements in the
diagonal. Hence prove that if a matrix B is similar to a diagonal matrix D, then the diagonal

elements of D are the eigen values of B.

a,, 0 0
0 a,, 0

Solution: Step-I: Let A =
0 0 0

Characteristic equation of A is det (A —xI) =0. So
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= (a1 — %) (32 — %) ..... (8yy —%) =0

= X=ay, a a

9 seee g nn-*

Hence the eigenvalues of A are its diagonal entries.

Step-11: We have already proved that similar matrices have identical eigenvalues. So both
matrices have same eigen values.

Example 4: Let V be the vector space of all real-valued continuous functions. Prove that the
linear operator T: V—+V defined as (Tf)x = f; f(t)dt has no eigenvalues.

Solution: Suppose « is an eigenvalue of T. Then there exists some 0 # f € V such that Tf = af.
= (TH(x) = (af)(x)
J; f()dt = af(x), by given condition
Differentiating with respect to x, we get
' (x)

f(x) = af'(x), or - = -, considering & % 0

On integration, logef(x) = i +logea or f(x)=a e /a

Putting x = 0 in equation (2), we get
f(0)=ae® or a=f(0)

So f(x)=f(0)e"=

For equation (3) , we have
[Ff(0)e¥=dt = [Ff(D)dt
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f(0) (e e”e )3 = a f(x), using equation (1)

= f(0) a(e”= - 1) = af(0) e /= ; using (3)

= cxex’rﬁ—cx:txexfﬁ
= a=0, contradiction.

So initial assumption was wrong. Hence T has no eigenvalue.

Note: We observed that diagonal matrices are easiest to find eigen values. So it is a natural
question, whether we can transform every square matrix into diagonal matrix?

The answer is NO. Then there is a need of condition for that. Let us study these basics:

10.5 DIAGONALIZABLE OPERATOR

A linear operator T on a finite-dimensional vector space V(F) is called diagonalizable, if there
exists an ordered basis £ of V such that the matrix of T with respect to the basis 8 is a diagonal

matrix, so
0
e w0
[Tlg=|- = = = = | =diag(os..., o).
Eww e -ﬁ' B N C{n

Diagonalizable matrix: An n x n matrix A over a field F is said to be diagonalizable, if it is

similar to a diagonal matrix. Also A is diagonalizable if there exists an invertible matrix P such
that P* A P =D, where D is a diagonal matrix. The matrix P is our actual need.

10.6 BASIS OF DIAGONALIZABLE OPERATORS

Theorem: A linear operator T on a finite-dimensional vector space V(F) is diagonalizable if and
only if there exists a basis of V consisting of eigenvectors of T.
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Proof: If Part: Let T be diagonalizable, Then 3 an ordered basis B = {v1, ....., va} of V such that
a, 0 0 .. .. 0

' _ _ 0 a, 0 .. .. O

the matrix of T relative to B is [T]g = ---

** |. From above expression, we

get,

T(Vy) =oyvi+0va+ ...+ Ovp

T(V2) = 0vy + ct;v2 + ... + 0y

T(Vn):D+O+ ....+Cann

Or, we can write T(Vi) = a;v; ;1=1,2, ..., n. Hence v, V2, ....., va are eigenvectors of T i.e. the
basis [ consists of eigenvectors of T.

Only if part: Let f = {vi, ....., v} be a basis of V consisting of eigenvectors of T. Then, 3 e;; €
F such that

TVi)=av;;i=1,2,...,n.
oy
So, [T]E =
0 1]
Hence T is diagonalizable.

Theorem: Let T be a linear operator on a finite-dimensional vector space V(F). Then the
eigenvectors corresponding to distinct eigenvalues of T are linearly independent.

Proof: Let oy, ....., oy, be m distinct eigen values of T and let v, ....., vmm be the corresponding
eigen vectors of T. Then

T(V)=ov,;i=1,2,...,m (D)

Claim: S = {vu, ....., vm} is linearly independent. Here we use the principle of mathematical
induction. If m =1, then S = { v1} where v1 = 0. We know that a single non-zero vector is
I ———————
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always linearly independent. So result is true for = 1. Suppose the set { vy, ..., v .} is linearly
independent, where k < m. We shall prove that the set { vi, ..., v , V.44 } IS also linearly
independent .

Let Blvl + .....+ Bl_{vl{ + BI_{+1VI_{+1 = 0 , Bi. E F ....(2)

= TByvy + oot BV + By Viess) = T(0)
= BaT(wy) + oo + B T(Vid) + Brsa T(Vis1 ) =0
= By (atyvy) + oo+ B (Vi) + Presy (Ces1Vies1) =0 (3
Multiplying equation (2) by .., and then subtracting from equation (3), we get
By(ory — ogesq Jvy + oo+ B0y, — oy Jvy = 0.
But vi,.., v,, are linearly independent.
So  By(oy —agsy) =0=...=Br(og — asy)
= B,=0....= B as a, ....., ay,, are all distinct.
Putting these values in equation (2), we get
Prs1Ves1 =0 = Brsy =0,88 vieyy #0.

So {vi, ..., V.51 + are also linearly independent if { vy, ..., v } are linearly independent. But we

have already proved that the result is true for m = 1. Hence by principle of mathematical
induction, S = { v, ..., v, His linearly independent.

Corollary 1: If T is a linear operator on an n-dimensional vector space V(F), then T can not
have more than n distinct eigenvalues.

Proof: Let us consider that T has m distinct eigenvalues where m > n. From this theorem, the
corresponding m eigen vectors of T are linearly independent. But dim V = n, so maximum
number of linearly independent vectors in V(F) is n. Contradiction!

So T can’t have more than n distinct eigen values.
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Corollary 2: Let T be a linear operator on an n-dimensional vector space V(F) and suppose that
T has n distinct eigenvalues. Then T is diagonalizable.

Proof: Suppose T has n distinct eigenvalues, say ¢y, ....., ¢,. Letv,, ...., v, be the
corresponding eigenvectors. By using this theorem, v, ...., v, are linearly independent over F.
SincedimV =n, so B ={v,,...., v, } is an ordered basis of VV which consists of eigenvectors of
T. Hence by this theorem, T is diagonalizable.

Corollary 3: Let T be a linear operator on a finite-dimensional vector space. Let ¢y, ....., ¢, be
distinct eigenvalues of T and Wi be the eigenspace of T corresponding to the eigenvalue c; ; 1 =
i=m.

SOW=W1+Wz+....+Wn

If B;isan ordered basis for W; , then B ={ B4, ...., B,y } is an ordered basis for W. Further dim
W=dimWi+ ... +dim Wn,

Proof: LetWi+W2+....+Wn=0;wherewieW;;:1=i=m.

Claim: w; = 0 for each i. Suppose there are some non-zero wi;. If we ignore zero wi, then,

w; +w; + ... +w, =0, eachw;_ isnon-zero.

= All these vectors are linearly dependent.

But corresponding eigenvalues c; , ....., ¢;_ are all distinct.

Contradiction!
So by this theorem, all w; =

Step I1: As B, is an ordered basis for Wi.
= B; spans Wi;.

= B={B,,...., By } spans the subspace W = W1 + W2 + .... + Wn,
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Claim: [ is a linearly independent set. Let X1 + .... + xm = 0, where x; € W} is some linear
combination of the vectors in [3;. So as proved in Step-I, x; =0 for each i. As each B; is linearly
independent.

= all the scalars in x; must be zero.

= B is a linearly independent set.
Hence B isabasis of W=Wi1+ .... + W,

= dmW=dimW;+ ....+dim Wp,

Theorem: Let ¢y, ....., c, be n distinct eigenvalues of an n % n matrix A and let Xy, ...., Xn be
the corresponding eigenvectors of A. If P = [Xq, ...., Xn] be n X n matrix, then A is
diagonalizable and Pt A P = diag (cy, ...., c,).

Proof: By corollary (3) of previous theorem, it is obvious that A is diagonalizable. Since we
know that eigenvectors associated with different eigenvalues are linearly Independent.

= X1, ...., Xn are linearly independent.
So all X; are non-zero vectors also.

= det(P) =0 i.e. Pisinvertible.
Giventhat A¥; = ¢, X, ,i=1,2,....,n
Now AP = A [Xy, ...., Xn] =[AX4, ...., AXq]

= [ey Xy, ..., €y Xn] using(1)

c, O
_ D Ca
= [X]_, ceeey Xn] e
0 0

So, AP =P diag (cq, ....., €,)

= PTAP=diag (cq, ...., Cp).
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5 —6 -6
Example 1: LetA=|—-1 4 2 then ,
3 -6 —4

Q) Find eigenvalues of A, corresponding eigenvectors and eigenspaces of A.

(i) Is a diagonalizable ?
(ili)  Find a non-singular matrix P such that P* A P is a diagonal matrix.
Solution: (i) Characteristic equation of A is
S5—x —6 —6
A-xl|=] -1 4-—x 2
3 —6 —4 —x
On solvingwe getx =1, 2, 2.
Case (i): Eigenvector corresponding to x = 1 is given by (A—-Dx =0
4 —6 —6][*1] [O]
= -1 4 2 2|=10
L3  —6 —=511%:1 L0J
2, We get
—1 3 2] [%1] [0]
4 —6 —6||*|=|0
13 —6 -—511%1 L0d
R =+ R2+4R; and Rz +R3+ 3R;

-1 3 21[* 0
0 6 2|[*z|=|0
0 3 111%s 0

ik
il

X1+ 3x2+2x3=0, and 3x2+x3=0

MAT-505

Since rank of coefficient matrix = 2. So only 3 — 2 = 1 variable will take arbitrary value. Let x3 =

3,then x2=-1 and x1=3
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3
SoXi1=|-1
3

Case (ii): Eigen vector, correspondingtox =2is (A—-21)X=0

3 - —6] [*1 0
-1 2 2 ||¥z|=]0
3 - —6l %3 ]

R1 < Rz, we get

-1 2 27* 0
3 - —6||®z|=1|0
3 - —61 %3 ]

R, —+R>+3R: and R3—+ R3+ 3R:

-1 2 2]1[* 0
0 0 0% |=|0
0 0 0ll%s 0

= X1+ 2X2+2X3=0

Here rank of coefficient matrix is 1. So 3 — 1 = 2 variables can take arbitrary value. By taking x>
=0, we get x1 = 2, x3 = 1. By taking x3 = 0, we get x1 = 2, x2 = 1. So two linearly independent

2 2
eigenvectors correspondingtox =2 are Xo=|0| and Xs=|1

1 0

Case (iii): Wi={aX;:aeR}={a(3,-1,3):aeR}
Wo={bXo+cXs: b,ceER}= {b(2,0,1)+c(2,1,0):b,cER}

(iii)  First we show that X1, X2, X3 are linearly independent over R. Let a, b € R such
that aXi1+bXz + ¢ X3=0. Then

a(3,-1,3)+b(2,0,1) +c(2,1,0) =0, 0, 0)
3a+2b+2c=0
-a+0b+0c=0 =a=0
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3a+b+0c=0
Sowehave b+c=0andb=0
=c=0
So X1, X2, Xz are linearly independent. Hence A is diagonalizable.
3 2 2
(iii) LetP=[X; X, X3]=1|-1 0 1
3 1 0
Now using elementary properties of matrices, we can get P™' . Then it can be easily verified that

1 0 0
PlaP=l0 2 ol.
0 0 2

1 0

Example: For the matrix, A = |2 —6], find a matrix P, such that P™*A P is a diagonal
2 -2 3

matrix.

Solution: For given matrix, characteristic equation is |A — xI| =

On solving, we get x =5, 3, -3. As A'is 3 X 3 matrix having three different eigenvalues. So A is
diagonalizable.

Case |I: Eigenvector, corresponding to x =5 is given by (A -5D)X =0

—4 2 07[*] [0
2 —4 -—6||*z|=|0
2 -2 2151 lo

RlH%Rl,Weget

-2 1 01* 0
2 —4 —6] Xz2|=|0
2 -2 2115 0
Ro—+Ri1+R2 and Rz3—+ Rs+R1 , we get
___________________________________________________________________________________________________________________|
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-2 1 07[* 0
0o - —6||®z|=1|0
o - —21 %3 ]

RzHiRz

-2 1 07[* 0
0 - —2|[¥z|=|0
o - —21 %3 ]

Rs—+R3—-R>

-2 1 0701% 0
0 -1 -=2||*z|=|0
0 0 0 113 0

2X1+ X2+ 0x3=0.
X2+ 2x3=0.
If we take, x3=-1,thenx2=2,x1=1.
So eigenvector correspondingtox =5is, X1 =[1 2 —1]T.

Case I1: Now eigenvector correspondingtox =3is (A—-3)X =0

-2 2 07 [*1 0
2 =2 —-6||*z|=|0
2 =2 011% 0

Ro—+Ri1+R2 and Rs3—+ Rs+R1 , we get

-2 2 0]* 0
0 0 —6||*|=]0
0 0 0l11% 0

= X1+X2=0 andx3=0
= Xx1=Xoand x3=0

So eigenvector correspondingtox =3is, X2=[1 0 0]T.
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Case I11: eigenvector corresponding to x = -3 is

(A+3D)X=0

4 2 071* 0
2 4 —6||*]|=|0
2 =2 611% 0

RlH%Rl,Weget

2 1 0701% 0
2 4 —6||%z|=|0
2 =2 611% 0

Ro—+R2—R:1 and R3—+ R3—R:1 , we get

2 1 07[* 0
0 3 -—-6||*]|=|0
0 -3 610% 0

R: = R3+ R

21 071* 0
0 3 -—6|(*|=]|0
0 0 01 0

= 2x1+x2=0and xo—2x3=0

If we take x3 = 1, then x> = 2 and x1 = -1. So eigenvector corresponding to x = -3is Xz = [
—1 2 1]T. Here eigen vectors corresponding to distinct eigen values are linearly

independent.

1 1 -1
SOPz[Xl X, X3]= 2 1 2 1.
-1 0 1

Now, we can get P~ such that

PLAP=[0 3 0

EDD]
0 0 -3
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Example: Find the eigenvalues and bases of the corresponding characteristic spaces of the

2 1 0
matrix A =|0 1 -1
0o 2 4

Is A diagonalizable? Justify.
2—x 1 0
Solution: The characteristic equation of Ais| 0 1—x —1 (=0
0 2 4—x

On solving, we get x =2, 2, 3.

Case (i): Eigenvector, corresponding to x = 2 is given by (A—21)X =0

o 1 0 1 0
0 —1 —1||*z|=|0
0 2 2 1% 0

0 1 0[] [0
0 -1 —1||%|=|0
o o ollxl lo

= X2=0,X2+x3=0 =x3=0

X1 can take any real value . Letx;=1

1
So X1=|0
0

Case (ii): Eigen vector, correspondingtox =3is (A-3)X =0

-1 1 0 1 0
= 0 -2 -—-1||*2|=]|0
0 2 1 11%3 0

R:—=#R3+R>

-1 1 0 1 0
0 -2 —-1||*z|=]0
1] 1] 0 11%; ]
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= X1+ X2=0, 2X2+ X3=0.

If we take x3 = -2, then x2 = 1, X¢ = 1. So eigenvector corresponding to x = 3 is
1

Xo=111].

—2

Bases: The characteristic space W», corresponding to the eigenvalue x = 2 is spanned by Xi.
Hence {X1}is a basis of W>. Similarly {X>} is a basis of Ws. Thus we have obtained two linearly
independent eigen vectors X1 and X», corresponding to eigen values 2, 2, 3 of A. So we can’t get
a 3x3 invertible matrix P such that

2 00
PlAP=|0 2 0
0 0 3

Hence A is not diagonalizable.

Theorem: Let T be a linear operator on a finite-dimensional vector space V(F). If c,, ...., ¢, are
k distinct eigenvalues of T and W; be the eigenspace of T corresponding to the eigenvalue c; (1<

I = k), then the following conditions are equivalent —

Q) T is diagonalizable.
(i) The characteristic polynomial of T is

f(x) = (x—c,)% (x—c, )% , where

dp=dimW; (1=i<k)andd, +....+d,=dimV =n.
(iii)  dimV=dimW, + .. .. +dim Wy,

Proof: Since we know that W; = { v; : T(v;) = ¢;v; }
= Wi ={v;: (T—gI) (v;) =0}
Claim: We shall prove (i) = (ii)

Suppose T is diagonalizable. Then there exists an ordered basis § = { vy, ...., v, } of V such that
the matrix of T relative to B is
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c, 0
M =|% <

o 0 S

Suppose c1 is repeated d, times, ..., ¢ is repeated dy, times. Then
[T]E = diag [cl e Oy e e O e ck_] .
So, characteristic polynomial of T is given by
f(x) = (x—c,)% (x— ¢, )% , where
d,+d,+....+dy=n=dimV.
Thus [T —¢;l]g has only d; zeros on the main diagonal foralli=1, 2, ...., k and
rank (T-¢l)=n-d;;¥vi=1,2,....k (D)
Then by rank-nullity theorem,
Rank(T — c;1) + Nullity(T — ¢;1) =dimV =n
Using equation (1), we have
Nullity (T —¢;l) = d;
= dim ker(T — ;1) = d;
= dimW, =d, fori=1,2,.....k.
Claim: Now we shall prove (ii) = (iii)
Here given that, dimV =d; +d, +.... +dy
= dimV =dim W, + ..... + dim Wy.
Claim: Now we shall show (iii) = (i) .

LetdimV =dim W, + ..... + dim Wy
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Let W=W, +W, +....+W,

Since ¢y, ...., ¢ are distinct eigenvalues of T and W, , .... , Wy are the corresponding
eigenspaces of T, so

dim W =dim W, + ..... + dim Wy (we have proved this in theorem) ....(4)
Further, if B; isa basisof W; , fori=1, 2, ...., k ; where W; = ker(T — ) ,
Then B ={B,, ...., By } is a basis of W. From equations (3) and (4), we conclude that
dimV=dimWandsoV=W=W, + W, +.... + W, since W is a subspace of V.

Hence B = { By, ...., Bx} is a basis of V consisting of eigenvectors of T and so T is
diagonalizable.

Check your progress

Problem 1: Find the characteristic polynomials for the identity operator and zero operator on an
n-dimensional vector space.

Problem 2: If ¢ = 0, is an eigenvalue of an invertible operator T, then prove that ¢~ is an
eigenvalue of T™1.

Problem 3: Let T be a linear operator on R® which is represented in the standard ordered basis
-9 4 4

by the matrix A=| -8 3 4] . Prove that T is diagonalizable by exhibiting a basis for R?,
-16 8 7

each vector of which is eigen vector of T.

Problem 4: Find the eigenvalues, eigenvectors of the matrix

1 11
A=[0 1 1].

0 0 1

Problem 5: Find the eigenvalues, eigenvectors and eigenspaces of the matrix A = |1
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2
Problem 6: Find the eigenvalues, eigenvectors and eigenspaces of the matrix A=[—-5 3
-2 4

Also prove that A is diagonalizable.

10.7 SUMMARY

In this unit, we understood the concept of linear operators and their different applications. One of
such applications is invertibility of T. Then we elaborated the role of bases of T and their
representations. At last, we ensured some conditions of diagonalisation of square matrices.

10.8 GLOSSARY

Eigen Values of T: Let T be linear operator on a vector space V(F). A scalar o € F is called an
eigen value or characteristic value of T, if there exists some V # 0,

v € V such that, T(v) = av.

Eigen Vector: If a is an eigen value of T, then v € V such that T(v) = a v is called an eigen
vector or characteristic vector belonging to c.

Eigen space: The set of all eigenvectors of T belonging to an eigenvalue « is called an
eigenspace of T, belonging to a. It is represented as W_. Hence,

W, ={vEV:T(V)=av}

Similar Matrices: Let A = [a;],, x » and B = [b;;],, «, and P = [¢;;], « » Where a;;, by;, c;; EF.

Then A and B are called similar matrices if, there exist a matrix P such that A =P B P, where
P is non-singular matrix.
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10.10 SUGGESTED READING
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10.11 TERMINAL QUESTION

Long answer type question

1: Let T be a linear operator on a vector space V(F). Then prove the following:

(iv)  If 0=+ v E Visan eigenvector of T, then o € F satisfying T(v) = av is unique.
(V) The eigenspace W, corresponding to an eigen value o € F is a subspace of V(F).
(vi)  W,=ker(T— al).

State and prove the Cayley-Hamilton Theorem for a linear operator.

Find the eigen values, eigen vectors and eigen spaces of 2x 2 identity matrix.

Show that the eigen values of a diagonal matrix are exactly the elements in the diagonal.
Hence prove that if a matrix B is similar to a diagonal matrix D, then the diagonal
elements of D are the eigen values of B.

Let V be the vector space of all real-valued continuous functions. Then prove that the
linear operator T: V—V defined as (Tf)x = f; f(t)dt has no eigenvalues.

1 2 0

For the matrix, A=|2 1 —6], find a matrix P, such that P"*A P is a diagonal
2 =2 3

matrix.

Short answer type question

1: Let T be a linear operator on a finite-dimensional vector space V(F). Then prove that a €
F is an eigenvalue of T if and only if T— a | is singular.
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Prove that similar matrices have the same characteristic polynomial and hence the same
characteristic values.

Prove that A linear operator T on a finite-dimensional vector space V(F) is diagonalizable
if and only if there exists a basis of V consisting of eigenvectors of T.

Let T be a linear operator on a finite-dimensional vector space V(F). Then prove that the
eigenvectors corresponding to distinct eigenvalues of T are linearly independent.

0 1 0
For the matrix A=|0 0 1], prove that there exists a matrix P such that
6 —11 6

1 0 O
PIAP=|0 2 0].
0 0 3
5 —-6 -6
LetA=|-1 4 2] then
3 -6 —4

Q) Find eigenvalues of A, corresponding eigenvectors and eigen spaces of A.

(i) Is a diagonalizable?
(iii)  Find a non-singular matrix P such that P*A P is a diagonal matrix.

10.12 ANSWERS

Answers of check your progress:

1 {@-%", )" x".

1
(eigen values are 3, -1, -1, and P = [1
2

{1,k(1,0,0):kER}

1 0 1
[1,-1; Xe=|1], Xe=|0], Xz = —1] Wi=L{ X, X2}, W_;=L{Xz}].
0 1 0
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2 1 0
6. {1,2,5; [1 v |11, [1] }
4 2 1

Answer of long question:

3: Eigenvalues of A are { +1, -1}. Eigen vector corresponding to c = 1 is

o
X= [xl] =[1 1]" and eigenvector correspondingto e« = —1is X = [ ! ]

1 1 -1
6: IE 1 2]

-1

-1 0 1
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UNIT-11: JORDAN CANONICAL FORM

CONTENTS

11.1 Introduction

11.2 Objectives

11.3  Jordan blocks

11.4 Generalized eigenspaces
11.5 Jordan Canonical form
11.6  Jordan decomposition theorem
11.7 Summary

11.8 Glossary

11.9 References

11.10 Suggested Readings
11.11 Terminal Questions

11.12 Answers

11.1 INTRODUCTION

An upper triangular matrix of a specific shape known as a Jordan matrix encoding a linear
operator on a finite-dimensional vector space with regard to some basis is called a Jordan normal
form, or Jordan canonical form (JCF) in linear algebra. In such a matrix, the diagonal entries to
the left and bottom of any non-zero off-diagonal entry equal to 1 are identical, and they are located
immediately above the main diagonal (on the superdiagonal).

A vector space V over a field K is defined. If and only if all of the matrix’s eigenvalues fall
inside K, or, to put it another way, if the operator's characteristic polynomial divides into linear
factors over K, there will be a basis with regard to which the matrix has the necessary form. If K
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is algebraically closed (that is, if it is the field of complex numbers), then this condition is always
met. The eigenvalues (of the operator) are the diagonal entries of the normal form, and the
algebraic multiplicity of the eigenvalue is the number of times each eigenvalue appears.

The Jordan normal form of an operator is sometimes known as the Jordan normal form of
M if the operator was initially given by a square matrix M. Any square matrix that has its field of
coefficients expanded to include all of the matrix's eigenvalues has a Jordan normal form. While
it is customary to group blocks for the same eigenvalue together, no ordering is imposed among
the eigenvalues or among the blocks for a given eigenvalue, though the latter could be ordered by
weakly decreasing size. Despite its name, the normal form for a given M is not entirely unique
because it is a block diagonal matrix formed of Jordan blocks, the order of which is not fixed.

In particular, the Jordan—Chevalley decomposition is straightforward when applied to a
basis where the operator adopts its Jordan normal form. The Jordan normal form is a specific case
of the diagonal form for diagonalizable matrices, such as normal matrices.

The Jordan decomposition theorem was initially proposed by Camille Jordan in 1870, and
the Jordan normal form bears his name.

A matrix example in Jordan normal form. Every matrix
entry that isn't visible is zero. The squares that are
delineated are called "Jordan blocks". One number
lambda is present on the main diagonal of each Jordan
block, whereas ones are present above it. The
eigenvalues of the matrix are called lambdas, and they
don't have to be unique.

11.2 OBJECTIVES

After reading this unit learners will be able to

Understand the concept of Jordan blocks.

Implement the application of Jordan canonical form.
Understand the concept of Jordan decomposition theorem.
Visualized and understand the concept of nilpotent operator.

11.3 JORDAN BLOCKS
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Let V denote a finite dimensional vector space over a field F.

Suppose that the characteristic polynomial of T splits in F and A1, . . ., A are the distinct
eigenvaluesof TinF. Let N, ,N, ,..., N, be the distinct eigenspaces of T.

We know that the diagonalizability of T means the following direct sum decomposition
of V in terms of distinct eigenspaces of T given by

V=N, ®N, ®.@ON, .
Naively, diagonalizability fails if some N, is “small”.

Definition 1: Let 1 € F. We define a Jordan block J, to be the matrix

A 0
0 4 0

Note that the principal diagonal entries are all A and the upper diagonal entries are all 1. Every
other entry is 0. We often omit 0 from the expression.

Our aim is to select an ordered basis B of V such that

A O
0 A
[T]B = - :
A
where each 0 is a zero matrix, and each A, is a square matrix of the form (1) or a Jordan block
J, defined above, such that A4 is an eigenvalue of T.

Definition 2: The matrix [T]; is called a Jordan canonical form of T. We say that the ordered
basis B is a Jordan canonical basis for T.
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Jordan block A, is almost a diagonal matrix. [T]; is a diagonal matrix if and only if each A, is of
the form (1).

Example 1: Suppose that T is a linear operator on C® , and B = {vi, - - -, vg} is an ordered basis
for C®such that

is a Jordan canonical form of T.

The characteristic polynomial of T is

det(tl —J) = (t—1)*(t —3)°t?,

and hence the multiplicity of each eigenvalue is the number of times the eigenvalue appears on
the diagonal of J.

Also observe that vi, vs, vs and v7 are the only vectors in B that are eigenvectors of T. These are
the vectors corresponding to the columns of J with no 1 above the diagonal entry. Note that,

T(v2) = v1 +v2 and therefore (T — I)(v2) = vi and (T — 1)(v3) = vz, since v1 and v4 are eigenvectors
of T corresponding to 4 = 2. It follows that (T —I) 3 (v) =0 fori=1, 2, 3, 4.

Similarly, (T—31)2(v)=0fori=5,6and (T—01)2(vi)=0fori=7,8
In view of these observations, we can say that:

If v lies in a Jordan canonical basis for a linear operator T and is associated with a Jordan
block with diagonal entry 4, then (T — A1)P (v) = 0 for some large enough p. Eigenvectors satisfy
this condition for p = 1.
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Our aim is to prove that every linear operator whose characteristic polynomial splits has a
Jordan canonical form that is unique upto the order of the Jordan blocks. It is not true that Jordan
canonical form is completely determined by the characteristic polynomial of the operator.

Example 2: Let T be the linear operator on C®such that [T'], =J',, where B is the ordered
basis of the previous example and

1

Then the characterstic polynomial of Tis also (t —1)*(t —3)*t?, which is the same as that of T of
the previous example, but the Jordan canonical forms are different.

11.4 GENERALIZED EIGENSPACES

We now extend the definition of eigenspace to generalized eigenspace of an operator T. Our aim
is to select ordered bases for these subspaces such that their union form an ordered basis for V
and the Jordan canonical form is achieved.

Definition 3: Let T be a linear operator on a vector space V, and let 1 € F. A nonzero vector v
in V is called a generalized eigenvector of T corresponding to A if and only if (T — A7)°(v) = 0 for
some positive integer p.

Note that if v is a generalized eigenvector of T corresponding to 4, and if p is the smallest
positive integer for which (T A7) (v) = 0, then (T — AI)P"!' (v) is an eigenvector of T
corresponding to A. Therefore, 1 is an eigenvalue of T

Definition 4: Let T be a linear operator on V, and let A € F be an eigenvalue of T. The
generalized eigenspace of T corresponding to /4, denoted by K, is the subset of V defined by

Ki={veV|(T—A)PV) =0,peN}

K consists of the zero vector and all generalized eigenvectors corresponding to 4.
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Theorem 1: Let T be a linear operator on V, and let A be an eigenvalue of T. Then
Q) Ky is a T-invariant subspace of V containing the eigenspace
N,(= ker(T — AD)).
(i)  Foranyscalar =+ A, the restriction of T — x4l to K, is one-one.
Proof (i): It is easy to verify.

(i) Let ve K, and (T — z)(v) =0. Suppose that v = 0. Let p be the smallest integer for
which

(T—ADP(v) =0, and let w = (T — AP 1(v) #0. Then (T — A)(w) = (T — AN)P(v) = 0, and hence
w e N, . Furthermore,

(T —pDW) = (T = pI)(T = AP '(v) = (T = )P (T~ ul)(v) =0,

sothat we N ,. But N, n N, ={0}, and thus w = 0, contrary to the hypothesis. So v =0 and

(T — ), is one-one.

Theorem 2: Let T be a linear operator on a finite dimensional vector space V such that the
characteristic polynomial of T splits in V. Suppose that 4 is an eigenvalue of T with multiplicity
m. Then

Q) dim(KX) <m.

(i) K, =ker((T —21)™).

Proof (i): Let W = K, and let p(t) be the characteristic polynomial of Tw = Tyw . Then p(t)

divides the characteristic polynomial of T, and therefore it follows that A is the only eigenvalue
of Tw . Hence p(t) = (t — )¢, where d = dim(W) and d < m.

(ii)  Clearly ker((T —A1)™) = K, . Now let W and p(t) be as in (i). Then p(Tw ) is 0 by the
Cayley-Hamilton theorem. Therefore, (T —47)% (v) = 0 for all v € W. Since d < m, we have

K, cker((T—A1)").

11.5 JORDAN CANONICAL FORM
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Theorem 3: Let T be a linear operator on a finite dimensional vector space V, such that the
characteristic polynomial of T splits in F. Let 4, 4,,...., 4, be the distinct eigenvalues of T. Then,

for every v € V, there exist vectors
vieK, v, eK, ,.,v, €K, ;
Suchthat v=v, +Vv, +....+V,

Proof: The natural number k denotes the number of distinct eigenvalues of T. The proof in by
induction on the number k.

Let k = 1, and let m be the multiplicity of A,. Then, (T —A,)" is the characteristic

polynomial of T, and hence (T —A4,1)™ =0 by the Cayley-Hamilton theorem. Thus V =k4,, and

the result follows.

Now suppose that for some integer k > 1, the result is true whenever T has less than k
distinct eigenvalues. We assume that T has k distinct eigenvalues. Let mx denote the multiplicity
of A and p(t) the characteristic polynomial of T. Then p(t) = (t — )™ q(t), for some polynomial
q(t) not divisible by (t — A). Let Wi = range(T — Al)™ . Then, Wk is T-invariant.

Observe that (T —Al)™ maps kA, onto itself for i < k. For suppose that i <k. Since (T )™

maps k4, into itself and since 4, # 4,
it follows from a previous theorem that the restriction of T — 4,1 to k4, is one-to-one and hence

onto.
One consequence of this observation is that for i <k, k4, is contained in W, ; and hence

Z; is an eigenvalue of T,, fori<k. Next, observe that i« is not an eigenvalue of T, . For, suppose
that T (v) = AV for some v € Wi. Then v = (T — JI)™ (w) for some w € V , and it follows that
0=T-A4DV) =T -2 D)™ (w).
Therefore, W € K, and by a previous theorem we get v = (T — )™ (w) = 0. This shows that v
can not be an eigenvector, hence A is not an eigenvalue of T, .
We observe that every eigenvalue of T, is an eigenvalue of T and the distinct eigenvalues
of T, are s, - - -, A-1. Now letv € V. Then (T - )™ (v) EW, . Since Ty, has k —1 distinct

eigenvalues A, - - -, k-1, the induction hypothesis applies.
Let K, be the generalized eigenspace for the operator T, With respect to the eigenvalue

A, fori=1,2,...,k— 1. Hence, by the induction hypothesis, there exist vectors

W, € K%,Wz € K;LZV"’Wk—l € K;le
such that
(T —ﬂ,l)mk (V) . Wl -|-W2 +"'+Wk—l'

We note that
]
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(@) K, c K, fori<k
(b) (T -4 1)™ maps K, onto itself for i <k

Therefore, it follows that there exist vectors v, € K, for i<k, such that (T — A, 1)™(v;) = w;.
Hence, (T =24, 1)™ (v) = (T = A D)™ (%)) + ...+ (T = A1)™ (v,

and it follows that

V—(v, +V, +...+V, ;) €K, . Therefore, there exists a vector v, eK, such that

V=V, +V, +.. 4V, .

Theorem 4: Let T be a linear operator on a finite dimensional vector space V, such that the
characteristic polynomial of T splits in F. Let 4, + 4, +...+ 4, be the distinct eigenvalues of T with

multiplicities m, +m, +...+m, respectively. For 1<i <k, let Bj denote an ordered basis for K, .
Then, the following statements are true.

Q) B,NB;=¢ fori=j.
(i) B =B, u...uB, isan ordered basis for V.
(i)  dim(KA4)=m, fori=1....k.

Proof (i): Letv € Bi N Bjic KA N KA4;, where i+ j. By a previous theorem, T — 4,1 is one-one
on K4, , and therefore (T —4;1)°(v) = 0 for every positive integer p. This contradicts the fact that

v e K4, , and the result follows.

(i) Letv € V. We know by the previous theorem that, for 1<i <k, there exist vectors v, € KA,

such that v=vi + - - - + vi. Therefore B spans V, since each v; is a linear combination of
the vectors of B . Let q be the cardinality of B. Then dim V < q. For each i, let di = dim(

k
KA). Then, q = Zik=1di <> m, =dim(V). Hence, g =dim(V) ; consequently B is a basis
i=1

forV.

k
Using (ii) we see that zikzldi =>_m;.But d, <m,, and therefore d, =m, for all i.

i=1
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Corollary 1: Let T be a linear operator on a finite dimensional vector space V, such that the
characteristic polynomial of T splits in F. Then T is diagonalizable if and only if N; = K, for every
eigenvalue A of T.

Proof: T is diagonalizable over F if and only if dim(N;) = dim(K;) for each eigenvalue A of T. But
dim(N,) < dim(K3), and hence these subspaces have same dimension if and only if they are equal.

Our aim is to select suitable bases for the generalized eigenspaces of the linear operator T,
so that we may use the previous theorem and obtain a Jordan canonical form. We will find the
following definition useful.

Definition 5: Let T be a linear operator on a vector space V. Let v be a generalized eigenvector of
T corresponding to the eigenvalue A. Suppose that p is the smallest positive integer for which

(T = A1)P(v) =0. Then, the ordered set

C={(T - )" (v), (T = A)P*(V),..., (T = A)(V),V}

is called a cycle of length p of generalized eigenvectors of T corresponding to A. The vectors
(T —A1)P™*(v) and v are called the initial vector and the end vector of the cycle, respectively.

Remark: Notice that the initial vector of a cycle of generalized eigenvectors of T is the only
eigenvector of T in the cycle. Also observe that if v is an eigenvector of T corresponding to the
eigenvalue 4, then the set {v} is a cycle of generalized eigenvectors of T corresponding to A of
length 1.

Let us recall some of the main observations of the first example that we discussed. Suppose
that T is a linear operator on C®, and B = {vi, - - -, vs} is an ordered basis for C®such that

is a Jordan canonical form of T.

(1)  The first four vectors of B lie in K.
______________________________________________________________________________________________________________|
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2 The vectors in B that determine the first Jordan block of J are of the form

{v1, vz, va} = {(T — 1)*(va), (T — I)(v3), va}.
(3) (T—-1)3%(vs)=0.

The relation between these vectors is the key to finding Jordan canonical form. We observe that
the subset C1 = {vi, V2, v3}, C2 = {va}, C3 = {vs, ve}, Cs = {v7, vs} are the cycles of generalized
eigenvectors of T that occur in B. Notice that B is a disjoint union of these cycles. Moreover, if Wi
= span(Ci), for 1 <i <4, we see that Ci is a basis for Wi and [T, ]c; is the i-th Jordan block of the

Jordan canonical form of T.

Theorem 5: Let T be a linear operator on a finite dimensional vector space V whose characteristic
polynomial splits in F. Suppose that B is a basis for V such that B is a disjoint union of cycles of
generalized eigenvectors of T. Then the following statements are true:

Q) For each cycle C of generalized eigenvectors contained in B, the subspace W = span(C) is
T-invariant, and [Tw]c is a Jordan block.
(i) B is a Jordan canonical basis for V.

Proof: Suppose that the cycle C corresponding to 4 has length p, and v is the end vector of C.
Then, C = {vi, - - -, vp}, where vi = (T — AP (v) for i < p and v, = v. We have
(T =A)(v,) = (T = A)" D (v) =v,_,. Therefore, T maps W into itself, and we see that [Tw]c is a
Jordan block.

We can repeat the arguments of (i) for each cycle in B and finally obtain [T]s.

With the help of following theorems we will see that a Jordan canonical basis is nothing but union
of disjoint cycles of generalized eigen vectors corresponding to the eigen values of the operator.

Properties 1: Let T be a linear operator on a vector space V, and let 1 be an eigenvalue of T.
Suppose that Cy, - - -, C; are cycles of generalized eigenvectors of T corresponding to 4, such that
the initial vectors of the C; s are distinct and form a linearly independent set. Then the Ci’s are

disjointand C = Uirzlci is linearly independent.

2: Every cycle of generalized eigenvectors of a linear operator is linearly independent.

3: Let T be a linear operator on a finite dimensional vector space V, and let 1 be an eigenvalue
of T. Then K; has an ordered basis consisting of a union of disjoint cycles of generalized
eigenvectors corresponding to A.
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3 1 -2
Example3: Let A=|-1 0 5
-1 -1 4

The characteristic polynomial of A is p(t) = (t — 3)(t — 2)%, hence A1 = 3, 12 = 2 are the distinct
eigenvalues with multipilcites 1 and 2 respectively. Then dim(K, ) =1and dim(K, )=2. Clearly,

-1
N, =ker(T -31)=K, and (-1,2,1)N, . Therefore, B, =<| 2 | isabasis for K, .

Since dim(K, ) = 2, therefore a generalized eigenspace has a basis consisting of union of cycles

of length 1 or a single cycle of length 2. The first case is impossible because the vectors in this
case would be eigenvectors contradicting the fact that dim(N, ) = 1. Therefore, the desired basis

is a cycle of length 2. A vector v is the end vector of such a cycle if and only if (A-2I)(v) =0,
but (A—21)%*(v) = 0. Simple calculation shows that

is a basis for the solution space of (A—21)?x =0. Now choose a vector v in this set so that
(A—21)v=0. The vector v=(—1, 2, 0) is a candidate for v. Since (A—-21)(v)=(—-3,-1) we
-1\ (-1
obtained the cycle of generalized eigenvectors B. ={(A—-2l)v,v}=4| -3 || 2
-1

is a Jordan canonical basis and
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©)
J =|.T]B = (2 1]
0 2

Is a Jordan canonical form for A.

11.6 JORDAN DECOMPOSITION THEOREM

Definition 6: An operator T: V — V is called nilpotent if T = 0 for some positive integer k.

Theorem 6 (Jordan Decomposition): Let T be a linear operator on a finite dimensional vector
space V such that the characteristic polynomial of T splits in F. Then T =S + Z, where S is a
diagonalizable operator, Z is a nilpotent operator and SZ = ZS.

Proof: We divide the proof into the following steps.

Step 1: T has only one distinct eigenvalue A, of multiplicity n = dim V. Then, V = K,. If we take Z
=T—-A,S=AthenT=2Z+ S and ZS = SZ. Moreover, S is diagonal in every basis and Z is
nilpotent, for V = K; = ker(Z").

Step 2: In the general case, let 14, . . ., Ak be the distinct eigenvalues of T with multiplicities ny, . .

5Nk Let T, =T, . Then T =Ti®- - -DT«. Since each Ti has only one eigenvalue i , we can apply

the previous result.

Thus Ti = Si + Zi; such that Si = il is diagonal on «, and Ni = Ti — Si is nilpotent of order nj on«,

A

.ThenT=S+N,whereS=S1 @- - - @Skand Z=2; @- - - @Z«. Clearly SZ = ZS. Moreover, Z
is nilpotent and S is diagonalizable. For, if m = max(ny, - - -, nk),

then Zm = (Z)" @ - - - @ ()™ = 0; and S is diagonalized by a basis for V which is made up of
bases for the generalized eigenspaces. Hence the proof.

Definition 7 (Uniqueness of S and Z): Under the hypothesis of the Jordan decomposition
theorem, there is only one way of expressing T as S + Z, where S is diagnalizable, Z is nilpotent
and SZ = ZS.

Proof: Let KA4,...,KA, be the generalized eigenspaces of T corresponding to the distinct
eigenvalues 4,,...,4,. Then, V=K, ®..®KA4 and T =T, ®..®T,, where T, =T, .
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Note that KA, is invariant under every operator that commute with T. Since S and Z both commute
with T, therefore K4, isinvariantunder Sand Z. Put S, = A1 and Z, =T, - S, . It suffices to show

that S, =S;, forthis Z,, =Z;, proving the uniqueness of S and Z.

Since S is diagonalizable, so is Sy, . Therefore S, — 41 =S,, —S;is diagonalizable. This
operator is the same as Z; —Z,, . Since Z,, commutes with 41 and with T, it also commutes

with Zi . We can use binomial theorem to prove that Z; —Z,, " is nilpotent.

Hence, the matrix representation of S, —S; is nilpotent diagonal matrix, and therefore the zero

matrix. Hence the proof.
Computation:

By a previous theorem, each generalized eigenspace KA, contains an ordered basis B; consisting

of a union of disjoint cycles of generalized eigenvectors corresponding to i . Then B = Uik=1 B, is

a Jordan canonical basis for T. For each i, let T, =T, , and let A =[T;]; . Then Aj is the Jordan
canonical form for Ti, and

A 0 .. O
.. 0
T e

0 0 0 A

is the Jordan canonical form for T. We now follow the book by Friedberg et.al. to describe the
technique of dot diagrams, followed by some illustrative examples.

The Dot Diagram of T, =T, : Suppose that Bi is a disjoint union of cycles of generalized eigen
vectors Cy, - - -, C, with length p1>p2 > - - - > p, respectively. The dot diagram of Ti contains
one dot for each vector in Bi, and the dots are configured according to the following rules.

The array consists of nj columns (one column for each cycle).
Counting from left to right, the j™ column consists of the p; dots that correspond to the
vectors of C; starting with the initial vector at the top and continuing down to the end vector.
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T=20% () (T=41)P (v,)

T=20" () (T=A40" (v,)

(T=ADMW) (T =AD(V,)
A'A v,

e The dot diagram of Ti has n; columns (one for each cycle) and p1 rows. Since p1 >p2> - -
- > P, , the columns of the dot diagram either become shorter in length or remain the same

in length as we move from left to right
(i) n; = dim(Nzi)
(i) ri is the number of dots in the i'" row, given by

r1 =dimV — rank(T — A1l);
rj = rank((T — Zil)y ' — rank((T — Al)}) if j > 1.

2 -1 0 1
3 -1 0
1 1 0
0 -1 0 3

0
Example 3: Let A= 0

Then, p(t) = (t — 2)3 (t — 3) is the characteristic polynomial. The distinct eigenvalues are 1 = 2, A
= 3 with multiplicities 3 and 1 respectively. Therefore, dim(K4,)=3 and dim(KA4,) =1. Let

T =T T,=T

KA, ? K *

The dot diagram of T, : It has 3 dots. The possibilities are
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We now calculate ry = 4-rank(A—21) = 4-2 = 2. Therefore, r, = 1 and the dot diagram is

2 1
Therefore, the Jordan canonical form for Ty is [o 2} and the Jordan canonical form for
(2)
Tis

2 1
o2
(2)
)

We now find a Jordan canonical basis for T. We first find a Jordan canonical basis for T;.

T -2y, v,
v,

Therefore vi € ker((T — 21)?) but v, & ker((T —21)). Now

0 -1 0 0 -2

1

01 -10 0

A-21)= C(A=21) =

( =10 1 -1 o =0
1

0 -1 0

1
0
0
1

0 -2

It is easy to see that a basis for ker((T — 21)%) = K4,) is
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Note that do not belongto N, . Choose v, =

0
1
2
0

-1

And consider (T —21)(v1) = (A —2I)(v1) = _1

-1

Now choose v, = which belongs to N, and which is linearly independent of

is linearly independent and hence a basis for K, .

. . 1. . :
Therefore, the Jordan canonical basis B, = is associated to the diagram as

Since /2 = 3 has multiplicity 1, we have dim(K, ) =dim(N, ) = 1. Hence, any eigenvector
constitute a basis B>. Therefore, we may consider
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is a Jordan canonical basis for A. If we take Q =

then QIQ 1=A

—4

-2 0
Example 4: Let A=

2
1
-2 -2 3
-2 -6 3

The characteristic polynomial is p(t) = (t — 2)%(t — 4)? and the eigenvalues are A = 2, A2 = 4. Let
T, = Kﬂu T, = Kﬂq.

Dot diagram of T1 :

Now r1 =4 —rank(A — 21) =4 — 2 = 2. Therefore, the correct dot diagram is

2 0
Hence A =[T.] = (O ZJ . In this case Bx is any basis of N,
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Dot diagram of T2: We have r1 =4 — rank(A — 41) =4 — 3 = 1, therefore the correct dot diagram
is

4 1
and the Jordan block A, =[T,]; = (0 4], where By is any basis for K, corresponding to the

dots. In this case B> is a cycle of length 2. The end vector of this cycle is a vector
ve K, =ker((T —41)%), such that v ¢ N, = ker((T —41I)). Itis easy to see that a basis for N,

is

Choose v to be any solution of

(A—41)x=

1

for example, v= (A—-41)x =

0
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1
Thus B2 = {(A—4l)v, v} = A Therefore,

is a Jordan canonical basis for A. The corresponding Jordan canonical form is

0 A
2 0 4 1
Where Aiz(o ZJ and Azz[o 4J

Check your progress

Problem 1: For the characteristic polynomial (t —1)*(t —3)*t* find the Jordan canonical form.

—4 2
2 0 1
—2 -2 3
~2 -6 3

Problem 2: Check the characteristic polynomial for the matrix A=

2
3
3|
7

11.7 SUMMARY

In this unit, we have learned about the important concept of Jordan blocks, Jordan canonical forms,
Jordan decomposition theorem, generalized eigenspaces and nilpotent operator. After completion
of this unit learners will be able to:

> Formation of Jordan Canonical form on the basis of characteristic polynomial of any
matrix.

> Find out any matrix is nilpotent or not.
______________________________________________________________________________________________________________|
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> Visualized the concept of Jordan decomposition theorem.

11.8 GLOSSARY

Jordan Blocks

Jordan canonical form

Jordan decomposition theorem
Generalized eigenspaces
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11.11 TERMINAL QUESTION

Long Answer Type Question:
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Let T be a linear operator on a finite dimensional vector space V, such that the characteristic
polynomial of T splits in F. Let 4, 4,,...., 4, be the distinct eigenvalues of T. Then show

that , for every v € V, there exist vectors
vieK, v, eK, ,..,v, €K, ;Suchthat v=v, +v, +...+V,

Let T be a linear operator on a finite dimensional vector space V, such that the characteristic
polynomial of T splits in F. Let A4, + 4, +...+ A, be the distinct eigenvalues of T with

multiplicities m, + m, +...+m, respectively. For 1<i <k, let Bi denote an ordered basis

for K, . Then prove that the following statements are true.

(@ BB, =g fori=j.

(b) B=B,u..uB, isan ordered basis for V.

(c) dim(K4)=m, fori=1,....,k

Let T be a linear operator on a finite dimensional vector space V such that the characteristic

polynomial of T splits in F. Then prove that T =S + Z, where S is a diagonalizable operator,
Z is a nilpotent operator and SZ = ZS.

Short answer type question:

1. Let T be a linear operator on V, and let / be an eigenvalue of T. Then prove that
Q) K is a T-invariant subspace of V containing the eigenspace N, (= ker(T — 1/)).
(i) For any scalar g # A4, the restriction of T — x4l to K, is one-one.

2. Let T be a linear operator on a finite dimensional vector space V such that the
characteristic polynomial of T splits in V. Suppose that 4 is an eigenvalue of T with
multiplicity m. Then

Q) dim(KA) <m.

(i) K, =ker((T-41)")

3. Under the hypothesis of the Jordan decomposition theorem prove that, there is only one
way of expressing T as S + Z, where S is diagnalizable, Z is nilpotent and SZ = ZS.

Fill in the blanks:

1. Every cycle of generalized eigenvectors of a linear operator is

2. An operator T: V - Vs called nilpotent if for some positive integer k

11.12 ANSWERS

Answers of check your progress:
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2: p()=(t—2)%(t— 4y

Answer of fill in the blanks questions:

1. linearly independent 2.
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UNIT-12: INNER PRODUCT SPACES

CONTENTS

12.1 Introduction

12.2 Objectives

12.3 Inner product spaces

12.4 Cauchy Schwarz inequality
12,5 Gram-Schmidt orthogonalisation process
12.6 Bessel’s inequality

12.7 Orthogonal complement

12.8 Riesz representation theorem
12.9 Summary

12.10 Glossary

12.11 Reference

12.12 Suggested readings

12.13 Terminal questions

12.14 Answers

12.1 INTRODUCTION

Till now, we have studied about vector spaces without any metric (distance) concept viz length,
angle and distance. But to visualize a vector space, we need metric concepts. Without any metric
concept; we can’t imagine or visualize the geometry of a space. Here we shall study a special
class of vector spaces through which we can understand a model of Euclidean Geometry.
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There is a significant difference in Mathematical and Physical interpretation when we focus on
vectors. In physical world, a vector is a straight arrow-headed line, while in a vector space,
besides real life vectors, we study convergent sequences, continuous functions, differentiable
functions, integrable functions as vectors. Such type of vectors may not be arrow-headed lines.
So we have to generalize the concept of angle between two vectors. For this purpose we study
inner product.

12.2 OBJECTIVES

After the study of this chapter, we shall understand:

Inner product and its relation with norm and metric.
Orthogonalisation and Gram-Schmidt process.
Cauchy Schwarz and Bessel inequalities.

Riesz representation theorem.

12.3 INNER PRODUCT SPACES

In this chapter, we shall consider vector spaces over the field or real numbers (R) or complex
numbers (C) only. In R®, we define dot product (or scalar product) as follows:

Let &:(xl,xZ,xe,),E:(yl,yz,ys) inR3whereall xi ,yjER

Now d.b=Xiyi+Xoya+Xays = b.d
We observe that dot product satisfies the following properties:

(i) d.d =0ie X2 +x?+x?=0
Also if X12 +X2? + X3 =0

= X1 = X2 =%X3=0

ie. =(0,0,0)=0

(ii) .

=b.d , as we already know.
(iii) (ADb +ud)=2(@.b)+u(@.2) V A,u€R
Here (ii) and (iii) properties can easily be verified. Similarly we can define dot product on R".

Sometime @ . b is represented as < d , b >. Now we generalize the concept of dot product as
inner product in a vector space.
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Inner Product: An inner product on a vector space Visamap <, >:V X V — R satisfying the
following properties :

Q) <x,x>z0and<x,x>=0ifandonlyif x =0.

(i) <X,y> = <y,Xx>

(i) <x+z,y>=<x,y>+<z,y> and <x,y+z> =<X,y> +<Xx,z>
(iv) <ax,y> =a<x,y> ¥x,y,z €VandaeR

Generally function in analysis is represented by f ; but here, we represent it by <, >.

So (V, <, >) s called an inner product space. For brevity, we say V is an inner product space
without explicitly mentioning the inner product <, >.

Example 1: The dot product defined above on R" (in particular R?) is an inner product. It can be
easily verified. Sometimes it is called standard inner product.

Example 2: If we consider inner product on V(C), where C represent field of complex numbers,
then following properties must be satisfied :

Q) <X,y> =<7y,x > where<7y,x >iscomplex conjugate of <x,y>.
(i) <X,X> Z0and<x,x>=0 = x=0.
(ili) <ax+py,z> =Za<x,z>+p<y,z> wherea,BEC

(iv) <x,ay+Bz>=a<x,y> +pf <x,z>

Example 3: Prove that the vector space C"(C) = { (a1, an) . ar € C }is an inner product

space with respect to the inner product : <u,v> = aif; + a2, + + anB, , Where u =
) an)v V= (Bl, ceereneny Bn) e Cn

Solution: Giventhat : <u,v> =aif; +

So we have

—=(Bla_1)+ +(Bna—n)

(as (@) = an ¥ n)

So,< v,u>=<u,v>
(i) <u,u> =aa; +
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(iii) Leta,BECandw=(y1, ,¥n) €EC", then

<au+t fBv,w> =<qa(ai , an) + B(B1, , Bn), (v1,
=<(aai+Bp1, saan+ BBn), (vi,
= (aas+BP1) y1 + +(aan+ BPn) Yn
=(aa1yy +BB1y1)+ +(aan Yo+ BB Yn )
=a(aiy; + tanyyg )+ BByt +Bn¥n)
Za<u,w>+B<v,w>

Hence C" is an inner product space.

Note: The inner product given by equation (1) is called the standard inner product on C".
Example 4: Prove that the following is an inner product on R?,

<u,v>=a1Pr1-2a1B2-2a2P1+5a2B2,whereu= (a1, a2) andv=(B1,B2) € R?
Solution:_Here <u, v > will be a real number, so

(i) <u,v> =< V,u>,obviously.
(i) <u,u>=zaa1-2a1az2-2a2a1+5azaz

=a?-4arar+5a’

=af-darar+4ai+ a3
= (a1-2a2)* =0
Now, <u,u> =0,
e (a1-2a2)® +a?=0,
S ar—-2az2=0and a2=0.
So <u,u>=0 =u=(a1,a2) =(0,0)
(i) Leta,B ERandw=(y1,Y2) € R?, then
au+ BV =a(a1, a2) + B(B1, B2) = (aa1 + BP1, aaz + fP2)
Now, <au+pBv,w>=<(aai+BB1,aaz+PPR2), (¥1,¥n)>
= (aa1 + BPr)vi— 2(aas + BP1)v2— 2 (aaz + PP2)y1 + 5 (aas + BP1) Y1
ma(myi1—-2a1y2—2a2y1+5 azy2)
+B(Bry1-2B1y2-2B2y1+5B2v2)
zq<u,w>+ B<v,w>, (using(l))

Hence < u, v >, defined by equation (1), is an inner product on R2.
I ———————
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Example 5: Let V be the vector space of all real polynomials of degree < 2. Prove that
<f(x),g(x)>= folf(x)g(x)dx , 'V f(X), g(x) € V, is an inner product on V.
Solution: (i) Since f(x) and g(x) are real polynomials, so < f(x) , g(x) > €R
Hence <f(x),g(x) > = < f(x),g(x) >=< gkx),f(x) >
(ii) Now <f(x),f(x) > = [ fFO)f(x)dx = [ f(x)?dx =0
Also, <f(x),f(x)> =0, ifandonly if
[} f(x)*dx =0, if and only if
=f(x) =0,
So, <f(x),f(x)> =0 < f(x)=0,

(iii)  Let a, B € R and f(x), g(x), h(x) € V. Then

<af(x)+pg(x),h(x) > = [J(af (x) + Bg(x))h(x)dx

a i fFOORMdx + B [, g(Oh(x)dx

a <f(x), h(x)> + B <g(x), h(x)>
Hence < f(x) , g(x) > , defined by equation (1) is an inner product on V.

Example 6: Given a1 = (1, 3), a2=(2,1) ER. Findan « € R?such that< a , a1>= 3,

< ,az2 >=-1. Here <, > is the standard inner product on R2,
Solution: We know that the standard inner product on R? is
<(a1,a2),(b1,h2)>=aibs +axhy
Let a = (X, y) € R

So, < ,a1>=<(X,¥),(1,3)> =x+3y=3
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<a,az> :<(le)’(211)> :2X+y =-1

On solving equations (2) and (3), we get x =-6/5,y=7/5

-6 7
SO,(Z:(?,E)

Example 7: Let W1 and W- be two subspaces of a vector space V . If Wy and W> are both inner
product spaces, then prove that W1 + W is also an inner product space.

Solution: Let X,y € W1 + WS>, then

X=X1 +X2,y=Yy1+Yy2wherex:,y1 €Wy and X2, y2 EW>

We define, <X,y>=<X1,y1> +<Xz2,Y2>

Here, <x1, y1> is the inner product on Wy and <xz , y» > is the inner product on W>.

Now from equation (1), we have

() <Y, X >=<y1,X1 > +<Yy2,Xp > =<Yy;,X1 > +<Yy2,X; >
=<X1,Y1> +<X2,y2> (asWiand Wz are I.P.S.)
= <X,y>

(i) <X,X>=<X1,X1> +<Xz,X2>

Since, <x1,X1> =0and<x2,X2> =0

= <X1,X1> +<X2, %2> =0

=<x,x> =0

Also,<x,x> =0

= <X1,X1>=0and<xz,x2> =0

=x1=0andx2=0

= X=X1+X2 =0

(i) Leta,BEFandz=2z1+20 EW;1 +W>

Now, ax + By =a (X1 +X2) + B (y1 +y2) = (axi+By1) + (ax2 + By2)

So,<ax+pfy,z> =<(ax1+By1) +(ax2+ By2),z1+22>
=<(ax1+By1,z1>+<axa+By2 , 22>
Za<X1,21> +P<Yy1,21> +ta<X2,22> +B<Y2,22>
—a(<X1,21>+ <X2,22> )+B(Ky1,21> +<Yyr,22>)
=a<x,z>+pB<y,z>, (usingegn. (1))

Hence, W1 + W2 is also an inner product space.
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Theorem 1: Let V be an inner product space andu, v, we V ; a,f € F (where F=R or C)
then,

Q) <u,av> = a <u,v>

(i) <0v> =<u0> =0

@ii) <uv> =0, VueEV =v=0,and
(iv) <uv> =0,VVEV =u=0,

(V) <u,w> = <v,w>, VWEV &= u=vVv

Proof: (i) By definition of inner product
<U,av> =< av,u>=a <v,u> =a <uv>

(i) We know foranyuEVandOEF ,0u=0€V

S0,<0,v>=<0u,v> =0 <u,v>=0

Similarly, <u,0> =<u,0v>=0<u,v>=0<uv> =0

(iii) Itisgiventhat <u,v> =0, VUEV
In particular, we can write,
<u,v> =0

=u=0
Similarly, we can prove other part.
(iv) Let<u,w> = <v,w>, VWEYV then,
<U-v,w> =<uy,w> —<v,w> =0
<u-v,w> =0 ¥weVv
So by previous part, u—v=0 = u=v.
Conversely, If we take u =v, then

<UW> —<V,W>=<u-Vv,w> =<0,w>=0
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Hence,<u,w> = <v,W>%YWEYV.
Note: If V is an inner product space with standard inner product and say V = R?, then for a € R3,

We have, <a,a>=ai1® +a* +as> wherea=(a,az, as),

Here JaZ+ aZ?+ a? or < a,a > is defined as norm of vector a. Actually, it is
generalization of length of a physical vector.

Norm of a Vector: Let V be an inner product space. The norm function || . |l : V = R has the
following properties :

0] Ixll=z0and lIxll=0ifandonlyifx=0;x€V
(i) laxll= |a| IXll,a EF,X€EV,
Norm of a vector v € V isdefinedas llvii= V< v,v >.

A vector u in an inner product space V is said to be of unit norm or unit length if
flull=lor<u,u>=1.

Furthermore, given a non-zero vector v € V, there is a vector u € V such that

full=1andv=1vlu.

This u is called the unit vector along v, because u = ””T” and flu ll = H =1

Example 8: (i) Find the norm of the vector x = (2, -3, 6) € R,

(i) Prove that ﬁ is of unit length.

Solution: (i) Using the concept of standard inner product of R?, we have
<X, X> = 2(2) +(-3) (-3) +6(6) =49

Hence, [ X =+/< x,x > = V49 =7 units

(i) Letu= = =12,3,6)=(2,2.9

w2 @)+ BE) - (HO-3-
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> lull=1=u= ﬁ is of unit length.

Example 9: Let V be an inner product space and X, y, Z € V.
Prove that A

IX+y 12+ Ix—yl? =2(llxI? + llyI?). Also interpret it geometrically.

Solution: Some writers say it parallelogram law.
Wehave [ X +y 2 =<X+y,X+y> =<X,X+y>+<y, xX+y>
Z<X,X>+<X,y>+<y , X>+<y,y>
Now, IX-yI? =<x—y,Xx-y > =<X,X-y >—<y,X-y >

Z<X,X>—<X,y>—<y,x>+<y,y>
Adding equation (1) and (2) , we have

IX+y 2 + Ix—yP=2(<x,x>+<y,y>) =2(lx1? + lyl?)

Geometric interpretation: Let x and y be two vectors in the vector space V2(R) with standard
inner product defined on it. Suppose the vector X is represented by the side AB and the vector y
by the side BC of a parallelogram ABCD. Then the vectors x + y and x — y represented the
diagonals AC and DB of the parallelogram.

So, AC? + DB? = 2(AB? + BC?) i.e. the sum of the squares of the sides of a parallelogram is
equal to the sum of the squares of its diagonals.

Example 10: Prove that we can always define an inner product on a finite-dimensional vector
space V(R) or V(C).

Solution: Let V be a finite- dimensional vector space over the field F = R or C.
LetB={ a1, ....., an} be abasis for V.

Let «,B EV. Thenwecanwrite a =ai a1+ ..... tananand S =brait..... +bnan

Where, ay, ...., an and by, ...., by are uniquely determined elements of F.

Letus define <a,B> =a1b,+....+anb,
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Now it can be easily verified that above expression satisfies all the conditions of inner product.
Hence, we can always define an inner product on a finite dimensional vector space V(C).

Example 11: If , S are vectors in an inner product space V(F) and a, b € F, then prove that

(i) laa+ b 1?=]aflla IP+ab< a,B = +ab <B,a = +|o I B II?

(ii) Re<a,,8>:i(||a+ BIZ —lla— BI?)

Solution: (i) We have,

laa+ bplI°=<aa+ bp,aa+bf>=<aa,aa +bf>+<bp,aa+bpf>
—a< a,ax +bp=+b < pB,aa+bp=
ta< a,aa> ta< a,bpf>= +b<p,aa=+b < p,bp=
—a@a< a,a=+ab< a,B> +bha <B,a>+ bb <B,B =

=laflla I?+ab< a,B>+3b <B,a > +[pP II B I
(if) Now we can write
la+ BlIP=<a+ B,a+f>=<a,a+pf>+< B, a+ f>
=< a,a=+<a,B>= +<B,a>+ <B,B =
la+ B2 =lla lP+<a,B> +<B,a = +|pI? (D)
Also,l a— flI’=<a— B,a— f==<a,a—-pf>=—-<B,a— =

=< a,axr— < a,f> —=f,a =+ <B,p=
la— BIP=lla ?—<a,B> —<B,a =+IBI
Now subtracting equation (2) from equation (1), we get
la+ B2 —lla— BI?=<a,f> +<B,a > +<a,f> +<f,a =

=2 a,B= +=<B,a =)

I ———
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=2<a,B> +<a,B >)
=2(2Re<a,f>)
So, Re<a,f>=(la+pI*—lla— I?)

Note: (1) IfF=R,then Re<a,f>=<a,f >

So,.<a,Bf>=;(lla+ BIP —lla— BI?)

(2) An inner product space V(R) is called Euclidean space while VV(C) is called unitary space.
Example 12: If @ and S are vectors in a unitary space, then prove that —

(i) 4<a,B>=lla+BlIP—lla= B2 +il a+iplI? —illa—ipI?
(i) <a,f> Re<a,f > +tiRe<a,iff >

Solution: (i) As in previous example, we can write
la+ BI?=lla P+<a,B> +<B,a = +]|BI?
and lla— BIP=llal’—<a,B> —<B,a = +|[pI?
So, la+ BI?—lla=— BI? =2<a,B> +2<fB,a >
Now |l a+ifll’=< a+if,a+if>=<a,a+if>+<if,a+if>
=< a,ax+<a,if> +<if,a>+ <ip,ip =
=lla P+i<a, B> +ti<B,a>+i1 <B,B =
=la P —i<a,B> +i<f,a =+1BI°
So illa+iplP=i lalP+<a,f>=> —<B,a=+ilpI?
Replacing i by —i , we get
Qilla+ipl?=-illa P+<a,B> —<B,a = +ilpI?

Hence adding equations (1), (2) and (3), we get
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la+ B> —lla— BIP +ill a+iB > —illa—ipI*=4<a,B>
(ii) From the knowledge of complex numbers, we have
<a,B> =Re<a,f>+ilm<a,if>
Ifz=x+1iy,theny=Imz=Re {-i (x+1y) } =Re (-iz)
~Im<a,B>=Re{-i<a,f>}=Re{i<a,f>}=Re{<a,if>}
So from (1), we have
<a,f> =Re<a,f> +tiRe<a,iff>

Note: In the study of physical vectors, we define dot/scalar product as a. b = ab cos 6, where a =
|d@|, b = |b| and 6 is the angle between @ and b.

Since we know that |cos 6| = 1. So, ab|cos 8] =ab as a=0,b>0.

|d. b| < ab or|d. b| <|d|b|

This is a particular case of Cauchy-Schwarz’s inequality, which we shall study for an inner
product space.

12.4 CAUCHY SCHWARZ INEQUALITY

Theorem 2: Let V be an inner product space. If X , y € V, then

[<x,y>|<Illxll + Iyl .Further, equality holds if and only if x and y are linearly
dependent (that is, one is a multiple of other).

Proof: Here we shall give three different proofs of Cauchy-Schwarz’s inequality:

Q) It is basically geometric in nature
(i) Here we shall use basic concepts of calculus
(iii)  Here we shall use some results on quadratic equations.

Proof: Case (i): Ifx=0o0ry=0,
Then< x,y>=0andeither<x,x>=00r<y,y>=0,
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Hence the result is obviously true.

Case (ii): Now consider the case, when I x = llyll=1,
Consider < x —y , X —y >, then by definition of inner product
<x—y,x—y> =0,
=2 <x,x>—-2<x,y>+<y,y> =0
1-2<x,y>+1 =0
= <x,y>=1
Similarly, < x+y,x+y> =0,
= —<x,y>=1
Combining both results, we get
<x,y><1 orl<x,y><lxll llyllas lxli=1Nyli=1
Now, we prove the statement concerning the equality
Let|<x,y>=1 ,then <x,y>=1lor-1
If < x,y >=1, then from the above discussion of inequalities, we deduce that
<x—y,x—y>=0 orx=y
If <x,y >=-1, we can deduce that x = -y.
Thus equality holds if and only if either x + y=0o0rx -y =0.
i.e.ifandonlyifx=+y.

So x and y are linearly dependent, when equality holds.

Case (iii): Now suppose x and y be non-zero and not necessarily of unit length.

Thenu=-= andv= -2 stlull=llvii=1
Ixl Tyl
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Then as in last case, we have |[< u , v >| <1

X y | - [<x,y>|

Sol< X L <
Ixl "Nyl Ixiiyl

= | <x,y>|< Ix Iyl
Now, in the case of equality, we have | <x,y>|< Il x IIll y I,
If x and y are non-zero, then <x,y>= | x |Ill y llor
—<x,y>= I x1IlIlyl

If we assume, < x,y>= | x Il y Il

x y _
i "Nyl
X y

— —_— = =
I 1l Iyl

=(2)y

hyl

= X is a scalar multiple of y, or x and y are linearly dependent.
The other case is similar.
Proof 2: Fix xand y in V.
If y =0, then the result is obviously true.

So, we takey # 0

Let us consider the real valued function of the real variable
f)=<x+ty,x+ty>.

We want to investigate the extremum points of f.

So, fl)=<x,x>+2t<x,y>+t2<y,y>

So we observe that f(t) is a polynomial in t with real coefficients.

Now f'(t) =2<x,y>+2t<y,y >
|
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So to will be an extremum point for f if f '(to) = 0,

e, <x,y>+to<y,y> =0

<x,y>
<y.y>

o=
Now f'(t) =2<y,y> =21y lI?°>0asy=#0
So f(t) is minimum at t = to

= 0= f(to) < f(t) forall t

=f(t) =0forallt
From equation (1) , we get

<x,x>+2<x,y>+t:<y,y> =0

2 (<x ,y>)? + (<x,y>)?
<y, y> <y, y>

<x,x>— =0

<x,y>)?
<x,x>—& =0
<y.y>

(<x,y>)?

=l x = Iy I2

=|<x,y><lIxIllyl

Proof 3: Let p(t) = at? + bt + ¢ be a quadratic polynomial in t with real coefficient. We know that
for imaginary roots, p(t) will always remain +ve or always remain —ve.

BN

For this to happen , b? — 4ac = 0.

¥

Now f(t) as in second proof is a quadratic polynomial in t with real coefficients

a=<y,y>,b=2<x,y>andc=<x,x >
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Also f(t) is always non negative. So we conclude that b? — 4ac < 0. From this, we shall get the
required result.

Note: If we consider R" with dot(scalar) product, then Cauchy-Schwarz inequality becomes
| Sy 2yl = (ixf? )2 Ziyf )2 forall xi, yi ER.
This concrete inequality is quite useful in analysis.
Theorem 3: (Triangle Inequality) If , 8 are vectors in an inner product space V, then
la+tB U< all+l BI

Proof: Wehave, || a+BlP=<a+P,a+Bf>=<a,a+f>+<P,a+f>
=<a, o> +<a, >+ <B,a>+<B,B>
=l a P+ BIP+(<e, B>+< of>)

I a+BIP=1 a I?+1 BI?+2Re(<c, B >)

But Re (2) = |7/,

So, la+BIP<Il o P+l BIP+2|<a, B>

Ji+ )

<HalP+1 BI*+21 a il B, (by Cauchy |
Schwarz inequality)

= |l a+BIP< (lall+1pN)?
So, I a+BU= llall+lBI

Geometrical Interpretation:

Suppose the vectors o , B represent the sides AB and BC respectively of a A ABC in the
Euclidean space.

Then|lall=ABand || B Il = BC.

Also the vector a + B represents the side AC of the triangle ABC and || o+ |l = AC.
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Then from above inequality we know, || a+BlIl< [lall+ B
= AC=AB+BC
If inequality holds, i.e. AC < AB + BC is true for any triangle ABC.
If equality holds, then AC = AB + BC means points A, B, C are collinear.
Example 13: Verify Cauchy Schwarz inequality for e = (1, 2, -2), and B = (2, 3, 6) € R®.
Solution: With standard inner product, we have
<a,B>=2+6-12=-4, so |<a, B> |=4
Now, [l al’P=1+4+4, so Jlall=3
And |BIP=4+9+36, then IBII=7
So,llalllBli=21
Hence, |[<a, B> | =l o |l Il B Il is verified.

Example 14: If in an inner product space V, Il a+ B Il= llall+ 1 B Il then prove that o« and B
are linearly dependent. Show by means of an example that the converse may NOT be true.

Solution: Given expressionis (Il a+BH1)>< (lall+1 B 1)

<a+B,a+B> =l a P+ BIF+21 a Il B
<o a> +<a B>+ <B,a>+<B,B>=[alP+NBIF+20allllBI
<a,B>+< qB>=20allpll
2Re(<a,B>) =2llallllBllor Re(<a,B>) = llallll Bl (1)
But, Re (<, B>) <|<a, B>
So, |[<a, B> =Nallpl

But, by Cauchy Schwarz inequality
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[<e, B> =lallllpl
From equation (2) and (3) , we have
|[<e, B> =Nallllpl

So from the equality case of Cauchy Schwarz inequality, we conclude that « and {8 are linearly
dependent .

Conversely, let us take,
a=(1,-2,2), B=(-2 4, -4)ER®
Then obviously o and ( are linearly dependent as f = —2a
Now, llall =vV1+4+4=3;
IBI=V4+16+16=6
a+B=(12-2)=lla+B Il =VI+4+4=3
So, Il a+Bl = Nall+lBI
but e and £ are linearly dependent .

Example 15: If W is a subspace of V and v € V satisfies< v, w>+<w,v><<w,w> forall
w € W , then prove that <v, w > =0 for all w € W, where V is an inner product space.

Solution: Since W is a subspace of V(F), therefore

w=2ewW vneN:1eF
n n

Given expression is

<v,w>+<w,v>=<w,w> forallwew
Replacing w by % in equation (1) , we get

1 1 1
of = <vw>+—-<Wwv>Z— <w,w>
n n n?
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1
or <v,w>+<w,v>=Z-<w,w> %YneN
n

Taking lim n — oo, we get
<v,w>+<w,v> <0
Thus<v,w>+<w v> <0, vWEW
Replacing w by —w in equation (2), we get
<v,—-w>+<-—w,v> <0
—<v,w>—<w,v> <0
or <vw>4+< wv>20

From equations (2) and (3), we conclude that
<v,w > +< wv>=0,vweWw
Since W is a subspace of V,soi E Fandw € W = iw € W
Replacing w by iw in equation (4), we get
<viw > +< iw,v > =0

I<v,w>+4+i<wyv>=0

—i<vw>+4+i<wv>=0

—<viw > +< iw,v >=0
So subtracting equation (5) from equation (4), we get

2<v,w>=00r <v,w>=0,VvWEW.

Definition (Metric): A metric on a set X is a function d : X X X — R with the following

properties:

0] d(x,y) =0forx,y € Xand d(x,y) =0ifandonlyifx =y.
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(i) d(x, y) =d(y, x), forall x,y € X
(i) d(x, z) = d(x,y) +d(y, z), forall x,y, Z€ X
(iv) Property (iii) is called the triangle inequality.

Theorem 4: Let V be an inner product space. If we define d(x,y) =1l x—y Il forx,y €V,
Then d is a metric on V.

Proof: (i) By definition of norm, we know
Il x—yll =0
=d(x,y) =20,
Also, d(x,y) =0, ifand only if
I x—yll=0,ifandonly if
x—y=0 ,ifandonly if
X=y
(i dx, )=l x—yll=1(-Dy—x) I
=1y —x |l bylloaxlI=|a|ll x|l ;cEF,XEV
=ly—x1I =d(y, x)
(iii)) dx,z2)=1 x—zII
=l -+ -2
=l x—yll +lly—zI, by triangle inequality
So, d(x,z) =d(x,y) +d(y, z), forall x,y, z € V.

Hence d is a metric on V.

Orthogonality: Let V be an inner product space. An element u € V is said to be orthogonal to v

€ V if <u, v>=0. Obviously, orthogonality is a symmetric relation i.e. if u is orthogonal to v,
then v is also orthogonal to u.
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<uv>=0,ifandonlyif<v,u>=0
Note: (1) Zero vector is orthogonal toeachveEVas <0,v>=<v,0>=0

(2) Ifu € Visorthogonal to v € V, then every scalar multiple of u is orthogonal tov. Letk € F
and<u,v>=0then<ku,v>=k<u,v>=0.Sokuis also orthogonaltov, ,V k € F.

(3) Zero vector is the only vector which is orthogonal to itself. If u is orthogonal to u, then

<u,u>=0=u=0

(4) A vector u € V is said to be orthogonal to set S if it is orthogonal to each vector in S. That is
<u,v>=0, foreveryvevV,

(5) Two subspaces W1 and W> of V(F) are called orthogonal if every vector in each subspace is
orthogonal to every vector in the other.

(6) Let S be a set of vectors in an inner product space V. Then S is said to be an orthogonal set
provided that any two distinct vectors in S are orthogonal. So, <u, v > =0, for every distinct u,
VvV ES.

(7) Let S be a set of vectors in an inner product space V. The S is said to be an orthonormal set
if:

(@) UES=ull=1
(b) uveESandu=v,then<u,v>=0

Thus an orthonormal set is an orthogonal set with the additional property that norm of each
vector is 1. So a set S consisting of mutually orthogonal unit vectors is called an orthonormal set.

AfinitesetS={ a1, ....., an } is orthonormal if

1,i=]
0,i #j°

<ai,aj> :Sij:{

(8) If an orthonormal set S is a basis of an inner product space V, then the set S is called an
orthonormal basis of V.

e.g.thesetS={(1,0,0), (0, 1,0), (0,0, 1) } is an orthonormal basis of R3.

Also, it can be easily verified that the set
I ———————
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' 1 1 1 -1 - .
S={ (5 , 0, 5) , (ﬁ , 0, 5 ), (0, 1, 0) } is another orthonormal basis of R,

Example 16: (Pythagoras Theorem) Prove that vectors x and y in a real inner product space
(Euclidean space) V are orthogonal if and only if

IX+ylP=lxI>+ lIyl?
Solution: We have,
IX+yIP=<X+y X+y>= <X, X+y>+<y x+y>
Z<XX>+ <X Y>+<Y, X >+ <y, y>
=l xIP +<x,y>+ <xy>+ llyl?
Ix+yl2 =1 xI? +2<x,y>+ llyl?asVisreal |.P.S.
Butgiventhat, IX+y P=Nx1? + lly I
Sowehave, Ixl2+ NyIl2 =1l x> +2<x,y>+ llyl?
= <x,y>=0
=  xandy are orthogonal.
Conversely, let x and y be orthogonal
= <X y>=0
then as done above, it can be observed,
IX+yI2 =1 x> +2<x,y>+ llyl?
By using, <X,y > =0, we get
IX+ylP=lxI?+ lyl?

Example 17: Prove that in a complex inner product space (or unitary space) V, if x is
orthogonal toy, then Ix+y IP=llx 1> + Ny I

However, the converse may NOT be true. Justify.
I ———————
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Solution: If x is orthogonal to y, then <x,y>=0
> <Xxy>= 0

= <y,x>=0,

IX+ylP=<x,Xx>+ <X, y>+<y, X >+ <y, y>, (by previous example)

So, IXx+yWP=lxI?+ lyl?

Conversely, let V = C?(C) with standard inner product

Letx=(0,i)andy=(0,1) € V. Then

<xX,y>=0+i=1#0

So x is not orthogonal to y.

Also, Il x 12 =0(0) +i(1) =i(-i) =1
Iyl =0+1=1

Now, x+y=(0,1+1)
Ix+yl?=0+@+i)(1-i)=2

Hence, I x +y I?=11x > + |l y I?, though X is not orthogonal to y.

Example 18: Find a vector of unit length which is orthogonal to the vector (3, -2, 2) of R3(R)
relative to the standard inner product .

Solution: Letx =(3,-2,2) andy = (a, b, ¢) € R® be orthogonal vectors.

Then <x,y>=0
= 3a-2b+2c=0
This system has infinite (actually uncountable) solutions. Let us take one solution by taking

a=2,b=-3,c=-6
___________________________________________________________________________________________________________________|
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So,y = (2, -3, -6) is orthogonal to x = (3, -2, 2)

Now, Iy I°=4+9+36=49 =|lyll=7

2 -3 -6
70507

—L:l - - =
So’u_uyu 7(2, 3,-6) =u=(

Theorem 5: An orthogonal set of non-zero vectors in an inner product space V is linearly
independent.

Proof: Let S be an orthogonal set of non-zero vectors of V. In order to show that S is linearly
independent, we shall prove that every finite subset of S is linearly independent.

Let {v1, Vo, ....., va} be any finite subset of S.
By orthogonality of S, we have
<vVi,Vvj>=0,fori#]j
Let us assume avi + ..... t anvan =0 ; Where aj € F,
S0, <avit....tanwnh,aivit....+anvn>=0
= <aiVi,aiVit.....tann> + ...+ <apVn, Vit ...t anvn >=0
(fawvi,avi>+....+<a1vi,anVn>) + ... + (< @nVn, @1V1 >+ ... + < &nVn ,anVn >) =0
oG <Vi,Vi>+ao, <V2,v>+....+and, <Vn, Vh>; using equation (1)
oy WPNvy 12 +lag IPNvy 12 + .+ 1oy IPHvy 112 =0
But every term is non-negative and sum is zero.
So, llag IPNviIP=0V i
But each vj # 0, by statement.
So, || 2=0V i
= o=0%vV1=12,3,...,n

So, {vi, vz, ....., va } is linearly independent subset of S.
I ———————
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= every finite subset of S is linearly independent.
= S in linearly independent.

Note: In the same way, it can be proved that an orthonormal set S in an inner product space V is
linearly independent.

Example 4: If {v1, vo, ....., va } is an orthonormal set in V and if w € V, then prove that ,
u=w— Y%, <w,v;>v;; isorthogonal to each of vi, va, ....., vn .
Solution: Foranyi=1,2, ....., n. we have
<UVi>=< W— Y%, ogv; ,Vi>, where ai=<w, V>
= <W— 0qVq — 0pVy — ... — 0V , Vi >
=<W,Vi> — ou<V1,Vi> — ... .— o4<Vi,Vi>— ...
=<w,Vvi> -0 —-—....——0—....—0
<U,Vi> =<w,Vv;> —<w,vi> =0
So,<u,vi> =0,fori=1,2,......n
Hence u is orthogonal to v, fori=1,2, ....., n.

Complete Orthonormal Set: An orthonormal set is said to be complete if it is not contained in
any larger orthonormal set.

Orthonormal dimension: Let V be a finite-dimensional inner product space of dimension n. If
S is any orthonormal set in V then S is linearly independent. So S cannot contain more than n
distinct vectors. The orthonormal dimension of V is defined as the largest number of vectors an
orthonormal set in V can contain.

For finite dimensional inner product spaces, orthonormal dimension is same as linear dimension.

Note: Now we recall some basics of vectors in R2. It will help us to ‘visualize’ the geometry
behind Gram-Schmidt orthogonalisation process.

(1) Let us consider two vectors g and b in R2 Then
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|3| =a and|b|=b
We have to find:

(i) projection of 3 on b
(i)  component of 3 along b .
(iii)  component of @ perpendicular to b.

Let us realize these vectors as shown —

So, OA=|d| =a ,£ AOB=8

(i) Projection of 3 onb
= OB = OAcos &

a. b -
= a(Zb )as @ . Db =abcos 8

(@ . D)

Projection of 3onb = -

(ii) Component of of 3 along b = ( Projection of onb)

~ _ (a.b) (@ DDb
b_( b ) - b2 1

(iii) From vector law of addition, we have
04 =0B + BA

5 _ (DD | =
a=-—5— +B4A
— . . > L (DD
So, BA = component of a perpendiculartob =a — =
These fundamental concepts will help you to understand the next

theorem.

12.5 GRAM-SCHMIDT ORTHOGONALISATION PROCESS

Theorem 6: Every finite-dimensional inner product space has an orthonormal basis.
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Proof: Let VV(F) be an n-dimensional inner product space and let S = {vi, ....., va }be a basis of

V. Firstly, we shall construct an orthogonal set in V with the help of elements of S. Since S is a
basis, so all elements of S are non-zero.

Let us take,

_ _ <V2‘ Wi > Wy _ <V2‘ vVi>Vy
W1=V1, Wo=Vp ——2—2-—L or wp=v, - —221—L
llwo Il vy Il

Sincevi#0,s0llv; I #0,

<Vy Vy>
We have, < w,,w; >=< v, —av,,v; > where cx:"‘zl'—”lz
1

SO,< W2,W1 >:< V2,V1 >—O(<171,V1 >

<V2, vy >

=< v,V >—
27 vy 112

” V1 ”2 =< VZ’V1 >_<U2,V1 >:O
< wy,wy >=0 and vz =avy + wy =aw; + wy,

We observe that w, # 0, for otherwise, v2 = avy

= v1, V2 are linearly dependent.

This is contradictory, as S is a basis , so every subset of S will be linearly independent.

<V3z W >WwW <V3z Wi >WwW
Letws=vs——22——2 _ 21— en(2)
Iw | wy |

where [w, | #0, [lwy; l#0

We can write, w3 = vs — ai1wi — asWz , where

_<V3‘W1> _<V3,W2>
a1 =—2"L  and ap =22
wo Il lw |l

Now, < wj,w, >=<V3—aiWi—aWz, W2 >

=< V3’W2 >_al< Wl’WZ >_a2< Wz, WZ >

<V3' w1 >

_ <V3'W2>
=< vy Wy > — < Wy, Wy > — —2 27

2
W
llwy 112 lws 112 Iw |

:<V3’W2 >_0_< V3‘W2> (a.S< WlJWZ >=O)
1
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< W3, W, > = 0
Similarly, < w3, w; >=0,
Also, vz = ai1wi + aW2 + W3

If follows that { w1, w2, ws } is an orthogonal set. Further ws # 0 , for otherwise,{w1, w2, w3 } is
linearly dependent, which is again a contradiction. Here you should note that { w1, wz, v3 }={
V1, V2 — a1V, V3 }is linearly independent as { vi, v, v3 }are linearly independent. Proceeding
in a similar manner, if we take

<Vn,Wnp-1>Wp-_1 < Vn, W1 >wq

Wh = Vn — T — ... " , then it can be verified that {w, ....,
n-1 1

Wn} is an orthogonal set . Consequently, T = { —2 ~n

lwq ll

orthonormal set is linearly independent and so T forms basis of V as dim V =n.

e T } is an orthogonal set. Since an
n

Hence T is an orthonormal basis of v.

Note: (1) To obtain an orthonormal basis of V, where V = R® i.e. dim V = 3, we proceed as
follows:

Q) Let {v1, V2, v3} be a basis of V.
(i) Find {w1, w2, w3} where wi = v1

_ < V2, W1 >Wq
W2 = Vo ——— oo
lwo II
_ <V3_W2>W2 <V3'W1>W1
Ws = V3 — 2 - 2
lw i lwo Il

\"£1 Wy W3 . .
@iy { il Twal ' Twal } is an orthogonal basis of V.

(2) Generally existence theorem in analysis are non-constructive i.e. you prove the theorem, but
there is no formula or general method to solve numerical questions. But Gram-Schmidt process
is constructive in nature. It provides a method to solve numerical.

Example 19: Apply the Gram-Schmidt process to the vectors given below to obtain an
orthonormal basis for R3(R) with the standard inner product:

i) $={(10),(101),0,11)}
()  S2={(1,1,0),(1,0,-1),(0,3,4)}

Solution: (i) Letvi=(1,1,0), v2=(1,0,1),v3=(0, 1, 1)

Letwi=vi=(1,1,0), = llw; I’=<w;,w;>=12+1240=2
|
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. W1

_1 _(L L
e L= G F 0

Let Wy =y, 2z ()

llwy 112

<vywy >=<vyvy >=1240+0=1

S0, w2=(1,0,1)—>(1,1,00=(5,~5,1).

3
Il w, ||2:< W21W2>:E

O, ||w2|| \[(_ _%

<V3,W1>W1 <V3‘W2>W2

Again, let wz =v3 — ..(2)

w112 w112

. 1
Soweobtain, < vz w; >=< vz vy >=0+1+0=1and < vz w, >=2

2 =2
2

lwy 12=2, llwy |
So form equation (2) , we have

ws=(0,1,1) —>(1,1,0) ~ (5,5,

2 _ 4 W3 _ 1
w =3 W _ 1
s 3 llws | ( 3!

Hence orthonormal basis |s{(\/_ \/_,0) (\/_ \/_ \/_) (——

(i) Do it yourself.

$1={(5.0,%). (50,5 .(0,1,0)}

Example 20: Let V be a set of real functions satisfying % +9y =0,

Q) Prove that V is a two-dimensional real vector space.

(i) In V, inner product is defined by
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<y,z>:f0nyzdx
Find an orthonormal basis for V.

Solution: (i) Suppose V is a collection of solutions of

9 r9y=0

dx?
Let = =D
= (D’+9)y=0
Auxiliary equation is m>+9=0orm = + 3i
So, solution is y = €1 €0s3X + C2Sin3X
Let V={c1c0s3x + c2sin3x: c1,c2 ER}

Let S = {cos3x, sin3x}

The Wronskian of vi = cos3x and v2 = sin3x is

\4)

\Z1 :
W(X) = |av, dvy| = |_c053x sin3x | _ 3£0

% dx 3sin3x 3cos3x

So S is linearly independent subset of V and by equation (1) , L(S)=V.
Hence S is a basis of V.

Thus, dimV =2

(i) Let vy =c0s3x, V2 =sin3x

Now  wi=vi,So [lwilf =< wi,wi >=["cos?(3x) dx

_.fn cos6x+1
0

2
2
L :\/:.COS3X
[l woll 13

dx = g , on solving
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Let wy = vy — =212 (2)

llwy 112

m™ . 1 01T
<Vo,Wi> =<V, V1> = fo sin 3x cos x dx:Efo sin 6x dx =0,

W2 = V2 =Sin 3X

Now, I w; 112 =<waz,wz> =fonsin2(3x) dx=f01T (I_CTM)dx=g

2 .
"2 = |2 sin 3x
[fwo Il T

Hence an orthonormal basis of V' is { \/% cos 3x, \/% sin 3x }

Example 21: Obtain an orthonormal basis for V, the space of all real polynomials of degree at
most 2, the inner product being defined by

<f,g>= [ f(x)g(x) dx
Solution: We have, V={a +aix+ax*;a €ER}
Let S = {1, X, x?}. Then obviously, S is a basis of V
Letvi=1, v>=xand vs = x?
So,wi=vi=1
Now |[wi]? =<wi,wy > = f01 1.1.dx=1

<Vy; Wi>W
Let W2:V2—#21
[fwqll

1 1
Now <vz,wi> =<vz,v1> = [ xdx=>

W2 =X 1
S W2 = >

Hence, [WolP =<w2,ws>= fol(x — %)2 dx = %

So, "Vvvvﬁ :\/ﬁ(x—%) = 2\/§(x—§)
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<V3'W1>W1 <V3' Wy >W2

Letwsz=v3—

llwy 112 llwz 112

. 1 1
Since, < vz wy >= [ x° dx =3

1 1
wsl? = <ws , ws>= [ (x* - x + £ )?

i =/180 (x2 - x +%) = 6V5 (x% - x +%)

ws I

Hence an orthonormal basis of V is

{1,2\/§(X—%) ,6\/§(X2—X+%)}

12.6 BESSEL’S INEQUALITY

Theorem 7: If V is an inner product space and if {wx, .... ,wn} is an orthonormal set in \VV , then
Yo lwi,v 2= v, forallveV
Furthermore, equality holds if and only if V is in subspace spanned by w1 , .... ,wn.
Proof: Let v € V be arbitrary.
Consider the vector
X=V-—Yi, o wi; where oy =<v, wj >
Then, <x,X> =<V -}, o Wi, V- XL 05w
=<V, V>—<v, Yoo wp > — < Yo wy, V> < Yo Wi, ik o wi >
= ||V||2_ ?:1@ <V, W > Yo <Wi,v>+ Zin=12]p=1ai o< Wi, wj >

= MP - B <Tw > < v, oW o> - B <vw > < T W, >+
im1 2= 0 . 1 (as<w;,w;>=1lonlyifi=j)
I ———
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So,<x, x> =|VF-XL; [ <v,w > 2=, [<v,w; > P+ I, | <vw; > |2
<X, X> =|VIP-Xk, | <vyw > P=|VIP-Xk, | <Vow, > |%as |z]=|Z]
X IP=IMVP - Zi | <wi, v > )P ()

Since || x ||> = 0, so by equation (2), we have

IVIP-3r, | <wj,v >12 20 or Y, | <wj,v> |2 < |v|?foreachvEV

If the equality holds i.e. if Y™, | <w;,v> |?> = |v|J, then from equation (2), we have
[x|?P=0o0r [[x]|=0
= x=0

So,v= )t o wi =2, <V, W > w;
Thus, if the equality holds, then v is linear combination of { w1, .... ,wn }.

Conversely, if v is a linear combination of { w1, .... ,wn }, then we can write

v=Yr o wywhere o =< v, w; >

So,x=0= || x|? =0

Hence from equation (2), we have

VP = ¥, | <wj,v>|? ie. equality holds.

12.7 ORTHOGONAL COMPLEMENT

Let V be an inner product space, and let S be any set of vectors in V. The orthogonal
complement of S (written as S* and read as S perpendicular or S perp.) is defined by

St={veEV:<uv>=0VueS}
Thus S+ is the set of all those vectors in V which are orthogonal to every vector in S.

Theorem 8: Let S be any set of vectors in an inner product space V. Then S+ is a subspace of V.

DEPARTMENT OF MATHEMATICS SAGE 301
UTARAKHAND OPEN UNIVERSITY




ADVANCED LINEAR ALGEBRA MAT-505

Proof: By definition, St ={vVEV:<u,v>=0 VUES}
Since<0,u>=0 VUES
So, 0 € S* and thus St is not empty.
Letx,y € Fand wi, w2 € S+
Then<wi,u>=0%u€eS and
<W2,U>=0VUES
SO, <XW1+ywp, U>= X<Wg,U>+y<wy,u>
=X.0+y.0=0VUES
So, Wi +yYW2 ESt ¥ w;, woEStandx,yEF
Hence S+ is a subspace of V.

Note: (1) Here we should note that S MAY NOT be a subspace of V while S* is always a
subspace of V.

(2) Obviously, it can be observed that V+= {0 }and {0 }* =V.

Orthogonal Complement of an orthogonal complement: Let S be any subset of an inner
product space V. the St is a subset of B.

We define (S* )+, written as S+, by
Sti={veV:<v,u>=0,YVuest}
Obviously S*+ is a subspace of V.

Note: It is very easy to show that S = S++
LetuEeS, then<u,v>=0%VvESL,
So by definition of S+ +, we conclude thatu € St+. Soc S§t+

Theorem 9: (Projection Theorem) Let W be any subspace of a finite dimensional inner product
I ———————
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space V. Then (i) V=W @ W+ (i) wti=w

Proof: (i) By definition, W+ ={veEV:<v,u>=0,vu&eW}, and W is a subspace of V.

By the given hypothesis, W is also a finite dimensional inner product space and so W has an
orthonormal basis.

Let S={ w1, ....,wm} bean orthonormal basis of W.

0, ifi #j
1, ifi=]

i <Wi1Wj>:{

Let v € V be arbitrary,
Letw =Y, o w;, Where a; = <v, w; >
Now we assume X =V —w
Then,
<X, Wi>=<V-W,Wj>=<V,Wj>—<W,W>
= <V, Wi> — <oy Wy + oo+ 0y Wy, Wi >
= <V,Wi>—o<Wi,Wj>—.... — o<W, Wj>—
=<v,wi>—0 —....— o
=<V,Wj> — <V, Wj>
So,<x,wj>=0,fori=1,2,...., m.
Since S is a basis of W, each u € W is expressible as
Uu=pwi+ Bowo+....+BpWm; BiEF
We have, <x,u>=<X, w1+ .... + BuWm >
=B, <X, W1>+ ...+ By <X, Wi >

=B, .0+....+ By .0=0, (using eqn. 4)
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So<x,u>=0,YueW
= xXEW*".
From equation (3) ,v=w+xwherew EWandx € W+
S V=W+WH
Now we shall prove that W n W+ = {0}
Lety € W n W+ be arbitrary,
=yeEWand yew+
NowyEWL= <y u>=0vVUueEW
In particular, <y,y>=0asyeW
=y=0andWnw' ={0}
From equation (5) and (6) , we get
V=W&wt
(if) From part (i) , we have

V=Wawt ()

Since W+ is a subspace of V, on replacing W by W+ in eq" (7), we get,

V=wLi@wt ...(8)
As V is finite-dimensional, so from eqgns (7) & (8), we get
dimV =dim W + dim w+ )
and dimV =dim Wt + dimw++
= dim W =dim wt+

But we already know that W « W+ |
I ———————
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So from equation (10), we have
w=wts

Example 22: If Sy and S; are subsets of an inner product space V, then show that
S1€S, =Sy 5S¢

Solution: Letx € Sy, then<x,y>=0, foreachy € S,.

In particular, < x,z>=0,vzE€S1asS1 S,
= X E Sy

Hence S; < St

Example 23: If Wy and W- are subspaces of a finite-dimensional inner product space V, then
prove that —

(i) (Wi+W2)t=Wi n Ws
i)  (WinW2)t=wi +wy

Solution: Since we know that
Wi < Wi+ Wzand W2 = W1 + W>
So by previous example, we have

(W1 +W2)t e Wit and (W1 + W2 )t c Wy

So, (W1 +W2)t =W n Wy

Now, suppose z € Wit N W5 be arbitrary

= zEW{ and zEWY

= <z,x>=0,¥vxeEW;and <z,y>=0,vyeW,
Now any t € W;- N Wy can be written as

t=x+yforsomex € Wi,y EW>
___________________________________________________________________________________________________________________|
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S0 <z, t>=<z,X+y>=<z,Xx>+<z,y>
=0, (using eq" (2))
So,z € (W1 + WS- )* and hence
Wi n Wy c(Wi+ W)t
From equation (1) and (3) , we get
(W1+W2)t =W n Wy .4

(i) Since Wi+ and W5 are subspaces of V, so on taking Wit in place of W1 and W5 in place
of W2 ineq" (4), we get

(W + Wb = (Wit n (W)
So (Wi + Wit = Wit n wit

= WinW;

= (Wi + Wy )t =(Win Wa)*

= W + W) = (WinW;)?t

Example 24: Let W be a finite-dimensional proper subspace of an inner product space V. Let
a € Vand a ¢ W. Show that there is a vector 3 € V such that a — 8 is orthogonal to W.

Solution: We know that every finite-dimensional inner product space has an orthonormal basis.
Let { @z, ...., an } be an orthonormal basis of W.

///—‘\\ V
Let =Y, <a,a; >a;where<a,a>EF W\
e
ThenBEW, Foreachj,1< j< nwehave ')
<a—B!C{j>:<a_2in=1<a,ai>ai,ﬂ(j>

—_ . n .
_<o(,r;:cj>—Zi=1<a,o(i><o(i,r;:cJ >

=<a,q>—<a,q> as <qa;, 0 >=5j
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<a—fB,a > =0,forallj=1,2,....,n.
Let w € W be arbitrary, we can write

w =YL, a;0; where a; €F

Wehave<a—B,w > =<a—f,%0L,aq >

= Z?=1a_l<a_81ai> =0, byeqn (1)
» <a—fB,w>=0, foreachweW

Hence a — B is orthogonal to W.

12.8 RIESZ REPRESENTATION THEOREM

Theorem 10: Let V(R) be a finite-dimensional linear functional f : V — R . Then there exists a
uniquey € Vsuchthat f(x) =<x,y>, ¥XEV.

Proof: Suppose there exists y € V such that
f(x)=<x,y>, forall x € V.
Let us choose an orthonormal basis { €1, ...., en } of V
Theny =) a; e; forsome o; ER
Now f € L (V, R) and f is completely determined if we know f (¢;) for1 =i=n
Now f (e;)) =<e;,y>=q;forl=i=n
This suggest that we take y = i1, f(e;) e;
It is easy to check that f(x) =< x,y>forall x € V
Forif x =) a;e;, then f(x) =) o f(e;)
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Also<x,y> =<x, Y f(e;) e >

=<XYoaje, Xfle) e >

=Yiif(e) oy <e,e >

Q)
= Zf(el) o as < e, € >

From equations (1) and (2) , we conclude that
f(x)=<x,y>forallx eR"
Uniqueness: Now, suppose z is such that,
f(x)=<x,z>forallx eV
then, f(X) =<x,z>=<x,y>
=< Xx,z-y >=0forall x.

In particular, for x = z —y, we obtain

<z-y,z-y>=0

So y is unique.
Geometric Interpretation:
If f =0, then the obvious choice isy = 0.

If f+ 0, then fis a linear form and W = ker f is of

dimension n — 1, where n =dim V.

Thus there is a unit vector u perpendicular to W, for
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V=W @ W' (thatis, uis a unit normal to the “plane” ). y must therefore be a multiple au of
u. The choice of o is determined by the equation

fuy=<u,y>=<u,au> =a«a

Thus we take y = au where a = f(u)

For x € V, we have x =w + tu, wherew E Wandt € R

Then f(x) = f(w + tu) = f(w) + t f(u) =t f(u)
Also<x,y>=<w+tu,au>= a<w,u>+ta<u,u>=ta=tf(u)
Hence the result.

Theorem 11: For any linear operator T on a finite-dimensional inner product space V, there
exists a unique linear operator T~ on V such that

<Ta,B>=<,T B>foralla,B EV.

Proof: Let T be a linear operator on a finite dimensional inner product space V over the field F.
Let g € V and f be a functional from V into F defined by

f(a)=<Ta,f> Va eV (D)
Here Ta stands for T(a)

Claim: fis a linear functional on V.

Leta,bEFand a1, x €V , then
flacu+bay)=<T(ac+bay) ,B>
=< (aToy +bTax) , B> asTis linear
=a< Ta;, B> +b< Tag,B>
=af (1) + b f(ax2) , using equation (1)
Hence f is a linear functional on V.
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So by Riesz representation theorem, there exists a unique ' € V such that
f(o)=<a,B'> VaeVv (2)

From equations (1) and (2), we observe that if T is a linear operator on V, then corresponding to
every vector [ in V, there is a uniquely determined vector ' in V such that

<Ta,B>=<a,Bf'> VaeV
Let us denote by T~ the rule which associates  with B'i.e. let T" B =p'

Then T is a function from V in to V and is such that

<Ta,p>=<a, TB> Va,p €V
Claim: T is a linear operator on V.

Leta,bEFandf1,B2€V.ThenV a € V, we have
<o, T (@Pr+bP2)> =<Ta, aBr+bB2 > using equation (3)
=a<Ta, B1>+b <Ta, B>
—a<a, T Bi>+b< a, T B> again by (3)
=< a,aT P1>+ <a,bT B>
=< a,aT P1+bT B>
Hence T" (@B +bP2)=aT Pi+bT B

Thus T" is a linear operator on V

Hence corresponding to a linear operator T on V, there exists a linear operator T~ on V

such that, <Ta,B>=<a, T B> Va,p €V

Uniqueness: Let S be a linear operator on V such that
<Ta,B>=<a,SB> Vaf €V
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Then <a, T B>=<a,SE> Vo, €V

= T B=SB

So T" is unique.

Check your progress

Problem 1: Let V be a vector space of all real polynomials of degree < 2, with inner product

<f(x), 90 > = [, F)g(x)dx , Y (x) , g(x) € V

If f(x) = x2 + x —4 and g(x) = x — 1, then find

Q) <f(x),g(x)> and

(i)  <g(x),9(x)>

Problem 2: Provethat lav l= |a| IV, foralla EF,x €V

Problem 3: If {vi1, V2, ....., va } is an orthonormal set and if w = Y7, a;v; € V, Then prove
that o; =<w,vi>fori=1,2,...,n.

12.9 SUMMARY

In this chapter we understood the process of generalization from ordinary vectors to vector
spaces. So other basic concepts viz angle, length, distance were also generalized respectively as
inner product, norm, and metric. As we have studied orthogonal compotent of ordinary vectors,
we studied here Gram-Schmidt orthogonalisation process. Besides this, we learned various
concepts and applications of inner product.

12.10 GLOSSARY

> Inner Product: An inner product on a vector space Visamap<, >: VXV =R
satisfying the following properties :

Q) <x,Xx>=0and<x,x>=0ifandonlyif x=0.

(i) <x,y> =<y,x>

___________________________________________________________________________________________________________________|
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(i) <x+z,y>=<x,y>+<z,y> and <x,y+z> =<X,y> +<Xx,z>
(v) <ax,y> =a<x,y> ¥x,y,z EVanda€eR.

> Norm of a Vector: Let V be an inner product space. The norm function || . Il : V = R has the
following properties :

(1) IxII=0and lIxll=0ifandonlyifx=0;x€eV
laxll= Ja|Ixll,a €EF,x€V,
Norm of a vector v € V isdefinedas vl = V<v,v >.
Complete Orthonormal Set: An orthonormal set is said to be complete if it is not
contained in any larger orthonormal set.
Gram-Schmidt orthogonlisation Process: Every finite-dimensional inner product space
has an orthonormal basis.
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12.13 TERMINAL QUESTION

1: Prove that for any « € R2, we can write a =<a ,e1 >e1+<a, ez > exWhere e1 = (1,
0),e2=(0,1)

Let V be a vector space over a field F. Let W1 and W> be twp subspaces of V(F) such
that W1 and W- are two inner product spaces also. Then prove that —

A positive multiple of an inner product is also an inner product.
Difference of two inner products may not be an inner product.

Let V (R) be a vector space of polynomials with inner product defined by
I ———————
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<f,g>= [ f()g(x)dx

If f(x) =x2+ 1 and g(x) =x—1, then find <f,g>and llg Il

12.14 ANSWERS

Answers of check your progress:
1. (8 (ii) 8/3
3. Given that {vi, Vo, ....., vn } is an orthonormal set. So

0, i#]j
1, i=]

<Vi,Vj>:{

We have , <w, vi>= (@wv1+ .....+ QnVn, Vi)
—a1<Vi,Vi>+...+tai<Vvi,Vi>t+t...tan<Vp,Vi>
=0+...+ ait0+....+0

<w,Vvi> =gqj fori=1,2,....,n
Answers of terminal question:
2. (i) Let < u, v >be an inner product and A > 0, A € R. Then it can be easily verified
that A< u, v > is also an inner product.

(i) Difference of two inner products may not be positive. Now do it yourself.

_ =7 _1
3. <f,g>_§andllgll—ﬁ.
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UNIT-13: OPERATORS

CONTENTS
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13.2 Objectives
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13.9 Normal operator
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13.14 Terminal Questions

13.15 Answers

13.1 INTRODUCTION

German mathematician David Hilbert, who lived from January 23, 1862, to February 14,

1943, was a very influential mathematician of the late 19th and early 20th centuries. The

foundations of geometry, the spectral theory of operators and its application to integral equations,

the calculus of variations, commutative algebra, algebraic number theory, mathematical physics,

I ———
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and the foundations of mathematics (especially proof theory) are just a few of the many
fundamental concepts that Hilbert discovered and developed.

Hilbert embraced and upheld the transfinite numbers and set theory of Georg Cantor. He
introduced a set of issues in 1900 that paved the way for 20th-century mathematical research.

Important tools utilized in modern mathematical physics were invented by Hilbert and his
pupils, who also helped to establish rigor in the field. Hilbert was a pioneer in the fields of
mathematical logic and proof theory.

An inner product structure on a C-vector spaces induces a “mirrored” twin for every linear
transformation, called the adjoint. Linear operators equal their own adjoints have many important
properties.

A £

Hilbert in 1886 Hilbert in 1907

13.2 OBJECTIVES

After reading this unit learners will be able to

e Understand the basic concept of unitary operator and normal operator.

e Understand the basic concept of adjoint operator and self-adjoint operator.
e Understand the concept of skew-symmetric and skew-Hermitian operator.
e Understand the concept of positive and non-negative operator.

13.3 ADJOINT OPERATORS
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Let T be a linear operator on an inner product space V (here V need not be finite dimensional).
We say that T has an adjoint T if there exists a linear operation T in V

suchthat <Ta,f>=<a, T B> Va,pB EV

Note: In previous unit, we have proved that every linear operator on a finite-dimensional inner
product space posses an adjoint. But it should be noted that if V is not finite-dimensional, then
some linear operator on VV may possess an adjoint while the other may not. In any case if T
possesses an adjoint T*, then it must be unique. Also observe that the adjoint of T depends not
only upon T, but also on the inner product on V.

Theorem 1: Let V be a finite-dimensional inner product space and let B={ a1, ...., @, } be an

ordered orthonormal basis for VV . Let T be a linear operator on V and let A = [aij], x n D€ the
matrix of T with respect to the ordered basis B. Then aj =< T aj, o>

Proof: As B is an orthonormal basis for V, so forany § € V,

B=YL:<PB, o> q
Replacing B by T ¢ , we get

Toj=YiL,<Ta,o>a; j=1,2,....,n (D)
Now if A = [aij]m x n D€ the matrix of T in the ordered basis B, then we have

TC{J :2{1=1 al] (x'l ; j: 1, 2, .....,n -----(2)

Since the expression for Tq as a linear combination of vectors in B is unique, so from equations
(1) and (2), we have

aij=<T o, o>

Corollary 1: Let V be a finite dimensional inner product space and let T be a linear operator on
V. In any orthonormal basis for V, the matrix of T" is the conjugate transpose of the matrix of T.

Proof: Let B={ a1, ...., oty } be an orthonormal basis for V. Let A = [aij], x n D€ the matrix of
T in ordered basis B.

Then aij=<Taj, o> (D)
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Now T~ is also a linear operator on V.
Let C = [Cij]n xn be the matrix of T" in the ordered basis B.
Then Cij=<T o &>

We have Ci=<T o, a>=<aq, T o >

=<Ta, @, > by definition of T"

So C=[a; Jaxn andhenceC = A, where A" is the conjugate transpose of A.

Note: It should be remembered that in this corollary the basis B is an orthonormal basis and not
an ordinary basis.

Theorem 2: Let Sand T be linear operators on an inner product space Vandc € F. IfSand T
possess adjoints, the operators S + T, ¢T, ST, T~ will possess adjoints.

Also (i)(S+T)' =S +T
(i) (cT)'=cT"
(ii)(ST)'=T'S"
(iv) (T)" =T
Proof: (i) As S and T are linear operators on V, so S + T is also a linear operator on V.
Now for every o, 3 €V, we have
<(S+TNa, P>=<Sa+Ta, f>=<Sa, f>+<Ta, B>
=<a,SE>+<a, T B>, by definition of adjoint
=<a,SB+T B>
=<ua,(ST+T)E>
Thus for the linear operator S + T on V there exists a linear operator S™ + T* on V such that
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<(S+TMa, B>=<a,(S+T)B> foralla,p €V

Therefore, the linear operator S + T has an adjoint. By the definition and by the uniqueness of
adjoint, we get

(S+T)'=S"+T

(i) Since T is a linear operator on V, therefore cT is also a linear operator on V. For every
a, B €V, we have

<N a, B>=<cTa, B>=c<Ta, f>=c< a, T B>
=<a,cTB>=<a,(cT)B>
<(ENa, P>=< a,(cT) B>
Thus for the linear operator cT on V , 3 a linear operator (cT )" orc T~ on V such that
<(ENa, B>=<a,(cT)'B>Vap EV.

Hence the linear operator cT possesses an adjoint. By the definition and by the uniqueness of
adjoint, we get

(cT)' =cT
(ili))  We observe that ST is a linear operator on V
Now V o, €V ,we have
<(ST)a, p>=<STa, B>
=<Ta,S B> by definition of adjoint
<o, TS B>
<a,(T'S)B>

Thus for the linear operator ST on V 3 a linear operator T~ S” on V such that

<(STNa, B>=<a,(T'S")B>Vap EV
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Therefore, the linear operator ST has an adjoint. By the definition and by the uniqueness of
adjoint, weget (ST)" =TS

(iv)  The adjoint of T i.e. T" is a linear operator on V. For every o, € V, we have
<T'a,Bp>=<B, Tra>
<TB, a>
=<a,TE>
Thus for the linear operator T~ on V, there exists a linear operator T on V such that
<Ta,B>=<a,TB>foralla,p eV

Therefore, the linear operator T™ has an adjoint. By the definition and by the uniqueness of
adjoint, we have (T)" =T

Note: (1) If V is a finite-dimensional inner product space, then the result is true for arbitrary
linear operators S and T. In a finite-dimensional inner product space, each linear operator
possesses and adjoint.

(2) The operation of adjoint behaves like the operation of conjugation on complex numbers.

13.4 SELF-ADJOINT OPERATORS

Self-adjoint transformation: A linear operator T on an inner product space V is said to be self-
adjoint if T =T

A self-adjoint linear operator on a real inner product space is called symmetric while a self-
adjoint linear operator on a complex inner product space is called Hermitian.

e.g. the zero operator 0 and the identity operator | on any inner product space V are self-adjoint.
For every o, B € V, we have

<0a,p>=<0,p>=0=< a,0>=< a,) B>

~

So 0°=0

Similarly, < la,B>=< a,B>=<a,If >
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13.5 SKEW-SYMMETRIC/ SKEW-HERMITION OPERATORS

Skew-symmetric / skew-Hermitian operator: If a linear operator T on an inner product space
V is such that T=-T

then T is called skew-symmetric or skew-Hermitian according as the vector space V is real or
complex.

Theorem 3: Every linear operator T on a finite dimensional complex inner product space V can
be uniquely expressed as

T =T1+ T2, where T1 & T> are self-adjoint linear operators on V.

PFOOf LetT = % (T + T*) + | (T—T*)

2i

T+T* T-T*
Suppose T = Tand T2= TH

So, T=T1+iT2 ()

T+ T*

Now T; = ( .

)= (T +(T))=5(T+T)=T

So Ty is self-adjoint

Again Ty = [ (T =T =(5:) T -TYV == (-

o _ 1 e
So T2 is also self-adjoint. Thus T can be expressed as a sum of two self-adjoint operators.

Uniqueness: Let T = Uy + iU2 where Uy and U are both self-adjoint linear operators.

So, T'=(U1+iUp) " =U; +1U5=U; —iU;=U1—i U,
So T+T'=2U10r U= (T+T)=T,
Similarly, T-T"=2i Uz or U; = — (T~ T) = T

SoT=T1+1iT2=U + iUz i.e. representation is unique.
I ——
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Note: If T is linear operator on a complex inner product space V which is Not finite dimensional,
then the above result will be still true provided, it is given that T possesses adjoint.

Theorem 4: Every linear operator T on a finite-dimensional inner product space V can be
uniquely expressed as T = Ty + T2, where Ty is self-adjoint and T is skew.

Proof: Let T==(T+T) +5(T-T")

where Ti= 2 (T+T)and To=2(T-T")

then T=T1+T> (D)

NowT; =[S (T+T) =2 (T+T)' = (T+T) =T,

So Ty is self-adjoint.

Similarly T; = [~ (T = T)[" =2 (T-T) =2 (T*-T)
T =—>(T-T)=-T;

So T2 is skew.

Hence T can be expressed as a sum of two linear operators where T in self-adjoint and T2 in
skew.

Uniqueness: Let T = Uz + Uz, where Uy is self-adjoint and U in skew.
Then T'=(U1+U)" =U;+U;=U1—-U>

So T+T =2U; orU1=%(T+T*):T1

and T—T*:2UzorU2:%(T—T*)=T2

Hence T=T1+T=U1+U>

= The expression (1) for T is unique.

Note: If T is a linear operator on an inner product space V which is NOT finite-dimensional,
then the above result will be still true provided T possesses adjoint.
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Theorem 5: A necessary and sufficient condition that a linear transformation T on an inner
product space V be 0 isthat<Ta, B>=0,¥ o, €V

Proof: Necessary condition: Let T =0, then ¥ o, €V, we have
<Ta P>=<0a, B> =<0,B>=0
So the condition is necessary.
Sufficient condition: Let T be a linear operator such that
<Ta B>=0,¥V a,f €V
Taking B =Ta, we get
<Ta Ta>=0 ¥ a eV
Ta=0 Va€eVv
= T=0
Hence the condition is sufficient.

Theorem 6: A necessary and sufficient condition that a linear transformation T on a unitary
space be 0 is that <Ta a>=0 ¥ a €V

Proof: Necessary condition: Let T=0 ,then ¥ a €V
<Ta a>=<0a a>=<0, a>=0
Hence the condition is necessary.
Sufficient condition: Let T be a linear operator satisfying
<Ta a>=0 ¥V a eV
Replacing c by o + B , we get
<T(a+ B),a+pB >=0
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<Ta+ TR a+f >=0
= <Ta,a>+<Ta,B>+<TR,a>+<TR,E >=0
= <Ta,B>+<TB,a>=0, using (1)

So ¥ o, €V, we have

<Ta,B>+<TR,a>=0 (D)

Since above result istrue ¥ $ € V, so by replacing [ and if3, we get

<Ta,if>+<Tif,a>=0
I<Ta,B>+i<TB,a>=0
—i<Ta,B>+i<TB,a>=0
= —<Ta,B>+<TR,a>=0
Adding equation (1) and (2), we get
2<TB,a>=0
<TB,a>=0V¥ o, €V
Let « = T3, then
<TB TB >=0 VB EV
TB=0 VB EV
= T=0

Hence the condition in sufficient.

MAT-505

Note: (1) Above result may fail for Eulidean space, e.g., let us consider V2(R) with standard

inner product space. Let T be a linear operator on V2(R) defined as

T(a, b) = (b, -a) W (a, b) € V2(R)
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Then obviously T # 0 . But
<T(a,b), (8 b)>=<(b,-a), (a, b)>
=ba—-ab=0
So<Ta a>=0 ¥ a €Vz(R),through T = 0.

@) However if T is self-adjoint then the above theorem is true for Euclidean spaces also.
Finally, we have the following theorem —

Theorem 7: A necessary and sufficient condition that a self-adjoint linear transformation T on
an inner product space V be 0 is that

<Ta a>=0 ,forall « €V
Proof: Necessary part is same as in previous theorem.

Sufficient condition: Let <Ta, a>=0 ¥ a €V
So <T(a+ B),a+p >=0 ¥V o, €V
= <Ta+ TR a+f >=0
<Ta,a>+<Ta,B>+<TB,a>+<TR,E >=0
<Ta,B>+<TB,a>=0
<Ta,B>+<B, T a>=0
= <Ta,B>+<B,Ta>=0,asgiven T=T"

Now two cases may arise —
Case I: If V is a complex inner product space. Then do as in previous theorem.

Case Il: If V is a real inner product space.

Then <B,Ta>=<Ta,f>as <a,f>=< B,a >=<B,a>

So from equation (1), we have
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2<Ta,p>=00r <Ta,p>=0 V¥ a,f €V
Letus put B = Ta
=<Ta, Ta>=0% aeV
= Ta =0 ¥V aeV
= T=0

Theorem 8: A necessary and sufficient condition that a linear transformation T on a unitary
space (of any dimension) be self-adjoint (Hermitian) is that,

<Ta,a> bereal ¥ a eV

Proof: Necessary condition: Let T be self-adjoint operator on a unitary space Vi.e. T =T.
Then for every o € V , we have
<Ta,a>=<aqa, T a> =<aq,Ta> =< Ta,a>
= <Ta,a> isreal ¥ a €V

Sufficient condition: Let < Ta,a> bereal ¥ o € V. We have to prove that T = T. For every
a, B €V, wehave

<T(a+ B),a+P >=<Ta+TB,a+B >
<T(a+ B),a+PB >=<Ta,a>+<Ta,B>+<TR,a>+<TR, B >
Since <T(ax+ B),a+ P >,<Ta,a> and<TB,B > arereal.

= <Ta,B>+<Tp,a> must be real

So <Ta,p>+<TR,a>=<Ta, > +< T,a >

=< Ta,B >+< TB,a >

=<B, Ta>+ <a,TB>
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SoVa B €V, wehave
<Ta,B>+<TB,a> =<B,Ta>+ <a,TR>
Replacing B by if in equation (2), we get
<Ta, if >+<Tif ,a> =< if ,Ta>+ <a,Tif >
1I<Ta,B>+i<TB,a>=i<B,Ta>+1<a,TR>
—i<Ta,B>+i<TB,a>=i1<B,Ta> —i<a,T>
—<Ta,B>+ <TB,a> = <B,Ta> — <a,TR>
on equation(2) — equation(3), we get
<Ta,B>=<a,TB>
<Ta,B>=<a,TB>
<Ta,B>=<T a,B>Va B EV
= T=T

Note: If V is finite-dimensional, then we can take advantage of the fact that T must possess
adjoint. So in this case, the converse part of the theorem can be easily proved as:

Since<Ta,a> isreal v a €V
So, <Ta,a> =<Ta,a>=< a,T*a>=<T*a,a>
= <Ta—T'a, a> =0 ¥ a
<(T-TYHa,a> =0V aeV (by previous theorem)

= T—T*=0or T=T"

Example 1: Let V = V(C) with standard inner product. Let T be the linear operator defined by

T(1, 0) = (L, -2) and T(0, 1) = (i, -1)
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If «=(a, b) € V2(C),then find T«
Solution: Obviously B = {(1,0), (0, 1)} is an orthonormal basis of V. Let us find [T]s i.e.
T(11 0) = (11 -2) = 1(1a 0) - 2(0’ 1)

T(0, 1) = (i, -1) =i(1, 0) — 1(0, 1)

Me=[l, L] =mmwe=[5 J]

Now, (a, b) = a(1, 0) + b(0, 1). So coordinate matrix of T (a, b) in B is
=[5 TG0 )
T (a, b)=(a—2b) (1,0) + (—ia—b) (0, 1) = (a— 2b, —ia—b)
Example 2: A linear operator on R? is defined by
T(x,y)=(x+2y,x-y)
Find the adjoint T7, if the inner product is standard one.

Solution: Let B ={(1, 0), (0, 1)} be an orthonormal basis of V, We find [T]g. By given rule.

T(1,0)= (L, 1) and t(0, 1) = (2, -1).

_M 2
So [T]e= [1 _1]
The matrix of T"in the ordered basis B is the transpose of the matrix [T]s.

So[T s = B _11]

The coordinate matrix of T"(x, y) in the basis B

=, AB= 52

2 bl 2y—y
SOT'(X,y)=(x+Y,2x—Y)

Example 3: Let T be a linear operator on V2(C) defined by
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T(1,0)=(1+i,2);T(0,1)=(,i)
Using the standard inner product —

Q) Find the matrix of T" in the standard ordered basis
(i)  Does T commute with T"?

Solution: (i) T(1,0) = (L +1i,2) = (1 +1) (L, 0) + 2(0, 1)

T@O,1)=(,1)=1(1,0)+1i(0, 1)
So [Me=[1F1 1]

Then [T]g= [1 1 Zi]

- -

(i) Meme=["7" ]|

i 1-1 2 _[33 3+2i]

—i =il 13 -2i 5

1_—i Zi] [1+i 1

i 31+1]

2 i] :[—3i6+1 2

[Ts [Tls = |
Since [Tle[T]e # [T']e [Tle
= [TTle#[T Tls
So TT #T°T

Example 4: Prove that the product of two self-adjoint operators on an inner product space is
self-adjoint iff the two operators commute.

Solution: Let T and S be two self-adjoint operatorss.t. T =T andS =S
IF PART: Let T and S commute i.e. TS =ST
Now, (TS)" =S"T°
=ST
=TS
So TS is also self-adjoint.

ONLY IF PART: Let ST be self-adjoint
I ———
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(ST)'= ST
T°S'=ST
= TS=ST
i.e. Sand T commute

Example 5: Let ¥, B € Vand T is a linear transformation on V. Also if f(a«) =< B,Ta >, V¥
a € V , then prove that f is a linear functional. Also find a vector ' such that f(a) =< a,p'> ¥
aeV

Solution: (i) Giventhat f(a)=<B,Ta > va €V

So fisafunctionfromVinto F. Leta,b€Vand o1, oo €V . Then

fay +baz) =< B,T(aoy + bay) >=<T(aa; + bay),B>

= a<Ta11B>+b<Ta2’B>

=a< B, Tay >+< B, Ta, >=af(a;) +bf(ay)
So fis a linear functional on V.
(i) If V is finite dimensional , then there exists a unique vector B'such that
f(@)=<a,B'> YVaeVv
We have f(@) =< B, Ta >=<Ta,B>=<a, T B>V«
iffla) =< a,B' > ¥ athen
<o, T'B>=<a,B> Va
Hence B=T" B

Example 6: Let V be a finite-dimensional inner product space and T be a linear operator on V. If
T is invertible, then prove that T™ is invertible and (T") 1= (T™1)".

Solution: Suppose T is invertible. Then
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TT 1=
= (TTH'=I
= (THY'T =1 as I*=1
= T*isalso invertible and (T") = = (T~1)".

Example 7: Let T be a linear operator on a finite-dimensional inner product space V. Then T is
self-adjoint iff its matrix in every orthonormal basis is a self-adjoint matrix.

Solution: Let B be any orthonormal basis for T. Then
[T1e=[T]lg (D)

IF PART: Let T be self-adjointi.e. T=T". Then from (1), [T]e=[ T ]§ i.e. [T]s is a self-adjoint
matrix.

ONLY IF PART: Let [T]g be a self-adjoint matrix. Then [T]s=[T Jg
=[T7s ; using eq" (1)

T=T

Example 8: If T is a self-adjoint linear operator on a finite dimensional inner product Space V,
then det(T) is real.

Solution: Let B be any orthonormal basis for V. Then
[T1e=[TIs
But T =T = [T]s=[T];

Let [Tls=A = A=A"

det A =det (A") =det (A) = det (A) is real.

Example 9: If T is self-adjoint, then S™ TS is self-adjoint ¥ S. Conversely if S is invertible and
S” TS is self-adjoint, then T is self-adjoint. Prove both results.

Solution: Given that T is self-adjoint, so T" = T. Now (S" TS)" =S T"(S")"'=S" TS
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So S"TS is self-adjoint. Now, conversely, let S be invertible, then S” in also invertible. If S* TS
is self-adjoint , then

(STTS)"=S"TS
= ST'S=S"TS
So  (SHTL(S'T'S)SI=(SH)I(S'TS)S?
= (S)TS) T(SSTH=((S)7'S) T(SsTH)
I T I=1TI
= T=T
or T is self-adjoint.

Example 10: Let V be a finite-dimensional inner product space, and T be any linear operator on
V. Suppose W is a subspace of V which is invariant under T. Then prove that the orthogonal
complement of W is invariant under T".

Solution: Given that W is invariant under T.

Claim: W+ is invariant under T".Let B € W+ be arbitrary. Then we shall prove that T" B is in
W+ i.e. T B is orthogonal to every vector in W. Let « € W . Then

<a, T B>=<Ta,B>

=0 ,since a € W= Ta € W and { is orthogonal to every vector in W.

So T" B is orthogonal to every vector o € W

SoT Bisin Wt.

= W+ is invariant under T".

13.6 POSITIVE OPERATOR

Positive operator: A linear operator T on an inner product space V is called positive (in
symbols, T > 0), if -

DEPARTMENT OF MATHEMATICS

UTARAKHAND OPEN UNIVERSITY PAGE 331




ADVANCED LINEAR ALGEBRA MAT-505

(i) T is self adjointi.e. T"=T, and
(i) <Ta,a>>0vaz=0

If =0, then<Ta, a>=0.Hence if T is positive, then<Ta,a> > 0 VaeVand <Ta, >

=0=a =0.

13.7 NON-NEGATIVE OPERATOR

Non-Negative operator: A linear operator T on an inner product space V is called non-negative,
if —

Q) It is self-adjoint , and
(i) <Ta,a>=>0VacV

Note: (1) Every positive operator is also a non-negative operator.

(2) If T is a non-negative operator, then < Ta, « > =0, is possible even if a # 0. So a non-
negative operator may not be a positive operator

(3) If Sand T are two linear operators on an inner product space V, then we define
S>TifS-T>0
(4) Some authors say a positive operator as ‘positive definite’.

Theorem 9: Let V be an inner product space and T be a linear operator on V. Let ‘p’ be the
function defined on ordered pairs of a, f € V by

p(a, B)=<Ta, B>

Then the function p is an inner product on V iff T is a positive operator.

Proof: Step I: Leta,bE Fand a;, €V . Then

p(as+baz, B) = <T(aoy + bay),B>=<Taa; + Thay),B>

a<To, ,f>+b<Ta,,p>

ap(ay ,B)+bp(az,B)

So the function p satisfies linearity property.
I ———
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Step I1: Now the function p will be an inner product on V if and only if

p(e, B) = p(B, @) and p(e, @) >0, @ = 0

So we have p(at, B) =< Ta, B>

= pB, a) =<TB,a >=<a,TE>
Also p(at, a) =<Ta, a>.

Hence the function p will be an inner product on iff

(i) <Ta,B> =<a,TE>Va B EVie Tisself-adjoint.
(i) <Ta,a>>0if a+0

Hence the function p will be an inner product on V iff the linear operator T is positive.

Note: Now we shall show that if V is finite-dimensional, then every inner product on V is of the
type as discussed in next theorem —

Theorem 10: Let V(F) be a finite-dimensional inner product space with inner product <, > . If p
is any inner product on V, there is a unique positive linear operator T on V such that p(«, ) =<

Ta,B> Vo, BEV.
Proof: Let €V be a fixed vector and f : V — F such that
f(a) =p(a, B) VeV

As we have seen, p satisfies linearity property, so f is a linear functional on V. Hence by Riesz
representation theorem, there exists a unique vector ['in such that

f()=<a,f'> VainV
= p(e, B) =<a,Bf'> YainV
Letus define T:V - Vsuchthat T =f"
So p(e,B) =<a,TE>vVa, fEV

We also have, p(at, B) =<a, TE >
______________________________________________________________________________________________________________|
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p(e, B) = p(B, a) , by conjugacy property of inner product p

=<3, Ta >=<Ta,B>
Thus, we have, p(a, B) =<Ta,B>Va, FEV een(2)
Linearity of T: Let a;, a2 €V and a1, a2 € F. Then for all r € V, we have
<T(a;oq + azaz),r>= p(a;y + azo; , 1)
= a; p(ay ,r) +a,p(a,,r) ,bylinearity of p
= <(a;Ta; + a,Tay), r>, by linearity of inner product <, >
So, we have, T (a0 + a,a,) =a;Tay; + a,T a,

Hence T is a linear operator. Thus, we have proved the existence of a linear operator T with p(c,
B) =<T a, B >. Since p is an inner product, so by previous theorem, T is positive.

Uniqueness: Suppose there are two linear operators T and U such that
p(e, B)=<Ta,f>=<Uaqa,f>"VafEV
Then<Ta—-Ua,f> =0V, BEV .en(3)

Let us keep « fixed. Then from equation (3), we see that the vector T « — U « is orthogonal to
every vector B in V.

Therefore Ta—Ua=0,Va EV
= Ta=Ua,Va EV

Hence T is unique.

Theorem 11: Let V be a finite-dimensional inner product space and T a linear operator on V.
Then t is positive if and only if there is an invertible linear operator U on V such that T = U™ U.

Proof: Let T = U"U, where U in an invertible linear operator on V.
Since T'=(U'U)" =U"(U)" =UU=T
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So T is self-adjoint. Also,

<Ta,a> =< UUa,a> =< Ua,U"a>= < Ua,Ua>=0
Also<Ta,a> =0 = < Ua,Ua>=0 =Ua=0

= «a =0, as U ininvertible and V is finite-dimensional, so U is non-singular.
Soifa #0,then<Ta,a> =0

Hence T is positive.

Conversely, suppose T is positive.Then p(ct, B) =< T a, > is an inner product on V. Suppose
{ai, ..., an } be a basis for V which is orthonormal with respect to the inner product < , >and
let {B1, ...., Bn} be a basis orthonormal with respect to the inner product p. So,

p(Bi, Bj) = 8ij=<aj, aj >

Now, let U be the unique linear operator on V such that U Bi=ai;i=1, 2, ...., n. Obviously U is
invertible, because it carries a basis onto a basis. We have

p(Bi, B) =<ai,o5>=<UBi, UB>
Now let c, B € V; such that
a =YL, xB; and B =X, y;B; - Then
<Ta,B> = p( B)

<Ta,B>=pEiLixiBi, Xz yjBj ) = Xiz1 Xj=1 xi¥; p(BiB;)

=Yim 2= %Yy < UBL UBy > =< XL xU By, Xt yU By >

=<UZL B, UTL,yBj>= <Ua,UB>=<U"Uq,B>
Thus ¥ «, B € VV , we have

<Ta,B>=<U"UnaB>
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Positive Matrix: Let A = [ajj], x n b€ a square matrix of order n over the field of R or C, then A
is said to be positive if :

(i) A" =A, and
(i) i=1 2j=13jj % X; >0, where X1, ....,xn € Fand not all zero

Principal Minors of a Matrix: Let A = [aj;], x , be @ an arbitrary field F. The principal minors
of A are the n scalars defined as —

dip 7t a1k

der AK =det | : i |,whereK=1,2,....n.

ag1 *°* AgK

Suppose A = [ajj]n x n OVer R or C. Then A is positive if the principal minors of A are all
positive. (Its converse is also true).

Example 1: Which of the following matrices are positive —

(1) [11—1 1;1] (i) [é i (i)

1
2
1
3
1
4

Solution: (i) Here obviously A" = A. So A is self-adjoint. Now principal minors of A are 1 and

1 1+1

1-i 3 i.,e. 1and 1.

So both the principal minors of A are +ve . Hence A is a +ve matrix.
(it) Itis not self-adjoint. Hence it is not positive.

(iii) Here A”"=A. Also all the principal minors viz 1,

are positive (verify). Hence A is positive.

Ulkr SRk, Wik

Wk NP
WIRNIR
BIR WIRrN|R

Example 2: Prove that every entry on the main diagonal of a positive matrix is positive.

Solution: Let A = [ajj], x n b€ @ positive matrix. So
|
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=1 2j=1 3% x5 >0, (D)

where X1, ...., Xn are any n scalars (not all zero). Now suppose that out of n scalars X1, ...., Xn ,
we take xi = 1 and each of the remaining (n — 1) scalars is taken as zero. Then from equation (1),
we conclude that a;; > 0 ¥ i. Hence each entry on the main diagonal of a +ve matrix is positive.

13.8 UNITARY OPERATOR

Definition: In a inner product space V, let T be a linear operator. Then the operator T is called
unitary operator if adjoint T of T existand TT =TT =1

Note 1: In a finite dimensional inner product space T is unitary iff T'T = |

2: A linear operator T on a finite dimensional inner product space V is unitary iff T preserve inner
product.

13.9 NORMAL OPERATOR

In this section we will learn about the important topic in inner product space.

Definition: Let in a inner product space V, T be a linear operator. Then the operator T is called
normal operator or normal if it commutes with its adjointi.e., TT =T'T.

Note 1: If vector space is of finite dimensional then T~ will definitely exist.

2: If vector space is not of finite dimensional then definition will make sense only if T possesses
adjoint.

Theorem 12: Every self-adjoint operator is normal.

Proof: Let we consider T be a self-adjoint operator then obviously, T =T .

Therefore, we cansay that TT =TT,

Hence T is normal

Theorem 13: Every unitary operator is normal.

Proof: Let we consider T be a unitary operator then obviously, TT =TT =1

Therefore, we can say that TT =TT,

Hence T is normal.

Theorem 14: Let in a inner product space V, T be a normal operator. Then a necessary and
sufficient condition that  be a characteristic vector of T is that it be a characteristic vector of T~

Proof: Let us consider T be a normal operator on an inner product space V. If « €V, then we
have,

||T(a)||2 =Ta,Ta)=(a,TTa)=(a,TT a)
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=(Ta,T'a) =[T"(a)

Since Tisnormal and if ¢ eV,

Ta|= HT *aH

If ¢ be scalar, then (1) can be written as

(T—cl) =T —cl"=T" —cl

Now we have to show, T —cl is normal.

We have, (T —cl)(T —cl)" =(T —cl)(T" —cl)
=TT —cT —cT" +ccl

Also (T —cl)" (T —cl) = (T —cl)(T —cl)
=TT —cT —cT" +ccl

As we know T is normal. So,

(T —cI)(T —cl)" = (T —cl) (T —cl)

Thus, (T —cl) is normal. Now from (1),
[T =cl)(@)] = (T —c) ()] va eV

= (T —cha|=|(T" ~cl) (@)| va eV

By equation (2) we can say that,
= (T -cDa=0iff (T"—cl)a=0

ie., T(a)=ca iff T'a=ca

MAT-505

Thus, we can say that « is a eigen vector of T corresponding to the eigen value c if and only if it

is a characteristic vector of T corresponding to the eigen value c.

Remark 1: The characteristic vector for T belonging to distinct characteristic values is
orthogonal if T is a normal operator on an inner product space V.

2: In a normal operator's characteristic spaces are pairwise orthogonal to each other.
Definition (Normal matrix): A square order complex matrix A is called normal if,
AA = A'A.
If matrix is diagonal matrix D, then obviously
DD =D'D

Remark 1: A unitarily equivalent to a diagonal matrix iff matrix is normal.
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Solved example

Example 1: If in a inner product space V, T be a normal operator. Then cT is also a normal
operator for any scalar c.

Proof: We have given that T be a normal operatori.e., TT =TT
Since, (cT) =cT”

Now, (cT)(cT)" = (cT)(cT") =cc(TT")

Again, (cT)"(cT) = (cT")(cT) = (cc)(T'T)

Thus we can say, (cT)(cT)" =(cT) (cT)

Hence, cT is normal.

Example 2: In a inner product space V, if T,, T, are normal operator with the property that either
commutes with the adjoint of other, then prove that T, + T, and T,T, are also normal operator.

Solution: We have given T, T, are normal. Therefore,
TT, =T, T, and T,T, =T, T,
According to question it is given that,

TT, =T, T,and T,T, =T, T,

Now, (Tl +T2)(T1 +T2)* = (T1 +T2)(T1* +T2*)

=TT, +T,T, +T,T, +T,T,
=TT, +T, T, +T, T, +71,T,
= Tl*(Tl + Tz) + T2*(T1 + Tz) = (Tl* + TZ*)(Tl + Tz)

= (Tl +T2)*(T1 +T2)

Thus, T, +T, is normal.
L]

DEPARTMENT OF MATHEMATICS

UTARAKHAND OPEN UNIVERSITY PAGE 339




ADVANCED LINEAR ALGEBRA MAT-505

Now, (T,T,)(T.T,) =T,T,T, T, =T,(T,T,)T,
=T,(T, T)T,
= (.T,)(TT,)
=T, )T,
=T, (T,T)T,
=T, (T, T)T,
= (T, T)([T,) = (T.T,) (T.T,)
Thus, T,T, is normal.

Example 3: In a finite dimensional complex inner product space let T be the linear operator.
Show that T is normal if and only if its real and imaginary parts commute.

Solution: Let T =T, +iT,. Then T, =T, and T,” =T,. Let we assume that T,T, =T,T, then we
have to prove that T is normal.

We have, T = (T, +iT,) =T, +iT, =T, —iT,

STT = (T, +0T,)(T, —iT,) =T, —iT,T, +iT,T,+ T, =T/ + T, [ TT,=T,T,]

Also, T'T = (T, —iT,)(T, +iT,) =T,” +iT,T, —iT,T, + T, =T + T,

=TT =T'T .Hence T is normal.

Conversely, we assume that T is normal then we have to prove that TT =TT .
=T =TT, +iT,T, + T, =T, +iT,T, —iT,T,+T,”

= 2i(T,T,-T,T,)=0

=TT,-T,T,=0 [-2i = 0]
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=TT, =T,T,

Check your progress

Problem 1: In a finite dimensional complex inner product space let T be the linear operator.
Show that T is normal if and only if its real and imaginary parts commute.

Solution: Let T =T, +iT,. Then T, =T, and T, =T,. Let we assume that T,T, =T,T, then we
have to prove that T is normal.

We have, T" = (T, +iT,)" =T, +iT, =T, -iT,

ST = (T, +0T,)(T, —iT,) =T, —iT,T, +iT, T, + T, =T +T,? [ TT, =T,T,]
Also, T'T = (T, —iT,)(T, +iT,) =T, +iT,T, =iT,T, + 1,0 =T, +T,°

S TT"=T'T .Hence T is normal.

Conversely, we assume that T is normal then we have to prove that TT =TT .
=T i, +iT,T + T, =T +iTT, —iT,T, + T,

= 2i(T,T, ~T,T,) =0

=TT,-T,T, =0 [-2i 0]

=TT, =TT,

Problem 2: Let S and T be two positive linear operators on an inner product space V. Then
prove that S + T is also positive operator.

Solution: GivenS" =Sand T' =T
SO (S+T)'=S"+T =S+T
So S+ T is self adjoint.

Also, if o €V, then

<(S+T)O(,DE>: <SO(+T(X,C{>=<SO(,CE>+<TO(,D:>
|
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ButSand T are positive. S0 <Sa,a>=0and<Ta,a>=0.
= <(StT)a,a>=0.

Hence S + T is positive.

Problem 3: Let V be a finite-dimensional inner product space and T be a self- adjoint linear
operator on V. Prove that the range of T is the orthogonal complement of the null space of T i.e.
R(T) = [N(T) ]*.

Solution: Let @ € R(T). Then 3 a vector B € V such that a =T . Let r be an arbitrary vector of
[N(T)]t.Then Tr=0

We have
<o, r>=<TB,r>=<B,Tr>=<B,Tr>asT =T
= <B,0>=0
Thus<a,r>=0 V reN(T)
So, « € [N(T)]* = R(T) S [N(T) ]*
Since V = N(T) & [N(T) ]+
= dim V =dim N(T) + dim [N(T) ]+
By Rank- nullity theorem, we have

dim V =dim R(T) + dim N(T)

So we conclude that dim R(T) = dim [N(T) ]*

From equation (1) and (4) , we conclude that

R(T) = [N(T) ]*

13.10 SUMMARY

In this unit we have learned about the most essential tool name as operators used in inner product
space like adjoint operator, self-adjoint operator, skew-symmetric operator, positive operator,
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unitary operator and normal operator. Mostly, the uses of these operators to solve out the matrix
problems. Other important concepts introduced in this unit were:

Every self-adjoint operator is normal.

Every unitary operator is normal

The operation of adjoint behaves like the operation of conjugation on complex numbers
Every positive operator is also a non-negative operator

13.11 GLOSSARY

Unitary operator

Normal operator

Adjoint operator

Self-adjoint operator

Skew-symmetric or Hermitian operator.
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13.14 TERMINAL QUESTION

Long answer type question

1: Let S and T be linear operators on an inner product space V and ¢ € F. If S and T possess
adjoints, then prove that the operators S + T, ¢T, ST, T~ will possess adjoints.

Prove that Every linear operator T on a finite dimensional complex inner product space V
can be uniquely expressed as
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T =T1+ T2, where T1 & T> are self-adjoint linear operators on V.

Prove that every linear operator T on a finite-dimensional inner product space V can be
uniquely expressed as T = T1 + T2, where Ty is self-adjoint and T2 is skew.

Prove that the necessary and sufficient condition that a linear transformation T on a
unitary space (of any dimension) be self-adjoint (Hermitian) is that,

<Ta,a> bereal ¥V a €V

Short answer type question

1: Let V be a finite-dimensional inner product space and letB={ o, ...., an } be an

ordered orthonormal basis for V . Let T be a linear operator on V and let A = [aij], xn b€
the matrix of T with respect to the ordered basis B. Then prove that aijj = < T aj, o >.

In any orthonormal basis for V and T be the linear operator on V, then prove that the
matrix of T" is the conjugate transpose of the matrix of T.

Prove that the necessary and sufficient condition that a linear transformation T on an
inner product space Vbe 0 isthat<Ta, B>=0,¥ o, €V

Prove that the necessary and sufficient condition that a linear transformation T on a

unitary space be O isthat<Ta, a>=0 ¥ a €V

A linear operator on R? is defined by
T(X1, Y1) = (X1+ 2y1, X1 — Y1)
Find the adjoint T7, if the inner product is standard one.

Prove that the product of two self-adjoint operators on an inner product space is self-
adjoint iff the two operators commute.

If T is self-adjoint, then S” TS is self-adjoint ¥ S. Conversely if S is invertible and S* TS
is self-adjoint, then T is self-adjoint. Prove both results.

Prove that characteristic of normal operator are pair-wise orthogonal.

Prove that each self-adjoint and unitary operaor are normal operator

If in a inner product space V, T be a normal operator. Then prove that cT is also a normal
operator for any scalar c.
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11:  If in afinite dimensional vector space V, T be a linear operator. If |Ta| = ”Ta” VaeV

Fill in the blanks
1:

2: A linear operator T on an inner product space V is said to be self-adjoint if

A linear T is called skew-symmetric or skew-Hermitian according as the vector space V is

A necessary and sufficient condition that a linear transformation T on a unitary space be
0 is that

13.15 ANSWERS

Answer of short question

[Tle = B —11]

Answer of fill in the blanks
1: ST+T : : Real or Complex

4: <Ta a>=0 ¥ a eV
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UNIT-14: BILINEAR FORM

CONTENTS

14.1 Introduction

14.2 Objectives

14.3 Bilinear form

14.4 Matrix of a bilinear form

14.5 Degenerate and non-degenerate bilinear form
14.6  Symmetric bilinear form

14.7 Quadratic forms

14.8 Skew-symmetric bilinear forms
14.9 Reflexivity and orthogonality
14.10 Summary

14.11 Glossary

14.12 References

14.13 Suggested Readings

14.14 Terminal Questions

14.15 Answers

14.1 INTRODUCTION

We shall talk about bilinear and quadratic forms in this unit. We can expand our
understanding of linear phenomena by utilizing bilinear forms, which are essentially linear
transformations that are linear in many variables. Quadratic forms, which are (classically)
homogeneous quadratic polynomials in multiple variables, are closely connected to them. It may
surprise you to learn that we can still study quadratic forms using many of the same resources from
linear algebra, even if they are not linear. The fundamental characteristics of bilinear and quadratic
forms will be covered, with an emphasis on the concepts of positive definiteness and positive semi-
I ———
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definiteness as well as some of their uses in geometry, calculus, and linear algebra. Singular value
decomposition, which connects many of the topics we have covered, is the topic of our final
discussion.

14.2 OBJECTIVES

After reading this unit learners will be able to
Visualized the concept of bilinear form and matrix of bilinear form.
Understand the concept of degenerate, non-degenerate and symmetric bilinear form.
Visualized the concept of quadratic form
Application and implementation of normal operator, bilinear and normal form.

14.3 BILINEAR FORM

Suppose U and V are two vector spaces corresponding to the same field F. Let
W=UxVie,W={(a,p):xeU, eV}

If (), B), (o, 3,) €W, then there equality can be defined as follows:

(a, B) =y, 3,) If ay =, and B, = p,

And the addition is defined as follows:

(a, B) +(ay, B,) = (g + y, B+ 5,)

If ¢ is any element of field and («, ) be the element of W, the scalar multiplication can be
defined as follows:

c(a, f) = (ca,cp)

It is obvious that W is a vector space over the field F with respect to addition and scalar
multiplication as specified above. The external direct product of vector spaces U and V is
denoted by the symbol W, which we will express as

W=U®&V
We will now discuss bilinear forms, which are a particular class of scalar-valued functions on W.

Definition: Suppose U and V are two vector spaces corresponding to the same field F. A bilinear
form W =U @V is a function f from W into F, which assign to each each element («, £) in such

a way that

f(a +ba,, p) =af (o, B) +bf (a,, p)
|
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and f(a,ap, +bp,)=af(a, B,)+bf (o, 5,)

Here f (e, ) isanelementof F. It denotes the image of («, ) under F. Consequently, a function

from W into F that, while one of its inputs is fixed, is linear as a function of the other is called a
bilinear form on W.

If U =V, then to say that f is a bilinear form on W =V @V we just refer f is bilinear form on V.
Another definition
Let V denote a vector space over a field F of characteristic other than 2.

Definition: A bilinear form fisamap f :V xV — F, such that f is bilinear if the following
properties are satisfied

(i) f(ax+bx,y)=af(x,y)+bf(x,y)forevery x,x,yeVvand abeF.

(i) f(x,cy+dy)=cf(x,y)+df (x,y) forevery x, y,y eV and c,d e F.

In other words, f is bilinear if it is separate linear in each variable.

Definition: The bilinear form f is said to be symmetric if f(x,y) = f(y,x). Itis called skew-
symmetric if f(x,y)=—f(y,X).

Remark: Note that the characteristic of the field is 0 and hence —1-1.

Example 4: Let V denote a vector space over a field F. Consider L, L, be linear function on V.
If f be a function from V xV into F and defined as

f (@, B) = L, ()L, (B) then, fis bilinear form on V.
Solution: If (a, 8) €V, then L (), L,(f) are scalars.
So, we have f(aq, +ba,, ) = L (ag, +ba,)L,(5)
=[aly () +bLy ()], (8)
=al, (o)L, (B) +bLy ()L, (B)
= af (ay, B) +bf (., B)
Also, f(a,aB, +bg,) =L, (a)L, (@B +bp,)
= L(a)[aL,(B) +bL,(5,)]
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=al, (o)L, (B) +bL (@)L, (5,)
=af (a, ) +bf (, 5,)

Thus, f is bilinear on V.

Example 5: Let V denote a vector space over a field F. Suppose linear operator (T) on V and f is
a bilinear form on V. Let g is a function from V xV into F and defined as

g(a, B) = f (T, TB). Then show that g is also a bilinear form on V.
Proof: Since we have g(aq, +ba,, B) = f (T(ag, +ba,), TA)

= f(aT(a, +bTa,, TH)

— af (Tey, TB) +bf (Ter,, T)

=ag(ay, ) +bg(a,, B)
Also, g(a,ap, +bp,) = f(Ta,T(aB, +bj,))

= f(Tar,aTB, +bTS,)

= af (Ta, TB) +bf T, TA,)

=ag(a, 4) +bg(a, 5;)

Hence g is a bilinear form on V.

Example 6: Consider the two vector space U and V over the same field F. Let W =U @V . If 0

is the zero function W into F. Then show that 0 is a bilinear form on W.

Solution: We have 0(«, ) =0V (a, ) eW .

Now, O(aa, +bea,, f)=0=0+0=a0+b0=a0(a,, ) +b0(,, £)

Also, 0(c,a, +b,) =0=0+0=a0+hb0 =a0(x, A) +bO0(a, 5,)

Thus O is a bilinear form on W.
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Remarks 1: Let V =V, (F) i.e., let V be the vector space of n- tuple over the field F. If

a=(a,a,..,a,) and g=(b,b,,..,b,) beanytwo elements in V, let f be a function from V xV
into F defined as

f(a, p)=ab, +ab, +...+ab,. So, fis abilinear form on V.

2: IfU and V are the two vector space over the same field F and f is a bilinear form on U xV
into F defined as,

(=), B) =—"1 (e, p), is abilinear form on U xV

Example 7: Which of the following vectors x =(x,, X,), Y = (Y,, Y,) defined on R?* are the
bilinear form

(i) f (X’ y) =XY, =X\
(i) oY) = —Y)*+X%Y,

Solution: Let X = (x,, X,),

y=0Y2),

And 2=(z2,,2,)

Be any three vector in R*. Let a,b e R. Then
ax+by =a(x,%,) +b(y., ¥,)

= (ax, +by,,ax, +by,)

Q) Now, by definition of f, we have
f(xz)=f((x,%,),(2,,2,)) = %2, —X,Z;,
F(y,2) = £((Y1, ¥2), (21, 25)) = V12, = ¥.2
f(z,x)=f((z,,2,),(x,X%,)) =2,X, —2,% and
f(z.y) = 1((z, 2), (Y1, ¥2)) = 21Y, — 2,Y,

Now,

f (ax+by, z) = f((ax, +by,,ax, +by,),(z,,2,))

= (ax, +by,)z, —(ax, +by,)z,
]
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=a(Xz, —%;) +b(z,y, — 2, Y1)
= af (@, 7) +bf (8,7)
Also, f(z,ax+by)= f((z,2,),(ax +by,,ax, +by,))
=z,(ax, +by,) —z,(ax, +by,)
= (ax, —2,%,) +b(z,y, - 2,1)
=af (y,a) +bf (v, B)

Thus f is bilinear form on R2.

(ii)  Since we have,
f(x2)=(x - 21)2 + X2,
And f(y,2)=(y,-2)° +Y,2,

Now, f(ax+by,z) = f((ax +by,,ax, +by,),(z,2,))

= (ax1 +by1 - 21)2 + (axz +by2)22

Also, af (x,z) +bf (y,z) =a(x, —z,)* +ax,z, +b(y, —z,)* +by,z,
=a(x, —7)* +b(y, —2,)* +(ax, +by,)z,

Obviously, f(ax+hby,z)=af(x,z)+bf(y,z).

Hence f is a bilinear form on RZ.

Remarks 1: If U isan n—dimensional vector space with basis {x;, X,,...,X,}, if Vis an m-
dimensional vector space with basis {y,, Y,,..., Y} and if {a;} is any set of nm scalars (i=1, ...,
n; j=1, ..., m} then there is a one and only one bilinear form f on U @V such that

f(ai’ﬂj):aij Vi, ]

14.4 MATRIX OF A BILINEAR FORM

Definition: Let V be a finite dimensional vector space and B ={x,, X,, ..., X,} be an ordered basis
for V . If fis a bilinear form on V, the matrix of f in the ordered basis B is the nxn matrix
A=[a;],., such that
I
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fla,a;)=a;i=1..,n j=1..,n
We will denote this matrix A by [f];.

Example 8: If f be the bilinear form on R? defined by

PO Y1), (X0 ¥2) = XY + %Y,

Then find the matrix of f in the ordered basis B ={(L,—1), (1, 1)} of R?.
Solution: Let B ={a,,,} where o, =(1,-1), 2, = (1)

We have f(o, )= (L-1),(L-1))=-1-1=-2

fla, )= T(L-1),11))=-1+1=0

f(a,, o) = f(11),1-1)=1-1=0

f(a, @)= F(LY,LD)=1+1=2

-2 0
"[f]B:|:O 2:|

Rank of bilinear form: The rank of bilinear form is defined as the rank of the matrix of the
form in any ordered basis.

OR

The rank of bilinear form f is the rank of the matrix representation of the bilinear form.
Example 9: Let a = (X1, X2, X3) and 8 = (y1, Y2, y3) and the bilinear form of @ and g is given as

fla, B) =X1y1+2X1y2+5X1ya—2 X2 y1 + X2 Y3 — 6 X3 Y2 + 6 X3 y3. Find the matrix of f and rank
of f.

Solution: We have f(a, f) =X1y1+2X1y2+5X1y3—2X2y1 + X2 Y3 — 6 X3 Y2 + 6 X3 Y3

Yy, +2Y, +9Y;
=[x, X, X1 -2y, +0y, +y,
0y1_6y2 +6y3
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1 2 5[y
:[Xl X, Xs] -2 0 1 Y,
0 -6 6|y,

1 2 5
Thus matrix of fis | —2 1
0 -6 6

Since the determinant of above matrix is non-zero, hence its rank is 3. Thus, rank of f is also 3.

14.5 DEGENERATE AND NON-DEGENERATE BILINEAR
FORMS

In a vector space V, a bilinear form f is called degenerate if

(a) For each non-zero a¢ inV, f(a,f)=0V eV and
(b)  Foreachnon-zero ginV, f(a,f)=0V aeV

A bilinear form is called non-degenerate if it is not degenerate. In other sense we can say that a
bilinear form f on a vector space V is called non-degenerate if,

(a) For each 0= « inV, there exist an element S eV s.t., f(a,f)=0 and
(b)  Foreach 0% B eVinV, there exist an element a €V s.t., f(a,f)#0

14.6 SYMMETRIC BILINEAR FORMS

Definition: In a vector space V, a bilinear form f is said to be symmetric if

f(a, p)=1(f,2) V o, f €V

Theorem 4: In a finite dimensional vector space V, a bilinear form f on V is symmetric if and
only if its matrix A in some ordered basis is symmetric, i.e., A = A

Proof: Let in a vector space V, B is an ordered basis and the vectors «, f €V . Let X,Y be the
co-ordinates vector of «, 8 respectively in the ordered basis B. If f is a bilinear form on V and A

is the matrix of f in the ordered basis B, then

f(e, B) = X AY,
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and f(B,a)=Y AY

So, f will be symmetric iff X AY =Y AX

are all column matrices X and Y.

Now X AY isa 1x1 matrix, therefore we have
X'AY =(X'AY) =Y A(X) =Y AX

- T will be symmetric if and only if

X AY =Y AX for all column matrices X and Y
e, A=A

It means A is symmetric.

14.7 QUADRATIC FORMS

Definition: In a vector space V over the field F, let f is a bilinear form. Then the quadratic form
on V associated with the bilinear form f is the function g from V into F defined by:

J(@)=f(a,a) Va eV

Theorem 5: In a vector space V over the field F whose characteristic is not equal to 2 i.e.,
1+1+= 0. Then every symmetric bilinear form on V is uniquely determined by the corresponding
quadratic form.

Proof: In a vector space V over the field F, let f is a symmetric bilinear form and q be the
quadratic form on V associated with f. Then for each «, f €V we have

Qa+pB) = f(a+p,a+p)

= f(a,a+ p)+ T (B,a+p)

= f(a, @) + f(a, B) + T (B, ) + £ (B, B)
=q(a)+ f(a p)+ T (B,a)+a(B)
=q(a)+@1+1)+a(p)

~A+D) f(a ) =a(a + p)—a(a) —a(B)
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Thus, f (e, ) is uniquely determined by g with the help of the polarization identity (1) provided
(1+1) =0 i.e., Fis not of characteristic 2.

Note: According to the polarization identity we can write,
1 1
f(a. )= 0(a+ )= a(c~ f)

Theorem 6: Let V is a finite dimensional vector space over a subfield of the complex numbers,
and let f be a symmetric bilinear form on V. Then there is an ordered basis for V in which f is
represented by a diagonal matrix.

Proof: To prove the theorem we should find an ordered basis B ={¢,, «,,..., 2, } for V such that

f(a,;)=0fori=j.

Case I: If f =0 or n=1, the term obviously true. So we will suppose f =0 and n>1.

Case ll: If f(a,a) =0 Va €V then, g(a) =0 for every , where q is quadratic form associated

with f. So, by the polarization identity f(«, ) = %q(a + ) —%q(a — [3) we see that

f(a,p)=0 Va eV andthus f =0 which assure about the contradiction. Therefore there must
be a vector o, €V such that f (e, ) =09() #0.

Let W, be the one dimensional subspaces of V spanned by the vector «, and let W, be the
collection of all vectors £in V such that f (e, ) =0. Obviously W, is a subspace of V. Now
we claim that V =W, ®W,. We shall first prove our claim.

At, first we have to prove that subspaces W, and W, are disjoint.
Let y eW, "W, then y €W, and y €W,

If y eW, = y =ce, for some scalar c.

Alsoif y eW, = (e, »)=0

= f(,c)=0

=cf (e, ) =0

=c=0
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=y =0a, =0
~.\W, and W, are disjoint.

Now we have to only prove that V =W, +W, . For it let us consider y eV . Since f (e, ) #0,
so put

oo, fa)

flana)

Thus f(ay, B) = f(al,y—MaJ

f(ay, ) '

f(j/'al) f(%v

e | %)

= (e 7) -

=f(a,y)-T(r, ) [~ f is symmetric]
=0

f(r. o)

.. €W, by definition of W, . Also by definition of W, the vector
foy, )

a, asin' W, .

7=Mal+ﬂeW1+W2.
f(a, )

Hence V =W, +W,
SV =W eWw,
So dimW, =V —dimW, =n-1.

Now let g be the restriction of f from V to W, . Then g is a symmetric bilinear form on W, is less
than dimV . Now we can consider by the induction that W, has a basis {«,, «,...., ¢, } such that

(e, a;)=0,i#j(i22,j=2)
= f(a;,a;)=0i#j(i22,]22) [~ g is restriction on f]
So, by the definition of W, , we have

f(ay,a;)=0 for j=2,3,...,n
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Since {¢,} is a basis of for W, and V =W, ®W,, therefore {¢,, 2, ..., } s a basis for V such
that

f(a;,a;)=0 fori=j

2 -3
Example 10: Find the quadratic form of the symmetric matrix A = { 3 3 }

Solution: Let a = (X, y). Then the quadratic form q(«) of A is given by,

o (el Sy

Thus, 2x* —6xy+3y?is the quadratic form of the given matrix.

14.8 SKEW-SYMMETRIC BILINEAR FORMS

Definition: In a vector space V, a bilinear form f is said to be skew-symmetric if

f(a, )=T(f, ) V a, eV

Remarks 1: Every bilinear form on the vector space V over a subfield F of the complex numbers
can be uniquely expressed as the sum of a symmetric and skew-symmetric bilinear forms.

2: If V is a finite-dimensional vector space, then a bilinear form f on V is skew-symmetric if
and only if its matrix A in some (or every) ordered basis is skew-symmetric, i.e., A =—A.

14.9 REFLEXIVITY AND ORTHOGONALITY

Definition: A bilinear form B: V x V — K is called reflexive if,
B(v, w) = 0 implies B(w, v) = 0 for all v, win V.

Definition: Let B: V x V — K be a reflexive bilinear form. v, w in V are orthogonal with respect
to B if B(v, w) = 0.

A bilinear form B is reflexive if and only if it is either symmetric or alternating. In the absence of
reflexivity we have to distinguish left and right orthogonality. In a reflexive space the left and right
radicals agree and are termed the kernel or the radical of the bilinear form: the subspace of all
vectors orthogonal with every other vector. A vector v, with matrix representation x, is in the
radical of a bilinear form with matrix representation A, if and only if Ax =0 < x"A = 0. The radical
is always a subspace of V. It is trivial if and only if the matrix A is nonsingular, and thus if and
only if the bilinear form is nondegenerate.
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Suppose W is a subspace. Define the orthogonal complement.
W+ ={v|B(v,w) =0vVweW}

For a non-degenerate form on a finite-dimensional space, the map V/W — W is bijective, and the
dimension of Wt is dim(V) — dim(W)

Check your progress

Problem 1: Which of the following function f on the vector space V, (R)are forms bilinear form
where o = (X1 Xz)’ﬂ = (Y1a yz) EVz(R)

(i) f(a’ﬂ) :(X1Y1+X2y2)

(i) f(a, p)=1

(iii) f(a, f) =X Y, + XY, + XY, + XY,

Problem 2: If f is the bilinear form on the vector space V, (R) defined by

f(a, f) =%y, +XY,, where o =(x X,),5=(Y,,V,) €V,(R). Then find the matrix of f for the
bases {(1,0),(0,1)}

14.10 SUMMARY

In this unit we have learned about the unitary operator and normal operator which are essential
tool in the inner product space. Also in this unit we have learned about the important concept which
commonly solve out many matrix related problems like bilinear form, quadratic form, symmetric
and skew-symmetric bilinear form and there related important theorems and applications. Other
important concepts introduced in this unit were:

> The rank of bilinear form f is the rank of the matrix representation of the bilinear form

> The reason the symmetric ones are significant is that, at least when the field characteristic
is not 2, the vector space admits an especially basic type of basis called an orthogonal
basis for them.
It is possible to uniquely represent every bilinear form on the vector space V over a
subfield F of the complex numbers as the sum of symmetric and skew-symmetric bilinear
forms.
We can explain how the matrices associated with bilinear forms relate to coordinate
vectors, how they change when the basis changes, and how to utilize them to translate
back and forth between matrices and bilinear forms, just like we can with the matrices
associated with linear transformations.

14.11 GLOSSARY
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> Bilinear form
> Quadratic form
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14.14 TERMINAL QUESTION

Long Answer Type Question:

1. Let V denote a vector space over a field F. Suppose linear operator (T) on V and f is a
bilinear form on V. Let g is a function from V xV into F and defined as

gd(a, B) = T (T, TP). Then show that g is also a bilinear form on V.

Prove that in a finite dimensional vector space V, a bilinear form f on V is symmetric if
and only if its matrix A in some ordered basis is symmetric, i.e., A = A
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Let V is a finite dimensional vector space over a subfield of the complex numbers, and let
f be a symmetric bilinear form on V. Then prove that there is an ordered basis for V in
which f is represented by a diagonal matrix.

If f is the bilinear form on the vector space V, (R) defined by

f(a, f) =%y, +XY,, where o =(x X,),=(Y,,V,) €V,(R). Then find the matrix of f
for the following bases

0  {12.B4)}

(i) {@1),0D}

Let f be bilinear form on V,(R) defined by f((x;,X,),(Y;, ¥,)) = (X +X,)(y; +Y,)

Q) Find the matrix of f corresponding to the standard basis B ={(1,0),(0,1)}

(i)  Find the transition matrix from the matrix B to the basis B ={(1,-1), (L1)}

(ili)  Find the matrix of f in the basis B
Described explicitly about the all bilinear form f on V,;(R) with the property defined by,

f(a. B)=1(B.a) Va, fVy(R)
If f is the bilinear form on the vector space V, (R) defined by

F((x, %), (Y1, Y,)) = 2%y, —3X,Y, + X, Y,. Then find matrix of f corresponding to the
basis {(10), (LD}

Short Answer Type Question:

1: Consider the two vector space U and V over the same field F. Let W =U @V . If 0 is the

zero function W into F. Then show that 0 is a bilinear form on W.

Which of the following vectors x = (x,,X,),y = (Y, ¥,) defined on R? are the bilinear
form

0 fY) =Xy, = %Y
(i) f(xy) :(Xl_yl)2 + XY,
If f be the bilinear form on R? defined by

FO(x, Y (X5, Y,) = XY, + X,¥,. Then find the matrix of f in the ordered basis
B={-1),@1} of R®.
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Let & = (X1, X2, X3) and S = (y1, Y2, y3) and the bilinear form of @ and g is given as

fla, ) =X1y1+2 X1 Y2 +5X1y3—2 X2 Y1 + X2 Y3 — 6 X3 Y2 + 6 X3 y3. Find the matrix of f and
rank of f.

2 -3
Find the quadratic form of the symmetric matrix A = [ 3 3 }

Find all the bilinear forms on the vector space F?, where F is field.
Fill in the blanks

Each self-adjoint operator is

Each Unitary operator is

In a vector space V, a bilinear form f is said to be symmetric if
The operator T is called unitary operator if

The operator T is called unitary operator if

14.15 ANSWERS

Answer of check your progress
1: Q) Bilinear form (i) Not a bilinear form (iii)  Bilinear form

oo

Answer of long answer type question

o [4 14
(i) }

14 24

11 1 1
() 1 J (i) {_1 J (iii)

r o

Answer of short answer type question

2: (i) f is bilinear form on R?. (i) fis bilinear form on R?.
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GRS

2x% —6xy +3y?

Let Abe any 2x 2 matrix over F and B be any ordered basis of F2. Then the bilinear
forms on F?are precisely those obtained by f(«, 5) = X AY , where X,Y are the co-
ordinates matrices of ¢ and g in the ordered basis B.

Answer of fill in the blanks

1 Normal Opertor : Normal operator
3: f(a,.f)=f(Ba) V a, eV ; TT =TT=I
5: TT =TT=I
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