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learning materials. This course is divided into 14 units of study. The first five units are 

devoted to vector space & subspace and the application of linear algebra to solve the 
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explain the theory of bilinear form. This material also used for competitive examinations. 

The basic principles and theory have been explained in a simple, concise and lucid 

manner. Adequate number of illustrative examples and exercises have also been included 

to enable the leaners to grasp the subject easily.  
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UNIT–1: VECTOR SPACE AND SUBSPACE 

CONTENTS 

1.1 Introduction  

1.2 Objectives  

1.3 Vector Space 

1.4 Examples of Vector Space 

1.5 Linear Combinations 

1.6 Subspace 

1.6.1    Examples of Subspaces 

1.6.2    Intersection of Subspaces 

1.7 Linear Span 

1.8 Linear Independence 

1.9 Summary  

1.10 Glossary  

1.11 References  

1.12 Suggested Readings  

1.13 Terminal Questions  

1.14 Answers   

                         

1.1 INTRODUCTION 

As we know many physical properties like velocity of a moving object, displacement, force applied 

on a body etc involve both magnitude and direction and such physical notions which involve both 

magnitude and direction is called a “vector”. A vector is represented by an arrow whose length 

and direction denotes the magnitude of the vector and the direction of vector respectively.  

The idea of a vector space developed from the notion of ordinary two- and three-dimensional 

spaces as collections of vectors {u, v, w, …} with an associated field of real numbers {𝑎,𝑏,𝑐, … }. 

Vector spaces as abstract algebraic entities were first defined by the Italian mathematician 

Giuseppe Peano in 1888. Peano called his vector spaces “linear systems” because he correctly 
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saw that one can obtain any vector in the space from a linear combination of finitely many vectors 

and scalars—𝑎𝑣 +  𝑏𝑤 + … +  𝑐𝑧.  

 Giuseppe Peano 

 

Italian mathematician and glottologist Giuseppe 

Peano was born on August 27, 1858, and passed 

away on April 20, 1932. He was the inventor of 

mathematical logic and set theory, and he wrote 

more than 200 books and papers. He also 

contributed a great deal of notation to these fields. 

The Peano axioms are the basic axiomatization of 

the natural numbers, named after him.  

1.2 OBJECTIVES  

In this unit, we will  

 Define vector spaces  

 Develop the properties of vectors 

 Establish important results apply to all vector spaces 

 Understand subspace with examples 

 Define basis and dimension of vector space  

 

1.3 VECTOR SPACE 

The following defines the notion of a vector space 𝑉 and 𝐹 is the field of scalars. 

Definition- Let 𝑉 be a nonempty set with two operations 

(i) Vector addition:  If any  𝑢, 𝑣 ∈ 𝑉 then 𝑢 + 𝑣 ∈ 𝑉 

(ii) Scalar Multiplication: If any  𝑢 ∈ 𝑉 and 𝑘 ∈ 𝐹 then 𝑘𝑢 ∈ 𝑉 

Reference 

(https://en.wikipedia.org/wiki/Giuse

ppe_Peano) 
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Then 𝑉 is called a vector space (over the field 𝐹) if the following axioms hold for any vectors if 

the following conditions hold  

[S1]   (𝑢 + 𝑣) + 𝑤 = 𝑢 + (𝑣 + 𝑤) for any vectors 𝑢, 𝑣, 𝑤 ∈ 𝑉 

[S2]   there exists a vector denoted by  ‘0’ in 𝑉, such that, for any  𝑢 ∈ 𝑉, 

                 𝑢 + 0 = 0 + 𝑢 = 𝑢 

           Here ‘0’ is called zero vector 

[S3]   for each 𝑢 ∈ 𝑉 there exists a vector denoted by  ‘ − 𝑢’ in 𝑉 such that 

                          𝑢 + (−𝑢) = 0 = (−𝑢) + 𝑢 

           Here ‘ − 𝑢’ is called additive inverse of vector  ‘𝑢’ 

[S4]   𝑢 + 𝑣 = 𝑣 + 𝑢  for any vectors 𝑢, 𝑣 ∈ 𝑉 

[P1]   𝑘(𝑢 + 𝑣) = 𝑘𝑢 + 𝑘𝑣, for any  𝑢 ∈ 𝑉 and for any scalar 𝑘 ∈ 𝐹  

[P2]   (𝑘1 + 𝑘2)𝑢 = 𝑘1𝑢 + 𝑘2𝑢, for any  𝑢 ∈ 𝑉 and for any scalar 𝑘1, 𝑘2 ∈ 𝐹 

[P3]   (𝑘1𝑘2)𝑢 = 𝑘1(𝑘2𝑢), for any  𝑢 ∈ 𝑉 and for any scalar 𝑘1, 𝑘2 ∈ 𝐹 

[P4]   1. 𝑢 = 𝑢, for any  𝑢 ∈ 𝑉 and for unit scalar  1 ∈ 𝐹 

The elements of the fiels F are called scalars and the elements of the vector space V are called 

vectors. 

NOTE: (i) The conditions [S1] − [S4] concerned with additive structure of 𝑉  and can be 

summarized by saying that 𝑉 is a commutative group under addition. 

(ii)  The vector space 𝑉 over the field 𝐹 is denoted by 𝑉(𝐹). 

Cancellation Law for vector addition 

Theorem 1.1: If 𝒖, 𝒗 and 𝒘 are vectors in a vector space 𝑽 such that 𝒖 + 𝒘 = 𝒗 + 𝒘, then 

𝒖 = 𝒗. 

Proof. There exists a vector 𝑤 , (additive inverse of 𝑤) in 𝑉 such that  

𝑤 + 𝑤 , = 0 (from [S3] )…………………………………(1.3.1) 
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Therefore, 

 𝑢 = 𝑢 + 0 = 𝑢 + (𝑤 + 𝑤 ,) (from (1.3.1)) 

    = (𝑢 + 𝑤) + 𝑤 ,   (from [S1]) 

It is given that 𝑢 + 𝑤 = 𝑣 + 𝑤, hence 

𝑢 = (𝑣 + 𝑤) + 𝑤 ,  

   = 𝑣 + (𝑤 + 𝑤 ,)   (from [S1]) 

   = 𝑣 + 0             (from (1.3.1) 

 ⇒ 𝑢 = 𝑣               (from [S2])  

Theorem 1.2: Let 𝑽 be a vector space over field 𝑭. then 

(i) For any scalar 𝒌 ∈ 𝑭 and 𝟎 ∈ 𝑽, 𝒌𝟎 = 𝟎 

(ii) For 𝟎∗ ∈ 𝑭 and any vector 𝒖 ∈ 𝑽, 𝟎∗𝒖 = 𝟎 

(iii) For any 𝒌 ∈ 𝑭 and any 𝒖 ∈ 𝑽,  (−𝒌)𝒖 = 𝒌(−𝒖) = −(𝒌𝒖) 

Proof. (i) Let 𝑘 ∈ 𝐹 and 0 ∈ 𝑉, then 

𝑘0 + 𝑘0 = 𝑘(0 + 0)     (from [P1] 

                = 𝑘0   

⇒ 𝑘0 + 𝑘0  = 𝑘0 + 0  (from [S2] )  

Using Cancellation Law for vector addition, we get 𝑘0 = 0 

(ii)   Let 0∗ ∈ 𝐹 and 𝑢 ∈ 𝑉, then 

0∗𝑢 + 0∗𝑢 = (0∗ + 0∗)𝑢     (from [P1]) 

                     = 0∗𝑢   

⇒ 0∗𝑢 + 0∗𝑢 = 0∗𝑢 + 0        

Using Cancellation Law for vector addition, we get 0∗𝑢 = 0 

(iii)   Let  𝑘 ∈ 𝐹 and 𝑢 ∈ 𝑉 then 𝑘𝑢 ∈ 𝑉 (by scalar multiplication property) 
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Hence, there exists a unique element −(𝑘𝑢) ∈ 𝑉 such that   

 𝑘𝑢 + (−(𝑘𝑢)) = 0          ( from [S3]  ) 

Now,  𝑘𝑢 + (−𝑘)𝑢 = [𝑘 + (−𝑘)]𝑢  =0∗𝑢 = 0     

i.e., (−𝑘𝑢) is additive inverse of 𝑘𝑢. 

Hence, (−𝑘𝑢) = −(𝑘𝑢) (as inverse of vector is unique) 

Now, 𝑘(−𝑢) = 𝑘[(−1)𝑢] (as (−1)𝑢 = −𝑢) 

                        = [𝑘(−1)]𝑢  (from [P3]  ) 

                        = (−𝑘)𝑢  

Hence, (−𝑘)𝑢 = 𝑘(−𝑢) = −(𝑘𝑢) 

1.4 EXAMPLES OF VECTOR SPACE 

In this section we can learn about some important examples of vector space which will be used 

throughout the text. 

Space 𝑭𝒏 

Let 𝐹 be any arbitrary field. The notion 𝐹𝑛 is frequently used to denote the set of all 𝑛-tuples of 

elements in 𝐹. Then,  𝐹𝑛 is a vector space over 𝐹 using the following operations: 

(i) Vector addition:  

 (𝑎1, 𝑎2, … … … . . , 𝑎𝑛) + (𝑏1, 𝑏2, … … … . . , 𝑏𝑛) = (𝑎1 + 𝑏1, 𝑎2 + 𝑏2, … … … . . , 𝑎𝑛 + 𝑏𝑛)  

(ii) Scalar Multiplication: 

            𝑘(𝑎1, 𝑎2, … … … . . , 𝑎𝑛) = (𝑘𝑎1, 𝑘𝑎2, … … … . . , 𝑘𝑎𝑛) 

The zero vector in 𝐹𝑛 is the n-tuple of zeros i.e. 0 = (0,0, … … … . . ,0) and  

the additive inverse of a vector (𝑎1, 𝑎2, … … … . . , 𝑎𝑛) is defined by 

−(𝑎1, 𝑎2, … … … . . , 𝑎𝑛) =  (−𝑎1, −𝑎2, … … … . . , −𝑎𝑛). 

Matrix space 𝑴𝒎×𝒏 
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The set of all 𝑚 × 𝑛 matrices with entries from a field 𝐹 is a vector space, which we denoted by 

𝑀𝑚×𝑛(𝐹) with the following operations: 

Matrix addition: For 𝐴, 𝐵 ∈ 𝑀𝑚×𝑛(𝐹)  

                             (𝐴 + 𝐵)𝑖𝑗 = 𝐴𝑖𝑗 + 𝐵𝑖𝑗 for 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛 

For instance, 

[
1 2
3 0
3 3

] + [
4 2
5 4

−13 −1
] = [

5 4
8 0

−10 2
]  in 𝑀3×2(ℝ) 

Matrix multiplication: For 𝐴, 𝐵 ∈ 𝑀𝑚×𝑛(𝐹) and  𝑐 ∈ 𝐹 

                                       (𝑐𝐴)𝑖𝑗 = 𝑐(𝐴𝑖𝑗) for 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛 

For instance, 

−2 [
4 1
3 −4

−1 −2
] = [

−8 −2
−6 8
2 4

]  in 𝑀3×2(ℝ) 

Polynomial Space 𝑷(𝒙) 

Let 𝑃(𝑥) denote the set of all polynomials of the form 𝑝(𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + ⋯ + 𝑐𝑚𝑥𝑚 

where 𝑚 = 1,2, … ..  and 𝑐0, 𝑐1, … , 𝑐𝑚 ∈ 𝐹  (𝐹  is field). Then 𝑃(𝑥)  is vector space over 𝐹  with 

following operations: 

(i) Vector Addition: Let 𝑝(𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + ⋯ + 𝑐𝑚𝑥𝑚 and 

                                    𝑞(𝑥) = 𝑑0 + 𝑑1𝑥 + 𝑑2𝑥2 + ⋯ + 𝑑𝑛𝑥𝑛  

be polynomials such that 𝑐0, 𝑐1, … , 𝑐𝑚, 𝑑0, 𝑑1, … , 𝑑𝑛 ∈ 𝐹. 

Suppose 𝑚 ≤ 𝑛 and we define 𝑐𝑚+1 = 𝑐𝑚+2 = ⋯ = 𝑐𝑛 = 0. Then  

𝑝(𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + ⋯ + 𝑐𝑚𝑥𝑚 + 𝑐𝑚+1𝑥𝑚+1 + 𝑐𝑚+2𝑥𝑚+2 + ⋯ + 𝑐𝑛𝑥𝑛 

Then 𝑝(𝑥) + 𝑞(𝑥) = (𝑐0 + 𝑑0) + (𝑐1 + 𝑑1)𝑥 + (𝑐2 + 𝑑2)𝑥2 + ⋯ + (𝑐𝑛 + 𝑑𝑛)𝑥𝑛 

(ii) Scalar Multiplication: Let 𝑝(𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + ⋯ + 𝑐𝑚𝑥𝑚 be a polynomial such 

that 𝑐0, 𝑐1, … , 𝑐𝑚 ∈ 𝐹 and for any 𝑘 ∈ 𝐹 , then 

𝑘𝑝(𝑥) = 𝑘𝑐0 + 𝑘𝑐1𝑥 + 𝑘𝑐2𝑥2 + ⋯ + 𝑘𝑐𝑚𝑥𝑚  

Polynomial space 𝑷𝒏(𝒙) 
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Let 𝑃𝑛(𝑥) denote the set of all polynomials of the form 𝑃𝑛(𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + ⋯ + 𝑐𝑛𝑥𝑛 and 

𝑐0, 𝑐1, … , 𝑐𝑛 ∈ 𝐹 (𝐹 is field). Then 𝑃𝑛(𝑥) is vector space over 𝐹 with following operations: 

(i) Vector Addition: Let 𝑝(𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + ⋯ + 𝑐𝑛𝑥𝑛 and 

                                    𝑞(𝑥) = 𝑑0 + 𝑑1𝑥 + 𝑑2𝑥2 + ⋯ + 𝑑𝑛𝑥𝑛  

be polynomials such that 𝑐0, 𝑐1, … , 𝑐𝑛, 𝑑0, 𝑑1, … , 𝑑𝑛 ∈ 𝐹.Then 

 𝑝(𝑥) + 𝑞(𝑥) = (𝑐0 + 𝑑0) + (𝑐1 + 𝑑1)𝑥 + (𝑐2 + 𝑑2)𝑥2 + ⋯ + (𝑐𝑛 + 𝑑𝑛)𝑥𝑛 

(ii) Scalar Multiplication: Let 𝑝(𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + ⋯ + 𝑐𝑛𝑥𝑛  be a polynomial such 

that 𝑐0, 𝑐1, … , 𝑐𝑛 ∈ 𝐹 and for any 𝑘 ∈ 𝐹 , then 

𝑘𝑝(𝑥) = 𝑘𝑐0 + 𝑘𝑐1𝑥 + 𝑘𝑐2𝑥2 + ⋯ + 𝑘𝑐𝑛𝑥𝑛  

Ex.1.1.   Let 𝑺 = {(𝒙𝟏, 𝒙𝟐): 𝒙𝟏, 𝒙𝟐 ∈ ℝ}. For (𝒙𝟏, 𝒙𝟐), (𝒚𝟏, 𝒚𝟐) ∈ 𝑺 and 𝒄 ∈ ℝ, define 

 (𝒙𝟏, 𝒙𝟐) + (𝒚𝟏, 𝒚𝟐) = (𝒙𝟏 + 𝒚𝟏, 𝒙𝟐 − 𝒚𝟐) and 𝒄(𝒙𝟏, 𝒙𝟐) = (𝒄𝒙𝟏, 𝒄𝒙𝟐). Is 𝑺 vector space? 

Sol.     Let 𝑢 = (𝑥1, 𝑥2), 𝑣 = (𝑦1, 𝑦2), 𝑤 = (𝑧1, 𝑧2). Now, 

(𝑢 + 𝑣) + 𝑤 = ((𝑥1, 𝑥2) + (𝑦1, 𝑦2)) + (𝑧1, 𝑧2)  

                         = (𝑥1 + 𝑦1, 𝑥2 − 𝑦2) + (𝑧1, 𝑧2)  

                         = (𝑥1 + 𝑦1 + 𝑧1, 𝑥2 − 𝑦2 − 𝑧2) ……………………………….(1) 

Now,  

𝑢 + (𝑣 + 𝑤) = (𝑥1, 𝑥2) + ((𝑦1, 𝑦2) + (𝑧1, 𝑧2))  

                         = (𝑥1, 𝑥2) + (𝑦1 − 𝑧1, 𝑦2 − 𝑧2) 

                           = (𝑥1 + 𝑦1 − 𝑧1, 𝑥2 − (𝑦2 − 𝑧2))  

                         = (𝑥1 + 𝑦1 − 𝑧1, 𝑥2 − 𝑦2 + 𝑧2) ≠ (𝑢 + 𝑣) + 𝑤  

Since  [S1]   fail to holds, 𝑆 is not a vector space with given operations. 

Ex.1.2.   Let 𝑺 = {(𝒙𝟏, 𝒙𝟐): 𝒙𝟏, 𝒙𝟐 ∈ ℝ}. For (𝒙𝟏, 𝒙𝟐), (𝒚𝟏, 𝒚𝟐) ∈ 𝑺 and 𝒄 ∈ ℝ, define 

 (𝒙𝟏, 𝒙𝟐) + (𝒚𝟏, 𝒚𝟐) = (𝒙𝟏 + 𝒚𝟏, 𝟏) and 𝒄(𝒙𝟏, 𝒙𝟐) = (𝒄𝒙𝟏, 𝟏). Is 𝑺 vector space? 

Sol.     Let 𝑂 = (0,0) (zero vector) and 𝑢 = (𝑥1, 𝑥2), then 

𝑂 + 𝑢 = (0,0) + (𝑥1, 𝑥2) = (0 + 𝑥1, 1) = (𝑥1, 1) ≠ 𝑢  
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Since  [S2]  fail to holds, 𝑆 is not a vector space with given operations. 

 

CHECK YOUR PROGRESS 

Label the following statements as true or false 

1. Every vector space need not contains a zero vector.(F) 

2. If V is a vector space then (𝑎 + 𝑏)(𝑥 + 𝑦) = 𝑎𝑥 + 𝑎𝑦 + 𝑏𝑥 + 𝑏𝑦 for any 𝑥, 𝑦 ∈

𝑉 and any 𝑎, 𝑏 ∈ 𝐹.(T) 

3. A vector space has unique zero vector.(T) 

 

 

1.5 LINEAR COMBINATIONS 

Definition. Let 𝑉 be a vector space over a field 𝐾. A vector 𝑣 in 𝑉 is a linear combination of 

vectors (𝒙𝟏, 𝒙𝟐, 𝒙𝟑, … … , 𝒙𝒏) in 𝑉 if there exist scalars 𝒂𝟏, 𝒂𝟐, 𝒂𝟑, … … , 𝒂𝒏 in 𝐾 such that 

𝑣 = 𝒂𝟏𝒙𝟏 + 𝒂𝟐𝒙𝟐 + 𝒂𝟑𝒙𝟑 + ⋯ + 𝒂𝒏𝒙𝒏  

 Examples 

1.  Suppose we want to express 𝑢 = (3,7, −4) in  ℝ3 as a linear combination of the vectors  

𝑥1 = (1,2,3),  𝑥2 = (2,3,7),  𝑥3 = (3,5,6)   

 We seek scalars 𝑎, 𝑏, 𝑐 such that 𝑢 = 𝑎𝑥1 + 𝑏 𝑥2 + 𝑐 𝑥3  

i.e. [
  3
  7
−4

] = 𝑎 [
  1
  2
  3

] + 𝑏 [
  2
  3
  7

] + 𝑐 [
  3
  5
  6

]  or    

𝑎 + 2𝑏 + 3𝑐 = 3  

2𝑎 + 3𝑏 + 5𝑐 = 7  

3𝑎 + 7𝑏 + 6𝑐 = −4      

 Reducing the system to echelon form yields  

𝑎 + 2𝑏 + 3𝑐 = 3  

    −  𝑏 −    𝑐 = 1  

         𝑏 −  3𝑐 = −13     

implies that  𝑎 + 2𝑏 + 3𝑐 = 3  

                           −  𝑏 −    𝑐 = 1  

                                      −4𝑐 = −12     
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Back-substitution yields the solution 𝑎 = 2, 𝑦 = −4, 𝑧 = 3. Thus, 𝑢 = 2𝑥1 − 4 𝑥2 + 3 𝑥3. 

 

SPANNING SETS 

Let 𝑉 be a vector space over 𝐾. Vectors 𝑥1, 𝑥2, 𝑥3, … … , 𝑥𝑛 in 𝑉 are said to span 𝑉 or to form a 

spanning set of 𝑉 if every 𝑣 in 𝑉 is a linear combination of the vectors 𝑥1, 𝑥2, 𝑥3, … … , 𝑥𝑛, i.e. if 

there exist scalars 𝑎1, 𝑎2, 𝑎3, … … , 𝑎𝑛 in 𝐾 such that 

𝑣 = 𝑎 1𝑥1 + 𝑎 2𝑥2 + 𝑎 3𝑥3 + ⋯ … + 𝑎 𝑛𝑥𝑛 . 

Example: 

Consider the vector space 𝑉 = 𝑃𝑛(𝑡) consisting of all polynomials of degree less than equal to 𝑛. 

Clearly every polynomial in 𝑃𝑛(𝑡)   can be expressed as a linear combination of the 𝑛 + 1 

polynomials 1, 𝑡, 𝑡2 , 𝑡3 ;  . . . ;  𝑡𝑛 . Thus, these powers of 𝑡 form a spanning set for  𝑃𝑛(𝑡)  . 

  

1.6 SUBSPACE 

In this section we can learn about subspace of vector space. 

Definition: Suppose that 𝑉 and 𝑆 are two vector spaces that have identical definitions of vector 

addition and scalar multiplication, and that 𝑆 is a subset of  , 𝑆 ⊆  𝑉. Then 𝑆 is a subspace of 𝑉. 

Another Definition: A subset 𝑆 of a vector space 𝑉 is called a subspace of 𝑉 if the following two 

properties are satisfied: 

(i) If 𝑢, 𝑣 are in 𝑆 then 𝑢 +  𝑣 is also in 𝑆. 

(ii) If 𝑘 is a scalar and 𝑢 is in 𝑆 then 𝑘𝑢 is also in 𝑆. 

NOTE: Every vector space 𝑉  has at least two subspaces:𝑉  itself and the subspace consisting             

of the zero vector of  𝑉. These are called the trivial subspaces of 𝑉. 

Theorem 1.3: Show that a subspace of a vector space is itself a vector space. 

Sol.  All the axioms of a vector space hold for the elements of a subspace. 

Theorem 1.4: Show that 𝑊 is a subspace of 𝑉 if and only if 𝑘𝑢 + 𝑣 ∈ 𝑊 for all 𝑢, 𝑣 ∈ 𝑊 and 𝑘 ∈

ℝ. 

Proof. Let 𝑊 is a subspace of 𝑉.  

If 𝑢, 𝑣 ∈ 𝑊 and 𝑘 ∈ ℝ then 𝑘𝑢 ∈ 𝑊 and therefore 𝑘𝑢 + 𝑣 ∈ 𝑊. 

Conversely, suppose that for all 𝑢, 𝑣 ∈ 𝑊 and 𝑘 ∈ ℝ we have 𝑘𝑢 + 𝑣 ∈ 𝑊.  
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In particular, if 𝑘 =  1 then 𝑢 + 𝑣 ∈ 𝑊. If 𝑣 =  0 then 𝑘𝑢 + 𝑣 = 𝑘𝑢 ∈ 𝑊.  

Hence, 𝑊 is a subspace of 𝑉. 

1.6.1 EXAMPLE OF SUBSPACE 

The following section provides a criterion for deciding whether a subset 𝑆 of a vector space 𝑉 is a 

subspace of 𝑉. 

Subspace of ℝ𝟑  

We know that ℝ𝟑 is a vector space. Let 𝑊1 be any plane passing through the origin, as given in 

Fig. 1.5.1.1. 

 

Now, we can see that (0,0,0) ∈ 𝑊1 (As we assumed 𝑊1 passing through the origin). 

Suppose that vectors  𝑎, 𝑏 ∈  𝑊1 . Then 𝑎  and 𝑏  may be viewed as arrows in the plane 

𝑊1emanating from origin 𝑂, as in given figure. The sum 𝑎 + 𝑏 and any multiple 𝑘𝑎 of a also lie 

in the plane 𝑊1. Hence, 𝑊1 is a subspace of ℝ𝟑. 

Subspace of ℂ𝟑  

We know that ℂ𝟑 is a vector space. Now, consider the subset 

𝑊2 = {[

𝑥1

𝑥2

𝑥3

] ∶ 3𝑥1 + 5𝑥2 + 7𝑥3 = 0 }  

As we can see that 𝑊2 ⊆ ℂ𝟑 . Now we check the conditions of subspace 

𝑎 + 𝑏 𝑎 

𝑏 
𝑊1 

𝑋 

𝑌 

𝑍 

Fig. 1.5.1.1. 
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(i) Let 𝑥, 𝑦 ∈ 𝑊2 such that 𝑥 = [

𝑥1

𝑥2

𝑥3

] and [

𝑦1

𝑦2

𝑦3

]. Now 

           𝑥 + 𝑦 = [

𝑥1

𝑥2

𝑥3

] +  [

𝑦1

𝑦2

𝑦3

] = [

𝑥1

𝑥2

𝑥3

+𝑦1

+𝑦2

+𝑦3

]  

         as follows  

3(𝑥1 + 𝑦1) + 5(𝑥2 + 𝑦2) + 7(𝑥3 + 𝑦3)  = (3𝑥1 + 5𝑥2 + 7𝑥3) + (3𝑦1 + 5𝑦2 + 7𝑦3) 

                                                                  = 0 + 0 

                                                                   = 0    

Hence, 𝑥 + 𝑦 ∈ 𝑊2 

(ii) Let 𝑥 ∈ 𝑊2 such that 𝑥 = [

𝑥1

𝑥2

𝑥3

] and  𝑘 is a scalar. Now 

           𝑘𝑥 = 𝑘 [

𝑥1

𝑥2

𝑥3

] = [

𝑘𝑥1

𝑘𝑥2

𝑘𝑥3

]   

         as follows  

3𝑘𝑥1 + 5𝑘𝑥2 + 7𝑘𝑥3  = 𝑘(3𝑥1 + 5𝑥2 + 7𝑥3) 

                                     = 𝑘. 0  

                                     = 0    

Hence, ∈ 𝑊2 , which implies that 𝑊2 satisfies all the conditions of subspace. 

Obviously zero vector is in 𝑊2. 

Hence 𝑊2 is subspace of ℂ𝟑. 

Subspace of Square Matrices: 

Consider  the vector space of matrices of order  𝑛 × 𝑛.  
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One possible subspace is the set of lower triangular matrices. As 𝑋 +  𝑌  and 𝑐𝑋  are lower 

triangular if 𝑋 and 𝑌 are lower triangular and the zero matrix is in given subspace. 

Another is the set of symmetric matrices. As 𝑋 +  𝑌 and 𝑐𝑋 are lower triangular if 𝑋 and 𝑌 are 

lower triangular, and they are symmetric if 𝑋 and Y are symmetric. Of course, the zero matrix is 

in given subspaces. 

Subspace of the vector space of all functions defined on [𝒂, 𝒃]. 

Let 𝐷([𝑎, 𝑏]) be the collection of all differentiable functions on [𝑎, 𝑏].  

Let 𝑓1 and 𝑓2 are differential functions on [𝑎, 𝑏] and 𝑘 ∈  ℝ, then 𝑘𝑓1 + 𝑓2 is also differentiable 

function on [𝑎, 𝑏]. Hence, 𝐷([𝑎, 𝑏]) is a subspace of all functions defined on [𝑎, 𝑏]. 

Ex.1.3.   Consider a Vector Space 𝑽(ℝ) as set of all real valued function over ℝ. 

 𝑽 = {𝒇: ℝ → ℝ}. Then which of the following is\are Subspace of 𝑽(ℝ). 

(i) 𝑾𝟏 = {𝒇: 𝒇(𝒙) = 𝜷𝒇(−𝒙)} ∀ 𝒙 ∈ ℝ and 𝜷 is given constants over ℝ  

(ii) 𝑾𝟐 = Set of all integrable functions  

(iii) 𝑾𝟑 = Set of all non continuous functions  

Sol.     (i) We know that 𝑽(ℝ)  is a vector space. Now, consider the subset 

    𝑊1 = {𝑓: 𝑓(𝑥) = 𝛽𝑓(−𝑥)} ∀ 𝑥 ∈ ℝ,  

As we can see that 𝑊1 ⊆ 𝑽(ℝ)  . Now we check the necessary conditions of subspace. 

Let 𝑓1 and 𝑓2 ∈ 𝑊1 and 𝑘 ∈  ℝ, then 

 (𝑘𝑓1 + 𝑓2)(𝑥) = 𝑘𝑓1(𝑥) + 𝑓2(𝑥) = 𝑘𝛽𝑓1(−𝑥) + 𝛽𝑓2(−𝑥) = 𝛽(𝑘𝑓1(−𝑥) + 𝑓2(−𝑥)) = 𝛽(𝑘𝑓1 +

𝑓2)(−𝑥) ∈ 𝑊1. 

                 Hence, 𝑊1 is a subspace of 𝑉(𝐹).  

(ii) Let 𝑊2 be the collection of all integrable functions.  

Let 𝑓1 and 𝑓2 are integrable functions on ℝ, and 𝑘 ∈  ℝ,  

then 𝑘𝑓1 + 𝑓2 is also integrable functions on ℝ.  

Hence, 𝑊2 is a subspace of 𝑉(𝐹).  

 

(iii) Let 𝑊3 be the collection of all integrable functions. 

Consider non-continuous functions 𝑓1 and 𝑓2 such that 
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 𝑓1(𝑥) = {
1,               𝑥 ∈  ℚ
−1, 𝑥 ∈ ℝ −  ℚ

  and  𝑓2(𝑥) = {
−1,               𝑥 ∈  ℚ

1,     𝑥 ∈ ℝ −  ℚ
 

Now, (𝑓1 + 𝑓2)(𝑥) = 𝑓1(𝑥) + 𝑓2(𝑥) = 0,  continuous function. 

Therefore, (𝑓1 + 𝑓2)(𝑥) ∉  𝑊3.   𝑊3 is not vector space. 

Ex.1.4.  Consider a Vector Space ℝ𝟑(ℝ). Then which of the following is\are Subspace of 

ℝ𝟑(ℝ).  

(i) 𝑾𝟏 = {(𝒙, 𝒚, 𝒛): 𝒂𝒙 + 𝒃𝒚 + 𝒄𝒛 = 𝟎}, 𝒂, 𝒃, 𝒄  ∈ ℝ  

(ii) 𝑾𝟐 = {(𝒙, 𝒚, 𝒛): 𝒙 ≥ 𝟎},   

(iii) 𝑾𝟑 = {(𝒙, 𝒚, 𝒛): 𝒙 + 𝒚 + 𝒛 = 𝟏}. 

Sol.     (i) We know that ℝ𝟑(ℝ)  is a vector space. Now, consider the subset 

    𝑊1 = {(𝒙, 𝒚, 𝒛): 𝒂𝒙 + 𝒃𝒚 + 𝒄𝒛 = 𝟎}, 𝒂, 𝒃, 𝒄  ∈ ℝ  

As we can see that 𝑊1 ⊆ ℝ𝟑(ℝ).   

 Now we check the necessary conditions of subspace. 

Let (𝑥1, 𝑦1, 𝑧1) and (𝑥2, 𝑦2, 𝑧2)  ∈ 𝑊1 and 𝑘 ∈  ℝ, then 

 𝑘(𝑥1, 𝑦1, 𝑧1) + (𝑥2, 𝑦2, 𝑧2) = (𝑘𝑥1, 𝑘𝑦1, 𝑘𝑧1) + (𝑥2, 𝑦2, 𝑧2) 

                                                  = (𝑘𝑥1 + 𝑥2, 𝑘𝑦1 + 𝑦2, 𝑘𝑧1 + 𝑧2). 

Now, let 𝑎, 𝑏, 𝑐  ∈ ℝ then  

𝑘(𝑘𝑥1 + 𝑥2) +  𝑏(𝑘𝑦1 + 𝑦2) + 𝑐(𝑘𝑧1 + 𝑧2)  

= 𝑘(𝑎𝑥1 + 𝑏 𝑦1 + 𝑐𝑧1) + (𝑎𝑥2 + 𝑏 𝑦2 + 𝑐𝑧2) = 𝑘. 0 + 0 = 0 

which implies that 𝑘(𝑥1, 𝑦1, 𝑧1) + (𝑥2, 𝑦2, 𝑧2)  ∈ 𝑊1 

                 Hence, 𝑊1 is a subspace of ℝ𝟑(ℝ). 

(ii) We know that ℝ𝟑(ℝ)  is a vector space. Now, consider the subset 

𝑊2 = {(𝑥, 𝑦, 𝑧): 𝑥 ≥ 0}  

As we can see that 𝑊2 ⊆ ℝ𝟑(ℝ). Now we can see that if 𝑘 = −1 ∈  ℝ 

Let (𝑥1, 𝑦1, 𝑧1) ∈ 𝑊2 such that 𝑥1 ≥ 0 then 

(−1)(𝑥2, 𝑦2, 𝑧2) = (−𝑥1, 𝑦1, 𝑧1)  

As we know that 𝑥1 ≥ 0 ⇒ −𝑥1 ≤ 0. 
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Thus, (−1)(𝑥1, 𝑦1, 𝑧1) ∉ 𝑊2. 

Therefore, 𝑊2 is not a subspace of ℝ𝟑(ℝ). 

 

(iii) We know that ℝ𝟑(ℝ)  is a vector space. Now, consider the subset 

𝑊3 = {(𝑥, 𝑦, 𝑧): 𝑥 + 𝑦 + 𝑧 = 1}  

As we can see that 𝑊2 ⊆ ℝ𝟑(ℝ). Now we can see that (0,0,0)  ∉ 𝑊3. 

Therefore, 𝑊3 is not a subspace of ℝ𝟑(ℝ). 

Ex.1.5.  Consider a Vector Space 𝑴𝒏(ℝ). Then which of the following is\are Subspace of 

𝑴𝒏(ℝ).  

(i) 𝑾𝟏 = {𝑨 ∈ 𝑴𝒏(ℝ): 𝑨 = 𝒃𝑨, }, 𝒃  is given real number 

(ii) 𝑾𝟐 = {𝑨 ∈ 𝑴𝒏(ℝ): 𝑨 = 𝑨, } 

(iii) 𝑾𝟑 = {𝑨 ∈ 𝑴𝒏(ℝ): 𝒅𝒆𝒕(𝑨) = 𝟎}. 

(iv) 𝑾𝟒 = {𝑨 ∈ 𝑴𝒏(ℝ): ∑ ∑ 𝑲𝒊𝒋
𝒏
𝒋=𝟏

𝒏
𝒊=𝟏 𝒂𝒊𝒋 = 𝟏 }, 𝑲𝒊𝒋 ∈ ℝ.  

Sol.     (i) We know that 𝑀𝑛(ℝ)  is a vector space. Now, consider the subset 

                    𝑊1 = {𝐴 ∈ 𝑀𝑛(ℝ): 𝐴 = 𝑘𝐴, }, 𝑘  is given real number 

As we can see that 𝑊1 ⊆ 𝑀𝑛(ℝ)  . Now we check the necessary conditions of    subspace. 

Let 𝐴1 and 𝐴2 ∈ 𝑊1 and 𝛼, 𝛽 ∈  ℝ, then 

 𝛼𝐴1 + 𝛽𝐴2 = 𝛼𝑏𝐴1
, + 𝛽𝑏𝐴2

, = 𝑏(𝛼𝐴1
, + 𝛽𝐴2

,) = 𝑏(𝛼𝐴1 + 𝛽𝐴2), ∈ 𝑊1. 

                 Hence, 𝑊1 is a subspace of 𝑀𝑛(ℝ).  

(ii) We know that 𝑀𝑛(ℝ)  is a vector space. Now, consider the subset 

                   𝑊2 = {𝐴 ∈ 𝑀𝑛(ℝ): 𝐴 = 𝐴, }  

As we can see that 𝑊2 ⊆ 𝑀𝑛(ℝ)  . Now we check the necessary conditions of    subspace. 

Let 𝐴1 and 𝐴2 ∈ 𝑊2 and 𝛼, 𝛽 ∈  ℝ, then 

 𝛼𝐴1 + 𝛽𝐴2 = 𝛼𝐴1
, + 𝛽𝐴2

, = 𝑏(𝛼𝐴1 + 𝛽𝐴2), ∈ 𝑊2. 

                 Hence, 𝑊2 is a subspace of 𝑀𝑛(ℝ).  

(iii) We know that 𝑀𝑛(ℝ)  is a vector space. Now, consider the subset 
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                   𝑊3 = {𝐴 ∈ 𝑀𝑛(ℝ): 𝑑𝑒𝑡(𝐴) = 0 }  

 As we can see that 𝑊3 ⊆ 𝑀𝑛(ℝ)  . Now we check the necessary conditions of    subspace. 

Consider  𝐴1 = [
1 0
0 0

] and 𝐴2 = [
0 0
0 1

]. We can see that 𝑑𝑒𝑡(𝐴1) = 0 and 𝑑𝑒𝑡(𝐴2) = 0. 

Hence,  𝐴1, 𝐴2 ∈ 𝑊3. Now 

𝐴1 + 𝐴2 = [
1 0
0 0

] + [
0 0
0 1

] =[
1 0
0 1

] and 𝑑𝑒𝑡(𝐴1 + 𝐴2) ≠ 0,  

which implies that 𝐴1 + 𝐴2 ∉ 𝑊3 

                 Hence, 𝑊3 is not a subspace of 𝑀𝑛(ℝ).  

          (iv)  We know that 𝑀𝑛(ℝ)  is a vector space. Now, consider the subset 

𝑊4 = {𝐴 ∈ 𝑀𝑛(ℝ): ∑ ∑ 𝐾𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1 𝑎𝑖𝑗 = 1 }, 𝐾𝑖𝑗 ∈ ℝ   

                   As we can see that 𝑊4 ⊆ 𝑀𝑛(ℝ).  

                    Now we can see that [
0 0
0 0

]  ∉ 𝑊4 as ∑ ∑ 𝐾𝑖𝑗
2
𝑗=1

2
𝑖=1 𝑎𝑖𝑗 = 0 ≠ 1 

                    Therefore, 𝑊4 is not a subspace of 𝑀𝑛(ℝ). 

CHECK YOUR PROGRESS 

Label the following statements as true or false 

1. Every vector space need not contains a zero vector.(F) 

2. If V is a vector space then (𝑎 + 𝑏)(𝑥 + 𝑦) = 𝑎𝑥 + 𝑎𝑦 + 𝑏𝑥 + 𝑏𝑦 for any 

𝑥, 𝑦 ∈ 𝑉 and any 𝑎, 𝑏 ∈ 𝐹.(T) 

3. A vector space has unique zero vector.(T) 

 

1.6.2 INTERSECTION OF SUBSPACES 

Theorem 1.7:  Let 𝑾𝟏 and 𝑾𝟐 be two subspaces of a vector space 𝑽 then the intersection 𝑾𝟏 

∩ 𝑾𝟐 is also a subspace of 𝑽  
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Proof. Let 𝑊1 and 𝑊2 be two subspaces of a vector space 𝑉.  

We show that the intersection 𝑊1 ∩ 𝑊2 is also a subspace of V.  

Clearly, 0 ∈ 𝑊1  and 0 ∈ 𝑊1 (because 𝑊1 and 𝑊2 be two subspaces). Hence 0 ∈ 𝑊1 ∩ 𝑊2. 

Now suppose  𝑤1 and 𝑤2 belong to the intersection 𝑊1 ∩ 𝑊2.  

Then 𝑤1, 𝑤2 ∈ 𝑊1 and 𝑤1, 𝑤2 ∈ 𝑊2. .  

For any scalars , 𝑏 ∈ 𝐾 , 𝑎𝑤1, + 𝑏𝑤2 ∈ 𝑊1  and 𝑎𝑤1, + 𝑏𝑤2 ∈ 𝑊2 . (because 𝑊1  and 𝑊2  be two 

subspaces). 

Thus, 𝑎𝑤1, + 𝑏𝑤2 ∈ 𝑊1 ∩ 𝑊2. Therefore, 𝑊1 ∩ 𝑊2is a subspace of  𝑉. 

The above result generalizes as follows.  

Theorem 1.8: The intersection of any number of subspaces of a vector space 𝑽 is a subspace 

of 𝑽. 

1.7 LINEAR SPAN 

Let 𝑉  be a vector space over a field 𝐾 . A vector 𝑣  in 𝑉  is a linear combination of vectors 

(𝑥1, 𝑥2, 𝑥3, … … , 𝑥𝑛) in 𝑉 if there exist scalars 𝑎1, 𝑎2, 𝑎3, … … , 𝑎𝑛 in 𝐾 such that = 𝑎1𝑥1 + 𝑎2𝑥2 +

𝑎3𝑥3 + ⋯ + 𝑎𝑛𝑥𝑛 .  

The collection of all such linear combinations, denoted by span(𝑥1, 𝑥2, 𝑥3, … … , 𝑥𝑛) or span(𝑥𝑖) is 

called the linear span of 𝑥1, 𝑥2, 𝑥3, … … , 𝑥𝑛. 

More generally, for any subset 𝑆 of 𝑉, span(𝑥𝑖)  consists of all linear combinations of vectors in 𝑆 

or, when 𝑆 = ∅ , span(𝑆) = {0}. Thus, in particular, 𝑆 is a spanning set  of span(𝑆). 

 Theorem 1.9. Let 𝑆 be a subset of a vector space 𝑉.  

(i) Then span(𝑆) is a subspace of 𝑉 that contains 𝑆. 

(ii)  If 𝑊 is a subspace of 𝑉 containing 𝑆, then span(𝑆) ⊆ 𝑊  

Proof.  (i) Let 𝑆 be a subset of a vector space 𝑉 such that 𝑆 = {𝑥1, 𝑥2, 𝑥3, … … , 𝑥𝑛}  

We can see that the zero vector i.e. 0 belongs to span(𝑆),  as 0 can be written as 

0 = 0𝑥1 + 0𝑥2 + 0𝑥3 + ⋯ + 0𝑥𝑛 .  
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 Furthermore, let 𝑢 and  𝑢′ belong to span(𝑆), i.e., 

𝑢 = 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ + 𝑎𝑛𝑥𝑛 .  

𝑢′ = 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 + ⋯ + 𝑏𝑛𝑥𝑛  

Then, 𝑢 + 𝑢′ = (𝑎1 + 𝑏1)𝑥1 + (𝑎1 + 𝑏2)𝑥2 + (𝑎3 + 𝑏3)𝑥3 + ⋯ + (𝑎𝑛 + 𝑏𝑛)𝑥𝑛  

which implies that 𝑢 + 𝑢′  belong to span(𝑆) 

and for any scalar 𝑘 ∈ 𝐾, 

𝑘𝑢 = 𝑘𝑎1𝑥1 + 𝑘𝑎2𝑥2 + 𝑘𝑎3𝑥3 + ⋯ + 𝑘𝑎𝑛𝑥𝑛 . 

which implies that 𝑘𝑢 belong to span(𝑆). 

So, we conclude that span(𝑆) is a subspace of 𝑉. 

Example 

a) Let 𝑣1 be any nonzero vector in 𝑉 = ℝ3. Then span(𝑣1) consists of all scalar multiples of 

𝑣1. Geometrically, span(𝑢) is the line through the origin 𝑂 and the endpoint of 𝑢, as shown in Fig. 

1.7.1(a). 

b) Let 𝑢 and 𝑣 be vectors in 𝑉 = ℝ3 that are not multiples of each other. Then span(𝑣1, 𝑣2) 

is the plane through the origin 𝑂 and the endpoints of 𝑣1 and 𝑣2 as shown in Fig. 1.7.1(b). 

c) Consider the vectors 𝑒1 = (1,1,1),, 𝑒2 = (1,1,0), 𝑒1 = (1,0,0) in 𝑉 = ℝ3 

Row Space of a Matrix  

 
 

Fig. 1. Linear span 

Let 𝐵 = [𝑏𝑖𝑗] be an arbitrary 𝑚 ×  𝑛 matrix over a field 𝐾. The rows of 𝐴,  
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𝑅1 = (𝑏11, 𝑏12, 𝑏13, … … . . , 𝑏1𝑛); 𝑅2 = (𝑏21, 𝑏22, 𝑏23, … … . . , 𝑏2𝑛), ….   𝑅𝑚 =

(𝑏𝑚1, 𝑏𝑚2, 𝑏𝑚3, … … . . , 𝑏𝑚𝑛);  

may be viewed as vectors in 𝐾𝑛; hence, they span a subspace of 𝐾𝑛 called the row space of 𝑩 and 

denoted by rowsp(𝐵). That is,  

rowsp(𝐵)=span(𝑅1, 𝑅2; ... , 𝑅𝑚). 

 Analagously, the columns of 𝐵 may be viewed as vectors in 𝐾𝑚 called the column space of 𝑩 

and denoted by colsp(𝐵). Observe that colsp(𝐵) = rowsp(𝐴𝑇).  

 

1.8 LINEAR INDEPENDENCE  

Let 𝑉 be a vector space over a field 𝐾. The following defines the concept of linear dependence and 

independence of vectors over 𝐾. This notion plays an vital role in the theory of linear algebra and 

in mathematics in general. 

Definition. The vectors (𝑢1, 𝑢2, 𝑢3, … . . , 𝑢𝑛)  in 𝑉  are linearly dependent if there exist scalars 

(𝑎1, 𝑎2, 𝑎3, … . . , 𝑎𝑛) in 𝐾 , not all of them 0, such that 𝑎1𝑢1 + 𝑎2𝑢2 + 𝑎3𝑢3 + ⋯ . . +𝑎𝑛𝑢𝑛 = 0 

Otherwise, we say that the vectors are linearly independent. 

OR 

Consider the vector equation 

 𝑥1𝑢1 + 𝑥2𝑢2 + 𝑥3𝑢3 + ⋯ . . +𝑥𝑛𝑢𝑛 = 0 ………………………….(1.8.1) 

 where the 𝑥’𝑠 are unknown scalars. This equation always has the zero solution 𝑥1 = 0; 𝑥2 = 0; ... 

;  𝑥𝑛 = 0. Suppose this is the only solution; that is, suppose we can show: 𝑥1𝑢1 + 𝑥2𝑢2 + 𝑥3𝑢3 +

⋯ . . +𝑥𝑛𝑢𝑛 = 0 implies 𝑥1 = 0, 𝑥2 = 0, 𝑥3 = 0, … . . , 𝑥𝑛 = 0 . Then the vectors 𝑢1 = 0, 𝑢2 =

0, 𝑢3 = 0, … . . , 𝑢𝑛 = 0 are linearly independent, On the other hand, suppose the equation (1.8.1) 

has a nonzero solution; then the vectors are linearly dependent. 

NOTE 

1. A set 𝑆 = (𝑢1, 𝑢2, 𝑢3, … . . , 𝑢𝑛) of vectors in 𝑉  is linearly dependent or independent 

according to whether the vectors 𝑢1, 𝑢2, 𝑢3, … . . , 𝑢𝑛 are linearly dependent or independent. 

2. An infinite set 𝑆 of vectors is linearly dependent or independent according to whether there 

do or do not exist vectors 𝑢1, 𝑢2, 𝑢3, … . . , 𝑢𝑘 in 𝑆 that are linearly dependent. 

3. Suppose 0 is one of the vectors 𝑢1, 𝑢2, 𝑢3, … . . , 𝑢𝑛 say 𝑢1 ≠ 0. Then the vectors must be 

linearly dependent, because we have the following linear combination where the coefficient of  

1. 𝑢1 + 0𝑢2 + 0𝑢3 + ⋯ . . +0𝑢𝑛 = 0  
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4. If a set 𝑆 of vectors is linearly independent, then any subset of 𝑆 is linearly independent. 

Alternatively, if 𝑆 contains a linearly dependent subset, then 𝑆 is linearly dependent. 

Example 

1. Let 𝑢1 = (1,1,0), 𝑢2 = (1,3,2), 𝑢3 = (4,9,5). Then  𝑢1, 𝑢2, 𝑢3  are linearly dependent, 

because 

 3𝑢1 + 5𝑢2 − 2𝑢3 = 3(1,1,0) + 5(1,3,2) − 2(4,9,5) = (0,0,0) = 0 

Ex. 1.6.  Let 𝑉 be the vector space of functions from ℝ into ℝ. Show that the functions 𝑓(𝑥) = 𝑒𝑥 ,

𝑔(𝑥) = sin 𝑡 and ℎ(𝑥) = 𝑥2 are linearly independent. 

Proof.  Let 𝑉 be the vector space of functions from ℝ into ℝ. Now we will show that functions 

𝑓(𝑥) = 𝑒𝑥 , 𝑔(𝑥) = sin 𝑥 and ℎ(𝑥) = 𝑥2 are linearly independent. 

Let 𝑎, 𝑏 and 𝑐 are unknown scalars such that 

 𝑎𝑓 + 𝑏𝑔 + 𝑐ℎ = 0 ⇒ 𝑎𝑒𝑥 + 𝑏 sin 𝑥 + 𝑐𝑥2 = 0, ∀𝑥 ∈ ℝ.  

Thus, in this equation, we choose appropriate values of 𝑥 to easily get 𝑎 =  0, 𝑏 = 0, 𝑐 = 0. 

For example 

i) Substitute 𝑥 = 0 to obtain 𝑎𝑒0 + 𝑏 sin 0 + 𝑐02 = 0 ⇒ 𝑎 = 0 

ii) Substitute 𝑥 = 𝜋 and 𝑎 = 0 to obtain 0𝑒𝜋 + 𝑏 sin 𝜋 + 𝑐𝜋2 = 0 ⇒ 𝑐 = 0 

iii) Substitute 𝑥 =
𝜋

2
 and 𝑎 = 0 , 𝑐 = 0 to obtain 0𝑒

𝜋

2 + 𝑏 sin
𝜋

2
+ 0

𝜋

2

2
= 0 ⇒ 𝑏 = 0 

Hence  𝑓(𝑥) = 𝑒𝑥, 𝑔(𝑥) = sin 𝑡 and ℎ(𝑥) = 𝑥2 are linearly independent.  

Ex. 1.7.  Let 𝑃3(ℝ) be the vector space of set of polynomials of degree less than equal to 3 defined 

on ℝ. Show that set 𝑆 = {1 + 𝑥 + 𝑥2, 7 + 𝑥3, 11 + 𝑥 + 𝑥2 + 𝑥3, 13 + 4𝑥} are linearly 

independent. 

Proof.  Let 𝑃3(ℝ) be the vector space of set of polynomials of degree less than equal to 3 defined 

on ℝ and let 𝑆 = {1 + 𝑥 + 𝑥2, 7 + 𝑥3, 11 + 𝑥 + 𝑥2 + 𝑥3, 13 + 4𝑥}. Now we will show that set 𝑆 

is linearly independent. 

Let 𝑎, 𝑏, 𝑐 and 𝑑 are unknown scalars such that 

 𝑎(1 + 𝑥 + 𝑥2) + 𝑏(7 + 𝑥3) + 𝑐(11 + 𝑥 + 𝑥2 + 𝑥3) + 𝑑(13 + 4𝑥) = 0 
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⇒ (𝑎 + 7𝑏 + 11𝑐 + 13𝑑) + (𝑎 + 𝑐 + 4𝑑)𝑥 + (𝑎 + 𝑐)𝑥2 + (𝑏 + 𝑐)𝑥3 = 0  

⇒ (𝑎 + 7𝑏 + 11𝑐 + 13𝑑) = 0; ………………..(1) 

     (𝑎 + 𝑐 + 4𝑑) = 0;  …………………………..(2) 

      (𝑎 + 𝑐) = 0; ………………………………….(3) 

      (𝑏 + 𝑐) = 0 ……………………………………(4) 

Using (3) in (2), we get 𝑑 = 0 

From (3) and (4), we get 𝑎 = 𝑏 = −𝑐…………….(5) 

Using (5) in (1), we get  𝑎 = 𝑏 = 𝑐 = 0. 

Hence, set 𝑆 = {1 + 𝑥 + 𝑥2, 7 + 𝑥3, 11 + 𝑥 + 𝑥2 + 𝑥3, 13 + 4𝑥} are linearly independent. 

LEMMA-Suppose two or more nonzero vectors 𝑣1, 𝑣2, 𝑣3, … . . , 𝑣𝑚 are linearly dependent. Then 

one of the vectors is a linear combination of the preceding vectors; that is, there exists 𝑘 > 1 

such that 

𝑣𝑘 = 𝑐1𝑣1 + 𝑐2𝑣2 + ⋯ . . +𝑐𝑘−1𝑣𝑘−1  

1.9 SUMMARY 

 

We discussed about vector space and subspace with the help of illustrative examples.  

 

1.10 GLOSSARY 

Set: is the mathematical model for a collection of different things 

Scalar: is an element of a field which is used to define a vector space 

Vector:  a term that refers to elements of some vector spaces. 
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1.13 TERMINAL QUESTIONS 

 

(TQ-1) Define Vector space 

(TQ-2) Define Subspace 

(TQ-3) Give Example of  Vector Space. 

 

Choose one of correct Choioce: 

(TQ-4) If 𝐴 and 𝐵 are square matrices of the same order, then tr(AB) = 

(a) 𝑡𝑟(𝐴 +  𝐵) 

(b) 𝑡𝑟(𝐴)𝑡𝑟(𝐵) 

(c) 𝑡𝑟(𝐵𝐴) 

(d) 𝑡𝑟(𝐴)  +  𝑡𝑟(𝐵) 

(TQ-5)  If 𝐴 and 𝐵 are square matrices of the same order, then (𝐴𝐵)𝑇 = 

(a)  𝐴𝑇𝐵𝑇 

(b) 𝐵𝑇 . 𝐴𝑇 

(c) 𝐴𝑇 + 𝐵𝑇 
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(d) (𝐵𝐴)𝑇 

(TQ-6) Let 𝑉 be the vector space of functions from ℝ into ℝ. Show that the functions 𝑓(𝑥) = 𝑒𝑥,

𝑔(𝑥) = sin 𝑡 and ℎ(𝑥) = 𝑥2 are ________________. 

1.14 ANSWERS 

(TQ-4) (c)                                    (TQ-5) (b)                         (TQ-6) linearly independent 
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UNIT–2 BASIS AND DIMENSION 

CONTENTS 

2.1 Introduction  

2.2 Objectives  

2.3 Basis  

2.4 Dimension 

2.5 Application to matrices, rank of a matrix 

2.5.1. Basis finding problems 

2.5.2 Application to homogeneous systems of linear equations 

2.6 Sum and Direct Sum 

2.7 Coordinates 

2.8 Summary  

2.9 Glossary  

2.10 References  

2.11 Suggested Readings  

2.12 Terminal Questions  

2.13 Answers   

                     

2.1 INTRODUCTION 

In previous unit we studied about vector space, In this unit we will try to understand basis and 

dimensions.  

We turn now to the task of assigning a dimension to certain vector spaces. Although we usually 

associate 'dimension' with something geometrical, we must find a suitable algebraic definition 
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of the dimension of a vector space. This will be done through the concept of a basis for the 

space. One of the useful features of a basis 𝐵 in an 𝑛 −dimensional space 𝑉 is 

that it essentially enables one to introduce coordinates in V analogous to the 'natural 

coordinates' 𝑋𝑖 of a vector 𝑥 =  (𝑥1, . . . , 𝑥𝑛) in the space 𝐹𝑛. In this scheme, the coordinates 

of a vector a in 𝑉 relative to the basis 𝐵 will be the scalars which serve to express a as a linear 

combination of the vectors in the basis. 

 

Many mathematical terms, including "matrix" (in 

1850), "graph" (in the sense of a network), 

"discriminant," and "totient" (for Euler's totient 

function φ(n), were created by Sylvester. He is also 

credited with solving Sylvester's problem and a 

result on the orchard problem in discrete geometry, 

and discovering Sylvester's determinant identity in 

matrix theory, which generalizes the Desnanot–

Jacobi identity. His body of scientific writings fills 

four volumes. The Royal Society of London awarded 

Sylvester the Copley Medal, its highest honor for 

scientific achievement, in 1880, and in 1901 it 

instituted the Sylvester Medal in his memory, to 

promote mathematical research following his 

passing in Oxford. 

 

2.2 OBJECTIVES  

In this unit, we will, 

 Define basis with examples 

 Understand dimension of vector space  

 

2.3 BASIS  

A set  𝑆 = {𝑢1, 𝑢2, 𝑢3, … . . , 𝑢𝑚} of vectors is a basis of V if it has the following two properties: 

(1) 𝑆 is linearly independent.  

(2) 𝑆 spans 𝑉. 

OR 

James Joseph Sylvester 

 (3 September 1814 – 15 March 1897) 

(reference: 

https://en.wikipedia.org/wiki/James_Joseph_Sylv

ester 
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A set  𝑆 = {𝑢1, 𝑢2, 𝑢3, … . . , 𝑢𝑚} of vectors is a basis of 𝑉 if every 𝑣 ∈ 𝑉 can be written 

uniquely as a linear combination of the basis vectors. 

Example: (1) Standard basis for ℝ𝑛 is 

 𝑒1 = (1,0,0, … . ,0,0), 𝑒2 = (0,1,0, … . ,0,0),… . , 𝑒𝑛 = (0,0,0, … . ,0,1)  

(2) Standard basis for Matrices 𝑀2×2 is  

[
1 0
0 0

] , [
0 1
0 0

] , [
0 0
1 0

] , [
0 0
0 1

]  

(3) The infinite set {1, 𝑥, 𝑥2, …… . . , 𝑥𝑛−1, … . } form basis for P, the space of all polynomial. 

Theorem 1.1. Let 𝑉 denote a vector space and 𝑆 = {𝑢1, 𝑢2, 𝑢3, … . . , 𝑢𝑚} a basis of 𝑉.  

a) Any subset of 𝑉 containing more than n vectors must be dependent. 

b) Any subset of 𝑉 containing less than n vectors cannot span 𝑉. 

Proof. (a) Let 𝑆1 = {𝑣1, 𝑣2, 𝑣3, … . . , 𝑣𝑛} a subset of 𝑉 where 𝑛 >  𝑚.  

 Now we will prove that 𝑊 is dependent.  

Since 𝑆 is a basis, we can write each 𝑣𝑖 in term of elements in 𝑆.  

Now, there exists constants 𝑐𝑖𝑗 with 1 ≤  𝑖  ≤ 𝑛 and 1 ≤  𝑗 ≤ 𝑚 such that 

 𝑣𝑖 = 𝑐𝑖1𝑢1 + 𝑐𝑖2𝑢2 +⋯+ 𝑐𝑖𝑚𝑢𝑚 . Consider the linear combination 

∑ 𝑑𝑗𝑣𝑗
𝑛
𝑗=1 = ∑ 𝑑𝑗(𝑐𝑗1𝑢1 + 𝑐𝑗2𝑢2 +⋯+ 𝑐𝑗𝑚𝑢𝑚)

𝑛
𝑗=1 = 0  

So we solve 

{
 
 

 
 
𝑑1𝑐11𝑢1 + 𝑑1𝑐12𝑢2 +⋯+ 𝑑1𝑐1𝑚𝑢𝑚 = 0
𝑑2𝑐21𝑢1 + 𝑑2𝑐22𝑢2 +⋯+ 𝑑2𝑐1𝑚𝑢𝑚 = 0

.

.

.
𝑑𝑛𝑐𝑛1𝑢1 + 𝑑𝑛𝑐𝑛2𝑢2 +⋯+ 𝑑𝑛𝑐𝑛𝑚𝑢𝑚 = 0

 where 𝑑1, 𝑑2, … , 𝑑𝑛 are unknowns 

Here we can easily observe that the number of unknowns is less than number of equation. 

Hence given Homogeneous equation system will have a nontrivial solution.  

Hence 𝑆1 is dependent. 

(b) Let 𝑆1 = {𝑣1, 𝑣2, 𝑣3, … . . , 𝑣𝑛} a subset of 𝑉 where 𝑛 <  𝑚.  
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 Now we will prove that 𝑆1 does not span 𝑉.  

Let we assume that it does span 𝑉 and show this would imply that 𝑆 is dependent. 

Now, there exists constants 𝑐𝑖𝑗 with 1 ≤  𝑖  ≤ 𝑚 and 1 ≤  𝑗 ≤ 𝑛 such that 

 𝑢𝑖 = 𝑐𝑖1𝑣1 + 𝑐𝑖2𝑣2 +⋯+ 𝑐𝑖𝑛𝑣𝑛 . Consider the linear combination 

∑ 𝑑𝑗𝑢𝑗
𝑚
𝑗=1 = ∑ 𝑑𝑗(𝑐𝑗1𝑣1 + 𝑐𝑗2𝑣2 +⋯+ 𝑐𝑗𝑛𝑣𝑛)

𝑛
𝑗=1 = 0  

So we solve 

{
 
 

 
 
𝑑1𝑐11 + 𝑑1𝑐12 +⋯+ 𝑑1𝑐1𝑛 = 0
𝑑2𝑐21 + 𝑑2𝑐22 +⋯+ 𝑑2𝑐2𝑛 = 0

.

.

.
𝑑𝑛𝑐𝑛1 + 𝑑𝑛𝑐𝑛2 +⋯+ 𝑑𝑛𝑐𝑚𝑛 = 0

 where 𝑑1, 𝑑2, … , 𝑑𝑛 are unknowns 

Here we can easily observe that the number of unknowns is more than number of equation. 

Hence given Homogeneous equation system will have a nontrivial solution.  

Hence 𝑆 is dependent, but it can’t be possible since it is a basis. 

Thus our assumption is wrong, 𝑆1 does not span 𝑉. 

Theorem 1.2 Let 𝑉 be a vector space such that one basis has 𝑚 elements and another basis 

has 𝑛 elements. Then 𝑚 = 𝑛. 

Proof.  Assume that 𝑆 is a basis of 𝑉 with 𝑛 elements and 𝑆∗ is another basis with 𝑚 elements. 

We need to show that 𝑚 =  𝑛.  

Since 𝑆 is a basis, 𝑆∗ being also a basis implies that 𝑚 ≥  𝑛.  

If we had m > n, by the theorem, 𝑆∗ would be dependent, hence not a basis.  

Similarly, since 𝑆∗ is a basis, 𝑆 being also a basis implies that 𝑛 ≥  𝑚. The only way we can 

have 𝑚 ≥  𝑛 and 𝑛 ≥  𝑚 is if 𝑚 =  𝑛. 

CHECK YOUR PROGRESS: 1 

1: Prove that every basis of a vector space V has the same number of elements. 

2: Any subset of 𝑉 containing more than n vectors must be ________________. 
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2.4  DIMENSIONS 

Let 𝑉 denote a vector space. Consider a basis of 𝑉 has 𝑚 vectors (therefore all bases will have 

𝑚 vectors),  𝑚 is called the dimension of  𝑽 . We can write 𝑑𝑖𝑚(𝑉 )  =  𝑚. 

A vector space 𝑉 is said to be finite-dimensional if there exists a finite subset of 𝑉 which is a 

basis of  𝑉. If no such finite subset exists, then 𝑉 is said to be infinite-dimensional. 

NOTE: 

1: If 𝑉 is just the vector space consisting of {0}, then we say that 𝑑𝑖𝑚(𝑉)  =  0. 

Examples: 

1. ℝ𝑛, the set of all ordered pairs (𝑥, 𝑦) where 𝑥 and 𝑦 are in ℝ. We have already seen 

that the standard basis for ℝ2 is {(1, 0,0, … . ,0), (0, 1,0, … ,0), (0, 0,1, … ,0),… , (0, 0,0, … ,1)}. 

This basis has 𝑛 elements, therefore, dim(ℝ𝑛 ) = 𝑛.  

2. 𝑃𝑛, the set of polynomials of degree less than or equal to 𝑛. Similarly, the standard basis 

for 𝑃𝑛 is {1, 𝑥, 𝑥2, …… . , 𝑥𝑛} . This basis has 𝑛 +  1 elements, therefore 𝑑𝑖𝑚(𝑃𝑛) = 1. 

3. 𝑀32, the set of 3 × 2  matrices. A basis for 𝑀32 is 6. 

Ex.1.8. Find a basis and the dimension of subspace 𝑾 =

{[

𝒂 + 𝒃 + 𝒄
𝟐𝒂 + 𝒃 + 𝟑𝒄 + 𝒅

𝒃 + 𝒄 + 𝒅
𝟐𝒂 + 𝟐𝒄 + 𝒅

] : 𝒂, 𝒃, 𝒄, 𝒅 𝒂𝒓𝒆 𝒓𝒆𝒂𝒍} 

Proof.  It is given that 

𝑊 = {[

𝑎 + 𝑏 + 𝑐
2𝑎 + 𝑏 + 3𝑐 + 𝑑

𝑏 + 𝑐 + 𝑑
2𝑎 + 2𝑐 + 𝑑

] : 𝑎, 𝑏, 𝑐, 𝑑 𝑎𝑟𝑒 𝑟𝑒𝑎𝑙}  

Now 

[

𝑎 + 𝑏 + 𝑐
2𝑎 + 𝑏 + 3𝑐 + 𝑑

𝑏 + 𝑐 + 𝑑
2𝑎 + 2𝑐 + 𝑑

] = 𝑎 [

1
2
0
2

] + 𝑏 [

1
1
1
0

] + 𝑐 [

1
3
1
2

] + 𝑑 [

0
1
1
1

]  

Here we can see that 𝑊 = 𝑠𝑝𝑎𝑛{𝑣1, 𝑣2, 𝑣3, 𝑣4} where  

𝑣1 = [

1
2
0
2

] , 𝑣2 = [

1
1
1
0

] , 𝑣3 = [

1
3
1
2

] , 𝑣4 = [

0
1
1
1

]   
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𝑣1, 𝑣2, 𝑣3, 𝑣4 are linearly independent. 

Hence basis of 𝑊 = {𝑣1, 𝑣2, 𝑣3, 𝑣4}  and dimension is 4. 

NOTE: 

 If 𝑉 is spanned by a finite set, then 𝑉 is said to be finite-dimensional, and the dimension 

of V, written as dim V, is the number of vectors in a basis for 𝑉.  

 The dimension of the zero vector space {0) is defined to be zero.  

 If 𝑉 is not spanned by a finite set, then V is said to be infinite-dimensional. 

Theorem 1.4 Let 𝑯 be a subspace of a finite-dimensional vector space 𝑽. Any linearly 

independent set in 𝑯 can be expanded, if necessary, to a basis for 𝑯. Also, 𝑯 is finite-

dimensional and 𝒅𝒊𝒎 𝑯 ≤  𝒅𝒊𝒎 𝑽. 

Proof. Let 𝐻 = {0}, then clearly 𝑑𝑖𝑚 𝐻 = 0 ≤ 𝑑𝑖𝑚 𝑉. 

Let 𝐻 ≠ {0} and 𝑆 = {𝑥1, 𝑥2, … , 𝑥𝑚} be any linearly independent set in H. 

If 𝑆 spans 𝐻 implies 𝑆 is a basis of 𝐻. 

otherwise there exist some 𝑥𝑚+1 in 𝐻 which is not in 𝑆. 

Then {𝑥1, 𝑥2, … , 𝑥𝑚, 𝑥𝑚+1} will be linearly independent as no vector in the set can be a linear 

combination of vectors that precede it. 

We can keep expanding S to a larger linearly independent set in H as long as the new set does 

not span H.  

However, the number of vectors in an expansion of S that is linearly independent can never be 

greater than the dimension of V. 

Hence the expansion of S will span H and therefore will be a basis for H, and 𝑑𝑖𝑚 𝐻 ≤  𝑑𝑖𝑚 𝑉. 

NOTE: 

1: Above theorem is also natural counterpart to the spanning set theorem. 

Theorem 1.5. Let 𝑽 be a 𝒑-dimensional vector space, 𝒑 ≥ 𝟏. Any linearly independent set 

of exactly 𝒑 elements in 𝑽 is automatically a basis for 𝑽. Any set of exactly p elements that 

spans V is automatically a basis for V. 

Proof. From Above theorem we conclude that, a linearly independent set 𝑆 of 𝑝 elements can 

be extended to a basis for 𝑉. 

But that basis must contain exactly 𝑝 elements, since 𝑑𝑖𝑚 𝑉 =  𝑝.  

So 𝑆 must already be a basis for 𝑉.  
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Let we assume that 𝑆 has 𝑝 elements and spans 𝑉.  

Since 𝑉 is nonzero, a subset 𝑆′ of 𝑆 is a basis of V (by the Spanning Set Theorem).  

Because𝑑𝑖𝑚 𝑉 = 𝑝, 𝑆 ′ must contain 𝑝 vectors. Therefore = 𝑆′ . 

2.5 APPLICATION TO MATRICES, RANK OF A MATRIX 

Suppose 𝐴 be any 𝑚𝑛  matrix over a field 𝐾. As we know that that the rows of 𝐴 may be viewed 

as vectors in 𝐾𝑛 and that the row space of 𝐴, written 𝑟𝑜𝑤𝑠𝑝(𝐴), is the subspace of 𝐾𝑛 spanned 

by the rows of A.  

Rank of matrix 𝑨: The rank of a matrix A, written 𝑟𝑎𝑛𝑘(𝐴), is equal to the maximum number 

of linearly independent rows of A or, equivalently, the dimension of the row space of 𝐴. 

The Dimensions of 𝑵𝒖𝒍 𝑨 and 𝑪𝒐𝒍 𝑨: 

The dimension of 𝑁𝑢𝑙 𝐴 is the number of free variables in the equation 𝐴𝑥 = 0, and the 

dimension of 𝐶𝑜𝑙 𝐴 is the number of pivot columns in 𝐴. 

As we know  vectors in 𝐾𝑛 and that the column space of A, written 𝑐𝑜𝑙𝑠𝑝(𝐴), is the subspace 

of 𝐾𝑛 spanned by the columns of A. Although m may not be equal to n—that is, the rows and 

columns of A may belong to different vector spaces—we have the following fundamental 

result. 

Theorem 1.6: The maximum number of linearly independent rows of any matrix A is 

equal to the maximum number of linearly independent columns of 𝑨. Hence, the 

dimension of the row space of A is equal to the dimension of the column space of 𝑨. 

Ex.1.9. Find the dimensions of the null space and the column space of 

[
−𝟑 𝟔 −𝟏 𝟏 −𝟕
𝟏 −𝟐 𝟐 𝟑 −𝟏
𝟐 −𝟒 𝟓 𝟖 −𝟒

]   

Proof. Let 𝐴 = [
−3 6 −1 1 −7
1 −2 2 3 −1
2 −4 5 8 −4

] 

Now we reduce above matrix in echelon form 

[
−3 6 −1 1 0
1 −2 2 3 0
2 −4 5 8 0

] (𝑏𝑦 𝐶5 → 𝐶2 + 𝐶4 + 𝑐5)  
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~ [
−3 6 −1 1 0
1 −2 2 3 0
2 −4 5 8 0

] (𝑏𝑦 𝑅3 → 𝑅1 + 𝑅2 + 𝑅3)  

~ [
−3 6 −1 1 0
1 −2 2 3 0
0 0 0 0 0

] (𝑏𝑦 𝑅3 → 𝑅1 + 𝑅2 + 𝑅3)  

~ [
−3 6 −1 1 0
0 0 5 10 0
0 0 0 0 0

] (𝑏𝑦 𝑅3 → 𝑅1 + 𝑅2 + 𝑅3)  

~ [
−3 6 −1 1 0
0 0 1 2 0
0 0 0 0 0

] (𝑏𝑦 𝑅2 →
𝑅2

2
)  

There are three free variables—𝑥2, 𝑥4, and 𝑥5. Hence the dimension of Nul A is 3.  

Also, 𝑑𝑖𝑚 𝐶𝑜𝑙 𝐴 =  2 because 𝐴 has two pivot columns. 

2.5.1 BASIS FINDING PROBLEMS 

An echelon form of any matrix 𝐴 gives us the solution to certain problems 

about A itself.  

Let 𝐴 = [

1 2 1 3
2 5 5 6
3 7 6 11
4 8 4 12

] 

[

1 2 1 3
2 5 5 6
3 7 6 11
4 8 4 12

]  

~[

1 2 1 3
0 1 3 0
0 1 3 2
0 0 0 0

]  (𝑏𝑦 𝑅2 → 𝑅2 − 2𝑅1, 𝑅3 → 𝑅3 − 3𝑅1 𝑎𝑛𝑑 𝑅4 → 𝑅4 − 3𝑅1 )  

~ [
1 2 1 3
0 1 3 0
0 0 0 2

] (𝑏𝑦 𝑅2 → 𝑅2 − 𝑅3) ~ [
1 2 1 3
0 1 3 0
0 0 0 1

] (𝑏𝑦 𝑅2 →
1

2
𝑅3) (pivots are circled) 
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Let 𝐵 = [
1 2 1 3
0 1 3 0
0 0 0 1

] then 𝐵 is echelon form of matrix 𝐴. 

We solve the following four problems about the matrix A, where 𝐶1;  𝐶2;  𝐶3and 𝐶4 denote its 

columns: 

(a) Find a basis of the row space of A. 

(b) Find each column 𝐶𝑘 of 𝐴 that is a linear combination of preceding columns of 𝐴. 

(c) Find a basis of the column space of A.  

(d) Find the rank of A. 

Answer:  

(a) We can see that 𝐴 and 𝐵 are row equivalent, so they have the same row space. Also, B is in 

echelon form, hence its nonzero rows are linearly independent and therefore form a basis of 

the row space of B. Thus, they also form a basis of the row space of A. i.e.  

basis of row space of A. i.e. 𝑏𝑎𝑠𝑖𝑠 𝑜𝑓 𝑟𝑜𝑤 𝑠𝑝(𝐴): (1,2,1,3), (0,1,3,0), (0,0,0,1) 

(b) Let 𝑀𝑘 = [𝐶1, 𝐶2……𝐶𝑘]., the submatrix of 𝐴 consisting of the first 𝑘 columns of A.  

Then 𝑀𝑘−1and 𝑀𝑘 are, respectively, the coefficient matrix and augmented matrix of the vector 

equation 

𝑥1𝐶1 + 𝑥2𝐶2 +⋯+ 𝑥𝑘−1𝐶𝑘−1 = 𝐶𝑘  

As we know that the system has a solution, or, equivalently, 𝐶𝑘 is a linear combination of the 

preceding columns of 𝐴 if and only if 𝑟𝑎𝑛𝑘 (𝑀𝑘) = 𝑟𝑎𝑛𝑘(𝑀𝑘−1)where 𝑟𝑎𝑛𝑘 (𝑀𝑘) means the 

number of pivots in an echelon form of 𝑀𝑘. 

Now the first 𝑘 column of the echelon matrix 𝐵 is also an echelon form of Mk.  

Hence, 𝑟𝑎𝑛𝑘 (𝑀3) = 𝑟𝑎𝑛𝑘(𝑀2) = 2 and 𝑟𝑎𝑛𝑘 (𝑀4) = 3 

Thus,𝐶3 is a linear combination of the preceding columns of A. 

(c) The fact that the remaining columns 𝐶1, 𝐶2, 𝐶4 are not linear combinations of their respective 

preceding columns also tells us that they are linearly independent. Thus, they form a basis of 

the column space of A. That is, 
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𝑏𝑎𝑠𝑖𝑠 𝑜𝑓 𝑐𝑜𝑙𝑠𝑝(𝐴): [

1
2
3
4

] , [

2
5
7
8

] , [

3
6
11
12

]  

Observe that 𝐶1, 𝐶2, 𝐶4 C4 may also be characterized as those columns of A that contain the 

pivots in any echelon form of A. 

(d) Here we see that three possible definitions of the rank of A yield the same value. 

(i) There are three pivots in B, which is an echelon form of A. 

(ii) The three pivots in B correspond to the nonzero rows of B, which form a basis of the row 

space of A. 

(iii) The three pivots in B correspond to the columns of A, which form a basis of the column 

space of A. 

Thus, 𝑟𝑎𝑛𝑘 (𝐴) = 3. 

2.5.2 APPLICATION TO HOMOGENEOUS SYSTEMS OF 

LINEAR EQUATIONS 

Consider a homogeneous system 𝐴𝑋 =  0 of linear equations over 𝐾 with n unknowns. 

As we know that the solution set 𝑊 of a homogeneous system 𝐴𝑋 =  0 in n unknowns is a 

subspace of 𝐾𝑛, hence 𝑊 has a dimension. 

Theorem 1.7: The dimension of the solution space W of a homogeneous system 𝑨𝑿 =  𝟎 is 

𝒏𝒓 , where 𝒏 is the number of unknowns and 𝒓 is the rank of the coefficient matrix 𝑨. 

Proof. In the case where the system 𝐴𝑋 =  0 is in echelon form, it has precisely n _ r free 

variables, say 𝑥𝑖1  ;  𝑥𝑖2  ;  . . . ;  𝑥𝑖𝑛−𝑟 . 

Let 𝑣𝑗  be the solution obtained by setting 𝑥𝑖𝑗 = 1 (or any nonzero constant) and the remaining 

free variables equal to 0. 

As we clearly see that the solutions 𝑣1;  𝑣2;  . . . ;  𝑣𝑛𝑟 are linearly independent. 

Hence, they form a basis of the solution space 𝑊. 
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CHECK YOURB PROGRESS 2 

1: Find a basis and the dimension of subspace 𝑊 = {[

𝑎 + 𝑏 + 2𝑐
2𝑎 + 𝑏 + 3𝑐 + 𝑑
𝑏 + 𝑐 + 3𝑑
𝑎 + 𝑐 + 𝑑

] : 𝑎, 𝑏, 𝑐, 𝑑 𝑎𝑟𝑒 𝑟𝑒𝑎𝑙} 

2: Find the dimensions of the null space and the column space of [
−1 6 −1 1 −7
1 −1 2 2 −1
2 −4 4 7 −4

] 

 

2.6 SUM AND DIRECT SUMS 

Let 𝑈 and 𝑊 be subsets of a vector space 𝑉. The sum of 𝑈 and 𝑊, written 𝑈 +  𝑊, consists of 

all sums 𝑢 +  𝑤 where 𝑢𝜖 𝑈 and 𝑤𝜖 𝑊. i.e., 

𝑈 +𝑊 = {𝑣: 𝑣 = 𝑢 + 𝑤,𝑤ℎ𝑒𝑟𝑒  𝑢𝜖 𝑈 and 𝑤𝜖 𝑊  

Now suppose 𝑈 and 𝑊 are subspaces of 𝑉.  

Then one can easily show that 𝑈 ∩  𝑊 is a subspace of 𝑉.  

As we know that 𝑈 ∩  𝑊 is also a subspace of 𝑉.  

The following theorem relates the dimensions of these subspaces. 

Theorem  1.8: If 𝑾𝟏 and 𝑾𝟐 are finite-dimensional subspaces of a vector space V, then 

𝑾𝟏+𝑾𝟐 is finite-dimensional and  

𝒅𝒊𝒎 𝑾𝟏  +  𝒅𝒊𝒎 𝑾𝟐  =  𝒅𝒊𝒎 (𝑾𝟏 ∩𝑾𝟐)  +  𝒅𝒊𝒎 (𝑾𝟏  +  𝑾𝟐). 

Proof. As we know if W is a subspace of a finite-dirnensional vector space V, 

every linearly independent subset of 𝑊 is finite and is part of a (finite) basis 

for 𝑊 and dim𝑊 < dim𝑉.  

Hence 𝑊1 ∩𝑊2 has a finite basis {𝑎1, . . . , 𝑎𝑘} which is part of a basis 

 {𝑎1, . . . , 𝑎𝑘, 𝑏1, … . , 𝑏𝑚} for 𝑊1 

and part of a basis 

{𝑎1, . . . , 𝑎𝑘, 𝑐1, … . , 𝑐𝑛} for 𝑊2. 
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The subspace 𝑊1 +𝑊2 is spanned by the vectors  

𝑎1, . . . , 𝑎𝑘, 𝑏1, … . , 𝑏𝑚, 𝑐1, … . , 𝑐𝑛    

and these vectors form an independent set.  

Let  

∑𝑥𝑖𝑎𝑖 +∑𝑦𝑗𝑏𝑗 + ∑𝑧𝑟𝑐𝑟 = 0  

which implies 

−∑𝑧𝑟𝑐𝑟 = ∑𝑥𝑖𝑎𝑖 + ∑𝑦𝑗𝑏𝑗  

Hence ∑𝑧𝑟𝑐𝑟 belong to 𝑊1. 

As ∑𝑧𝑟𝑐𝑟 also belongs to 𝑊2  it follows that 

∑𝑧𝑟𝑐𝑟 = ∑𝑑𝑖𝑎𝑖  

for certain scalars 𝑑1, … . , 𝑑𝑘.  

As the set is independent, each of the scalars 𝑧𝑟  =  0.  

Therefore 

∑𝑥𝑖𝑎𝑖 +∑𝑦𝑗𝑏𝑗 = 0 and because {𝑎1, . . . , 𝑎𝑘, 𝑏1, … . , 𝑏𝑚} the set is also an independent set, 

each 𝑥𝑖 = 0 and each 𝑦𝑖 = 0.  

Hence {𝑎1, . . . , 𝑎𝑘, 𝑏1, … . , 𝑏𝑚, 𝑐1, … . , 𝑐𝑛} is also a basis for 𝑊1 +𝑊2.  

Hence  

dim𝑊1 + dim𝑊2 = (𝑘 +  𝑚) + (𝑘 +  𝑛)  

                                  = 𝑘 + (𝑚 + 𝑘 + 𝑛)  

                                = 𝑑𝑖𝑚 (𝑊1 ∩ 𝑊2)  +  𝑑𝑖𝑚 (𝑊1  +  𝑊2).  

Direct Sums: The vector space 𝑉 is said to be the direct sum of its subspaces 𝑈 and 𝑊, denoted 

by 𝑉 = 𝑈⊕𝑊 if every 𝑣 𝑖𝑛 𝑉 can be written in one and only one way as 𝑣 = 𝑢 + 𝑤 where 

𝑢 ∈ 𝑈 and 𝑤 ∈  𝑊. 

General Direct Sums: The notion of a direct sum is extended to more than one factor in the 

obvious way. That is, V is the direct sum of subspaces 𝑊1;𝑊2;  . . . ;𝑊𝑟 , written 

𝑉 =  𝑊1⊕  𝑊2⊕……⊕𝑊𝑟  
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if every vector 𝑣 ∈  𝑉 can be written in one and only one way as 𝑣 = 𝑤1 + 𝑤2 +⋯+𝑤𝑟   

where 𝑤1 ∈  𝑊1;𝑤2  ∈  𝑊2; . . . ; 𝑤𝑟  ∈  𝑊𝑟 .  

2.7 COORDINATES 

Let 𝑉 be an 𝑛 −dimensional vector space over 𝐾 with basis 𝑆 = {𝑢1;  𝑢2;  . . . ;  𝑢𝑛}. Then any 

vector 𝑣 𝑖𝑛 𝑉 can be expressed uniquely as a linear combination of the basis vectors in S, say 

𝑣 = 𝑎1𝑢1 + 𝑎2𝑢2 + __ _ + 𝑎𝑛𝑢𝑛  

These 𝑛 scalars 𝑎1;  𝑎2;  . . . ;  𝑎𝑛 are called the coordinates of 𝑣 relative to the basis 𝑆, and they 

form a vector [𝑎1;  𝑎2;  . . . ;  𝑎𝑛] in 𝐾𝑛 called the coordinate vector of 𝑣 relative to 𝑆.  

We denote this vector by [𝑣]𝑠, or simply [𝑣] when S is understood.  

Therefore, 

[𝑣𝑠] = [𝑎1, 𝑎2, … , 𝑎𝑛]  

Ex. Consider the vector space 𝑷𝟐(𝒕) of polynomials of degree ≤ 𝟐. The polynomials 

𝒑𝟏 = 𝒕 + 𝟏,      𝒑𝟐 = 𝒕 − 𝟏,    𝒑𝟑 = (𝒕 − 𝟏)𝟐 = 𝒕𝟐 − 𝟐𝒕 + 𝟏 form a basis 𝑺 of 𝑷𝟐(𝒕). Find the 

coordinates. 

Proof. The coordinate vector [𝑣]𝑜𝑓 𝑣 =  2𝑡2 − 5𝑡 +  9 relative to 𝑆 is obtained as follows. 

Set 𝑣 =  𝑥𝑝1 +  𝑦𝑝2 +  𝑧𝑝3 using unknown scalars 𝑥, 𝑦, 𝑧, and simplify: 

2𝑡2 − 5𝑡 +  9 = 𝑥(𝑡 + 1) + 𝑦(𝑡 − 1) + 𝑧(𝑡2 − 2𝑡 + 1)  

                          = 𝑥𝑡 + 𝑥 + 𝑦𝑡 − 𝑦 + 𝑧𝑡2 − 2𝑧𝑡 + 𝑧  

                          = 𝑧𝑡2 + (𝑥 + 𝑦 − 2𝑧)𝑡 + (𝑥 − 𝑦 + 𝑧)  

Then set the coefficients of the same powers of 𝑡 equal to each other to obtain the system 

𝑧 = 2,                           𝑥 + 𝑦 − 2𝑧 = −5,       𝑥 − 𝑦 + 𝑧 = 9  

The solution of the system is 𝑥 =  3, 𝑦 = −4, 𝑧 =  2. Therefore, 

𝑣 =  3𝑝1 −  4𝑝2 +  2𝑝3 and hence; [𝑣] = [3,−4,2]. 

 

 



ADVANCED LINEAR ALGEBRA  MAT-505 
 

  

DEPARTMENT OF MATHEMATICS 

UTARAKHAND OPEN UNIVERSITY 
PAGE 37 

 

NOTE:  

There is a geometrical interpretation of the coordinates of a vector v relative to a basis S for 

the real space 𝑅𝑛, which we illustrate using the basis 𝑆 of 𝑅3 in above example. First consider 

the space 

𝑅3 with the usual 𝑥, 𝑦, 𝑧 axes. Then the basis vectors determine a new coordinate system of 𝑅3, 

say with 𝑥0, 𝑦0, 𝑧0 axes, as shown in Fig.2. i.e., 

(1) The 𝑥0-axis is in the direction of 𝑢1 with unit length ||𝑢1||. 

(2) The 𝑦0-axis is in the direction of 𝑢2 with unit length ||𝑢2||. 

(3) The 𝑧0-axis is in the direction of 𝑢3 with unit length ||𝑢3||. 

Then each vector 𝑣 = (𝑎, 𝑏, 𝑐) or, equivalently, the point 𝑃(𝑎, 𝑏, 𝑐) in 𝑅3 will have new 

coordinates with respect to the new 𝑥0, 𝑦0, 𝑧0 axes. These new coordinates are precisely [𝑣]𝑠, 

the coordinates of v with respect to the basis 𝑆. 

 

2.8 SUMMARY 

 

We discussed about basis and dimension of the vector space and also with the help of them 

solve number of illustrative examples.  

 

2.9 GLOSSARY 

 Basis 

 Dimension 

 Coordinates 

 Direct sum 

Fig. 2.1 



ADVANCED LINEAR ALGEBRA  MAT-505 
 

  

DEPARTMENT OF MATHEMATICS 

UTARAKHAND OPEN UNIVERSITY 
PAGE 38 

 

 

2.10 REFERENCES 

 

 David C. Lay, Linear Algebra and its Application, 3rd Edition, Pearson Education Asia, 

India Reprint, 2007. 

 Seymour Lipshutz and Marc Lipson, Schaum’s outlines “linear Algebra”, 3rd Edition, 

Mc Graw Hill Education, 2012. 

 Gilbert Strang, Introduction to Linear Algebra (Gilbert Strang), 5th Edition  

 

2.11 SUGGESTED READINGS 

 

 P.B. Bhattacharya, S.K. Jain and S.R Nagpaul, First Course in Linear Algebra, Wiley 

Eastern Ltd., 1991. 

 S.H Friedberg, A.J. Insel and L.E.Spence, Linear Algebra, 4th Edition, Prentice-Hall of 

India, New Delhi, 2004. 

 R.K. Gupta, Linear Programming, Krishna Prakasan, 2010 

 K. Hoffman and R. Kunze, Linear Algebra, 2nd Edition, Prentice-Hall of India, New 

Delhi, 2000. 

 D. Kalman, A singularly valuable decomposition; the SVD of a matrix, The College 

Math. Journal, Vol .27, No.1, (1996). 

 S. Kumaresan, Linear Algebra-A Geometric approach, Prentice-Hall of India, New 

Delhi, 2001.  

 

2.12 TERMINAL QUESTIONS 

 

(TQ-1) Define basis. 

(TQ-2) Define Dimensions. 

(TQ-3) Give example of basis. 

 

Choose one of correct Choioce: 

(TQ-4) Let U and W be subspaces of a vector space then 

a) U+V is subspace of V 

b) U and W are contained in U+W 

c) 𝑊+𝑊 =𝑊 

d) All of the above 



ADVANCED LINEAR ALGEBRA  MAT-505 
 

  

DEPARTMENT OF MATHEMATICS 

UTARAKHAND OPEN UNIVERSITY 
PAGE 39 

 

(TQ-5) The coordinate vector of 𝑣 = (𝑎, 𝑏, 𝑐) in 𝑅3 relative to (a) the usual basis 𝐸 =

{(1,0,0), (0,1,0), (0,0,1)} is  

a) [𝑎, 𝑏, −𝑐] 

b) [𝑎/2, 𝑏/2, 𝑐/2] 

c)  [2𝑎, 2𝑏, 2𝑐] 

d)  [𝑎, 𝑏, 𝑐] 

(TQ-6)  Does the vectors 𝑣1  =  (−3, 7) and 𝑣2  =  (5, 5) form a basis for 𝑅2. 

a).  Data not complete 

b).  No 

c).  Yes 

d).  Not in 𝑅2 

(TQ-7) Are the vectors 𝑣1  =  (2, 0, −1), 𝑣2  =  (4, 0, 7), and 𝑣3  = (−1, 1, 4) linearly 

independent in𝑅3? 

a)  linearly dependent 

b)  linearly independent 

c) Data not complete 

d)  none of the above 

2.13 ANSWERS 

Answer of check your progress 1: 

2: Linearly dependent 

Answer of terminal question 

(TQ-4) (d) 

(TQ-5) (d)                          

(TQ-6) (c) 

(TQ-7) (a) 
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UNIT-3: LINEAR TRANSFORMATION 

CONTENTS: 

3.1  Introduction 

3.2  Objectives 

3.3  Homomorphism of vector space or linear transformation 

3.4  Some special linear transformation 

3.5 Isomorphism of vector space 

3.6 Summary 

3.7  Glossary  

3.8   References 

3.9 Suggested Readings 

3.10  Terminal Questions 

3.11 Answers 

3.1 INTRODUCTION 

By much, the idea of a matrix did not come before the idea of a linear transformation. Sylvester 

only used the name "matrix" to refer to an array of integers in 1850, despite the fact that matrices 

are implicitly mentioned in Cramer's work on determinants (1750), Euler's (1760), and Cauchy's 

(1829) work on quadratic forms. Though he did not work with them much, Cayley began to 

construct a theory about them in 1857, when he found that every matrix satisfies an equation of 

its own order and defined "characteristic values".  

Around the same period, the idea of linear transformations is mentioned implicitly in Grassman's 

Ausdehnungslehre (1844), and particularly in Hamilton's work on quaternions (1845–1849), 

which heavily relied on quaternions' capacity to describe rotations in space. Motivated by the 

idea of describing forces in statics, Darboux presented the first axiomatization of vector spaces in 
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1875. This one looked very different from the current one. Furthermore, Peano provided an 

essentially modern axiomatization in 1888, but like Sylvester, he did not do much with it and few 

people took notice of it. 

A key idea in mathematics is linear transformation, especially when it comes to linear algebra. It 

is a mapping that maintains the scalar multiplication and vector addition operations between two 

vector spaces. A function that takes a vector and converts it into another vector in a fashion that 

is consistent with the vector space's structure is known as a linear transformation. 

 

15 April 1809- 26 September 1877 

https://en.wikipedia.org/wiki/Hermann_Grassmann 

German polymath Hermann Günther 

Grassmann (15 April 1809 – 26 September 

1877) was renowned both as a mathematician 

and linguist in his day. In addition, he was a 

publisher, general scholar, and physicist. Not 

much was known about his mathematical 

efforts until he was in his sixties. His approach 

was both ahead of and better than the idea that 

is currently understood as a vector space. He 

presented the Grassmannian, a space that 

parameterizes every linear subspace of k 

dimensions in an n-dimensional vector space 

V. 

3.2 OBJECTIVE 

After reading this unit learners will be able to  

 Understand the basic concept of linear transformation. 

 Visualized the concept of homomorphism and isomorphism in vector space. 

 Implement the important theorem of linear transformation. 

3.3 HOMOMORPHISM OF VECTOR SPACE OR LINEAR 

TRANSFORMATION 

Definition: Let ( )U F  and ( )V F  be two vector spaces. Then the mapping :f U V  is called a 

homomorphism or a linear transformation of U into V if they satisfy the following properties, 

(i) ( ) ( ) ( ), ,f f f U           
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(ii) ( ) ( )f a af U      

The conditions (i) and (ii) can also be combined into the single condition i.e., 

( ) ( ) ( ), , ,f a b af bf a b F and U             

If f is a homomorphism of U into V , then V is called a homomorphic image of U. 

Theorem 1: If f  be a homomorphism of ( )U F into ( )V F , then 

(i) 
'(0) 0f  where 0 and '0 are the zero’s of vector U and V respectively.  

(ii) ( ) ( )f f U        

Proof (i): Let .U  Then ( )f V  . Since '0 is the zero vector of V , therefore  

'( ) 0 ( ) ( 0) ( ) (0).f f f f f          

Now V is an abelian group with respect to addition of vectors. 

)0()(0)( ' fff     

)0(0' f                                                                       [By left cancellation rule] 

(ii) If ,U  then U . Also we have  

)()()]([)0(0'   ffff . 

Now  )(0)()( '  fff additive inverse of )(f  

)()(  ff   

Another definition of linear transformation:  

Definition: Let ( )U F  and ( )V F  be two vector spaces over the same field F . A linear 

transformation from U into V is a function T from U into V such that 

)()()(  bTaTbaT                                                              …. (1) 

for all , in U and for all Fba , . 
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The condition (1) is also called linearity property.  

Linear operator: Let )(FV  be a vector space. A linear operator on V is a function T from V

into V such that 

)()()(  bTaTbaT  , for all FbaandV  ,,  

Thus T is a linear operator on V if T is linear transformation from V into V itself. 

Example 1: The function )()(: 23 RVRVT   

Defined by RbabacbaT  ,),(),,(  is a linear transformation from )(3 RV  into )(2 RV . 

Let )(),,(),,,( 3222111 RVcbacba    

If Rba , , then  

)],,(),,([)( 222111 cbabcbaaTbaT    

                         ),,( 212121 bcccbbabbaaaT   

                         ),( 2121 bbabbaaa                                                  [by def. of T ] 

                         ),(),( 2211 bbbaabaa   

                         ),(),( 2211 babbaa   

                         ),,(),,( 222111 cbabcbaa   

                         )()(  bTaT  . 

Hence T is a linear transformation from )(3 RV  into )(2 RV  

Example 2: Let )(FV be the vector space of all nm  matrices over the field F . Let P be a 

fixed mm matrix over F , and let Q  be a fixed nn matrix over F . The correspondence T

from V into V defined by   

VAPAQAT )(  

is a linear operator on V . 
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If A is an nm  matrix over the field F , then PAQ is also an nm  matrix over the field F . 

Therefore T is a function from V into V . Now let VBA , and Fba , . Then  

QbBaAPbBaAT )()(                         [By definition of T] 

)()()( BbTAaTbPBQaPAQQbPBaPA   

So, T is a linear transformation from V into V . Thus T is a linear operator on V . 

3.4 SOME SPECIAL LINEAR TRANSFORMATION 

Some important linear transformation: 

1. Zero transformation: Let )(FU  and )(FV  be two vector spaces. The function T , from 

U into V defined by, 0)( T      (from zero vector of UV ) , is a linear transformation 

from U into V . Let U, and Fba , . Then Uba   . 

We have 0)(   baT  

   )()(00  bTaTba  . 

T is a linear transformation and we will denote it by 
^

0 . 

2. Identity transformation: Let )(FV  be a vector space. The function I from V into V

defined by VI  )(  is a linear transformation from V into V . 

If V, and Fba , , then Vba   and we have 

)()()(  bIaIbaI   

I is a linear transformation from V into V . This transformation is called as identity operator 

on V and denoted by .I  

3. Negative of a linear transformation: Let )(FU  and )(FV  be two vector spaces. The 

function T be the linear transformation from U into V . The correspondence T defined by 

UTT   )]([))(( is a linear transformation from U into V . 

Since VTVT  )]([)(  , therefore T is a function from U into V . 

Let U, and Fba , . Then Uba   and we have 

)]([))((  baTbaT                                         [By definition] 

)]()([  bTaT                                                   [ T is a linear transformation] 

].)[(])[()]([)]([  TbTaTbTa   

T is a linear transformation from U into V . The linear transformation T is called the 

negative of the linear transformation T . 

Some properties of linear transformation: 
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Theorem 2: Let T be a linear transformation from a vector space )(FU  into a vector space 

)(FV . Then 

(i) '0)0( T where '0 on the left hand side is zero vector of U and 0 on the right hand side is 

zero vector of .V  

(ii) UTT   )()(  

(iii) UTTT   ,)()()(  

(iv) )(...)()()...( 22112211 nnnn TaTaTaaaaT    

Where Un  ,...,, 21  and Faaa n ,...,, 21  

Proof (i): Let U . Then VT )( . We have  

)(0)(  TT                                         [ 0  is zero vector space of V and VT )( ] 

)0(  T    [ 0  is zero vector space of U ] 

)0()( TT    

Now in the vector space V , we have 

)0()(0)( TTT    

),0(0 T by left cancellation law for addition in V . 

Note: When we write 0)0( T , there should be no confusion about the vector 0. Here T is a 

function from U into V . Therefore if ,0 U then its image under T i.e., VT )0( . Thus in 

,0)0( T the zero on the right hand side is zero vector of .V  

(ii) We have )()()]([   TTT                [ T  is a linear transformation] 

But VTT  0)0()]([                                    [By (i)] 

Thus in ,V  we have  

0)()(   TT  

)()(   TT  

(iii) )]([)(   TT  

)()(   TT                                                               [ T  is a linear transformation] 

)()(   TT  

)()(  TT   

(iv) We shall prove this result using induction method on n , the number of vectors in the 

linear combination nnaaa   ...2211 .  

Suppose )(...)()()...( 112211112211   nnnn TaTaTaaaaT         … (1) 

Then, )...( 112211  nnaaaT   

])...[( 112211 nnnn aaaaT     

)()](...)()([ 112211 nnnn TaTaTaTa                                                          by (1) 
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)()(...)()( 112211 nnnn TaTaTaTa   
 

Now the proof is complete by induction method. Since the result is true when the number of 

vectors in the linear combination is 1.  

Example 1: Show that the mapping )()(: 23 RVRVT   defined as  

)23,23(),,( 321321321 aaaaaaaaaT   is a linear transformation from )(3 RV to )(2 RV  

Proof: Let )(),,(),,,( 3321321 RVbbbaaa   .  

Then )23,23(),,()( 321321321 aaaaaaaaaTT   

And )23,23(),,()( 321321321 bbbbbbbbbTT  . 

Let Rba , . Then )(3 RVba   . We have  

)],,(),,([)( 321321 bbbbaaaaTbaT    

),,( 332211 bbaabbaabbaaT   

))(2)(3,)(2)3(3( 332211332211 bbaabbaabbaabbaabbaabbaa   

)23()23(),23()23(( 321321321321 bbbbaaaabbbbaaaa   

)23,23()23,23( 321321321321 bbbbbbbaaaaaaa   

)()(  bTaT   

Example 2: Show that the mapping )()(: 32 RVRVT   defined as 

),,(),( bbababaT   

is a linear transformation from )(2 RV  into )(3 RV . 

Solution: Let the vectors )(),(),,( 22211 RVbaba   . 

Then ),,(),()( 1111111 bbababaTT   and ).,,()( 22222 bbabaT   

Also let Rba , . Then )(2 RVba    and 

)],(),([)( 2211 babbaaTbaT    

),( 2121 bbabbaaaT   

),,( 2121212121 bbabbbabbaaabbabbaaa   

),,(),,( 2222211111 bbababbbabaa   

)()(  bTaT   

T is a linear transformation from )(2 RV  into )(3 RV . 

3.5 ISOMORPHISM OF VECTOR SPACE 

Definition: Let )(FU  and )(FV be two vector spaces. Then a mapping VUf : is called an 

isomorphism of U onto V if 

(i) f is one-one 
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(ii) f  is onto 

(iii) UFbabfafbaf   ,,,)()()(  

Also then the two vector spaces U and V are said to be isomorphic and symbolically we write 

)()( FVFU  . 

The vector space )(FV is also called the isomorphic image of the vector space )(FU . If f is 

homomorphism of )(FU into )(FV , then f will becomes an isomorphism of U into V if f is 

one-one. Also in addition if f is onto V , then f will become an isomorphism of U onto V . 

Isomorphism of finite dimensional vector space: 

Theorem 1: Two finite dimensional vector spaces over the same field are isomorphic if and only 

if they are of the same dimension. 

Proof: First suppose that )(FU and )(FV are two finite dimensional vector spaces each of 

dimension n . Then to prove that )()( FVFU  . 

Let the sets of vectors },...,,,{ 321 n and },...,,,{ 321 n are the bases of U and V

respectively.  

Any vector U can be uniquely expressed as  

nnaaa   ...2211  

Let VUf : be defined by 

nnaaaf   ...)( 2211 . 

Since in the expression of  as a linear combination of },...,,,{ 321 n the scalars naaa ,...,, 21

are unique, therefore the mapping f is well defined. 

i.e., )(f is a unique element of V .  

f is one-one: We have  

)...()...( 22112211 nnnn bbbfaaaf    

nnnn bbbaaa   ...... 22112211  

'

222111 0)(...)()(  nnn bababa                   [zero vector of V ] 

0,...,0,0 2211  nn bababa  because 

n ,...,, 21  are linearly independent 

nn bababa  ,...,, 2211  

nnnn bbbaaa   ...... 22112211  

f is one-one. 

f is linear transformation: We have  

)]...()...([ 22112211 nnnn bbbbaaaaf    

)])(...)()[( 222111 nnn bbaabbaabbaaf    
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)])(...)()( 222111 nnn bbaabbaabbaa    

)...()...( 22112211 nnnn bbbbaaaa    

)...()...( 22112211 nnnn bbbbfaaaaf    

f is linear transformation. 

Hence f is an isomorphism of U into V . 

Thus VU   

Conversely, Let )(FU  and )(FV be two isomorphic finite dimensional vector spaces. Now we 

have to prove that VU dimdim  . 

Let nU dim . Let  nS  ,...,, 21  be a basis of U . If f is an isomorphism of U onto ,V we 

shall show that  )(),...,(),( 21

'

nfffS   is a basis of V . Then V will also be a finite 

dimensional n . First we will show that 'S is linearly independent.  

Let 
'

2211 0)(...)()(  nn fafafa                                                (Zero vector of V ) 

'

2211 0)...(  nnaaaf                                    [ f  is a linear transformation] 

0...2211  nnaaa                  [ f is one-one and '0)0( f , where U0 ] 

0,...0,0 21  naaa   since n ,...,, 21  are linearly independent. Hence 'S is linearly 

independent. 

Now we have only to prove that VSL )( '
. For it let any vector V can be expressed as a 

linear combination of the vectors of the set 'S . Since f is onto V , therefore V there 

exists U such that  )(f . 

Let nnccc   ...2211 . 

Then )...()( 2211 nncccff    

)(...)()( 2211 nn fcfcfc    

Thus  is a linear transformation of the vector of 'S . 

Hence )( 'SLV  . 

'S is a basis of V . Since 'S contains n vectors, therefore nV dim  

Note: While proving the converse, we have proved that if f is an isomorphism of U onto V , 

then f maps a basis of U onto a basis of V . 

Theorem 2: Every n dimensional vector space )(FV  is isomorphic to )(FVn . 

Proof: Let },...,,{ 21 n  be any basis of )(FV . Then every vector V can be uniquely 

expressed as  

Faaaa inn  ,...2211   

The ordered n tuple )(),...,,( 21 FVaaa nn  . 
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Let )()(: FVFVf n  be defined by ),...,,()( 21 naaaf  . 

Since in the expression of  as a linear combination of n ,...,, 21 the scalars 
naaa ,...,, 21

are 

unique, therefore )(f is a unique element of )(FVn and thus the mapping f is well defined. 

f is one-one: Let 
nnaaa   ...2211
 and 

nnbbb   ...2211
be any two 

elements of V . We have )()(  ff   

)...()...( 22112211 nnnn bbbfaaaf    

),...,,(),...,,( 2121 nn bbbaaa   

nn bababa  ,...,, 2211
 

   

Hence, f is one-one. 

f is onto )(FVn : Let ),...,,( 21 naaa  be any element of )(FVn . Then there exists an element 

)(...2211 FVaaa nn    such that ),...,,()...( 212211 nnn aaaaaaf   . 

f is onto )(FVn . 

f is linear transformation: If Fba , and )(, FV  we have 

)]...()...([)( 22112211 nnnn bbbbaaaafbaf    

])(...)()[( 222111 nnn bbaabbaabbaaf    

),...,,( 2211 nn bbaabbaabbaa   

),...,,(),...,( 2121 nn bbbbbbaaaaaa   

),...,,(),...,( 2121 nn bbbbaaaa   

)...()...( 22112211 nnnn bbbbfaaaaf    

)()(  bfaf   

f is a linear transformation. 

f is an isomorphism of )(FV  onto )(FVn . 

Hence )()( FVFV n . 

Solved Example 

Example 1: Show that the mapping )()(: 23 FVFVf   defined by  

),(),,( 21321 aaaaaf   

Is a homomorphism of )(3 FV onto )(2 FV . 

Solution: Let ),,( 321 aaa  and ),,( 321 bbb  be any two elements of )(3 FV . Also let ba, be 

any two elements of F . We have  

)],,(),,([)( 321321 bbbbaaaafbaf    

),,(),,(),(),( 3213212121 bbbbfaaaafbbbaaa   
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)()(  bfaf   

f  is a linear transformation. 

To show that f is onto )(2 FV . Let ),( 21 aa be any element of )(2 FV . Then )()0,,( 321 FVaa   and 

we have ),()0,,( 2121 aaaaf  . Therefore f is onto )(2 FV . 

Example 2: Let )(RV  be the vector space of all complex numbers iba  over the field of reals 

R and let T be a mapping from )(RV to )(2 RV defined as ),()( baibaT  . Show that T is an 

isomorphism. 

Solution: T is one-one: Let idciba   , be any two members of )(RV . Then 

Rdcba ,,, . 

We have 

),(),()()( dcbaTT    

idcibadbca  ,  

   

T is one-one. 

T is on-to: Let ),( ba  be an arbitrary member of )(2 RV . Then there exist a vector )(RViba 

such that ),()( baibaT  . Hence T is onto. 

T is linear transformation: Let idciba   ,  be any two members of )(RV  and 21, kk  

be any two elements of field .R Then 

)()()()( 21212121 dkbkickakidckibakkk    

We have  

)()()( 212121 dkbkickakkkT   , by definition of T  

                          ),(),(),(),( 212221 dckbakdkckbkak   

                          )()( 21 idcTkibaTk   

                          )()( 21  TkTk   

Hence T is a linear transformation. 

Thus T is an isomorphism. 

Example 3: If V is a finite dimensional vector space and f is an isomorphism of V into V , 

prove that f must map V onto V . 

Proof: Let )(FV be a n dimensional vector space. Let f be an isomorphism of V into V i.e., f  

is a linear transformation and f is one-one. Now we have to prove that f is onto V . 

Let  nS  ,...,, 21  be a basis of V . First we will prove that 

 )(),...,(),( 21

'

nfffS   is also a basis of V . We claim that 'S is linearly independent. For 

it let, 0)(...)()( 2211  nn fafafa                                                   (zero vector of V ) 

0)...( 2211  nnaaaf                                               [ f is linear transformation] 
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0...2211  nnaaa                                                      [ f is one-one and 0)0( f ] 

0,...,0,0 21  naaa since 
n ,...,, 21
 are linearly independent. 

'S is linearly independent. 

Now V is of dimension n and 'S is linearly independent subset of V containing n vectors. 

Therefore 'S must be a basis of V . Therefore each vector in V can be expressed as a linear 

combination of the vectors belonging to 'S .  

Now we shall show that f is onto V . Let  be any element of .V  Then there exist scalars 

nccc ,...,, 21  such that 

)(...)()( 2211 nn fcfcfc    

)...( 2211 nncccf    

Now },...,,{ 21 nS   and f image of this element is  . Therefore f is onto V . Hence f is 

an isomorphism of V onto V . 

Example 4: If V is a finite dimensional and f is a homomorphism of V onto V prove that f

must be one-one and so, an isomorphism. 

Solution: Let )(FV be a finite dimensional vector space of dimension .n Let f be a 

homomorphism of V onto V i.e., f is a linear transformation and f is onto V . To prove that f

is one-one.  

Let },...,,{ 21 nS  be a basis of V . We shall first prove that )}(),...,(),({ 21

'

nfffS   is 

also a basis of V . We claim that VSL )( ' . The proof is as follows: 

Let  be any element of V . We shall show that  can be expressed as a linear combination of 

)(),...,(),( 21 nfff  . Since f is onto V , therefore V implies that there exist V such 

that  )(f . Now  can be expressed as a linear combination of n ,...,, 21 . Let  

nnaaa   ...2211  

Then, )...()( 2211 nnaaaff    

)(...)()( 2211 nn fafafa    

Thus  has been expressed as a linear combination  of )(),...,(),( 21 nfff  . 

Therefore VSL )( '
. 

Since V is of finite dimension n  and 'S is a subset of V containing n vectors and VSL )( '
, 

therefore 'S must be a basis of V . Therefore each vector in V can be expressed as a linear 

combination of vectors belonging to 'S and 'S is linearly independent. Now we shall show that 

f is one-one. Let  and  be any two elements of V such that 

nnnn dddccc   ...,... 22112211  
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We have )()(  ff   

)...()...( 22112211 nnnn dddfcccf    

)(...)()()(...)()( 22112211 nnnn fdfdfdfcfcfc    

0)()(...)()()()( 222111  nnn fdcfdcfdc   

0,...,0,0 2211  nn dcdcdc  

Since )(),...,(),( 21 nfff   are linearly independent 

nn dcdcdc  ,...,, 2211
 

   

f is one-one. 

f is an isomorphism of V onto V . 

Example 5: If V is finite dimensional vector space and f is a homomorphism of V into itself 

which is not onto prove that there is some 0 in V such that 0)( f . 

Solution: If f is a homomorphism of V into itself, then 0)0( f . Suppose there is no non-zero 

vector  in V such that 0)( f . Then f is one-one. Because 

)()(  ff   

0)()(   ff  

0)(  f  

  0  

Now V is finite dimensional and f is a linear transformation of V into itself. Since f is one-one, 

therefore f must be onto V . But it is given that f is not onto. Therefore our assumption is 

wrong. Hence there will be a non-zero vector  in V such that 0)(  f . 

Example 6: Define linear transformation of a vector space )(FV into a vector space )(FW . 

Show that the mapping )3,2(),(:  babaT  

of )(2 RV  into itself is not a linear transformation. 

Solution: We have to prove that the mapping 

)3,2(),(:  babaT  

Of )(2 RV into itself is not a linear transformation. 

Take )2,1( and )3,1(  as two vectors of )(2 RV  and 1,1  ba  as two elements of the 

field R . 

Then )5,2()3,1()2,1()3,1(1)2,1(1   ba  

By the definition of the mapping T , we have 

)8,4()35,22()5,2()(  TbaT                                                        … (1) 

Also )5,3()32,21()2,1()( TT   
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And )6,3()33,21()3,1()( TT  . 

)11,6()6,3()5,3()6,3(1)5,3(1)()(   bTaT                            … (2) 

From equation (1) and (2), we see that 

)()()(  bTaTbaT   

Hence T is not a linear transformation.  

Example 7: Let f be a linear transformation from a vector space U into a vector space V . If S is 

a subspace of U , prove that )(Sf  will be a subspace of V . 

Solution: Since )(FU  and )(FV  are two vector space over the same field F . The mapping f is 

linear transformation of U into V i.e.,  

VUf :  such that 

Fbabfafbaf  ,)()()(  and U,  

Let S be a subspace of U . Then to prove that )(Sf is a subspace of V . Let Fba , and 

SwhereSfff   ,)()(),( . 

Since S is a subspace of U , therefore Fba , and SbaS  ,  

)()( Sfbaf    

)()()( Sfbfaf                                                         [ )()()(  bfafbaf  ] 

Thus Fba , and )()(),( Sfff   

)()()( Sfbfaf    

Hence )(Sf is a subspace of V . 

Example 8: If VUf : is an isomorphism of the vector space U into the vector space V , then 

a set of vectors )}(),...,(),({ 21 rfff  is linearly independent if and only if the set 

},...,,{ 21 r is linearly independent. 

Solution: )(FU  and )(FV  are two vector spaces over the same field F and f is an 

isomorphism of U into V i.e., 

VUf :  such that 

f is 11 and Fbabfafbaf  ,)()()(  and U ,  

Let },...,,{ 21 r be a subset of U . First suppose that the vector 
r ,...,, 21
 are linearly 

independent. Then to show that the vectors )(),...,(),( 21 rfff  are also linearly independent. 

We have 

0)(...)()( 2211  rr fafafa                                            where Faaa r ,...,, 21
 

0)...( 2211  rraaaf                                   [ f  is linear information]               

)0()...( 2211 faaaf rr                               [ 0)0( f ] 

0...2211  rraaa                                         [ f is 1-1] 

0,...,0,0 21  raaa  since the vectors 
r ,...,, 21
 are linearly independent.  
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Hence the vector )(),...,(),( 21 rfff   are also linearly independent.  

Conversely suppose that the vectors )(),...,(),( 21 rfff   are linearly independent. Then show 

that the vectors 
r ,...,, 21
are also linearly independent. 

We have  

0...2211  rraaa   where Faaa r ,...,, 21
 

)0()...( 2211 faaaf rr    

0)(...)()( 2211  rr fafafa                        [ f  is linear information]       

0,...,0,0 21  raaa       

Since the vectors )(),...,(),( 21 rfff   are linearly independent. Hence the vectors 

r ,...,, 21
 are also linearly independent.  

Check your progress 

Problem 1: Verify that the mapping 33: FFT  defined by, 

)2,2,(),,( yxzyxzyxzyxT   is a linear transformation. 

Problem 2: Verify that the mapping )()(: 23 RVRVT  defined by ),(),,( cabacbaT   is a 

linear transformation. 

Problem 3: Show that the mapping 32: RRT  defined as ),,(),( aabbabaT   is a linear 

transformation from 2R  into 3R . 

 

3.6 SUMMARY 

In this unit, we have learned about the important concept of linear algebra like, linear 

transformation, homomorphism and isomorphism in vector space. Given that they maintain a 

vector space's structure; linear transformations are advantageous. Therefore, under certain 

circumstances, a lot of qualitative evaluations of a vector space that is the domain of a linear 

transformation may automatically hold in the image of the linear transformation. These essential 

tools are very important to solve many matrices related problems. The overall summarization of 

this units are as follows:  

 Two finite dimensional vector spaces over the same field are isomorphic if and only if 

they are of the same dimension. 

 Every n dimensional vector space )(FV  is isomorphic to )(FVn . 
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3.7 GLOSSARY 

 Linear transformation 

 Homomorphism 

 Isomorphism 
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 Gelʹfand I.M. Lectures on linear algebra (1989), Courier Corporation. 

 Kenneth Hoffman & Ray Kunze, Linear Algebra (2nd edition)(2015), Prentice-Hall.   

 David C. Lay, Linear Algebra and its Application (3rd Edition) (2007) Pearson Education 
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 Seymour Lipshutz and Marc Lipson, Schaum’s outlines “Linear Algebra” (3rd 

Edition)(2012), Mc Graw Hill Education. 

 J. N. Sharma and A. R. Vasistha, Linear Algebra (29th Edition) (1999), Krishna 

Prakashan. 

3.9 SUGGESTED READING 

 Minking Eie & Shou-Te Chang (2020), A First Course In Linear Algebra, World 

Scientific. 

 Axler, Sheldon (2015), Linear algebra done right. Springer. 

 https://nptel.ac.in/courses/111106051 

 https://archive.nptel.ac.in/courses/111/104/111104137 

 https://epgp.inflibnet.ac.in/ 

 https://old.sggu.ac.in/wp-content/uploads/2020/07/Linear-AlgebraTY_506.pdf 

3.10 TERMINAL QUESTION 

Long Answer Type Question: 

1. Let )()(: 22 RVRVT  be defined as  

),(),( 1111 abbaT  , show that T is an isomorphism. 

https://www.meripustak.com/Author-Minking-Eie-and-Shou-Te-Chang
https://nptel.ac.in/courses/111106051
https://archive.nptel.ac.in/courses/111/104/111104137
https://epgp.inflibnet.ac.in/
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2. If f is an isomorphism of a vector space V onto a vector space W , prove that f maps a 

basis of V onto a basis of .W  

3. If VUf : is an isomorphism of the vector space U into the vector space V , then a set 

of vectors )(),...,(),( 21 rfff  is linearly dependent in V if and only if the set 

r ,...,, 21 is linearly dependent in U .  

4. Prove that a finite dimensional vector space )(RV  with dimension nV   is isomorphic to 

nR . 

5. Let V be a finite dimensional vector space. If VVf : is a one-one linear 

transformation, show that f is an isomorphism of V onto itself.  

6. If T is a linear operator on a finite dimensional vector space V , show that T is one-one if 

and only if T is onto. 

7. Define the following. 

 (i) Linear transformation 

 (ii) Homomorphism 

 (iii) Isomorphism 

Short answer type question: 

1. Show that the mapping 33: FFT   defined by, 

)22,2,2(),,( zyxyxzyxzyxT   is a linear transformation. 

2. Which of the following functions 22: RRT  are linear transformation 

a. ),1(),( babaT   

b. ),(),( abbaT   

c. ),(),( ababaT   

3. Show that the 33: RRT  is a liner transformation defined by, 

)2,,2(),,( zyxzyzyxzyxT   

4. Show that the mapping )()(: 34 RVRVT  defined by 
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)33,2,(),,,( wzyxwzxwzyxwzyxT   is a linear transformation.  

5. Show that the mapping )()(: 22 RVRVT   defined by 

RbabbaT  ,)0,(),( is a linear transformation.  

6. Show that the mapping )()(: 33 RVRVT  defined by, 

)(),,()2,,3(),,( 3 RVzyxzyxyxxzyxT  is a linear transformation. 

7. Show that the mapping 33: RRT  defined by RbabacbaT  ,),,0(),,( is a linear 

transformation.  

Fill in the blanks: 

1: Zero transformation is a ……………………. 

2: Negative of a linear transformation is ……………… 

3: Identity transformation is a  …….……….. 

4: If T is a linear transformation then  )( T ……………. 

5:  Two finite dimensional vector spaces over the same field are isomorphic if and only if 

they are of the same …………….. 

6: Every n dimensional vector space )(FV  is isomorphic to ……………. 

3.11 ANSWERS 

Answer of short answer type question 

2. (a) T is a linear transformation.  (b) T is a linear transformation  

(c) T is a linear transformation. 

Answer of fill in the blank question 

1:  Linear transformation    2:  Linear transformation   

3:  Linear transformation    4:  )()(  TT   

5:  Dimension     6:  )(FVn  
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UNIT-4: RANK NULLITY THEOREM 

CONTENTS: 

4.1 Introduction 

4.2  Objectives 

4.3  Range of a linear transformation 

4.4  Null space of a linear transformation 

4.5 Rank and nullity of a linear transformation 

4.6 Summary 

4.7  Glossary  

4.8   References 

4.9 Suggested Readings 

4.10  Terminal Questions 

4.11 Answers 

4.1 INTRODUCTION 

In 1878, Frobenius established a matrix's rank, and in 1884, Sylvester established a matrix's nullity. 

The rank–nullity theorem is a linear algebraic theorem that states:  

•  The dimension of the domain of a linear transformation f is the sum of the rank of f (the 

dimension of the image of f) and the nullity of f (the dimension of the kernel of f). 

 •  The number of columns of a matrix M is the sum of the rank of M and the nullity of M.  

It follows that either surjectivity or injectivity implies bijectivity for linear transformations of 

vector spaces of equal finite dimension. 



ADVANCED LINEAR ALGEBRA  MAT-505 
 

  

DEPARTMENT OF MATHEMATICS 

UTARAKHAND OPEN UNIVERSITY 
PAGE 59 

 

 

https://byjus.com/maths/rank-and-nullity/ 

 

Rank–nullity theorem 

https://en.wikipedia.org/wiki/Rank%E2%80%93nullity_theorem 

4.2 OBJECTIVES 

After the completion of this unit learners will be able to: 

 Understand the concept of range and null space of a linear transformation 

 Visualized the concept of rank and nullity 

4.3 RANGE OF A LINEAR TRANSFORMATION 

Definition: Let ( )U F  and ( )V F  be two vector spaces and let T  be a linear transformation from 

U into V . Then the range of T written as )(TR is the set of all vectors of  in V such that 

)( T for some  in U .  

Thus the range of T is the image set of U under T i.e., 

 UVTTRange   :)()(  

Theorem 1: If ( )U F  and ( )V F  are two vector spaces and T is a linear transformation from U

into V , then the range of T is a subspace of V .  

Proof: Obviously )(TR is a non-empty subset of V .  

https://en.wikipedia.org/wiki/File:Rank-nullity.svg


ADVANCED LINEAR ALGEBRA  MAT-505 
 

  

DEPARTMENT OF MATHEMATICS 

UTARAKHAND OPEN UNIVERSITY 
PAGE 60 

 

Let )(, 21 TR . Then there exist vectors 
21, in U such that 

2211 )(,)(   TT . 

Let ba, be any elements of the field F . We have 

)()()( 212121  baTbTaTba                  [ T is linear transformation] 

Now U is a vector space. Therefore U21,  and UbaFba  21,   

Consequently )()( 2121 TRaabaT   . 

Thus Fba , and )()(, 2121 TRbaTR   . 

Therefore )(TR is a subspace of V . 

4.4 NULL SPACE OF A LINEAR TRANSFORMATION 

Definition: Let )(FU  and )(FV  be two vector space and T is a linear transformation form U

into V . Then the null space of T written as )(TN is the set of all vectors  in U such that 

0)( T  (zero vector of )V . Thus  

 VTUTN  0)(:)(  . 

If we regard the linear transformation T from U into V as a vector space homomorphism of U

into V , then the null space T is called the kernel of T . 

Theorem 2: If )(FU  and )(FV  are  two vector space and T is a linear transformation from U

into V , then the kernel of T or the null space of T is a subspace of U . 

Proof:  Let  VTUTN  0)(:)(  . 

Since VT  0)0( , therefore at least )(0 TN . Thus )(TN is non-empty subset of U .  

Let )(, 21 TN . Then 0)( 1 T  and 0)( 2 T . 

Let Fba , . Then Uba  21   and  

)()()( 2121  bTaTbaT                           [ T is a linear transformation] 

Vba  00000  
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)(21 TNba    

Thus Fba , and )()(, 2121 TNbaTN   . Therefore )(TN is a subspace of U . 

Theorem 1: Let T be a linear transformation from a vector space )(FU  into a vector space 

)(FV . If U is a finite dimensional, then the range of T is a finite dimensional subspace of V .  

Proof: Since U is finite dimensional, therefore there exist  a finite subset of U , say },...,,{ 21 n  

which spans U . 

Let  Range of T . Then there exist  in U such that 

 )(T . 

Now FaaaU n  ,...,, 21  such that 

nnaaa   ...2211  

)...()( 2211 nnaaaTT    

)(...)()( 2211 nnTaTaTa                                        … (1) 

Now the vectors )(),...,(),( 21 nTTT   are in range of T . If  is any vector in the range of T , 

then from (1), we see that  can be expressed as linear combination of )(),...,(),( 21 nTTT  . 

Therefore the range of T is spanned by the vectors )(),...,(),( 21 nTTT  . 

Hence the range of T is finite dimensional.  

4.5 RANK AND NULITY OF A LINEAR TRANSFORMATION 

Definition: Let T be a linear transformation from a vector space )(FU  into a vector space )(FV  

with U as finite dimensional. The rank of T denoted by )(T is the dimension of the range of T

i.e.,  

)(dim)( TRT   

The nullity of T denoted by )(T  is the dimension of the null space of T i.e.,  



ADVANCED LINEAR ALGEBRA  MAT-505 
 

  

DEPARTMENT OF MATHEMATICS 

UTARAKHAND OPEN UNIVERSITY 
PAGE 62 

 

)(dim)( TRT   

Theorem 2: Let U and V be vector space over the field F and let T be a linear transformation 

from U into V . Suppose that U is finite dimensional. Then  

UTnulityTrank dim)()(   

Proof: Let N be the null space of T . Then N is a subspace of U . Since U is finite dimensional, 

therefore N is finite dimensional. Let kTnulityN  )(dim  and let },...,,{ 21 k  be a basis 

for .N  

Since },...,,{ 21 k is linearly independent subset of U , therefore we can extend it to form a 

basis of U . Let nU dim  and let },...,,,...,,{ 121 nkk   be a basis for U . 

The vectors )(),...,(),(),...,(),( 121 nkk TTTTT    are in range of .T  We claim that 

)}(),...,(),({ 21 nkk TTT    is a basis for the range of T . 

(i) First we shall prove that the vectors 

)}(),...,(),({ 21 nkk TTT    span the range of T . 

Let  range of T . Then their exists U such that  )(T . 

Now FaaaU n  ,...,, 21 such that 

Faaa nn   ...2211  

)...()( 2211 nnaaaTT    

)(...)()(...)()( 112211 nnkkkk TaTaTaTaTa     

                                                                                                [

]0)(,...,0)(,...,, 121  kk TTN   

 the vectors )(),...,( 1 nk TT    span the range of T . 

(ii) Now we shall show that the vectors )(),...,( 1 nk TT    are linearly independent. 

Let Fcc nk  ,...,1 such that 

0)(...)( 11  nnkk TcTc   

0)...)( 11   nnkk ccT   

  nnkk cc  ...11  null space of T i.e., N  

kknnkk bbbcc    ...... 221111  for some Fbbb k ,...,, 21  

[each vector in N can be expressed as a linear combination of vectors k ,...,, 21 forming a 

basis of N ] 
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0...... 112211   nnkkkk ccbbb   

0...... 121   nkk ccbbb  

nkk  ,...,,,...,,[ 121   are linearly independent being basis for U ] 

 the vector 0)(...)( 1  nk TT   are linearly independent. 

The vector 0)(),...,( 1  nk TT   form a basis of range of T . 

 rank T dim of range of knT   

 rank )(T + nullity UnkknT dim)()(  . 

Note: If in place of the vector space ,V we take the vector space U i.e., if T is a linear 

transformation on an n  dimensional vector space U , even then as a special case of the above 

theorem, 

nTT  )()(  . 

Example 1: Find the range, rank, null-space and nullity of the linear transformation 

)()(: 32 RVRVT  , defined by ),,(),( bbababaT  . 

Solution: Since we have given that T is linear transformation from )(2 RV to )(3 RV . Since 

)}1,0(),0,1{( is a basis for )(2 RV .  

We have )0,1,1()0,01,01()0,1( T  

and )1,1,1()0,10,10()1,0( T . 

The vector )1,0(),0,1( TT  span the range of T . Thus the range of T is the subspace of )(3 RV

spanned by the vectors )1,1,1(),0,1,1(  . 

Now the vectors )()1,1,1(),0,1,1( 3 RV  are linearly independent because if Ryx , , then  

)0,0,0()1,1,1()0,1,1(  yx  

)0,0,0()1,1,1()0,1,1(  yx  

)0,0,0(),,(  yyxyx  
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)0,0,0(),,(  yyxyx  

0,00,0,0  yxyyxyx  

 the vectors )1,1,1(),0,1,1(   form a basis for range of T . Hence rank T dim of range of 2T  

Nullity of T dim of )(2 RV rank 022 T  

 null space of T must be the zero subspace of )(2 RV . 

Otherwise:  ),( ba null space of T  

)0,0,0(),(  baT  

)0,0,0(),,(  bbaba  

0,0,0  bbaba  

0,0,0  bbaba  

0,0  ba  

)0,0(  is the only element of )(2 RV  which belongs to null space of T .  

 null space of T is the zero subspace of )(2 RV . 

Example 2: Let T be the linear transformation from 3F into 3F defined by 

)2,2,2(),,( 21321321321 xxxxxxxxxxxT  . Describe the null space of T . 

Solution: Let 
3

321321 ),,(),,,( Fyyyxxx   . Then  

),,()(),,,()( 321321 yyyTTxxxTT    

)2,2,2()( 21321321 xxxxxxxxT   and 

)2,2,2()( 21321321 yyyyyyyyT   

Also let Fba , Then 3Fba    and 
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),,(),,( 321321 yyybxxxaba    

),,( 332211 byaxbyaxbyax   

Now by definition of T , we have 

],[][2],[2][]([)( 332211332211 byaxbyaxbyaxbyaxbyaxbyaxbaT    

])[2][ 2211 byaxbyax   

])2[]2[],2[]2[],2[]2[( 2121321321321321 yybxxayyybxxxayyybxxxa   

)2,2,2()2,2,2(( 2132132121321321 yyyyyyyybxxxxxxxxa   

)()(  bTaT   

T is a linear transformation from 3F into 3F . 

Now ),,( 321 xxx null space of T  

)0,0,0(),,( 321  xxxT  

)0,0,0()2,2,2( 21321321  xxxxxxxx  

,002

,02

,02

321

321

321







xxx

xxx

xxx

                                                                                              … (1) 

the null space of T is the solution space of the system of linear homogeneous equation (1). Let 

A be the coefficient matrix of the equation (1). Then 

























021

112

211

A      [Performing the elementary row operation 133122 ,2 RRRRRR  ] 

This last matrix is in the Echelon form. Its rank  3A the number of unknowns in the equations 

(1). Hence the equation (1). Hence the equations (1) have no linearly independent solutions. 

Therefore 0,0,0 321  xxx  is the only solution of the equations (1). Thus )0,0,0(  is the only 
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vector which belongs to the null space of T . Hence the null space of T is the zero subspace of 
3F .  

Example 3: Let V be the vector space of all nn  matrices over the field F , and let B  be a 

fixed nn  matrices over the field F , and let B  be a fixed nn  matrix if 

VABAABAT )(  

Verify that T  is a linear transformation from V into V . 

Solution: If VA , then VBAABAT )(  because BAAB   is also an nn  matrix over the 

field F . Thus T is a function from V into V . 

Let VAA 21, and Fba , . Then VbAaA  21 and 

)()()( 212121 bAaABBbAaAbAaAT   

)()( 22112121 BABAbBABAabBAaBABbABaA   

)()( 21 AbTAaT   

T is a linear transformation from V into V . 

Example 4: Let V be an n-dimensional vector space over the field F and let T be a linear 

transformation from V into V such that the range and null space of T are identical. Prove that n  

is even. Also give an example of such a linear transformation.  

Solution: Let N be the null space of T . Then N be the null space of T . Then N is also the 

range of T .  

Now VTT dim)()(   

i.e. Dimension of range of T + Dimension of null space of nVT  dim  

i.e. nN dim2                   NTofspacenullTofrange [ ] 

i.e., n  is even. 

Example of such a transformation:  

Let )()(: 22 RVRVT   be defined by  
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RbabbaT  ,)0,(),( . 

Let )(),(),,( 22211 RVbaba   and let Ryx ,  

Then )],(),([)( 2211 baybaxTyxT    

)0,(),( 212121 ybxbybxbyaxaT   

)0,()0,()0,()0,()0,()0,( 212121 bybxybbxybxb   

)()(),(),( 2211  yTxTbayTbaxT   

T is a linear transformation from )(2 RV  into )(2 RV . 

Now {(1,0), (0,1)} is a basis of )(2 RV . 

We have )0,0()0,1( T  and )0,1()1,0( T  

Thus the range of T is the subspace of )(2 RV  spanned by the vectors )0,0( and )0,1( . The vector 

)0,0( can be omitted from this spinning set because it is zero vector. Therefore the range of T is 

the subspace of )(2 RV  spanned by the vector )0,1( . Thus, 

Range of }:)0,{(}:)0,1({ RaaRaaT  . 

Now let Nba ),(  (The null space of T ). 

Then 0)0,0()0,()0,0(),(),(  bbbaTNba . 

null space of }:)0,{( RaaT  . 

Thus range of T null space of T .  

Also we observe that 2)(dim 2 RV , which is even. 

Example 5: Let V be a vector space and T is a linear transformation from V into V . Prove that 

the following two statements about T are equivalent. 

(i) The intersection of the range of T and the null space of T is the zero subspace of V

i.e., }0{)()(  TNTR . 

(ii) 0)(0)]([   TTT . 
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Solution: First we shall show that (i) (ii) 

We have  )()(0)]([ TNTTT    

)()()( TNTRT                                                                            [ )()( TRTV   ] 

0)(  T  because }0{)()(  TNTR . 

Now we will show that (ii) (i). 

Let 0 and )()( TNTR  . 

Then )(TR and )(TN . 

Since )(TN , therefore 0)( T .                                                                             … (1) 

Also VTR   )( such that  )(T . 

Now,  )(T  

0)()]([   TTT                                                                                             [From (1)] 

Thus V such that 0)]([ TT but 0)( T . 

This contradict the fact that the given hypothesis (ii). 

Therefore there exist no )()( TNTR   such that 0 . 

Hence }0{)()(  TNTR . 

Check your progress 

Problem 1: Check the rank and nullity of the matrix 

 

Solution: Given 
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Problem 2: Check the nullity of the matrix 

 

Solution: Given matrix 
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4.6 SUMMARY 

In this unit, we have learned about the one of the important concept in linear algebra name as rank 

and nullity theorem. After the completion of this unit these important about the rank and nullity: 

 An invertible matrix has a rank equal to its order, and its nullity is equal to zero. 

 In the row-reduced echelon form of the given matrix, rank is the number of leading columns 

or non-zero row vectors; nullity is the number of zero columns. 

 The dimension of A's null space, also known as the kernel of A, determines a matrix's 

nullity. 

 Assuming A is an invertible matrix, null space (A) has the value {0}. 

 The number of non-zero eigenvalues in a matrix represents its rank, while the number of 

zero eigenvalues establishes the matrix's nullity. 
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4.7 GLOSSARY 

 Range space 

 Null space 

 Rank 

 Nullity 
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Asia, India Reprint. 

 Seymour Lipshutz and Marc Lipson, Schaum’s outlines “Linear Algebra” (3rd 

Edition)(2012), Mc Graw Hill Education. 

 J. N. Sharma and A. R. Vasistha, Linear Algebra (29th Edition) (1999), Krishna Prakashan. 

4.9 SUGGESTED READING 

 Minking Eie & Shou-Te Chang (2020), A First Course In Linear Algebra, World 

Scientific. 

 Axler, Sheldon (2015), Linear algebra done right. Springer. 

 https://nptel.ac.in/courses/111106051 

 https://archive.nptel.ac.in/courses/111/104/111104137 

 https://byjus.com/maths/rank-and-nullity/ 

 https://old.sggu.ac.in/wp-content/uploads/2020/07/Linear-AlgebraTY_506.pdf 

4.10 TERMINAL QUESTION 

Long Answer Type Question: 

1: If T is a linear transformation from U into V , then prove that the range of T is a subspace 

of V . 

https://www.meripustak.com/Author-Minking-Eie-and-Shou-Te-Chang
https://nptel.ac.in/courses/111106051
https://archive.nptel.ac.in/courses/111/104/111104137
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2: If T is a linear transformation from U into V , then prove that the null of T is a subspace 

of U . 

3: Define the following. 

 (i) Range of linear transformation 

 (ii) Null space of linear transformation 

 (iii) Kernel of a linear transformation 

4: State and prove the rank and nullity of a linear transformation. 

5: Let V be a vector space and T is a linear transformation from V into V . Prove that the 

following two statements about T are equivalent. 

(i) The intersection of the range of T and the null space of T is the zero subspace of V i.e., 

}0{)()(  TNTR . 

(ii) 0)(0)]([   TTT . 

 

Short answer type question: 

1: If T is a linear transformation from U into V . If U is a finite dimensional, then the range 

of T is a finite dimensional subspace of V . 

2: Let T be the linear transformation from )(3 FV into )(3 FV  defined by 

)2,2,2(),,( yxzyxzyxzyxT  . Describe the null space of T . 

Fill in the blanks: 

1: The number of linearly independent row or column vectors of a matrix is the …… of the 

matrix 

2: The dimension of the null space or kernel of the given matrix is the ……….. of the matrix 

3: For any matrix A of order m by n, rank(A) + ……………… = number of columns in A  

4: The nullity of an invertible matrix is …………. 
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4.11 ANSWERS 

Answer of short answer type question: 

2: null space of T is the zero subspace of )(3 FV . 

Answer of fill in the blank question: 

1:  Rank      2:  Nulity  

3:  nullity(A)     4:  Zero 
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UNIT-5: CHANGE OF BASES 

CONTENTS 

5.1 Introduction 

5.2  Objectives  

5.3  Change of basis 

5.4  Similarity of matrices 

 5.4.1 Similarity of linear transformation   

5.5  Determinant of linear transformation in finite dimensional vector space  

5.6   Trace of a matrix 

5.7 Summary 

5.8  Glossary  

5.9   References 

5.10 Suggested Readings 

5.11  Terminal Questions 

5.12 Answers 

5.1 INTRODUCTION 

A coordinate vector, which is a series of n scalars, can uniquely represent any element of a vector 

space using an ordered basis of a vector space of finite dimension n in mathematics. The coordinate 

vector representing a vector V on one basis differs, in general, from the coordinate vector 
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representing V on the other basis when two separate bases are taken into account. Every assertion 

expressed in terms of coordinates with respect to one basis must be changed into an assertion 

expressed in terms of coordinates with respect to the other basis. This is known as a change of 

basis. 

The change-of-basis formula, which describes the coordinates relative to one basis in terms of 

coordinates relating to the other basis, leads to this kind of conversion. This formula can be stated 

using matrices. 

newold AXX   

where A is the change-of-basis matrix (also known as the transition matrix), which is the matrix 

whose columns are the coordinate vectors of the new basis vectors on the old basis; "old" and 

"new" refer to the firstly defined basis and the other basis, respectively; and oldX  and newX  are the 

column vectors of the coordinates of the same vector on the two bases. 

 

New vectors (red) are obtained by a linear combination of one basis of 

vectors (purple). Should they exhibit linear independence, these establish 

a novel basis. The linear transformation known as the change of basis is 

the result of the linear combinations connecting the first basis to the 

other. 

 

A vector with two distinct bases (red and purple 

arrows). 

https://en.wikipedia.org/wiki/Change_of_basis 

5.2 OBJECTIVES 
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After reading this unit learners will be able to  

 Understand the concept of change of basis.  

 Implement the application of theorems related to change of basis. 

 Understand the concept of similarity of matrices. 

 Trace of matrices and determinant of linear transformation in finite dimensional vector 

space 

5.3 CHANGE OF BASIS  

Suppose V is an n dimensional vector space over any field F . Let B  and 'B be two ordered 

basis for V . If  is any vector in V , then we are now interested to know its relation between the 

coordinates with respect to B  and its coordinates with respect to 'B . 

Theorem 1: Let )(FV  be an n dimensional vector space and let B  and 'B be two ordered 

bases for V . Then there exist a unique nn  invertible matrix A  having entries from F such 

that  

(1) '][][
BB A    

(2) BB
A ][][ 1

'    

for every vector  in V . 

Solution: Let },...,,{ 21 nB   and },...,,{ 21

'

nB  . Then there exists a unique linear 

transformation T from V into V such that  

njT jj ...,,2,1,)(                                                                                                 … (1) 

Since T maps a basis B  onto a basis 'B , therefore T is necessarily invertible. The matrix of T

relative to B  i.e., 
BT][  will be a unique nn  matrix with element in F . Also this matrix will be 

invertible because T is invertible. 

Let nnijB aAT  ][][ . Then, 

njaT
n

i

jijj ...,,2,1,)(
1




                                                                                       … (2) 

Let nxxx ,...,, 21  be the coordinates of  with respect to B  and nyyy ,...,, 21  be the coordinates of 

 with respect to 'B . Then 

 

j

n

j

jnn yyyy  



1

2211 ...  
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    )(
1

j

n

j

jTy 


                                                                                                           [From (1)] 

   i

n

i

ij

n

j

j ay 



11

                                                                                                        [From (2)] 

ij

n

j

ji

n

i

j yay 












 

 11

 

Also, i

n

i

ix 



1

. 

j

n

j

iji yax 



1

 because the expression for  is a linear combination of elements of B is unique. 

Now 
B][  is a column matrix of the type 1n . Also '][

B
 is a column matrix of the type 1n . 

The product matrix '][
B

A  will also be of the type 1n . 

The thi entry of j

n

j

jiiB yax 



1

][  

thi entry of '][
B

A  . 

'][][
BB A    

'][][ 11

BB AAA     

'][][1

BB IA   
 

.][][ '

1

BBA   
 

Note: The matrix 
BTA ][  is called the transition matrix from B  to 'B . It express the coordinates 

of each vector in V relative to B in terms of its coordinates relative to 'B . 

Working rule to write the transition matrix from one basis to another: 

Let },...,,,{ 321 nB   and },...,,,{ 321

'

nB   be two ordered bases for the n-dimensional 

vector space )(FV . Let A  be the transition matrix from the basis B  to the basis 'B . Let we 

consider T be the linear transformation from V into V which maps the basis B onto the basis 'B . 

Then A is the matrix of T relative to B i.e., 
BTA ][ . So, in order to find the matrix A , we should 

first express each vector in the basis 'B as a linear combination over F of the vectors in B . Thus 

we write the relations 

nnaaa  12121111 ...  

nnaaa  22221122 ...  

... 

... 

nnnnnn aaa   ...2211  
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Then the matrix nnijaA  ][ i.e., A is the transpose of the matrix of coefficients in the above 

relations. Thus, 

























nnnn

n

n

aaa

aaa

aaa

A

...

............

............

...

...

21

22221

11211

 

Now suppose  is any vector in V . If 
B][  is the coordinate matrix of  relative to the basis B

and '][
B

 its coordinate matrix relative to the basis 'B then, 

'][][
BB A    

and BB
A ][][ 1

'   . 

Theorem 2: Let },...,,,{ 321 nB   and },...,,,{ 321

'

nB   be two ordered bases for an 

n dimensional vector space )(FV . If ),...,,( 21 nxxx  is an ordered set of n scalars, let 

i

n

i

ix 



1

and i

n

i

ix  



1

. Then show that,  )(T , 

Where, T is the linear operator on V defined by 

niT ii ...,,2,1,)(   . 

Proof: We have 







 



n

i

iixTT
1

)(   

                                    )(
1

i

n

i

iTx 


                                                  [ T is linear] 

                                           


i

n

i

ix
1

 

5.4 SIMILARITY OF MATRICES 

Definition: Let A  and B  be square matrices of order n over the field F . Then B  is said to be 

similar to A  if there exist an nn  invertible square matrix C with elements in F such that 

ACCB 1  

Theorem 2: The relation of similarity is an equivalence relation in the set of all nn  matrices 

over the field F .  

Proof: If A and B are two nn  matrices over the field F , then B is said to be similar to A if 

there exists an nn invertible matrix C over F such that, 

ACCB 1 . 
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Reflexive: Let A be any nn  matrix over F . We can write AIIA 1 , where I is nn  unit 

matrix over F .  

A  is similar to A  because I is definitely invertible.  

Symmetry: Let A  be similar B . Then there exists an nn  invertible matrix P over F such that 

 BPPA 1  
111 )(   PBPPPPAP  

BPAP  1  
1 PAPB  

111)(  APPB  

[ P is invertible means 1P  is invertible and PP  11)( ] 

B  is similar to A . 

Transitive: Let A  be similar to B  and B  be similar to C . Then  

BPPA 1  

and BQQB 1 , 

where P and Q  are invertible nn  matrices over F . 

We have PCQQPBPPA )( 111    

)()( 11 QPCQPA   

)()( 1 QPCQPA   

[ P and Q are invertible means QP is invertible and 
111)(   QPQP ] 

A  is similar to C . 

Hence similarity is an equivalence relation on the set of nn  matrices over the field F . 

Theorem 3: Similar matrices have the same determinant. 

Proof: Let us consider the matrix B is similar to the matrix A . It means there exist an invertible 

matrix C such that 

ACCB 1  

))(det)(det(det)det(det 11 CACACCB    

))(det(detdet))(det)(det(detdet 11 ACCBACCB    

ABABAIB detdet)(det1det))(det(detdet  . 

5.4.1 SIMILARITY OF LINEAR TRANSFORMATION 

Definition: Let A  and B  be linear transformation on a vector space )(FV . Then B  is said to be 

similar to A  if there exist an invertible linear transformation C  on V such that 
1CACB  

Theorem 4: The relation of similarity is an equivalence relation in the set of all linear 

transformations on a vector space )(FV . 
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Proof: If A and B  are two linear transformation on the vector space )(FV , then B  is said to be 

similar to A if there exists an invertible linear transformation C on V such that 
1CACB  

Reflexive: Let A be any linear transformation on V such that we rewrite, 
1 IAIA , where I denote the identity transformation on V . 

A  is similar to A  because I  is definitely invertible. 

Symmetry: Let A  is similar to B . Then there exist an invertible linear transformation P  on V

such that 
1 PBPA  

PPBPPAPP )( 111    

APPBBAPP 11    

BPAPB   111 )(  is similar to A . 

Transition: Let A  be similar to B and also B is similar to C . 

Then, 
1 PBPA  

and 
1 QCQB  

where P  and Q  are invertible linear transformation on V . 

We have 
111 )(   PQCQPCACB  

111 )()()()(   PQCPQPQCPQ  

A  be similar to C . 

Theorem 5: Let T  be a linear transformation on an n dimensional vector space )(FV  and let 

B  and 'B be two ordered basis for V . Then the matrix of T relative to 'B is similar to the matrix 

of T relative to .B  

Proof: Let },...,,{ 21 nB   and },...,,{ 21

'

nB  . 

Let nnijaA  ][  be the matrix of T relative to B  

and nnijcC  ][  be the matrix of T relative to 'B . Then 





n

i

iijj njaT
1

...,,2,1,)(                 … (1) 

and 



n

i

iijj njcT
1

...,,2,1,)(          … (2) 

Let S be the linear operator on V defined by 

njS jj ...,,2,1,)(                      … (3) 

Since S maps a basis B onto a basis 'B , therefore S is necessarily invertible. Let P be the matrix 

of S relative to B . Then P  is also an invertible matrix. 

If, ,][ nnijpP  then 
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njpS i

n

i

ijj ...,,2,1,)(
1




           … (4) 

We have, 

)]([)( jj STT                                                                                                [From (3)] 

           







 



n

k

kjkpT
1

                                   [From (4), on replacing i  by k which is immaterial]  

 )(
1

k

n

k

jk Tp 


                                                                                       [ T is linear] 

i

n

i

ki

n

k

jk ap 



11

                                                            [From (1), on replacing j  by k ] 

i

n

i

jk

n

k

ki pa  
 











1 1

.              … (5) 

Also, k

n

k

jkj cT  



1

)(                                                               [From (2), on replacing i  by k ] 

        )(
1

k

n

k

jk Sc 


                                                                                   [From (3)] 

        i

n

i

ki

n

k

jk pc 



11

                                                   [From (4), on replacing j  by k ] 

        i

n

i

jk

n

k

ki cp  
 











1 1

                                                      … (6) 

From (5) and (6), we have 

i

n

i

n

k

jkkii

n

i

jk

n

k

ki cppa    
  



















1 11 1

 





n

k

jkkijk

n

k

ki cppa
11

 

nnjknnkinnjknnki cppa   ][][][][                                    [By def. of matrix multiplication] 

PCAP   

PCPAPP 11                                                                                                [ 1P  exists] 

CAPPICAPP   11  

C is similar to A  

Note: Suppose B  and 'B are two ordered basis for an n dimensional vector space )(FV . Let T 

be a linear operator on V . Suppose A  is the matrix of T relative to B  and C is the matrix of T

relatives to 'B . If P is the transition matrix from the basis B to the basis 'B , then APPC 1 .  

When we already know the matrix of T with respect to basis B, this solution will allow us to find 

the matrix of T with respect to basis 'B . 
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Theorem 6: Let V be an n-dimensional vector space over the field F and 
1T , 2T  be two linear 

operator on V . If there exist two ordered B  and 'B for V such that '][][ 11 BB TT  , then show that 

2T  is similar to 
1T . 

Proof: Let  nB  ,...,, 21  and  nB  ,...,, 21

'  . 

Let nnjiBB aATT  ][][][ '11 . Then 

njaT
n

i

ijij ...,,2,1,)(
1

1 


                                                                               … (1) 

and njaT
n

i

ijij ...,,2,1,)(
1

1 


                                                                        … (2) 

Let S be the linear operator on V defines by 

njS jj ...,,2,1,)(                                                                                          … (3) 

Since S maps a basis of V onto a basis of V , therefore S is invertible.  

We have )]([)( 22 jj STT                                                                                 [From (3)] 

              ))(( 2 jST                                                                                   … (4) 

Also, i

n

i

jij aT  



1

2 )(                                                                                       [From (2)] 

                    )(
1

i

n

i

ji Sa 


                                                                                   [From (3)] 

                    







 



n

i

ijiaS
1

                                                                            [ S is linear] 

)]([ 1 jTS                                                                                    [From (1)] 

))(( 1 jST                                                                                           … (5) 

From (4) and (5), we have 

njSTST jj ...,,2,1).)(())(( 12    

Since 
12 , STST  agree on a basis for V , therefore we have 

12 STST   

1

12

1

1

1

2

  SSTITSSTSST  

2

1

12 TSSTT    is similar to 
1T  

5.5  DETERMINANT OF LINEAR TRANSFORMATION IN 

FINITE DIMENSIONAL VECTOR SPACE 
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Let we assume that T be a linear operator in n dimensional vector space )(FV and B , 'B are two 

ordered basis for V , then '][,][
BB TT are two similar matrices. As we know that similar matrices 

have same determinant. This allows us to define in the manner that follows: 

Definition: Let T be a linear operator on n dimensional vector space )(FV . Then, with respect 

to any ordered basis for V , the determinant of T  equals the determinant of the matrix of T . 

Following the discussion above, our definition of T 's determinant is reasonable since it is a 

unique element of F.  

Definition (Scalar transformation): In a given vector space )(FV , a linear transformation T  

on V is referred to be a scalar transformation T on V if, VcT  )( , where c  is fixed 

scalar in F . 

If the linear transformation T is equal to the scalar c , then we rewrite cIT  , where I is the 

identity matrix. 

5.6  TRACE OF A MATRIX 

Definition: Let A be n order square matrix over a field F. The trace of A is the total sum of the 

elements of A that lie along the principal diagonal. Mathematically we define trace of the matrix 

by 

nn

n

i

ii aaaaAtr 


...)( 2211

1

 

Some fundamental properties/theorems of the trace of a matrix are as follows: 

Theorem 7: Let A and B  be two square matrices of order n over a field F and F . Then 

(1) )()( AtrAtr    

(2) )()()( BtrAtrBAtr   

(3) )()( BAtrABtr   

Proof: Let nnjiaA  ][  and nnjibB  ][ . 

(1) We have nnjiaA  ][  by def. of multiplication of a matrix by a scalar. 

)()(
11

AtraaAtr
n

i

ii

n

i

ii   


 

(2) We have nnjiji baBA  ][  

)()()()(
111

BtrAtrbabaBAtr
n

i

ii

n

i

iiii

n

i

ii  


 

(3) We have nnjicAB  ][  where 



n

k

jkkiji bac
1

. 
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Also nnjidBA  ][ , where 



n

k

jkkiji abd
1

 

Now  
 











n

i

n

k

ikki

n

i

ii bacABtr
1 11

)(  

                                     
 


n

k

ik

n

i

ki ba
1 1

     [interchanging the order of summation in the last sum] 

 
 











n

k

kk

n

k

ki

n

i

ik dab
11 1

 

)(...2211 BAtrddd nn   

Theorem 8: Trace of the similar matrices are same. 

Proof: Let us consider that T be the linear operator in a n dimensional vector space )(FV . If B

and 'B are two ordered basis for V then, 
BT][ , '][

B
T are the similar matrices. Also similar matrices 

have the same trace. Also we know that similar matrices have the same trace. This allows us to 

define in the manner that follows: 

Definition (Trace of linear transformation): Let T be a linear operator in vector space V(F) of 

dimension n. In that case, the trace of T is the matrix of T with respect to any ordered basis for V.  

Based on the previous explanation, our definition of the trace of T is reasonable since it is a 

distinct element of F. 

Solved Examples 

Example 1: Find the matrix of the linear transformation T on )(3 RV defined as  

)3,4,2(),,( abacbcbaT   

With respect to the ordered basis B  and also with respect to the basis 'B where, 

(i) )}1,0,0(),0,1,0(),0,0,1{(B  

(ii) )}0,0,1(),0,1,1(),1,1,1{(' B  

Answer (i): We have, 

)1,0,0(3)0,1,0(1)0,0,1(0)3,1,0()0,0,1( T  

)1,0,0(0)0,1,0(4)0,0,1(2)0,4,2()0,1,0( T  

and )1,0,0(0)0,1,0(0)0,0,1(1)0,0,1()1,0,0( T . 

Thus, by the definition of T with respect to B , we have 
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

















003

041

120

][ BT  

Note: In order to find the matrix of T relative to the standard basis B , it is sufficient to compute 

)0,0,1(T , )0,1,0(T  and )1,0,0(T . There is no need of further expressing these vectors as linear 

combinations of )0,0,1( , )0,1,0(  and )1,0,0( . Obviously the coordinates of the vectors )0,0,1(T

, )0,1,0(T  and )1,0,0(T  respectively constitutes the first, second and third columns of the matrix 

BT][ . 

(ii) We have )3,3,3()1,1,1( T  

Now our aim to express )3,3,3(   as a linear combination of vectors in 'B . Let 

)0,0,1()0,1,1()1,1,1(),,( zyxcba   

               ),,( xyxzyx    

Then, cxbyxazyx  ,,  

i.e., bazcbycx  ,,                                                                                            … (1) 

putting 3,3  ba  and 3c in (1), we get 

6,3  yx  and 6z . 

)0,0,1(6)0,1,1(6)1,1,1(3)3,3,3()1,1,1( T  

Also, )3,3,2()0,1,1( T . 

Putting 3,2  ba  and 3c in (1), we get 

)0,0,1(6)0,1,1(6)1,1,1(3)3,3,2()0,1,1( T  

Finally, )3,1,0()0,0,1( T . 

Putting 1,0  ba  and 3c in (1), we get 

)0,0,1(1)0,0,1(2)1,1,1(3)3,1,0()0,0,1( T  



ADVANCED LINEAR ALGEBRA  MAT-505 
 

  

DEPARTMENT OF MATHEMATICS 

UTARAKHAND OPEN UNIVERSITY 
PAGE 86 

 





















156

266

333

][ 'B
T . 

Example 2: Let T be the linear operator on 3R defined by 

)42,2,3(),,( 3212131321 xxxxxxxxxxT  . What is the matrix of T in the ordered basis 

},,{ 321   where )1,2,1(),1,0,1( 21    and )1,1,2(3  ? 

Solution: By definition of T , we have 

)3,2,4()1,0,1()( 1 TT  . 

Now our aim is to express )3,2,4(   as a linear combination of the vectors in the basis 

},,{ 321 B . Let 

321),,(  zyxcba   

               )1,1,2()1,2,1()1,0,1( zyx   

               ),2,2( zyxzyzyx   

Then, czyxbzyazyx  ,2,2  

Solving these equations, we get 

2
,

4
,

4

53 acb
z

acb
y

cba
x








                                                        … (1) 

Putting 3,2,4  cba  in (1), we get 

2

1
,

4

3
,

4

17
 zyx . 

3211
4

1

4

3

4

17
)(  T  

Also )9,4,2()1,2,1()( 2 TT  . Putting 
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9,4,2  cba  in (1), we get 
2

7
,

4

15
,

4

35
 zyx  

3212
2

7

4

15

4

35
)(  T  

Finally ).4,3,7()1,1,2()( 3  TT   Putting, 

4,3,7  cba  in (1), we get 0,
2

3
,

2

11
 zyx  

3213 0
2

3

2

11
)(  T  



























0
2

7

2

1
2

3

4

15

4

3
2

11

4

35

4

17

][ BT  

Example 3: Let T be a linear operator on 3R defined by 

)42,2,3(),,( 3212131321 xxxxxxxxxxT  . Prove that T is invertible and find the a 

formula for 1T  . 

Solution: Suppose B is the standard ordered basis for 3R . Then )}1,0,0(),0,1,0(),0,0,1{(B . Let 

BTA ][  i.e. let A be the matrix of T with respect to B . First we shall compute A .  

We have  

)1,2,3()0,0,1( T  

)2,1,0()0,1,0( T  

)4,0,1()1,0,0( T  

And  
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



















421

012

103

][ BTA . 

Now T will be invertible If the matrix 
BT][ is invertible.  

We have 9)14()04(3

421

012

103

det 



 AA  

Since ,0det A therefore the matrix A is invertible and consequently T is invertible.  

Now we shall compute the matrix .1A  For this let us first find Aadj . 

The cofactors of the elements of the first row of A are 

21

12
,

41

02
,

42

01








   i.e, 3,8,4   

The cofactors of the elements of the first row of A are 

21

03
,

41

13
,

42

10





    i.e, 6,13,2   

The cofactors of the elements of the first row of A are 

12

03
,

02

13
,

01

10


    i.e, 3,2,1   

 AAdj transpose of the matrix 























321

6132

384

 

























363

2138

124
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





















 

363

2138

124

9

1

det

11 AAdj
A

A  

Now 111 )]([][   ATT BB
. 

We shall now find a formula for 1T . Let ),,( cba  be any vector belonging to 3R . Then 

BBB TT ][][)]([ 11     

































































cba

cba

cba

c

b

a

363

2138

24

9

1

363

2138

124

9

1
 

Since B is the standard ordered basis for 3R , 

)363,2138,24(
9

1
),,()( 11 cbacbacbacbaTT    . 

Example 4: Let T be the linear operator on 3R defined by 

)42,2,3(),,( 3212131321 xxxxxxxxxxT   

(i) Find the matrix of T in the standard ordered basis B for 3R . 

(ii) Find the transition matrix P from the ordered basis B to the ordered basis 

},,{ 321

' B where )1,2,1(),1,0,1( 21    and )1,1,2(3  . Hence find the 

matrix of T relative to the ordered basis 'B . 

Solution (i): Let 
BTA ][ . Then 





















421

012

103

A                                                             

(ii) Since B  is the standard ordered basis, so, the transition matrix P from B to 'B can 

written as 
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













 



111

120

211

P  

Now PTPT BB
][][ 1

'

 . 

Now we compute matrix 1P , then we find that AP det . 

Therefore 

























222

111

531

4

1

det

11 PAdj
P

P  















 













































111

120

211

421

012

103

222

111

531

4

1
][ 'B

T  















 

























111

120

211

624

336

1972

4

1
 























0142

6153

223517

4

1
 



























0
2

7

2

1
2

3

4

15

4

3
2

11

4

35

4

17

 

Example 5: Let T be the linear operator on 2R defined by 

)2,24(),( yxyxyxT   

Compute the matrix of T relative to the basis  21,  where ).0,1(),1,1( 21    
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Solution: By def. of T , we have 

)3,2()1,1()( 1 TT   

Now, we express the vector )3,2(  as the linear combination to the basis  21, . 

Let ),()0,1()1,1(),( 21 xyxyxyxba   . 

Then bxayx  ,  

Solving these equations, we get 

abybx  ,                                                                                                  … (1) 

Putting 3,2  ba  in (1), we get 1,3  yx  

211 13)(  T                                                                                                 … (2) 

Again )2,4()0,1()( 2 TT  . Putting 2,4  ba in (1), we get 2,2  yx . 

212 22)(  T                                                                                              … (3) 

From the relation (2) and (3), we see that the matrix of T relative to the basis  21,  is 

.
21

23







 
  

Example 6: Let T be a linear operator on 2R defined by: 

)3,2(),( yxyyxT   

Find the matrix representation of T relative to the basis  )5,2(),3,1( . 

Solution: Let )3,1(1   and )5,2(2  . By def. of T , we have 

)0,6()31.3,3.2()3,1()( 1 TT   

And )1,10()52.3,5.2()5,2()( 2 TT  . 

Now our aim is to express the vectors )( 1T  and )( 2T  as linear combinations of the vectors in 

the basis  21, . 
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Let )53,2()5,2()3,1(),( 21 qpqpqpqpba   . 

Then bqpaqp  53,2  

Solving these equations, we get 

baqbap  3,25                                                                       …(1) 

Putting 0,6  ba  in (1), we get 18,30  qp . 

211 1830)0,6()(  T                                                           … (2) 

Again putting 1,10  ba  in (1), we get 

29,48  qp  

212 2948)1,10()(  T                                                          … (3) 

From the relations (2) and (3), we see that the matrix of T relative to the basis  21,  is 








 

2918

4830
 

Example 7: Show that the vectors ),1,2,1(),1,0,1( 21   )2,3,0(3   form a basis for 3R

. Express the each standard basis vector in the linear combination of the vectors of 321 ,,  . 

Solution: Let cba ,,  be scalars such that, 

0321   cba  

i.e., )0,0,0()2,3,0()1,2,1()1,0,1(  cba  

i.e., )0,0,0()2,320,0(  cbacbacba  

i.e., 00  cba  

0320  cba  

02  cba  
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The coefficient matrix A of these equation is, 





















211

320

011

A . 

We have 1037)30(1)34(1

211

320

011

||det 



 AA  

Since 0det A , therefore the matrix A is non-singular and rank 3A  i.e., equal to the number 

of unknowns .,, cba Hence 0,0,0  cba  is the only solution of the equation (1). Therefore, 

the vectors 321 ,,  are linearly independent over R. Since 3dim 3 R , therefore the set 

},,{ 321   containing three linearly independent vectors form a basis for 3R . 

Now let },,{ 321 eeeB   be the ordered standard basis for 3R . Then 

)1,0,0(),0,1,0(),0,0,1( 321  eee . Let },,{ 321

' B . We have 

3211 101)1,0,1( eee   

3212 121)1,2,1( eee   

3213 230)2,3,0( eee   

If P is the transition matrix from the basis B to the basis 'B , then 





















211

320

011

P  

Let us find the matrix 1P . For this let us first find PAdj . The cofactors of the elements of the 

first row of P are 

2,3,7.,.
11

20
,

21

30
,

21

32
ei







. 

The cofactor of the elements of the second row of P are 
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2,2,2.,.
11

11
,

21

01
,

21

01






 ei  

The cofactor of the elements of the third row of P are 

.2,3,3.,.
20

11
,

30

01
,

32

01






ei  

 PAdj transpose of the matrix











































222

323

327

233

222

237

 





















 

222

323

327

10

1

det

11 AdjP
P

P  

Now, .001 3211 eeee   

 Coordinates matrix of 
1e relative to the basis B

















0

0

1

. 

 Coordinates matrix of 
1e relative to the basis 'B

















 

0

0

1

][ 1

1 ' Pe
B

 







































0

0

1

222

323

327

10

1
 





































10/2

10/3

10/7

2

3

7

10

1
 

.
10

2

10

3

10

7
3211  e  
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Also  


















0

1

0

2 B
e  and  



















1

0

0

3 B
e . 

 
















 

0

1

0
1

2 ' Pe
B

 and  
















 

1

0

0
1

3 ' Pe
B

 

Thus     .

2

3

3

10

1
,

2

2

2

20

1
'' 32








































BB

ee  

.
10

2

10

2

10

2
3212  e  

and .
10

2

10

3

10

3
3213  e  

Check your progress 

Problem 1: If T  be the linear operator on 2R defined by )0,(),( abaT   then write the matrix of 

T  in the standard ordered basis )}1,0(),0,1{(B . 

Also if )}1,2(),1,1{(' B  is another ordered basis for 3R , find the transition matrix P from the 

basis 'B . Hence find the matrix of T relative to the basis 'B . 

Problem 2: If the matrix of a linear transformation T on ),(2 CV  with respect to the ordered basis 

)}1,0(),0,1{(B is 








11

11
, what is the matrix of T with respect to the ordered basis  

)}1,1(),1,1{(' B ? 

Problem 3: Is it true that only matrix similar to the identity matrix I is itself. 

5.7 SUMMARY 
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In this unit, we have learned about the important concept of change of basis, similarity of matrices, 

determinant and trace of matrices. The overall summarization of this units are as follows:  

 The coordinates of each vector in V relative to the basis B  can be expressed to the 

coordinates relative to the basis 'B . 

 The relation of similarity is an equivalence relation in the set of all nn  matrices over the 

field F  

 Similar matrices have the same determinant 

 The relation of similarity is an equivalence relation in the set of all linear transformations 

on a vector space )(FV . 

 Trace of the similar matrices are same. 

5.8 GLOSSARY 

 Change of basis 

 Similarity of matrices 

 Determinant of linear transformation 

 Trace of matrices  
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 Gelʹfand I.M. Lectures on linear algebra (1989), Courier Corporation. 
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 David C. Lay, Linear Algebra and its Application (3rd Edition) (2007) Pearson Education 
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 Seymour Lipshutz and Marc Lipson, Schaum’s outlines “Linear Algebra” (3rd 

Edition)(2012), Mc Graw Hill Education. 

 J. N. Sharma and A. R. Vasistha, Linear Algebra (29th Edition) (1999), Krishna Prakashan.  

5.10 SUGGESTED READING 

 Minking Eie & Shou-Te Chang (2020), A First Course In Linear Algebra, World Scientific. 

 Axler, Sheldon (2015), Linear algebra done right. Springer. 

 https://nptel.ac.in/courses/111106051 

https://www.meripustak.com/Author-Minking-Eie-and-Shou-Te-Chang
https://nptel.ac.in/courses/111106051
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 https://archive.nptel.ac.in/courses/111/104/111104137 

5.11 TERMINAL QUESTION 

Long Answer Type Question: 

1. Find the matrix relative to the basis 









3

1
,

3

2
,

3

2
1 , 










3

2
,

3

2
,

3

1
2 , 











3

2
,

3

1
,

3

2
3  of 3R , of the linear transformation 33: RRT  whose matrix relative to 

the standard basis is 

















300

040

002

 

2. Find the co-ordinates of the vector )4,3,1,2( relative to the basis vectors )0,0,1,1(1  , 

)1,1,0,1(2  , )2,0,0,2(3  , )2,2,0,0(4   

3. If F be a field and ,V the set of all polynomials in x over F of degree 5 . If ': VVD 

is defined by )()]([ '' xfxfD  , where )(' xf  is the derivative of )(xf , show that D is a 

linear transformation on V . Find the matrix of D in the basis },,,,1{ 432 xxxx . 

4. Let V be the vector space of those polynomial functions from the reals into itself which 

have 3 . Let },,,{ 4321 ffffB   where )41()( 1   ixxf i

i . Then show that B  forms a 

basis for V . For any real number t  let 
1)()(  i

i txxg . Show that },,,{ 4321

' ggggB   is 

also a basis for V . If D is the differentiation operator on V , write the matrices of D in the 

ordered bases B  and 'B . 

5. If A and B  are nn complex matrices, then show that IBAAB   is impossible.  

6. Let T  be a linear operator on 3R  defined by )42,2,3(),,( zyxyxzxzyxT  . 

Prove that T is invertible and find a formula for 1T . 

7. Let T  be a linear transformation on an n dimensional vector space )(FV  and let B  and 

'B be two ordered basis for V . Then show that the matrix of T relative to 'B is similar to 

the matrix of T relative to .B  

Short answer type question: 

1. If T and S  are similar linear transformation on a finite dimensional vector space )(FV , 

ST detdet  . 

https://archive.nptel.ac.in/courses/111/104/111104137
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2. If A  and B are linear transformation on the same vector space and if at least one of them 

is invertible, then AB  and BAare similar. 

3. If two linear transformations A and B on )(FV are similar, then show that 2A and 2B  are 

also similar and if BA, are invertible, then 11,  BA  are also similar.  

4. Show that identity matrix )(I  is the only matrix similar to itself.  

5. Consider the vector space )(RV  of all 22  matrices over the field R of real numbers. Let 

T be the linear transformation on V that sends each matrix X onto ,AX  where 









11

11
A

. Find the matrix of T with respect to the ordered basis  4321 ,,, B  for V where 






































10

00
,

01

00
,

00

10
,

00

01
4321   

6. Prove that similar matrices have the same determinant. 

Fill in the blanks: 

1. The relation of similarity is an ……………… relation in the set of all nn  matrices over 

the field F  

2. Similar matrices have same …………… 

3. The sum of the diagonal element of any square matrix …….……… 

4. The trace of similar matrices are ………………… 

5. )(ABtr ………………….. 

6.  )det( BA …………………….. 

5.12 ANSWERS 

Answers of check your progress:   

1: 


















11

21
;

01

01
][ PT B ; 







 


21

21
][ 'B

T  

2:  









00

02
][ 'B

T  
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3: Matrix similar to I is I itself 

Answers of long answer type question: 

1: 





























3

8
0

3

2

0
3

10

3

2
3

2

3

2
3

 2: 431
2

3

2

1
)4,3,1,2(    

Answer of fill in the blanks questions: 

1: Equivalence    2: Determinant  3: Trace of the matrix 

4: Same    5: )(BAtr    6:  )det()det( BA   

  

 

 

 

 

 



 

 

 

 

 

 

 

 

 

BLOCK- II 

QUOTIENT SPACE AND LINEAR FUNCTION 
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UNIT-6: QUOTIENT SPACE 

CONTENTS 

6.1 Introduction 

6.2  Objectives  

6.3  Quotient space 

6.4  Dimension of Quotient space 

6.5  Direct sum of spaces 

6.6   Disjoint subspaces 

6.7 Dimension of a direct sum 

6.8 Complementary subspaces 

6.9 Direct sum of several subspaces 

6.10 Co-ordinates 

6.11 Summary 

6.12  Glossary  

6.13   References 

6.14 Suggested Readings 

6.15  Terminal Questions 

6.16 Answers 

6.1 INTRODUCTION 

Let 2RX   be the standard Cartesian plane, and let Y be a line through the origin in X

. The space occupied by all X lines that are parallel to Y is known as the quotient space X/Y. In 
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other words, lines in X that are parallel to Y make up the elements of the set X/Y. Because their 

difference vectors belong to Y, the points along any given such line will satisfy the equivalence 

relation. This provides a geometric method of visualizing quotient spaces. The quotient space can 

be more often described as the space of all points along a line through the origin that is not parallel 

to Y by re-parameterizing these lines. The set of all co-parallel lines or, alternatively, the vector 

space made up of a plane that only crosses the line at the origin can be used to represent the quotient 

space for R3 by a line through the origin. 

6.2 OBJECTIVES 

After reading this unit learners will be able to  

 Understand the concept of quotient space.  

 Implement the application of dimension of quotient space. 

 Understand the concept of direct sum of subspaces. 

 Visualized and understand the concept of disjoint subspaces, complementary subspaces, 

direct sum of several subspaces and co-ordinates in a vector space. 

6.3 QUOTIENT SPACE   

In this section we will discuss about the quotient space. 

Definition: Let W be any quotient subspace of a vector space V(F). Also let  be any element of 

V . Then the set 

 WW   :  

is called the a right coset of W in V generated by  . Similarly the set, 

 WW   :  

is called the left coset of W in V generated by  . 

Here, it is obvious that W  and W  are both subsets of V . Since in addition V is 

commutative, therefore we have WW   . Thus we shall call W  as simply a coset of 

W in V generated by .  

The following results about the cossets to be remembered. 

(i) We have V0 and WW  0 . Therefore W itself is a coset of W in V . 
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(ii) WWW    

Proof : First we shall prove that WW  . Let   be any arbitrary element of W . 

Then W . Now W is a subspace of V . Therefore, 

WWW   ,  

So, each element of W  is also element of W . Hence WW  . 

Now we have only to prove that WW . 

Let W . Since W is a subspace, therefore 

WW    

Thus, W , WW   . Now we can write, 

  W)(  since W . 

Thus   WW . Therefore WW  

Hence WW in W  

(iii) If W  and W  are two cosets of W in V , then  

WWW    

Proof: Since ,0 W  therefore   W0 . Thus  

 W . 

Now,   WWW  

)(   W  

WW   0  

Conversely, WWW  )(   

                                              WW ])[(  
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  WW  

Let WV / denotes the set of all cosets of W in V i.e., let  

}:{/ VWWV    

We have just seen that if ,W then   WW . Thus a coset of W in V can have 

more than one representation. 

Now if )(FV  is a vector space, then we shall give a vector space structure to the set WV / over 

the same field F . For this we shall have to define addition in WV / i.e., addition of coset of W in 

V and multiplication of a coset by an elelement of F i.e., scalar multiplication. 

Theorem 1: If W is any subset of a vector space )(FV , then the set WV / of all cosets W  

where  is any arbitrary element of ,V is a vector space over F for the addition and scalar 

multiplication compositions defined as follows:  

VWWW   ,)()()(  

and VFaaWWa   ,;)( . 

Proof: We have VV  ,  

Also VaVFa  , .  

Therefore WVW /)(   and also WVaW /  . Therefore, WV /  is closed with regard 

to the aforementioned definitions of scalar multiplication and coset addition. Initially, we will 

demonstrate that these two compositions are well-defined, meaning they are not dependent on 

the specific representative selected to signify a coset. 

Let VWW  '' ,,   

and VWW  '' ,,   

we have WWW  ''   

and WWW  ''   

Now W is a subspace, therefore 
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WWW  )()(, ''''   

                                               W )()( ''   

    W )()( ''   

    )()( ''   WW  

)()()()( ''   WWWW  

Therefore addition in WV / is well defined.  

Again, WaWFa  )(, '''   

                                          Waa  '  

                                          ' aWaW   

 scalar multiplication in WV / is also defined. 

Commutativity of addition: Let   WW , be any two elements of WV / . Then 

)()()()(   WWWW  

)()(   WW  

Associativity of addition: Let   WWW ,, be any three elements of WV / .Then  

)]([)()]()[()(   WWWWW  

)]([  W  

)])[(  W  

)()]([   WW  

)()]()[(   WWW  

Existence of additive identity: If 0 is the zero vector of V , then WVWW /0  . If W

is any element of WV / , If W  is any element of WV / , then 
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  WWWW )0()()0(  

WW  0  is the additive identity. 

Existence of additive inverse: If W is any element of ,/WV  then 

WVWW /)(    

then WVWW /)(   . Also we have, 

WWWWW  0)()()(   

W  is the additive inverse of W . 

Thus WV / is an abelian group with respect to addition composition. Further we observed that if 

Fba ,  and WVWW /,   , then 

1. )]([)]()[(   WaWWa  

                                                  )()(  aaWaW   

                                                   )()(   WaWa  

2.  )())(( baWWba   

                                     )(  baW   

                                    )()(  bWaW   

                                )()(   WbWa  

3. )()())((  baWabWWab   

                                )]([)(   WbabWa  

4.   WWW 1)(1  

  Across the field F in these two compositions, V/W is a vector space. The quotient space of V 

with respect to W is known as the vector space V/W. The zero vector in this vector space is 

denoted by the coset W. 
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6.4 DIMENSION OF QUOTIENT SPACE 

In this section we will discuss about the dimension of the quotient space. 

Theorem 2: If W be a subspace of a finite dimensional vector space )(FV , then 

WVWV dimdim)/(dim   

Proof: Let m be the dimension of the subspace W of the vector space )(FV . Let  

}...,,,{ 21 mS   

be a basis of W. Since S is a linearly independent subset of V. Let 

}...,,,,...,,,{ 2121

'

lmS   be a basis of V. Then lmV dim  

lmlmWV  )(dimdim  

So, we have to prove that lWV /dim  

For it, let we claim that the set l cosets  

}...,,,{ 211 lWWWS    

Is a basis of WV / . 

First, we will show that the set 1S is linearly independent. Also the zero vector of WV / is W . 

Let we consider, WWaWaWa ll  )(...)()( 2211   

0)(...)()( 2211  WaWaWaW ll  

0)...( 2211  WaaaW ll  

Waaa ll   ...2211  

mmll bbbaaa   ...... 22112211    [Since any vector can be written as a linear 

combination of its basis vector] 

0...... 22112211  mmll bbbaaa   

0,...,0,0 21  laaa  because the vectors ml  ...,,,,,...,, 2121  are linearly independent. 

 The set 1S is linearly independent. 

Now, we have only to prove that WVSL /)( 1  . Let W  be any element of WV / . The vector 

V can be expressed as  

llmm dddccc   ....... 22112211  

12211 ...  lddd   where Wccc mm   ....2211  

So, )...( 2211 lldddWW    

                     lldddW  ...)( 2211   

                     )...( 2211 lldddW                             [ WWW   ] 

                     )(...)()( 2211 lldWdWdW    

                      )(...)()( 2211 ll WdWdWd    
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Thus any element W  of WV / can be expressed as a linear combination of 1S . 

)(/ 1SLWV   

1S  is a basis of WV / . 

lWV  /dim  

Hence the theorem. 

 

6.5 DIRECT SUM OF SPACES 

In this section we will learn about the direct sum of spaces 

Definition: Let )(FV  be the vector spaces and let mWWW ...,,, 21 be subspaces of V . Then V is 

said to be the direct sum of mWWW ...,,, 21  if every element V can be written in one and only 

one way as m ,...,, 21  where 

mm WWW   ,...,, 2211  

If a vector space )(FV is a direct sum of its two subspaces 
1W and 

2W  the  we should have not only 

21 WWV   but also that each vector of V can be uniquely expressed as sum of an element of 
1W

and an element of 
2W . Symbolically the direct sum is represented by the notation 

21 WWV  . 

Example 1: Let )(2 FV  be the vector space of all ordered pairs of F . Then }:)0,{(1 FaaW   

and }:),0{(2 FbbW   are two subspaces of )(2 FV . Obviously any element )(, 2 FVyx   can be 

uniquely expressed as sum two elements from which one of them belongs to 
1W and other element 

will be belong in 
2W . The unique expression is defined by ),0()0,(),( yxyx  . Thus )(2 FV is 

the direct sum of 
1W  and 

2W . Only the zero element )0,0( is the only common element in both 
1W

and 
2W . 

6.6 DISJOINT SUBSPACE 

Definition: Two subspaces 
1W  and 

2W  of the vector space )(FV  are said to be disjoint if their 

intersection is the zero subspace i.e., }0{21 WW . 

Theorem 3: The necessary and sufficient conditions for a vector space )(FV  to be a direct sum 

of its two subspaces 
1W  and 

2W are that 

(i) 
21 WWV   and  
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(ii) }0{21 WW  i.e., 
1W  and 

2W  are disjoint 

Proof: (Necessary condition) Let V be the direct sum of its two subspaces 
1W  and 

2W . Then 

element of V is expressed uniquely as sum of the element of 
1W and element of 

2W . Therefore 

we have  
21 WWV  . 

Let if possible 
210 WW  . Then 

21, WW   . Also V  and we can write 

  0  where 
10 W , 

2W  

And   0  where .0, 21 WW   

Thus V  can be expressed by two different ways as a sum of an element belongs to 
1W and an 

element of 
2W . This is contradict the fact that V be the direct sum of 

1W  and 
2W . Hence 0 is the 

only common vector in the both subspaces 
1W  and 

2W  i.e., }0{21 WW .  

Therefore, the condition is necessary. 

Sufficient condition: Let 
21 WWV   and }0{21 WW . Then we have to show that V is the 

direct sum of 
1W  and 

2W . 

Since 
21 WWV  , then each element of V can be expressed as linear sum of the elements of 

1W  

and 
2W . So, we have to prove that this expression is unique. For it we assume that, 

221121 ,,, WWV    

And 
221121 ,,, WWV   . Now we only to prove that 

11    and 
22    

We have 
2121    

2211    

Since 
1W  is subspace, therefore  

1111111 , WWW    

Similarly, 
222 W . 

212211 WW    
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But we know zero vector is only common vector in 
1W  and 

2W  i.e., 
21}0{ WW  . Therefore 

1111 0   . Also 
2222 0   . 

Thus each vector V is uniquely expressible as sum of an element of 
1W  and an element of 

2W . 

Hence 
21 WWV  . 

6.7 DIMENSION OF A DIRECT SUM 

 Theorem 4: If )(FV  be a finite dimensional vector space and )(FV  is a direct sum of two 

subspaces 
1W  and 

2W , then 
21 dimdimdim WWV   

Proof: Let mW 1dim and lW 2dim . Also let the sets of vectors 

},...,,{ 211 mS   and },...,,{ 212 lS   be the bases of 
1W  and 

2W  respectively. 

1dimW  lmW 2dim . 

In order to prove that lmV dim . We claim that the set 

21 SSS  },...,,,,...,,{ 2121 lm   is a basis of V . 

First we will prove that the set S is linearly independent. Let 

0...... 22112211  llmm bbbaaa   

)...(... 22112211 llmm bbbaaa   . 

Now 12211 ... Waaa mm    

And 22211 )...( Wbbb ll    

Thus, 212211 ... WWaaa mm    

and 212211 )...( WWbbb ll   . Since V is the direct sum of 
1W  and 

2W . Therefore 0 is 

the only vector belonging to 
21 WW  . Then we have 

0...,0... 22112211  llmm bbbaaa   
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As we know both the set },...,,{ 21 m  and },...,,{ 21 l  are linearly independent therefore we 

have, 

0,...,0,0,0,...,0,0 2121  lm bbbaaa  

Therefore S is linearly independent. 

Now we have to show that VSL )( . Let the vector  be any arbitrary element of V . Then, 

 an element of 1W an element of 
2W  

    a linear combination of 1S  a linear combination of 2S  

    a linear combination of element of S . 

S is basis of V . Therefore lmV dim  

Hence the theorem 

Theorem 5: Let V be a finite dimensional vector space and let 
1W and 

2W  be subspaces of V

such that 
21 WWV   and 

11 dimdimdim WWV  . Then 
21 WWV  . 

Proof: Let lW 1dim  and mW 2dim . Then, 

mlV dim  

Let },...,,{ 211 lS   be a basis of 
1W  and },...,,{ 212 mS   be the basis of 

2W . First, we 

will prove that 
21 SS  is a basis of V . 

Let V . Since 
21 WWV  , therefore we can rewrite 

   where 
21, WW   . 

Now 
1W  can be write as a linear combination of elements of 1S  and 

2W  can be write as 

linear combination of  the element of 2S . Thus each vector V can be written as linear 

combination of the element of 
21 SS  . 

)( 21 SSLV  . 
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Since mlV dim  and VSSL  )( 21
, it means number of distinct element in 

21 SS   cannot 

be less than ml  . Thus 
21 SS   is a basis of V . Therefore, the set  

},...,,,,...,,{ 2121 ml   is linearly independent. 

Now we have to prove that }0{21 WW . 

Let 
21 WW  . Then 

211 WW  . Then 
21, WW   . 

Therefore, llaaa   ...2211  

and mmbbb   ...2211  

for some a’s and b’s F . 

mmll bbbaaa   ...... 22112211  

0...... 22112211  mmll bbbaaa   

0,...,0,0,0,...,0,0 2121  ml bbbaaa  

0  

}0{21  WW . 

6.8 COMPLEMENTARY SUBSPACES 

Definition: Let 
1W and 

2W  be the subspaces of the vector space )(FV . Then the subspace 
2W  is 

called the complement of 
1W  in V if V is the direct sum of 

1W  and 
2W . 

Theorem 6: (Existence of complementary subspaces) Corresponding to each subspaces 
1W  of 

a finite dimensional vector space )(FV , there exists a subspace 
2W  such that V is the direct sum 

of 
1W  and 

2W . 

Proof: Let mW 1dim . Let the set },...,,{ 211 mS   be the basis of 
1W . Since 1S  is a linearly 

independent subset of V , therefore 1S can be extended to form a basis of .V  Let the set 

},...,,,,...,,{ 2121 lmS   be a basis of V . 
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Let 
2W  be the subspace of V generated by the set 

}.,...,,{ 212 lS   

We shall prove that V is the direct sum of 
1W  and 

2W . So, we have to show that 
21 WWV   

and }0{21 WW . 

Let  be any element of V . Then we can express 

 a linear combination of element of S . 

= a linear combination of element of 1S + a linear combination of 2S  

= an element of 
1W + an element of 

2W  

21 WWV  . 

Again let 
21 WW  . Then   can be expressed as a linear combination of 1S and also as a 

linear combination of 2S . So we have 

llmm bbbaaa   ...... 22112211  

0...... 22112211  llmm bbbaaa   

0,...,0,0,0,...,0,0 2121  lm bbbaaa . Since lm  ...,,,,,...,, 2121  are linearly 

independent. 

0  (Zero vector) 

Thus, }0{21 WW . 

Now we can say that V is the direct sum of 
1W  and 

2W . 

Theorem 7: If 
1W  and 

2W  are complementary subspaces of a vector space V , then the mapping 

f which assign to each vector   in 
2W  the coset 1W  is an isomorphism between 

2W  and 

1/WV . 

Proof: We have given that, 
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21 WWV   

And 
12 /: WVWf   such that 

21)( WWf    

We shall show that f is an isomorphism of 
2W  onto 

1/WV . 

(i) f is one-one: If 
221, W , then 

211121 )()(   WWff                                                            [By definition of f ] 

                             
121 W   

                          
2121 WW                     [

221 W   because 
2W  is subspace] 

                          021                                                [ }0{21 WW ] 

                          
21    

f  is one-one. 

(ii) f  is onto: Let 1W  be any coset in 
1/WV , where V . Since V is direct sum of 

1W  

and 
2W , therefore we can write 

   where 
21, WW    

This gives 
1W   

Since ,1W therefore   11 WW  

Now   11)( WWf                                  [By def. of f ] 

Thus, 
211 / WWVW    such that 

  1)( Wf  

f is onto. 

(iii) f  is linear transformation: Let Fba , and 
221, W . Then 
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Let )()( 21121  baWbaf   

                                 )()( 2111  bWaW   

                                 )()( 2111   WbWa  

                                  )()( 21  bfaf  . 

Therefore f  is a linear transformation. 

Hence f is an isomorphism between 
2W  and 

1/WV . 

Theorem 8: (Dimension of quotient space) If W is subspace of dimensional m of a n  

dimensional vector space V , then the dimension of the quotient space WV / is mn  . 

Proof: As we have given that W is a subspace of vector space V . It means there exist a subspace 

1W of V such that 1WWV  . 

Also, 1dimdimdim WWV   

Or, mnWVW  dimdimdim 1  

Thus by the theorem 7, we have  

1/ WWV   

mnWWV  1dim/dim  

6.9 DIRECT SUM OF SEVERAL SUBSPACES 

We will now talk about the direct sum of many subspaces. In order to accomplish this, we must 

first define the idea of subspace independence, which is comparable to the disjointness requirement 

of two subspaces. 

Definition: Suppose kWWW ...,,, 21  are subspaces of the vector space V . We shall say that 

kWWW ,...,, 21  are independent if iik W  ,0,...,, 21  implies that each 0i . 

Some important properties:  
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1. If )(FV be a vector space and 
kWWW ...,,, 21

 are subspaces of the vector space V such that 

kWWWW  ...21
. Then following are the equivalent 

(i) 
kWWW ...,,, 21

 are independent. 

(ii) Each vector W  can uniquely expressed in the form 
k  ...21
 with 

ii W  

for ki ....,,2,1  

(iii) For each kii 2, , the subspaces iW is disjoint from the sum )...( 121  iWWW . 

2. If )(FV be a vector space and nWWW ...,,, 21  are subspaces of the vector space V . Suppose 

that  nWWWV  ...21  and that }0{)......( 1121   niii WWWWWW  for 

ever ni ...,,2,1 . Prove that V is the direct sum of nWWW ...,,, 21 . 

3. If )(FV  be the finite dimensional vector space and let kWWW ...,,, 21  be subspace of V then 

these statement are equivalent. 

(i) V  is the direct sum of kWWW ...,,, 21 . 

(ii) If iB  is a basis of kiWi ...,,2,1,  , then the union 
k

i

iBB
1

  is also a basis for V . 

4. If a finite dimensional vector space )(FV  is the direct sum of its subspaces kWWW ...,,, 21 , 

then kWWV dim........dimdim 1   

6.10 CO-ORDINATES 

Let )(FV  be a finite dimensional vector space and consider }...,,,{ 21 nB   be an ordered basis 

for V . When we refer to an ordered basis, we indicate that the vectors of B have been listed in a 

precise manner; that is, the vectors that are fixed and occupy the first, second, ..., nth positions in 

the set B. 

Let V . Then there exists a unique n-tuple )...,,,( 21 nxxx  of scalars such that  





n

i

iinn xxxx
1

2211 ...  . 

The  n tuple )...,,,( 21 nxxx  is called the n tuple of co-ordinates of  relative to the ordered 

basis .B The scalars ix  is called the ith coordinates of  relative to the ordered basis B . Then 1n  

matrix, 
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





















nx

x

x

X

.

.
2

1

 

Is called the coordinate matrix of  relative to the ordered basis B . Here, we use the symbol 
B][

. For the coordinate matrix of the vector  to the ordered basis B. 

It should be emphasized that the vector  's coordinates are unique only for a specific ordering of 

B for the same basis set B. There are various ways to arrange the base set B. A modification in B's 

ordering could result in a change in  ’s coordinates. 

Solved examples 

Example 1: Prove that the set )}1,1,1(),0,1,1(),0,0,1{(S  is a basis of )(3 RR  where R  is field 

of real numbers. Hence find the coordinates of the vector ),,( cba  with respect to the above basis. 

Solution: As we know that the dimension of the vector space )(3 RR  is 3. If the given set S is 

linearly independent, then S will form basis of )(3 RR . Let us consider any scalars ),,( zyx  in R 

such that, 

)0,0,0(0)1,1,1()0,1,1()0,0,1(  zyx  

)0,0,0(),,(  zzyzyx  

0,0,0  zzyzyx  

0,0,0  zyx  

S  is linearly independent.  

Thus, S is basis of )(3 RR . 

Now to find the coordinates of ),,( cba  with respect to the ordered basis S . Let rqp ,, be scalars 

in R such that 

)1,1,1()0,1,1()0,0,1(),,( rqpcba   
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)1,1,1()0,1,1()0,0,1(),,( rqpcba   

),,(),,( crrqrqpcba   

crbrqarqp  ,,  

bapcbqcr  ,,  

Hence the co-ordinates of the vector ),,( cba  are ),,( rqp  i.e., ),,( ccbba  . 

Check your progress 

Problem 1: If )(FV  be a finite dimensional vector space and )(FV  is a direct sum of two subspaces 
1W  

and 
2W , then .................dim V  

Problem 2: Find the coordinates of the vector )6,1,2(   of 3R relative to the basis )2,1,1(1  , 

).1,0,2(),0,1,3( 32    

Problem 3: Check the necessary and sufficient conditions for a vector space )(FV  to be a direct 

sum of its two subspaces 
1W  and 

2W . 

 

6.11 SUMMARY 

In this unit, we have learned about the important concept of quotient space, dimension of quotient 

space, direct sum of spaces, disjoint subspaces, complementary subspaces and co-ordinates of 

vector spaces. The overall summarization of this units are as follows:  

 If )(FV  is a vector space, then we shall give a vector space structure to the set WV / over 

the same field F . 

 WVWV dimdim)/(dim   

 If a vector space )(FV is a direct sum of its two subspaces 
1W and 

2W  the  we should have 

not only 
21 WWV   but also that each vector of V can be uniquely expressed as sum of 

an element of 
1W and an element of 

2W  

 Two subspaces 
1W  and 

2W  of the vector space )(FV  are said to be disjoint if their 

intersection is the zero subspace. 
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 The necessary and sufficient conditions for a vector space )(FV  to be a direct sum of its 

two subspaces 
1W  and 

2W are that 

 
21 WWV   and  

 }0{21 WW  i.e., 
1W  and 

2W  are disjoint 

 If 
1W and 

2W  be the subspaces of the vector space )(FV . Then the subspace 
2W  is called 

the complement of 
1W  in V if V is the direct sum of 

1W  and 
2W . 

 Corresponding to each subspaces 
1W  of a finite dimensional vector space )(FV , there 

exists a subspace 
2W  such that V is the direct sum of 

1W  and 
2W . 

6.12 GLOSSARY 

 Quotient space 

 Dimension of Quotient space 

 Direct sum of spaces 

 Co-ordinates 
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6.15 TERMINAL QUESTION 

Long Answer Type Question: 

1. Let 1W  and 
2W  be two subspaces of a finite dimensional vector space V . If  

21 dimdimdim WWV   and }0{21 WW , prove that 
21 WWV  . 

2. Show that the set )}1,1,1(),0,1,1(),0,0,1{(S  is a basis of )(3 CC  where C is the field of 

complex numbers. Hence find the coordinates of the vector )73,6,43( iii   in 3C  with 

respect to the mentioned basis. 

3. Let },,{ 321 B  be an ordered basis for 3R , where 

).0,0,1(),1,1,1(),1,0,1( 321   Obtain the coordinates of the vector ),,( cba in the 

ordered basis B . 

4. Let V be the vector space of all polynomial functions of degree less than or equal to two 

from the field of real number R  into itself. For a fixed Rt , let 
2

321 )()(,)(,1)( txxgtxxgxg  . Prove that },,{ 321 ggg  is a basis for V and obtain 

the coordinates of 
2

210 )( xcxcxc   is the ordered basis. 

5. Let V be a finite-dimensional vector space and let kWWW ...,,, 21  be subspaces of V such that 

kWWWV  ...21  and kWWWV dim...dimdimdim 21  . Then show that 

kWWWV  ...21  

6. If W is any subset of a vector space )(FV , then show that the set WV / of all cosets 

W  where  is any arbitrary element of ,V is a vector space over F for the addition 

and scalar multiplication compositions defined as follows:  

VWWW   ,)()()(  

and VFaaWWa   ,;)(  

7. Show that if W be a subspace of a finite dimensional vector space )(FV , then 

WVWV dimdim)/(dim   

8. If 
1W  and 

2W  are complementary subspaces of a vector space V , then show that the 

mapping f  which assign to each vector   in 
2W  the coset 1W  is an isomorphism 

between 
2W  and 

1/WV . 
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Short Answer Type Question: 

1. If )(FV  be a finite dimensional vector space and )(FV  is a direct sum of two subspaces 

1W  and 
2W , then prove that 

21 dimdimdim WWV   

2. Prove that the set )}1,1,1(),0,1,1(),0,0,1{(S  is a basis of )(3 RR  where R  is field of real 

numbers. Hence find the coordinates of the vector ),,( cba  with respect to the above basis. 

3. Construct three subspaces 
1W , 

2W , 3W of a vector space V so that 3121 WWWWV   

but 32 WW  . 

4. If V be a finite dimensional vector space and let 
1W and 

2W  be subspaces of V such that 

21 WWV   and 
11 dimdimdim WWV  . Then show that 

21 WWV  . 

5. Prove that )dim()dim()/dim( WVWV  . 

6. Corresponding to each subspaces 
1W  of a finite dimensional vector space )(FV , there 

exists a subspace 
2W  such that V is the direct sum of 

1W  and 
2W . 

Fill in the blanks: 

1. The dimension of quotient space WV / is ………………… 

2. The field of any vector space and its quotient space is ………………… 

3. Two subspaces 
1W  and 

2W  of the vector space )(FV  are said to be disjoint if ………….. 

4. If )(FV  be a finite dimensional vector space and )(FV  is a direct sum of two subspaces 

1W  and 
2W , then Vdim ………………….. 

5. If a finite dimensional vector space )(FV  is the direct sum of its subspaces kWWW ...,,, 21 , 

then Vdim ………………… 

6.16 ANSWERS 

Answers of check your progress:   

1: 
21 dimdim WW   

2:  )4/17,8/15,8/7(   

3:  
21 WWV   and }0{21 WW  i.e., 

1W and 
2W  are disjoint 

Answers of long answer type question: 

2. )73,3,23( iii      3. )2,,( cbabcb   
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4. ),2,( 221

2

210 ctcctctcc      

Answer of short answer type question 

1. ),,( ccbba     

2. Take vector space 2RV   and }:)0,{(1 RaaW  , }:),0{(2 RaaW   and 

}:),{(3 RaaaW   

Answer of fill in the blanks questions: 

1. WV dimdim    2. Same   3. }0{21 WW  

4. 
21 dimdim WW    5. kWW dim........dim 1    
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UNIT-7: LINEAR FUNCTION 

CONTENTS 

7.1 Introduction 

7.2  Objectives  

7.3  Some overview on linear transformation 

7.4  Linear functional 

 7.4.1 Some special linear functional  

 7.4.2 Properties of linear functional 

7.5  Dual spaces and dual bases 

7.6 Reflexivity 

7.7 Annihilators 

7.8 Summary 

7.9 Glossary 

7.10   References 

7.11   Suggested Readings 

7.12 Terminal Questions 

7.13  Answers 

7.1 INTRODUCTION 

See Linear function (calculus) for the definition of this term in that context. 

The word "linear function" in mathematics refers to two different but related concepts: 
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 A linear function, or polynomial function of degree zero or one, is defined in calculus and 

related fields as a function whose graph is a straight line. The term "affine function" is 

frequently used to distinguish such a linear function from the other idea. 

 A linear function is a linear map in linear algebra, mathematical analysis, and functional 

analysis.  

A linear function from the real numbers to the real numbers in calculus and related 

mathematical domains is a function whose graph in Cartesian coordinates is a non-vertical line in 

the plane. The fact that the change in the output is proportionate to the change in the input is a 

defining characteristic of linear functions. 

 

                  

Graph of the linear function: y(x)= -x+2 

7.2 OBJECTIVES 

After reading this unit learners will be able to  

 Understand the basic difference between linear functional and linear transformation. 

 Visualized some special types of linear functional and properties of linear functional. 

 Implementation the concept of dual space. 

 Visualized and understand the important theorems of linear functional and dual space. 

 Understand the concept of reflexivity and annihilators. 

7.3 SOME OVERVIEW ON LINEAR TRANSFORMATION 
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In the previous unit we have already learned about the linear transformation. To learn the basic 

difference between linear transformation and linear function we initially recall or summarized 

about the linear transformation briefly.  

Definition: Let U and V are two vector space then a mapping T: U → V is called a Linear 

Transformation if it satisfies the following condition:  

1. ∀ x, y ∈ U, T(x + y) = T(x) + T(y)  

2. ∀ x ∈ U, α ∈ R, T(αx) = αT(x) 

Definition: Let T: U → V and S: U → V be two Linear Transformation then the sum of T and S is 

denoted by T + S and defined as T + S: U → V  

UxxSxTxST  )()())((  

 

Definition: Let T: U →V be a Linear Transformation and let α be a scalar then the scalar 

multiplication of a linear transformation T by α denoted by αT and defined as VUT :  

UxxTxT  ),())((   

Definition: The set f all Linear Transformation from U to V is denoted by L(U, V). 

VUTTVUL  :|{),(  is a linear transformation} 

Definition: Let T: U →V be a linear transformation and let S:V →W be a linear transformation 

then, the composition of S and T is denoted by SoT and defined as SoT: U → W. 

UxxTSSoT  )),((  

Theorem 1: Prove that the sum of two linear transformations is also linear transformation. 
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OR 

If T, S ∈ L(U, V ) then prove that S + T ∈ L(U, V ). 

Proof: Here T, S ∈ L(U, V ) i.e. T: U → V and S: U → V are linear transformation and we have 

to prove  

S + T: U → V is also linear transformation. 

 

                      

 

 

Theorem 2: If ),( VULT   and R  then prove that ),( VULT   

Proof: Here VUT :  is a linear transformation and   be a scalar to prove that VUT : is 

a linear transformation. 
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7.4 LINEAR FUNCTIONAL 

Definition: Consider a vector space V(F). It is known that a vector space over F can be thought of 

as the field F. This is F(F) or F1, the vector space. We'll just refer to it as F. A linear functional on 

V is a linear translation from V into F. The independent definition of a linear functional will now 

be provided. In this unit, we often take R to be a filed in terms of F. 

Definition: Let V(F) be a vector space. A mapping from V into F is said to be a linear functional 

on V if, 

Fbabfafbaf  ,)()()(   and V ,  

If f is a linear functional on V(F), then )(f is in F for each  belonging to V . Since )(f is a 

scalar, therefore a linear functional on V is a scalar valued function. 

Example 3: Let )(FVn  be the vector space of ordered n-tuples of the elements of the field F. 

Let nxxx ...,,, 21  be n-field elements of .F  

If )()...,,,( 21 FVaaa nn  . 

Let f be a function form )(FVn  into F  defined by 

nnaxaxaxf  ...)( 2211  
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Let )()...,,,( 21 FVbbb nn  . If Fba , , we have  

)...,,,(()...,,,([)( 2121 nn bbbbaaaafbaf    

),...,,,( 2211 nn bbaabbaabbaaf   

)(),...,()( 222111 nnn bbaaxbbaaxbbaax   

)...,,,()...,,,( 2121 nn bbbbfaaaaf   

)()(  bfaf   

Hence f  is a linear functional on )(FVn  

Example 4: We will now present a important illustration of a linear functional. 

We shall prove that the trace function is a linear functional on the space of all nn  matrices over 

a field F.  

Let n  be a positive integer and a field. Let )(FV  be the vector space of all nn  matrices over F. 

If ,][ VaA nnij    then the trace of A  is the scalar. 

.....
1

1211 



n

i

iinn aaaaAtr  

Therefore, the scalar that results from summing the components of A that are located along the 

principal diagonal is the trace of A.  

The trace function is a linear functional on V because if  

Fba ,  and ,][,][ VbBaA nnijnnij    then 

)]([)][][()( nnijijnnijnnij bbaatrbbaatrbBaAtr    

= )()()(
11 1

trBbtrAabaabbaa
n

i

ii

n

i

n

i

iiiiii   
 

 

7.4.1 SOME SPECIAL LINEAR FUNCTIONAL 
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1. Zero functional: Let V be a vector space over the field F . The function f  from V into F 

defined by 

Vf   0)(  

is a linear functional on V.  

Proof: Let V,  and Fba , . We have  

0)(   baf  

)()(00  bfafba   

f is a linear function on V. It is called the zero functional and we shall in future denoted it by 
^

0  

2. Negative of linear functional: Let V be a vector space over the field F. Let f be a linear 

functional on V. The correspondence –f defined by 

Vff   )]([))((  

is a linear functional on V.  

Proof: Since FfFf  )()(  , therefore –f is a function from V into F.  

Let Fba ,  and V, . Then  

)]([))((  bafbaf                                              [By definition of –f] 

           )]()([  bfaf                                                       [ Since f is a linear functional] 

           )]([)]([  fbfa   

           ])[(])[(  fbfa   

f  is a linear functional on V.  

Properties of linear functional 

7.4.2 PROPERTIES OF LINEAR FUNCTIONAL 

Theorem 4: Let f  be a linear functional on a vector space )(FV . Then 



ADVANCED LINEAR ALGEBRA  MAT-505 
 

  

DEPARTMENT OF MATHEMATICS 

UTARAKHAND OPEN UNIVERSITY 
PAGE 131 

 

(i) 0)0( f  where 0 on the left hand side is zero vector of V , and 0 on the right hand side is 

zero element of F. 

(ii) Vff   )()( . 

Proof: Let V . Then Ff )( . 

We have Fff  )(0)(                         [ 0  is zero element of F] 

)0(  f                                                        [ 0  is zero element of V] 

)0()( ff                                                    [ f  is a linear functional] 

Now F is a field. Therefore, 

)0()(0)( fff    

0)0(  f , by left cancellation law for addition in F. 

(iii) We have )()()]([   fff                [ f  is a linear functional by (i)] 

But 0)0()]([  ff   

Thus in F , we have  

0)()(   ff  

)()(   ff  

7.5 DUAL SPACES AND DUAL BASES 

On a vector space V(F), let V ' be the set of all linear functionals. This set is sometimes denoted as 

V*. Our current goal is to apply a vector space structure over the same field F to the set V '. We 

must appropriately define addition in V ' and scalar multiplication in V ' over F in order to do this.  

Definition: The set of all linear functional from V to F is denoted by L(V, F) or V*. 

Note: 
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Theorem 5: (State and prove the existence theorem of dual basis) 
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Definition: Let V be a vector space and *V be dual space of a vector space V. Let nV dim  then 

nV *dim  and basis }...,,,{ 21

*

nfffB   of *V corresponding to a basis }...,,,{ 21 nvvvB   of a 

vector space V is called a dual basis for a vector space V . 

Example 5: Discuss about the dual basis corresponding to a basis )}1,3(),1,2{(  of 2R . 

Solution: As we know that 2R is a vector space. 
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Example 6: Discuss about the dual basis corresponding to a basis )}1,1,0(),0,1,1(),1,0,1{(  of 3R . 

Solution: As we know that 3R is a vector space.  
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Theorem 6: Let }...,,,{ 21 nvvv  be a basis for V and }...,,,{ 21 nfff  be a basis for *V  then 

                       

Proof: Since }...,,,{ 21 nvvvB   is a basis of a vector basis for V and }...,,,{ 21

*

nfffB   be a basis 

for *V  
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7.6 REFLEXIVITY 

Every vector space V has a dual space 'V that contains all linear functionals on V , as we know. 

And now 'V  is a vector space as well. It will therefore likewise have a dual space '' )(V made up 

of linear functionals on 'V . For the sake of convenience, we will refer to this dual space as ''V  and 

term it the second dual space of V. 

Note: If V is finite-dimensional then ''' dimdimdim VVV  . Which means these are isomorphic 

to each other. 

Theorem 7: Let F be the field in a finite dimensional vector space V. If V and L on 'V defined 

by 
')()( VfffL   is a linear functional on 'V i.e., 

''VL  . Also the mapping  L is an 

isomorphism of V onto ''V . 

Proof: Let V  and 
'Vf  , then )(f is a unique element of F. Then L  defined by 

')()( VfffL                         …… (1) 

is a mapping from 'V into F. 

Let Fba , and 
', Vgf  . Then 

))(())(())(()(  bgafbgafbgafL   

))(())((  bgaf      [By (1)] 

)()(  bgaf              [By the property of scalar multiplication in linear functional] 
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)()]([ gbLfLa          [By (1)] 

Thus L  is a linear functional on 'V and thus 
''VL  . 

Now we assume that   be the function from V into ''V defined by, 

VL   )( . 

First we will prove that   is one-one: If ,, V then 

)()(    

')()( VffLfLLL    

')()( Vfff                    [From (1)] 

'' 0)(0)()( VffVfff    

0       

[By the theorem that if 0  , then there exist linear functional f on V such that 0)(  f

. Here we have '0)( Vff   so    must be 0] 

   

  is one-one. 

Now we will prove that   is a linear transformation:  

Let FbaandV  ,, . Then, 

 baLba  )(                          [By definition of  ] 

For each 
'Vf  , we have 

)()(  baffL ba                                 

     )()(  bfaf                                             [From (1)] 
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     )()( fbLfaL                                        [From (1)] 

     ))(())(())(( fbLaLfbLfaL    

)()(  babLaLL ba    

So, )()()(  baba  . 

Hence,   is linear transformation from V into ''V . Since   is on-to also. 

Hence   is an isomorphism from V into ''V . 

Note: The above theorem is called the natural correspondence between V and V''. It is significant 

to remember that the aforementioned theorem not only demonstrates that V and V'' are 

isomorphic—this much is evident from the fact that they have the same dimension—but also that 

an isomorphism is the natural correspondence between them. We refer to this characteristic of 

vector space as reflexivity. We have therefore demonstrated that every finite-dimensional vector 

space is reflexive in the aforementioned theorem. 

7.7 ANNIHILATORS 

Definition: Let V be a real vector space and S be a non-empty subset of a vector space V, then the 

set },0)(|{ * SxxfVf   is called an annihilators of a set S and it is denoted by 

}0)(|{ *0 SxxfVfS   

 

 



ADVANCED LINEAR ALGEBRA  MAT-505 
 

  

DEPARTMENT OF MATHEMATICS 

UTARAKHAND OPEN UNIVERSITY 
PAGE 144 

 

 

Check your progress 

Problem 1: Check the dual basis of the basis set )}2,3,0(),1,1,0(),3,1,1{( B  for the vector 

space )(3 RV . 

Problem 2: If the vectors )}1,1,1(),1,1,1(),1,1,1( 321    form the basis of )(3 CV . If 

},,{ 321 fff  is the dual basis and if )0,1,0( , then find the value of )(),(),( 321  fff . 

Problem 3: Check the dual basis of the basis set 

)}1,0,0(),0,1,0(),0,0,1{(B  for )(3 RV  

7.8 SUMMARY 

In this unit, we have learned about the important concept of linear transformation, linear functional, 

some special types and properties of linear functional, dual spaces, dual basis, reflexivity and 

annihilator. After completion of this unit learners will be able to: 
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 Find out the basic differences between the linear transformation and dual function. 

 Conceptualized some special linear functions and their properties. 

 Find out dual basis of any vector space corresponding to any given basis. 

 Implement the concept existence theorem of dual basis. 

7.9 GLOSSARY 

 Linear Transformation 

 Linear functional 

 Dual basis 

 Annihilator 

 Reflexivity 
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 https://old.sggu.ac.in/wp-content/uploads/2020/07/Linear-AlgebraTY_506.pdf 

7.12 TERMINAL QUESTION 

Long Answer Type Question: 

1. If f is a linear functional on an n-dimensional vector space V(F), then show that the set of 

that subspace. 

2. If V is a vector space over the field F and let f be a non-zero linear functional on V and let 

N be the null space of f. For a fix 0  in V which is not in N. Prove that for each  in V 

there is a scalar c and a vector   in N such that   0c . Prove that c and  are 

unique.  

3. If V is a vector space over the field F. Let 1f  and 2f  be linear functional on V. The function 

21 ff   defined by 

Vffff   )()())(( 2121
 is a linear functional on V. If c is any element of F, 

the function cf defined by  

Vcfcf   )())((  

is a linear functional on V. the set 'V . The set 'V of all linear functional on V, together with 

the addition and scalar multiplication defined as above is a vector space over the field F.  

4. State and prove the existence theorem of dual basis. 

5. Let V be the n-dimensional vector space over the field F and let },....,,{ 21 nB   be a 

basis for V. Then there exist a uniquely determined basis },....,,{ 21

'

nfffB   for 'V such 

that ijjif  )( . Consequently, the dual space of n-dimensional space is n-dimensional.   

6. Find the dual basis of the basis set )}7,4,2(),1,1,1(),3,2,1{( B  of )(3 RV .  

Short answer type question: 

1. Prove that sum of two linear transformations is again a linear transformation. 

2. Prove that composition of two linear transformations is again a linear transformation. 

3. Let 22: RRT  s.t., ),(),( yxyxyxT   and 22: RRS  s.t., ),(),( yxyxyxS   

then show that the compositions TS   and TS   are equal. 

4. Define the linear functional and some special types of linear functional. 

5. Show that trace function is a linear functional on the space of all nn  matrices over a 

field F. 
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6. If f is a non-zero linear functional on a vector space V and if x is an arbitrary scalar, does 

there necessarily exist a vector  in V, such that xf )( ? 

7. Let V be an n-dimensional vector space over the field F. If  is a non-zero vector in V, 

there exist a linear functional f on V such that 0)( f . 

8. If the vectors )}1,1,1(),1,1,1(),1,1,1( 321    form the basis of )(3 CV . If 

},,{ 321 fff  is the dual basis and if )0,1,0( , then find the value of )(),(),( 321  fff . 

9. Check the dual basis for the set )}1,0,0(),0,1,0(),0,0,1{(B  for )(3 RV . 

Fill in the blanks: 

1. Sum of two linear transformations is also …………… 

2. Composition of two linear transformations is also …………………… 

3. Negative of the linear functional is also a …………………… 

7.13 ANSWERS 

Answers of check your progress:   

1: zyxzyxfzyxzyxfxzyxf  2),,(,327),,(,),,( 321 , i.e., the set },,{ 321 fff  

is the dual basis of B. 

2:  
2

1
)(,

2

1
)(,0)( 321   fff  

3: zyxzyxfyxzyxfzyxzyxf  2),,(,2),,(,253),,( 321  i.e., the set 

},,{ 321 fff  is dual basis. 

Answer of long answer type questions: 

1: The dimension of that subspace is n-1. 

2: 
zyxzyxfyxzyxfcyxzyxf

fffB





2),,(,2),,(,253),,(

},,{

321

321

'

  

Answer of short answer type questions: 

8: 
2

1
)(,

2

1
)(,0)( 321   fff  

9: The set },,{ 321 fff  is dual basis 
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zyxzyxfyxzyxfzyxzyxf  2),,(,2),,(,253),,( 321
. 

Answer of fill in the blanks questions: 

1: Linear transformation    2: Linear transformation 

3: Linear functional   

 



 

 

 

 

 

 

 

 

 

BLOCK- III 

LINEAR OPERATOR, EIGEN VALUES AND 

EIGEN VECTORS 
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UNIT-8: LINEAR OPERATOR 

CONTENTS 

8.1 Introduction 

8.2  Objectives  

8.3  Linear operator 

8.4  Range and null spaces 

8.5  Matrix representation of linear operators 

8.6 Linear operator in different basis 

8.7 Matrix operator and change of basis 

8.8 Summary 

8.9 Glossary 

8.10   References 

8.11   Suggested Readings 

8.12 Terminal Questions 

8.13  Answers 

8.1 INTRODUCTION 

The idea of a linear operator, which is 

essential to linear algebra together with the 

idea of a vector space, is used in many 

different areas of mathematics and science, 

most notably analysis and its applications. G. 
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Peano provided the first definition of a linear 

operator as we know it today. 

 

Giuseppe Peano 
27 August 1858-20 April 1932 (aged 73) 

https://en.wikipedia.org/wiki/Giuseppe_Peano 

We covered bases and how to alter a vector's basis representation in the previous units. The 

representation (the n-tuple of components) was multiplied by the appropriate matrix, which 

represented the relationship between the two sets of basis vectors, in order to achieve this change 

of basis. It's crucial to keep in mind that the vector itself does not change while thinking about the 

change of basis operation only the coordinate system in which it is written does. 

Linear operators will be discussed in this unit. Although they will also be described in terms 

of a matrix multiplication, linear operators are functions on the vector space that differ 

fundamentally from changes of basis. A linear operator, often known as a linear transformation, is 

a method that converts a given vector into a completely other vector. As we will see, linear 

operators have the ability to change a vector in one space into a different vector in the same space, 

implicitly conduct a change of basis, or simply transform a vector in one space into another. 

8.2 OBJECTIVES 

After reading this unit learners will be able to  

 Understand the basic difference between linear functional, linear transformation and 

linear operator. 

 Visualized the matrix representation of linear operator. 

 Implementation of linear operator in different basis. 

 Visualized and understand the important of matrix operator and change of basis. 

8.3 LINEAR OPERATOR 

Linear operator is the special case of a linear transformation. Sometimes, linear transformation is 

also called linear operator. All that a linear operator does is assign a vector, which may or may 

not be in the same linear vector space, to another vector. Additionally, it needs to meet the linearity 

requirements. To be precise, we provide the definition that follows: 

Definition 1: Let )(FV  be a vector space. A linear operator on V is a function T from V into V

such that 
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)()()(  bTaTbaT  , for all FbaandV  ,,  

Thus T is a linear operator on V if T is linear transformation from V into V itself.  

Definition 2: Linear Operator (Transformation): An operator A from linear vector space X to 

linear vector space Y, denoted A:X  Y , is linear if, 

A(1 x1  2 x2 )  1Ax1  2 Ax2  

for any x1 x2 , X , and scalars 1  and 2. 

8.4 RANGE AND NULL SPACES 

A linear operator, denoted by A:X  Y  in the definition above, can also be represented as yAx 

, and it generates the vector Yy . This operation yields a vector y that is considered to be within 

operator A's range; it is also sometimes referred to as the image of x in Y, where x is the preimage 

of y. Although linear operators generally have multidimensional ranges, the idea of an operator's 

range is comparable to that of scalar functions. These ranges will be vector spaces that are linear 

in nature. 

Range space: The range space of an operator YXA : , denoted by )(AR , is the set of all 

vectors Yyi  such that for every )(ARyi   there exist an Xx such that yAx  . 

It is claimed that operator A is onto, or surjective, if its range contains all of space Y. A is said to 

be one-to-one, or injective, if it maps elements in X to unique values in Y, that is, if 
21 xx   implies 

that )()( 21 xAxA  . Operator A is also invertible if it is bijective, which occurs when it is both one-

to-one and onto. When an operator A is invertible, it means that there is another operator, 

XYA  :1 , such that xxAA  ))((1  and yyAA  ))((1 . Then, AA 1  is represented as 
XI  and 

1AA as YI , which are the identity operators in the corresponding spaces. XXA : is an 

example of how A maps a space into itself. In this case, we just write IAAAA   11 . 

It is frequently necessary to determine which vector, out of all the ones in Xx , will map to the 

zero vector in Y. Because of this, we define the identity operators in their respective spaces as the 

null space of an operator.  

Null space: The null space of operator A, denoted by N(A), is the set of all vectors Xxi  such 

that 0)( ixA : 
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 0|)(  ii AxXxAN  

8.5 MATRIX REPRESENTATION OF LINEAR OPERATORS 

To be more inclusive, we will talk about the matrix representation of linear operators that have the 

potential to modify the vector's basis as well. This is evidently required when discussing an 

operator that manipulates vectors in a one-dimensional space and yields vectors in a different 

dimension. It is obvious that both vectors could not be adequately described by a single basis. 

Let nXx  and mXy be two vectors, one from an n-dimensional space and the other from an 

m-dimensional space. We shall obtain a matrix representation A for an operator mn XXA : , 

that converts a vector in one space into a vector in another. Indicate the two spaces' arbitrary bases 

as 

}...,,,{}{ 21 nj vvvv   for space nX  

And  

}...,,,{}{ 21 ni uuuu   for space mX  

By extending x as a representation in its basis as  


n

j jjvx
1
 and applying the linearity property 

of the operator A, 

 

















n

j jj

n

j

jj vAvAAxy
1

1

)(                               ………………… (1) 

This straightforward but significant result means that, given the basis vectors in which x is 

expressed, we can determine the influence of A on any vector x. Another way to express equation 

(1) in vector-matrix notation is as follows: 

 





















n

nAvAvAvAxy








 2

1

21  
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It is now evident that every vector jAv  exists in the range space mX  by definition. Then, it can be 

extended in the basis defined for that space, }{ iu , just like any other vector in that space. This 

extension provides 

 


m

i iijj uaAv
1

                                   …………….. (2) 

for a certain set of aij coefficients. Using coefficients i , y can also be directly expanded in terms 

of its own basis vectors. 

 


m

i iiuy
1
                                    ………………… (3) 

Substitute equation (3) and (2) in (1), we can write 

 












m

j iii

m

i

jij

n

j

j uuay
1

11

    …………. (4) 

By changing the order of summation in this expression, we obtain 

 














 m

j iii

n

j

jij

m

i

uua
1

11

    ……………. (5) 

But because of the uniqueness of any vector’s expansion in a basis, the expansion of y in }{ iu  

must be unique. This implies that 

mtoi
n

j jiji 1
1

 
     ……………… (6) 

The expression (6) above can be seen by the learners to be a matrix-vector multiplication. Actually, 

this is the way we'll often use the outcome. If  Tn 21  is the representation of nXx  

in the }{ jv  basis and  Tm 21  is the representation of 
mXy  in the }{ iu  basis, then, 

using our new matrix representation for operator A, we can determine this representation of y using 

the matrix multiplication  A . 
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



















mnmm

n

n

aaa

aaa

aaa

A









21

22221

11211

                                 …………. (7) 

That is, the coefficient from (2) is the thji ),(  element of the )( nm  matrix A, which explains how 

basis vectors from one space are transformed into the basis of the range space via the operator A. 

This implies, of course, that before defining the matrix representation for any linear operator, the 

bases of each space must be given. A comparison between (2) with (7) generally leads to the 

following conclusion: 

The representation of the vector that results from A operating on the 
thj  basis vector of nX , 

where this new vector is expanded into the basis of the range space, can be formed as the 
thj  

column of the matrix representation of any linear operator 
mn XXA : . To put it another 

way, the 
thj column of A is just jAv , expressed as a representation in the basis }{ iu . 

As we will see in the following examples, this is a very helpful characteristic. It gives us a practical 

means of ascertaining the matrix representation of any given linear operator.  

The range and null spaces computation is also affected by the linear operator's matrix 

representation. As we will demonstrate in this unit (definition of null space), the linear operation 

y  Ax can be viewed numerically as, 

 






















4

3

2

1

21

x

x

x

x

aaa

Axy

n

                                           ……….. (8) 

Where ia  denotes the thi column of the matrix A and xi is the thi  component of the vector x or of 

its representation. Consequently, the span of all of A's columns can be used to represent the range 

space if it represents the space of all possible values of Ax. This suggests that the rank of matrix A 

is equal to ))(dim()( ARAr  , which is the dimension of the range space of operator A. Similarly, 

the space containing all solutions to the simultaneous linear equations can be used to represent the 

null space of operator A. 
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 






















4

3

2

1

21

0

x

x

x

x

aaa

Ax

n

                                        ………….. (9) 

As a result, ))(dim()( ANAq  , which is the dimension of operator A's null space, equals the 

nullity of matrix A. 

Example 1: (Related to rotation matrices) 

Consider a linear operator 22: RRA  function, as seen in Figure 1, takes a vector x and rotates 

it by an angle  counterclockwise.2. The linear operator that carries out these planar rotations on 

any vector in 2R  can be represented by a matrix. Test this matrix by rotating the vector Tx ]21[  

by an angle 30 . 

 

Figure 1: Vector x is transformed by Operator A converts the vector x into a vector y = Ax, which is just x rotated 

(by angle  counterclockwise). 

Solution: Each space's basis and the operator's impact on those basis vectors are necessary to 

determine the matrix representation of any operator. The standard basis vectors displayed in Figure 

1 will be employed. 
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Figure 2: The effect of operator A on the basis vectors. 

Basic trigonometry allows us to determine by decomposing the rotated vectors Ae1 and Ae2 along 

their original basis directions, e1 and e2. 

        

 

      …………….. (1) 

 

Keep in mind that every column in this A-matrix is only the matching representation from the 

previous (1). 

        

Figure 3 provides verification of this rotation. 
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Figure 3: Pictorial representation of vector rotation. 

Example 2: Composite Rotations: Roll, pitch and Yaw 

We looked at plane rotations above. Three-dimensional rotations are another option. It's important 

to keep in mind that rotations around three different axes are feasible in three dimensions. 

Depending on which axis was chosen to represent the rotational axis, different matrices are 

employed to describe these rotations. Figure 4 shows the three possible rotations around e1, e2, or 

e3. 

These rotations about coordinate axes can be applied sequentially to create an arbitrary three-

dimensional rotation, although such sequences wouldn't be special. There are typically an endless 

number of distinct axis rotation steps that can be taken to get from one three-dimensional 

orthonormal frame to another if the orientation of one is applied arbitrarily to the other. 

To create the composite rotation matrix that rotates a coordinate system by 
R around e1, p around 

e2, and Y  around e3, in that sequence, find the change of basis matrices for the three component 

rotations. 
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Figure 4: Axis rotations for pitch, roll, and yaw 

Solution: As with the planar rotation example in Figure 2, the individual matrices can be 

determined by looking at the rotations in the plane in which they occur and decomposing the 

rotated axes in that plane. Equation may be used to get the change of basis matrix for each rotation 

using those same planar decompositions. This change of basis matrix can also be thought of as a 

rotation operator on a vector. 

 

and  
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The composite rotation can be expressed as the product of the roll, pitch, and yaw rotations that 

are applied to a vector x in that order. 

 ……….. (1) 

For free-floating objects whose orientation is best defined with regard to inertial coordinate frames, 

such as aircraft, missiles, spacecraft, and submarines, such rotations are helpful. There are some 

differences in rotations about body-centered coordinate axes. 

8.6 LINEAR OPERATORS IN DIFFERENT BASES 

We shall pay special attention to transformations from a space into itself, such nn RRA :  in the 

upcoming chapter. This will, of course, result in a square ( nn ) matrix and may also perform a 

basis change at the same time. Denote such an n-dimensional space with basis }{v  by writing vX

. The matrix A that modifies vv XX   is referred to as a transformation in the basis }{v . 

For the time being, we will no longer be referring to vectors in a basis, but since a vector's 

representation will always change in tandem with its basis, it is reasonable to assume that an 

operator's representation on a vector will also alter in tandem with the basis. Hence, 
^

A  represents 

the operator that converts vectors stated in a different basis, }{
^

v . By using this notation, we may 

state that Axy   and xAy
^^

 , where 
^

y  and 
^

x  are obviously vectors represented in basis }{
^

v . 

The current topic of discussion is how to convert an operator's matrix representation from one 

basis to another. The change of basis matrices created in the preceding unit will be used for this. 

Using the change of basis matrix B, we can write Byy 
^

 and Bxx 
^

. Using these changes of 

basis we have. 
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A similarity transformation occurs when the basis of a matrix representation of a linear operator is 

changed. There is a claim that A is similar to 
^

A  and vice versa.  

8.7 MATRIX OPERATORS AND CHANGE OF BASIS 

Examine the linear vector space X comprising polynomials in s with real coefficients and a degree 

less than four across over the field of reals. The operator XXA :  that takes such vectors )(sv  

and returns the new vectors )(3)(2)()( ''' svsvsvsw   ( where prime denotes differentiation 

in s) is a linear operator (as is differentiation in general). The matrix form of this operator in two 

bases will be found in this example, 
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Solution: 
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We obtain the matrix by taking the four columns of coefficients in these four forms. 

                                                                       ……. (1) 

We can check this result by applying this transformation to the vector 1)( 2  ssv , whose 

representation in }{ ie  is Tv ]1010[ . Multiplying this representation of w by matrix A  

results in 

                                                  …….. (2) 

Applying the transformation by direct differentiation gives 

543)(3)(2)()()( 2'''  sssvsvsvsvAsw                       ………. (3) 

which is clearly the same vector as computed in (2) above. 

In what way does this operator manifest itself in the distinct base }{


ie ? There are two techniques 

to ascertain the response. Either we can apply a similarity transformation on the matrix A that was 

previously computed in (1), or we can derive the matrix transformation directly in this basis. 

Initially, after determining the basis matrix change between the two bases, we need to calculate 

the expansion. 

                                               

Upon closer examination, it becomes evident that calculating the inverse relationship is less 

complicated: 
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We get at the inverse matrix since this is the inverse relationship, 1 BM . By gathering the 

coefficient columns, this matrix is 

 

From which we can compute. 
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Now using the formula BABA 1 , we find that 

 

We may now find the effect of the original operator on vectors that have already been expressed 

in the }{ ie  basis in order to verify this result by determining A  in a different method. Finding 

the expression for )(sv , or the same vector v but in the "bar" basis, should come first: 

 

Which is simply the matrix-vector notation for 

)(12)1()()(.2)(.1)(.1 22

432 svsssssesese 


 

Now applying the matrix operation in the }{ ie  basis, 
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Writing this representation out explicitly in terms of the “barred” basis vectors, 

543)1(12)1(7)(3.1273))(( 22

432 


ssssseeessvA  

It is, naturally, just what we would anticipate: the identical vector that we calculated in Equation 

(2). Stated otherwise, we have proven that the Figure 5 is commutative. "Commucative diagrams" 

illustrate how various paths, each signifying a sequential action or transformation, lead to the same 

outcome. One executes the action stated next to the arrow, in the indicated direction, to move from 

one vector to another. In case an arrow needs to be traversed "against" or in reverse, the inverse 

transformation is employed. This graphic can be used to show that 1 BABA . 

 

Figure 5: Commutative diagram showing different paths to the transformed vector w . 

Check your progress 

Problem 1: Show that the transformation T: V2(R) → V2(R) defined by T(a, b) = (a + b, a) ∀ a, b 

∈ R is a linear operator. 

Solution: To show that T is a linear transformation, we need to prove that, 

For any x, y ∈ V2(R) 

T(x + y) = T(x) + T(y) and T(ax) = aT(x) where a is a scalar in field. 

Let (x1, y1) and (x2, y2) are arbitrary elements of V2(R) 

T[(x1, y1) + (x2, y2)] = T[(x1 + x2, y1 + y2)] = (x1 + x2 + y1 + y2, x1 + x2) …..(i) 
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T(x1, y1) + T(x2, y2) = (x1 + y1, x1) + (x2 + y2, x2) = (x1 + x2 + y1 + y2, x1 + x2) …..(ii) 

From (i) and (ii), we get T[(x1, y1) + (x2, y2)] = T(x1, y1) + T(x2, y2) 

Now, T[a(x1, y1)] = T(ax1, ay2) = (ax1 + ay1, ax1) = a(x1 + y1, x1) = aT(x1, y1). 

∴ T is a linear transformation. 

Problem 2: Given a linear operator T on V3(R) defined by T (a, b, c) = (2b + c, a – 4b, 3a) 

corresponding to the basis B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Find the matrix representation of T. 

Solution: Now, T(1, 0, 0) = (2 × 0 + 0, 1 – 4 × 0, 3 × 1) = (0, 1, 3) 

= 0(1, 0, 0) + 1(0, 1, 0) + 3(0, 0, 1) 

T(0, 1, 0) = (2 × 1 + 0, 0 – 4 × 1, 3 × 0) = (2, –4, 0) 

= 2(1, 0, 0) –4(0, 1, 0) + 0(0, 0, 1) 

And T(0, 0, 1) = (2 × 0 + 1, 0 – 4 × 0, 3 × 0) = (1, 0, 0) 

= 1(1, 0, 0) + 0(0, 1, 0) + 0(0, 0, 1) 

Then, the matrix representation of T with respect to the basis B is 



















003

041

120

];[ BT  

8.8 SUMMARY 

This unit has covered some of the foundational mathematics required to comprehend state spaces. 

In this case, the idea of a linear operator proved crucial. We introduce the linear operator technique 

as an alternative to thinking in terms of matrix-vector multiplication as it is used in matrix theory.  

This provides a far deeper understanding of geometry for some of the fundamental math operations 

we have been carrying out all along. Certain ideas in control systems and linear system theory 

cannot be properly grasped without this approach. Other important concepts introduced in this unit 

were: 
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 It is possible to write any linear operator as a matrix, and any matrix can be conceptualized 

as an operator. Therefore, it should be evident that even though we emphasize the 

geometric comprehension of linear operators, our outdated computing techniques and 

habits are still valuable. Conceptualized some special linear functions and their properties. 

 The linear operators are expressed in certain bases, which are either expressly stated or 

inferred from their context. Operations involving matrix multiplication can be used to alter 

these bases. 

8.9 GLOSSARY 

 Linear Operator 

 Rotation matrices 

 Composite rotation 
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8.12 TERMINAL QUESTION 

Long Answer Type Question: 

1.  Show that mapping T: V3(R) → V3(R) defined by T(a, b, c) = (a, b, c) ∀ a, b, c ∈ R is a 

linear operator. 

2. Show that the given subset of vectors of R3 forms a basis for V3(R). 

{(1, 0, –1), (1, 2, 1), (0, –3, 2)}. 

3. Given a linear operator T on V3(R) defined by T(a, b, c) = (2b + c, a – 4b, 3a) 

corresponding to the basis B = {(1, 1, 1), (1, 1, 0), (1, 0, 0)}. Find the matrix 

representation of T. 

Short Answer Type Question: 

1. Show that the mapping 33: FFT   defined by, 

  )22,2,2(),,( zyxyxzyxzyxT   is a linear operator 

2. Which of the following functions 22: RRT  are linear operator 

a. ),1(),( babaT   

b. ),(),( abbaT   

c. ),(),( ababaT   

3. Show that the mapping )()(: 22 RVRVT   defined by 

RbabbaT  ,)0,(),( is a linear operator.  

4. Show that the mapping )()(: 33 RVRVT  defined by, 

)(),,()2,,3(),,( 3 RVzyxzyxyxxzyxT  is a linear operator. 

5. Show that the mapping 33: RRT  defined by RbabacbaT  ,),,0(),,( is a linear 

operator.  

8.13 ANSWERS 

Answer of short answer type questions: 

2 (a) T is a linear operator.  

(b) T is a linear operator  

(c) T is a linear operator. 

https://old.sggu.ac.in/wp-content/uploads/2020/07/Linear-AlgebraTY_506.pdf
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UNIT-9: CHARACTERISTIC AND MINIMAL 

POLYNOMIAL OF AN OPERATOR 

CONTENTS 

9.1 Introduction 

9.2 Objectives 

9.3  Characteristic and Minimal polynomial 

9.4  Invariant subspaces  

9.5  Direct sum decomposition  

9.6 Projection on a vector space 

9.7 Summary 

9.8 Glossary 

9.9 Reference 

9.10 Suggested readings 

9.11 Terminal Questions 

9.12 Answers 

9.1 INTRODUCTION 

Generally, our focus on a polynomial reflects our interest either in its degree or coefficients from 

F. If we focus on the coefficient of highest degree of a polynomial, and try to make it a unit of 

the field F, then resultant polynomial is called monic polynomial. Such polynomials are 

relatively easy to factorize. One of such example is characteristic polynomial of linear operator 

or in particular, a matrix (square). All the roots of this equation are called eigen value or 

characteristic value or latent root. Now we try to find a non-zero vector v  V such that T(V) = 

CV, where C is eigen value of T. We study Cayley-Hamilton theorem, which states that a 

linear operator satisfies its characteristic equation. Then we try to find a minimal polynomial 
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which is also satisfied by T. This inter-relationship produces many standard results. Since a 

diagonal matrix is always easy to study so, we try to diagonalize every square matrix. But there 

are certain rules, which elaborate us the possibility and limitations of this concept. 

Further we try to decompose a vector space into independent subspaces. Also, there are a 

variety of results on the projections. 

9.2 OBJECTIVE 

After studying this chapter, you will understand –  

 Eigen value, eigen vector. 

 Characteristic and minimal polynomial. 

 Diagonalizable operators. 

 Invariant and independent subspaces. 

 Projection on a vector space. 

9.3 CHARACTERISTIC AND MINIMAL POLYNOMIAL  

Let T be a linear operator on a finite dimensional vector space V(F). 

(1) A polynomial p(x)  F[x] is called a monic polynomial, if the coefficient of the highest 

power of x in p(x) is unity. Thus p(x) = xn + a1x
n−1 + … + an−1 x

1 + an    F[x] is a monic 

polynomial. 

(2) The linear operator T satisfies the monic polynomial p(x) if, 

  p(T) = Tn + a1T
n−1 + … + an−1 T

1 + an I = 0.  

If p(T) = 0, then we say that the polynomial p(x) annihilates T. 

(3) Let T be a linear operator on a finite-dimensional vector space V(F). A monic polynomial 

p(x)  F[x] of lowest degree such that p(T) = 0 is called a minimal polynomial for T over F. 

(4) In a similar manner, we can define minimal polynomial for a square matrix A.  

Theorem 1: Let T be a linear operator on a finite-dimensional vector space V(F). Then the 

characteristic and the minimal polynomials for T have the same roots, except for multiplicities.  

Proof: Let p(x) be  the minimal polynomial for T, so that p(T) = 0. Suppose c be a root of p(x), 

so that p(c) = 0 . 

Claim: We shall prove that c is a root of the characteristic polynomial of T (i.e. c is an eigen 

value of T). As c is a root of p(x). 
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   (x – c) divides p(x) in F[x]. so by division algorithm, there exist q(x)  F[x]   

such that  

  p(x) = (x – c) q(x) ;   deg q(x) < deg p(x)   ….(1) 

 As p(x) is the minimal polynomial for T and deg q(x)  < deg p(x). So   q(T)  0. 

   there exists some 0  v  V, such that  

    q(T) (v)   0. 

 Suppose x = q(T) (v)   0. Then from equation (1), we have  

    p(T) = (T – cI) q(T) 

   (T – cI) q(T) = 0 , as p(T) = 0. 

    (T – cI) q(T)(v) = 0(v) = 0. 

   (T – cI) (x) = 0. 

    T(x) – cI(x) = 0. 

    T(x) = cx. 

    c is an eigen value of T. 

So c is a root of characteristic polynomial of T. 

Step II: Let c be a root of the characteristic polynomial of T, i.e. c is an eigenvalue of T. Then 

there exists 0  v  V, such that 

   T(v) = cv. 

Since p(x) is a polynomial, p(T)(v) = p(c)(v) 

    p(c)(v) = 0  as  p(T) = 0. 

   p(c) = 0 as v  0. 
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Hence c is a root of the minimal polynomial for T. 

Theorem 2: Let T be a diagonalizable linear operator on V and let c1, …., ck be the distinct  

eigenvalues of T. Then the minimal polynomial for T is the polynomial  

   p(x) = (x – c1) ….. (x – ck). 

Proof: Since we know that each eigen value of T is a root of the minimal polynomial for T.  

Hence each of c1, …., ck is a root of the minimal polynomial for T. 

 each of the polynomials (x – c1),  ….., (x – ck) is a factor of the minimal polynomial 

for T. Hence the polynomial p(x) = (x – c1) ….. (x – ck) will be the minimal polynomial for T, if 

p(T) = 0. Let v be an eigen vector of T. Then 

  (T – ciI) (v) = 0, for some i, 1  i  k. 

 It follows that, 

 (T – c1I) …. (T – ckI) (v) = 0, for each eigen vector v.                            ….(1)  

 As T is diagonalizable, there exists a basis  of V, consisting of eigenvectors of T. Using this in 

equation (1), we get 

(T – c1I) …. (T – ckI) (x) = 0,       x  V. 

    p(T) = (T – c1I) …. (T – ckI) = 0. 

Hence p(x) = (x – c1) ….. (x – ck) is the minimum polynomial for T. 

Note: Above theorem tells us that, if T is a diagonalizable linear operator, then the minimal 

polynomial for T is a product of distinct linear factors. 

Theorem 3: The minimal polynomial of a linear operator T divides its characteristic polynomial. 

Proof: Let p(x) be the minimal polynomial of T. 

   p(T) = 0. 

Let f(x) be the characteristic polynomial of T. Then by Cayley-Hamilton theorem, f(T) = 0. Let c 

be a root of f(x). Then by Division Algorithm, 

  f(x) = (x – c) p(x) + q(x)   …. (1) 
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where q(x)  F[x] and either q(x) = 0   or   deg q(x)  < deg p(x). Suppose q(x)  0. Then deg 

q(x) < deg p(x). Then from equation (1), we have  

f(T) = (T – cI) p(T) + q(T)   

 0 = (T – cI) 0 + q(T)   

   q(T) = 0.  

Contradiction! So our assumption was wrong. 

    q(x) = 0. 

Then from equation (1), we have f(x) = (x – c) p(x) 

  p(x) divides f(x). 

Example 1: Let T be a linear operator on R3 which is represented in the standard ordered basis 

by the matrix    A = [
 1 2 0
2 1 −6
2 −2 3

]. Prove that the characteristic polynomial of T is same as the 

minimal polynomial of T. 

Solution: We can derive eigenvalues 5, 3, -3 of A as in the previous chapter. So characteristic 

polynomial of T is f(x) = (x – 5) (x – 3) (x + 3). 

Since all characteristic values of T are distinct, so the minimal polynomial for T is  

  p(x) = (x – 5) (x – 3) (x + 3). 

Hence f(x) = p(x). 

Example 2: Let T be the linear operator on R3 which is represented in the standard ordered basis 

by  A = [
−9 4 4
−8 3 4
−16 8 7

]. Find the minimal polynomial for T. 

Solution: We can easily find |A – xI| = |
−9 − 𝑥 4 4

−8 3 − 𝑥 4
−16 8 7 − 𝑥

|  

So, f(x) = det (A – xI) = (x – 3) (x + 1)2. 
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So eigenvalues of T are 3, -1, -1. 

Hence minimal polynomial is either p(x) = (x – 3) (x + 1) or p(x) = (x – 3) (x + 1)2. 

Case (i): Let p(x) = (x – 3) (x + 1) = x2 – 2x – 3 then p(A) = A2 – A – 3I. 

Now,  A2 = [
−9 4 4
−8 3 4
−16 8 7

] [
−9 4 4
−8 3 4
−16 8 7

] 

   A2 = [
−15 8 8
−16 9 8
−32 16 17

]  

So  p(A) = [
−15 8 8
−16 9 8
−32 16 17

]  [
−18 8 8
−16 6 8
−32 16 14

]   [
3 0 0
0 3 0
0 0 3

]  

   p(A) = [
−15 8 8
−16 9 8
−32 16 17

] + [
15 −8 −8
16 −9 −8
32 −16 −17

]  

   p(A) = 0. 

So p(x) = (x – 3) (x + 1) is the minimal polynomial. Now there is no need of second case. 

Example 3: Let T be the linear operator on C2 which is represented in the standard ordered   

basis by the matrix A = [
0 −1
1 0

]. Find the minimal polynomial for T. 

Solution: The characteristic polynomial for T is det (A – xI) = |
−𝑥 −1
1 −𝑥

| = x2 + 1. So eigen 

values of T are x = + i, – i. Since both eigen values are distinct . So minimal polynomial is  

    p(x) = (x – i) (x + i) = x2 + 1. 

Verification: p(A) = A2 + I = [
0 −1
1 0

] [
0 −1
1 0

] + [
1 0
0 1

] 

     =  [
−1 0
0 −1

] + [
1 0
0 1

] = [
0 0
0 0

] . 

Example 4: Let V be a finite-dimensional vector space. Find the minimal polynomials for the 

operators I and O, where I is the identity operator and O is the zero operator on V. 

Solution: (i) I(x) = x 
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Let p(x) = x – 1 then p(I) = I – I = 0. 

So obviously p(x) = x – 1 is the minimal polynomial for I. 

(ii)   Let p(x) = x then p(0) = 0. 

So p(x) = x is the minimal polynomial for O. 

Example 5:  Let T be the linear operator on R3 which is represented in the standard ordered 

basis by the matrix. A = [
2 1 0
0 1 −1
0 2 4

] . Find the minimal polynomial for T. 

Solution:    |A – xI| = |
2 − 𝑥 1 0

0 1 − 𝑥 −1
0 2 4 − 𝑥

|  = (x – 2)2 (3 – x) = f(x). So eigen values are 2, 2, 

3. So possible minimal polynomials are either p(x) = (3 – x) (x – 2) or p(x) = (3 – x) (x – 2)2 

Case I: Let   p(x) = (3 – x) (x – 2)  

p(A) = (3I – A) (A – 2I) = [
1 −1 0
0 2 1
0 −2 −1

] [
0 1 0
0 −1 −1
0 2 2

] 

  p(A) = [
0 2 1
0 0 0
0 0 0

]  0 . 

So p(x) = (3 –x) (x – 2) is not the minimal polynomial. 

Case II: Now p(x) = (3 – x) (x – 2)2. It can be easily verified that p(A) = (3I – A) (A – 2I)2  = 0. 

 So this is the minimal polynomial of T. 

Example 6: Prove that the minimal polynomial of a linear operator T is a divisor of every 

polynomial that annihilates T. 

Solution: Let p(x) be the minimal polynomial for T and h(x) be any polynomial that annihilates 

T. 

Claim: We shall prove that p(x) divides h(x). 

Since p(x), h(x)  F[x]. So by Division Algorithm in F[x] , there exist two polynomials q(x), 

r(x)  F[x] such that  
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   h(x) = p(x) q(x) + r(x)    …. (1) 

where either r(x) = 0  or   deg r(x) <  deg p(x) .  

So, h(T) = p(T) q(T) + r(T) 

  0 = 0 + r(T)      r(T) = 0. 

If   r(x)  0, then r(T) = 0    r(x) is the minimal polynomial. 

Contradiction! So  r(x) = 0, is the only choice. Then, 

h(x) = p(x) q(x) 

 p(x) divides h(x). 

9.4 INVARIANT SUBSPACES 

Let T be a linear operator on a vector space V(F). A subspace of  V(F) is said to be invariant 

under T (or W is T-invariant) if T(W)  W. We can also say, W is invariant under T if T(x)  

W, for all x  W . 

Example 7: If T is any linear operator on a vector space V, then prove that ker (T) and Range 

(T) are invariant subspaces of V. 

Solution: (i) We know that ker T = { v  V : T(V) = 0 }. Since T(0) = 0   ker T. For any x  

ker T, T(x) =  0  ker T. 

 T(x)  ker T,  x  ker T. 

Hence ker T is an invariant subspace of V. 

(ii)  Let R(T) be the range of T. So for any x  R(T) ,  some v  V such that x = T(v) 

 T(x) =  T(T(v))  = T(v1) , v1 = T(v)   V 

    T(x)  R(T)     x  R(T).    

Hence Range T is an invariant subspace of V. 
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Example 8: Let T be a linear operator on a finite-dimensional vector space V(F) and let c be an 

eigenvalue of T. Prove that the eigenspace Wc  is invariant under T. 

Solution: Here Wc={ v  V : T(v) = cv}. For any v  Wc , we have  T(v) = cv  

 T(T(v)) = T(cv). 

   T(T(v)) = c T(v) 

If we take T(v) = v1, then  

T(v1) = cv1  v1  Wc OR T(v)  Wc . So Wc is invariant under T. 

Example 9: Prove that the space generated by (1, 1, 1) and (1, 2, 1) is an invariant subspace of 

R3 under T, where T(x, y, z) = (x + y – z, x + y, x + y – z) . 

Solution: Suppose W be the subspace of R3 generated by (1, 1, 1) and (1, 2, 1). So 

  W = {  (1, 1, 1) +  (1, 2, 1) :  ,  ∈ R}. 

Given linear transformation is  

  T (x, y, z) = (x + y – z, x + y, x + y – z)    ….(1) 

So T(1, 1, 1) = (1, 2, 1)  W , and  

      T(1, 2, 1) = (2, 3, 2) = (1, 1, 1) + (1, 2, 1)  W. 

If w  W. Then w =  (1, 1, 1) +  (1, 2, 1). 

So, T(w) =  T(1, 1, 1) +  T(1, 2, 1)  W. 

  T(w)  W  w  W. 

So W is invariant subspace of R3 under T. 

Example 10: Let T be a linear operator on R2 whose matrix representation in the standard basis 

is  [
2 1
0 2

]. Let W be the subspace generated by e1 ={ (1, 0)}. Prove that W is invariant under T. 

Solution: As we know, standard basis of R2(R) is {(1, 0), (0, 1)}. Let e1 = (1, 0) , e2 = = (0, 1). 

So by given matrix, T(e1) = 2e1 + 0e2 and T (e2) = 1e1 + 2e2 . 
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Given that  

W = L{e1} = { αe1 :   R} =  { α (1, 0) :   R}. 

For any x  W, we  have x = e1  

T(x) = T( e1) = α T(e1) =  (2e1 + 0e2) 

T(x) = 2 e1   W as 2   R. 

  T(x)  W  x  W. 

    W is invariant under T. 

Example 11: Show that the subspace spanned by two subspaces, each of which is invariant 

under a linear operator T on V, is itself invariant under T. 

Solution: Let W1 and W2 be two invariant subspaces of V under T. So 

   T(W1)   W1  and  T(W2)   W2     ….(1) 

Let W be the subspace of V spanned by W1  W2 . So from the vector spaces chapter, we know 

that W = W1  W2. 

Claim: W is invariant under T. Let w  W, then w = w1  w2   where w1  W1 , w2  W2. Then 

T(w1)  W1 and T(w2)  W2     ….(2) 

So T(w) = T(w1  w2)  = T(w1) + T(w2)   W. 

Thus T(w)  W   ∀  w  W. 

Hence W is invariant under T. 

Example 12: Let T be a linear operator on a vector space V. If every subspace of V is invariant 

under T, then prove that T is a scalar multiple of the identity operator I on V. 

Solution: Step I: Let v ≠ 0 and v  V be arbitrary. Suppose W = L{v}  = { v :   F }. Then 

obviously W is a subspace of V(F). By given hypothesis  T(W)  W . We can write v = 1v 

where 1  F. So v  W      T(v)  W     
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Hence T(v) = v, for some   F.    …. (1) 

Again, suppose w  W  be arbitrary . Then w = v for some β   F. 

 T(w) = T( v) =  T(v) =  ( v)  ;        using (1) 

 T(w) = (βα) v = (α β) v =  ( v) 

 T(w) = w    ∀   w  W  .      ….(2) 

So for every w   W , T is a scalar multiple of the identity operator I on V. 

Step II: If v   W. Then obviously v, v' are linearly independent.  

Let W' = L{v'}. Since, W' is a subspace of V, so by the given hypothesis, W' is invariant under T 

i.e. T(W')   W'. As discussed in equation (1) , we have 

T(v') = α′v' , for some α′  F .    …. (3)   

Let W'' = L {v – v'}. As argued above, we have T(v – v') =  (v – v') for some    F . 

  T(v) – T(v') = v - v'  

   v – α′v'  = v - v' ,  using equations (1) and (3) 

   (  –  )v  + (  – α′) v' = 0. 

But v and v' are linearly independent. 

    –   = 0, and   γ – α′ = 0. 

     =  = α′ . 

Putting α′ in equation (3), we get 

  T(v') = α v'   ∀   v'  W .    …. (4) 

From (2) and (4), we have T(x) = α x   ∀ x  V . 

   T(x) = α I(x) = ( I) (x)   x  V. 
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Hence T = I ,   F. 

Example 13: Let T be a linear operator on R2. Let its matrix in the standard ordered basis is  

A =   [
1 −1
2 2

]. Then 

(i) Prove that the only subspaces of R2  invariant under T are R2 and the zero subspace. 

(ii) If  U is the linear operator on C2, the matrix of which in the standard ordered basis is A, 

show that U has 1-dimensional invariant subspaces. 

Solution: (i) Suppose W be any proper subspace of R2 such that W is invariant under T. Then 

obviously dim W = 1. 

   W is spanned by some 0  w  W. 

Since W is invariant under T. So T(w)  W  w  W. Let T(w) = cw, for some c  R. 

 c is an eigenvalue of T. 

All the eigenvalues of T are given by  

  |A – xI| = |
1 − x −1

2 2 − x
| = x2 – 3x + 4 = 0. 

  x = 
1

2
 (3  i√7 )   R. 

    c  R , a contradiction ! 

Hence there does NOT exist any proper subspace of R2 which is invariant under T. 

    Only subspaces of R2 invariant under T are R2 and {0}. 

(ii)   As discussed above, eigenvalues of U on C2 are  

  c1 = 
1

2
 (3  i√7 )   C ;  c2 = 

1

2
 (3  i√7 )   C. 

Now Wc1
 = { v  V : T(v) = c1v }. 

Claim: Wc1
 is invariant under T. For any v  Wc1

, we have T(v) = c1v. 
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   T(T(v)) = T(c1v) 

   T(T(v)) = c1 T(v) 

Let   T(v) = v1. 

   T(v1) = c1v1  

  v1  Wc1
  or T(v)  Wc1

  v  Wc1
. 

So Wc1
 is invariant under T. Similarly, we can show that Wc2

 is also invariant.  Also dim Wc1
 = 

dim Wc2
 = 1. 

Theorem 4: Let T be a linear operator on a finite-dimensional vector space V(F). Let W be an 

invariant subspace of T. Then T has a matrix representation [
A B
O C

], where A is matrix of 

restriction of T on W. 

Proof: Let  β1 = { w1 ,…., wr } be a basis of W. Since w1 ,…., wr are linearly independent 

vectors of V, they can be extended to form a basis of V. Suppose   = { w1 ,…., wr , v1 ,…., vs } 

be a basis of V. Given that W is invariant under T, so T(x)  W , for each x  W .Let us define a 

mapping TW : W W by  

TW (x) = T(x)  x  W .     ….(1) 

 Definitely TW will be a linear operator. Here TW is called restriction of T on W. From equation 

(1), we have 

T(w1) = TW (w1) = a11w1 + ….. + ar1wr  

  T(w2) = TW (w2) = a12w1 + ….. + ar2wr 

 ….. …… ….. …… …… ….. ….. ….. …. 

 T(wr) = TW (wr) = a1rw1 + ….. + arrwr  ;  aij  F. 

Also we have  

  T(v1)  = b11w1 + ….. + br1wr + c11v1 + ….. + cs1vs 

 T(v2)  = b12w1 + ….. + br2wr + c12v1 + ….. + cs2vs 
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  ….. ….. ….. ….. ….. ….. ….. ….. ….. …. …..  

  T(vs)  = b1sw1 + ….. + brswr + c1sv1 + ….. + cssvs 

 From these equations, we obtain  

 [TW]β1
 = [

a11 ⋯ a1r

⋮ ⋱ ⋮
ar1 ⋯ arr

]     r×r
   
 
= A, say 

   [T]β   = 

[
 
 
 
 
 
a11 ⋯ a1r

⋮ ⋱ ⋮
ar1 ⋯ arr

b11 ⋯ b1s

⋮ ⋱ ⋮
br1 ⋯ brs

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

c11 ⋯ c1s

⋮ ⋱ ⋮
cs1 ⋯ css ]

 
 
 
 
 

     =    [
A B 
O C

] 

 where B = [
b11 ⋯ b1s

⋮ ⋱ ⋮
br1 ⋯ brs

]   ;   C = [

c11 ⋯ c1s

⋮ ⋱ ⋮
cs1 ⋯ css

]    

Here A is the matrix of restriction of T on W. 

Theorem 5: Let T be a linear operator on a finite-dimensional vector space V(F). Let W and U 

be invariant subspaces of T such that V = W ⨁ U. Then T has a matrix representation [
A O 
O C

], 

where A and C are the matrices of restriction of T on W and U respectively. 

Proof: Let  β1 = { w1 ,…., wr } be a basis of W and β2 = { v1 ,…., vs } be a basis of U. Given 

that V = W ⨁ U . So W ∩ U = {0}. So dim V = dim W + dim U. 

 Hence  = { w1 ,…., wr ,v1 ,…., vs} is basis of V. As W is invariant under T. So T(x)  W, for 

each x  W. Let us define,  TW : W  W by  TW (x) = T(x)  x  W . Then obviously, TW is a 

linear operator on W. Here Tw is restriction of T on W. 

Now, T(w1) = TW (w1)  = a11w1 + …. + ar1wr  

…. …. …. …. …. …. …. …. …. …. … …  

  T(wr) = TW (wr)  = a1rw1 + …. + arrwr ;    aij   F. 

Hence     [TW]β1
 = [

a11 ⋯ a1r

⋮ ⋱ ⋮
ar1 ⋯ arr

] = A, say 
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Similarly  [TU]β2
 = [

c11 ⋯ c1s

⋮ ⋱ ⋮
cs1 ⋯ css

] = C, say 

Then it can be easily observed that  

 [T]β   = 

[
 
 
 
 
 
a11 ⋯ a1r

⋮ ⋱ ⋮
ar1 ⋯ arr

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

c11 ⋯ c1s

⋮ ⋱ ⋮
cs1 ⋯ css]

 
 
 
 
 

     =    [
A O 
O C

]. 

Example 14: Let V be the vector space of all polynomials in x over F, of degree  5. Let T : V  

V be defined by, T(1) = x2 + x4, T(x) = x + 1, T(x2) = 1, T(x3) = x3 + x2 + 1, T(x4) = x4, T(x5) = 0. 

(i) If W is the linear span of  {1, x2 , x4 }, show that W is invariant under T. 

(ii)  Also find the matrix of T in a suitable basis of V. 

Solution: (i)  Let w  W,     w =  + x2 + x4  ;  α ,  ,    F. We have  

T(w)   =  T( 1 + x2 + x4 ) 

   =  T(1) +  T(x2) +   T(x4) 

  =  (x2 + x4) + 1+   x4  

   = 1 + x2 + (  + ) x4  W 

So T(w)  W , for each w  W 

 W is invariant under T. 

(ii) We shall find the matrix of the restriction of T on W.  A basis of W is β1 = {1, x2, x4}.  

So   

TW(1)  =  T(1)  =   x2  +  x4   =  0.1 +  1. x2  +  1. x4 

TW(x2) =  T(x2) =          1       =  1.1 +  0. x2  +  0. x4

TW(x4) =  T(x4) =        x4        =  0.1 +  0. x2  +  1. x4

}   ….. (1) 

Hence  [TW]β = [
0 1 0
1 0 0
1 0 1

]  = A , say. 
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Now we find the matrix of T relative to the basis   = { 1, x2, x4 , x , x3, x5 }. So we have  

 

T(x) =  x + 1  =    1.1 +  0. x2  +  0. x4 +  1. x +  0. x3 +  0. x5

T(x3) =  x3 + x2 + 1  =    1.1 +  1. x2  +  0. x4 +  0. x +  1. x3 +  0. x5

T(x5) =  0  =    0.1 +  0. x2  +  0. x4 +  0. x +  0. x3 +  0. x5

}   ….. (2) 

From equations (1) and (2), the matrix of T with respect to the basis  is 

[T]β =  

[
 
 
 
 
 
 

0 1 0
1 0 0
1 0 1

⋮ 1 1 0
⋮ 0 1 0
⋮ 0 0 0

⋯ ⋯ ⋯
0 0 0
0
0

0
0

0
0

    

⋮ ⋯ ⋯ ⋯

⋮ 1 0 0
⋮
⋮

0
0

1
0

1
0 ]

 
 
 
 
 
 

  = [
A B
O C

 ] . 

where B = [
1 1 0
0 1 0
0 0 0

]  , C = [
1 0 0
0 1 0
0 0 0

]  . 

Example 15: Let V be the vector space of all polynomials of degree less than or equal to six. Let 

W be the subspace of V spanned by { 1, x2, x4 , x6 }. Let D be the differential operator on V i.e. 

D f(x) = 
d

dx
 (f(x)).  

(i) Show that W is not invariant under D. 

(ii) Let T = D2 , where D2 f(x) = 
d2

dx2 (f(x)). Show that W is invariant under T. 

(iii)  Find the matrix of TW in a suitable basis of W, where TW is the restriction of T on W. 

(iv) Find the matrix of T in a suitable basis of V. 

Solution: (i) Since W is spanned by { 1, x2, x4 , x6 }. So  { 1, x2, x4 , x6 }  W. Now  x2  W , 

but  D(x2) = 
d

dx
 (x2) = 2x   W. So W is not invariant under D. 

(ii) Let f(x)  W. Then f(x) = α1.1 + α2. x2 + α3. x4 + α4. x6  ; αi   F 

  D f(x) = 0 + 2 α2. x   + 4 α3. x3 + 6 α4. x5 

   D2 f(x) = 2 α2 + 12 α3. x2 + 30 α4. x4 

Given D2 = T, so T f(x) = (2α2).1 + (12 α3) x2 + (30 α4) x4 + 0. x6   W 
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Hence T(f(x))  W , for each f(x)  W . 

Hence W is invariant under T = D2 . 

(iii) A basis of W is β1 = { 1, x2, x4 , x6 }. We have 

 TW(1) =  D2(1) =   0 =  0.1 +  0. x2  +  0. x4 +  0. x6 

  TW(x2) =  D2(x2) =   2 =  2.1 +  0. x2  +  0. x4 +  0. x6  

 TW(x4) =  D2(x4) =   12x2  =  0.1 +  12x2  +  0. x4 +  0. x6 

  TW(x6) =  D2(x6) =   30x4  =  0.1 +  0. x2  +  30x4 +  0. x6  

Hence, the matrix of TW in the basis β1 of W is A = [

0 2
0 0

0 0
12 0

0 0
0 0

0 30
0 0

]. 

(iv)   Now, we find the matrix of T, relative to the basis  = { 1, x2, x4 , x6, x , x3 , x5} of V . 

Here T = D2  

  T(1)  =  0 =    0.1 +  0. x2  +  0. x4 +  0. x6 +  0. x +  0. x3 +  0. x5 

 T(x2) =  2 =    2.1 +  0. x2  +  0. x4 +  0. x6 +  0. x +  0. x3 +  0. x5 

 T(x4) =  12x2  =    0.1 +  12. x2  +  0. x4 +  0. x6 +  0. x +  0. x3 +  0. x5 

 T(x6) =  30x4  =    0.1 +  0. x2  +  30. x4 +  0. x6 +  0. x +  0. x3 +  0. x5 

 T(x)   =     0      =    0.1 +  0. x2  +  0. x4 +  0. x6 +  0. x +  0. x3 +  0. x5 

 T(x3) =     6x   =    0.1 +  0. x2  +  0. x4 +  0. x6 +  6. x +  0. x3 +  0. x5 

  T(x5)  =   20x3  =    0.1 +  0. x2  +  0. x4 +  0. x6 +  0. x +  20. x3 +  0. x5  

So  [T]β =  

[
 
 
 
 
 
 
0 2 0 0
0 0 12 0
0 0 0 30

⋮ 0 0 0
⋮ 0 0 0
⋮ 0 0 0

⋯ ⋯ ⋯ ⋯

0 0 0 0
0
0

0
0

0 0
0 0

    

⋮ ⋯ ⋯ ⋯

⋮ 0 6 0
⋮
⋮

0
0

0
0

20
0 ]

 
 
 
 
 
 

  = [
A O
O C

 ]. 
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 where C = [
0 6 0
0 0 20
0 0 0

]  . 

 

9.5 DIRECT SUM DECOMPOSITION 

Independent subspaces: The subspace W1, …., Wk of V(F) are called independent if for xi  

Wi ; i = 1, 2, …., k, we have x1 + x2 + …. + xk = 0, 

   xi = 0,   ∀  i = 1, 2, …., k. 

Theorem 6: Let V be a finite-dimensional vector space over F. Let W1, …., Wk be subspaces of 

V and W = W1 +  …. + Wk . Then the following conditions are equivalent: 

(i) W1, W2 …., Wk are independent. 

(ii) Wj  (W1 +  …. + Wj−1) = {0} for all j ; 2  j  k. 

(iii) If  βi is an ordered basis of Wi, 1  i  k , then  = {β1, …. , βk } is an ordered basis of 

W. 

Proof: Step I: We shall prove (i)  (ii). Suppose W1, …., Wk be independent subspaces of 

V(F). 

Let x  Wj  (W1 +  …. + Wj−1) ; 2  j  k. Then x  Wj and x  W1 +  …. + Wj−1 . 

So x  Wj and x = x1 +  …. + xj−1, where xi  Wi for I = 1, 2, …., j – 1. 

  x1 +  …. + xj−1 + (-x) = 0. 

  x1 = 0, …., xj−1 = 0, x = 0; since W1, …., Wk are independent. 

    x = 0. 

So,   Wj  (W1 +  …. + Wj−1) = {0};      2  j  k. 

Step II: Now we prove (ii) ⇒ (iii). 

Let βi = { b1
i  , b2

i , …., bdi

i } be a basis of Wi ; I = 1, 2, …., k. 

Claim:  ={β1, …. , βk } is a basis of W. 
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      (a)   First we shall show linear independence of elements of  . 

Let    ∑ (α1 
i b1

i + α2
i  b2

 i + … .+ αdi

i bdi

i  k
i=1 ) = 0;  αj

i  F. 

or   ∑ wi
k
i=1  = 0  where  wi = ∑ αj

i bj
idi

j=1    Wi. 

 or  w1 + w2 + …. + wk = 0. 

  wi = 0 for i = 1, 2, …., k ,   because if, j is the largest +ve integer 

 such that wj  0, then w1 + w2 + …. + wj = 0     −wj = w1 + …. + wj−1 

  wj  Wj  (W1 +  …. + Wj−1) ;  by part (ii) 

  wj = 0. 

Now for each i, wi = 0         ∑ αj
i bj

idi
j=1   = 0. Since βi is a linearly independent set for each i, 

therefore αj
i = 0;     j = 1, 2, …., di  and   i = 1, 2, ….,   .Thus  is a linearly independent 

subset of W. 

(b)  Now we shall prove that  spans W. Let x  W = W1 + …. + Wk  be arbitrary. 

Then x = ∑ wi
k
i=1  , where wi  Wi. As βi is a basis of Wi, so wi = ∑ λj

i bj
idi

j=1   ;  λj
i  F. 

 So,  x =  ∑ ∑ λj
i bj

idi
j=1   k

i=1 ,  x  W. 

   spans W. 

Hence  is a basis of W. 

Step III: Now we shall show  (iii) ⇒ (i). 

Suppose  w1 + …. + wk = 0, or  ∑ wi
k
i=1  = 0. 

As   βi is a basis of Wi, so wi = ∑ λj
i bj

idi
j=1   ;  λj

i  F. 

   ∑ ∑ λj
i bj

idi
j=1   k

i=1 = 0. 
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  λj
i = 0 ,  j = 1, 2, …., di  ;     i = 1, 2, ….,   as  is a basis of W, so linearly 

independent.  

  wi = 0, for each i = 1, 2, ….,  . 

  W1,.., Wk are independent. 

Example 16: Prove that if W1,W2, W3 are independent subspaces of V, then Wi ∩ Wj = 0, for i  

j ; i, j = 1, 2, 3. Give an example to show that its converse may not be true. 

Solution: For i  j , we have Wj = ∑ Wj
3
j=1
j≠1

 . Since W1, W2, W3 are independent . So by previous 

theorem, Wi ∩ Wj  Wi   ∑ Wj
3
j=1
j≠1

 = {0}. Hence Wi ∩ Wj = {0}  for i  j and  i, j = 1, 2, 3. 

Conversely, let us take  V = R3(R) , W1 = L {(1, 0, 0) = e1 } 

W2 = L {(0, 1, 0) = e2 }  and  W3 = L { e1 + e2 }. Obviously W1 ∩ W2 = {0} . 

Let  x  W1 ∩ W3. Then x  W1 and x  W3. 

 x = αe1 and x =  (e1 + e2)  where   ,   R. 

  αe1 =  βe1 + βe2 

  (α − β)e1 – βe2 = 0. 

But e1 and e2 are linearly independent vectors. 

  α −  = 0  and   = 0. 

  α =  = 0 . 

 x = 0. 

So  W1 ∩ W3 = {0}. 

Similarly we can prove that W2 ∩ W3 = {0}. Now suppose x  W3 . Then x =  (e1 + e2)  ;   

R. 

   x = γe1 + γe2  W1 + W2.  
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So  W3  W1 + W2. 

  W3  ( W1 + W2 ) = W3  {0}. 

  W1, W2, W3 are NOT independent subspaces. 

9.6 PROJECTION ON A VECTOR SPACE 

A linear operator E on a vector space V is called a projection if E2 = E. It means E is 

independent. 

Theorem 7: If E is a projection on a vector space V(F), then V = R ⨁ N, where R is the range 

space of E and N is the null space of E.  

Proof: Here E is a linear operator. So 

R = { E(x) : x  V} and N { x  V:  E(x) = 0}. 

Step I: Here we shall prove that x  R  E(x) = x. So by definition, x  R  x = E(y) for some  

y  R. 

So   E(x) = E(E(y)) =  E2(y) = E(y)   as   E2 = E. 

  E(x) = E(y) = x. 

Conversely , x = E(x)  x  R. 

Step II: Here we shall prove that V = R + N and R  N = {0}. Let x  V be arbitrary. Then we 

can write  

  x = E(x) + (x – E(x))      ….(1) 

Here E(x)  R. Also    E – (x – E(x)) = E(x) – E2(x) = E(x) – E(x) = 0. 

   x – E(x)  N. 

So  x  R + N   x  V. 

Hence V = R + N. Again, let x  R  N be arbitrary. 
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  x  R  and x  N. 

Now   x  R    x = E(x) and x  N  E(x) = 0. 

Thus x = 0. 

  R  N = {0}. 

Finally V = R ⨁ N. 

Note: (1) If V = R ⨁ N, then we say that E  is the projection on R along N . 

  (2)  We discussed that x  R   E(x) = x. Also V =R ⨁ N. so each v  V is uniquely 

expressible as v = r + n, where r  R and n  N. So E(v) = E(r + n) = E(r) + E(n) = r + 0 = r. 

 Hence if E is the projection on R along N, then for each v  V, such that v = r + n, E(v) = r. 

(3)   Any  projection E on V is diagonalizable.  

We have already discussed that V = R ⨁ N. Let { v1, …., vr}  be a basis of R and {vr+1, …., 

vn} a basis of N. Then   = {v1, …., vr, vr+1, …., vn}  is a basis of  V = R ⨁ N. Hence the 

matrix of E with respect to the basis  is the diagonal matrix,  

[E]β = [
I 0
0 0

] , I is r  r unit matrix.  

Example 17: A linear operator E on V is a projection if and only if I – E is a projection. 

Solution: Let E be a projection. Then E2 = E. So       

(I – E)2 = (I – E) (I – E) = I2 – E – E + E2  

= I – 2E + E as I2 = I   and E2 = E. 

= I – E  

  I – E is also a projection. 

Conversely, let I – E be a projection. Then (I – E)2 = I – E 

  I2 – 2E + E2 = I – E 
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 E2 = 2E – E  

  E2 = E. 

  E is also a projection. 

Example 18: If E1 and E2 are projections on V such that E1E2 = E2E1. Prove that E1E2 and E1 + 

E2 – E1E2 are projections. 

Solution: Given that E1E2 = E2E                                    …. (1) 

Now, (E1E2)
2 = (E1E2) (E1E2) = E1(E2E1) E2 = E1(E1E2)E2 

= E1
2 E2

2  

(E1E2)
2 = E1E2  as  E1

2 = E1   and  E2
2 = E2    

 E1E2 is also a projection. 

Now, (E1 + E2 – E1E2)
2 = (E1 + E2 – E1E2) (E1 + E2 – E1E2)  

=  E1
2 + E1 E2 – E1

2 E2 + E2 E1 +  E2
2 – E2E1E2 – E1 E2 E1 – E1 E2

2 + E1 E2 E1 E2  

  = E1 + E1 E2 – E1 E2 + E1 E2 +  E2 – E1 E2
2 – E1

2 E2 – E1 E2
2  + E1

2 E2
2   

 = E1 + E1 E2 – E1 E2 + E1 E2 + E2 – E1 E2 – E1 E2 – E1 E2 + E1E2 

  = E1 + E2 – E1E2 

So, E1 + E2 – E1E2 is also a projection. 

Example 19: Let V be a real vector space and E be a projection on V. Prove that I + E is 

invertible and also find (I + E)−1. 

Solution: Since E is a linear operator. So E  is also    R. Let  = 
1

2
 . So  

1

2
 E is also a linear 

operator. 

Now (I + E) (I – 
E

2
 )    =   I(I –  

E

2
 ) + E (I –  

E

2
 ) 

    =  I –  
E

2
 + E – 

1

2
 E2 
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    =  I +  
E

2
 – 

1

2
 E                            as E2 = E 

(I + E) (I – 
1

2
 E )  = I. 

Similarly, we can prove ,  (I – 
1

2
 E ) (I + E) = I . 

So  I + E  is invertible and (I + E)−1 = I – 
1

2
 E. 

Example 20: If E is the projection on R along N, then prove that I – E is the projection on N 

along R. 

Solution: Since E is the projection on R along N. So V = R ⨁ N, 

Claim: We shall prove that: Range space of (I – E) = N and null space of (I – E) = R. 

(i)    As we know, for any x  R, x = E(x). So  (I – E) (x) = I(x) – E(x) = x – x =0. 

  x  ker (I – E). 

  R  ker (I – E).  ….. (1) 

Now for any x  ker (I – E), we have, (I – E) (x) =0. 

 I(x) – E(x) = 0. 

 x – E(x) = 0, as I is identity operator. 

 x = E(x). So  x  R 

  ker (I – E)  R.              …. (2) 

Hence from equations (1) and (2), we have, R = ker (I –E) = null space of (I – E). 

(ii)  Since V = R ⨁ N , so each v   V is uniquely expressible as v = r + n, where  r  R   and 

n  N. i.e. r = E(r)  and  E(n) =0. 

 So, E(v) = E(r + n) = E(r) + E(n) = r + 0 = r. 

 ⇒  (I – E) (v) = I(v) – E(v) = v – r = n  N. 
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So range space of (I – E)  N .      ….. (3) 

Conversely, let n  N , then E(n) =0. 

So (I – E) (n) = I(n) – E(n) = n – 0 = n. 

  n  range space of (I – E). 

  N  range space of (I – E).     …. (4) 

From equations (3) and (4), we obtain, N = range space of (I – E). 

Step II:  Now, 

 (I – E)2 = (I – E) (I – E) = I(I – E) – E(I – E) 

       = I2 – E – E + E2. 

(I – E)2 = I – E, as E2 = E. 

Also V = R ⨁ N = N ⨁ R. Hence I – E is the projection on N along R. 

Example 21: If E is a projection and f is a polynomial, then f(E) = aI + bE. Discuss it. 

Solution: Suppose   f(x) = a0 + a1x + a2x
2 + …. + anx

n  F[x] . 

So, f(E) = a0I + a1E + a2E
2 + a3E

3 + …. + anE
n. 

=   a0I + a1E + a2E + a3E + …. + anE,  as  E2 = E. 

 =  a0I + (a1 + a2 + a3 + ….+ an)E. 

  = aI + bE, where a = a0, b = a1 + a2 + ….+ an. 

Example 22:  Find a projection E which projects R2 onto the subspace spanned by (1, -1) along 

the subspace spanned by (1, 2).  

Solution: Let W1 and W2 be subspaces of R2 spanned by (1, -1) and (1, 2) respectively. So W1 = 

{ x(1, -1) : x   R } and  W2 = { y(1, 2) : y   R }    

Step I:  We shall prove that S = {(1, -1), (1,2)} is a linearly independent set. Suppose   
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 (1, -1) +  (1, 2) = 0 ,   ,   R. 

  +   = 0. 

−α +  2β = 0. 

Coefficient matrix = A = [
1 1

−1 2
]  R2  R2 + R1 

    = [
1 1
0 3

]. 

So rank of A = 2. Hence above equation system has only one solution i.e.  =  = 0. So S = {(1, -

1), (1, 2) } is a linearly independent set. 

 Step II: The standard ordered basis of R2 is {e1 = (1, 0), e2 = (0, 1)}. Let  (  , ) = a (1, -1)  + b 

(1, 2). 

   a + b =  

   –a  + 2b =  

On solving , we get   b = 
α +  β 

3
 , a = 

2α −  β 

3
 

So (  , ) = (
2α −  β 

3
) (1, -1)  + (

α +  β 

3
) (1, 2)    ….(1) 

If   = 1 ,  = 0, we get 

(1, 0)  =  
2 

3
 (1, -1)  + 

1 

3
  (1, 2)      ….(2) 

If   = 0 ,  = 1, we get 

 (0, 1)  =  −
1 

3
 (1, -1)  + 

1 

3
  (1, 2)     ….(3) 

Also from equation (1), we conclude  

 (  , ) =  e1 + e2 = (
2α −  β 

3
) (1, -1)  + (

α +  β 

3
) (1, 2)  W1 + W2  ….(4) 

So  R2 = W1 + W2. 
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It can be easily proved that W1  W2 = {(0, 0)}. Hence   R2  =  W1  W2. 

Step III: As we know if V = R ⨁ N, then the projection E on R along N is given by E(v) = r,  

where v  V has a unique representation v = r + n ; r ∈ R, n  N. Hence by equation (4), the 

projection E on W1 along W2 is given by E : R2 → R2, where E(  , ) = (
2α −  β 

3
)   (1, -1)   

   E(  , ) = (
2α −  β 

3
,
  β − 2α  

3
 )   ;   (  , )  R2. 

Note: Here we observe that, E(1, -1) = (1, -1) and E(1, 2) = (0, 0). 

Hence W1 is range of E and W2 is the null space of E. 

Example 23: Assume that E be a projection on V and T be a linear operator on V. Prove that – 

(i) The range of E is invariant under T if and only if E T E = T E. 

(ii) Both the range and null space of E are invariant under T if and only if E T = T E 

Solution: Given that E is a projection on V, so V = R ⨁ N.  

Here  R = E(v) = range of E 

  N = ker E. 

(i) Let the range of E be invariant under T. Then  

T(R)  R      T(E(v))  E(v). 

  T(E(x))   E(v) ,  x  V. 

So  T(E(x)) = E(v0), for some v0  V. 

  (TE) (x) = E(v0)   x  V .  …. (1) 

Now  (E T E) (x) = E(T E(x)) = E(E(v0)) = E2 (v0) = E(v0). 

  (E T E) (x) = (T E) (x)     x   V ; using (1). 

  E T E = T E. 

Conversely, let E T E = T E. 
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  (TE) (x) = (E T E) (x) ,   x   V. 

 T(E(x)) = E(T E(x)) 

  = E (x1) , where  x1 = (T E) (x)  V. 

  T(E(x))  ∈ E(v)   x   V. 

  T(E(v))  ⊆ E(v). 

Hence the range of E is invariant under T. 

(ii)  Since E is a projection on V, so V = R ⨁ N, where 

R = { v  V : E(v) = v }  and N = ker E = { v  V : E(v) = 0 }.   

Necessary condition: Suppose R and N both be invariant under T. Then  

T(R)  R and T(N)  N.    …. (2) 

Claim: We shall prove that E T = T E. Let v  V be arbitrary. Since V = R ⨁ N, so v = r + n, 

where r  R  and  n  N. 

Also E is a projection, so E(v) = r.    …. (3) 

From equation (2), we have, 

T(r)  R  and  T(n)  N. 

  E(T(r)) = T(r) and E(T(n)) = 0.   …. (4) 

Now  (ET) (v) = E(T(v)) = E(T(r + n)) = E(T(r) + T(n) )  

= E(T(r)) + E(T(n)) = T(r) + 0,  ; using (4) 

 = T(r) = T(E(v)).   ; using (3) 

  (E T) (v) = (T E) (v)    v   V. 

Hence   E T = T E. 
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Sufficient condition: Let E T = T E. Then E T E = E(E T) = E2 T = E T. So by part (i) we 

conclude that range of E i.e., R is invariant under T. 

Claim: Null space of E i.e. N is invariant under T i.e. T(N)  N.  

For any n  N, we have E(n) = 0. 

So E T = T E   (E T) (n) = (T E) (n). 

  E(T(n)) = T(E(n)) = T(0) =0. 

 T(n)  N    n  N. 

 N is invariant under T. 

Example 24: Let V = W1  W2 , where W1 and W2 are subspaces of V. If E1 is the projection on 

W1 along W2 and E2 is the projection on W2 along W1, then prove that, 

(i)   E1 + E2 = I .    (ii)   E1E2 =E2E1 = 0. 

Solution: Given that V = W1  W2 . So each v  V is uniquely expressible as v = w1 + w2; w1 

 W1 , w2  W2 . 

(i)   Since E1 is the projection on W1 along W2 . So 

E1(v) = w1. 

Similarly,  E2(v) = w2. 

Now  (E1 + E2) (v) = E1(v) + E2(v) = w1 + w2 = v. 

  (E1 + E2) (v) = I(v)    v  V. 

Hence   E1 + E2 = I. 

(ii) Now     E1E2 = E1 ( I – E1) ,   by part (i) 

    = E1 – E1
2  

   =  E1 – E1, as E1 is projection E1E2 = 0. 
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Similarly, E2E1 = 0. 

Example 25: If a diagonalizable operator has only eigenvalues 0 and 1, then prove that it is a 

projection. 

Solution: Given that, linear operator, say T, is diagonalizable. Then there exists a basis  = { v1, 

…., vn} of V such that, [T]β =  diag (c1, …., cn ) , where c1, …., cn are eigen values of T. But 0 

and 1 are only eigenvalues of T. 

Suppose   c1 = …. = cm = 1 and cm+1 = …. = cn = 0.     …. (1) 

Let us take v ∈ V as arbitrary. So 

v =  α1v1 + …. + αmvm +  αm+1vm+1 + …. + αnvn   ;  αi  F 

T(v)    =  T(α1v1 + …. + αmvm +  αm+1vm+1 + …. + αnvn ) 

  = α1 T(v1) + …. + αm T(vm) + αm+1 T(vm+1) + .… + αn T(vn)  

 = α1 (c1v1) + …. + αm (cmvm) + αm+1 (cm+1vm+1) + .… + αn (cnvn), where  T(vi) = 

civi. Now using equation (1), we get 

T(v) = α1v1 + …. + αmvm 

    T2(v)  =  T(T(v)) = T(α1v1 + …. + αmvm) 

=   T(α1v1 + …. + αmvm) + αm+1 (cm+1vm+1) + .… + αn (cnvn), where  cm+1 = …. = cn 

= 0.  

T2(v)   = T(α1v1 + …. + αmvm) + αm+1 T(vm+1) + .… + αn T(vn) 

 = T(α1v1 + …. + αmvm +  αm+1vm+1 + …. + αnvn ) 

 T2(v)   = T(v)  v  V. 

 T2 = T. 

 T is a projection. 

Example 26: Let T be a linear operator on a finite-dimensional vector space V(F). Let R be the 

range of T and let N be the null space of T. Prove that R and N are independent if and only if V = 

R ⨁ N . 
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Solution: If part : Suppose V = R ⨁ N. It means V = R + N and R ∩ N = {0}. 

Claim: We shall prove that R and N are independent. 

Let r + n = 0 , where r  R and n  N . …. (1) 

Then, T(r + n) = T(0). 

  T(r) + T(n) =0. 

  T(r) +0= 0. 

  r  N. 

So,  r  R  N = {0}    r =0. 

So from equation (1), n = 0. 

 r + n =0 implies r = 0, n = 0. 

 R and N are independent subspaces of V. 

Only if part: Let R and N be independent subspaces of V. 

Claim: V = R ⨁ N. By rank-nullity theorem (Sylvester’s law), we have 

rank (T) + nullity (T) = dim V i.e.  dim R + dim N = dim V and V = R + N. Every v  

V is expressible as v = x + y ;  x  R, y  N. We shall prove uniqueness of this representation. 

Suppose  v = x1 + y1 also,  where   x1  R, y1  N 

  x + y = x1 + y1  or  (x – x1) + ( y – y1 ) = 0. 

But R and N are independent subspaces. 

 x – x1 =0 and  y – y1 = 0. 

  x = x1  and  y =  y1. 

So  v = x + y = x1 + y1. 
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 representation is unique. 

 V = R ⨁ N. 

Projection on a subspace: Let V = W1   W2  , where W1 and  W2 are subspaces of a vector 

space V(F). Then each v  V is uniquely expressible as v = w1 + w2 , where w1   W1 and  w2 

  W2 . The projection on W1 (along W2) is defined as a linear operator E on V such that E(v) = 

w1 . Also two subspaces W1 and  W2 of V are called independent if W1   W2  = {0}. 

Example 27: If E1 and E2 are projections onto independent subspaces, then prove that E1 + E2 is 

also a projection . 

Solution: Step I:  Suppose E1 and E2 be projections onto independent subspaces W1 and W2, 

respectively. By definition , V = W1   W1
′  and V = W2   W2

′    v  V. 

So, E1(v) = w1  where v = w1 + w1
′  ;  w1   W1 , w1

′  ∈ W1
′ and  E2(v) = w2  where v = w2 + w2

′  ;  

w2   W2 , w2
′  ∈ W2

′  . Now suppose v  V be arbitrary. 

Then (E1E2) (v) = E1(E2(v)) = E1(w2) .   …. (1) 

Now two cases may arise: 

Case (i): If w2 = 0, then E1(w2) = E1(0) = 0. 

Case (ii): If  w2 ≠ 0 , then w2  W1, because W1 and W2 are independent; consequently  W1  

 W2  = {0}. Since V = W1   W1
′ and  w1  W1,  w2  W1

′.  

So E1(w2) =  E1(0 + w2) = 0. Hence from (1), we have (E, E2) (v) = 0,   v  V. 

 E1E2 = 0. 

Similarly, we can prove that E2E1 = 0. 

Step II: Finally, (E1 + E2)
2 = (E1 + E2) (E1 + E2) = E1 (E1 + E2) + E2 (E1 + E2)  

    = E1 E1 + E1 E2 +  E2 E1+  E2 E2 

    = E1
2 + 0 + 0 + E2

2 = E1 + E2. 

 E1 + E2 is a projection . 
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Example 28: Let V be a vector space over F and W1, W2, ….., Wk be subspaces of V. Then 

  V = W1  W2  …..  Wk , if and only if there exist k linear operators  

 E1, E2 , ….. Ek  on V such that –  

(i) Each Ei is  a projection i.e. Ei
2 = Ei. 

(ii) Ei Ej = 0 for i  j. 

(iii) I = E1 + E2 + …..+  Ek. 

(iv) The range of  Ei is Wi for i = 1, 2, …., k. 

Proof: Necessary Condition: Let V = W1  W2  …..  Wk . Then each x  V is uniquely 

expressible as x = x1 + x2  + …. + xi + ….+  xk  ;   xi   Wi , 1  i  k. 

Let us define a mapping Ei : V V such that  

 Ei(x) = xi .    …. (1) 

Claim: We shall prove that Ei is a linear operator on V  i. Let x, y  V and  ,   F. So 

y = y1 + y2  + …. + yi + ….+  yk  ;   yi   Wi , 1  i  k. 

On the basis of equation (1), we have  

 Ei( x + y ) = α xi + β yi = α Ei(x)  + β Ei(y) . 

 Ei is a linear operator on V ;  i = 1, 2, …., k. 

(i)  Now  Ei
2(x) = Ei (Ei(x)) = Ei (xi) ,   using (1) 

        =  xi   using (1) 

        =  Ei ( ).  using (1) 

  Ei
2(x) = Ei( ) ,  x  V. 

  Ei is a projection,    i = 1, 2, …., k. 

(ii)  For i  j, we get  
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  (Ei Ej) (x) = Ei(Ej(x)) = Ei (xj) = 0 =0 (x). 

  Ei Ej = 0,  for i  j. 

(iii)  For any x  V, we see that  

  (E1 + E2 + …..+  Ek) (x) = E1( ) + …. + Ek( )  = x1 + …..+  xk = I(x). 

   E1 + E2 + …..+  Ek = I. 

(iv)  Range of Ei = { Ei( ) : x  V } = { xi : xi  Wi } = Wi . 

Sufficient Condition: Here, we have  given (i) – (ii)  conditions. 

Claim: We shall prove that V = W1  W2  …..  Wk. 

Let x  V be arbitrary. 

Then from condition (iii), we have  

I(x) = (E1 + E2 + …..+  Ek) (x). 

 x = E1( ) + …. + Ek( ) .  

 x = x1 + …..+  xk . 

 So V = W1  …..  Wk. 

Uniqueness: Let x = z1 + z2 +…..+  zk ;  zi  Wi = Range Ei. Since zi  Range Ei , so 

  zi = Ei( ti)  ;   ti  V .    …. (3) 

So Ei( ) = Ei(z1 +…..+  zk) = Ei(z1) + …. + Ei(zi) + …. + Ei(zk). 

= Ei(E1( t1)) + …. + Ei(Ei( ti)) + …. + Ei(Ek( tk)) ,  by (3) 

 = (EiE1) ( t1) + …. + (EiEi) ( ti) + …. + (EiEk) ( tk). 

 = 0 + …. + Ei
2 (ti)  + 0 …. + 0. 

 xi = Ei( zi) =  zi     i = 1, 2, …., k. 
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This proves uniqueness of (2). Hence  

 V = W1  W2  …..  Wk. 

Theorem 8: Let T be a linear operator on a vector space V and V = W1  W2  …..  Wk. 

    Define Ei( ) = Ei(x1 +…..+  xk)  = xi  Wi. Then – 

(i) Each  Ei is a projection on V. 

(ii) EiEj = 0 , for i  j. 

(iii) I = E1 + …..+  Ek . 

A necessary and sufficient condition that each Wi is invariant under T is that T Ei = EiT for all i 

= 1, 2, ….,k. 

Proof: Conditions (i), (ii) and (iii) can be verified from previous theorem. 

Given V = W1  W2  …..  Wk.    …. (1) 

Necessary condition: Suppose each Wi be invariant under T, i = 1, 2, ….,k. 

So  T(Wi)  Wi, for i = 1, 2, ….,k.     …. (2) 

Since  I = E1 + …..+  Ek, so 

I(v) = (E1 + …..+  Ek) (v) = E1( ) + …. + Ek( ) 

 v = x1 +…..+  xk.        by (1) 

Now,  T(v) = T(x1 +…..+  xk) = T(x1) + ….. + T(xk) 

 T(v) = y1  + …. + yi + ….+  yk  ; where  yi = T(xi)  Wi ;   by (2) 

So   Ei (T(v))  = Ei (y1  + …. + yi + ….+  yk)  

  =  Ei (y1) + …. + Ei (yi) + …. + Ei (yk) 

  = 0 + …. + yi + 0 + …. + 0  = yi 

  =  T(xi)  

  =  T Ei(v).   by (1) 
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  (Ei T) (v) = (T Ei) (v)     v  V. 

   EiT =  T Ei      for all i = 1, 2, …., k. 

Sufficient Condition: Let     T Ei = EiT ,  for all i = 1, 2, …., k. 

Claim: We shall prove that each Wi  is invariant under T. Suppose wi  Wi be arbitrary. By 

given definition in statement, Ei(wi) = wi . 

So  T(wi) = T(Ei(wi)) = (T Ei) (wi) = (EiT) (wi) 

=  Ei ( (wi))  Range Ei = Wi . 

Thus T(wi) ∈ Wi    wi ∈ Wi. 

Hence Wi is invariant under T, for I =1, 2, …., k. 

Theorem 9: If T is a diagonalizable operator on a finite-dimensional vector space V and if  c1, 

…., ck are distinct eigenvalues of T, then there exist linear operators E1, …., Ek on V such that: 

(i) T = c1E1 + ….. + ckEk. 

(ii) I = E1+ …. + Ek. 

(iii) Ei Ej = 0  for i  j. 

(iv)  Ei
2 = Ei , for each i. 

(v) The range of Ei is the eigenspace of T associated with the eigenvalue ci of T. 

Proof: Let Wi be the eigenspace of T corresponding to the eigenvalue ci ; i = 1, 2, …., k. We 

have Wi = {v  T(v) = civ }    ….(1) 

Given that T is a diagonalizable operator. So 

V = W1  W2  …..  Wk. 

Let us define Ei : V V such that  

 Ei (v) = Ei (x1 +…..+  xk) = xi. 

Claim: We have already proved conditions (ii) – (v). Now we prove condition (i). Let v  V be 

arbitrary. 
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  I = E1+ …. + Ek      I(v) = (E1+ …. + Ek) (v). 

  v = E1(v) + …. + Ek(v). 

  v = y1  + …. +  yk  where  yi = Ei (v)  ∈  Range Ei = Wi . 

But   yi ∈ Wi, so by equation (1), we have  

T(yi) = ci yi , for each i.                                  …. (2) 

Now   T(v)    =  T(y1  + …. +  yk) 

   = T(y1) + …. + T(yk) 

  =  c1 y1 + …. + ck yk ,  using (2) 

  = c1E1(v) + …. + ck Ek(v),   as yi = Ei (v)  

 T(v)  =  (c1E1+ …. + ck Ek) (v)      v  V. 

  T = c1E1+ …. + ck Ek. 

Note: Converse of above theorem is also true. We shall prove it in next theorem. 

Theorem 10: Let T be a linear operator on a finite-dimensional vector space V(F). Let  c1, …., 

ck be distinct scalars and E1, …., Ek be non-zero linear operators on V such that: 

(i) T = c1E1+ …. + ck Ek. 

(ii) I = E1+ …. + Ek. 

(iii) Ei Ej = 0  for i  j. 

Then T is diagonalizable with c1, …., ck as its eigenvalues. Further  Ei
2 = Ei , for each i and 

Range Ei = eigenspace of T associated with ci. 

Proof: From (ii) and (iii) conditions, we have  

Ei = Ei I = Ei (E1+ …. + Ek) = EiE1 + …. + Ei
2 + …. + EiEk  

=0+ …. + Ei
2 + …. + 0. 

  Ei = Ei
2.   ------(iv) 
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This is condition (iv). 

Now, T Ei = (c1E1 + …. + ciEi + .... + ckEk) Ei  

 =  ci Ei
2 =  ciEi  

 (T – ciI) Ei = 0 , for each i. 

As   Ei  0, there exists some  vi  V such that  Ei (vi)  0. 

So  (T – ciI) Ei(v) = 0 for each i. 

 T(Ei(v)) = ci(Ei(v))  ;  Ei (vi)  0. 

   ci is an eigenvalue of T for each i. 

If c is any scalar, then 

(T – I) = (c1E1 + …. + ckEk ) – c (E1+ …. + Ek ) 

 (T – I) = (c1 – c) E1 + …. + (ck – c) Ek. …. (1) 

If c is an eigen value of T, then there exists some 0  v  V, such that  

Tv = cv    or   (T – I) (v) = 0. 

 (c1 – c) E1(v)  + …. + (ck – c) Ek(v) = 0,   using (1) 

So  Ej [ (c1 – c) E1(v)  + …. + (ck – c) Ek(v) ]  = Ej (0) = 0. 

  (c1 – c) Ej E1(v)  + …. + (ck – c) Ej Ek(v) = 0. 

 (cj – c) Ej Ej (v) = 0,   as   Ei Ej = 0,   for  i  j. 

       (cj – c) Ej
2 (v) = 0    or    (cj – c) Ej (v) =0;  j = 1, 2, …., k.   ….(2) 

If we take Ej (v) = 0 for all j = 1, 2, …., k  , then  

I = E1+ …. + Ek     I(v) = E1(v) + …. + Ek(v)     

   v = 0 + …. + 0 = 0. Contradiction ! 
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So  Ej (v)  0 for some j. Using equation (2), we get (cj – c) = 0 , for some j. 

  cj = c ,      for some j. 

Hence  c1, …., ck are the only eigenvalues of T. 

Let  Wi = Range of Ei = Ei(v) , for i = 1, 2, …., k.  ------(v) 

Then    I = E1+ …. + Ek.   

  I(v) = E1(v) + …. + Ek(v)   ;   v  V. 

  v  W1 …..  Wk   v  V. 

 V = W1 …..  Wk.   

Also conditions (ii) – (v) are satisfied. So we have,  

V = W1  W2  …..  Wk 

 dim V = dim W1 + …. + dim Wk .   ….(3) 

Step II: Now we shall show that – 

Wi = eigenspace of T corresponding to ci ,  i = 1, 2, …., k. 

Then from previous knowledge, T is diagonalizable. 

Let Wci
  denotes the eigenspace of T corresponding to the eigenvalue ci . 

Claim: We shall prove that Wci
  =  Wi. 

Let x  Wci
  be arbitrary. Then, T(x) =  cix  ; 1  i  k. 

 (c1E1 + …. + ckEk ) (x) = ci I(x)  ; using condition (i) 

 c1E1(x) + …. + ckEk (x) =  ci [E1(x) + …. + Ek (x) ] 

 (c1 – ci ) E1(x)  + …. + (ck – ci) Ek(x) = 0. 

  (cj – ci) Ej (x) =0, for all j =1, 2, …., k. 
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But  cj – ci  0 for  j  i. 

So  Ej (x) = 0   ,   j  i .     ….(4)  

Since   I = E1+ …. + Ek   , so 

  I(x) = E1(x) + …. + Ek(x) .  

  x = Ei (x)  ;   using (4) 

  x   Range of Ei = Wi. 

So  Wci
    Wi .      ….(5) 

Again, let 0  x  Wi =  R(Ei) . 

Then   x = Ei( yi). 

As proved above, we have T Ei( yi) = ci Ei( ) . 

  T(x) = cix  , where x = Ei( yi)   0. 

  x    Wci
   

So  Wi    Wci
.      ….(6) 

 Wi    Wci
 = eigenspace of T corresponding to ci ; i  = 1, 2, …., k. 

 T is diagonalizable. 

Theorem 11: If T is a linear operator on a finite-dimensional vector space V(F) and minimal 

polynomial p(x) of T is a product of distinct linear factors i.e. p(x) = (x – c1) (x – c2) …..(x – ck) 

, where c1, …., ck are distinct, then T is diagonalizable. 

Proof: Let us define k polynomials as  

  p1(x) =  
(x – c2) (x – c3) …..(x – ck) 

(c1 – c2) (c1 – c3) …..(c1 – ck)
  , 

  p2(x) =  
(x – c1) (x – c3) …..(x – ck) 

(c2 – c1) (c2 – c3) …..(c2 – ck)
  , 
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  …. …. …. …. …. …. …. …. …. 

  pk(x) =  
(x – c1) (x – c2) …..(x – ck−1) 

(ck – c1) (ck – c2) …..(ck – ck−1)
  , 

We observe that , p1(c1) = p2(c2) = …. = pk(ck) = 1 and for other values, these are zero   i.e. 

  pi(cj) = {
1,    i = j
0,     i ≠ j 

     ….(1) 

Given that p(x) = (x – c1) (x – c2) …..(x – ck) , 

So  deg pi(x) <   deg p (x)  ;  i = 1, 2, …., k. 

Step I: Let W be the vector space of all polynomials over F of degree  k. We shall prove that 

p1(x), p2(x), …., pk(x)  W are linearly independent. 

Let   α1p1(x) + α2p2(x) +  …. + αk pk(x) = 0  ;   αi  F. 

  α1p1(ci) + α2p2(ci) +  …. + αk pk(ci) = 0. 

  αi = 0    i = 1, 2, …., k.   using (1) 

Since  dim W = k. So { p1(x), …., pk(x)} is a basis of W. 

As 1  W . So   λi  F  such that, 

1 = λ1p1(x) + …. + λk pk(x). 

Putting x = ci on both sides, we get  

 1 = λ1p1(ci) + …. + λk pk(ci) = λi ;   using (1) 

  λi = 1 for i  = 1, 2, …., k. 

 1 = p1(x) + …. +  pk(x).     ….(2) 

Since   x  W, so    x =  β1p1(x) + …. + βk pk(x) ;  βi  F.  

Putting  x = ci , we get  

ci = β1p1(ci) + …. + βk pk(ci) = βi ,  using (1) 
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 βi = ci      i = 1, 2, …., k. 

So  x = c1p1(x) + …. + ck pk(x).    ….(3) 

Step II:  Let  pi(T)  = Ei  for  i = 1, 2, …., k. If possible, let Ej = 0 for some j, then  pj(T)  = 0 

and   deg pj (x) <   deg p (x) , but this is a contradiction to the minimality  of  p(x). So Ej  0  

for all j. 

Now putting x = T in equations (2) and (3), we get 

 I = p1(T) + …. + pk(T) =  E1+ …. + Ek       ….(4) 

and   T = c1p1(T) + …. + ck pk(T)  = c1E1 + …. + ck Ek     ….(5) 

Since p(x) is the minimal polynomial of T, so p(T) = 0.   ….(6) 

Here we remember that p(x) divides  p1(x) p2(x), etc or in general p(x) divides  

pi(x) pj(x) , for all  i  j 

So by Division Algorithm,  q(x)  ∈ F[x] , such that  

 pi(x) pj(x) = p(x) q(x). 

 pi(T) pj(T) =  p(T) q(T) = 0  for all  i  j  ; using (6) 

 Ei Ej = 0  for all i  j.      ….(7) 

If we use equations (4), (5), (7), then from the knowledge of previous theorems, we conclude 

that – 

T is diagonalizable with c1, …., ck as its eigenvalues. 

Theorem 12: Let T be a linear operator on a finite-dimensional vector space V(F). Then T is  

 diagonalizable if and only if the minimal polynomial for T has he following form  

 p(x) = (x – c1) (x – c2) …..(x – ck), 

where  c1, …., ck are distinct elements of F. 
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Proof: Necessary Condition: Let T be diagonalizable . Let c1, …., ck be distinct eigenvalues of 

T. Since we know that any eigenvalue  of T is a root of the minimal polynomial for T. So each of 

the polynomials x – c1, x – c2, ….., x – ck, is a factor of the minimal polynomial for T. Hence 

the polynomial p(x) = (x – c1) …..(x – ck) will be the minimal polynomial for T, if p(T) = 0. Let 

v be any eigenvector of T. Then (T – c1I)  …..(T – ck I) (v) = 0, for all eigenvectors v of T. Since 

T is diagonalizable, there exists a basis   = { v1, …., vk} consisting of eigenvectors of T. As 

shown above,  

  (T – c1I)  …..(T – ck I) (vi) = 0, for i  = 1, 2, …., k.   ….(1) 

 Let x  V be arbitrary. Then  

  x = α1v1  + …. + αkvk  ;   αi   F. 

So ,   (T – c1I) (T – c2I)   …..(T – ck I) x = 0,   for each x  V. 

 (T – c1I)  …..(T – ck I) = 0,  on V. 

  p(T) =0. 

Hence p(x) = (x – c1) ….. (x – ck) is the minimal polynomial for T. 

Sufficient Condition: It has been proved in the previous theorem. 

Check your progress 

Problem 1: Find the minimal polynomial for the matrix A = [
1 0
0 0

]. 

Problem 2: Find the minimal polynomial for the matrix  A =  [
3 1 −1
2 2 −1
2 2 0

]. 

Problem 3: Give an example of a matrix whose characteristic and minimal polynomials are 

same. 

Problem 4: Give an example of a matrix whose characteristic and minimal polynomials are 

NOT same. 
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9.7 SUMMARY 

After the study of this chapter, we have learnt about the difference between the characteristic 

polynomial and minimal polynomial. Then we studied about invariant subspaces of a vector 

space. After that we discussed direct sum decomposition of a vector space. At last we learned 

about projection on a vector space and a lot of exercises to have a good command over various 

concepts. 

9.8 GLOSSARY 

 Invariant Subspaces: Let T be a linear operator on a vector space V(F). A subspace of 

V(F) is said to be invariant under T (or W is T-invariant) if T(W)  W. 

 Independent subspaces: The subspace W1, …., Wk of V(F) are called independent if   

for xi  Wi ; i = 1, 2, …., k, we have x1 + x2 + …. + xk = 0, 

   xi = 0,   ∀  i = 1, 2, …., k. 

 Projection on a Vector Space:  A linear operator E on a vector space V is called a 

projection if E2 = E. It means E is independent. 
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9.11     TERMINAL QUESTION 

Long answer type question: 
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1: If T is any linear operator on a vector space V, then prove that ker (T) and Range (T) are 

invariant subspaces of V. 

2: Example: Let V be the vector space of all polynomials of degree less than or equal to six. 

Let W be the subspace of V spanned by { 1, x2, x4 , x6 }. Let D be the differential 

operator on V i.e. D f(x) = 
d

dx
 (f(x)).  

(v) Show that W is not invariant under D. 

(vi) Let T = D2 , where D2 f(x) = 
d2

dx2 (f(x)). Show that W is invariant under T. 

(vii)  Find the matrix of TW in a suitable basis of W, where TW is the restriction of T on W. 

(viii) Find the matrix of T in a suitable basis of V. 

3: Let V be a finite-dimensional vector space over F. Let W1, …., Wk be subspaces of V and 

W = W1 +  …. + Wk . Then the following conditions are equivalent: 

(iv) W1, W2 …., Wk are independent. 

(v) Wj  (W1 +  …. + Wj−1) = {0} for all j ; 2  j  k. 

(vi) If  βi is an ordered basis of Wi, 1  i  k , then  = {β1, …. , βk } is an ordered basis of 

W. 

4: If E is a projection on a vector space V(F), then prove that V = R ⨁ N, where R is the 

range space of E and N is the null space of E. 

Short answer type question: 

1: Let T be a linear operator on a finite-dimensional vector space V(F). Then prove that the 

characteristic and the minimal polynomials for T have the same roots, except for 

multiplicities. 

2: Prove that the minimal polynomial of a linear operator T divides its characteristic 

polynomial. 

3: Prove that the minimal polynomial of a linear operator T is a divisor of every polynomial 

that annihilates T. 

4: If a diagonalizable operator has only eigenvalues 0 and 1, then prove that it is a 

projection. 

5:   Let A = [
0 0 1
1 0 1
0 1 1

] 
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 Prove that the characteristic polynomial and minimal polynomial are identical for A. 

6:   Let T be a linear operator on R2 defined by      T(x, y) = (x + y, x + y) . 

 Find the minimal polynomial for T. 

7:   Show that similar matrices have the same minimal polynomial. 

8: Find the characteristic and minimal polynomials for the matrix A = [
5 −6 −6

−1 4 2
3 −6 −4

]. 

9.12 ANSWERS 

Answers of check your progress: 

1. x(x – 1)  

2. (x – 1)( x – 2)2 . 

Answer of long question 

2(iii)  [

0 2
0 0

0 0
12 0

0 0
0 0

0 30
0 0

]    (iv) 

[
 
 
 
 
 
 
0 2 0 0
0 0 12 0
0 0 0 30

⋮ 0 0 0
⋮ 0 0 0
⋮ 0 0 0

⋯ ⋯ ⋯ ⋯

0 0 0 0
0
0

0
0

0 0
0 0

    

⋮ ⋯ ⋯ ⋯

⋮ 0 6 0
⋮
⋮

0
0

0
0

20
0 ]

 
 
 
 
 
 

 

Answers of terminal questions: 

5: x (x – 2)    8: (x – 1) (x – 2).    

 



ADVANCED LINEAR ALGEBRA   MAT-505 
 

  

DEPARTMENT OF MATHEMATICS 

UTARAKHAND OPEN UNIVERSITY 
PAGE 216 

 

UNIT-10: EIGEN VALUES AND EIGEN VECTORS 

CONTENTS 

10.1 Introduction 

10.2 Objectives  

10.3 Basics of linear operators 

10.4 Eigen values & Eigen vectors 

10.5 Diagonalizable operators 

10.6 Basis of diagonalizable operators 

10.7 Summary 

10.8 Glossary  

10.9  References 

10.10 Suggested Readings 

10.11 Terminal Questions 

10.12 Answers 

10.1 INTRODUCTION 

In the last unit, we focused on Inner Product Spaces. Now again, we emphasize on Vector 

Spaces. After the study of Linear Transformation, we have studied some properties of a linear 

operator. Here, we shall elaborate these concepts and matrices help us in a great deal. Basis of a 

matrix and its role to understand eigen values and eigen vectors will be discussed in detail. 

Besides this, diagonalisation process and required conditions will be discussed thoroughly. 

10.2 OBJECTIVES 

After the study of this chapter, learner shall understand: 
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 Linear operators and their properties.  

 For finite-dimensional vector spaces, T can be represented as a matrix. 

 How can we convert square matrix into diagonal matrix? 

 Role of basis of a linear transformation in diagonalisation. 

10.3 BASICS OF LINEAR OPERATORS   

In this section, we shall discuss linear operators (T) on a finite-dimensional vector space V(F). 

We know that a linear operator T on a vector space V(F) is a mapping T: V  V, such that  

    T( x + y) =  T(x) + T(y)   x, y  V and ,   F. 

We have already studied following important properties of such a linear operator T:  

(i) T is non-singular (i.e. one to one) if and only if   ker(T) = {0}.  

(ii) T is invertible  T is non-singular  T is onto. 

(iii) T is singular  ker T  {0} 

 

10.4 EIGEN VALUES & EIGEN VECTORS 

Now, we shall define eigen value and eigen vectors of T as: 

Eigen Values of T: Let T be linear operator on a vector space V(F). A scalar   F is called an 

eigen value or characteristic value of T, if there exists some V  0, v  V such that,  T(v) =  v. 

Eigen Vector: If  is an eigen value of T, then v  V such that T(v) = v is called an eigen 

vector or characteristic vector belonging to . 

Eigen space: The set of all eigenvectors of T belonging to an eigenvalue  is called an 

eigenspace of T, belonging to . It is represented as . Hence  

        = { v  V : T(v) =  v }. 

Example 1: Let T : R2  R2 be a linear operator defined be T(x, y) = (2x + y, x + 2y). By trial 

and error method, we find one eigen value of T and corresponding eigen vector. 

  We observe that  T(1, 1) = (3, 3) = 3(1, 1) 

    Or  T(2, 2) = (6, 6) = 3(2, 2) 
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Here 3 is an eigenvalue of T and (1, 1) , (2, 2)  R2 are corresponding eigenvectors. 

 Also T(3, -3) = (3, -3) = 1(3, -3) 

So here 1 is eigenvalue of T and (3, -3) R2 is corresponding eigenvector. 

 Example 2: Let T : R3  R3 be a linear operator whose matrix with respect to the standard basis 

{ e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) } is A =  . 

So, T(e1) = e1 = 1e1 

T(e2) = e2 = 1e2 

T(e3) = 0 = 0 e3. 

We observe that 1, 1 and 0 are eigenvalues of T and corresponding eigenvectors are e1, e2 and e3 

respectively.  

Note: Now we discuss the eigenspace W1 corresponding to eigenvalue 1. So  W1 = { v  R3 : 

T(v) = .v }. Let v  R3 . then there exist , ,   R such that 

v = e1 +  e2 +  e3 

So v  W1 iff    T ( e1 +  e2 +  e3) = 1 ( e1 +  e2 +  e3) 

iff    T(e1) +  T(e2) +  T(e3) =  e1 +  e2 +  e3 

   iff    e1 +  e2 +  .0 e3 = e1 +  e2 +  e3 

   iff   e3 = 0   or  = 0 

So W1 = { e1 +  e2 :  ,   R }. In the same way, we can show that the eigenspace W0 , 

corresponding to eigenvalue ‘0’ is  

  W0 = { e3 :   R } 

Theorem: Let T be a linear operator on a vector space V(F). 

(i) If  0  v  V is an eigenvector of T, then   F satisfying T(v) = v is unique. 
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(ii) The eigenspace  corresponding to an eigen value   F is a subspace of V(F). 

(iii)   = ker (T –  I) . 

Proof: (i) As we know, for uniqueness; we always consider two values and show that both are 

equal i.e. value is unique. Suppose, if possible, there exist  ,   F such that T(v) =  v  and  

T(v) =  v   

 
        = v   or    (  – )v = 0 

But v  0, so  

  –  = 0    or     =  

Hence  is unique. 

(ii) We know that   = { v  V : T(v) =  v } 

Claim:   is a subspace of V(F). As  T(0) = 0     T(0) =  0   . So 0  i.e.  is non-

empty. Let v1 , v2  and  a, b  F. then  

  T(v1) = v1    and    T(v2) = v2  

 Now, T (av1 + bv2) =  aT(v1) + b T(v2) ; as T is linear 

  = a( v1) + b( v2) 

T (av1 + bv2) = a( v1) + b( v2) 

So, av1 + bv2 is an eigenvector, corresponding to eigenvalue . 

Hence  av1 + bv2 ,   v1 , v2  ;  a, b  F. 

Hence   is a subspace of V(F). 

(iii)   By definition,  

   = { v  V : T(v) =  v } 

So   = { v  V : T(v) =  Iv }, where I is identity operator 
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 = { v  V : T(v) = ( I) v } 

  = { v  V : (T  I) v = 0 } 

Hence  = ker (T –  I) . 

Theorem: Let T be a linear operator on a finite-dimensional vector space V(F). Then    F is 

an eigenvalue of T if and only if T–  I is singular. 

Proof:  Necessary Condition: Let  be an eigenvalue of T. Then there exists some 0  v  V, 

Such that, T(v) = v 

     T(v) =  I(v)  where I is identity operator. 

     T(v) = (  I)(v) 

    (T  I) (v) = 0,   where v  0. 

So v  ker (T –  I). We already know that 0  ker (T –  I). So,  ker (T –  I)  {0}. 

Hence  T – I is singular. 

 Sufficient condition:  Let T – I be singular operator . 

   ker (T –  I)  {0}, 

   there exists some 0  v  V, such that (T  I) (v) = 0. 

   T(v)   I(v) = 0. 

  T(v) = v ,  where I(v) = v. 

So,  is an eigenvalue of T. 

Note: (1) If T is singular, then ‘0’ is always an eigenvalue of T. As T – 0I = T , it can be 

obviously observed. 

(2) Till now, we have understood that if T is a linear operator on a finite-dimensional 

vector space, then the following statements are equivalent: 
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(i) is an eigenvalue of T. 

(ii)  The operator T –  I is singular or non-invertible.  

(iii)  det (T –  I) = 0. 

Characteristic values and Characteristic polynomial of a matrix: 

Suppose T be a linear operator on a finite dimensional (say dim V = n) vector space V(F). Let  

be an ordered basis for V and let A be the matrix of T with respect to the basis  i.e. A = [T  . 

For any scalar   F, we have  

  [T –  I  = [T   [ I  

   =  A –  I,  where I is n  n unit matrix. 

So det(T –  I) = det [T –  I  = det (A –  I). Hence  is a characteristic value of T if and only 

if det (A –  I) = 0. 

Note: From above discussion, we conclude that – 

(i)     Let A = [  ;    F. A scalar   F is called an eigen value of A if  

      det(A – I) = 0. 

(ii) Let A = [  ;    F. Then the polynomial f(x) = det (A –  I) is called the 

characteristic polynomial of the matrix A. 

The equation f(x) = 0 is called the characteristic equation of the matrix A. Here we  observe 

that    F is an eigen value of the matrix  A if and only if f( ) = 0. 

Similar Matrices: Let A = [  and B = [  and P = [  where , ,   F. 

Then A and B are called similar matrices if, there exist a matrix P such that  

 A = P-1 B P , where P is non-singular matrix. 

You might have studied that similarity of matrices is an equivalence relation i.e. it is reflexive, 

symmetric and transitive. 

Theorem: Similar matrices have the same characteristic polynomial and hence the same 

characteristic values. 
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Proof: Let us consider two square matrices A and B of  order. Then A and B are similar i.e. 

there exists an non-singular matrix P such that  

    B = P-1 A P. 

So, B – xI = P-1 A P – xI = P-1 A P – x P-1 I P 

 = P-1 (A – xI) P. 

So, det (B – xI) = det (P-1 (A – xI) P)  

           =   det (A – xI) det P  

 det (B – xI) = det (A – xI). 

   A and B have the same characteristic polynomials and consequently same eigenvalues. 

Note: (1) You have studied in the chapter ‘Linear Transformation’ that, if T be linear operator 

on an n-dimensional vector space. If  , ' are two ordered bases of V such that A = [T  and B = 

[T  , then there exists a non-singular matrix P (over F) such that B = P-1 A P. 

(2) Let T be a linear operator on a finite-dimensional vector space V(F). then the characteristic 

polynomial of T is det(A – xI) , where A is the matrix of T in any ordered basis for V. 

(3)  If T is a linear operator on an n-dimensional vector space and if A = [T  with respect to an 

ordered basis  for V, then A is an  matrix and so det (A – xI) is  a polynomial of degree n. 

Hence T cannot have more than n distinct eigenvalues. 

(4) The eigenvalues of a linear operator defined on V(F) may not belong to F. For example, let T 

be a linear operator an R2(R), whose matrix with respect to the standard ordered basis is 

 A =   

The characteristic polynomial of A is det (A – xI) = 0 

     x2 + 1 = 0 

This equation has no roots in R (though, its roots x =  i  C). 
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Cayley-Hamilton Theorem for a linear operator: Every linear operator T on an n-dimensional 

vector space V(F) satisfies its characteristic equation f(x) = 0, i.e. f(T) = 0. 

Proof: Let A be the matrix of T with respect to any basis  of V. So, A = [T  

Hence for matrices, Cayley-Hamilton theorem states that every square matrix satisfies its 

characteristic equation. Hence if f(x) = det(A – xI) =  + x + x2 + ….. +  xn = 0 , is the 

characteristic equation of A, then  

 f(A) = I + A + A2 + ….. +  An = 0 

     [ I  + [T  +  [T2  + …. +  [Tn  = [0  

   [f(T)  = [0  

Hence f(T) = I + T +  T2 + …. +  Tn = 0 

Example 1: Find the eigen values, eigen vectors and eigen spaces of A =   

Solution: Step-I: Characteristic equation of A is |A – xI| = 0 

 
 

 = 0   or  x2 – 1 = 0  or  x =  1 

Hence eigenvalues of A are {+1, -1}. 

Step-II:  An eigenvector X, corresponding to the eigenvalue 1 is given by  

 AX = X   or   (A – I)X = 0. 

Here  = 1  and   X =   

So, (A – I)X =   =   

 
     = . 

We can take any value for solution. Let  =  = 1. Then an eigen vector corresponding to  = 

1 is 
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  X =  = [ 1  1]T. 

Again eigenvector for  = 1 is 

(A – I)X = 0       or      =  

      +  = 0 

If   = 1 , then  = 1  

 So an eigenvector corresponding to  = 1 is  X =   

  Step-III: The two eigenspaces W1 and  are given by  

     W1 = {  :   R } and   = {  :  R }. 

Example 2: Let T : R3 R3 be a linear operator, where  

    T(e1) = 5e1 – 6e2 – 6e3 ;      T(e2) = -e1 + 4e2 +2e3 ;    T(e3) = 3e1 – 6e2 – 4e3 

Find the characteristic values of T and compute the corresponding eigenvectors. 

Solution: On the basis of given relations, the matrix of T is  

    A =  

So the characteristic equation is det (A – xI) = 0. 

       = 0. 

On solving, we get x = 1, 2, 2. So eigenvalues of T are 1, 2, 2. 

Case-I: An eigenvector corresponding to  = 2 is given by  

     (A – 2I)X = 0 
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       =   

Now R2  R2 + 2R1 and R3  R3 + 2R1 

      =  

Since rank of coefficient matrix =  number of non-zero rows = 1. So, n – r  or 3 – 1 = 2 variables 

can be given arbitrary values. 

  So we have   3x1 – x2 + 3x3 = 0     …..(1) 

 If we take x3 = 0, we get one arbitrary solution X = [  . 

 If we take x2 = 0, we get X = [  . 

 So, two eigenvectors corresponding to  = 2 are  

       X1 =     and    X2 =    .  

 Case-II: Now eigenvector corresponding to  = 1 is  

     (A – I)X = 0 

     =  

   R1   , we get 

   =  

 R2  R2 + 6R1  and    R3  R3 + 6R1 
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   =  

 R2  R2  and  R3  2R3 

   =  

 R3  R3 – R2 , we get 

    =  

Hence rank of coefficient matrix is 2. So only 3 – 2 = 1 variable can be given arbitrary value. 

Now  x1 –  +  = 0   and 0 + x2 – x3 = 0 

Let x3 =   R,   then x2 =  

So   x1 =    =   

So X = [  = [  = [  = [ . 

Example 3: Show that the eigen values of a diagonal matrix are exactly the elements in the 

diagonal. Hence prove that if a matrix B is similar to a diagonal matrix D, then the diagonal 

elements of D are the eigen values of B. 

Solution: Step-I: Let A =  

Characteristic equation of A is det (A – xI) = 0. So 
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     = 0 

     ( ) ( ) ….. ( ) = 0 

 
 
x = ,  , …. , . 

Hence the eigenvalues of A are its diagonal entries. 

Step-II: We have already proved that similar matrices have identical eigenvalues. So both 

matrices have same eigen values. 

Example 4: Let V be the vector space of all real-valued continuous functions. Prove that the 

linear operator T: V V defined as (Tf)x =   has no eigenvalues. 

Solution: Suppose  is an eigenvalue of T. Then there exists some 0  f  V such that Tf = f. 

    (Tf)(x) = ( f)(x) 

      =  f(x),  by given condition    ….(1) 

Differentiating with respect to x, we get 

    f(x) = f'(x),  or    =  , considering   0 

On integration, logef(x) =  + loge a  or  f(x) = a    ….(2) 

Putting x = 0 in equation (2), we get 

   f(0) = ae0     or      a = f(0) 

So     f(x) = f(0)         ….(3) 

For equation (3) , we have  

   =   
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 f(0) (    =  f(x),   using equation (1) 

    f(0)  (   1) =  f(0)  ;  using (3) 

       =    

     = 0 ,     contradiction. 

So initial assumption was wrong. Hence T has no eigenvalue. 

Note: We observed that diagonal matrices are easiest to find eigen values. So it is a natural 

question, whether we can transform every square matrix into diagonal matrix? 

The answer is NO. Then there is a need of condition for that. Let us study these basics: 

 

10.5 DIAGONALIZABLE OPERATOR 

A linear operator T on a finite-dimensional vector space V(F) is  called diagonalizable, if there 

exists an ordered basis  of V such that the matrix of T with respect to the basis  is a diagonal 

matrix, so  

     [T  =   = diag(α1,…, αn). 

Diagonalizable matrix: An n n matrix A over a field F is said to be diagonalizable, if it is 

similar to a diagonal matrix.  Also A is diagonalizable if there exists an invertible matrix P such 

that P-1 A P = D, where D   is a diagonal matrix. The matrix P is our actual need. 

10.6 BASIS OF DIAGONALIZABLE OPERATORS 

Theorem: A linear operator T on a finite-dimensional vector space V(F) is diagonalizable if and 

only if there exists a basis of V consisting of eigenvectors of T. 
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Proof: If Part: Let T be diagonalizable, Then  an ordered basis  = {v1, ….., vn} of V such that 

the matrix of T relative to  is [T  = . From above expression, we 

get, 

 T(V1) = v1 + 0v2 + …. + 0vn  

  T(V2) = v1 + v2 + …. + 0vn 

 - - - - - - - - - - - - - - - - - - - - - - 

  T(Vn) =  + 0 + …. + vn 

Or , we can write T(Vi) =  ; i = 1, 2, …, n. Hence v1, v2 , ….., vn are eigenvectors of T i.e. the 

basis  consists of eigenvectors of T. 

Only if part: Let  = {v1, ….., vn}  be a basis of V consisting of eigenvectors of T. Then,    

F such that  

 T(Vi) =  ; i = 1, 2, …, n. 

So, [T  =  

Hence T is diagonalizable.  

Theorem: Let T be a linear operator on a finite-dimensional vector space V(F). Then the 

eigenvectors corresponding to distinct eigenvalues of T are linearly independent.  

Proof: Let , ….. ,  be m distinct eigen values of T and let v1, ….., vm be the corresponding 

eigen vectors of T. Then    

 T(Vi) =  ; i = 1, 2, …, m    ….(1) 

Claim: S = {v1, ….., vm} is linearly independent. Here we use the principle of mathematical 

induction. If m = 1, then  S = { v1} where v1  0. We know that a single non-zero vector is 
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always linearly independent. So result is true for = 1. Suppose the set { v1, ..., } is linearly 

independent, where k < m. We shall prove that the set { v1, ...,  , } is also linearly 

independent . 

 Let     + …..+  +   = 0 ;   F                         ….(2) 

     T(  + …..+  + ) = T(0) 

    T( ) + …. + T( ) + T( ) = 0 

      ( ) + …. +  ( ) +  ( ) = 0   ….(3) 

Multiplying equation (2) by  and then subtracting from equation (3), we get 

   (   + …. + (   = 0. 

But v1,..,   are linearly independent. 

So    (  ) = 0 = …. = (  ) 

     = 0 …. =    as  , ….. ,  are all distinct. 

Putting these values in equation (2), we get 

 = 0     = 0, as    0. 

So {v1, ..., } are also linearly independent if { v1, ..., } are linearly independent. But we 

have already proved that the result is true  for m = 1. Hence by principle of mathematical 

induction, S = { v1, ..., }is linearly independent.  

Corollary 1: If T is a linear operator on an n-dimensional vector space V(F), then T can not 

have more than n distinct eigenvalues. 

Proof: Let us consider that T has m distinct eigenvalues where m > n. From this theorem, the 

corresponding m eigen vectors of T are linearly independent. But dim V = n, so maximum 

number of linearly independent vectors in V(F) is n. Contradiction! 

So T can’t have more than n distinct eigen values. 
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Corollary 2: Let T be a linear operator on an n-dimensional vector space V(F) and suppose that 

T has n distinct eigenvalues. Then T is diagonalizable. 

Proof: Suppose T has n distinct eigenvalues, say , …..,  . Let , ….,  be the 

corresponding eigenvectors. By using this theorem, , ….,  are linearly independent over F. 

Since dim V = n, so  = { , …., } is an ordered basis of V which consists of eigenvectors of  

T. Hence by this theorem, T is diagonalizable. 

Corollary 3: Let T be a linear operator on a finite-dimensional vector space. Let , …..,   be 

distinct eigenvalues of T and Wi be the eigenspace of T corresponding to the eigenvalue   ; 1  

i  m.  

So W = W1 + W2 + …. + Wm 

 If   is an ordered basis for  , then  = { , ….,  } is an ordered basis for W. Further dim 

W = dim W1 + …. + dim Wm. 

Proof:   Let W1 + W2 + …. + Wm = 0 ; where wi  Wi ; ; 1  i  m. 

Claim: wi = 0 for each i. Suppose there are some non-zero wi. If we ignore zero wi, then,  

 + + …. +  = 0,  each  is non-zero. 

 All these vectors are linearly dependent.  

But corresponding eigenvalues  , …..,   are all distinct.  

 Contradiction! 

So by this theorem, all wi = 0. 

Step II: As  is an ordered basis for Wi. 

   spans  . 

      = { , ….,  } spans the subspace W = W1 + W2 + …. + Wm 
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Claim:   is a linearly independent set. Let x1 + …. + xm = 0,  where    is some linear 

combination of the vectors in . So as proved in Step-I,  = 0  for each i. As each  is linearly 

independent. 

    all the scalars in  must be zero. 

     is a linearly independent set. 

Hence  is a basis of W = W1 + …. + Wm 

    dim W = dim W1 + …. + dim Wm. 

Theorem: Let , …..,   be n distinct eigenvalues of an n  n matrix A and let X1, …., Xn be 

the corresponding eigenvectors of A. If P = [X1, …., Xn] be n  n matrix, then A is 

diagonalizable and P-1 A P = diag ( , ….,  ). 

Proof: By corollary (3) of previous theorem, it is obvious that A is diagonalizable. Since we 

know that eigenvectors associated with different eigenvalues are linearly Independent. 

  X1, …., Xn are linearly independent. 

So all Xi are non-zero vectors also. 

     det(P)  0      i.e. P is invertible. 

Given that A  =  , i = 1, 2, …., n    ….(1) 

Now AP = A [X1, …., Xn] = [AX1, …., AXn] 

= [ X1, …., Xn]    using(1) 

= [X1, …., Xn]    

So, AP = P diag ( , …..,  )   

  P-1 A P = diag ( , ….,  ). 
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Example 1:  Let A =       then , 

(i) Find eigenvalues of A, corresponding eigenvectors and eigenspaces of A. 

(ii) Is a diagonalizable ? 

(iii) Find a non-singular matrix P such that P-1 A P is a diagonal matrix. 

Solution: (i) Characteristic equation of A is  

|A – xI| =   = 0 

On solving we get x = 1, 2, 2. 

Case (i): Eigenvector corresponding to x = 1 is given by (A – I)x = 0 

     =   

R1  R2 , we get  

  =  

R2  R2 + 4R1   and R3  R3 + 3R1    

     =  

  R2  R2 

     =  

  R3  R3 – R2  

     =  

-x1 + 3x2 + 2x3 = 0,  and    3x2 + x3 = 0 

Since rank of coefficient matrix = 2. So only 3 – 2 = 1 variable will take arbitrary value. Let x3 = 

3 , then  x2 = -1  and   x1 = 3 
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So X1 =  

Case (ii): Eigen vector, corresponding to x = 2 is (A – 2I)X = 0 

      =  

   R1  R2 , we get  

     =  

   R2  R2 + 3R1   and  R3  R3 + 3R1    

     =  

      -x1 + 2x2 + 2x3 = 0 

Here rank of coefficient matrix is 1. So 3 – 1 = 2 variables can take arbitrary value. By taking x2 

= 0, we get x1 = 2, x3 = 1. By taking x3 = 0, we get x1 = 2, x2 = 1. So two linearly independent 

eigenvectors corresponding to x = 2 are X2 =      and    X3 =     

 Case (iii): W1 = { aX1 : a  R } = { a(3, -1, 3) : a  R }  

W2 = {bX2 + cX3 :  b, c  R } =  { b(2, 0, 1) + c(2, 1, 0) : b , c  R}   

(iii) First we show that X1, X2 , X3 are linearly independent over R. Let a, b  R such 

that  aX1 + bX2  + c X3 = 0. Then 

a(3, -1, 3) + b(2, 0, 1) + c(2, 1, 0) =(0, 0, 0) 

   3a + 2b + 2c = 0 

   -a + 0b + 0c = 0   a = 0 
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   3a + b + 0c = 0 

So we have    b + c = 0 and b = 0 

    c = 0 

So X1, X2 , X3 are linearly independent. Hence A is diagonalizable.  

(iii)  Let P =  =   

Now using elementary properties of matrices, we can get   . Then it can be easily verified that  

  A P =  . 

Example: For the matrix, A = , find a matrix P,  such that A P is a diagonal 

matrix.  

Solution: For given matrix, characteristic equation is |A – xI| =  = 0 

On solving, we get x = 5, 3, -3. As  A is 3  3 matrix having three different eigenvalues. So A is 

diagonalizable. 

Case I: Eigenvector, corresponding to x = 5 is given by (A – 5I)X = 0 

     =  

R1   R1 , we get 

     =  

   R2  R1 + R2   and  R3  R3 + R1   , we get 
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     =   

   R2   R2 

     =  

   R3  R3 – R2  

        =   

    -2x1 + x2 + 0 x3 = 0. 

    x2 + 2x3 = 0. 

If we take, x3 = -1 , then x2 = 2 , x1 = 1 .  

So eigenvector corresponding to x = 5 is, X1 = [  . 

Case II: Now eigenvector corresponding to x = 3 is (A – 3I)X = 0 

     =  

   R2  R1 + R2   and  R3  R3 + R1   , we get 

     =  

    -x1 + x2 = 0  and x3 = 0 

    x1 = x2 and   x3 = 0 

So eigenvector corresponding to x = 3 is ,  X2 = [  . 
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Case III: eigenvector corresponding to x = -3 is  

   (A + 3I)X = 0 

       =  

   R1   R1 , we get 

     =  

   R2  R2 – R1   and R3  R3 – R1   , we get 

     =   

   R3  R3 + R2  

       =  

      2x1 + x2 = 0 and  x2 – 2x3 = 0 

 If we take x3 = 1, then x2 = 2 and x1 = -1. So eigenvector corresponding to x = -3 is X3 = [ 

 . Here eigen vectors corresponding to distinct eigen values are linearly 

independent.  

So P =  =  . 

 Now, we can get  such that 

     A P =  . 
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Example: Find the eigenvalues and bases of the corresponding characteristic spaces of the 

matrix A  =    

Is A diagonalizable? Justify. 

Solution: The characteristic equation of A is  = 0 

On solving, we get  x = 2, 2, 3. 

Case (i): Eigenvector, corresponding to x = 2 is given by (A – 2I)X = 0 

     =  

   R3  R3 + 2R2  

    =  

       x2 = 0 , x2 + x3 = 0     x3 = 0 

x1 can take any real value .  Let x1 = 1 

So    X1 =  

Case (ii): Eigen vector, corresponding to x = 3 is (A – 3I)X = 0 

     =  

R3  R3 + R2 

   =  
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  -x1 + x2 = 0 ,  2x2 + x3 = 0. 

If we take x3 = -2, then x2 = 1, x1 = 1. So eigenvector corresponding to x = 3 is  

   X2 =  . 

Bases: The characteristic space W2, corresponding to the eigenvalue x = 2 is spanned by X1. 

Hence {X1}is a basis of W2. Similarly {X2} is a basis of W3. Thus we have obtained two linearly 

independent eigen vectors X1 and X2, corresponding to eigen values 2, 2, 3 of A. So we can’t get 

a 3 3 invertible matrix P such that  

AP =  

Hence A is not diagonalizable. 

Theorem: Let T be a linear operator on a finite-dimensional vector space V(F). If , ….,  are 

k distinct eigenvalues of T and  be the eigenspace of T corresponding to the eigenvalue  (1  

i  k ), then the following conditions are equivalent – 

(i) T is diagonalizable. 

(ii) The characteristic polynomial of T is  

  f(x)  =  ……  , where 

   = dim  (1  i  k ) and  + …. +  = dim V = n. 

(iii)  dim V =  dim  + ….. + dim . 

Proof: Since we know that  = {  : T( ) =  } 

     = {  : (T ) ( ) =0 } 

Claim: We shall prove (i)  (ii) 

Suppose T is diagonalizable. Then there exists an ordered basis  = { , …. , } of V such that 

the matrix of T relative to  is  
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[T   =  . 

Suppose c1 is repeated  times, …,  is repeated  times. Then  

   [T   = diag [ ] . 

So, characteristic polynomial of T is given by 

   f(x) =   ……  , where 

    +  + …. +  = n = dim V. 

Thus [T – I   has only  zeros on the main diagonal for all i = 1, 2, …., k and  

rank (T – I) = n –  ;  i = 1, 2, …., k   ….(1) 

Then by rank-nullity theorem, 

 Rank(T – I) + Nullity(T – I) = dimV = n    ….(2) 

Using equation (1), we have 

  Nullity (T – I) =  

    dim ker(T – I) =  

   dim  =  for i = 1, 2, …., k . 

Claim: Now we shall prove (ii)  (iii) 

  Here given that, dim V =  +  + …. +  

       dim V = dim  + ….. + dim . 

Claim: Now we shall show (iii)  (i) . 

  Let dim V = dim  + ….. + dim      ….(3) 
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  Let   W =  +  + …. + . 

Since , ….,  are distinct eigenvalues of T and  , …. ,  are the corresponding 

eigenspaces of T, so  

 dim W = dim  + ….. + dim  (we have proved this in theorem)   ….(4) 

Further, if  is a basis of  , for i = 1, 2, …., k ; where  = ker(T – I) ,  

Then  = { , …., } is a basis of W. From equations (3) and (4), we conclude that  

  dim V = dim W and so V = W =  +  + …. +  , since W is a subspace of V. 

 Hence  = { , …., } is a basis of V consisting of eigenvectors of T and so T is 

diagonalizable. 

Check your progress 

Problem 1: Find the characteristic polynomials for the identity operator and zero operator on an 

n-dimensional vector space. 

Problem 2: If  c ≠ 0, is an eigenvalue of an invertible operator T, then prove that c−1 is an 

eigenvalue of  T−1. 

Problem 3: Let T be a linear operator on R3 which is represented in the standard ordered basis 

by the matrix  A = [
−9 4 4
−8 3 4

−16 8 7
] . Prove that T is diagonalizable by exhibiting a basis for R3, 

each  vector of which is eigen vector of T. 

Problem 4: Find the eigenvalues, eigenvectors of the matrix  

    A = [
1 1 1
0 1 1
0 0 1

] .   

Problem 5: Find the eigenvalues, eigenvectors and eigenspaces of the matrix A = [
0 1 0
1 0 0
0 0 1

]   . 
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Problem 6: Find the eigenvalues, eigenvectors and eigenspaces of the matrix A=[
4 2 −2

−5 3 2
−2 4 1

]. 

 Also prove that A is diagonalizable. 

10.7 SUMMARY 

In this unit, we understood the concept of linear operators and their different applications. One of 

such applications is invertibility of T. Then we elaborated the role of bases of T and their 

representations. At last, we ensured some conditions of diagonalisation of square matrices. 

10.8 GLOSSARY 

Eigen Values of T: Let T be linear operator on a vector space V(F). A scalar   F is called an 

eigen value or characteristic value of T, if there exists some V  0,  

    v  V such that,  T(v) =  v. 

Eigen Vector: If  is an eigen value of T, then v  V such that T(v) = v is called an eigen 

vector or characteristic vector belonging to . 

Eigen space: The set of all eigenvectors of T belonging to an eigenvalue  is called an 

eigenspace of T, belonging to . It is represented as . Hence, 

        = { v  V : T(v) =  v }. 

Similar Matrices: Let A = [  and B = [  and P = [  where , ,   F. 

Then A and B are called similar matrices if, there exist a matrix P such that  A = P-1 B P , where 

P is non-singular matrix. 
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10.10 SUGGESTED READING 

 NPTEL videos. 

 Schaum series. 

 A R Vashishtha, Krishna Prakashan; Meerut. 

 Graduate Text In Mathematics, Springer. 

10.11 TERMINAL QUESTION 

Long answer type question 

1: Let T be a linear operator on a vector space V(F). Then prove the following: 

(iv) If  0  v  V is an eigenvector of T, then   F satisfying T(v) = v is unique. 

(v) The eigenspace  corresponding to an eigen value   F is a subspace of V(F). 

(vi)   = ker (T –  I) . 

2: State and prove the Cayley-Hamilton Theorem for a linear operator. 

3: Find the eigen values,  eigen vectors and eigen spaces of 22  identity matrix. 

4: Show that the eigen values of a diagonal matrix are exactly the elements in the diagonal. 

Hence prove that if a matrix B is similar to a diagonal matrix D, then the diagonal 

elements of D are the eigen values of B. 

5: Let V be the vector space of all real-valued continuous functions. Then prove that the 

linear operator T: V V defined as (Tf)x =   has no eigenvalues. 

6: For the matrix, A = , find a matrix P,  such that A P is a diagonal 

matrix.  

Short answer type question 

1: Let T be a linear operator on a finite-dimensional vector space V(F). Then prove that   

F is an eigenvalue of T if and only if T–  I is singular. 
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2: Prove that similar matrices have the same characteristic polynomial and hence the same 

characteristic values. 

3: Prove that A linear operator T on a finite-dimensional vector space V(F) is diagonalizable 

if and only if there exists a basis of V consisting of eigenvectors of T. 

4: Let T be a linear operator on a finite-dimensional vector space V(F). Then prove that the 

eigenvectors corresponding to distinct eigenvalues of T are linearly independent.  

 

1:  For the matrix A = [
0 1 0
0 0 1
6 −11 6

], prove that there exists a matrix P such that  

   P−1AP = [
1 0 0
0 2 0
0 0 3

] . 

2: Let A = [
5 −6 −6

−1 4 2
3 −6 −4

]      then  

(i) Find eigenvalues of A, corresponding eigenvectors and eigen spaces of A. 

(ii) Is a diagonalizable? 

(iii) Find a non-singular matrix P such that P-1A P is a diagonal matrix. 

10.12 ANSWERS 

Answers of check your progress: 

1. {(1 – x)n , (–1)n xn}. 

3. (eigen values are 3, -1, -1, and P = [
1 1 1
1 0 2
2 2 0

]). 

4.  {1, k(1,0,0) : k  R } 

5.  [ 1, -1; X1 = [
1
1
0

] , X2 = [
0
0
1

] , X3 = [
1

−1
0

]  W1 = L{ X1 , X2 } , W−1 = L { X3}  ] . 
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6.  {1, 2, 5;   [
2
1
4

] ,   [
1
1
2

] ,   [
0
1
1

] } 

Answer of long question: 

3: Eigenvalues of A are { +1, -1}. Eigen vector corresponding to  = 1 is 

  X =  = [ 1  1]T and eigenvector corresponding to  = 1 is  X =   

6:  
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UNIT-11: JORDAN CANONICAL FORM 

CONTENTS 

11.1 Introduction 

11.2  Objectives  

11.3  Jordan blocks 

11.4  Generalized eigenspaces 

11.5  Jordan Canonical form 

11.6   Jordan decomposition theorem 

11.7 Summary 

11.8 Glossary 

11.9   References 

11.10   Suggested Readings 

11.11 Terminal Questions 

11.12  Answers 

11.1 INTRODUCTION 

An upper triangular matrix of a specific shape known as a Jordan matrix encoding a linear 

operator on a finite-dimensional vector space with regard to some basis is called a Jordan normal 

form, or Jordan canonical form (JCF) in linear algebra. In such a matrix, the diagonal entries to 

the left and bottom of any non-zero off-diagonal entry equal to 1 are identical, and they are located 

immediately above the main diagonal (on the superdiagonal).  

A vector space V over a field K is defined. If and only if all of the matrix's eigenvalues fall 

inside K, or, to put it another way, if the operator's characteristic polynomial divides into linear 

factors over K, there will be a basis with regard to which the matrix has the necessary form. If K 
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is algebraically closed (that is, if it is the field of complex numbers), then this condition is always 

met. The eigenvalues (of the operator) are the diagonal entries of the normal form, and the 

algebraic multiplicity of the eigenvalue is the number of times each eigenvalue appears. 

The Jordan normal form of an operator is sometimes known as the Jordan normal form of 

M if the operator was initially given by a square matrix M. Any square matrix that has its field of 

coefficients expanded to include all of the matrix's eigenvalues has a Jordan normal form. While 

it is customary to group blocks for the same eigenvalue together, no ordering is imposed among 

the eigenvalues or among the blocks for a given eigenvalue, though the latter could be ordered by 

weakly decreasing size. Despite its name, the normal form for a given M is not entirely unique 

because it is a block diagonal matrix formed of Jordan blocks, the order of which is not fixed. 

In particular, the Jordan–Chevalley decomposition is straightforward when applied to a 

basis where the operator adopts its Jordan normal form. The Jordan normal form is a specific case 

of the diagonal form for diagonalizable matrices, such as normal matrices. 

The Jordan decomposition theorem was initially proposed by Camille Jordan in 1870, and 

the Jordan normal form bears his name. 

 

A matrix example in Jordan normal form. Every matrix 

entry that isn't visible is zero. The squares that are 

delineated are called "Jordan blocks". One number 

lambda is present on the main diagonal of each Jordan 

block, whereas ones are present above it. The 

eigenvalues of the matrix are called lambdas, and they 

don't have to be unique. 

11.2 OBJECTIVES 

After reading this unit learners will be able to  

 Understand the concept of Jordan blocks.  

 Implement the application of Jordan canonical form. 

 Understand the concept of Jordan decomposition theorem. 

 Visualized and understand the concept of nilpotent operator. 

11.3 JORDAN BLOCKS 
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Let V denote a finite dimensional vector space over a field F. 

Suppose that the characteristic polynomial of T splits in F and λ1, . . . , λk are the distinct 

eigenvalues of T in F. Let 
k

NNN  ...,,,
21

be the distinct eigenspaces of T.  

We know that the diagonalizability of T means the following direct sum decomposition 

of V in terms of distinct eigenspaces of T given by  

k
NNNV   ...

21
.  

Naively, diagonalizability fails if some
i

N  is “small”. 

Definition 1: Let F . We define a Jordan block J to be the matrix  





































0...000

1...000

.

.

.

.

.

.

.

.

.

.

.

.
00...10

00...01

J  

Note that the principal diagonal entries are all λ and the upper diagonal entries are all 1. Every 

other entry is 0. We often omit 0 from the expression. 

Our aim is to select an ordered basis B of V such that 























k

B

A

A

A

T

...00

.

.
...

.

.

.

.

0...0

0...0

][
2

1

 

where each 0 is a zero matrix, and each iA  is a square matrix of the form ( ) or a Jordan block 

J  defined above, such that  is an eigenvalue of T.  

Definition 2: The matrix 
BT][  is called a Jordan canonical form of T. We say that the ordered 

basis B is a Jordan canonical basis for T.  
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Jordan block iA  is almost a diagonal matrix. 
BT][  is a diagonal matrix if and only if each iA  is of 

the form ( ).  

Example 1: Suppose that T is a linear operator on 8C  , and B = {v1, · · · , v8} is an ordered basis 

for 8C such that  



































































00

10

30

13

)1(

100

110

011

][ BTJ  

is a Jordan canonical form of T.  

The characteristic polynomial of T is  

234 )3()1()det( tttJtI  , 

and hence the multiplicity of each eigenvalue is the number of times the eigenvalue appears on 

the diagonal of J.  

Also observe that v1, v4, v5 and v7 are the only vectors in B that are eigenvectors of T. These are 

the vectors corresponding to the columns of J with no 1 above the diagonal entry. Note that, 

T(v2) = v1 +v2 and therefore (T − I)(v2) = v1 and (T − I)(v3) = v2, since v1 and v4 are eigenvectors 

of T corresponding to λ = 2. It follows that (T −I) 3 (vi) = 0 for i = 1, 2, 3, 4.  

Similarly, (T − 3I) 2 (vi) = 0 for i = 5, 6 and (T − 0I) 2 (vi) = 0 for i = 7, 8 

In view of these observations, we can say that: 

 If v lies in a Jordan canonical basis for a linear operator T and is associated with a Jordan 

block with diagonal entry λ, then (T − λI)p (v) = 0 for some large enough p. Eigenvectors satisfy 

this condition for p = 1.  
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Our aim is to prove that every linear operator whose characteristic polynomial splits has a 

Jordan canonical form that is unique upto the order of the Jordan blocks. It is not true that Jordan 

canonical form is completely determined by the characteristic polynomial of the operator. 

Example 2: Let 'T be the linear operator on 8C such that ,][ '' JT B  , where B is the ordered 

basis of the previous example and  



































0

0

3

3

1

1

1

1

'J  

Then the characterstic polynomial of 'T is also 224 )3()1( ttt  , which is the same as that of T of 

the previous example, but the Jordan canonical forms are different. 

11.4 GENERALIZED EIGENSPACES 

We now extend the definition of eigenspace to generalized eigenspace of an operator T. Our aim 

is to select ordered bases for these subspaces such that their union form an ordered basis for V 

and the Jordan canonical form is achieved. 

Definition 3: Let T be a linear operator on a vector space V, and let F . A nonzero vector v 

in V is called a generalized eigenvector of T corresponding to λ if and only if (T − λI)p(v) = 0 for 

some positive integer p.  

Note that if v is a generalized eigenvector of T corresponding to λ, and if p is the smallest 

positive integer for which (T −λI)p (v) = 0, then (T − λI)p−1 (v) is an eigenvector of T 

corresponding to λ. Therefore, λ is an eigenvalue of T 

Definition 4: Let T be a linear operator on V, and let λ ∈ F be an eigenvalue of T. The 

generalized eigenspace of T corresponding to λ, denoted by Kλ, is the subset of V defined by  

Kλ = {v ∈ V | (T − λI)p(v) = 0, p ∈ N}.  

Kλ consists of the zero vector and all generalized eigenvectors corresponding to λ. 
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Theorem 1:  Let T be a linear operator on V, and let λ be an eigenvalue of T. Then  

(i) Kλ is a T-invariant subspace of V containing the eigenspace 

Nλ(= ker(T − λI)).  

(ii) For any scalar ,  the restriction of IT   to K  is one-one.  

Proof (i): It is easy to verify.  

(ii) Let Kv  and 0))((  vIT  . Suppose that 0v . Let p be the smallest integer for 

which  

(T − λI)p(v) = 0, and let w = (T − λI)p−1(v)  0. Then (T − λI)(w) = (T − λI)p(v) = 0, and hence 

Nw . Furthermore,  

(T − µI)(w) = (T − µI)(T − λI)p−1(v) = (T − λI)p−1 (T − µI)(v) = 0,  

so that Nw . But }0{  NN , and thus w = 0, contrary to the hypothesis. So v = 0 and 


 KIT |)(  is one-one. 

Theorem 2: Let T be a linear operator on a finite dimensional vector space V such that the 

characteristic polynomial of T splits in V. Suppose that λ is an eigenvalue of T with multiplicity 

m. Then  

(i) dim(Kλ) ≤ m.  

(ii) ))ker(( mITK   .  

Proof (i): Let KW  , and let p(t) be the characteristic polynomial of TW = T|W . Then p(t) 

divides the characteristic polynomial of T, and therefore it follows that λ is the only eigenvalue 

of TW . Hence p(t) = (t − λ)d , where d = dim(W) and d ≤ m.  

(ii) Clearly  KIT m  ))ker(( . Now let W and p(t) be as in (i). Then p(TW ) is 0 by the 

Cayley-Hamilton theorem. Therefore, (T −λI)d (v) = 0 for all v ∈ W. Since d ≤ m, we have 

))ker(( mITK   . 

11.5 JORDAN CANONICAL FORM 
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Theorem 3: Let T be a linear operator on a finite dimensional vector space V, such that the 

characteristic polynomial of T splits in F. Let k ....,,, 21 be the distinct eigenvalues of T. Then, 

for every v ∈ V, there exist vectors  

k
KvKvKv k   ...,,,

21 21 ; 

Such that 
kvvvv  ....21
 

Proof: The natural number k denotes the number of distinct eigenvalues of T. The proof in by 

induction on the number k.  

Let k = 1, and let m be the multiplicity of 1 . Then, mT )( 1  is the characteristic 

polynomial of T, and hence 0)( 1  mIT   by the Cayley-Hamilton theorem. Thus 
1kV  , and 

the result follows.  

Now suppose that for some integer k > 1, the result is true whenever T has less than k 

distinct eigenvalues. We assume that T has k distinct eigenvalues. Let mk denote the multiplicity 

of λk and p(t) the characteristic polynomial of T. Then p(t) = (t − λk)
mk q(t), for some polynomial 

q(t) not divisible by (t − λk). Let Wk = range(T − λkI)
mk . Then, Wk is T-invariant.  

Observe that (T −λkI)
mk maps ik onto itself for i < k. For suppose that i < k. Since (T −λkI)

mk 

maps  ik  into itself and since ik   , 

it follows from a previous theorem that the restriction of IT k  to ik is one-to-one and hence 

onto. 

One consequence of this observation is that for ki  , ik  is contained in 
KW ; and hence 

i  is an eigenvalue of 
KWT  for i < k. Next, observe that λk is not an eigenvalue of 

KWT . For, suppose 

that vvT k)( for some v ∈ Wk. Then v = (T − λkI)
mk (w) for some w ∈ V , and it follows that  

)()())((0
1

wITvIT km

kk


  .  

Therefore, 
k

KW   and by a previous theorem we get v = (T − λkI)
mk (w) = 0. This shows that v 

can not be an eigenvector, hence λk is not an eigenvalue of 
KWT .  

We observe that every eigenvalue of 
KWT is an eigenvalue of T and the distinct eigenvalues 

of 
KWT  are λ1, · · · , λk−1. Now let v ∈ V. Then (T − λkI)

mk (v) ∈
KW . Since 

KWT  has k −1 distinct 

eigenvalues λ1, · · · , λk−1, the induction hypothesis applies.  

Let 
i

K 
' be the generalized eigenspace for the operator 

KWT with respect to the eigenvalue

i , for i = 1, 2, . . . , k − 1. Hence, by the induction hypothesis, there exist vectors  

'

1

'

2

'

1 121
...,,,


  k

KwKwKw k  , 

 such that  

121 ...)()(  k

m
wwwvIT k . 

We note that  
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(a) 
ii

KK  ' for ki   

(b) km

k IT )(  maps 
i

K  onto itself for ki   

Therefore, it follows that there exist vectors 
i

Kvi  for ki  , such that ii

m

k wvIT k  )()(  . 

Hence, )()(...)()()()( 11  k

m

k

m

k

m

k vITvITvIT kkk  ,  

and it follows that 

k
Kvvvv k   )...( 121 . Therefore, there exists a vector 

k
Kvk  such that 

kvvvv  ...21 . 

Theorem 4: Let T be a linear operator on a finite dimensional vector space V, such that the 

characteristic polynomial of T splits in F. Let k  ...21 be the distinct eigenvalues of T with 

multiplicities kmmm  ...21  respectively. For ki 1 , let Bi denote an ordered basis for 
i

K . 

Then, the following statements are true.  

(i)  ji BB  for ji  . 

(ii) kBBB  ...1  is an ordered basis for V. 

(iii) kiformK ii ....,,1,)dim(  . 

Proof (i): Let v ∈ Bi ∩ Bj⊂ iK  ∩ jK , where ji  . By a previous theorem, IT i is one-one 

on jK , and therefore 0)()(  vIT p

i  for every positive integer p. This contradicts the fact that 

iKv  , and the result follows.  

(ii) Let v ∈ V. We know by the previous theorem that, for ki 1 , there exist vectors ii Kv   

such that v = v1 + · · · + vk. Therefore B spans V, since each vi is a linear combination of 

the vectors of Bi . Let q be the cardinality of B. Then dim V ≤ q. For each i, let di = dim(

iK ). Then, )dim(
1

1

Vmdq
k

i

k

i

ii  


. Hence, )dim(Vq  ; consequently B is a basis 

for V .  

(iii) Using (ii) we see that  



k

i

k

i

ii md
1

1

. But ii md  , and therefore ii md   for all i. 
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Corollary 1: Let T be a linear operator on a finite dimensional vector space V, such that the 

characteristic polynomial of T splits in F. Then T is diagonalizable if and only if Nλ = Kλ for every 

eigenvalue λ of T. 

Proof: T is diagonalizable over F if and only if dim(Nλ) = dim(Kλ) for each eigenvalue λ of T. But 

dim(Nλ) ≤ dim(Kλ), and hence these subspaces have same dimension if and only if they are equal.  

Our aim is to select suitable bases for the generalized eigenspaces of the linear operator T, 

so that we may use the previous theorem and obtain a Jordan canonical form. We will find the 

following definition useful. 

Definition 5: Let T be a linear operator on a vector space V. Let v be a generalized eigenvector of 

T corresponding to the eigenvalue λ. Suppose that p is the smallest positive integer for which 

0)()(  vIT p . Then, the ordered set  

}),)((...,),()(),(){( 21 vvITvITvITC pp     

is called a cycle of length p of generalized eigenvectors of T corresponding to λ. The vectors 

)()( 1 vIT p  and v are called the initial vector and the end vector of the cycle, respectively. 

Remark: Notice that the initial vector of a cycle of generalized eigenvectors of T is the only 

eigenvector of T in the cycle. Also observe that if v is an eigenvector of T corresponding to the 

eigenvalue λ, then the set {v} is a cycle of generalized eigenvectors of T corresponding to λ of 

length 1.  

Let us recall some of the main observations of the first example that we discussed. Suppose 

that T is a linear operator on 8C , and B = {v1, · · · , v8} is an ordered basis for 8C such that 



































































00

10

30

13

)1(

100

110

011

][ BTJ  

is a Jordan canonical form of T.  

(1) The first four vectors of B lie in K1.  
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(2) The vectors in B that determine the first Jordan block of J are of the form  

{v1, v2, v3} = {(T − I)2(v3), (T − I)(v3), v3}.  

(3) (T − I)3 (v3) = 0.  

The relation between these vectors is the key to finding Jordan canonical form. We observe that 

the subset C1 = {v1, v2, v3}, C2 = {v4}, C3 = {v5, v6}, C4 = {v7, v8} are the cycles of generalized 

eigenvectors of T that occur in B. Notice that B is a disjoint union of these cycles. Moreover, if Wi 

= span(Ci), for 1 ≤ i ≤ 4, we see that Ci is a basis for Wi and iW cT
i
][  is the i-th Jordan block of the 

Jordan canonical form of T.  

Theorem 5: Let T be a linear operator on a finite dimensional vector space V whose characteristic 

polynomial splits in F. Suppose that B is a basis for V such that B is a disjoint union of cycles of 

generalized eigenvectors of T. Then the following statements are true:  

(i) For each cycle C of generalized eigenvectors contained in B, the subspace W = span(C) is 

T-invariant, and [TW]C is a Jordan block.  

(ii) B is a Jordan canonical basis for V. 

Proof: Suppose that the cycle C corresponding to λ has length p, and v is the end vector of C. 

Then, C = {v1, · · · , vp}, where vi = (T − λI)p−i (v) for i < p and vp = v. We have 

1

)1(

1 )()())(( 

  i

ip vvITvIT  . Therefore, T maps W into itself, and we see that [TW]C is a 

Jordan block.  

We can repeat the arguments of (i) for each cycle in B and finally obtain [T]B.  

With the help of following theorems we will see that a Jordan canonical basis is nothing but union 

of disjoint cycles of generalized eigen vectors corresponding to the eigen values of the operator.  

Properties 1: Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. 

Suppose that C1, · · ·, Cr are cycles of generalized eigenvectors of T corresponding to λ, such that 

the initial vectors of the Ci s are distinct and form a linearly independent set. Then the Ci’s are 

disjoint and 
r

i iCC
1

 is linearly independent. 

2: Every cycle of generalized eigenvectors of a linear operator is linearly independent. 

3: Let T be a linear operator on a finite dimensional vector space V, and let λ be an eigenvalue 

of T. Then Kλ has an ordered basis consisting of a union of disjoint cycles of generalized 

eigenvectors corresponding to λ. 
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Example 3: Let 

























411

501

213

A  

The characteristic polynomial of A is p(t) = (t − 3)(t − 2)2, hence λ1 = 3, λ2 = 2 are the distinct 

eigenvalues with multipilcites 1 and 2 respectively. Then dim(
1

K ) = 1 and dim(
2

K  ) = 2. Clearly, 

11
)3ker(  KITN  and 

1
)1,2,1( N . Therefore, 



































1

2

1

1B  is a basis for 
1

K . 

Since dim(
2

K  ) = 2, therefore a generalized eigenspace has a basis consisting of union of cycles 

of length 1 or a single cycle of length 2. The first case is impossible because the vectors in this 

case would be eigenvectors contradicting the fact that dim(
2

N ) = 1. Therefore, the desired basis 

is a cycle of length 2. A vector v is the end vector of such a cycle if and only if 0))(2(  vIA , 

but 0)()2( 2  vIA . Simple calculation shows that 























































0

2

1

,

1

3

1

 

is a basis for the solution space of 0)2( 2  xIA . Now choose a vector v in this set so that 

0)2(  vIA . The vector v = (−1, 2, 0) is a candidate for v. Since )1,3,1())(2(  vIA  we 

obtained the cycle of generalized eigenvectors B2  },)2{( vvIA






















































0

2

1

,

1

3

1

 

Then, 





































































0

2

1

,

1

3

1

,

1

2

1

B  

is a Jordan canonical basis and 
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
























20

12

)3(

][ BTJ  

Is a Jordan canonical form for A . 

11.6 JORDAN DECOMPOSITION THEOREM 

Definition 6: An operator T: V → V is called nilpotent if Tk = 0 for some positive integer k. 

Theorem 6 (Jordan Decomposition): Let T be a linear operator on a finite dimensional vector 

space V such that the characteristic polynomial of T splits in F. Then T = S + Z, where S is a 

diagonalizable operator, Z is a nilpotent operator and SZ = ZS.  

Proof: We divide the proof into the following steps.  

Step 1: T has only one distinct eigenvalue λ, of multiplicity n = dim V. Then, V = Kλ. If we take Z 

= T − λI, S = λI, then T = Z + S and ZS = SZ. Moreover, S is diagonal in every basis and Z is 

nilpotent, for V = Kλ = ker(Zn ).  

Step 2: In the general case, let λ1, . . . , λk be the distinct eigenvalues of T with multiplicities n1, . . 

., nk. Let 
i

Ki TT
| . Then T = T1⊕· · ·⊕Tk. Since each Ti has only one eigenvalue λi , we can apply 

the previous result.  

Thus Ti = Si + Zi; such that Si = λiI is diagonal on 
i

K


 and Ni = Ti − Si is nilpotent of order ni on
i

K


 

. Then T = S + N, where S = S1 ⊕· · · ⊕Sk and Z = Z1 ⊕· · · ⊕Zk. Clearly SZ = ZS. Moreover, Z 

is nilpotent and S is diagonalizable. For, if m = max(n1, · · · , nk), 

then Zm = (Z1)
m ⊕ · · · ⊕ (Zk)

m = 0; and S is diagonalized by a basis for V which is made up of 

bases for the generalized eigenspaces. Hence the proof. 

Definition 7 (Uniqueness of S and Z): Under the hypothesis of the Jordan decomposition 

theorem, there is only one way of expressing T as S + Z, where S is diagnalizable, Z is nilpotent 

and SZ = ZS.  

Proof: Let kKK  ...,,1  be the generalized eigenspaces of T corresponding to the distinct 

eigenvalues k ...,,1 . Then, kKKV   ...1  and kTTT  ...1 , where 
iKi TT | .  
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Note that iK is invariant under every operator that commute with T. Since S and Z both commute 

with T, therefore iK  is invariant under S and Z. Put IS ii  and iii STZ   . It suffices to show 

that iK SS
i
| , for this iK ZZ

i
| , proving the uniqueness of S and Z.  

Since S is diagonalizable, so is 
iKS | . Therefore iKiK SSIS

ii
   || is diagonalizable. This 

operator is the same as 
iKi ZZ | . Since 

iKZ |  commutes with Ii and with Ti, it also commutes 

with Zi . We can use binomial theorem to prove that 
iNi ZZ |  is nilpotent.  

Hence, the matrix representation of iN SS
i
|  is nilpotent diagonal matrix, and therefore the zero 

matrix. Hence the proof. 

Computation: 

By a previous theorem, each generalized eigenspace iK  contains an ordered basis Bi consisting 

of a union of disjoint cycles of generalized eigenvectors corresponding to i . Then 
k

i iBB
1

  is 

a Jordan canonical basis for T. For each i, let 
iki TT | , and let 

iBii TA ][  . Then Ai is the Jordan 

canonical form for Ti, and 























k

B

A

A

A

TJ

000

::::

0...0

0...0

][
2

1

 

is the Jordan canonical form for T. We now follow the book by Friedberg et.al. to describe the 

technique of dot diagrams, followed by some illustrative examples. 

The Dot Diagram of 
iKi TT | : Suppose that Bi is a disjoint union of cycles of generalized eigen 

vectors C1, · · · , 
inC with length p1 ≥ p2 ≥ · · · ≥ 

inp respectively. The dot diagram of Ti contains 

one dot for each vector in Bi, and the dots are configured according to the following rules. 

 The array consists of ni columns (one column for each cycle). 

 Counting from left to right, the j-th column consists of the pj dots that correspond to the 

vectors of Cj starting with the initial vector at the top and continuing down to the end vector. 
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)().( 1

1
1 vIT

p

i



   )().( 2

1
2 vIT

p

i



   … 
)().(

1

i

in

n

p

i vIT


   

)().( 1

2
1 vIT

p

i



   )().( 2

2
2 vIT

p

i



   … 
)().(

2

i

in

n

p

i vIT


   

: : : : 

))(.( 1vIT i  ))(.( 2vIT i  … ).(
inv  

1.v  
2.v    

 The dot diagram of Ti has ni columns (one for each cycle) and p1 rows. Since p1 ≥ p2 ≥ · · 

· ≥ 
inp , the columns of the dot diagram either become shorter in length or remain the same 

in length as we move from left to right 

(i) )dim(
i

Nni   

(ii) ri is the number of dots in the i-th row, given by  

r1 = dimV − rank(T − λ1I);  

rj = rank((T − λiI))
j−1 − rank((T − λiI)

j) if j > 1. 

Example 3: Let 





























3010

0110

0130

1012

A  

Then, p(t) = (t − 2)3 (t − 3) is the characteristic polynomial. The distinct eigenvalues are λ1 = 2, λ2 

= 3 with multiplicities 3 and 1 respectively. Therefore, 3)dim( 1 K  and 1)dim( 2 K . Let 

.,
21 |2|1  KK TTTT   

The dot diagram of 
1T : It has 3 dots. The possibilities are 

… .  . . 

. 
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. . 

We now calculate r1 = 4−rank(A−2I) = 4−2 = 2. Therefore, r2 = 1 and the dot diagram is 

.   . 

                                                                            . 

Therefore, the Jordan canonical form for T1 is 
























)2(

20

12

 and the Jordan canonical form for 

T is 

































)3(

)2(

20

12

J  

We now find a Jordan canonical basis for T. We first find a Jordan canonical basis for T1. 

1

21

.

.)2.(

v

vvIT 
 

Therefore v1 ∈ ker((T − 2I)2 ) but ))2ker((1 ITv  . Now 

























































1120

0000

0000

1120

)2(;

1010

0110

0110

1010

)2( 2IAIA  

It is easy to see that a basis for ker((T − 2I)2) = )1K  is  

                                          





















































































2

0

1

0

,

0

2

1

0

,

0

0

0

1

. 



ADVANCED LINEAR ALGEBRA   MAT-505 
 

  

DEPARTMENT OF MATHEMATICS 

UTARAKHAND OPEN UNIVERSITY 
PAGE 261 

 

Note that 





















0

2

1

0

 and 





















0

2

1

0

 do not belong to 
1

N . Choose 























0

2

1

0

1v  

And consider (T − 2I)(v1) = (A − 2I)(v1) =





























1

1

1

1

 

Now choose v2 = 





















0

0

0

1

 which belongs to 
1

N and which is linearly independent of 





























1

1

1

1

. Then 































































































1

1

1

1

,

0

2

1

0

,

0

0

0

1

1B  is linearly independent and hence a basis for 
1

K . 

Therefore, the Jordan canonical basis 































































































1

1

1

1

,

0

2

1

0

,

0

0

0

1

1B  is associated to the diagram as 





































































0

2

1

0

.

0

0

0

1

.

1

1

1

1

.

 

Since λ2 = 3 has multiplicity 1, we have dim(
2

K  ) = dim(
2

N ) = 1. Hence, any eigenvector 

constitute a basis B2. Therefore, we may consider 
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                               .

1

0

0

1

2













































B  

Thus,  



















































































































1

0

0

1

,

1

1

1

1

,

0

2

1

0

,

0

0

0

1

21 BBB  

is a Jordan canonical basis for A. If we take Q = 





























1001

0021

0011

1101

. 

then QJQ−1 = A 

Example 4: Let 































7362

3322

3102

2242

A . 

The characteristic polynomial is p(t) = (t − 2)2(t − 4)2 and the eigenvalues are λ1 = 2, λ2 = 4. Let 

11 KT  , 
22 KT  . 

Dot diagram of T1 :              

. .          : 

Now r1 = 4 − rank(A − 2I) = 4 − 2 = 2. Therefore, the correct dot diagram is 

                                                                            . . 

Hence 









20

02
][

111 BTA . In this case B1 is any basis of 
1

N  
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e.g., 



































































0

2

1

0

,

2

0

1

2

1B . 

 

Dot diagram of T2: We have r1 = 4 − rank(A − 4I) = 4 − 3 = 1, therefore the correct dot diagram 

is 

                                                                          : 

and the Jordan block 









40

14
][

222 BTA , where B2 is any basis for 
2

K  corresponding to the 

dots. In this case B2 is a cycle of length 2. The end vector of this cycle is a vector 

))4ker(( 2

2
ITKv   , such that ))4ker((

1
ITNv   . It is easy to see that a basis for 

1
N

is 

                                            













































1

1

1

0

 

Choose v to be any solution of 















































1

1

1

0

)4( xIA  

for example, v = 


























0

1

1

1

)4( xIA  



ADVANCED LINEAR ALGEBRA   MAT-505 
 

  

DEPARTMENT OF MATHEMATICS 

UTARAKHAND OPEN UNIVERSITY 
PAGE 264 

 

Thus B2 = {(A − 4I)v, v} = 





































































0

1

1

1

,

1

1

1

0

. Therefore, 















































































































0

1

1

1

,

1

1

1

0

,

0

2

1

0

,

2

0

1

2

21 BBB  

is a Jordan canonical basis for A. The corresponding Jordan canonical form is 

                       









2

1

0

0

A

A
J , 

Where 









20

02
1A  and 










40

14
2A  

Check your progress 

Problem 1: For the characteristic polynomial 
224 )3()1( ttt   find the Jordan canonical form. 

Problem 2: Check the characteristic polynomial for the matrix 































7362

3322

3102

2242

A . 

11.7 SUMMARY 

In this unit, we have learned about the important concept of Jordan blocks, Jordan canonical forms, 

Jordan decomposition theorem, generalized eigenspaces and nilpotent operator. After completion 

of this unit learners will be able to: 

 Formation of Jordan Canonical form on the basis of characteristic polynomial of any 

matrix. 

 Find out any matrix is nilpotent or not. 
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 Visualized the concept of Jordan decomposition theorem. 

11.8 GLOSSARY 

 Jordan Blocks 

 Jordan canonical form 

 Jordan decomposition theorem 

 Generalized eigenspaces 
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11.11 TERMINAL QUESTION 

Long Answer Type Question: 

https://www.meripustak.com/Author-Minking-Eie-and-Shou-Te-Chang
https://nptel.ac.in/courses/111106051
https://archive.nptel.ac.in/courses/111/104/111104137
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1. Let T be a linear operator on a finite dimensional vector space V, such that the characteristic 

polynomial of T splits in F. Let k ....,,, 21 be the distinct eigenvalues of T. Then show 

that , for every v ∈ V, there exist vectors  

k
KvKvKv k   ...,,,

21 21 ; Such that kvvvv  ....21  

2. Let T be a linear operator on a finite dimensional vector space V, such that the characteristic 

polynomial of T splits in F. Let k  ...21 be the distinct eigenvalues of T with 

multiplicities kmmm  ...21  respectively. For ki 1 , let Bi denote an ordered basis 

for 
i

K . Then prove that the following statements are true.  

(a)  ji BB  for ji  . 

(b) kBBB  ...1  is an ordered basis for V.  

(c) kiformK ii ....,,1,)dim(    

3. Let T be a linear operator on a finite dimensional vector space V such that the characteristic 

polynomial of T splits in F. Then prove that T = S + Z, where S is a diagonalizable operator, 

Z is a nilpotent operator and SZ = ZS. 

Short answer type question: 

1. Let T be a linear operator on V, and let λ be an eigenvalue of T. Then prove that 

(i) Kλ is a T-invariant subspace of V containing the eigenspace Nλ(= ker(T − λI)).  

(ii) For any scalar ,  the restriction of IT   to K  is one-one.  

2. Let T be a linear operator on a finite dimensional vector space V such that the 

characteristic polynomial of T splits in V. Suppose that λ is an eigenvalue of T with 

multiplicity m. Then  

(i) dim(Kλ) ≤ m.  

(ii) ))ker(( mITK    

3. Under the hypothesis of the Jordan decomposition theorem prove that, there is only one 

way of expressing T as S + Z, where S is diagnalizable, Z is nilpotent and SZ = ZS. 

Fill in the blanks: 

1. Every cycle of generalized eigenvectors of a linear operator is …………… 

2. An operator T: V → V is called nilpotent if …………………for some positive integer k 

11.12 ANSWERS 

Answers of check your progress:   
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1: 

































0

0

3

3

1

1

1

1

 

2:  p(t) = (t − 2)2(t − 4)2 

Answer of fill in the blanks questions: 

1. linearly independent  2. Tk = 0    

  

 



 

 

 

 

 

 

 

 

 

BLOCK- IV 

INNER PRODUCT SPACE AND OPERATORS 
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UNIT-12: INNER PRODUCT SPACES 

CONTENTS 

12.1 Introduction 

12.2 Objectives 

12.3  Inner product spaces 

12.4  Cauchy Schwarz inequality  

12.5  Gram-Schmidt orthogonalisation process  

12.6 Bessel’s inequality 

12.7 Orthogonal complement 

12.8     Riesz representation theorem  

12.9 Summary 

12.10 Glossary 

12.11 Reference 

12.12 Suggested readings 

12.13 Terminal questions 

12.14 Answers 

12.1 INTRODUCTION 

Till now, we have studied about vector spaces without any metric (distance) concept viz length, 

angle and distance. But to visualize a vector space, we need metric concepts. Without any metric 

concept; we can’t imagine or visualize the geometry of a space. Here we shall study a special 

class of vector spaces through which we can understand a model of Euclidean Geometry. 
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  There is a significant difference in Mathematical and Physical interpretation when we focus on 

vectors. In physical world, a vector is a straight arrow-headed line, while in a vector space, 

besides real life vectors, we study convergent sequences, continuous functions, differentiable 

functions, integrable functions as vectors.  Such type of vectors may not be arrow-headed lines. 

So we have to generalize the concept of angle between two vectors. For this purpose we study 

inner product. 

12.2 OBJECTIVES 

After the study of this chapter, we shall understand:  

 Inner product and its relation with norm and metric. 

 Orthogonalisation and Gram-Schmidt process. 

 Cauchy Schwarz and Bessel inequalities. 

 Riesz representation theorem. 

12.3 INNER PRODUCT SPACES  

In this chapter, we shall consider vector spaces over the field or real numbers (R) or complex 

numbers (C) only. In R3, we define dot product (or scalar product) as follows: 

Let       𝑎⃗ = (x1 , x2 , x3) , 𝑏⃗⃗ = (y1 , y2 , y3)  in R3 where all xi  , yj  R 

Now     𝑎⃗ . 𝑏⃗⃗ = x1y1 + x2y2 + x3y3  =  𝑏⃗⃗ . 𝑎⃗  

We observe that dot product satisfies the following properties: 

(i) 𝑎⃗ . 𝑎⃗   0 i.e.    x1
2  + x2

2  + x3
2  0  

Also if         x1
2  + x2

2  + x3
2 = 0   

                  x1  =  x2  =  x3 = 0 

i.e.       𝑎⃗ = (0 , 0 , 0) =  0⃗⃗ 

(ii) 𝑎⃗ . 𝑏⃗⃗ = 𝑏⃗⃗ . 𝑎⃗  , as we already know. 

(iii) 𝑎⃗ . ( 𝜆 𝑏⃗⃗  + 𝜇𝑐 ) = 𝜆 (𝑎⃗ . 𝑏⃗⃗) + 𝜇 (𝑎⃗ . 𝑐 )         ∀  𝜆 , 𝜇  R 

Here (ii) and (iii) properties can easily be verified. Similarly we can define dot product on Rn. 

Sometime 𝑎⃗ . 𝑏⃗⃗ is represented as < 𝑎⃗ , 𝑏⃗⃗ >. Now we generalize the concept of dot product as 

inner product in a vector space. 
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Inner Product: An inner product on a vector space V is a map < ,  > : V × V  R satisfying the 

following properties : 

(i) < x , x >  0 and < x , x > = 0 if and only if x = 0. 

(ii) < x , y >   =  < y , x > 

(iii) <x + z , y >  = < x , y >  + < z , y >     and  < x , y + z >   = < x , y >   + < x , z >    

(iv) < ax , y >   = a < x , y >    x , y , z   V and a  R 

Generally function in analysis is represented by f ; but here, we represent it by < ,  >.  

So (V, < ,  > ) is called an inner product space. For brevity, we say V is an inner product space 

without explicitly mentioning the inner product < ,  >. 

Example 1: The dot product defined above on Rn (in particular R2 ) is an inner product. It can be 

easily verified. Sometimes it is called standard inner product. 

Example 2: If we consider inner product on V(C), where C represent field of complex numbers, 

then following properties must be satisfied : 

(i) < x , y >    = <  y , x ̅̅ ̅̅ ̅̅  >, where <  y , x ̅̅ ̅̅ ̅̅  > is complex conjugate of < x , y > .    

(ii) < x , x >     0 and < x , x >  = 0   x = 0. 

(iii) <𝛼 x + 𝛽y , z >    = 𝛼 < x , z >  + 𝛽 < y , z >     where 𝛼 , 𝛽  C 

(iv) < x , 𝛼 y+ z  >  = 𝛼̅ < x , y >   +  𝛽̅  < x , z >    

Example 3: Prove that the vector space Cn(C) = { (𝛼1, …….. 𝛼n) : 𝛼I  C } is an inner product 

space with   respect to the inner product :  < u , v >  = 𝛼1β1
̅̅ ̅ + 𝛼2β2

̅̅ ̅ + ………. + 𝛼nβn
̅̅ ̅ , where u = 

(𝛼1, …….., 𝛼n), v = ( 1, …….., n)  Cn 

Solution: Given that  :  < u , v >  = 𝛼1β1
̅̅ ̅ + ………. + 𝛼nβn

̅̅ ̅    ………(1) 

So we have  

(i) < v , u >  = 1𝛼1̅̅ ̅ + ………. + n𝛼n̅̅ ̅ 

 <   v , u ̅̅ ̅̅ ̅̅  >  = β1𝛼1̅̅ ̅  + … … … . + βn𝛼n̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   = ( β1𝛼1̅̅ ̅ ̅̅ ̅̅ ̅̅ ̅ ) + ……… + ( βn𝛼n̅̅ ̅ ̅̅ ̅̅ ̅̅ ̅ ) 

            = β1
̅̅ ̅ 𝛼1 + ………. + βn

̅̅ ̅ 𝛼n   (as (𝛼n̅̅ ̅) ̅̅ ̅̅ ̅̅ ̅ =  𝛼n  n) 

              =  𝛼1β1
̅̅ ̅ + ………. + 𝛼nβn

̅̅ ̅ 

So, <   v , u ̅̅ ̅̅ ̅̅  >  =  < u , v >   

(ii) < u , u >  = 𝛼1𝛼1̅̅ ̅ + ………. + 𝛼n𝛼n̅̅ ̅   

    = | 𝛼1|
2 + ……… + | 𝛼n|

2     0  
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Also  < u , u >  = 0 | 𝛼1|
2 + ……… + | 𝛼n|

2  =  0 

⟺ 𝛼1 = 0 = 𝛼2  = ……. = 𝛼n 

 u = (𝛼1, …….. 𝛼n),= (0, …….. , 0) = 0̅ 

(iii) Let 𝛼 , 𝛽  C and w = ( 1 , ……. , n)  Cn , then  

< 𝛼u + 𝛽v , w >  = < 𝛼(𝛼1, …….., 𝛼n) + ( 1, …….., n), ( 1 , ……. , n) > 

   = < ( 𝛼𝛼1 + ββ1 , ……, 𝛼𝛼n + ββn ), ( 1 , ……. , n) > 

  = (𝛼𝛼1 + ββ1 ) γ1̅ + ……..  + (𝛼𝛼n + ββn ) γn̅̅ ̅ 

   = (𝛼𝛼1 γ1̅  + ββ1 γ1̅ ) + ……  + (𝛼𝛼n γn̅̅ ̅ + ββn γn̅̅ ̅ ) 

   = 𝛼 (𝛼1 γ1̅  + ……. + 𝛼n γn̅̅ ̅  ) +  ( 1 γ1̅ + …….. + n γn̅̅ ̅ ) 

     = 𝛼 < u , w > +  < v , w > 

 Hence Cn is an inner product space. 

Note: The inner product given by equation (1) is called the standard inner product on Cn. 

Example 4: Prove that the following is an inner product on R2,   

  < u , v >  = 𝛼1 1 – 2 𝛼1 2 – 2 𝛼2 1 + 5 𝛼2 2 , where u = (𝛼1 , 𝛼2)  and v = ( 1 , 2 )  R2. 

Solution:  Here < u , v >  will be a real number, so  

(i) < u , v >  =  <   v , u ̅̅ ̅̅ ̅̅  >  , obviously. 

(ii) < u , u >  = 𝛼1 𝛼1 – 2 𝛼1 𝛼2 – 2 𝛼2 𝛼1 + 5 𝛼2 𝛼2 

    = 𝛼1
2 – 4 𝛼1 𝛼2 + 5 𝛼2

2  

    = 𝛼1
2 – 4 𝛼1 𝛼2 + 4 𝛼2

2 + 𝛼2
2 

    =  ( 𝛼1 – 2 𝛼2 )
2   0 

 Now, < u , u >  = 0 ,  

⟺  ( 𝛼1 – 2 𝛼2 )
2  + 𝛼2

2 = 0 , 

⟺  𝛼1 – 2 𝛼2 = 0 and 𝛼2 = 0. 

So  < u , u >  = 0   u = (𝛼1 , 𝛼2)  = (0 , 0) 

(iii) Let 𝛼 , 𝛽  R and w = ( 1 , 2)  R2 , then 

 𝛼u + 𝛽v = 𝛼(𝛼1 , 𝛼2) + ( 1 , β2) = (𝛼𝛼1 + ββ1 , 𝛼𝛼2 + ββ2 ) 

Now,     < 𝛼u + 𝛽v , w > = < (𝛼𝛼1 + ββ1 , 𝛼𝛼2 + ββ2 ) , ( 1 , n ) > 

   = (𝛼𝛼1 + ββ1) 1 – 2(𝛼𝛼1 + ββ1 ) 2 – 2 (𝛼𝛼2 + ββ2) 1 + 5 (𝛼𝛼1 + ββ1) 1 

     = 𝛼 (𝛼1 γ1 – 2 𝛼1 γ2 – 2 𝛼2 γ1 + 5 𝛼2 γ2)  

     +  ( 1 γ1 – 2 1 γ2 – 2 2 γ1 + 5 2 γ2)  

     = 𝛼 <u , w > +   < v , w >  ,   ( using (1) ) 

Hence < u , v > , defined by equation (1), is an inner product on R2. 
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Example 5: Let V be the vector space of all real polynomials of degree  2. Prove that 

< f(x) , g(x) > = ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥
1

0
 ,  f(x) , g(x)  V, is an inner product on V. 

Solution: (i) Since f(x) and g(x) are real polynomials, so < f(x) , g(x) >   R 

            Hence  < f(x) , g(x) >  =  <  f(x) , g(x) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ > = <   g(x) , f(x) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ > 

(ii) Now  < f(x) , f(x) >  =  ∫ 𝑓(𝑥)𝑓(𝑥)𝑑𝑥
1

0
 =  ∫ 𝑓(𝑥)2𝑑𝑥

1

0
   0 

           Also,   < f(x) , f(x) >  = 0 , if and only if 

  ∫ 𝑓(𝑥)2𝑑𝑥
1

0
  = 0  , if and only if 

   f(x)  = 0 ,  

              So,  < f(x) , f(x) >  = 0     f(x) = 0,  

(iii)     Let  𝛼, 𝛽  R and f(x), g(x), h(x)  V. Then 

               < 𝛼 f(x) + 𝛽 g(x) , h(x) >  = ∫ (𝛼𝑓(𝑥) + 𝛽𝑔(𝑥))ℎ(𝑥)𝑑𝑥
1

0
  

                =  𝛼 ∫ 𝑓(𝑥)ℎ(𝑥)𝑑𝑥
1

0
   + 𝛽 ∫ 𝑔(𝑥)ℎ(𝑥)𝑑𝑥

1

0
 

                  =  𝛼 < f(x) , h(x) >   + 𝛽 < g(x), h(x) >   

Hence < f(x) , g(x) >  , defined by equation (1) is an inner product on V. 

Example 6: Given 𝛼1 = ( 1, 3), 𝛼2 = (2, 1)  R. Find an 𝛼  R2 such that < 𝛼 , 𝛼1 > = 3,  

   <  , 𝛼2  > = -1.  Here < , > is the standard inner product on R2. 

Solution: We know that the standard inner product on R2 is   

    < (a1 , a2 ) ,( b1 , b2) > = a1b1  + a2b2   …….(1) 

  Let 𝛼 = (x, y)  R2. 

So, <  , 𝛼1 > = < (x, y), (1, 3) >  = x + 3y = 3    ………(2) 
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 < 𝛼 , 𝛼2  >  = < (x, y), (2, 1) >  = 2x + y  = -1    ……….(3) 

On solving equations (2) and (3), we get  x = -6/5 , y = 7/5  

So, 𝛼 = ( 
−6

5
 , 

7

5
 ) 

Example 7: Let W1 and W2 be two subspaces of a vector space V . If W1 and W2 are both inner 

product spaces, then prove that W1  + W2 is also an inner product space. 

Solution:   Let  x, y   W1  + W2, then 

 x = x1  + x2, y = y1 + y2 where x1 , y1  W1  and  x2 , y2 W2 

We define,   < x , y > = < x1 , y1 >  + < x2 , y2 >      ……..(1) 

Here, <x1 , y1 > is the inner product on W1 and <x2 , y2 > is the inner product on W2.
. 

Now from equation (1), we have 

(i) <  y , x ̅̅ ̅̅ ̅̅  > =  < y1 , x1 >  + < y2 , x2 >  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  = < y1 , x1 >̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅    + < y2 , x2 >̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

           = < x1 , y1 >  + < x2 , y2 >    ( as W1 and W2 are I.P.S.) 

           =  < x , y > 

(ii) < x , x >  =  < x1 , x1 >  + < x2 , x2 >   

Since,  < x1 , x1 >   0 and < x2 , x2 >   0 

  < x1 , x1 >  + < x2 , x2 >   0  

  < x , x >   0  

 Also, < x , x >  =  0  

   < x1 , x1 >  = 0  and < x2 , x2 >  = 0 

  x1 = 0 and x2 = 0 

   x = x1 + x2  = 0 

(iii)   Let 𝛼 , 𝛽  F and z = z1 + z2   W1  + W2 

Now, 𝛼x + 𝛽y  = 𝛼 (x1 + x2 ) + 𝛽 (y1 + y2)  = (𝛼x1 + 𝛽y1 ) + (𝛼x2 + 𝛽y2 ) 

 So, < 𝛼x + 𝛽y , z >   = < (𝛼x1 + 𝛽y1 ) + (𝛼x2 + 𝛽y2 ) , z1 + z2 > 

    = < (𝛼x1 + 𝛽y1 , z1 > + < 𝛼x2 + 𝛽y2  , z2 > 

    = 𝛼 < x1 , z1 >  + 𝛽< y1 , z1 >  + 𝛼 < x2 , z2 >  + 𝛽< y2 , z2 >   

   = 𝛼 (< x1 , z1 > +   < x2 , z2 >  ) + 𝛽 (< y1 , z1 >  + < y2 , z2 >  ) 

   = 𝛼 < x , z > + 𝛽 < y , z >  ,  ( using eqn. (1) ) 

Hence, W1  + W2 is also an inner product space. 
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Theorem 1: Let V be an inner product space and u, v, w  V ; 𝛼 , 𝛽    F  (where F = R or C) 

then, 

(i) < u, 𝛼v >  =  𝛼̅  < u, v > 

(ii) < 0, v >     =  < u,  >   = 0 

(iii) < u, v >    = 0,  ∀ u  V   v = 0, and 

(iv) < u, v >    = 0,  ∀ v  V  ⇒ u = 0,  

(v) < u, w >   =   < v, w > ,   ∀ w  V  u = v 

Proof: (i)   By definition of inner product 

< u, 𝛼v >   = <  𝛼v , u ̅̅ ̅̅ ̅̅ ̅̅  >  = 𝛼̅  <  v , u̅̅ ̅̅ ̅ >   = 𝛼̅  < u, v > 

(ii)  We know for any u  V and 0  F  , 0u = 0  V 

So, < 0, v > = < 0u, v >  = 0  < u, v > = 0 

Similarly ,   < u, 0 >  = < u, 0v >  =  0̅ < u, v >  =  0 < u, v >   = 0   

(iii) It is given that    < u, v >    = 0,  ∀ u  V 

In particular, we can write,  

 < u, v >    = 0 

   u = 0 

Similarly, we can prove other part. 

(iv) Let < u, w >   =   < v, w > ,   ∀ w  V  then, 

< u – v, w >   = < u, w >    < v, w >    = 0 

 < u – v, w >   = 0   w  V 

 So by previous part,  u – v = 0   u = v. 

Conversely, If we take  u = v, then 

 < u, w >   < v, w >  = < u – v, w >   = < 0 , w > = 0 
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Hence , < u, w >   =   < v, w >  w  V. 

Note: If V is an inner product space with standard inner product and say V = R3, then for a  R3, 

We have, < a, a > = a1
2  + a2

2 + a3
2  where a = ( a1 , a2 , a3 ), 

Here √a1
 2 +  a2

 2 +  a3
 2  or √<  𝑎, 𝑎 > is defined as norm of vector a.  Actually, it is 

generalization of length of a physical vector. 

Norm of a Vector:  Let V be an inner product space. The norm function  ∥ .  : V  R has the   

following properties : 

(i)  x   0 and   x  = 0 if and only if x = 0 ; x ∈ V 

(ii)  𝛼x  =   |𝛼| ∥ x  , 𝛼  F , x ∈ V,  

Norm of a vector v  V is defined as   v  =  √< 𝑣, 𝑣 > . 

A vector u in an inner product space V is said to be of unit norm or unit length if  

 u  = 1 or < u, u > = 1. 

Furthermore, given a non-zero vector v  V, there is a vector u ∈ V such that 

 u  = 1 and v =  v  u. 

This u is called the unit vector along v, because   u = 
𝑣

∥ v ∥
   and    u     =  

∥ v ∥

∥ v ∥
 = 1 

Example 8: (i) Find the norm of the vector x = (2, -3, 6)  R3 . 

(ii) Prove that  
𝑥

∥ x ∥
    is of unit length. 

Solution: (i) Using the concept of standard inner product of R3, we have  

 < x, x >  =  2(2)  + (-3) (-3) + 6(6) = 49 

 Hence,  x   = √< 𝑥, 𝑥 >  =  √49 = 7 units 

(ii)  Let u =  
𝑥

∥ x ∥
   = 

1

7
 (2, -3, 6) = ( 

2

7
 , 

−3

7
 , 

6

7
) 

< u, u > = 
2

7
 (

2

7
)  +   (

−3

7
) (

−3

7
)   +   ( 

6

7
) (

6

7
) = 

49

49
 = 1 
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⇒  ∥ u    = 1  u =  
𝑥

∥ x ∥
   is of unit length. 

Example 9: Let V be an inner product space and x, y, z  V. 

Prove that  

             x +𝑦 2  +   x – y 2  = 2 ( ∥ 𝑥 2  +   𝑦 2 ). Also interpret it geometrically. 

Solution: Some writers say it parallelogram law. 

We have  x +𝑦 2  = < x + y , x + y >  = < x , x + y > + < y , x + y > 

= < x , x > + < x , y > + < y , x > + < y , y >     ……….(1) 

Now,    x −𝑦 2  = < x  y , x – y  >  = < x , x – y  >  < y , x – y  > 

  = < x , x > − < x , y >  < y , x > + < y , y >     ……….(2) 

 Adding equation (1) and (2) , we have 

   x +𝑦 2  +   x −𝑦 2 = 2 (< x , x > + < y , y > )    = 2 ( ∥ 𝑥 2  +   𝑦 2 ) 

Geometric interpretation: Let x and y be two vectors in the vector space V2(R) with standard 

inner product defined on it. Suppose the vector x is represented by the side AB and the vector y 

by the side BC of a parallelogram ABCD. Then the vectors x + y and x – y represented the 

diagonals AC and DB of the parallelogram. 

 So, AC2 + DB2 = 2(AB2 + BC2)  i.e. the sum of the squares of the sides of a parallelogram is 

equal to the sum of the squares of its diagonals. 

Example 10: Prove that we can always define an inner product on a finite-dimensional vector 

space V(R) or V(C). 

Solution: Let V be a finite- dimensional vector space over the field F = R or C. 

Let B = { 𝛼1 , ….. , 𝛼n
 } be a basis for V . 

Let  𝛼 , 𝛽  V.  Then we can write  𝛼 = a1 𝛼1 + ….. + an 𝛼n and  𝛽 = b1 𝛼1+….. + bn 𝛼n   

Where, a1, …., an and b1, …., bn are uniquely determined elements of F. 

 Let us define  < 𝛼 , 𝛽 >  = a1 𝑏2
̅̅ ̅̅  + ….. + an 𝑏𝑛

̅̅ ̅̅    ……….(1) 
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Now it can be easily verified that above expression satisfies all the conditions of inner   product.   

Hence, we can always define an inner product on a finite dimensional vector space V(C). 

Example 11:  If  , 𝛽 are vectors in an inner product space V(F) and a, b  F, then prove that 

(i)  ∥ a 𝛼 +  b 𝛽 ∥2 = |a|2 ∥ 𝛼  2  + a𝑏̅ <  𝛼 , 𝛽    + a̅𝑏 < 𝛽 , 𝛼    + |b|2  ∥ 𝛽 ∥2 

(ii) Re < 𝛼 , 𝛽 >= 
1

4
 ( ∥ 𝛼 +  𝛽 ∥2   ∥ 𝛼   𝛽 ∥2 ) 

Solution: (i) We have,  

∥ a 𝛼 +  b 𝛽 ∥2 =  a 𝛼 +  b 𝛽, a 𝛼 +  b 𝛽   =   a 𝛼 , a𝛼 +  b 𝛽   +  b 𝛽 , a 𝛼 +  b 𝛽  

=  a <  𝛼 ,  a𝛼 +  b 𝛽   + b  <  𝛽 , a 𝛼 +  b 𝛽  

= a <  𝛼 , a𝛼 >   + a <  𝛼 , b 𝛽    + b  <  𝛽 , a 𝛼  + b  <  𝛽 , b 𝛽    

= aa̅ <  𝛼 , 𝛼  +  a𝑏̅ <  𝛼 , 𝛽    + 𝑏a̅  < 𝛽 , 𝛼 +   b b̅  < 𝛽 , 𝛽    

  = |a|2 ∥ 𝛼  2  + a𝑏̅ <  𝛼 , 𝛽 > + a̅𝑏 < 𝛽 , 𝛼    + |b|2  ∥ 𝛽 ∥2 

(ii) Now we can write  

∥  𝛼 +  𝛽 ∥2 =   𝛼 +  𝛽, 𝛼 +  𝛽   =   𝛼 ,  𝛼 +  𝛽   +   𝛽 , 𝛼 +  𝛽  

= <  𝛼 , 𝛼  +  < 𝛼 , 𝛽    + < 𝛽 , 𝛼 > +    < 𝛽 , 𝛽     

 ∥  𝛼 +  𝛽 ∥2  = ∥ 𝛼  2  + < 𝛼 , 𝛽    +  𝛽 , 𝛼    + ∥ 𝛽 ∥2    …..(1) 

Also, ∥  𝛼   𝛽 ∥2 =   𝛼   𝛽, 𝛼   𝛽   =   𝛼 ,  𝛼 −  𝛽      𝛽 , 𝛼   𝛽  

  = <  𝛼 , 𝛼    <  𝛼 , 𝛽      𝛽 , 𝛼    +    < 𝛽 , 𝛽  

 ∥ 𝛼   𝛽 ∥2 = ∥ 𝛼  2   < 𝛼 , 𝛽       𝛽 , 𝛼    + ∥ 𝛽 ∥2              …..(2) 

 Now subtracting equation (2) from equation (1), we get  

∥  𝛼 +  𝛽 ∥2   ∥ 𝛼   𝛽 ∥2  = < 𝛼 , 𝛽    +  𝛽 , 𝛼     + < 𝛼 , 𝛽    +  𝛽 , 𝛼     

          = 2(< 𝛼 , 𝛽    +  𝛽 , 𝛼   ) 



ADVANCED LINEAR ALGEBRA   MAT-505 
 

  

DEPARTMENT OF MATHEMATICS 

UTARAKHAND OPEN UNIVERSITY 
PAGE 279 

 

          =  2(< 𝛼 , 𝛽    +   𝛼 , 𝛽 ̅̅ ̅̅ ̅̅ ̅ > ) 

           =  2 (2 Re < 𝛼 , 𝛽 >) 

So,      Re < 𝛼 , 𝛽 >  = 
1

4
 ( ∥ 𝛼 +  𝛽 ∥2   ∥ 𝛼   𝛽 ∥2 ) 

Note: (1) If F = R, then  Re < 𝛼 , 𝛽 > =  < 𝛼 , 𝛽 >  

So, < 𝛼 , 𝛽 >  = 
1

4
 ( ∥ 𝛼 +  𝛽 ∥2   ∥ 𝛼   𝛽 ∥2 ) 

 (2) An inner product space V(R) is called Euclidean space while V(C) is called unitary space. 

Example 12: If 𝛼 and  𝛽 are vectors in a unitary space, then prove that –  

(i) 4< 𝛼 , 𝛽 >   = ∥  𝛼 +  𝛽 ∥2   ∥ 𝛼   𝛽 ∥2  + i ∥  𝛼 + i 𝛽 ∥2  − i ∥ 𝛼  i 𝛽 ∥2   

(ii) < 𝛼 , 𝛽 >     =  Re < 𝛼 , 𝛽 >   + i Re < 𝛼 , i 𝛽 >   

Solution: (i) As in previous example, we can write  

   ∥  𝛼 +  𝛽 ∥2  = ∥ 𝛼  2  + < 𝛼 , 𝛽    +  𝛽 , 𝛼    + ∥ 𝛽 ∥2   

and ∥ 𝛼   𝛽 ∥2 = ∥ 𝛼  2   < 𝛼 , 𝛽       𝛽 , 𝛼    + ∥ 𝛽 ∥2              

 So,          ∥  𝛼 +  𝛽 ∥2   ∥ 𝛼   𝛽 ∥2   = 2< 𝛼 , 𝛽    + 2  𝛽 , 𝛼     ……..(1) 

Now                ∥  𝛼 + i 𝛽 ∥2 =   𝛼 + i 𝛽, 𝛼 + i 𝛽   =   𝛼 ,  𝛼 + i 𝛽   +  i 𝛽 , 𝛼 + i 𝛽  

         = <  𝛼 , 𝛼  +  < 𝛼 , i 𝛽    + < i 𝛽 , 𝛼 > +    < i 𝛽 , i 𝛽     

         =  ∥ 𝛼  2 + i ̅  < 𝛼 ,  𝛽    + i <  𝛽 , 𝛼 > +  i i ̅  < 𝛽 , 𝛽     

         = ∥ 𝛼  2   i < 𝛼 , 𝛽    + i  𝛽 , 𝛼    + ∥ 𝛽 ∥2   

 So       i ∥  𝛼 + i 𝛽 ∥2  = i ∥ 𝛼  2  + < 𝛼 , 𝛽      𝛽 , 𝛼    + i ∥ 𝛽 ∥2    ………..(2) 

 Replacing i by –i , we get 

   -i ∥  𝛼 + i 𝛽 ∥2  = - i ∥ 𝛼  2  + < 𝛼 , 𝛽      𝛽 , 𝛼    + i ∥ 𝛽 ∥2   ………..(3) 

 Hence adding equations (1), (2) and (3), we get 
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  ∥  𝛼 +  𝛽 ∥2   ∥ 𝛼   𝛽 ∥2  + i ∥  𝛼 + i 𝛽 ∥2  − i ∥ 𝛼  i 𝛽 ∥2  =  4 < 𝛼 , 𝛽 >    

(ii) From the knowledge of complex numbers, we have  

   < 𝛼 , 𝛽 >     =  Re < 𝛼 , 𝛽 >   + i Im < 𝛼 , i 𝛽 >     ……….(1) 

If z = x + iy, then y = Im z = Re { -i ( x + iy) } = Re (-iz) 

  Im < 𝛼 , 𝛽 >  = Re { -i < 𝛼 , 𝛽 > } =  Re { i ̅< 𝛼 , 𝛽 > }  =  Re { < 𝛼 , i 𝛽 > }   

So from (1), we have   

                                                    < 𝛼 , 𝛽 >     =  Re < 𝛼 , 𝛽 >   + i Re < 𝛼 , i 𝛽 > 

Note: In the study of physical vectors, we define dot/scalar product as 𝑎⃗. 𝑏⃗⃗ = ab cos 𝜃, where a = 

|𝑎⃗|, b = |𝑏⃗⃗| and 𝜃 is the angle between 𝑎⃗ and  𝑏⃗⃗. 

Since we know that |cos 𝜃|  1. So, ab|cos 𝜃|  ab  as  a ≥ 0 , b ≥ 0. 

 |𝑎⃗. 𝑏⃗⃗|   ab    or |𝑎⃗. 𝑏⃗⃗| ≤ |𝑎⃗||𝑏⃗⃗| 

This is a particular case of Cauchy-Schwarz’s inequality, which we shall study for an inner 

product space. 

12.4 CAUCHY SCHWARZ INEQUALITY 

Theorem 2: Let V be an inner product space. If x , y  V, then  

     |< 𝑥 , 𝑦 > | ≤ ∥ 𝑥   +   y  . Further, equality holds if and only if x and y are linearly 

dependent (that is, one is a multiple of other). 

Proof:  Here we shall give three different proofs of Cauchy-Schwarz’s inequality: 

(i) It is basically geometric in nature 

(ii) Here we shall use basic concepts of calculus 

(iii) Here we shall use some results on quadratic equations. 

Proof: Case (i):   If x = 0 or y = 0,  

Then < 𝑥 , 𝑦 > = 0 and either < 𝑥 , 𝑥 > = 0 or < 𝑦 , 𝑦 > = 0, 
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Hence the result is obviously true. 

Case (ii):  Now consider the case, when  𝑥  =   y  = 1, 

Consider  < 𝑥 − 𝑦 , x −𝑦 > , then by definition of inner product  

                           < 𝑥 − 𝑦 , 𝑥 − 𝑦 >   0,  

      < 𝑥 , 𝑥 >  2< 𝑥 , 𝑦 > + < 𝑦 , 𝑦 >   0 

     1  2< 𝑥 , 𝑦 > + 1   0 

            < 𝑥 , 𝑦 >  1                ……….(1)  

 Similarly, < 𝑥 + 𝑦 , 𝑥 + 𝑦 >   0,   

              −< 𝑥 , 𝑦 >  1    ………(2)  

Combining both results, we get  

  |< 𝑥 , 𝑦 >|  1   or |< 𝑥 , 𝑦 >|   𝑥    y  as   𝑥  =   y  = 1 

Now, we prove the statement concerning the equality 

Let |< 𝑥 , 𝑦 >|  1   , then  < 𝑥 , 𝑦 > = 1 or -1 

If < 𝑥 , 𝑦 > = 1, then from the above discussion of inequalities, we deduce that  

   < 𝑥 − 𝑦 , x − y >   0   or x = y 

If < 𝑥 , 𝑦 > = -1, we can deduce that x = -y. 

Thus equality holds if and only if either x + y = 0 or x – y = 0. 

i.e. if and only if x =  y.  

So x and y are linearly dependent, when equality holds. 

Case (iii): Now suppose x and y be non-zero and not necessarily of unit length. 

Then u = 
𝑥

∥ x ∥
    and v =  

𝑦

∥ y ∥
     s.t.  u  =  v  = 1 
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Then as in last case, we have |< 𝑢 , 𝑣 >|  1    

   So |<
𝑥

∥ x ∥
  , 

𝑦

∥ y ∥
 >|  =  

|<𝑥 ,𝑦>|

∥ x ∥ ∥ y ∥
  1    

       | < 𝑥 , 𝑦 > | ≤   ∥  x ∥ ∥  y ∥, 

Now, in the case of equality, we have | < 𝑥 , 𝑦 > | ≤   ∥  x ∥ ∥  y ∥, 

If x and y are non-zero, then  < 𝑥 , 𝑦 > =   ∥  x ∥ ∥  y ∥ or 

                −< 𝑥 , 𝑦 > =   ∥  x ∥ ∥  y ∥ 

If we assume, < 𝑥 , 𝑦 > =   ∥  x ∥ ∥  y ∥  

            <
𝑥

∥ x ∥
  , 

𝑦

∥ y ∥
 > = 1  

               
𝑥

∥ x ∥
   =  

𝑦

∥ y ∥
   

                    x    = (  
∥ x ∥

∥ y ∥
  ) y 

               ⇒  x is a scalar multiple of y, or x and y are linearly dependent. 

 The other case is similar. 

Proof 2: Fix x and y in V. 

If y = 0, then the result is obviously true. 

So, we take y  0 

Let us consider the real valued function of the real variable  

   f(t) = < 𝑥 + ty, x + ty >. 

We want to investigate the extremum points of f. 

So, f(t) = < 𝑥 , 𝑥 > + 2t < 𝑥 , 𝑦 > + t2 < 𝑦 , 𝑦 >     .……(1) 

So we observe that f(t) is a polynomial in t with real coefficients. 

Now f '(t)  = 2 < 𝑥 , 𝑦 > + 2t < 𝑦 , 𝑦 >   
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So to will be an extremum point for f if f '(to) = 0, 

 i.e.   < 𝑥 , 𝑦 > + to < 𝑦 , 𝑦 >  = 0 

 So,     to = −
<𝑥 ,𝑦> 

<𝑦 ,𝑦>
  

Now  f '(t)  = 2 < 𝑦 , 𝑦 >   = 2 ∥  y ∥2 > 0 as y ≠ 0 

So f(t) is minimum at t = to 

   0   f(to)  ≤  f(t) for all t 

  f(t)  0 for all t 

From equation (1) , we get 

  < 𝑥 , 𝑥 > + 2to < 𝑥 , 𝑦 > + 𝑡𝑜
2 < 𝑦 , 𝑦 >    0 

 < 𝑥 , 𝑥 >  
2 (<𝑥 ,𝑦>)2 

<𝑦 ,𝑦>
  + 

(<𝑥 ,𝑦>)2 

<𝑦 ,𝑦>
   0 

  < 𝑥 , 𝑥 >  
(<𝑥 ,𝑦>)2 

<𝑦 ,𝑦>
   0  

   ∥  x ∥2  
(<𝑥 ,𝑦>)2 

∥ y ∥2    

   |< 𝑥 , 𝑦 >| ≤ ∥  x ∥∥  y ∥ 

Proof 3: Let p(t) = at2 + bt + c be a quadratic polynomial in t with real coefficient. We know that 

for imaginary roots, p(t) will always remain +ve or always remain –ve. 

         

For this to happen , b2 – 4ac  0. 

 Now f(t) as in second proof is a quadratic polynomial in t with real coefficients                     

             a = < 𝑦 , 𝑦 > , b = 2< 𝑥 , 𝑦 > and c = < 𝑥 , 𝑥 > 
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Also f(t) is always non negative. So we conclude that b2 – 4ac  0. From this, we shall get the 

required result. 

Note: If we consider Rn with dot(scalar) product, then Cauchy-Schwarz inequality becomes 

  | ∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1 |   (∑ 𝑥𝑖

2
𝑖  )1/2  (∑ 𝑦𝑖

2
𝑖  )1/2 , for all xi , yi  R. 

This concrete inequality is quite useful in analysis. 

Theorem 3: (Triangle Inequality) If  , 𝛽 are vectors in an inner product space V, then    

      ∥  α + β ∥ ≤ ∥  α ∥ + ∥  β ∥  

Proof:  We have ,      ∥  α +  2 = <  +  ,  +  > = < ,  +  > + <  ,  +  >  

           = < ,  >  + < ,  > +  <  ,  > + <  ,  >  

           = ∥  α ∥2 + ∥  β ∥2 + (< ,  > + <  α, β̅̅ ̅̅̅ > ) 

    ∥  α +  2 = ∥  α ∥2 + ∥  β ∥2 + 2 Re (< ,  >)   ……(1) 

But Re (z)  |z| ,  

So,  ∥ α +  2  ∥  α ∥2 + ∥  β ∥2 + 2 | < ,  > |  

    ≤ ∥  α ∥2 + ∥  β ∥2 + 2 ∥  α ∥ ∥  β ∥ , ( by Cauchy 

Schwarz inequality) 

     ∥  α +  2   ( ∥ α ∥ + ∥ β ∥ )2 

 So,  ∥  α +      ∥ α ∥ + ∥ β ∥  

Geometrical Interpretation:  

Suppose the vectors  , 𝛽 represent the sides AB and BC respectively of a  ABC in the 

Euclidean space. 

Then ∥ α  = AB and ∥ β  = BC. 

Also the vector  + β  represents the side AC of the triangle ABC and ∥  α +   = AC. 
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Then from above inequality we know, ∥  α +      ∥ α ∥ + ∥ β ∥  

   AC  AB + BC 

If inequality holds, i.e. AC < AB + BC is true for any triangle ABC. 

If equality holds, then AC = AB + BC means points A, B, C are collinear. 

Example 13: Verify Cauchy Schwarz inequality for  = (1, 2, -2), and  = (2, 3, 6)  R3. 

Solution: With standard inner product, we have   

   < ,  > = 2 + 6 – 12 = -4,    so  | < ,  >  | = 4 

Now, ∥ α 2 = 1 + 4 + 4,        so       ∥ α  = 3 

And  ∥ β 2 = 4 + 9 + 36 ,       then    ∥ β  = 7 

So , ∥ α ∥ ∥ β  = 21 

Hence, | < ,  > |  ∥ α ∥ ∥ β  is verified. 

Example 14: If in an inner product space V, ∥  α +     ∥ α ∥ + ∥ β  , then prove that   and  

are linearly dependent. Show by means of an example that the converse may NOT be true. 

Solution: Given expression is ( ∥  α +   )2   ( ∥ α ∥ + ∥ β ∥ )2 

       <  +  ,  +  >  = ∥  α ∥2 + ∥  β ∥2 + 2 ∥  α ∥ ∥  β ∥ 

       < ,  >  + < ,  > +  <  ,  > + <  ,  > = ∥ α ∥2 + ∥ β ∥2 + 2 ∥ α ∥ ∥ β ∥ 

       < ,  > + <  α, β̅̅ ̅̅̅ >  = 2 ∥ α ∥ ∥ β ∥ 

      2 Re (< ,  >)  = 2 ∥ α ∥ ∥ β ∥ or  Re (< ,  >)  =  ∥ α ∥ ∥ β ∥   ……(1) 

But,  Re (< ,  >)   | < ,  > |       

 So,   | < ,  > |   ∥ α ∥ ∥ β ∥      …….(2) 

But, by Cauchy Schwarz inequality  
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     | < ,  > |   ∥ α ∥ ∥ β ∥       …….(3)  

From equation (2) and (3) , we have  

  | < ,  > |   ∥ α ∥ ∥ β ∥   

So from the equality case of Cauchy Schwarz inequality, we conclude that  and  are linearly 

dependent . 

Conversely, let us take,   

   = (1, -2, 2),   = (-2, 4, -4)  R3 

Then obviously  and  are linearly dependent as   = −2α 

Now,  ∥ α ∥  = √1 + 4 + 4 = 3 ; 

  ∥ β ∥ = √4 + 16 + 16 = 6 

   +  = (-1, 2, -2)  ∥ α + β ∥  = √1 + 4 + 4 = 3 

 So, ∥  α +      ∥ α ∥ + ∥ β ∥  

but  and  are linearly dependent . 

Example 15: If W is a subspace of V and v ∈ V satisfies < ,  > + < 𝑤,  >  < 𝑤,  >, for all 

w  W , then prove that < ,  > = 0 for all  w  W, where V is an inner product space. 

Solution: Since W is a subspace of V(F), therefore 

       
1

𝑛
 . w = 

𝑤

𝑛
   W,  n  N ; 

1

𝑛
  F. 

Given expression is  

   < ,  > + < 𝑤,  >  < 𝑤,  >, for all w  W   …..(1) 

Replacing w by  
𝑤

𝑛
 in equation (1) , we get 

    < , 
𝑤

𝑛
  > + < 

𝑤

𝑛
 ,  >  < 

𝑤

𝑛
 , 

𝑤

𝑛
  >       or    

1

𝑛
  < ,  > + 

1

𝑛
  < 𝑤,  >  

1

 𝑛2
  < 𝑤,  > 
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or   < ,  > + < 𝑤,  >  
1

𝑛
 < 𝑤,  >,    n  N 

Taking lim n → ∞, we get 

      < ,  > + < 𝑤,  >  ≤ 0 

Thus < ,  > + < ,  >  ≤ 0 ,  w  W     …..(2) 

Replacing w by –w in equation (2), we get  

   < , −w > + < −w,  >  ≤ 0  

   < ,  >  < ,  >  ≤ 0  

  or   <  𝑣, 𝑤 >  + <  w, v > ≥ 0      …..(3) 

From equations (2) and (3), we conclude that  

    < 𝑣, 𝑤 >  + <  w, v > = 0 , ∀ w  W    …..(4) 

Since W is a subspace of V, so i  F and w  W  iw  W 

Replacing w by iw in equation (4), we get  

    < 𝑣, 𝑖𝑤 >  + <  iw, v > = 0  

  i ̅ < 𝑣, 𝑤 >  + 𝑖 < w, v > = 0  

 −i < v, w >  + 𝑖 < w, v > = 0  

  −< 𝑣, 𝑖𝑤 >  + <  iw, v > = 0       …..(5)  

So subtracting equation (5) from equation (4), we get  

  2< 𝑣, 𝑤 > = 0 or  < 𝑣, 𝑤 > = 0 , ∀ w  W. 

Definition (Metric): A metric on a set X is a function d : X  X  R with the following   

properties:  

(i) d(x, y) ≥ 0 for x, y  X and  d(x, y) = 0 if and only if x = y. 



ADVANCED LINEAR ALGEBRA   MAT-505 
 

  

DEPARTMENT OF MATHEMATICS 

UTARAKHAND OPEN UNIVERSITY 
PAGE 288 

 

(ii) d(x, y) = d(y, x), for all x, y  X 

(iii) d(x, z)  d(x, y) + d(y, z), for all x, y, z  X  

(iv) Property (iii) is called the triangle inequality. 

Theorem 4: Let V be an inner product space. If we define d(x, y) = ∥  x − y    for x, y  V, 

Then d is a metric on V. 

Proof: (i) By definition of norm, we know  

     ∥  x − y   ≥ 0  

   d(x, y) ≥ 0 , 

 Also, d(x, y) = 0 , if and only if 

        ∥  x − y  = 0 , if and only if  

                   x – y = 0   , if and only if  

     x = y 

(ii) d(x, y) = ∥  x − y  = ∥ (−1)(𝑦 − 𝑥) ∥  

      = |-1| ∥ 𝑦 − 𝑥 ∥   by ∥ α𝑥 ∥ = | | ∥ 𝑥 ∥ ;   F , x  V 

         = ∥ 𝑦 − 𝑥 ∥  = d(y, x) 

(iii)   d(x, z) = ∥  x − z  

  = ∥ (x − y) + (y − z)   

   ∥ x − y ∥ +∥ y − z  , by triangle inequality  

So ,  d(x, z)  d(x, y) + d(y, z), for all x, y, z  V. 

Hence d is a metric on V.  

Orthogonality: Let V be an inner product space. An element u  V is said to be orthogonal to v 

 V if < u, v > = 0. Obviously, orthogonality is a symmetric relation i.e. if u is orthogonal to v, 

then v is also orthogonal to u.  
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   <  u, v > = 0 , if and only if < v , u > = 0 

Note: (1)  Zero vector is orthogonal to each v  V as  < 0, v > = < v , 0 > = 0 

(2)   If u  V is orthogonal to v  V , then every scalar multiple of u is orthogonal to v. Let k  F 

and < u , v > = 0 then < ku , v > = k < u, v > = 0. So ku is also orthogonal to v , , ∀ k  F. 

(3)  Zero vector is the only vector which is orthogonal to itself. If u is orthogonal to u, then 

< u, u > = 0  u = 0 

(4) A vector u  V is said to be orthogonal to set S if it is orthogonal to each vector in S. That is   

< u , v > = 0, for every v  V. 

(5) Two subspaces W1 and W2 of V(F) are called orthogonal if every vector in each subspace is 

orthogonal to every vector in the other. 

(6)  Let S be a set of vectors in an inner product space V. Then S is said to be an orthogonal set 

provided that any two distinct vectors in S are orthogonal. So,  < u , v > = 0, for every distinct u, 

v  S. 

(7)   Let S be a set of vectors in an inner product space V. The S is said to be an orthonormal set 

if:  

(a)  u  S  ∥ u ∥ = 1 

(b) u, v  S and u  v, then < u , v > = 0 

Thus an orthonormal set is an orthogonal set with the additional property that norm of each 

vector is 1. So a set S consisting of mutually orthogonal unit vectors is called an orthonormal set.  

A finite set S = { 𝛼1 , ….. , 𝛼n
 } is orthonormal if 

       < 𝛼i , 𝛼j >   = Sij ={
1 , i = j
0 , i ≠ j

 , 

(8) If an orthonormal set S is a basis of an inner product space V, then the set S is called an 

orthonormal basis of V.  

e.g. the set S = { (1, 0, 0), ( 0, 1, 0), (0, 0, 1) } is an orthonormal basis of R3. 

Also, it can be easily verified that the set  
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 S'= { ( 
1

√2
 , 0, 

1

√2
 ) , ( 

1

√2
 , 0, 

−1

√2
 ), (0, 1, 0) } is another orthonormal basis of R3. 

Example 16: (Pythagoras Theorem) Prove that vectors x and y in a real inner product space 

(Euclidean space) V are orthogonal if and only if  

            x + 𝑦 2 =  𝑥 2  +   𝑦 2 

Solution: We have,  

    x + 𝑦 2 = < x + y, x + y > =  < x, x + y > + < y, x + y >  

           = < x, x > +  < x, y > + < y, x  > +  < y, y >  

           = ∥  𝑥 2  + < x, y > +  <  𝑥, 𝑦̅̅ ̅̅̅ > +   𝑦 2 

      x + 𝑦 2  =  ∥  𝑥 2  + 2< x, y > +   𝑦 2 as V is real I.P.S.  …..(1) 

But given that ,   x + 𝑦 2 =  𝑥 2  +   𝑦 2      …..(2) 

So we have,   𝑥 2  +   𝑦 2  =  ∥  𝑥 2  + 2< x, y > +   𝑦 2 

    < x, y > = 0 

      x and y are orthogonal. 

Conversely, let x and y be orthogonal 

  ⇒      < x, y > = 0 

then as done above, it can be observed, 

       x + 𝑦 2  =  ∥  𝑥 2  + 2< x, y > +   𝑦 2 

By using, < x, y > = 0, we get 

  x + 𝑦 2 =  𝑥 2  +   𝑦 2 

Example 17:  Prove that in a complex inner product space (or unitary space) V, if x is 

orthogonal to y, then   x + 𝑦 2 =  𝑥 2  +   𝑦 2 

However, the converse may NOT be true. Justify. 
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Solution: If x is orthogonal to y, then  < x, y > = 0 

    ⇒     <  𝑥, 𝑦̅̅ ̅̅̅ > = 0 

    ⇒    < y , x > = 0, 

Now, 

   x + 𝑦 2 = < x, x > +  < x, y > + < y, x  > +  < y, y > , (by previous example) 

 So,  ∥ x + 𝑦 2 =  𝑥 2  +   𝑦 2 

Conversely, let V = C2(C) with standard inner product 

 Let x = (0, i ) and y = (0, 1)  V. Then  

       < x , y > = 0 + i = i  0 

 So x is not orthogonal to y. 

 Also,  𝑥 2  = 0(0) + i(i)̅ = i(-i) = 1 

            ∥ 𝑦 2  = 0 + 1 = 1 

 Now,   x + y = (0, 1 + i)  

           x + 𝑦 2  = 0 + (1 + i) (1 – i) = 2 

 Hence,  x + 𝑦 2 =  𝑥 2  +   𝑦 2 , though x is not orthogonal to y. 

Example 18: Find a vector of unit length which is orthogonal to the vector (3, -2, 2) of R3(R) 

relative to the standard inner product . 

Solution:  Let x = (3, -2, 2) and y = (a, b, c)  R3 be orthogonal vectors.  

 Then   < x, y > = 0 

    3a – 2b + 2c = 0 

This system has infinite (actually uncountable) solutions. Let us take one solution by taking 

 a = 2, b = -3, c = -6 
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So, y = (2, -3, -6) is orthogonal to x = (3, -2,  2) 

Now,   𝑦 2 = 4 + 9 + 36 = 49    𝑦  = 7 

So, u = 
𝑦

∥ 𝑦 ∥
 = 

1

7
 (2, -3, -6)    u = ( 

2 

7
 , 

−3

7
 , 

−6

7
 ) 

Theorem 5: An orthogonal set of non-zero vectors in an inner product space V is linearly 

independent. 

Proof: Let S be an orthogonal set of non-zero vectors of V. In order to show that S is linearly 

independent, we shall prove that every finite subset of S is linearly independent. 

 Let {v1, v2, ….., vn} be any finite subset of S.  

 By orthogonality of S, we have  

       < vi , vj > = 0 , for i ≠ j    …..(1) 

 Let us assume 𝛼1v1 + ….. + 𝛼nvn = 0   ; where 𝛼i   F, 

So,      < 𝛼1v1 + ….. + 𝛼nvn , 𝛼1v1 + ….. + 𝛼nvn > = 0 

             < 𝛼1v1 , 𝛼1v1 + ….. + 𝛼nvn >  + ….. + < 𝛼nvn , 𝛼1v1 + ….. + 𝛼nvn > = 0  

    (< 𝛼1v1 , 𝛼1v1 > + …. + < 𝛼1v1 ,𝛼nvn >) + …. + (< 𝛼nvn , 𝛼1v1 > + …. + < 𝛼nvn ,𝛼nvn >) = 0 

        1α1̅̅ ̅ < v1 , v1 > + 2 α2̅̅ ̅ < v2 , v > + …. + nαn̅̅ ̅ < vn , vn > ; using equation (1) 

  ∥ α1 2  v1 2   + ∥ α2 2  v2 2  + ….. + ∥ αn 2  vn 2  = 0 

But every term is non-negative and sum is zero. 

So,   ∥ αi 
2  vi 

2 = 0   i 

 But each vi  0, by statement. 

 So, | αi| 
2 = 0   i 

    αi = 0    I = 1, 2, 3, …., n. 

 So, {v1, v2, ….., vn } is linearly independent subset of S.  
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   every finite subset of S is linearly independent. 

    S in linearly independent. 

Note: In the same way, it can be proved that an orthonormal set S in an inner product space V is 

linearly independent.  

Example 4: If {v1, v2, ….., vn } is an orthonormal set in V and if  w   V, then prove that ,  

         u = w − ∑ < 𝑤,𝑛
𝑖=1 vi > vi ; is orthogonal to each of v1, v2, ….., vn . 

Solution: For any i = 1, 2, ….., n. we have 

         < u, vi > = <  w  ∑  αi
𝑛
𝑖=1 vi  , vi > , where 𝛼i = < w, vi >   

             =  < w –  α1v1 –  α2v2 – …. – αnvn , vi > 

               = < w, vi >   –  α1< v1 , vi >   …. −  αi< vi , vi >  …. −  αn< vn , vi >   

             = < w, vi >  –    …. −  αi −  0 − …. − 0   

        < u, vi >    = < w, vi >  – < w, vi >   =  0 

So, < u, vi >   = 0 , for i = 1, 2, ….., n 

Hence u is orthogonal to vi , for i = 1, 2, ….., n. 

Complete Orthonormal Set: An orthonormal set is said to be complete if it is not contained in 

any larger orthonormal set.  

Orthonormal dimension: Let V be a finite-dimensional inner product space of dimension n. If 

S is any orthonormal set in V then S is linearly independent. So S cannot contain more than n 

distinct vectors. The orthonormal dimension of V is defined as the largest number of vectors an 

orthonormal set in V can contain. 

For finite dimensional inner product spaces, orthonormal dimension is same as linear dimension. 

Note: Now we recall some basics of vectors in R2. It will help us to ‘visualize’ the geometry 

behind Gram-Schmidt orthogonalisation process. 

 (1)   Let us consider two vectors a⃗⃗ and b⃗⃗ in R2. Then  
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    | a⃗⃗ |  = a  and | b⃗⃗ | = b 

          We have to find: 

(i) projection of  a⃗⃗ on b⃗⃗ 

(ii) component of  a⃗⃗ along b⃗⃗ . 

(iii)  component of  a⃗⃗ perpendicular to b⃗⃗. 

Let us realize these vectors as shown – 

So,  OA = | a⃗⃗ |  = a  ,  AOB =   

 (i) Projection of  a⃗⃗ on b⃗⃗  

    = OB = OA cos  

     =  
 a( 𝑎 ⃗⃗⃗⃗  . 𝑏⃗⃗⃗⃗ )

𝑎 𝑏
 as  𝑎 ⃗⃗⃗ ⃗ .  𝑏⃗⃗ ⃗ = ab cos  

Projection of  a⃗⃗ on b⃗⃗ =  
 ( 𝑎 ⃗⃗⃗⃗  . 𝑏⃗⃗⃗⃗ )

 𝑏
 .  

 (ii) Component of of  a⃗⃗ along b⃗⃗ = ( Projection of  a⃗⃗ on b⃗⃗ ) 

 b̂ = (
 ( a ⃗⃗⃗ ⃗ . b⃗⃗⃗⃗ )

 b
  ) 

  b⃗⃗⃗⃗

 b
 =  

 ( a ⃗⃗⃗ ⃗ . b⃗⃗⃗⃗ )  b⃗⃗⃗⃗

 b2  ,  

(iii) From vector law of addition, we have  

  𝑂𝐴⃗⃗⃗⃗ ⃗⃗   = 𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗   +  𝐵𝐴⃗⃗⃗⃗ ⃗⃗    

  a⃗⃗ = 
 ( a ⃗⃗⃗ ⃗ . b⃗⃗⃗⃗ )  b⃗⃗⃗⃗

 b2   + 𝐵𝐴⃗⃗⃗⃗ ⃗⃗    

So, 𝐵𝐴⃗⃗⃗⃗ ⃗⃗   = component of a⃗⃗ perpendicular to b⃗⃗ = a⃗⃗  
 ( a ⃗⃗⃗ ⃗ . b⃗⃗⃗⃗ )  b⃗⃗⃗⃗

 b2    

These fundamental concepts will help you to understand the next 

theorem. 

12.5 GRAM-SCHMIDT ORTHOGONALISATION PROCESS 

Theorem 6: Every finite-dimensional inner product space has an orthonormal basis. 
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Proof: Let V(F) be an n-dimensional inner product space and let S = {v1, ….., vn }be a basis of 

V. Firstly, we shall construct an orthogonal set in V with the help of elements of S. Since S is a 

basis, so all elements of S are non-zero.  

Let us take, 

  w1 = v1 , w2 = v2 – 
< v2, w1 > w1  

∥w1 ∥2
  or  w2 = v2 – 

< v2, v1 > v1  

∥v1 ∥2
      …..(1) 

Since v1  0 , so ∥ v1 ∥  0, 

 We have, <  w2, w1 > = <  v2 − αv1, v1 > where   = 
< v2, v1 >  

∥v1 ∥2
  

 So, <  w2, w1 > = <  v2, v1 > − α < 𝑣1, v1 > 

           = <  v2, v1 > − 
< v2, v1 >  

∥v1 ∥2  ∥ v1 ∥2  = <  v2, v1 > − < 𝑣2, v1 > = 0 

      <  w2, w1 > = 0  and v2 = αv1 +  w1 = αw1 + w2 , 

We observe that w2 ≠ 0 , for otherwise, v2 = v1 

    v1 , v2 are linearly dependent. 

This is contradictory, as S is a basis , so every subset of S will be linearly independent. 

  Let w3 = v3 – 
< v3, w2 > w2  

∥w2 ∥2    –  
< v3, w1 > w1  

∥w1 ∥2        …..(2) 

 where ∥ w2 ∥ ≠ 0 ,  ∥ w1 ∥ ≠ 0 

 We can write,  w3 = v3 – 𝛼1w1 – 𝛼2w2 , where  

   𝛼1 = 
< v3, w1 >  

∥w1 ∥2
      and  𝛼2 = 

< v3, w2 >  

∥w2 ∥2
     …..(3) 

 Now, <  w3, w2 > = < v3 – 𝛼1w1 – 𝛼2w2 , w2 > 

            =  <  v3, w2 > − 𝛼1 <  w1,  w2 > − 𝛼2 <  w2,  w2 > 

            = <  v3, w2 > −
< v3, w1 >  

∥w1 ∥2  <  w1,  w2 >  −  
< v3, w2 >  

∥w2 ∥2  ∥ w2 ∥2   

            =  <  v3, w2 > − 0 − <  v3, w2 >    (as <  w1,  w2 > = 0 ) 
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             <  w3, w2 > = 0 

 Similarly,  <  w3, w1 > = 0, 

 Also,  v3 = 𝛼1w1 + 𝛼2w2 + w3 

 If follows that { w1, w2, w3 } is an orthogonal set. Further w3  0 , for otherwise,{w1, w2, w3 } is 

linearly dependent, which is again a contradiction. Here you should note that { w1, w2, v3 }= { 

v1, v2  − 𝛼1v1,, v3 } is linearly independent as { v1, v2, v3 }are linearly independent. Proceeding 

in a similar manner, if we take 

    wn = vn – 
< vn,wn−1 > wn−1  

∥wn−1 ∥2
  − …. – 

< vn, w1 > w1  

∥w1 ∥2
   , then it can be verified that {w1, …., 

wn} is an orthogonal set . Consequently,  T = { 
 w1  

∥w1 ∥
   , …. , 

 wn  

∥wn ∥
 } is an orthogonal set. Since an 

orthonormal set is linearly independent and so T forms basis of V as dim V = n. 

 Hence T is an orthonormal basis of v. 

Note: (1) To obtain an orthonormal basis of V, where V = R3 i.e. dim V = 3, we proceed as 

follows:  

(i) Let {v1, v2, v3} be a basis of V. 

(ii) Find {w1, w2, w3} where w1 = v1  

           w2 = v2 – 
< v2, w1 > w1  

∥w1 ∥2    

           w3 = v3 – 
< v3, w2 > w2  

∥w2 ∥2    –  
< v3, w1 > w1  

∥w1 ∥2       

(iii) { 
 w1  

∥w1 ∥
   , 

 w2  

∥w2 ∥
  , 

 w3  

∥w3 ∥
  } is an orthogonal basis of V. 

(2)  Generally existence theorem in analysis are non-constructive i.e. you prove the theorem, but 

there is no formula or general method to solve numerical questions. But Gram-Schmidt process 

is constructive in nature. It provides a method to solve numerical. 

Example 19: Apply the Gram-Schmidt process to the vectors given below to obtain an 

orthonormal basis for R3(R) with the standard inner product:  

(i) S1 = { (1, 1, 0) , ( 1, 0, 1) , (0, 1, 1) } 

(ii) S2 = { (1, 1, 0) , ( 1, 0, -1) , (0, 3, 4) } 

Solution: (i) Let v1 = (1, 1, 0) ,  v2 = ( 1, 0, 1) , v3 = (0, 1, 1) 

Let w1 = v1 = (1, 1, 0) ,    ⇒    ∥ w1 ∥2 = <  w1 , w1 > = 12 + 12 + 0 = 2 
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 w1  

∥w1 ∥
   = 

1

√2
 (1, 1, 0) =  (

1

√2
 , 

1

√2
 , 0) 

Let  w2 = v2 – 
< v2, w1 > w1  

∥w1 ∥2       …..(1) 

        <  v2, w1 > = <  v2, v1 > = 12 + 0 + 0 = 1 

  So,  w2 = ( 1, 0, 1) − 
1

2
 (1, 1, 0) = ( 

1

2
 ,  

1

2
 , 1 ). 

          ∥ w2 ∥2 = <  w2 , w2 > = 
3

2
  

   So,   
 w2  

 ∥w2 ∥
   = √

2

3
  ( 

1

2
 ,  

1

2
 , 1 ) = =  (

1

√6
 , −

1

√6
 , 

2

√6
 ) 

  Again, let w3 = v3 –  
< v3, w1 > w1  

∥w1 ∥2      – 
< v3, w2 > w2  

∥w2 ∥2       …..(2) 

 So we obtain, <  v3, w1 > = <  v3, v1 > = 0 + 1 + 0 = 1 and    <  v3, w2 > = 
1

2
  

   ∥ w1 ∥2 = 2 ,   ∥ w2 ∥2  =  
3

2
 

So form equation (2) , we have  

   w3  = (0, 1, 1)  
1

2
 (1, 1, 0)  

2

3
 ( 

1

2
 ,  

1

2
 , 1 ) 

1

2
 =  (  

2

3
 , 

2

3
 , 

2

3
 ) 

   ∥ w3 ∥2  =  
4

3
   

 w3  

 ∥w3 ∥
   =  (−

1

√3
 , 

1

√3
 , 

1

√3
 )  

Hence orthonormal basis is { (
1

√2
 , 

1

√2
 , 0) , (

1

√6
 , −

1

√6
 , 

2

√6
 ) , (−

1

√3
 , 

1

√3
 , 

1

√3
 ) } 

(ii) Do it yourself. 

  S1 = { (
1

√2
 , 0 , 

1

√2
 ) , ( 

1

√2
, 0 , −

1

√2
) , ( 0 ,  ,  ) } 

 Example 20:  Let V be a set of real functions satisfying  
d2y

dx2 + 9y = 0, 

(i) Prove that V is a two-dimensional real vector space. 

(ii)      In V, inner product is defined by  
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                            < y, z > = ∫ 𝑦𝑧 𝑑𝑥
𝜋

0
 

Find an orthonormal basis for V. 

Solution: (i) Suppose V is a collection of solutions of    

     
d2y

dx2 + 9y = 0  

   Let  
d

dx
   D 

     (D2 + 9) y = 0 

 Auxiliary equation is  m2 + 9 = 0 or m =  3i 

 So, solution is  y =  c1 cos3x +  c2 sin3x 

 Let V= {c1 cos3x +  c2 sin3x:  c1, c2   R }      …..(1) 

 Let S = {cos3x, sin3x} 

 The Wronskian of  v1 = cos3x and v2 = sin3x is  

      W(x) =  |
v1 v2
dv1

dx

dv2

dx

|    =  |
cos 3𝑥 sin 3𝑥 

−3 sin 3𝑥 3 cos 3𝑥
|  =  3  0 

 So S is linearly independent subset of V and by equation (1) , L(S)=V.  

Hence S is a basis of V. 

Thus,  dimV = 2  

(ii)   Let v1 = cos3x, v2  = sin3x  

 Now       w1= v1 , So     || w1 ||
2   = <  w1 , w1  > = ∫ 𝑐𝑜𝑠 2(3𝑥) 𝑑𝑥

π

0
 

      = ∫   
cos 6𝑥+ 1

2
 𝑑𝑥

π

0
 = 

π

2
 , on solving 

     
w1

|| w1|| 
 = √

2

𝜋
 . cos 3x 
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Let w2 = v2 – 
< v2, w1 > w1  

∥w1 ∥2        …..(2) 

   ∴    < v2 , w1 >  = < v2 , v1 >  =  ∫  sin 3𝑥 cos 𝑥  𝑑𝑥
π

0
 = 

1

2
∫  sin 6𝑥  𝑑𝑥

π

0
 = 0,  

       w2 = v2 = sin 3x 

Now, ∥ w2 ∥2  = < w2 , w2 >   = ∫ 𝑠𝑖𝑛 2(3𝑥) 𝑑𝑥
π

0
 = ∫   (

 1− cos 6𝑥

2
 ) 𝑑𝑥

π

0
 = 

π

2
  

       
 w2   

∥w2 ∥
  = √

2

𝜋
  sin 3x 

Hence an orthonormal basis of V is  { √
2

𝜋
  cos 3x , √

2

𝜋
  sin 3x } 

Example 21: Obtain an orthonormal basis for V, the space of all real polynomials of degree at 

most 2, the inner product being defined by       

      < f, g > = ∫ f(x)g(x) dx
1

0
 

Solution:  We have,  V = { a0 + a1 x + a2 x
2 ; ai  R }  

Let S = {1, x, x2}. Then obviously, S is a basis of V  

Let v1 = 1, v2 = x and v3 = x2 

So, w1 = v1 = 1 

Now ||w1||
2  = < w1 , w1 > =  ∫ 1.1 . dx

1

0
 = 1 

Let     w2 = v2 – 
< v2, w1 > w1  

∥w1 ∥2
         …..(1) 

Now  < v2 , w1 >  = < v2 , v1 >  = ∫ x dx
1

0
 = 

1

2
 

     w2 = x – 
1

2
  

Hence ,  ||w2||
2  = < w2 , w2 > =  ∫ (x −  

1

2
 )2 dx

1

0
 = 

1

12
 

So,  
 w2   

∥w2 ∥
   = √12 (x − 

1

2
 )   =  2√3 (x − 

1

2
 )    
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Let w3 = v3 –  
< v3, w1 > w1  

∥w1 ∥2      – 
< v3, w2 > w2  

∥w2 ∥2        …..(2) 

Since, <  v3, w1 > = ∫  x2 dx
1

0
 = 

1

3
 

                 <  v3, w2 > = ∫  x2 (x −  
1

2
 ) dx

1

0
 = 

1

12
 

    w3 = x2 – 
1

3
 . 1 – (x −  

1

2
 )  =  x2 – x + 

1

6
  

              ||w3||
2  = < w3 , w3 > = ∫  (x2 –  x +  

1

6
 )2  dx

1

0
 = 

1

180
  

   
 w3   

∥w3 ∥
   = √180 (x2 –  x +  

1

6
 )   =  6√5 (x2 –  x +  

1

6
 )    

Hence an orthonormal basis of V is  

  { 1, 2√3 (x − 
1

2
 )  , 6√5 (x2 –  x +  

1

6
 ) } 

12.6 BESSEL’S INEQUALITY 

Theorem 7: If V is an inner product space and if {w1 , …. ,wn} is an orthonormal set in V , then  

∑ | wi , v𝑛
𝑖=1  |2   ||v||2 , for all v  V 

Furthermore, equality holds if and only if V is in subspace spanned by w1 , …. ,wn. 

Proof: Let v  V be arbitrary. 

Consider the vector  

   x = v – ∑ αi wi 
𝑛
𝑖=1 ; where αi = < v , wi >     …..(1) 

 Then,  < x, x >  = < v – ∑ αi wi 
𝑛
𝑖=1 , v – ∑ αj wj 

𝑛
j=1   

     = < v, v > − < v ,  ∑ αj wj 
𝑛
j=1 > − < ∑ αi wi 

𝑛
𝑖=1 , v > + < ∑ αi wi 

𝑛
𝑖=1 , ∑ αj wj 

𝑛
j=1 > 

     = ||v||2 – ∑ αj ̅̅ ̅  𝑛
j=1 < v , wj > – ∑ αi  

𝑛
i=1 < wi , v > + ∑ ∑ αi

n
j=1

n
i=1 αj< wi , wj > 

     = ||v||2  ∑ < v , wj ̅̅ ̅̅ ̅̅ ̅ >𝑛
j=1  < v , wj >  ∑ < v, wi > 𝑛

𝑖=1 < v , wi ̅̅ ̅̅ ̅̅ ̅ > + 

∑ ∑ αi
n
j=1

n
i=1 αi̅. 1      ( as < wi , wj > = 1 only if i = j ) 
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 So, < x, x >  = ||v||2  ∑  | < v, wi > 𝑛
𝑖=1 |2  ∑  | < v, wi > 𝑛

𝑖=1 |2  ∑  | < v, wi > 𝑛
𝑖=1 |2  

       < x, x >  = ||v||2  ∑  | < v, wi > 𝑛
𝑖=1 |2 = ||v||2  ∑  | < v , wi ̅̅ ̅̅ ̅̅ ̅  > 𝑛

𝑖=1 |2 as   | z | = | z̅ |   

     || x ||2 = ||v||2  ∑  | < wi , v  > 𝑛
𝑖=1 |2      …..(2) 

Since || x ||2  0,  so by equation (2), we have  

   ||v||2  ∑  | < wi , v  > 𝑛
𝑖=1 |2   0   or  ∑  | < wi , v > 𝑛

𝑖=1 |2      ||v||2 for each v  V 

If the equality holds i.e. if  ∑  | < wi , v > 𝑛
𝑖=1 |2      ||v||2 , then from equation (2), we have  

  || x ||2 = 0 or  || x || = 0 

          x = 0 

So, v = ∑ αi wi 
𝑛
𝑖=1  = ∑  < v, wi > 𝑛

𝑖=1 wi 

Thus, if the equality holds, then v is linear combination of { w1 , …. ,wn }. 

Conversely, if v is a linear combination of { w1 , …. ,wn }, then we can write 

v = ∑ αi wi 
𝑛
𝑖=1 where αi = < v , wi >   

 So, x = 0    || x ||2  = 0 

 Hence from equation (2), we have 

    ||v||2  =   ∑  | < wi , v > 𝑛
𝑖=1 |2     i.e. equality holds. 

12.7 ORTHOGONAL COMPLEMENT 

Let V be an inner product space, and let S be any set of vectors in V. The orthogonal 

complement of S (written as S⊥ and read as S perpendicular or S perp.) is defined by  

   𝐒⊥ = { v  V : < u, v > = 0  ∀ u  S } 

Thus S⊥ is the set of all those vectors in V which are orthogonal to every vector in S. 

Theorem 8: Let S be any set of vectors in an inner product space V. Then S⊥ is a subspace of V. 
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Proof: By definition, S⊥ = { v  V : < u, v > = 0  ∀ u  S} 

Since < 0, u > = 0  ∀ u  S 

So, 0  S⊥ and thus S⊥  is not empty. 

Let x, y ∈ F and w1 , w2  S⊥ 

Then < w1 , u > = 0  u  S  and  

              < w2 , u > = 0  u  S   

So, < xw1 + yw2, u > =  x < w1 , u > + y < w2 , u > 

      = x.0 + y.0 = 0  u  S   

So,  xw1 + yw2  S⊥  w1 , w2  S⊥ and x, y  F 

Hence S⊥ is a subspace of V. 

Note: (1) Here we should note that S MAY NOT be a subspace of V while S⊥ is always a 

subspace  of V. 

(2)  Obviously, it can be observed that  V⊥ =  { 0̅ } and { 0̅ }⊥ = V. 

Orthogonal Complement of an orthogonal complement: Let S be any subset of an inner 

product space V. the S⊥ is a subset of B. 

We define (S⊥ )⊥ , written as S⊥ ⊥, by  

   S⊥ ⊥ = { v  V : < v, u > = 0 , ∀ u  S⊥ }  

Obviously S⊥ ⊥ is a subspace of V. 

Note: It is very easy to show that S   S⊥ ⊥  

Let u  S , then < u, v > = 0  v  S⊥ .  

So by definition of S⊥ ⊥, we conclude that u  S⊥ ⊥. So   S⊥ ⊥ 

Theorem 9: (Projection Theorem) Let W be any subspace of a finite dimensional inner product  
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 space V. Then (i) V = W  W⊥   (ii)  W⊥ ⊥ = W 

Proof: (i) By definition , W ⊥ = { v  V : < v, u > = 0 , ∀ u  W } , and W⊥ is a subspace of V. 

By the given hypothesis, W is also a finite dimensional inner product space and so W has an 

orthonormal basis.  

Let  S = { w1 , …. ,wm }  be an orthonormal basis of  W. 

      < wi , wj > = {
0,   if i ≠ j
1 , if i = j

       …..(1) 

Let v  V be arbitrary, 

Let w = ∑ αi wi 
𝑚
𝑖=1 , where αi = < v, wi >      …..(2) 

Now we assume x = v – w      …..(3) 

Then,  

    < x, wi > = < v – w, wi > = < v, wi >  < w, wi > 

        =  < v, wi >    < α1 w1 + …. + αm wm , wi > 

      =  < v, wi >  α1< w1 , wi > …. − αi< wi , wi >  …. − αm< wm , wi > 

       =  < v, wi >  0   ….   αi 

        = < v, wi >  − < v, wi >   

So, < x, wi > = 0 , for  i = 1, 2, …. , m.   …..(4) 

Since S is a basis of W, each u  W is expressible as 

    u = β1w1 +  β2w2 + …. + βmwm ;   βi  F 

We have ,  < x, u > = < x, β1w1 + …. + βmwm > 

            = βi̅ < x, w1 > + …. + βm
̅̅ ̅̅  < x, wm > 

              = βi̅ .0 + …. + βm
̅̅ ̅̅  . 0 = 0,     ( using eqn. 4 ) 
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So < x, u > = 0 ,  u  W 

      x  W ⊥ . 

From equation (3) , v = w + x where w  W and x ∈  W ⊥  

     V = W + W ⊥       …..(5) 

 Now we shall prove that W  W ⊥  = {0} 

 Let y  W  W ⊥ be arbitrary, 

  y  W and  y  W ⊥ 

 Now y  W ⊥   < y, u > = 0  u  W 

In particular,   < y, y > = 0 as y  W 

   y = 0 and W  W ⊥  = {0}      …..(6) 

  From equation (5) and (6) , we get  

   V = W  W⊥   

 (ii)   From part (i) , we have  

  V = W  W⊥         …..(7) 

Since W⊥ is a subspace of V, on replacing W by W⊥ in eqn (7), we get,  

  V = W⊥  W⊥ ⊥         …..(8) 

As V is finite-dimensional, so from eqns (7) & (8), we get  

  dim V = dim W + dim W⊥    …..(9) 

      and  dim V = dim W⊥ + dim W⊥ ⊥    

   dim W = dim W⊥ ⊥       …..(10) 

But we already know that W  W⊥ ⊥ . 
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So from equation (10), we have  

   W = W⊥ ⊥ 

Example 22: If S1 and S2 are subsets of an inner product space V, then show that  

   S1  S2   S2
⊥   S1

⊥  

Solution:  Let x  S2
⊥ , then < x, y > = 0 , for each y  S2. 

In particular, < x, z > = 0,  z  S1 as S1  S2   

    x  S1
⊥  

Hence S2
⊥   S1

⊥  

 Example 23: If W1 and W2 are subspaces of a finite-dimensional inner product space V, then 

prove that – 

(i) ( W1 + W2 )⊥ = W1
⊥ ∩  W2

⊥  

(ii) ( W1  W2 )⊥ = W1
⊥ + W2

⊥  

Solution: Since we know that  

       W1  W1 + W2 and W2  W1 + W2 

So by previous example, we have 

    (W1 + W2 )⊥  W1
⊥  and (W1 + W2 )⊥  W2

⊥  

So, (W1 + W2 )⊥ = W1
⊥ ∩  W2

⊥     …..(1) 

Now, suppose z  W1
⊥ ∩  W2

⊥  be arbitrary   

      z  W1
⊥   and   z  W2

⊥   

     < z , x > = 0 ,  x  W1  and   < z , y > = 0 ,  y  W2      …..(2) 

Now any t  W1
⊥ ∩  W2

⊥  can be written as  

      t = x + y for some x  W1 , y  W2  
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So    < z, t > = < z , x + y > = < z , x > + < z , y > 

            =  0 ,            (using eqn  (2) ) 

So, z  ( W1 + W2 )⊥  and hence  

               W1
⊥ ∩  W2

⊥ ⊂ ( W1 + W2 )⊥      ….(3) 

From equation (1) and (3) , we get 

          ( W1 + W2 )⊥ = W1
⊥ ∩  W2

⊥       ….(4) 

(ii)  Since W1
⊥  and  W2

⊥  are subspaces of V, so on taking W1
⊥  in place of W1  and W2

⊥  in place 

of W2 in eqn (4), we get  

         ( W1
⊥ +  W2

⊥ )⊥ = ( W1
⊥ )⊥ ∩  ( W2

⊥ )⊥  

So    ( W1
⊥ +  W2

⊥ )⊥  =  W1
⊥ ⊥ ∩  W2

⊥ ⊥   

                =   W1  W2      as W⊥ ⊥ = W 

     ( W1
⊥ +  W2

⊥ )⊥ ⊥   = ( W1   W2 )⊥ 

        W1
⊥ +  W2

⊥   =  ( W1  W2 )⊥ 

Example 24: Let W be a finite-dimensional proper subspace of an inner product space V. Let 

α ∈ V and α ∉ W. Show that there is a vector β ∈ V such that α − β is orthogonal to W. 

Solution: We know that every finite-dimensional inner product space has an orthonormal basis. 

Let { 1 , …., n } be an orthonormal basis of W. 

Let   = ∑ < 𝛼 ,n
i=1 αi > αi where <  , i >  F 

Then   W,      For each j, 1 ≤  j ≤  n we have  

          < α − β , j  > = < α − ∑ < 𝛼 ,n
i=1 αi > αi , j  > 

            = < α , j > − ∑ < 𝛼 ,n
i=1 αi > < αi , j  > 

            = < α , j > − < α , j >   as  < αi , j  > = δ ij  
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             = 0 

        < α − β , j  >  = 0, for all j =1, 2, …., n.   …..(1) 

Let w ∈ W be arbitrary, we can write 

      w  = ∑ ai
n
i=1 αi   where  ai  ∈ F 

We have < α − β ,   >  = < α − β , ∑ ai
n
i=1 αi > 

=   ∑ ai̅
n
i=1  < α − β , αi >   = 0 ,   by eqn  (1) 

   < α − β ,   >  = 0 ,   for each w ∈ W 

Hence α − β is orthogonal to W. 

 

12.8 RIESZ REPRESENTATION THEOREM 

Theorem 10: Let V(R) be a finite-dimensional linear functional f : V  R . Then there exists a 

unique y  V such that f(x) = < x , y > ,   x  V. 

Proof: Suppose there exists y  V such that  

   f(x) = < x , y > ,  for all x  V. 

Let us choose an orthonormal basis { e1 , …., en } of V 

Then y = ∑ αi
n
i=1  ei  for some  αi  R 

Now f  L (V, R) and f is completely determined if we know f (ei) for 1  i  n 

Now f (ei) = < ei , y > = αi for 1  i  n  

This suggest that we take y = ∑ f(ei)
n
i=1  ei 

It is easy to check that f(x) = < x , y > for all x  V 

For if x = ∑ αi ei , then  f(x) = ∑ αi f(ei)       …..(1) 
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Also < x , y >  = < x , ∑ f(ei) ei >  

    = < ∑ αj ej , ∑ f(ei) ei > 

    = ∑ f(ei) αji,j  < ei , ej >    

  …..(2) 

{
1 , i = j
0 , i ≠ j

        = ∑ f(ei) αi  as  < ei , ej >  =  δ ij = 

From equations (1) and (2) , we conclude that  

   f(x) = < x , y > for all x  Rn 

Uniqueness: Now, suppose z is such that, 

     f(x) = < x , z > for all x  V 

then, f(x) = < x , z > = < x , y > 

    <  x , z – y  > = 0 for all x. 

In particular, for x = z – y, we obtain 

     < z – y , z – y > = 0 

        z – y = 0  

             z = y 

So y is unique. 

Geometric Interpretation: 

If f = 0, then the obvious choice is y = 0.  

If f  0, then f is a linear form and W = ker f is of  

dimension n – 1, where n = dim V. 

Thus  there is a unit vector u perpendicular to W, for   
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 V = W  W⊥  ( that is , u is a unit normal to the “plane” ). y must therefore be a multiple 𝛼u of 

u. The choice of  is determined by the equation   

f(u) = < u , y >  = < u , 𝛼u >   = 𝛼  

Thus we take y = 𝛼u where 𝛼 = f(u) 

For  x  V, we have x = w + tu, where w  W and t  R 

Then f(x) = f(w + tu) = f(w) + t f(u) = t f(u) 

Also < x, y > = < w + tu, 𝛼u > =  𝛼 < w, u > + t 𝛼 < u , u > = t 𝛼 = t f(u) 

Hence the result. 

Theorem 11: For any linear operator T on a finite-dimensional inner product space V, there 

exists a unique linear operator T* on V such that  

   < T𝛼 , 𝛽 > = <  , T* 𝛽 > for all 𝛼 , 𝛽  V. 

Proof: Let T be a linear operator on a finite dimensional inner product space V over the field F. 

Let 𝛽  V and f be a functional from V into F defined by 

    f( ) = < T  ,  >  ∀ α ∈ V       …..(1) 

Here T  stands for T(α) 

Claim: f is a linear functional on V. 

 Let a , b  F and 1 , 2  V  , then 

  f ( a 1 + b 2 ) = < T( a 1 + b 2 )  ,  >   

     = < ( aT 1 + bT 2 )  ,  >   as T is linear 

    = a <  T 1 ,  >   + b <  T 2 ,  >   

    = a f ( 1) + b f ( 2) , using equation (1) 

Hence f is a linear functional on V. 
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So by Riesz representation theorem, there exists a unique '  V such that  

    f ( ) = <  , ' >   ∀ α ∈ V      …..(2) 

 From equations (1) and (2), we observe that if T is a linear operator on V, then corresponding to 

every vector  in V, there is a uniquely determined vector ' in V such that    

< T𝛼 , 𝛽 > = <  , ' >   ∀ α ∈ V    

Let us denote by T* the rule which associates  with ' i.e. let  T* β = '  

Then T* is a function from V in to V and is such that  

    < T𝛼 , 𝛽 > = <  , T*  >   ∀ α, β ∈ V      …..(3) 

Claim: T* is a linear operator on V. 

 Let a, b  F and 1 , 2  V . Then ∀ α ∈ V , we have  

  <  , T* (a 1 + b 2 ) >   = < T  ,  a 1 + b 2  >       using equation (3) 

     = a̅ < T  ,  1 > + b̅  < T  ,  2 > 

    = a̅ <   , T* 1 > +  b̅ <   , T* 2 >    again by (3) 

    =  <   , a T* 1 > +   <   , b T* 2 > 

    = <   , a T* 1 + b T* 2 > 

Hence T* (a 1 + b 2 ) =  a T* 1 + b T* 2 

Thus T* is a linear operator on V 

Hence corresponding to a linear operator T on V, there exists a linear operator T* on V  

such that ,    < T𝛼 , 𝛽 > = <  , T*  >   ∀ α, β ∈ V     

Uniqueness: Let S be a linear operator on V such that  

   < T𝛼 , 𝛽 > = <  , S  >   ∀ α, β ∈ V    
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Then  <  , T*  > = <  , S  >   ∀ α, β ∈ V    

       T*  = S           ∀ β ∈ V    

          T*  = S  

So T* is unique. 

Check your progress 

Problem 1: Let V be a vector space of all real polynomials of degree ≤ 2, with inner product 

   < f(x) , g(x) > = ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥
1

−1
 , ∀ f(x) , g(x) ∈ V 

 If f(x) = x2 + x – 4  and g(x) = x – 1, then find    

(i)   < f(x) , g(x) >     and    

(ii)  < g(x) , g(x) > 

Problem 2: Prove that  𝛼v  =   |𝛼| ∥ v , for all 𝛼  F , x ∈ V 

Problem 3: If {v1, v2, ….., vn } is an orthonormal set and if w = ∑  αi
𝑛
𝑖=1 vi    V,  Then prove 

that  αi = < w, vi > for i = 1, 2, …, n. 

12.9 SUMMARY 

In this chapter we understood the process of generalization from ordinary vectors to vector 

spaces. So other basic concepts viz angle, length, distance were also generalized respectively as 

inner product, norm, and metric. As we have studied orthogonal compotent of ordinary vectors, 

we studied here Gram-Schmidt orthogonalisation process. Besides this, we learned various 

concepts and applications of inner product. 

12.10 GLOSSARY 

 Inner Product: An inner product on a vector space V is a map < ,  > : V × V  R 

satisfying the following properties : 

(i) < x , x >  0 and < x , x > = 0 if and only if x = 0. 

(ii) < x , y >   =  < y , x > 
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(iii) <x + z , y >  = < x , y >  + < z , y >     and  < x , y + z >   = < x , y >   + < x , z >    

(iv) < ax , y >   = a < x , y >    x , y , z   V and a  R. 

 

 Norm of a Vector:  Let V be an inner product space. The norm function  ∥ .  : V  R has the 

following properties : 

(i)  x   0 and   x  = 0 if and only if x = 0 ; x ∈ V 

(ii)  𝛼x  =   |𝛼| ∥ x  , 𝛼  F , x ∈ V,  

Norm of a vector v  V is defined as   v  =  √< 𝑣, 𝑣 > . 

 Complete Orthonormal Set: An orthonormal set is said to be complete if it is not 

contained  in any larger orthonormal set.  

 Gram-Schmidt orthogonlisation Process: Every finite-dimensional inner product space  

has an orthonormal basis. 
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12.13    TERMINAL QUESTION 

1: Prove that for any 𝛼  R2 , we can write  𝛼 = < 𝛼 , 𝑒1  > 𝑒1 + < 𝛼 , 𝑒2  > 𝑒2 where 𝑒1 = (1, 

0) , 𝑒2 = (0, 1) 

2: Let V be a vector space over a field F. Let W1 and W2 be twp subspaces of V(F) such 

that W1 and W2 are two inner product spaces also. Then prove that – 

(i) A positive multiple of an inner product is also an inner product. 

(ii) Difference of two inner products may not be an inner product. 

3: Let V (R) be a vector space of polynomials with inner product defined by 
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  < f , g > = ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥
1

0
  

  If f(x) = x2 + 1 and g(x) = x – 1, then find < f, g > and  g   .  

12.14    ANSWERS 

Answers of check your progress: 

1. (i) 8   (ii) 8/3 

3. Given that {v1, v2, ….., vn } is an orthonormal set. So 

        < vi , vj > = {
0,    i ≠ j
1,    i = j

       …..(1) 

  We have , < w, vi > =  (𝛼1v1 + ….. + 𝛼nvn , vi ) 

              = 𝛼1 < v1 , vi > + …. + 𝛼i < vi , vi > + ….+ 𝛼n < vn , vi > 

             = 0 +….+  𝛼i + 0 + …. + 0 

       < w, vi >  = 𝛼i , for i = 1, 2, …., n. 

Answers of terminal question: 

2. (i) Let < u, v > be an inner product and λ > 0, λ ∈ R. Then it can be easily verified  

  that  λ< u, v > is also an inner product. 

(ii)  Difference of two inner products may not be positive. Now do it yourself.  

3.  < f , g > = 
−7

12
 and ∥ g  ∥  = 

1

√3
. 
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UNIT-13: OPERATORS 

CONTENTS 

13.1 Introduction 

13.2  Objectives  

13.3  Adjoint operator 

13.4   Self-adjoint operator 

13.5  Skew-symmetric and skew-Hermitian operator  

13.6 Positive operator 

13.7 Non-negative operator 

13.8 Unitary operator 

13.9 Normal operator 

13.10 Summary 

13.11 Glossary 

13.12   References 

13.13   Suggested Readings 

13.14 Terminal Questions 

13.15  Answers 

13.1 INTRODUCTION 

German mathematician David Hilbert, who lived from January 23, 1862, to February 14, 

1943, was a very influential mathematician of the late 19th and early 20th centuries. The 

foundations of geometry, the spectral theory of operators and its application to integral equations, 

the calculus of variations, commutative algebra, algebraic number theory, mathematical physics, 
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and the foundations of mathematics (especially proof theory) are just a few of the many 

fundamental concepts that Hilbert discovered and developed. 

Hilbert embraced and upheld the transfinite numbers and set theory of Georg Cantor. He 

introduced a set of issues in 1900 that paved the way for 20th-century mathematical research. 

Important tools utilized in modern mathematical physics were invented by Hilbert and his 

pupils, who also helped to establish rigor in the field. Hilbert was a pioneer in the fields of 

mathematical logic and proof theory. 

An inner product structure on a C-vector spaces induces a “mirrored” twin for every linear 

transformation, called the adjoint. Linear operators equal their own adjoints have many important 

properties. 

 

13.2 OBJECTIVES 

After reading this unit learners will be able to  

 Understand the basic concept of unitary operator and normal operator. 

 Understand the basic concept of adjoint operator and self-adjoint operator. 

 Understand the concept of skew-symmetric and skew-Hermitian operator. 

 Understand the concept of positive and non-negative operator. 

13.3 ADJOINT OPERATORS 
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Let T be a linear operator on an inner product space V (here V need not be finite dimensional). 

We say that T has an adjoint T* if there exists a linear operation T* in V  

  such that   < T𝛼 , 𝛽 > = <  , T*  >   ∀ α, β ∈ V     

Note: In previous unit, we have proved that every linear operator on a finite-dimensional inner 

product space posses an adjoint. But it should be noted that if V is not finite-dimensional, then 

some linear operator on V may possess an adjoint while the other may not. In any case if T 

possesses an adjoint T*, then it must be unique. Also observe that the adjoint of T depends not 

only upon T, but also on the inner product on V.  

Theorem 1: Let V be a finite-dimensional inner product space and let B = { 1 , …., n } be an 

ordered orthonormal basis for V . Let T be a linear operator on V and let A = [aij]m × n  be the 

matrix of T with respect to the ordered basis B. Then aij = < T j, i > 

Proof:  As B is an orthonormal basis for V, so for any β ∈ V , 

    = ∑ < 𝛽,n
i=1  αi > αi  

Replacing  by T j , we get  

   T j = ∑ < 𝑇 αj ,
n
i=1  αi > αi ;    j = 1, 2, ….., n   …..(1) 

Now if A = [aij]m × n  be the matrix of T in the ordered basis B, then we have  

   T j = ∑  aij 
n
i=1 αi  ;  j = 1, 2, ….., n    …..(2) 

Since the expression for Tαj as a linear combination of vectors in B is unique, so from equations 

(1) and (2), we have  

     aij = < T j , i >  ; 1  i  n, 1  j  n 

Corollary 1: Let V be a finite dimensional inner product space and let T be a linear operator on 

V. In any orthonormal basis for V, the matrix of T* is the conjugate transpose of the matrix of T. 

Proof: Let B = { 1 , …., n } be an orthonormal basis for V. Let A = [aij]m × n  be  the matrix of 

T in ordered basis B.  

Then    aij = < T j , i >     …..(1) 
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Now T* is also a linear operator on V.  

Let C = [cij]n × n   be the matrix of T* in the ordered basis B.  

Then    cij = < T* j, i >     …..(2) 

We have    cij = < T* j, i > = < αi, T∗αj
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  >  

         = < Tαi, 𝛼𝑗
̅̅ ̅̅ ̅̅ ̅̅ ̅ >     by definition of T*  

          =  aji̅̅ ̅  

So  C = [aji̅̅ ̅ ]n × n    and hence C = A*, where A*
 is the conjugate transpose of A. 

Note: It should be remembered that in this corollary the basis B is an orthonormal basis and not 

an ordinary basis. 

Theorem 2:  Let S and T be linear operators on an inner product space V and c  F. If S and T 

possess adjoints, the  operators S + T, cT, ST, T* will possess adjoints. 

Also (i) (S + T)* = S* + T*  

  (ii) (cT)* = c̅ T* 

 (iii) (S T)* = T* S* 

  (iv)  (T*)*  = T 

Proof: (i) As S and T are linear operators on V, so S + T is also a linear operator on V. 

Now for every   α, β ∈ V , we have  

  < (S + T) α ,   > = < S  + Tα ,   > = < S  ,   > + < T  ,   > 

         = <  , S*  > + <  , T*  > ,  by definition of adjoint 

        = <  , S*  + T*  >  

        =  <  , ( S* + T* )  > 

Thus for the linear operator S + T on V there exists a linear operator S* + T* on V such that 
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   < (S + T) α ,   > = <  , ( S* + T* )  >  for all α, β ∈ V 

Therefore, the linear operator S + T has an adjoint. By the definition and by the uniqueness of 

adjoint, we get 

   (S + T)* = S* + T* 

(ii) Since T is a linear operator on V, therefore cT is also a linear operator on V. For every 

α, β ∈ V, we have  

  < (cT) α ,   > = < cT α ,   > = c < T α ,   > = c <  α , T*  > 

    =  <  α , c̅ T*  >  = <  α , ( c̅ T* ) β > 

  < (cT) α ,   > =  <  α , (cT )*  > 

Thus for the linear operator cT on V ,  a linear operator (cT )*  or c̅ T* on V such that 

  < (cT) α ,   > = <  α , (cT )*  > ∀ α, β ∈ V. 

Hence the linear operator cT possesses an adjoint. By the definition and by the uniqueness of 

adjoint, we get 

    (cT)* = c̅ T* 

(iii) We observe that ST is a linear operator on V 

 Now ∀ α, β ∈ V  , we have 

   < (ST) α ,   > = < ST α ,   >  

    = < T α , S*  >    by definition of adjoint 

    =  <  α , T* S*  > 

    =  <  α , ( T* S* ) β > 

Thus for the linear operator ST on V  a linear operator T* S* on V such that  

  < (ST) α ,   > = <  α , ( T* S* ) β >  ∀ α, β ∈ V     



ADVANCED LINEAR ALGEBRA   MAT-505 
 

  

DEPARTMENT OF MATHEMATICS 

UTARAKHAND OPEN UNIVERSITY 
PAGE 319 

 

Therefore, the linear operator ST has an adjoint. By the definition and by the uniqueness of 

adjoint, we get  (S T)* = T* S* 

 (iv)  The adjoint of T i.e. T* is a linear operator on V. For every  α, β ∈ V, we have 

< T*  ,   > = < β, T∗α̅̅ ̅̅ ̅̅ ̅̅ ̅ >  

    = < T β, α̅̅ ̅̅ ̅̅ ̅̅  > 

     = <  ,T   > 

Thus for the linear operator T* on V, there exists a linear operator T on V such that 

   < T*  ,   > = <  ,T   > for all α, β ∈ V   

Therefore, the linear operator T* has an adjoint. By the definition and by the uniqueness of 

adjoint, we have (T*)*  = T 

Note: (1) If V is a finite-dimensional inner product space, then the result is true for arbitrary 

linear operators S and T. In a finite-dimensional inner product space, each linear operator 

possesses and adjoint. 

(2)  The operation of adjoint behaves like the operation of conjugation on complex numbers. 

13.4 SELF-ADJOINT OPERATORS 

Self-adjoint transformation: A linear operator T on an inner product space V is said to be self-

adjoint if           T*  = T 

A self-adjoint linear operator on a real inner product space is called symmetric while a  self-

adjoint linear operator on a complex inner product space is called Hermitian. 

e.g. the zero operator 0̂ and the identity operator I on any inner product space V are self-adjoint. 

For every α, β ∈ V, we have  

   < 0̂  ,   > = <  ,   > = 0 = <   ,   > = <   , 0̂    > 

   So    0̂* = 0̂ 

 Similarly, < I  ,   > = <   ,   > = <  , I   > 
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   So     I* = I 

13.5 SKEW-SYMMETRIC/ SKEW-HERMITION OPERATORS 

Skew-symmetric / skew-Hermitian operator: If a linear operator T on an inner product space 

V is such that     T*  = – T  

then T is called skew-symmetric or skew-Hermitian according as the vector space V is real or 

complex. 

Theorem 3: Every linear operator T on a finite dimensional complex inner product space V can 

be uniquely expressed as  

  T = T1 + iT2, where T1 & T2 are self-adjoint linear operators on V. 

Proof:  Let T = 
1

2
 (T + T*) + i (

T – T∗

2i
)  

Suppose T1 = 
T + T∗

2
 and T2 = 

T – T∗

2i
 

So, T = T1 + iT2       …..(1) 

Now  T1
∗ = (

T+ T∗

2
)∗ = 

1

2
 (T* + (T*)* ) = 

1

2
 (T* + T ) = T1 

So T1 is self-adjoint 

Again T2
∗ = [ 

1

2i
 (T  T*)]* = ( 

1

2i 
 

̅̅ ̅
) (T  T*)* = 

1

(−2i)
 (T*  T) 

   T2
∗ =  

1

2i
 (T  T*) 

So T2 is also self-adjoint. Thus T can be expressed as a sum of two self-adjoint operators. 

Uniqueness: Let T = U1 + iU2 where U1 and U2 are both self-adjoint linear operators.  

So,  T* = (U1 + iU2)
* = U1

∗ + i ̅U2
∗  = U1

∗  i U2
∗  = U1 – i U2 

So  T + T* = 2U1 or U1 = 
1

2
 (T  T*) = T1  

Similarly, T – T* = 2i U2 or U2 = 
1

2i
 (T  T*) = T2 

So T = T1 + iT2 = U1 + iU2 i.e. representation is unique. 
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Note: If T is linear operator on a complex inner product space V which is Not finite dimensional, 

then the above result will be still true provided, it is given that T possesses adjoint. 

Theorem 4: Every linear operator T on a finite-dimensional inner product space V can be 

uniquely expressed as   T = T1 + T2, where T1 is self-adjoint and T2 is skew. 

Proof: Let T = 
1

2
 ( T + T*) + 

1

2
 (T – T* ) 

where T1 =  
1

2
 ( T + T*) and T2 = 

1

2
 (T – T* ) 

then   T = T1 + T2     …..(1) 

Now T1
∗ = [ 

1

2
 (T  T*)]* = 

1

2
 ( T + T*)* =  

1

2
 (T* + T)  = T1 

So T1 is self-adjoint. 

Similarly T2
∗ = [ 

1

2
 (T  T*)]* = 

1

2
 (T – T*)* = 

1

2
 (T* – T) 

       T2
∗ = − 

1

2
 (T – T*) = –T2 

So T2 is skew. 

Hence T can be expressed as a sum of two linear operators where T1 in self-adjoint and T2 in 

skew. 

Uniqueness:  Let T = U1 + U2 , where U1 is self-adjoint and U2 in skew. 

Then   T* = (U1 + U2)
* = U1

∗ + U2
∗  = U1 – U2 

So     T + T * = 2U1
  or U1 = 

1

2
 (T  T*) = T1  

and    T – T* = 2 U2 or U2 = 
1

2
 (T  T*) = T2 

Hence    T = T1 + T2 = U1 + U2  

   The expression (1) for T is unique. 

Note: If T is a linear operator on an inner  product space V which is NOT finite-dimensional, 

then the above result will be still true provided T possesses adjoint. 
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Theorem 5: A necessary and sufficient condition that a linear transformation T on an inner 

product space V be 0̂  is that < T α,   > = 0,   α, β ∈ V 

Proof: Necessary condition: Let T = 0, then   α, β ∈ V , we have  

    < T α,   > = < 0̂ α,   >  = < 0,   >  = 0 

So the condition is necessary. 

Sufficient condition: Let T be a linear operator such that   

    < T α,   > = 0,   α, β ∈ V  

Taking  β =T , we get 

   < T α,  T α > = 0      α ∈ V 

       T α = 0         α ∈ V 

      T = 0̂   

Hence the condition is sufficient. 

Theorem 6: A necessary and sufficient condition that a linear transformation T on a unitary 

space be 0̂ is that    < T α, α > = 0      α ∈ V 

Proof: Necessary condition: Let T = 0̂  , then    α ∈ V 

   < T α, α > = < 0̂ α, α > = < 0, α > = 0 

Hence the condition is necessary. 

Sufficient condition: Let T be a linear operator satisfying  

     < T α, α > = 0      α ∈ V    …..(1) 

Replacing  by α +   , we get 

   < T (α +  β), α +   > = 0 
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  < Tα + Tβ, α +   > = 0 

   < Tα , α > + < Tα , β > + < Tβ , α > + < Tβ,   > = 0 

     < Tα , β > + < Tβ , α > = 0 ,   using (1) 

So    α, β ∈ V , we have 

   < Tα , β > + < Tβ , α > = 0     …..(1) 

Since above result is true    β ∈ V , so by replacing   and iβ, we get 

    < Tα , iβ > + < T iβ , α > = 0 

   i ̅< Tα , β > + i < Tβ , α > = 0 

   i < Tα , β > + i < Tβ , α > = 0 

      < Tα , β > + < Tβ , α > = 0    ….(2) 

Adding equation (1) and (2), we get 

   2 < Tβ , α > = 0 

    < Tβ , α > = 0    α, β ∈ V  

Let  = Tβ , then 

     <  Tβ,  Tβ  > = 0    ∀  β ∈ V 

    Tβ = 0      ∀  β ∈ V 

    T = 0̂  

Hence the condition in sufficient. 

Note: (1) Above result may fail for Eulidean space, e.g., let us consider V2(R) with standard 

inner product space. Let T be a linear operator on V2(R) defined as 

   T(a, b) = (b, -a)             (a, b)  ∈ V2(R) 
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Then obviously T  0̂ . But 

     < T(a, b),  (a, b) > = < (b, -a),  (a, b) >  

           = ba – ab = 0 

  So < T α, α > = 0      α ∈ V2(R) , through T  0̂. 

(2)  However if T is self-adjoint then the above theorem is true for Euclidean spaces also. 

Finally, we have the following theorem – 

Theorem 7: A necessary and sufficient condition that a self-adjoint linear transformation T on 

an inner product space V be 0̂ is that  

    < T α, α > = 0  , for all  α ∈ V 

Proof:  Necessary part is same as in previous theorem. 

Sufficient condition: Let   < T α, α > = 0      α ∈ V 

So  < T (α +  β), α +   > = 0     α, β ∈ V 

     < Tα + Tβ, α +   > = 0 

   < Tα , α > + < Tα , β > + < Tβ , α > + < Tβ,   > = 0 

     < Tα , β > + < Tβ , α > = 0  

    < Tα , β > + < β , T*  > = 0 

   < Tα , β > + < β , T  > = 0 , as given T = T*   …..(1) 

Now two cases may arise – 

Case I: If V is a complex inner product space. Then do as in previous theorem. 

Case II: If V is a real inner product space. 

Then  < β , T  > = < Tα , β > as  < α , β > = <  β, α  ̅̅ ̅̅ ̅̅ ̅ > = < β, α > 

So from equation (1), we have 
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     2 < Tα , β > = 0 or   < Tα , β > = 0    α, β ∈ V 

Let us put  = Tα  

    < Tα , Tα > = 0   α ∈ V 

       Tα  = 0    α ∈ V 

        T = 0̂ 

Theorem 8: A necessary and sufficient condition that a linear transformation T on a unitary 

space (of any dimension) be self-adjoint (Hermitian) is that, 

   < Tα , α >  be real    α ∈ V 

Proof: Necessary condition: Let T be self-adjoint operator on a unitary space V i.e. T* = T. 

Then for every α ∈ V , we have 

   < Tα , α >  = < α , T*  >   = < α , T  >   = <  Tα , α̅̅ ̅̅ ̅̅ ̅̅  > 

    < Tα , α >   is real     α ∈ V 

Sufficient condition: Let < Tα , α >   be real   α ∈ V. We have to prove that T* = T. For every 

α, β ∈ V , we have  

  < T (α +  β), α +   > = < Tα + Tβ, α +   >   

   < T (α +  β), α +   > = < Tα , α > + < Tα , β > + < Tβ , α > + < Tβ,   >          ....(1) 

Since  < T (α +  β), α +   > , < Tα , α >  and < Tβ , β >   are real. 

   < Tα , β > + < Tβ , α >  must be real 

So   < Tα , β > + < Tβ , α >  = <  𝑇α , β >  + <  𝑇β , α >̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  

         = <  Tα , β ̅̅ ̅̅ ̅̅ ̅̅  > + <  Tβ , α ̅̅ ̅̅ ̅̅ ̅̅  > 

        =  < β , Tα > +  < α , Tβ > 
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So  α, β ∈ V , we have 

   < Tα , β > + < Tβ , α >  = < β , Tα > +  < α , Tβ >         ….(2) 

Replacing  by  i  in equation (2), we get 

  < Tα , iβ  > + < T iβ  , α >  = <  iβ  , Tα > +  < α , T iβ  > 

    i ̅< Tα , β > + i < Tβ , α >  =  i < β , Tα > + i ̅ < α , Tβ > 

   i < Tα , β > + i < Tβ , α >  =  i < β , Tα >  − i < α , Tβ > 

   < Tα , β > +  < Tβ , α >  =   < β , Tα >  −  < α , Tβ >    …(3) 

on  equation(2) – equation(3), we get 

    < Tα , β > = < α , Tβ > 

    < Tα , β > = < α , Tβ > 

   < Tα , β > = < T* α , β >   α, β ∈ V 

     T = T*  

Note: If V is finite-dimensional, then we can take advantage of the fact that T must possess 

adjoint. So in this case, the converse part of the theorem can be easily proved as:  

Since < Tα , α >  is real   α ∈ V 

So,   < Tα , α >   = <  Tα , α̅̅ ̅̅ ̅̅ ̅̅  > = <  α , T∗α̅̅ ̅̅ ̅̅ ̅̅ ̅ > = < T∗α , α >    

    < Tα − T∗α, α >   = 0    α 

    < (T − T∗)α , α >   = 0    α ∈ V  (by previous theorem) 

    T − T∗ = 0̂  or   T = T* 

Example 1:  Let V = V2(C) with standard inner product. Let T be the linear operator defined by 

  T(1, 0) = (1, -2) and T(0, 1) = (i, -1) 
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If   = (a, b)  V2(C) , then find T*  

Solution: Obviously B = {(1,0), (0, 1)} is an orthonormal basis of V. Let us find [T]B i.e. 

   T(1, 0) = (1, -2) = 1(1, 0) – 2(0, 1) 

   T(0, 1) = (i, -1) = i(1, 0) – 1(0, 1) 

     [T]B = [
1 i

−2 −1
 ]   [T* ]B = [

1 −2
−i −1

 ]  

Now, (a, b) = a(1, 0) + b(0, 1). So coordinate matrix of T* (a, b) in B is  

   = [
1 −2
−i −1

 ] [
𝑎
𝑏
] = [

a −2b
−ia −b

], 

  T* (a, b) = (a – 2b) (1, 0) + ( ia – b) (0, 1) = (a – 2b, ia – b) 

 Example 2: A linear operator on R2 is defined by  

   T(x, y) = (x + 2y, x – y ) 

Find the adjoint T*, if the inner product is standard one. 

Solution: Let B = {(1, 0) , (0, 1)} be an orthonormal basis of V, We find [T]B. By given rule. 

   T(1, 0) = (1, 1) and t(0, 1) = (2, -1). 

So  [T]B = [
1 2
1 −1

] 

The matrix of T* in the ordered basis B is the transpose of the matrix [T]B. 

So [T*]B = [
1 1
2 −1

] 

The coordinate matrix of T*(x, y) in the basis B  

   = [
1 1
2 −1

] [
𝑥
𝑦] =  [

𝑥 + 𝑦
2𝑦 − 𝑦

] 

So T*(x, y) = (x + y, 2x – y) 

Example 3: Let T be a linear operator on V2(C) defined by  
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   T(1, 0) = (1+ i, 2) ; T(0, 1) = (i, i) 

Using the standard inner product – 

(i) Find the matrix of T* in the standard ordered basis 

(ii) Does T commute with T* ? 

Solution: (i) T(1, 0) = (1 + i, 2) = (1 + i) (1, 0) + 2(0, 1) 

   T(0, 1) = (i, i) = i(1, 0) + i(0, 1) 

  So    [T]B = [
1 + i i

2 i
 ]   

Then   [T*]B = [
1 − i 2
−i −i

] 

  (ii)    [T]B [T
*]B = [

1 + i i
2 i

 ]  [
1 − i 2
−i −i

] = [
3 3 + 2i

3 − 2i 5
] 

   [T*]B  [T]B = [
1 − i 2
−i −i

] [
1 + i i

2 i
 ]  = [

6 3i + 1
−3i + 1 2

] 

Since [T]B [T
*]B  ≠  [T

*]B  [T]B  

       [T T*]B  ≠  [T
* T]B  

So     T T*
  ≠  T

* T 

Example 4: Prove that the product of two self-adjoint operators on an inner product space is 

self-adjoint iff the two operators commute. 

Solution: Let T and S be two self-adjoint operators s.t.  T* = T  and S* = S 

IF PART: Let T and S commute i.e. TS = ST 

Now,    (TS)*  = S* T* 

          = S T 

          = T S  

So TS is also self-adjoint. 

ONLY IF PART: Let ST be self-adjoint 
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  (ST)* =  ST 

  T* S* = ST 

  T S = S T 

i.e. S and T commute 

Example 5: Let   α, β ∈ V and T is a linear transformation on V. Also if  f( ) = <  β , Tα ̅̅ ̅̅ ̅̅ ̅̅  >,  

α ∈ V , then prove that f is a linear functional. Also find a vector ' such that  f( ) = < α , ' >    

α ∈ V 

Solution:  (i)  Given that       f( ) = <  β , Tα ̅̅ ̅̅ ̅̅ ̅̅  >,  α ∈ V 

So f is a function from V into F. Let a, b  V and 1 , 2  V . Then  

   f(a 1 + b α2)   = <  β , T(aα1  +  b α2)  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ > = < T(aα1  +  b α2) ,  > 

    =  a < Tα1 ,  > + b < Tα2 ,  > 

    = a <  β , Tα1 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ > + <  β , Tα2 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ > = a f(α1) + b f(α2) 

So f is a linear functional on V. 

(ii) If V is finite dimensional , then there exists a unique vector  ' such that  

    f( ) = < α , ' >    α ∈ V 

We have f( ) = <  β , Tα ̅̅ ̅̅ ̅̅ ̅̅  > = < Tα ,  >  =  < α , T*  >    

     if f( ) = < α , ' >    , then  

   < α , T*  >  = < α , ' >     

Hence  = T*  

Example 6: Let V be a finite-dimensional inner product space and T be a linear operator on V. If 

T is invertible, then prove that T* is invertible and (T*)−1 = ( T−1)*. 

Solution: Suppose T is invertible. Then  
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    T T−1 = I  

       (T T−1)* = I* 

       ( T−1)* T* = I    as I* = I 

     ⇒  T* is also invertible and (T*)−1 = ( T−1)*. 

Example 7: Let T be a linear operator on a finite-dimensional inner product space V. Then T is 

self-adjoint iff its matrix in every orthonormal basis is a self-adjoint matrix. 

Solution: Let B be any orthonormal basis for T. Then  

   [ T*]B = [ T ]B
∗       …..(1) 

IF PART: Let T be self-adjoint i.e. T = T*. Then from (1), [T]B = [ T ]B
∗  i.e. [T]B is a self-adjoint 

matrix. 

ONLY IF PART: Let [T]B be a self-adjoint matrix. Then [T]B = [ T ]B
∗   

         = [ T*]B  ;  using eqn (1) 

       T = T* 

Example 8: If T is a self-adjoint linear operator on a finite dimensional inner product Space V, 

then det(T) is real. 

Solution: Let B be any orthonormal basis for V.  Then  

    [T*]B = [T ]B
∗    

But  T* = T   ⇒   [T]B = [T ]B
∗      …..(1) 

Let   [T]B = A    A = A* 

det  A = det (A*) = det (A)̅̅ ̅̅ ̅̅ ̅̅ ̅ = det (A) is real. 

Example 9: If T is self-adjoint, then  S* TS is self-adjoint   S. Conversely if S is invertible and 

S* TS is self-adjoint, then T is self-adjoint. Prove both results. 

Solution: Given that T is self-adjoint, so T* = T. Now (S* TS)* = S* T* (S*)* = S* TS  
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So   S* TS is self-adjoint. Now, conversely, let S be invertible, then S* in also invertible. If S* TS 

is self-adjoint , then  

     (S* TS)* = S* TS 

     S* T* S = S* TS 

So   (S*)−1 (S* T* S) S−1 = (S*)−1 (S* T S) S−1  

   ((S*)−1 S*)  T* (SS−1) = ((S*)−1 S*)  T (SS−1) 

     I T* I = I T I 

    T* = T   

or T is self-adjoint. 

Example 10: Let V be a finite-dimensional inner product space, and T be any linear operator on 

V. Suppose W is a subspace of V which is invariant under T. Then prove that the orthogonal 

complement of W is invariant under T*. 

Solution:  Given that W is invariant under T. 

Claim:  W⊥ is invariant under T*.Let     W⊥ be arbitrary. Then we shall prove that T* B is in 

W⊥ i.e. T* B is orthogonal to every vector in W. Let    W . Then  

   < α , T*  >  = < Tα ,  >    

            = 0  , since    W  T   W and  is orthogonal to every vector in W. 

So T*  is orthogonal to every vector   W 

So T*  is in W⊥. 

    W⊥ is invariant under T*. 

13.6 POSITIVE OPERATOR 

Positive operator: A linear operator T on an inner product space V is called positive (in 

symbols, T > 0), if –  
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(i) T is self adjoint i.e. T* = T, and  

(ii) < Tα ,  >  > 0    0 

If  = 0, then < Tα ,  > = 0. Hence if T is positive, then < Tα ,  >  ≥  0     V and  < Tα ,  > 

= 0    = 0. 

13.7 NON-NEGATIVE OPERATOR 

Non-Negative operator: A linear operator T on an inner product space V is called non-negative, 

if –  

(i) It is self-adjoint , and  

(ii) < Tα ,  >  ≥  0     V 

Note: (1) Every positive operator is also a non-negative operator. 

(2) If T is a non-negative operator, then < Tα ,  > = 0 , is possible even if   0. So a non-

negative operator may not be a positive operator  

(3) If S and T are two linear operators on an inner product space V, then we define 

         S > T if S – T > 0 

(4) Some authors say a positive operator as ‘positive definite’. 

Theorem 9: Let V be an inner product space and T be a linear operator on V. Let ‘p’ be the 

function defined on ordered pairs of  ,   V by  

   p( , ) = < Tα ,  >   

Then the function p is an inner product on V iff T is a positive operator. 

Proof: Step I: Let a, b  F and  1 , 2  V . Then  

   p (a 1 + b α2, )   =  < T(aα1  +  b α2) ,  > = < Taα1  +  Tbα2) ,  > 

    =  a < Tα1 ,  > + b < Tα2 ,  > 

    = a p(α1 ,  ) + b p(α2 ,  ) 

So the function p satisfies linearity property. 
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Step II: Now the function p will be an inner product on V if and only if    

      p( , ) = p(β, α ) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and p( , ) > 0,   0 

So we have p( , ) = < Tα ,  >   

      p(β, α ) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =  < Tβ , α ̅̅ ̅̅ ̅̅ ̅̅  > = < α , T  >  

Also   p( , ) = < Tα , α > . 

Hence the function p will be an inner product on iff 

(i) < Tα ,  >   = < α , T  >  ,   V i.e.  T is self-adjoint. 

(ii) < Tα , α >  > 0  if    0 

Hence the function p will be an inner product on V iff the linear operator T is positive. 

Note: Now we shall show that if V is finite-dimensional, then every inner product on V is of  the 

type as discussed in next theorem – 

Theorem 10: Let V(F) be a finite-dimensional inner product space with inner product < , > . If p 

is any inner product on V, there is a unique positive linear operator T on V such that  p( , ) = < 

Tα ,  >   ,   V. 

Proof:  Let   V be a fixed vector and f : V → F such that  

   f( ) = p( , )  ∀   V 

As we have seen, p satisfies linearity property, so f is a linear functional on V. Hence by Riesz 

representation theorem, there exists a unique vector  ' in such that  

   f( ) = < α , ' >    in V 

    p( , ) = < α , ' >    in V 

Let us define T : V → V such that T β = '. 

So      p( , ) = < α , T  >   ,   V   …..(1) 

We also have, p( , ) = < α , T  >   
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   p( , ) = p(β, α ) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ , by conjugacy property of inner product p 

    = < β , T α ̅̅ ̅̅ ̅̅ ̅̅  > = < T α ,  > 

Thus, we have, p( , ) = < T α ,  >  ,   V  …..(2) 

Linearity of T: Let 1 , 2  V and a1 , a2  F. Then for all r  V, we have 

    < T(a1α1  +  a2α2) , r > =  p(a1α1  +  a2α2 , )    

             =  a1 p(α1 , )   + a2 p(α2 , )   , by linearity of p 

          =  < (a1Tα1  +  a2T α2) , r >, by linearity of inner product < , > 

So, we have, T (a1α1  +  a2α2) = a1Tα1  + a2T α2 

Hence T is a linear operator. Thus, we have proved the existence of a linear operator T with p( , 

) = < T α ,  >. Since p is an inner product, so by previous theorem, T is positive. 

Uniqueness: Suppose there are two linear operators T and U such that 

    p( , ) = < T α ,  > = < U α ,  >   ,   V 

Then < T α − U α ,  >  = 0  ,   V   …..(3) 

Let us keep  fixed. Then from equation (3), we see that the vector T α − U  is orthogonal to 

every vector  in  V.  

Therefore T α − U  = 0, ∀ α   V 

       T α = U  , ∀ α   V 

Hence T is unique. 

Theorem 11: Let V be a finite-dimensional inner product space and T a linear operator on V. 

Then t is positive if and only if there is an invertible linear operator U on V such that T = U* U. 

Proof: Let T = U* U, where U in an invertible linear operator on V. 

  Since T* = (U*U)*
   = U*(U*)* = U*U = T 
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So T is self-adjoint. Also, 

  < Tα , α >  = <  U*Uα , α >  = <  Uα , U** α > =  <  Uα , U α >  0 

 Also < Tα , α >  = 0    <  Uα , U α > = 0    U  = 0  

     α  = 0, as U in invertible and V is finite-dimensional, so U is non-singular. 

 So if α   0, then < Tα , α >   0   

 Hence T is positive. 

 Conversely, suppose T is positive.Then p( , ) = < T α ,  > is an inner product on V. Suppose 

{ α1 , …., n } be a basis for V which is orthonormal with respect to the inner product <  ,  > and 

let { β1 , …., n} be a basis orthonormal with respect to the inner product p. So,   

     p( i , j) = ij = < i , j >  

Now, let U be the unique linear operator on V such that U βi = i ; i = 1, 2, …., n. Obviously U is 

invertible, because it carries a basis onto a basis. We have 

   p( i , j) = < i , j > = < U i , U j > 

Now let ,   V ; such that 

      = ∑ xiβi
n
i=1   and  β  = ∑ yjβj

n
j=1   . Then  

     < T α ,  >  =  p( , )  

 < T α ,  >  = p (∑ xiβi
n
i=1  , ∑ yjβj

n
j=1  ) = ∑ ∑ xiyj̅

𝑛
j=1

𝑛
𝑖=1  𝑝(βiβj) 

          = ∑ ∑ xiyj̅
𝑛
j=1

𝑛
𝑖=1 < Uβi, Uβj > = <  ∑ xiU βi

n
i=1  , ∑ yjU βj

n
j=1   > 

         = < U ∑ xiβi
n
i=1  , U ∑ yjβj

n
j=1  > =  < U , U β >  = < U* U ,  > 

Thus  ,   V , we have  

    < T α ,  >  = < U* U ,  >  

  T = U* U 
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Positive Matrix: Let A = [aij]n × n be a square matrix of order n over the field of R or C, then A 

is said to be positive if :  

(i) A* = A, and 

(ii) ∑ ∑ aij xi̅
𝑛
j=1

𝑛
𝑖=1  xj  > 0, where x1 , …., xn

   F and not all zero 

Principal Minors of a Matrix: Let A = [aij]n × n be a an arbitrary field F. The principal minors 

of A are the n scalars defined as – 

der A(K) = det (

a11 ⋯ a1K

⋮ ⋱ ⋮
aK1 ⋯ aKK

) , where K = 1, 2, …, n. 

Suppose A = [aij]n × n over R or C. Then A is positive if the principal minors of A are all 

positive. (Its converse is also true). 

Example 1: Which of the following matrices are positive – 

 (i)  [
1 1 + i 

1 − i 3
]   (ii)  [

1 2 
3 4

]     (iii) 

[
 
 
 
 1

1

2

1

3
1

2

1

3

1

4
1

3

1

4

1

5]
 
 
 
 

 

Solution: (i) Here obviously A* = A. So A is self-adjoint. Now principal minors of A are 1 and 

 |
1 1 + i

1 − i 3
| i.e.  1 and 1. 

So both the principal minors of A are +ve . Hence A is a +ve matrix. 

(ii)    It is not self-adjoint. Hence it is not positive. 

 (iii)   Here    A* = A. Also all the principal minors viz 1, 

 [
1

1

2
 

1

2

1

3

] and |
|

1
1

2

1

3
1

2

1

3

1

4
1

3

1

4

1

5

|
|  are positive (verify). Hence A is positive. 

Example 2: Prove that every entry on the main diagonal of a positive matrix is positive. 

Solution: Let A = [aij]n × n be a positive matrix. So  
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   ∑ ∑ aij xi̅
𝑛
j=1

𝑛
𝑖=1  xj  > 0,     ….(1) 

where x1 , …., xn
  are any n scalars (not all zero). Now suppose that out of n scalars x1 , …., xn

  , 

we take xi = 1 and each of the remaining (n – 1) scalars is taken as zero. Then from equation (1), 

we conclude that aii > 0   i. Hence each entry on the main diagonal of a +ve matrix is positive.  

13.8 UNITARY OPERATOR 

Definition: In a inner product space V, let T be a linear operator. Then the operator T is called 

unitary operator if adjoint *T of T exist and ITTTT  **  

Note 1: In a finite dimensional inner product space T is unitary iff ITT *  

2: A linear operator T on a finite dimensional inner product space V is unitary iff T preserve inner 

product. 

13.9 NORMAL OPERATOR 

In this section we will learn about the important topic in inner product space. 

Definition: Let in a inner product space V, T be a linear operator. Then the operator T is called 

normal operator or normal if it commutes with its adjoint i.e., TTTT **  . 

Note 1: If vector space is of finite dimensional then *T will definitely exist. 

2: If vector space is not of finite dimensional then definition will make sense only if T possesses 

adjoint.  

Theorem 12: Every self-adjoint operator is normal. 

Proof: Let we consider T be a self-adjoint operator then obviously, TT * . 

Therefore, we can say that TTTT **  , 

Hence T is normal 

Theorem 13: Every unitary operator is normal. 

Proof: Let we consider T be a unitary operator then obviously, ITTTT  **  

Therefore, we can say that TTTT **  , 

Hence T is normal. 

Theorem 14: Let in a inner product space V, T be a normal operator. Then a necessary and 

sufficient condition that   be a characteristic vector of T is that it be a characteristic vector of *T

. 

Proof: Let us consider T be a normal operator on an inner product space V. If V , then we 

have, 

),(),(),()( **2
 TTTTTTT   



ADVANCED LINEAR ALGEBRA   MAT-505 
 

  

DEPARTMENT OF MATHEMATICS 

UTARAKHAND OPEN UNIVERSITY 
PAGE 338 

 

)(),( ***  TTT   

Since T is normal and if V ,  

 *TT                     ……….. (1) 

If c be scalar, then (1) can be written as 

IcTIcTcIT  ****)(  

Now we have to show, cIT   is normal. 

We have, ))(())(( ** IcTcITcITcIT   

        IcccTTcTT  **  

Also ))(()()( ** cITIcTcITcIT   

       IcccTTcTT  **  

As we know T is normal. So,  

)()())(( ** cITcITcITcIT   

Thus, )( cIT   is normal. Now from (1), 

VcITcIT   )()())(( *
 

VIcTcIT   )()()( **                   ………. (2) 

By equation (2) we can say that, 

0)(0)( *   IcTiffcIT  

i.e.,  cTiffcT  *)(  

Thus, we can say that  is a eigen vector of T corresponding to the eigen value c if and only if it 

is a characteristic vector of *T  corresponding to the eigen value c . 

Remark 1: The characteristic vector for T belonging to distinct characteristic values is 

orthogonal if T is a normal operator on an inner product space V.   

2: In a normal operator's characteristic spaces are pairwise orthogonal to each other. 

Definition (Normal matrix): A square order complex matrix A is called normal if, 

AAAA **  . 

If matrix is diagonal matrix D, then obviously 

DDDD **   

Remark 1: A unitarily equivalent to a diagonal matrix iff matrix is normal. 
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Solved example 

Example 1: If in a inner product space V, T be a normal operator. Then cT is also a normal 

operator for any scalar c.  

Proof: We have given that T be a normal operator i.e., TTTT **   

Since, **)( TccT   

Now, )())(())(( *** TTccTccTcTcT   

Again, ))(())(()()( *** TTcccTTccTcT   

Thus we can say, )()())(( ** cTcTcTcT   

Hence, cT is normal. 

Example 2: In a inner product space V, if 
21,TT  are normal operator with the property that either 

commutes with the adjoint of other, then prove that 
21 TT   and 21TT  are also normal operator. 

Solution: We have given 
21,TT are normal. Therefore,  

1

*

1

*

11 TTTT   and 2

*

2

*

22 TTTT   

According to question it is given that, 

1

*

2

*

21 TTTT   and 2

*

1

*

12 TTTT   

Now, ))(())((
*

2

*

121

*

2121 TTTTTTTT   

*

22

*

12

*

21

*

11 TTTTTTTT   

*

222

*

11

*

2

*

11 TTTTTTTT   

)()( 21

*

221

*

1 TTTTTT  ))(( 21

*

2

*

1 TTTT   

)()( 21

*

21 TTTT   

Thus, 
21 TT   is normal. 
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Now, 
*

1

*

221

*

1

*

221

*

2121 )())(( TTTTTTTTTTTT   

*

12

*

21 )( TTTT  

))((
*

12

*

21 TTTT  

))(( 2

*

11

*

2 TTTT  

2

*

11

*

2 )( TTTT  

21

*

1

*

2 )( TTTT  

)()())(( 21

*

2121

*

1

*

2 TTTTTTTT   

Thus, 21TT  is normal. 

Example 3: In a finite dimensional complex inner product space let T be the linear operator. 

Show that T is normal if and only if its real and imaginary parts commute. 

Solution: Let 
21 iTTT  . Then 1

*

1 TT   and 2

*

2 TT  . Let we assume that 
1221 TTTT   then we 

have to prove that T is normal. 

We have, 21

*

2

*

1

*

21

* )( iTTTiTiTTT   

2

21221

2

12121

* ))(( TTiTTiTTiTTiTTTT 
2

2

2

1 TT           [ ]1221 TTTT   

Also, 
2

2

2

1

2

21221

2

12121

* ))(( TTTTiTTiTTiTTiTTTT   

TTTT **  . Hence T  is normal. 

Conversely, we assume that T  is normal then we have to prove that TTTT **  . 

2

21221

2

1

2

21221

2

1 TTiTTiTTTTiTTiTT   

0)(2 1221  TTTTi  

01221  TTTT               [ ]02 i   



ADVANCED LINEAR ALGEBRA   MAT-505 
 

  

DEPARTMENT OF MATHEMATICS 

UTARAKHAND OPEN UNIVERSITY 
PAGE 341 

 

1221 TTTT   

Check your progress 

Problem 1: In a finite dimensional complex inner product space let T be the linear operator. 

Show that T is normal if and only if its real and imaginary parts commute. 

Solution: Let 
21 iTTT  . Then 1

*

1 TT   and 2

*

2 TT  . Let we assume that 
1221 TTTT   then we 

have to prove that T is normal. 

We have, 21

*

2

*

1

*

21

* )( iTTTiTiTTT   

2

21221

2

12121

* ))(( TTiTTiTTiTTiTTTT 
2

2

2

1 TT           [ ]1221 TTTT   

Also, 
2

2

2

1

2

21221

2

12121

* ))(( TTTTiTTiTTiTTiTTTT   

TTTT **  . Hence T  is normal. 

Conversely, we assume that T  is normal then we have to prove that TTTT **  . 

2

21221

2

1

2

21221

2

1 TTiTTiTTTTiTTiTT   

0)(2 1221  TTTTi  

01221  TTTT               [ ]02 i  

1221 TTTT   

Problem 2: Let S and T be two positive linear operators on an inner product space V. Then 

prove that S + T is also positive operator. 

Solution: Given S* = S and T* = T 

So  (S + T)* = S* + T* = S + T 

So  S+ T is self adjoint. 

Also, if    V, then 

 < (S+T) α,  > =  < S α +T α,  > = < S α ,  > + < T α ,  > 
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But S and T are positive. So   < S α ,  >  0 and < T α ,  >  0 . 

     < (S+T) α,  >  0. 

Hence S + T is positive. 

Problem 3: Let V be a finite-dimensional inner product space and T be a self- adjoint linear 

operator on V. Prove that the range of T is the orthogonal complement of the null space of T i.e.   

R(T) = [N(T) ]⊥. 

Solution: Let   R(T). Then  a vector   V such that   = T . Let r be an arbitrary vector of 

[N(T) ]⊥ . Then Tr = 0  

We have  

  < α , r > = < T β , r >  = < β , T*r > = < β , Tr > as T* = T 

     =   < β , 0 > = 0 

Thus < α , r > = 0   ∀  r ∈ N(T) 

So,   ∈  [N(T) ]⊥  R(T)  [N(T) ]⊥    …..(1)  

Since V = N(T)  [N(T) ]⊥ 

   dim V = dim N(T) + dim [N(T) ]⊥    …..(2) 

By Rank- nullity theorem, we have 

   dim V = dim R(T) + dim N(T)    …..(3) 

So we conclude that dim R(T) = dim [N(T) ]⊥   …..(4) 

From equation (1) and (4) , we conclude that  

    R(T) = [N(T) ]⊥ 

13.10 SUMMARY 

In this unit we have learned about the most essential tool name as operators used in inner product 

space like adjoint operator, self-adjoint operator, skew-symmetric operator, positive operator, 
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unitary operator and normal operator. Mostly, the uses of these operators to solve out the matrix 

problems. Other important concepts introduced in this unit were: 

 Every self-adjoint operator is normal. 

 Every unitary operator is normal 

 The operation of adjoint behaves like the operation of conjugation on complex numbers 

 Every positive operator is also a non-negative operator 

13.11 GLOSSARY 

 Unitary operator 

 Normal operator 

 Adjoint operator 

 Self-adjoint operator 

 Skew-symmetric or Hermitian operator.  

13.12   REFERENCES 
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13.14    TERMINAL QUESTION 

Long answer type question 

1: Let S and T be linear operators on an inner product space V and c  F. If S and T possess 

adjoints, then prove that the operators S + T, cT, ST, T* will possess adjoints. 

2: Prove that Every linear operator T on a finite dimensional complex inner product space V 

can be uniquely expressed as  
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 T = T1 + iT2, where T1 & T2 are self-adjoint linear operators on V. 

3: Prove that every linear operator T on a finite-dimensional inner product space V can be 

uniquely expressed as   T = T1 + T2, where T1 is self-adjoint and T2 is skew. 

4: Prove that the necessary and sufficient condition that a linear transformation T on a 

unitary space (of any dimension) be self-adjoint (Hermitian) is that, 

   < Tα , α >  be real    α ∈ V 

Short answer type question 

1: Let V be a finite-dimensional inner product space and let B = { 1 , …., n } be an 

ordered orthonormal basis for V . Let T be a linear operator on V and let A = [aij]m × n  be 

the matrix of T with respect to the ordered basis B. Then prove that aij = < T j, i >. 

2: In any orthonormal basis for V and T be the linear operator on V, then prove that the 

matrix of T* is the conjugate transpose of the matrix of T. 

3: Prove that the necessary and sufficient condition that a linear transformation T on an 

inner product space V be 0̂  is that < T α,   > = 0,   α, β ∈ V 

4: Prove that the necessary and sufficient condition that a linear transformation T on a 

unitary space be 0̂ is that < T α, α > = 0      α ∈ V 

5: A linear operator on R2 is defined by  

   T(x1, y1) = (x1+ 2y1, x1 – y1) 

Find the adjoint T*, if the inner product is standard one. 

6: Prove that the product of two self-adjoint operators on an inner product space is self-

adjoint iff the two operators commute. 

7: If T is self-adjoint, then  S* TS is self-adjoint   S. Conversely if S is invertible and S* TS 

is self-adjoint, then T is self-adjoint. Prove both results. 

8: Prove that characteristic of normal operator are pair-wise orthogonal. 

9: Prove that each self-adjoint and unitary operaor are normal operator 

10:  If in a inner product space V, T be a normal operator. Then prove that cT is also a normal 

operator for any scalar c.  
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11: If in a finite dimensional vector space V, T be a linear operator. If VTT   *
 

Fill in the blanks 

1:  (S + T)* = ………….. 

2: A linear operator T on an inner product space V is said to be self-adjoint if ……….. 

3: A linear T is called skew-symmetric or skew-Hermitian according as the vector space V is 

…………………… 

4: A necessary and sufficient condition that a linear transformation T on a unitary space be 

0̂ is that ……………….. 

13.15    ANSWERS 

Answer of short question 

5: [T*]B = [
1 1
2 −1

] 

Answer of fill in the blanks 

1: S* + T*   2: T* = T   3: Real or Complex 

4: < T α, α > = 0      α ∈ V 
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UNIT-14: BILINEAR FORM 
 

CONTENTS 

 

14.1 Introduction 

14.2  Objectives  

14.3  Bilinear form 

14.4 Matrix of a bilinear form 

14.5 Degenerate and non-degenerate bilinear form 

14.6 Symmetric bilinear form 

14.7 Quadratic forms 

14.8 Skew-symmetric bilinear forms 

14.9 Reflexivity and orthogonality 

14.10 Summary 

14.11 Glossary 

14.12   References 

14.13   Suggested Readings 

14.14 Terminal Questions 

14.15  Answers 

14.1 INTRODUCTION 

We shall talk about bilinear and quadratic forms in this unit. We can expand our 

understanding of linear phenomena by utilizing bilinear forms, which are essentially linear 

transformations that are linear in many variables. Quadratic forms, which are (classically) 

homogeneous quadratic polynomials in multiple variables, are closely connected to them. It may 

surprise you to learn that we can still study quadratic forms using many of the same resources from 

linear algebra, even if they are not linear. The fundamental characteristics of bilinear and quadratic 

forms will be covered, with an emphasis on the concepts of positive definiteness and positive semi-
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definiteness as well as some of their uses in geometry, calculus, and linear algebra. Singular value 

decomposition, which connects many of the topics we have covered, is the topic of our final 

discussion. 

14.2 OBJECTIVES 

After reading this unit learners will be able to  

 Visualized the concept of bilinear form and matrix of bilinear form. 

 Understand the concept of degenerate, non-degenerate and symmetric bilinear form. 

 Visualized the concept of quadratic form 

 Application and implementation of normal operator, bilinear and normal form. 

14.3 BILINEAR FORM 

Suppose U and V are two vector spaces corresponding to the same field F. Let 

},:),{(.,. VUWeiVUW    

If ),( 11  , W),( 22  , then there equality can be defined as follows: 

),( 11  ),( 22   if 
21    and 

21    

And the addition is defined as follows: 

),( 11  ),( 22  ,( 21   )21    

If c is any element of field and ),(   be the element of W, the scalar multiplication can be 

defined as follows: 

),(),(  ccc   

It is obvious that W is a vector space over the field F with respect to addition and scalar 

multiplication as specified above. The external direct product of vector spaces U and V is 

denoted by the symbol W, which we will express as 

VUW   

We will now discuss bilinear forms, which are a particular class of scalar-valued functions on W. 

Definition: Suppose U and V are two vector spaces corresponding to the same field F. A bilinear 

form VUW  is a function f from W into F, which assign to each each element ),(   in such 

a way that 

),(),(),( 2121  bfafbaf   
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and ),(),(),( 2121  bfafbaf   

Here ),( f  is an element of F. It denotes the image of ),(   under F. Consequently, a function 

from W into F that, while one of its inputs is fixed, is linear as a function of the other is called a 

bilinear form on W. 

If VU  , then to say that f is a bilinear form on VVW   we just refer f is bilinear form on V. 

Another definition 

Let V denote a vector space over a field F of characteristic other than 2. 

Definition: A bilinear form f is a map FVVf : , such that f is bilinear if the following 

properties are satisfied  

(i) ),(),(),( '' yxbfyxafybxaxf  for every Vyxx ,, ' and Fba , .  

(ii) ),(),(),( '''' yxdfyxcfdycyxf   for every Vyyx ',,  and Fdc , .  

In other words, f is bilinear if it is separate linear in each variable. 

Definition: The bilinear form f  is said to be symmetric if ),(),( xyfyxf  . It is called skew-

symmetric if ),(),( xyfyxf  . 

Remark: Note that the characteristic of the field is 0 and hence 11 . 

Example 4: Let V denote a vector space over a field F. Consider 21, LL  be linear function on V. 

If f  be a function from VV  into F and defined as 

)()(),( 21  LLf   then, f is bilinear form on V. 

Solution: If V),(  , then )(),( 21  LL  are scalars. 

So, we have )()(),( 221121  LbaLbaf   

)()]()([ 22111  LbLaL   

)()()()( 221211  LbLLaL   

),(),( 21  bfaf   

Also, )()(),( 212121  baLLbaf   

             )]()()[( 22121  bLaLL   
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 )()()()( 221121  LbLLaL   

),(),( 21  bfaf   

Thus, f is bilinear on V. 

Example 5: Let V denote a vector space over a field F. Suppose linear operator (T) on V and f is 

a bilinear form on V. Let g is a function from VV  into F and defined as 

),(),(  TTfg  . Then show that g is also a bilinear form on V. 

Proof: Since we have )),((),( 2121  TbaTfbag   

),(( 21  TbTaTf   

),(),( 21  TTbfTTaf   

),(),( 21  bgag   

Also, ))(,(),( 2121  baTTfbag   

),( 21  bTaTTf   

),(),( 21  TTbfTTaf   

),(),( 21  bgag   

Hence g is a bilinear form on V. 

Example 6: Consider the two vector space U and V over the same field F. Let VUW  . If 
^

0  

is the zero function W into F. Then show that 
^

0 is a bilinear form on W. 

Solution: We have W ),(0),(0
^

 . 

Now, ),(0),(000000),(0 2

^

1

^

21

^

 bababa   

Also, ),(0),(000000),(0 2

^

1

^

21

^

 bababa   

Thus 
^

0  is a bilinear form on W.  
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Remarks 1: Let )(FVV n  i.e., let V be the vector space of n- tuple over the field F. If 

)...,,,( 21 naaa  and )...,,,( 21 nbbb  be any two elements in V, let f be a function from VV   

into F defined as 

nnbababaf  ...),( 2211 . So, f is a bilinear form on V. 

2: If U and V  are the two vector space over the same field F and f is a bilinear form on VU 

into F defined as, 

),(),)((  ff  , is a bilinear form on VU   

Example 7: Which of the following vectors ),(),,( 2121 yyyxxx  defined on 2R  are the 

bilinear form 

(i) 
1221),( yxyxyxf   

(ii) 
22

2

11 )(),( yxyxyxf   

Solution: Let ),,( 21 xxx   

),( 21 yyy  , 

And   ),( 21 zzz   

Be any three vector in 2R . Let Rba , . Then 

),(),( 2121 yybxxabyax   

),( 2211 byaxbyax   

(i) Now, by definition of f, we have 

12212121 )),(),,((),( zxzxzzxxfzxf  , 

12212121 )),(),,((),( zyzyzzyyfzyf   

12212121 )),(),,((),( xzxzxxzzfxzf   and 

12212121 )),(),,((),( yzyzyyzzfyzf   

Now,  

)),(),,((),( 212211 zzbyaxbyaxfzbyaxf   

122211 )()( zbyaxzbyax   
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)()( 1221221 yzyzbxzxa   

),(),(  bfaf   

Also, )),(),,((),( 221121 byaxbyaxzzfbyaxzf   

 )()( 112221 byaxzbyaxz   

)()( 1221122 yzyzbxzax   

),(),(  bfaf   

Thus f is bilinear form on 2R . 

(ii) Since we have, 

22

2

11 )(),( zxzxzxf   

And 
22

2

11 )(),( zyzyzyf   

Now, )),(),,((),( 212211 zzbyaxbyaxfzbyaxf   

222

2

111 )()( zbyaxzbyax   

Also, 22

2

1122

2

11 )()(),(),( zbyzybzaxzxazybfzxaf   

222

2

11

2

11 )()()( zbyaxzybzxa   

Obviously, ),(),(),( zybfzxafzbyaxf  .  

Hence f is a bilinear form on 2R . 

Remarks 1: If U  is an n dimensional vector space with basis }...,,,{ 21 nxxx , if V is an m-

dimensional vector space with basis }...,,,{ 21 myyy  and if }{ ija  is any set of nm scalars (i= 1, …, 

n; j=1, …, m} then there is a one and only one bilinear form f on VU   such that 

jiaf ijji ,),(   

14.4 MATRIX OF A BILINEAR FORM 

Definition: Let V be a finite dimensional vector space and }...,,,{ 21 nxxxB   be an ordered basis 

for V . If f is a bilinear form on V, the matrix of f in the ordered basis B is the nn  matrix 

nnijaA  ][  such that 
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njniaf ijji ...,,1;...,,1,),(   

We will denote this matrix A by Bf ][ . 

Example 8: If f be the bilinear form on 2R  defined by 

22112211 ),(),,(( yxyxyxyxf   

Then find the matrix of f  in the ordered basis )}1,1(),1,1{( B  of 2R . 

Solution:  Let },{ 21 B  where )1,1(),1,1( 21    

We have 211))1,1(),1,1((),( 11  ff   

011))1,1(),1,1((),( 21  ff   

011))1,1(),1,1((),( 12  ff   

211))1,1(),1,1((),( 22  ff   











20

02
][ Bf  

Rank of bilinear form: The rank of bilinear form is defined as the rank of the matrix of the 

form in any ordered basis. 

OR 

The rank of bilinear form f is the rank of the matrix representation of the bilinear form. 

Example 9: Let 𝛼 = (x1, x2, x3) and 𝛽 = (y1, y2, y3) and the bilinear form of 𝛼 and 𝛽 is given as 

f(𝛼, 𝛽) = x1 y1 + 2 x1 y2 + 5 x1 y3 – 2 x2 y1 + x2 y3 – 6 x3 y2 + 6 x3 y3. Find the matrix of f and rank 

of f. 

Solution: We have f(𝛼, 𝛽) = x1 y1 + 2 x1 y2 + 5 x1 y3 – 2 x2 y1 + x2 y3 – 6 x3 y2 + 6 x3 y3 

























321

321

321

321

660

02

52

][

yyy

yyy

yyy

xxx  
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



































3

2

1

321

660

102

521

][

y

y

y

xxx  

Thus matrix of f is 





















660

102

521

 

Since the determinant of above matrix is non-zero, hence its rank is 3. Thus, rank of f  is also 3. 

14.5 DEGENERATE AND NON-DEGENERATE BILINEAR 

FORMS 

In a vector space V, a bilinear form f is called degenerate if 

(a) For each non-zero  in V, Vf   0),(  and 

(b) For each non-zero  in V, Vf   0),(  

A bilinear form is called non-degenerate if it is not degenerate. In other sense we can say that a 

bilinear form f on a vector space V is called non-degenerate if, 

(a) For each 0 in V, there exist an element V s.t., 0),( f  and 

(b) For each V 0 in V, there exist an element V  s.t., 0),( f  

14.6 SYMMETRIC BILINEAR FORMS 

Definition: In a vector space V, a bilinear form f is said to be symmetric if 

Vff   ,),(),(  

Theorem 4: In a finite dimensional vector space V, a bilinear form f on V is symmetric if and 

only if its matrix A in some ordered basis is symmetric, i.e., AA '  

Proof: Let in a vector space V, B is an ordered basis and the vectors V, . Let YX , be the 

co-ordinates vector of ,  respectively in the ordered basis B. If f is a bilinear form on V and A 

is the matrix of f in the ordered basis B, then 

AYXf '),(  , 
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and AYYf '),(   

So, f will be symmetric iff  AXYAYX ''   

are all column matrices X and Y. 

Now AYX ' is a 11  matrix, therefore we have 

XAYXAYAYXAYX ''''''''' )()(   

f  will be symmetric if and only if  

AXYAYX ''   for all column matrices X and Y 

i.e., AA '  

It means A is symmetric. 

14.7 QUADRATIC FORMS 

Definition: In a vector space V over the field F, let f is a bilinear form. Then the quadratic form 

on V associated with the bilinear form f is the function q from V into F defined by: 

Vfq   ),()(  

Theorem 5: In a vector space V over the field F whose characteristic is not equal to 2 i.e.,  

011  . Then every symmetric bilinear form on V is uniquely determined by the corresponding 

quadratic form. 

Proof: In a vector space V over the field F, let f is a symmetric bilinear form and q be the 

quadratic form on V associated with f. Then for each V, we have 

),()(   fq  

),(),(   ff  

),(),(),(),(  ffff   

)(),(),()(  qffq   

)()11()(  qq       

)()()(),()11(  qqqf                                  ……… (1) 
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Thus, ),( f  is uniquely determined by q with the help of the polarization identity (1) provided 

0)11(   i.e., F is not of characteristic 2. 

Note: According to the polarization identity we can write, 

)(
4

1
)(

4

1
),(   qqf  

Theorem 6: Let V is a finite dimensional vector space over a subfield of the complex numbers, 

and let f be a symmetric bilinear form on V. Then there is an ordered basis for V in which f is 

represented by a diagonal matrix. 

Proof: To prove the theorem we should find an ordered basis },...,,{ 21 nB   for V such that 

0),( jif   for ji  . 

Case I: If 10
^

 norf , the term obviously true. So we will suppose 10
^

 nandf . 

Case II: If Vf   0),( then, 0)( q  for every , where q is quadratic form associated 

with f. So, by the polarization identity )(
4

1
)(

4

1
),(   qqf  we see that 

Vf   0),(  and thus 
^

0f  which assure about the contradiction. Therefore there must 

be a vector V1  such that 0)(),( 111   qf . 

Let 
1W  be the one dimensional subspaces of V spanned by the vector 1  and let 

2W  be the 

collection of all vectors  in V such that 0),( 1 f . Obviously 
2W  is a subspace of V. Now 

we claim that 
21 WWV  . We shall first prove our claim. 

At, first we have to prove that subspaces 
1W  and 

2W  are disjoint.  

Let 
21 WW   then 

1W  and 
2W  

If 
11  cW   for some scalar c. 

Also if 0),( 11   fW  

0),( 11   cf  

0),( 11  cf                                           [ 0),( 11  f ] 

0 c  
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00 1    

1W  and 
2W  are disjoint. 

Now we have to only prove that  
21 WWV  . For it let us consider V . Since 0),( 11 f , 

so put 

1

11

1

),(

),(







f

f
  

Thus 







 1

11

1
11

),(

),(
,),( 






f

f
ff  

),(
),(

),(
),( 11

11

1
1 




 f

f

f
f   

),(),( 11  ff                                            [f  is symmetric] 

0  

2W  by definition of 
2W . Also by definition of 

1W  the vector 1

11

1

),(

),(






f

f
 as in 

1W . 

211

11

1

),(

),(
WW

f

f
 




 . 

Hence 
21 WWV   

21 WWV   

So 1dimdim 12  nWVW . 

Now let g be the restriction of f from V to 
2W . Then g is a symmetric bilinear form on 

2W  is less 

than Vdim . Now we can consider by the induction that 
2W  has a basis },...,,{ 21 n  such that 

)2,2(,0),(  jijig ji   

)2,2(,0),(  jijif ji                   [ g  is restriction on f] 

So, by the definition of 
2W , we have 

njforf j ....,,3,20),( 1   
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Since }{ 1  is a basis of for 
1W  and 

21 WWV  , therefore },...,,{ 21 n  is a basis for V such 

that 

jiforf ji  0),(   

Example 10: Find the quadratic form of the symmetric matrix A = 












33

32
 

Solution: Let 𝛼 = (x, y). Then the quadratic form q(𝛼) of A is given by, 

 

Thus, 22 362 yxyx  is the quadratic form of the given matrix. 

14.8 SKEW-SYMMETRIC BILINEAR FORMS 

Definition: In a vector space V, a bilinear form f is said to be skew-symmetric if 

Vff   ,),(),(  

Remarks 1: Every bilinear form on the vector space V over a subfield F of the complex numbers 

can be uniquely expressed as the sum of a symmetric and skew-symmetric bilinear forms. 

2: If V is a finite-dimensional vector space, then a bilinear form f on V is skew-symmetric if 

and only if its matrix A in some (or every) ordered basis is skew-symmetric, i.e., AA ' . 

14.9 REFLEXIVITY AND ORTHOGONALITY 

Definition: A bilinear form B: V × V → K is called reflexive if,  

B(v, w) = 0 implies B(w, v) = 0 for all v, w in V. 

Definition: Let B: V × V → K be a reflexive bilinear form. v, w in V are orthogonal with respect 

to B if B(v, w) = 0. 

A bilinear form B is reflexive if and only if it is either symmetric or alternating. In the absence of 

reflexivity we have to distinguish left and right orthogonality. In a reflexive space the left and right 

radicals agree and are termed the kernel or the radical of the bilinear form: the subspace of all 

vectors orthogonal with every other vector. A vector v, with matrix representation x, is in the 

radical of a bilinear form with matrix representation A, if and only if Ax = 0 ⇔ xTA = 0. The radical 

is always a subspace of V. It is trivial if and only if the matrix A is nonsingular, and thus if and 

only if the bilinear form is nondegenerate. 

22 362
33

32
][,)( yxyx

y

x
yx

y

x

y

x
fq 



















































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Suppose W is a subspace. Define the orthogonal complement.  

}0),(|{ WwwvBvW   

For a non-degenerate form on a finite-dimensional space, the map V/W → W⊥ is bijective, and the 

dimension of W⊥ is dim(V) − dim(W) 

Check your progress 

Problem 1: Which of the following function f on the vector space )(2 RV are forms bilinear form 

where )(),(),( 22121 RVyyxx    

(i) )(),( 2211 yxyxf   

(ii) 1),( f  

(iii) 22122111),( yxyxyxyxf   

Problem 2: If f is the bilinear form on the vector space )(2 RV defined by 

2211),( yxyxf  , where )(),(),( 22121 RVyyxx   . Then find the matrix of f for the 

bases )}1,0(),0,1{(  

 

 

14.10 SUMMARY 

In this unit we have learned about the unitary operator and normal operator which are essential 

tool in the inner product space. Also in this unit we have learned about the important concept which 

commonly solve out many matrix related problems like bilinear form, quadratic form, symmetric 

and skew-symmetric bilinear form and there related important theorems and applications.  Other 

important concepts introduced in this unit were: 

 The rank of bilinear form f is the rank of the matrix representation of the bilinear form 

 The reason the symmetric ones are significant is that, at least when the field characteristic 

is not 2, the vector space admits an especially basic type of basis called an orthogonal 

basis for them. 

 It is possible to uniquely represent every bilinear form on the vector space V over a 

subfield F of the complex numbers as the sum of symmetric and skew-symmetric bilinear 

forms. 

 We can explain how the matrices associated with bilinear forms relate to coordinate 

vectors, how they change when the basis changes, and how to utilize them to translate 

back and forth between matrices and bilinear forms, just like we can with the matrices 

associated with linear transformations. 

14.11 GLOSSARY 
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 Bilinear form 

 Quadratic form 
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14.14 TERMINAL QUESTION 

Long Answer Type Question: 

1. Let V denote a vector space over a field F. Suppose linear operator (T) on V and f is a 

bilinear form on V. Let g is a function from VV  into F and defined as 

),(),(  TTfg  . Then show that g is also a bilinear form on V. 

2. Prove that in a finite dimensional vector space V, a bilinear form f on V is symmetric if 

and only if its matrix A in some ordered basis is symmetric, i.e., AA '  

https://www.meripustak.com/Author-Minking-Eie-and-Shou-Te-Chang
https://nptel.ac.in/courses/111106051
https://archive.nptel.ac.in/courses/111/104/111104137
https://old.sggu.ac.in/wp-content/uploads/2020/07/Linear-AlgebraTY_506.pdf
https://orb.binghamton.edu/
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3. Let V is a finite dimensional vector space over a subfield of the complex numbers, and let 

f  be a symmetric bilinear form on V. Then prove that there is an ordered basis for V in 

which f is represented by a diagonal matrix. 

4. If f is the bilinear form on the vector space )(2 RV defined by 

2211),( yxyxf  , where )(),(),( 22121 RVyyxx   . Then find the matrix of f 

for the following bases  

(i) )}4,3(),2,1{(  

(ii) )}1,0(),1,1{(  

5. Let f be bilinear form on )(2 RV  defined by ))(()),(),,(( 21212121 yyxxyyxxf   

(i) Find the matrix of f corresponding to the standard basis )}1,0(),0,1{(B  

(ii) Find the transition matrix from the matrix B to the basis )}1,1(),1,1{(' B  

(iii) Find the matrix of f in the basis 'B  

6. Described explicitly about the all bilinear form f on )(3 RV  with the property defined by, 

)(,),(),( 3 RVff    

7. If f is the bilinear form on the vector space )(2 RV defined by 

2221112121 32)),(),,(( yxyxyxyyxxf  . Then find matrix of f corresponding to the 

basis )}1,1(),0,1{(  

Short Answer Type Question: 

1: Consider the two vector space U and V over the same field F. Let VUW  . If 
^

0  is the 

zero function W into F. Then show that 
^

0 is a bilinear form on W. 

2:  Which of the following vectors ),(),,( 2121 yyyxxx  defined on 2R  are the bilinear 

form 

(i) 
1221),( yxyxyxf   

(ii) 
22

2

11 )(),( yxyxyxf   

3: If f be the bilinear form on 2R  defined by 

22112211 ),(),,(( yxyxyxyxf  . Then find the matrix of f  in the ordered basis 

)}1,1(),1,1{( B  of 2R . 
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4: Let 𝛼 = (x1, x2, x3) and 𝛽 = (y1, y2, y3) and the bilinear form of 𝛼 and 𝛽 is given as 

f(𝛼, 𝛽) = x1 y1 + 2 x1 y2 + 5 x1 y3 – 2 x2 y1 + x2 y3 – 6 x3 y2 + 6 x3 y3. Find the matrix of f and 

rank of f. 

5. Find the quadratic form of the symmetric matrix A = 












33

32
 

6. Find all the bilinear forms on the vector space 2F , where F is field. 

Fill in the blanks 

1. Each self-adjoint operator is …………… 

2. Each Unitary operator is …………. 

3. In a vector space V, a bilinear form f is said to be symmetric if ………. 

4. The operator T is called unitary operator if ………… 

5. The operator T is called unitary operator if ………… 

14.15 ANSWERS 

Answer of check your progress 

1: (i) Bilinear form  (ii) Not a bilinear form  (iii) Bilinear form 

2: 








00

00
 

Answer of long answer type question 

4: (i) 








2414

144
    (ii) 









01

12
 

6: (i) 








11

11
  (ii) 









 11

11
 (iii) 









40

00
 

7: 






 

02

12
 

Answer of short answer type question 

2:  (i) f is bilinear form on 2R .  (ii) f is bilinear form on 2R . 
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3: 









20

02
][ Bf     4: 





















660

102

521

 

5: 22 362 yxyx   

6: Let A be any 22 matrix over F and B be any ordered basis of 2F . Then the bilinear 

forms on 2F are precisely those obtained by AYXf '),(  , where YX , are the co-

ordinates matrices of  and   in the ordered basis B. 

Answer of fill in the blanks 

1: Normal Opertor     2: Normal operator 

3: Vff   ,),(),(    4: ITTTT  **  

5: ITTTT  **  
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