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COURSE INFORMATION 

 

The present self learning material “Advanced Differential Equations-I” has been 

designed for M.Sc. (First Semester) learners of Uttarkhand Open University, Haldwani. 

This self learning material is writing for increase learner access to high-quality learning 

materials.This course is divided into 14 units of study. The first two units are devoted to 

Existence & Nature of Solution and Degree & Exactness of Differential Equation and 

Principle of Duality. Unit 3 and Unit 4 explained to a concept of Linear Differential 

Equation and Variation of Parameters. Unit 5 and Unit 6 are focussed on the topic 

Ordinary, Regular & Singular Points and Second Order Differential Equation. The aim of 

Unit 7 and 8 are to introduce the concept of Trajectories and Integral Curves and Damped 

Linear Oscillator. Unit 9 and Unit 10 explain the concept of Fundamental Existence 

Theorem and Differential Equations with Periodic Solution. Unit 11explain the Method 

of Bogoliubov & Krylov. Unit 12, 13 and 14 will explain the Chebyshev Polynomials and 

Legendre Polynomials, Bessel Functions and Hermite Polynomials and Leguerre Polynomials. 

This material also used for competitive examinations. The basic principles and theory 

have been explained in a simple, concise and lucid manner. Adequate numbers of 

illustrative examples and exercises have also been included to enable the leaner’s to grasp 

the subject easily.  
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UNIT 1:- EXISTENCE & NATURE OF 

SOLUTION  

CONTENTS: 
1.1      Introduction 

1.2      Objectives 

1.3      Differential Equation. 

1.4      Ordinary Differential Equation.  

1.5      Partial Differential Equation.  

1.6      Order of Differential Equation.  

1.7      Degree of a Differential Equation.  

1.8      Linear and non- linear differential Equation.  

1.9      Solution of Differential equation and family of curve.   

1.10    Complete Primitive (General Solution), Particular Solution    

           and Singular Solutions.  

1.11    The Wronskian. 

1.12     Linearly dependent and independent set of solutions 

1.13     Existence of uniqueness theorem. 

1.14     Fundamental set of solutions. 

1.15     Summary 

1.16     Glossary 

1.17     References 

1.18     Suggested Reading 

1.19     Terminal questions  

1.20     Answers  

 

1.1 INTRODUCTION:- 

In the previous class you have already studied about basics of differential 

equations. The concept of differential equations has a long history, with 

roots dating back to the 17th century. Many mathematicians contributed to 

the development of differential equations, including Isaac Newton, 

Gottfried Leibniz, Leonhard Euler, Joseph-Louis Lagrange, and Pierre-

Simon Laplace. In particular, Newton and Leibniz are credited with the 

development of calculus, which provided the mathematical framework for 

differential equations. Newton also used differential equations to describe 

the motion of objects under the influence of gravity, which is now known 



ADVANCED DIFFERENTIAL EQUATIONS-I MAT 504 

Department of mathematics 
Uttarakhand Open University Page 3 

 

as Newton's law of motion. However, it is difficult to attribute the 

invention of differential equations to a single person, as the concept has 

evolved over time with the contributions of many mathematicians. 

A differential equation is an equation that involves an unknown function 

and one or more of its derivatives. It is used to describe the relationship 

between a function and their rates of change. There are two main types of 

differential equations: ordinary differential equations (ODEs) and partial 

differential equations (PDEs). An ODE involves derivatives of a single 

variable, while a PDE involves derivatives of multiple variables.  

Differential equations are used in many areas of science and engineering, 

including physics, biology, economics, and finance. They are particularly 

useful for modeling dynamic systems, such as the motion of objects or the 

behavior of populations over time. Solving a differential equation involves 

finding a function that satisfies the equation. This can be done analytically 

or numerically, depending on the complexity of the equation and the 

desired level of accuracy. Analytical solutions involve finding a closed-

form expression for the function, while numerical solutions involve 

approximating the function using numerical methods. 

1.2 OBJECTIVES:- 

After studying this unit, you will be able to  

 To analyze and predict the behavior of these systems over time. 

 To provide solutions to problems that cannot be solved using other 

mathematical techniques. 

 To understand the definition of differential equation. 

 

1.3 DIFFERENTIAL EQUATION:- 

An Equation involving derivatives of differentials of one or more 

dependent variables with respect to one or more independent variables is 

called Differential Equations. 

For Example: 

𝑑𝑦

𝑑𝑥
= (𝑥 + 𝑠𝑖𝑛𝑥)                                                       … (1) 

𝑑4𝑥

𝑑𝑡4
+

𝑑2𝑥

𝑑𝑡2
+ (

𝑑𝑥

𝑑𝑡
)

5

= 𝑒𝑡                                         … (2) 
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𝑦 = √𝑥
𝑑𝑦

𝑑𝑥
+

𝑘

𝑑𝑦
𝑑𝑥

                                                        … (3) 

𝑘(𝑑2𝑦 𝑑𝑥2⁄ ) = {1 + (𝑑𝑦/𝑑𝑥)2}3/2                        … (4) 

𝜕2𝑣 𝜕𝑡2⁄ = 𝑘(𝜕3𝑣 𝜕𝑥3⁄ )2                                          … (5) 

and 

𝜕2𝑢 𝜕𝑥2⁄ + 𝜕2𝑢 𝜕𝑥2⁄ + 𝜕2𝑢 𝜕𝑥2⁄ = 0                … (6) 

 

1.4 ORDINARY DIFFERENTIAL EQUATION:- 

A differential Equation  (Art.1.3) given in (1), (2), (3) and (4) involve only 

one independent variable is called an Ordinary Differential Equations 

1.5 PARTIAL DIFFERENTIAL EQUATION:- 

The equation (Art.1.3) given in (5) and (6) involve partial derivatives with 

respect to more than one independent variable is called a Partial 

Differential Equation. 

1.6 ORDER OF A DIFFERENTIAL EQUATION:- 

The order of a differential equation is order of highest derivative 

differential equation.   

In Art.(1.1)  shown that the equation (2) is of 4th order, equation (1) and 

(3) are of 1st order, equations (4) and (6) are of the second order and 

equation (5) is of the third order. 

1.7 DEGREE OF A DIFFERENTIAL EQUATION:- 

The Degree of a differential equation is power of the height order 

derivative term in the differential equation.   

In Art.(1.1)  given the equation (1), (2) and (6) are of first degree. Making 

equation (3) free from fractions, we describe𝑦 𝑑𝑦 𝑑𝑥⁄ = √𝑥(𝑑𝑦 𝑑𝑥⁄ )2 +

𝑘, which is of 2nd degree. 

1.8 LINEAR AND NON-LINEAR DIFFERENTIAL 

EQUATION:- 

A differential equation is said to be Linear if 
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(i)  Every dependent variable and every derivative in involved 

occurs in the first degree only. 

(ii) No products of dependent variable and /or derivatives occur. 

A differential equation which is not a linear is called the non-linear 

differential equation. 

For Example:  

1.
𝑑2𝑦

𝑑𝑥2 + 3
𝑑𝑦

𝑑𝑥
+ 9𝑦 = 0. is linear. 

2. 
𝑑3𝑦

𝑑𝑥3 + (
𝒅𝒚

𝒅𝒙
)

𝟒

+ 6𝑦 = 3. is non-linear because in 2nd term is not of degree 

one. 

 

1.9 SOLUTION OF DIFFERENTIAL EQUATION 

AND FAMILY OF CURVES:- 

Any relation between the dependent and independent variables, which 

when substituted in differential equation, reduces it to an identity is known 

as Solution of differential equation or integral of differential equation. 

A solution of differential equation does not include the derivatives of the 

dependent variable with respect to the independent variable or variables. 

FAMILY OF CURVES: An n-parameter family of curves is a set of 

relations of the form  

{(𝑥, 𝑦): 𝑓(𝑥, 𝑦, 𝑐1, 𝑐2, … , 𝑐𝑛) = 0}, 

Where 𝑓 is real value function of 𝑥, 𝑦, 𝑐1, 𝑐2, … , 𝑐𝑛 and 𝑐𝑖(𝑖 = 1,2, … 𝑛) 

range over an interval of real values. 

For Example: 1. Let 𝑥2 + 𝑦2 = 𝑐 is one parameter family if 𝑐 takes all 

non-negative real values. 

2. again we take the set of circles, obtained by (𝑥 − 𝑐1)2 + (𝑥 − 𝑐2)2 = 𝑐3 

is three parameter family if 𝑐1  take all real values and 𝑐3 takes non-

negative real values. 

1.10    COMPLETE PRIMITIVE (GENERAL 

SOLUTION), PARTICULAR SOLUTION AND 

SINGULAR SOLUTIONS:- 

Definitions 

Suppose                𝐹(𝑥, 𝑦, 𝑦1, 𝑦2, … , 𝑦𝑛) = 0                                      … (1) 

be an nth order differential equation.  
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(i) A solution of equation (1) containing n independent arbitrary 

constants is called a general solution. 

(ii)  A solution of equation (1) obtained by giving particular values 

to the arbitrary constants in general solution is known as 

particular solution or integral solution. 

(iii)   A solution of equation (1) which cannot be described from 

any general solution of (1) by any n independent arbitrary 

constants is called singular solution. 

For Example: 

Suppose                                     𝑦 = 𝑐1𝑒𝑥 + 𝑐2𝑒𝑥                           … (2)   

is the general solution of            𝑦′′ − 3𝑦′ + 2𝑦 = 0                      … (3) 

Where 𝑐1 and 𝑐2 are independent arbitrary constants. Some particular 

solution of (3) are obtained by 𝑦 = 𝑒𝑥 + 2𝑒𝑥 ,       𝑦 = 𝑒𝑥 − 2𝑒𝑥.                       

SOLVED EXAMPLES 

EXAMPLE1:If 𝑦 = (𝐴/𝑥) + 𝐵, then show that (𝑑2𝑦 𝑑𝑥2⁄ ) + (2 𝑥⁄ ) ×

(𝑑𝑦 𝑑𝑥⁄ ) = 0. 

SOLUTION: Given that  

                     (𝑑2𝑦 𝑑𝑥2⁄ ) + (2 𝑥⁄ ) × (𝑑𝑦 𝑑𝑥⁄ ) = 0        … (1)   

                            𝑦 = (𝐴/𝑥) + 𝐵                                        … (2) 

Now differentiating equation (2) with respect to 𝑥,   

                                         𝑑𝑦 𝑑𝑥⁄ = − 𝐴 𝑥2⁄                         … (3) 

Again differentiating (3) with respect to 𝑥, 𝑑2𝑦 𝑑𝑥2⁄ = (2𝐴 𝑥3⁄ ) 

Putting the value of 𝑑𝑦 𝑑𝑥⁄  and 𝑑2𝑦 𝑑𝑥2⁄  in (1), we get 

(2𝐴 𝑥3⁄ ) + (2 𝑥⁄ ) × − 𝐴 𝑥2⁄ = 0       or                    0 = 0 

 Hence eq. (2) is the solution of (1). 

EXAMPLE 2: Find the differential equation of the family of curves𝑦 =

𝑒𝑚𝑥, where 𝑚 is arbitrary constant. 

SOLUTION: Now given that the family of curves         

     𝑦 = 𝑒𝑚𝑥                                              … (1) 

Differentiating (1) w.r.t. 𝑥, we have  

𝑑𝑦 𝑑𝑥⁄ = 𝑚𝑒𝑚𝑥                                     … (2) 

From (1) and (2)  𝑑𝑦 𝑑𝑥⁄ = 𝑚𝑦                  

 ⇒                                             𝑚 = (1/𝑦) × (𝑑𝑦 𝑑𝑥⁄ )  … (3) 

𝑚𝑦 = 𝑑𝑦 𝑑𝑥⁄  

𝑚𝑦 = 𝑚𝑒𝑚𝑥 

log 𝑦 = 𝑚𝑥 

So 

𝑚 =
log 𝑦

𝑥
                                                … (4) 
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Eliminating m from (3) and (4) 

(1/𝑦) × (𝑑𝑦 𝑑𝑥⁄ ) = (1/𝑥) × log 𝑦. 

EXAMPLE 3: Find the differential equation satisfied by family of 

circles𝑥2 + 𝑦2 = 𝑎2, a being an arbitrary constant. 

SOLUTION: Let us consider the equation of any circle passing through 

the origin and whose centre is on the 𝑥-axis is given by 

  𝑥2 + 𝑦2 + 2𝑔𝑥 = 0, where 𝑔 being arbitrary constant.                    … (1) 

Differentiating (1) with respect to 𝑥, we have   

                                       2𝑥 + 2𝑦
𝑑𝑦

𝑑𝑥
+ 2𝑔 = 0                                       … (2) 

From(1)                                       2𝑔𝑥 = −(𝑥2 + 𝑦2) 

2𝑔 = −
(𝑥2 + 𝑦2)

𝑥
 

Now substituting the value of 2𝑔 in equation (2), we obtain 

2𝑥 + 2𝑦
𝑑𝑦

𝑑𝑥
−

(𝑥2 + 𝑦2)

𝑥
= 0.         

2𝑥𝑦
𝑑𝑦

𝑑𝑥
+ 𝑥2 − 𝑦2 = 0.          

EXAMPLE 4: Find the differential equation of the family of the 

curves𝑦 = 𝑒𝑥(𝐴𝑐𝑜𝑠𝑥 + 𝐵𝑠𝑖𝑛𝑥), where 𝐴 and 𝐵 are arbitrary constant. 

SOLUTION:  Let                         

                                𝑦 = 𝑒𝑥(𝐴𝑐𝑜𝑠𝑥 + 𝐵𝑠𝑖𝑛𝑥)                        … (1)  

Differentiating (1) 𝑦′ = 𝑒𝑥(−𝐴𝑠𝑖𝑛𝑥 + 𝐵𝑐𝑜𝑠𝑥) + 𝑒𝑥(𝐴𝑐𝑜𝑠𝑥 + 𝐵𝑠𝑖𝑛𝑥)      

                𝑦′ = 𝑒𝑥(−𝐴𝑠𝑖𝑛𝑥 + 𝐵𝑐𝑜𝑠𝑥) + 𝑦,     from (1)         … (2) 

Again Differentiating (2) 

𝑦′′ = −𝑒𝑥(𝐴𝑐𝑜𝑠𝑥 + 𝐵𝑠𝑖𝑛𝑥) + 𝑒𝑥(−𝐴𝑠𝑖𝑛𝑥 + 𝐵𝑐𝑜𝑠𝑥) + 𝑦′  … (3) 

Now From (2), we have    

                      𝑒𝑥(−𝐴𝑠𝑖𝑛𝑥 + 𝐵𝑐𝑜𝑠𝑥) = 𝑦′ − 𝑦.                         … (4)       

Hence eliminating the value of 𝐴 and  𝐵 from (1), (3) and (4), we have 

𝑦′′ = −𝑦 + 𝑦′ − 𝑦 + 𝑦′                     or              𝑦′′ − 2𝑦′ + 2𝑦 = 0 

 

1.11WRONKSKIAN:- 

Definition: The Wronkskian of 𝑛 functions 𝑦1(𝑥), 𝑦2(𝑥), … . 𝑦𝑛(𝑥), is 

denoted by 𝑊(𝑥) or 𝑊(𝑦1, 𝑦2, … . 𝑦𝑛)(𝑥) and is defined to be the 

determinant 
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𝑊(𝑦1, 𝑦2, … . 𝑦𝑛)(𝑥) = 𝑊(𝑥) = |
     

𝑦1                  𝑦2 ,      … . 𝑦𝑛

𝑦′1,                𝑦′2 ,    … . 𝑦′𝑛

⋮                     ⋮         … .     ⋮
𝑦1

(𝑛−1)       𝑦2
(𝑛−1), … .         𝑦𝑛

(𝑛−1)

|  

 

1.12 LINEARLY DEPENDENT AND 

INDEPENDENT SET OF SOLUTIONS:- 

Definition: the 𝑛 function 𝑦1(𝑥), 𝑦2(𝑥), … . 𝑦𝑛(𝑥) are linearly dependent if 

 constants 𝑐1, 𝑐2, … . 𝑐𝑛(not all zero), such that 

𝑐1𝑦1 + 𝑐2𝑦2 + ⋯ ⋯ + 𝑐𝑛𝑦𝑛 = 0                        … (1) 

If, however, identity (1) implies that 𝑐1 = 𝑐2 = ⋯ = 𝑐𝑛 = 0, 

Then 𝑦1, 𝑦2, … . 𝑦𝑛 are said to be linearly independent. 

1.13EXISTANCE AND UNIQUENESS THEOREM:- 

Consider the second order differential equation of the form 

𝑎0(𝑥)𝑦′′ + 𝑎1(𝑥)𝑦′ + 𝑎2(𝑥)𝑦 = 𝑟(𝑥)                       … (1) 

Where 𝑎0(𝑥), 𝑎1(𝑥), 𝑎2(𝑥) and 𝑟(𝑥) are continuous functions on an 

interval 𝐼 and 𝑎0(𝑥) ≠ 0 for each𝑥 ∈ 𝐼. Let 𝑐1 and 𝑐2 be arbitrary real 

numbers and 𝑥0 ∈ 𝐼.Then  a unique solution of (1) satisfying 𝑦(𝑥0) = 𝑐1 

and 𝑦′(𝑥0) = 𝑐2. This solution 𝑦(𝑥)  is described over the interval 𝐼. 

Note1: The above theorem is an existence theorem because it says that the 

initial value problem does have a solution. It is also a uniqueness theorem, 

because it says that there is only one solution. Clearly, this theorem also 

applies to an associated homogeneous equation 

𝑎0(𝑥)𝑦′′ + 𝑎1(𝑥)𝑦′ + 𝑎2(𝑥)𝑦 = 0 

Note2: In this unit, we shall assume without proof, the above basic 

theorem for initial value problems associated with linear differential 

equations. 

Note3: The conditions of existence and uniqueness theorem cannot be 

further relaxed. For example, if 𝑎0(𝑥) = 0  𝑥 ∈ 𝐼, then the solution of (1) 

may not be unique or may not be exist at all. 

Note4: Existence and uniqueness theorem can be extended to an nth order 

linear differential equation. 

THEOREM I: State the existence and uniqueness theorem for nth order 

differential equation 
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𝐿(𝑦)(𝑥) = 𝑦(𝑛) + 𝑝1(𝑥)𝑦(𝑛−1)(𝑥) … … . +𝑝𝑛(𝑥)𝑦(𝑥) = 0, 𝑥 ∈ 𝐼, 

which is a linear homogeneous equation. 

SOLUTION: Statement of the existence and uniqueness theorem 

fo𝐿(𝑦)(𝑥) = 𝑦(𝑛) + 𝑝1(𝑥)𝑦(𝑛−1)(𝑥) … … . +𝑝𝑛(𝑥)𝑦(𝑥) = 0, 𝑥 ∈ 𝐼   … (1) 

Suppose 𝑝1, 𝑝2 … 𝑝𝑛 be obtained and continuous on an interval 𝐼 which 

contains a point 𝑥0.Let 𝑎0, 𝑎1 … 𝑎𝑛−1 be 𝑛 constants. then  ∃ a unique 

solution 𝜙 on 𝐼of (1) satisfying the conditions. 

        𝜙(𝑥0) = 𝑎0,       𝜙′(𝑥0) = 𝑎1,…  ,               𝜙(𝑛−1)(𝑥0) = 𝑎𝑛−1 

Let 𝜙1(𝑥), … . . 𝜙𝑛(𝑥) are 𝑛 solution of 𝐿(𝑦)(𝑥) = 0 given in (1) and 

suppose that 𝑐1, 𝑐2 … 𝑐𝑛 are 𝑛 arbitrary constants. Since 𝐿(𝜙1) = 𝐿(𝜙2) =

⋯ ⋯ = 𝐿(𝜙𝑛) = 0, and 𝐿 is linear operator, we get 

𝐿(𝑐1𝜙1 + 𝑐2𝜙2 + ⋯ ⋯ + 𝑐𝑛𝜙𝑛) = 𝑐1𝐿(𝜙1) + ⋯ ⋯ ⋯ + 𝑐𝑛𝐿(𝜙𝑛) = 0 

  𝑛 solutions 𝜙1, ⋯ ⋯ ⋯ , 𝜙𝑛 are linearly independent and 𝑐1, 𝑐2 … 𝑐𝑛 are  

constants, then  

                𝑐1𝜙1 + 𝑐2𝜙2 + ⋯ ⋯ + 𝑐𝑛𝜙𝑛 = 0, 𝑥 ∈ 𝐼 ⇒ 𝑐1 = 𝑐1 = ⋯ 𝑐𝑛 = 0. 

THEOREM II: Show that there are three linearly independent solutions 

of the third order equation 𝑦′′′ + 𝑝1(𝑥)𝑦′′ + 𝑝2(𝑥)𝑦′ + 𝑝3(𝑥)𝑦 = 0, 𝑥 ∈ 𝐼 

where 𝑝1, 𝑝2 and 𝑝3 are functions, defined and continuous on an 

interval  𝐼. 

SOLUTION: Let 𝑦′′′ + 𝑝1(𝑥)𝑦′′ + 𝑝2(𝑥)𝑦′ + 𝑝3(𝑥)𝑦 = 0, 𝑥 ∈ 𝐼    … (1) 

Using theorem I we conclude that  solutions 𝜙1(𝑥), 𝜙2(𝑥) and 𝜙3(𝑥) of 

(1) such that for 𝑥0 ∈ 𝐼. 

   

𝜙1(𝑥0) = 0,          𝜙′
1

(𝑥0) = 0                  𝜙1
′′(𝑥0) = 0

𝜙2(𝑥0) = 0,          𝜙′
2

(𝑥0) = 1                  𝜙2
′′(𝑥0) = 0

𝜙3(𝑥0) = 0,          𝜙′
3

(𝑥0) = 1                  𝜙3
′′(𝑥0) = 0

}              … (2)         

and we proceed to prove that 𝜙1, 𝜙2 and 𝜙3 are linearly independent. Let 

𝑐1𝜙1(𝑥) + 𝑐2𝜙2(𝑥) + 𝑐3𝜙3(𝑥) = 0, 𝑥 ∈ 𝐼                                … (3) 

For some constants 𝑐1, 𝑐2 and 𝑐3. At 𝑥 = 𝑥0, from (3), we get 

𝑐1𝜙1(𝑥0) + 𝑐2𝜙2(𝑥0) + 𝑐3𝜙3(𝑥0) = 0, 𝑥 ∈ 𝐼                            … (4) 

Now differentiating (3) w.r.t. 𝑥 and replacing 𝑥 by 𝑥0 yields 

𝑐1𝜙′1(𝑥0) + 𝑐2𝜙′2(𝑥0) + 𝑐3𝜙′3(𝑥0) = 0, 𝑥 ∈ 𝐼                        … (5) 

Now again differentiating (3)twice w.r.t. 𝑥 and replacing 𝑥 by 𝑥0 yields 

𝑐1𝜙′′1(𝑥0) + 𝑐2𝜙′′2(𝑥0) + 𝑐3𝜙′′3(𝑥0) = 0, 𝑥 ∈ 𝐼                     … (6) 

Using (2) in (4), (5) and (6) , we obtain 

                                                          𝑐1 = 𝑐2 = 𝑐3 = 0. 

Hence 𝜙1, 𝜙2 and 𝜙3 are linearly independent. 

THEOREM III: Let 𝜙 be any solution of 𝑦′′′ + 𝑝1(𝑥)𝑦′′ + 𝑝2(𝑥)𝑦′ +

𝑝3(𝑥)𝑦 = 0, 𝑥 ∈ 𝐼. Here 𝑝1, 𝑝2 and 𝑝3 are the functions defined and 
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continuous on an interval 𝐼. Further, let 𝜙1, 𝜙2 and 𝜙3 be there linearly 

independent solutions of the given equation. Prove that constants 𝑐1, 𝑐2 

and 𝑐3 exist such that 

𝜙 = 𝑐1𝜙1 + 𝑐2𝜙2 + 𝑐3𝜙3, 𝑥 ∈ 𝐼. 

SOLUTION: Let  𝑦′′′ + 𝑝1(𝑥)𝑦′′ + 𝑝2(𝑥)𝑦′ + 𝑝3(𝑥)𝑦 = 0, 𝑥 ∈ 𝐼  … (1) 

Using the existence and uniqueness theorem states in theorem I, at 𝑥 =

𝑥0 ∈ 𝐼,  constants 𝑎1, 𝑎2 and 𝑎3 such that 

   𝜙(𝑥0) = 𝑎1, 𝜙′(𝑥0) = 𝑎2  and    𝜙′′(𝑥0) = 𝑎3 

The solutions 𝜙1, 𝜙2 and 𝜙3 are given by theorem II. Now we define a 

function 𝜓 on 𝐼 such that 𝜓(𝑥) = 𝑎1𝜙1(𝑥) + 𝑎2𝜙2(𝑥) + 𝑎3𝜙3(𝑥), 𝑥 ∈ 𝐼. 

Clearly (1) and  

𝜓(𝑥0) = 𝑎1,   𝜓′(𝑥0) = 𝑎2   and     𝜓′′(𝑥0) = 𝑎3 

Since that two solutions 𝜙 and 𝜓 of (1) have the same initial conditions. 

Hence by the existence and uniqueness theorem, it follows that 𝜙(𝑥) =

𝜓(𝑥) for 𝑥 ∈ 𝐼. 

THEOREM IV: If 𝑦1(𝑥) and 𝑦2(𝑥) are any two solutions of 

𝑎0(𝑥)𝑦′′(𝑥) + 𝑎1(𝑥)𝑦′(𝑥) + 𝑎1(𝑥)𝑦(𝑥) = 0, then the linear combination 

𝑐1𝑦1(𝑥) + 𝑐2𝑦2(𝑥), where 𝑐1 and 𝑐2 are constants, is also a solution of the 

given equation. 

SOLUTION: Suppose 

𝑎0(𝑥)𝑦′′(𝑥) + 𝑎1(𝑥)𝑦′(𝑥) + 𝑎2(𝑥)𝑦(𝑥) = 0                  … (1) 

  𝑦1(𝑥) and 𝑦2(𝑥)are the solution of (1), we get 

𝑎0(𝑥)𝑦1
′′(𝑥) + 𝑎1(𝑥)𝑦1

′(𝑥) + 𝑎2(𝑥)𝑦1(𝑥) = 0               … (2) 

𝑎0(𝑥)𝑦2
′′(𝑥) + 𝑎1(𝑥)𝑦2

′(𝑥) + 𝑎2(𝑥)𝑦2(𝑥) = 0               … (3) 

Let 

                   𝑢(𝑥) = 𝑐1𝑦1(𝑥) + 𝑐2𝑦2(𝑥)                                … (4) 

Hence differentiating (4) twice, w.r.t.𝑥, we obtain 

 𝑢′(𝑥) = 𝑐1𝑦′
1
(𝑥) + 𝑐2𝑦′

2
(𝑥)and 𝑢′′(𝑥) = 𝑐1𝑦′′

1
(𝑥) + 𝑐2𝑦′′

2
(𝑥) … (5) 

From (4) and (5) 

 ⇒ 𝑎0(𝑥)𝑢′′(𝑥) + 𝑎1(𝑥)𝑢′(𝑥) + 𝑎2(𝑥)𝑢(𝑥) =     𝑎0(𝑥)[𝑐1𝑦′′
1
(𝑥) +

𝑐2𝑦′′
2

(𝑥)] + 𝑎1(𝑥)[𝑐1𝑦′1(𝑥) + 𝑐2𝑦′2(𝑥) ] + 𝑎2(𝑥) [𝑐1𝑦1(𝑥) +

𝑐2𝑦2(𝑥)]     

 = 𝑐1[𝑎0(𝑥)𝑦1
′′(𝑥) + 𝑎1(𝑥)𝑦1

′(𝑥) + 𝑎2(𝑥)𝑦1(𝑥)] + 𝑐2[𝑎0(𝑥)𝑦2
′′(𝑥) +

𝑎1(𝑥)𝑦2
′(𝑥)𝑎2(𝑥)𝑦2(𝑥)]                                                                     … (6) 

Putting the value of (2) and(3) in (6) 

= 𝑐1. 0 + 𝑐2. 0 

Thus  

𝑎0(𝑥)𝑢′′(𝑥) + 𝑎1(𝑥)𝑢′(𝑥) + 𝑎2(𝑥)𝑢(𝑥) = 0     
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Prove that𝑢(𝑥), i.e., 𝑐1𝑦1(𝑥) + 𝑐2𝑦2(𝑥)  is also solution of (1). 

THEOREM V: Two solutions 𝑦1(𝑥) and 𝑦2(𝑥) of the equation, 

𝑎0(𝑥)𝑦′′ + 𝑎1(𝑥)𝑦′ + 𝑎1(𝑥)𝑦 = 0, 𝑎0(𝑥) ≠ 0, 𝑥 ∈ [𝑎, 𝑏] are linearly 

dependent if and only if their Wronskian is identically zero. 

SOLUTION:  

Necessary Condition: Let 𝑦1(𝑥) and 𝑦2(𝑥) be linearly independent, two 

constants 𝑐1  and 𝑐2, not both zero, such that 

                            𝑐1𝑦1(𝑥) + 𝑐2𝑦2(𝑥) = 0 ∀ 𝑥 ∈

[𝑎, 𝑏]                             … (1)  

                          𝑐1𝑦′1(𝑥) + 𝑐2𝑦′2(𝑥) = 0 ∀ 𝑥 ∈

[𝑎, 𝑏]                             … (2)  

Since 𝑐1  and 𝑐2 cannot be zero simultaneously, the equation (1) and (2) 

possess non-zero solutions for which the condition is 

                                   𝑊(𝑥) = |
𝑦1(𝑥)   𝑦2(𝑥)

𝑦′1(𝑥) 𝑦′2(𝑥)
| = 0 ∀ 𝑥 ∈ [𝑎, 𝑏]    

     𝑊(𝑥) ≡ 0on (𝑎, 𝑏)(Wronskian is identically zero) 

Sufficient Condition: Let us consider Wronskian is identically zero on 

(𝑎, 𝑏)and let 

                                   𝑊(𝑥) = |
𝑦1(𝑥)   𝑦2(𝑥)

𝑦′1(𝑥) 𝑦′2(𝑥)
| ≡ 0 𝑜𝑛 [𝑎, 𝑏]              … (3) 

Suppose𝑥 = 𝑥0 ∈ [𝑎, 𝑏]. 

Hence from the equation (3), we obtain 

                                      |
𝑦1(𝑥)   𝑦2(𝑥)

𝑦′1(𝑥) 𝑦′2(𝑥)
| = 0                                             … (4) 

Since the equation (4) for the existence of two constants 𝑘1 and 𝑘2, both 

not zero  i.e., 

                                       𝑘1𝑦1(𝑥0) + 𝑘2𝑦2(𝑥0) = 0                                … (5) 

                                         𝑘1𝑦′1(𝑥0) + 𝑘2𝑦2
′ (𝑥0) = 0                             … (6) 

And consider                 𝑦(𝑥) = 𝑘1𝑦1(𝑥) + 𝑘2𝑦2(𝑥)                              … (7) 

now 𝑦(𝑥) being a linear combination of 𝑦1(𝑥) and 𝑦2(𝑥) is also given 

equation.(refer theorem IV) 

Differentiating equation (7), we get 

                                        𝑦′(𝑥) = 𝑘1𝑦′
1
(𝑥) + 𝑘2𝑦′

2
(𝑥)                 … (8) 

   Again (7)         𝑦(𝑥0) = 𝑘1𝑦1(𝑥0) + 𝑘2𝑦2(𝑥0) = 0   … (9) from (5) 

                      ⇒   𝑦(𝑥0) = 𝑘1𝑦1(𝑥0) + 𝑘2𝑦2(𝑥0) = 0      … (10)from(6) 

Hence 𝑦(𝑥) ≡ 0 on [𝑎, 𝑏]. And by (7) 

𝑘1𝑦1(𝑥) + 𝑘2𝑦2(𝑥) = 0, ∀ 𝑥 ∈ [𝑎, 𝑏]     

Where 𝑘1 and 𝑘2 are constants, both not zero. 

Hence, be def., 𝑦1(𝑥) and 𝑦2(𝑥) are linearly independent. 
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THEOREM VI: ABEL’S FORMULA 

Let the function 𝑝1 and 𝑝2 in 

                    𝐿(𝑦)(𝑥) = 𝑦′′(𝑥) + 𝑝1(𝑥)𝑦′(𝑥) + 𝑝2𝑦(𝑥) = 0, 𝑥 ∈ 𝐼  … (1)   

be defined and continuous on an interval𝐼. Let 𝜙1any 𝜙2 be two linearly 

independent solutions of (1) existing on 𝐼 containing a point 𝑥0. then 

𝑊(𝜙1, 𝜙2)(𝑥) = 𝑒𝑥𝑝 (− ∫ 𝑝1(𝑥)𝑑𝑥
𝑥

𝑥0

) 𝑊(𝜙1, 𝜙2)(𝑥0)             … (2) 

Proof: Given  

                             𝑦′′(𝑥) + 𝑝1(𝑥)𝑦′(𝑥) + 𝑝2𝑦(𝑥) = 0, 𝑥 ∈ 𝐼                                

now                             𝑊(𝜙1, 𝜙2) = |
𝜙1     𝜙2

𝜙′1   𝜙′2
| = 𝜙1𝜙′2 − 𝜙′1𝜙2 … (3) 

From(3) 

𝑊′(𝜙1, 𝜙2) = 𝜙′1𝜙′
2

+ 𝜙′1𝜙′2 − (𝜙′′1𝜙2 + 𝜙′1𝜙′2) 

             𝑊′(𝜙1, 𝜙2) = 𝜙1𝜙′′2 − 𝜙′′1𝜙2                                           … (4) 

Hence 𝜙1 and 𝜙2 satisfying (1), we have 

𝜙′′1 + 𝑝1𝜙′1 + 𝑝2𝜙1 = 0 ⇒ 𝜙′′1 = −𝑝1𝜙′1 − 𝑝2𝜙1 

and 

𝜙′′1 + 𝑝1𝜙′2 + 𝑝2𝜙2 = 0 ⇒ 𝜙′′2 = −𝑝1𝜙′2 − 𝑝2𝜙2 

Putting the value of 𝜙′′1 and 𝜙′′2 in (4), we get 

𝑊′(𝜙1, 𝜙2) = 𝜙1(−𝑝1𝜙′1 − 𝑝2𝜙1) − 𝜙2(−𝑝1𝜙′2 − 𝑝2𝜙2) 

or 

                                𝑊′(𝜙1, 𝜙2) = −𝑝1(𝜙1𝜙′2 − 𝜙′1𝜙2) =

−𝑝1𝑊(𝜙1, 𝜙2) from(3) 

Hence, 𝑊(𝜙1, 𝜙2) satisfied a first order linear homogeneous equation 

𝑊′ + 𝑝1𝑊 = 0, 𝑥 ∈ 𝐼   

or       
𝑑𝑊

𝑑𝑥
= −𝑝1𝑊                or            

𝑑𝑊

𝑊
= −𝑝1𝑑𝑥        or        log 𝑊 −

log 𝑐 = − ∫ 𝑝1𝑑𝑥
𝑥

𝑥0
 

so                        𝑊(𝜙1, 𝜙2)(𝑥) = 𝑐 𝑒𝑥𝑝 (− ∫ 𝑝1(𝑥)𝑑𝑥
𝑥

𝑥0
) … (5)        

where 𝑐  is constant . 

Putting 𝑥 = 𝑥0 in (5), we have 

𝑐 = 𝑊(𝜙1, 𝜙2)(𝑥0) 

Hence we get the required result. 

SOLVED EXAMPLES 
EXAMPLE1: Prove that the function 𝑦 = 𝑐𝑥2 + 𝑥 + 3 is a solution, 

though not unique, of the initial value problem 𝑥2𝑦′′ − 2𝑥𝑦′ + 2𝑦 = 6 

with 𝑦(0) = 3, 𝑦′(0) = 1 on (−∞, ∞). 
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SOLUTION: Suppose   𝑥2𝑦′′ − 2𝑥𝑦′ + 2𝑦 = 6                                … (1) 

and                                   𝑦(𝑥) = 𝑐𝑥2 + 𝑥 + 3                                     … (2)        

Now differentiating (2), we have 

𝑦′ = 2𝑐𝑥 + 1                           and                      𝑦′′ = 2𝑐                 … (3)                

From (1) 

L.H.S.  𝑥2𝑦′′ − 2𝑥𝑦′ + 2𝑦 = 𝑥2(2𝑐) − 2𝑥(2𝑐𝑥 + 1) + 2(𝑐𝑥2 + 𝑥 + 3), 

using (2) and (3) 

                                                         = 6=R.H.S. of (1) 

From (2) and (3)  

                                                      𝑦(0) = (𝑐 × 0) + 0 + 3 = 3                                            

and 

                                                       𝑦′(0) = (2𝑐) × (0) + 1 = 1. 

Comparing (1) with 

𝑎0(𝑥)𝑦′′ + 𝑎1(𝑥)𝑦′ + 𝑎2(𝑥)𝑦 = 𝑟(𝑥) 

here 

 𝑎0(𝑥) = 𝑥2,  𝑎1(𝑥) = −2𝑥,   𝑎2(𝑥) = 2     and   𝑟(𝑥) = 6  which are      

 continuous on (−∞, ∞). 

Since 𝑎0(𝑥) = 𝑥2 = 0 for 𝑥 = 0 ∈ (−∞, ∞), therefore, the solution 

𝑦(𝑥) = 𝑐𝑥2 + 𝑥 + 3 is not unique. Hence  we see that 𝑦 = 𝑐𝑥2 + 𝑥 + 3 is 

a solution for any real value of c. 

 

 

EXAMPLE2: Find the unique solution of 𝑦′′ = 1 satisfying 𝑦(0) = 1 

and 𝑦′(0) = 2. 

SOLUTION: The given equation   𝑦′′ =
𝑑2𝑦

𝑑𝑥2 = 1                        … (1) 

Integrating (1)  

                                                         𝑦′ =
𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑐1                   … (2) 

Again integrating (2) 

                                                   𝑦 = 𝑥2 2⁄ + 𝑐1𝑥 + 𝑐2                  … (3) 

 

Putting 𝑥 = 0 in equation(2) and (3) and using 𝑦(0) = 1 and 𝑦′(0) = 2, 

then we have 

𝑐1 = 2 and 𝑐2 = 1. 

Hence from (3) becomes  𝑦 = 𝑥2 2⁄ + 2𝑥 + 1                            … (4) 

Comparing (1) with  

𝑎0(𝑥)𝑦′′ + 𝑎1(𝑥)𝑦′ + 𝑎2(𝑥)𝑦 = 𝑟(𝑥) 

We get 
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𝑎0(𝑥) = 1,                         𝑎1(𝑥) = 0,                    𝑎2(𝑥) = 0     and                

𝑟(𝑥) = 1      

Since these all are continuous in (−∞, ∞) and Since 𝑎0(𝑥) ≠ 0 for each 

𝑥 ∈ (−∞, ∞).Hence by existence and uniqueness theorem,  equation (4) is 

unique. 

EXAMPLE3: To show that solutions 𝜙1(𝑥) = 𝑒2𝑥 , 𝜙2(𝑥) = 𝑥𝑒2𝑥 and 

𝜙3(𝑥) = 𝑥2𝑒2𝑥 are linearly independent solutions of 𝑦′′′ − 6𝑦′′ + 12𝑦′ −

8𝑦 = 0 on an interval 0 ≤ 𝑥 ≤ 1. 

SOLUTION: Suppose 

𝑊(𝜙1, 𝜙2, 𝜙3)(𝑥)

= |     
 𝑒2𝑥                                           𝑥𝑒2𝑥                                     𝑥2  𝑒2𝑥

𝑑(𝑒2𝑥) 𝑑𝑥⁄                𝑑(𝑥𝑒2𝑥) 𝑑𝑥⁄              𝑑(𝑥2𝑒2𝑥) 𝑑𝑥⁄

𝑑2(𝑒2𝑥) 𝑑𝑥⁄                         𝑑2(𝑥𝑒2𝑥) 𝑑𝑥⁄            𝑑2(𝑥2𝑒2𝑥) 𝑑𝑥⁄
     | 

Or 

𝑊(𝜙1, 𝜙2, 𝜙3)(𝑥)

= |   
 𝑒2𝑥                              𝑥𝑒2𝑥                                     𝑥2𝑒2𝑥

2𝑒2𝑥                   (1 + 2𝑥)𝑒2𝑥                    (2𝑥 + 2𝑥2)𝑒2𝑥

      4𝑒2𝑥                       (4 + 4𝑥)𝑒2𝑥             (2 + 8𝑥 + 4𝑥2)𝑒2𝑥

  

   

|   … (1) 

 

   it is not very easy to evaluate R.H.S. of (1). We chose 0 ∈ [0,1]. Then, 

from (1), 

𝑊(𝜙1, 𝜙2, 𝜙3)(0) = |
1    0    0
2    1    0
4    4    2

| = 2 

By Abel’s formula, we have 

𝑊(𝜙1, 𝜙2, 𝜙3)(𝑥) = 𝑒− 𝑝1(𝑥−𝑥0) = 𝑊(𝜙1, 𝜙2, 𝜙3)(𝑥0) 

Here 𝑝1 = −6 and 𝑥0 = 0. Hence, (3) reduces to 𝑊(𝜙1, 𝜙2, 𝜙3)(𝑥) =

2𝑒6𝑥, using (2) 

     

1.14 FUNDAMENTAL SET OF SOLUTIONS:- 

Definition: Any set 𝑦1, 𝑦2 … … , 𝑦𝑛 of 𝑛 linearly independent 

solutions of the homogeneous linear nth order differential equation 

(𝑑𝑛𝑦 𝑑𝑥𝑛⁄ ) + 𝑝1(𝑥)(𝑑𝑛−1𝑦 𝑑𝑥𝑛−1⁄ ) + 𝑝2(𝑥)(𝑑𝑛−2𝑦 𝑑𝑥𝑛−2⁄ ) + ⋯

+ 𝑝𝑛(𝑥)𝑦(𝑥) = 0,    𝑥 ∈ 𝐼 

is said to be a fundamental set of solutions on the interval 𝐼. 

    

SOLVED EXAMPLES 
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EXAMPLE1: Prove that the solutions 𝑒𝑥 , 𝑒𝑥 , 𝑒2𝑥 of (𝑑3𝑦 𝑑𝑥3⁄ ) −

2(𝑑2𝑦 𝑑𝑥2⁄ ) − (𝑑𝑦 𝑑𝑥⁄ ) + 2𝑦 = 0 are linearly independent and hence or 

otherwise solve the given equation. 

SOLUTION: The given equation  (𝑑3𝑦 𝑑𝑥3⁄ ) − 2(𝑑2𝑦 𝑑𝑥2⁄ ) −

(𝑑𝑦 𝑑𝑥⁄ ) + 2𝑦 = 0   Or      𝑦′′′ − 2𝑦′′ − 𝑦′ + 2𝑦 = 0               … (1) 

Consider 

𝑦1 = 𝑒𝑥 ,  𝑦2 = 𝑒−𝑥   and       𝑦3 = 𝑒2𝑥                                            … (2)                  

 𝑦′1 = 𝑒𝑥 ,   𝑦′′1 = 𝑒𝑥     and        𝑦′′′1 = 𝑒𝑥                                   … (3)      

𝑦1
′′′ − 2𝑦1

′′ − 𝑦′
1

+ 2𝑦1 =  𝑒𝑥 − 2𝑒𝑥 − 𝑒𝑥 + 2𝑒𝑥 = 0, from (2) and (3) 

Hence  

𝑊(𝑥) = |

𝑦1    𝑦2      𝑦3

𝑦′1    𝑦′2    𝑦′3

𝑦′′1    𝑦′′2    𝑦′′3

| = |
𝑒𝑥         𝑒−𝑥     𝑒2𝑥

𝑒𝑥     −𝑒−𝑥     2𝑒2𝑥

𝑒𝑥        𝑒−𝑥     4𝑒2𝑥

| 

= (𝑒𝑥         𝑒−𝑥     𝑒2𝑥) |
1        1       1
1     − 1      2
1         1      4

| = 𝑒2𝑥 |
1        0      0

1     − 2      1
1         0      3

|            

[
𝐶2 → 𝐶2 − 𝐶1

𝐶3 → 𝐶3 − 𝐶1
] = −6𝑒2𝑥 

Finally 𝑦1, 𝑦2 and 𝑦3 are linearly independent. 

EXAMPLE2: Show that 𝑠𝑖𝑛2𝑥 and 𝑐𝑜𝑠2𝑥 form a set of fundamental 

solutions of 𝑦′′ + 4𝑦 = 0 and hence find the general solution of this 

equation. 

SOLUTION: Let                         𝑦′′ + 4𝑦 = 0                 … (1)          

and                     𝑦1(𝑥) = 𝑠𝑖𝑛2𝑥,      𝑦2(𝑥) = 𝑐𝑜𝑠2𝑥                      … (2)                  

Now           𝑦′1(𝑥) = 2𝑐𝑜𝑠2𝑥,      𝑦2(𝑥) = −4𝑠𝑖𝑛2𝑥                     … (3) 

            𝑦′′(𝑥) + 4𝑦(𝑥) = −4𝑠𝑖𝑛2𝑥 + 4𝑠𝑖𝑛2𝑥 = 0,  from (2) and (3) 

Hence we can prove that 𝑦1(𝑥) = 𝑠𝑖𝑛2𝑥 and 𝑦2(𝑥) = 𝑐𝑜𝑠2𝑥 is the 

solution of (1). So the Wronskian 𝑊(𝑥) of 𝑦1(𝑥) and 𝑦2(𝑥) is obtained by 

𝑊(𝑥) = |
𝑦1(𝑥)    𝑦2(𝑥)

𝑦′
1

(𝑥)    𝑦′
2
(𝑥) 

| = |
𝑠𝑖𝑛2𝑥    𝑐𝑜𝑠2𝑥

2𝑐𝑜𝑠2𝑥   − 2𝑠𝑖𝑛2𝑥
| 

                              = −2(𝑠𝑖𝑛22𝑥 + 𝑐𝑜𝑠22𝑥) = −2 ≠ 0.  

Finally 𝑊(𝑥) ≠ 0, 𝑠𝑖𝑛2𝑥 and 𝑐𝑜𝑠2𝑥 are linearly independent solution of 

(1). 

SELF CHECK QUESTIONS 
Choose the Correct Option: 

(SCQ-1)The differential equation of family of circles of radius 𝑟 whose 

centre lie on the x-axis, is  

(a) 𝑦(𝑑𝑦 𝑑𝑥⁄ ) + 𝑦2 = 𝑟2 

(b) 𝑦{(𝑑𝑦 𝑑𝑥⁄ ) + 1} = 𝑟2 
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(c) 𝑦2{(𝑑𝑦 𝑑𝑥⁄ ) + 1} = 𝑟2 

(d) 𝑦2{(𝑑𝑦 𝑑𝑥⁄ )2 + 1} = 𝑟2 

 

(SCQ-2) Linear combinations of solutions of an ordinary differential 

equation are solutions if the differential equation is  

(a) Linear non-homogeneous 

(b) Linear homogeneous  

(c) Non-linear homogeneous 

(d) Non-linear non-homogeneous 

(SCQ -3)which of the following pair of the functions is not a linear 

independent solutions of 𝑦′′ + 9𝑦 = 0? 

(a) 𝑠𝑖𝑛3𝑥, 𝑠𝑖𝑛3𝑥 − 𝑐𝑜𝑠3𝑥 

(b) 𝑠𝑖𝑛3𝑥 + 𝑐𝑜𝑠3𝑥, 3𝑠𝑖𝑛𝑥 − 4𝑠𝑖𝑛3𝑥 

(c) 𝑠𝑖𝑛3𝑥, 𝑠𝑖𝑛3𝑥 𝑐𝑜𝑠3𝑥 

(d) 𝑠𝑖𝑛3𝑥 + 𝑐𝑜𝑠3𝑥, 4𝑐𝑜𝑠3𝑥 − 3𝑐𝑜𝑠𝑥 

(SCQ-4) Let 𝑦 = 𝜙(𝑥) and 𝑦 = 𝜓(𝑥) be solutions of 𝑦′′ − 2𝑥𝑦′ +

(𝑠𝑖𝑛𝑥2)𝑦 = 0,  such that𝜙(0) = 1, 𝜙′(0) = 1 and 𝜓(0) = 1, 𝜓′(0) = 2. 

The value of Wromhian 𝑊(𝜙, 𝜓)at 𝑥 = 1 is 

(a) 0 

(b) 1  

(c) e 

(d) 𝑒2 

(SCQ-5) For which of the following functions 𝑦1(𝑥) and 𝑦2(𝑥), 

continuous functions 𝑝(𝑥) and q(𝑥)  can be determined on [−1, 1] such 

that 𝑦1(𝑥) and 𝑦2(𝑥) give two linearly independent solutions of 𝑦′′ +

𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 0, 𝑥 ∈ [−1, 1]. 

(a) 𝑦1(𝑥) = 𝑥𝑠𝑖𝑛𝑥, 𝑦2(𝑥) = 𝑐𝑜𝑠𝑥  

(b) 𝑦1(𝑥) = 𝑥𝑒𝑥 , 𝑦2(𝑥) = 𝑠𝑖𝑛𝑥 

(c) 𝑦1(𝑥) = 𝑒𝑥−1, 𝑦2(𝑥) =  𝑒𝑥−1 

(d) None of these 

(SCQ-6) Let 𝑦1(𝑥) and 𝑦2(𝑥) defined on [0,1] be twice continuously 

differentiable functions satisfying  𝑦′′(𝑥) + 𝑦′(𝑥) + 𝑦(𝑥) = 0. Let 𝑊(𝑥) be 

Wronskian of 𝑦1 and 𝑦2 and satisfy𝑊(1/2) = 0. Then  

(a) 𝑊(𝑥) = 0 for 𝑥 ∈ [0, 1] 

(b) 𝑊(𝑥) > 0 for 𝑥 ∈ [0, 1/2] 

(c) 𝑊(𝑥) < 0 for 𝑥 ∈ [1/2, 1] 

(d) None of these  
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(SCQ-7) Order and degree, respectively of the differential equation of 

the family of curves 𝑦2 = 2𝑐(𝑥 + √𝑐) are: 

(a) 1,1  

(b) 1,2 

(c) 1,3 

(d) None of these  

(SCQ-8)The order of the differential equation 𝑦′′′′ − 3(𝑦′′′)2 + 4𝑦′′ −

5𝑦′ + 6𝑦 = 0 is 

(a) 3 

(b) 5 

(c) 4 

(d) None of these 

 

1.15 SUMMARY  

In this unit we have studied the differential equation which contains at 

least one derivative of an unknown function, order of a differential 

equation is the highest derivative present in the differential equation Order 

of Differential Equation. Definition, Degree of a Differential Equation, 

Linear and non- linear differential Equation, Solution of differential 

Equation and Family of curve, Complete Primitive (General Solution). 

Particular Solution and Singular Solutions, The Wronskian, Linearly 

dependent and independent set of functions, Existence of uniqueness 

theorem, Fundamental set of solutions. 

1.16 GLOSSARY:- 

Differential Equation: A mathematical equation that relates a function or 

a set of functions to their derivatives. It explains the rate of change of a 

quantity. 

Ordinary Differential Equation (ODE): A differential equation 

involving a one independent variable and its derivatives. It models various 

dynamic systems like motion, growth, and decay. 

Partial Differential Equation (PDE): A differential equation involving 

one or more independent variables and their partial derivatives. It is used 

to explain phenomena in fields like physics, engineering, and fluid 

dynamics. 
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1.19 TERMINAL QUESTIONS:- 

(TQ-1)Find the differential equation of the family of the curves 𝑦 =

𝐴𝑒3𝑥 + 𝐵𝑒5𝑥; for different values of 𝐴 and . 

 (TQ-2)Show that 𝐴𝑥2 + 𝐵𝑦2 = 1 is the solution of 𝑥[𝑦(𝑑2𝑦 𝑑𝑥2⁄ ) +

(𝑑𝑦/𝑑𝑥)2] = 𝑦(𝑑𝑦/𝑑𝑥).  

(TQ-3)Show that 𝑦 = 𝑥 + 𝑥𝑙𝑜𝑔𝑥 − 1 is the unique solution of 𝑥𝑦′′ −

1 = 0 satisfying 𝑦(1) = 0 and 𝑦′(1) = 2. 

(TQ-4) Define linearly dependent and independent set of functions. 

(TQ-5) Show that the linearly independent solutions of 𝑦′′ − 2𝑦′ + 2𝑦 =

0 are 𝑒𝑥𝑠𝑖𝑛𝑥 and  𝑒𝑥𝑐𝑜𝑠𝑥.  

(TQ-6) Prove that the functions 1, 𝑥, 𝑥2 are linearly independent. Hence 

form the differential equation whose solutions are 1, 𝑥, 𝑥2 
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1.20 ANSWERS:- 

SELF CHECK ANSWERS (SCQ’S) 

(SCQ-1) d                          (SCQ-2) b                            (SCQ-3) c  

(SCQ-4) c          (SCQ-5) c      (SCQ-6) a 

(SCQ-7) c                    (SCQ-8) c                             

 

TERMINAL ANSWERS (TQ’S) 

(TQ-1)  𝑦′′ − 8𝑦′ + 15𝑦 = 0 

 



ADVANCED DIFFERENTIAL EQUATIONS- I MAT 504 
 

Department of mathematics,  
Uttarakhand Open University                                                                                  Page 20 
  

 

UNIT 2: - DEGREE & EXACTNESS OF THE 

DIFFERENTIAL EQUATION AND PRINCIPLE 

OF DUALITY 

CONTENTS: 
2.1      Introduction 

2.2      Objectives 

2.3      Differential Equation of First Order and First Degree. 

2.4      Variables separable. 

2.5      Homogeneous Equations.  

           2.5.1 Equation Reducible to Homogeneous form. 

2.6      Pfaffian Differential Equation.  

2.7      Exact Differential Equation.  

2.8       Integrating factor.  

2.9       Linear Differential equation. 

2.10     Equations reducible to linear form. 

2.11     Bernoulli’s Equation 

2.12    Differential Equations of first order but not of the first degree.   

2.13     Principle of duality  

2.14     Summary 

2.15     Glossary 

2.16      References 

2.17      Suggested Reading 

2.18      Terminal questions  

2.19      Answers  

2.1 INTRODUCTION:- 

In this previous unit, you have already studied 

 About the differential equations and its type. 

 About the general solutions of various differential equations with suitable 

examples. 

 About the existence & uniqueness theorem with examples. 
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 In this unit we will discuss about the degree of a differential equation tells us 

the highest order of the derivative involved, while exactness is a property 

specific to first-degree ODEs that allows for straightforward integration. 

 

   2.2 OBJCETIVES:- 

After studying this unit you will be able to  

 Student will be able to solve first order first degree differential equations 

utilizing the standard techniques. 

 Determine the first order and first degree depend on the specific context in 

which they are being used, and they are often used in different types of 

problems and situations. 

 Student will be able to solve standard form of first order.   

 Define a Pfaffian differential equation. 

 

   2.3 DIFFERENTIAL EQUATION OF FIRST ORDER 

AND FIRST DEGREE:- 

The differential equation of first degree and first order can always be defined as, 

namely 

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦). 

or 

                                     𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦 = 0. 

where 𝑀 and 𝑁 are the functions of 𝑥 and 𝑦 or are constants. 

Since this equation being first order, its general solution will contain only one 

arbitrary constant. We now talk about the various methods to solve such 

equations. 

2.4 VARIABLES SEPERABLE:- 

If in an equation, it is possible to get all the functions of 𝑥 and 𝑑𝑥 to one side 

and all the functions of 𝑦 and 𝑑𝑦 to the other, then the variables are said to be 

Separable. 

 

Working Rule:  
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Step1: Suppose                        
𝑑𝑦

𝑑𝑥
= 𝑓1(𝑥)𝑓2(𝑦)                             … (1) 

where 𝑓1(𝑥) is the function of only 𝑥 and𝑓1(𝑦) is the function of only 𝑦. 

Step2:       from (1), we get 

                                               
𝑑𝑦

𝑓2(𝑦)
= 𝑓1(𝑥)𝑑𝑥                                  … (2) 

Step3: Integrating both sides of equation (2) , we obtain 

                                             ∫
𝑑𝑦

𝑓2(𝑦)
= ∫ 𝑓1(𝑥)𝑑𝑥 + 𝑐                    … (3) 

Where c is arbitrary constant.  

Note1. Remember to add an arbitrary constant c on one side (only).If arbitrary 

constant c is not added, then the solution derives will not be general solution. 

Note2. The solution of differential equation must be expressed in the form as 

simple as possible. 

Note3. Remember that 

i. log 𝑥 + log 𝑦 = log 𝑥𝑦 

ii. log 𝑥 − log 𝑦 = log
𝑥

𝑦
 

iii. 𝑛 log 𝑥 = log 𝑥𝑛 

iv. tan−1 𝑥 + tan−1 𝑦 = tan−1 [
(𝑥+𝑦)

(1−𝑥𝑦)
] 

v. tan−1 𝑥 − tan−1 𝑦 = tan−1 [
(𝑥−𝑦)

(1+𝑥𝑦)
] 

 

SOLVED EXAMPLES 
EXAMPLE1. Solve (1 + 𝑥2)𝑑𝑦 = (1 + 𝑦2)𝑑𝑥 

SOLUTION: The given equation   (1 + 𝑥2)𝑑𝑦 = (1 + 𝑦2)𝑑𝑥 

Now separating variables 

𝑑𝑦

(1 + 𝑦2)
=

𝑑𝑥

(1 + 𝑥2)
                          … (1) 

Integrating both sides in (1) 

⇒ ∫
𝑑𝑦

(1 + 𝑦2)
= ∫

𝑑𝑥

(1 + 𝑥2)
    =    tan−1 𝑦 = tan−1 𝑥 + tan−1 𝑐 

 

 ⇒     where c is constant. 

 ⇒                               tan−1 𝑦 − tan−1 𝑥 = tan−1 𝑐 

⇒     tan−1 (𝑦−𝑥)

(1+𝑦𝑥)
= tan−1 𝑐   Using {tan−1 𝑥 − tan−1 𝑦 = tan−1 [

(𝑥−𝑦)

(1+𝑥𝑦)
]} 

 ⇒                                        
𝑦−𝑥

1+𝑦𝑥
= 𝑐 

EXAMPLE2. Solve 
𝑑𝑦

𝑑𝑥
= 𝑠𝑖𝑛(𝑥 + 𝑦) + 𝑐𝑜𝑠(𝑥 + 𝑦)                   … (1) 

SOLUTION. Suppose 𝑥 + 𝑦 = 𝑢. 

Then differentiating both side 
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1 +
𝑑𝑦

𝑑𝑥
=

𝑑𝑢

𝑑𝑥
 

𝑑𝑦

𝑑𝑥
=

𝑑𝑢

𝑑𝑥
− 1 

Substituting these value in equation (1) 

⇒                                           
𝑑𝑢

𝑑𝑥
− 1 = 𝑠𝑖𝑛𝑢 + 𝑐𝑜𝑠𝑢   

⇒                                          
𝑑𝑢

(1 + 𝑐𝑜𝑠𝑢) + 𝑠𝑖𝑛𝑢
=   𝑑𝑥,   𝑠𝑒𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠  

⇒                                          
𝑑𝑢

2𝑐𝑜𝑠2 𝑢
2 + 2𝑠𝑖𝑛

𝑢
2 𝑐𝑜𝑠

𝑢
2

=   𝑑𝑥 

⇒                                          

1
2 𝑠𝑒𝑐2 𝑢

2

1 + 𝑡𝑎𝑛
𝑢
2

𝑑𝑢 =   𝑑𝑥. 

∴        Integrating both sides, we get 

⇒                              log (1 + 𝑡𝑎𝑛
1

2
𝑢) = 𝑥 + 𝑐                                … (2) 

Putting the value of 𝑢 in equation (2) 

⇒                              log (1 + 𝑡𝑎𝑛
1

2
(𝑥 + 𝑦)) = 𝑥 + 𝑐 

 

EXAMPLE3. Solve 
𝑑𝑦

𝑑𝑥
= 𝑒𝑥+𝑦 + 𝑥2𝑒𝑦 

SOLUTION. Given  
𝑑𝑦

𝑑𝑥
= 𝑒𝑥+𝑦 + 𝑥2𝑒𝑦 

                                
𝑑𝑦

𝑑𝑥
= 𝑒𝑥 . 𝑒𝑦 + 𝑥2𝑒𝑦             

                                
𝑑𝑦

𝑑𝑥
= 𝑒𝑦(𝑒𝑥 + 𝑥2) 

Separating variables  

                               
𝑑𝑦

𝑒𝑦 = (𝑒𝑥 + 𝑥2)𝑑𝑥 

Integrating both sides 

                               ∫
𝑑𝑦

𝑒𝑦 = ∫(𝑒𝑥 + 𝑥2)𝑑𝑥 

                               ∫ 𝑒−𝑦𝑑𝑦 = ∫(𝑒𝑥 + 𝑥2)𝑑𝑥 

                                    
𝑒−𝑦

−1
= 𝑒𝑥 +

𝑥3

3
+ 𝑐   

                                   𝑒𝑥 +
𝑥3

3
+ 𝑒−𝑦 + 𝑐=0   is required solution. 

EXAMPLE4.Solve the following differential equations: 

a. 𝑠𝑒𝑐2𝑥𝑡𝑎𝑛𝑦 𝑑𝑥 + 𝑠𝑒𝑐2𝑦𝑡𝑎𝑛𝑥𝑑𝑦 = 0 

b. 
𝑑𝑦

𝑑𝑥
=

𝑠𝑖𝑛𝑥+𝑥𝑐𝑜𝑠𝑥

𝑦(2𝑙𝑜𝑔𝑦+1)
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c. 𝑦 − 𝑥 (
𝑑𝑦

𝑑𝑥
) = 𝑎 (𝑦2 +

𝑑𝑦

𝑑𝑥
) 

d. (𝑥2 − 𝑦𝑥2)𝑑𝑦 + (𝑦2 + 𝑥𝑦2)𝑑𝑥 = 0 

e. 
𝑑𝑦

𝑑𝑥
= 𝑥𝑦 + 𝑥 + 𝑦 + 1 

SOLUTION. 

a. Given   𝑠𝑒𝑐2𝑥𝑡𝑎𝑛𝑦 𝑑𝑥 + 𝑠𝑒𝑐2𝑦𝑡𝑎𝑛𝑥𝑑𝑦 = 0 

                     𝑠𝑒𝑐2𝑦𝑡𝑎𝑛𝑥𝑑𝑦 = −  𝑠𝑒𝑐2𝑥𝑡𝑎𝑛𝑦 𝑑𝑥   

Separating variables 

                        
𝑠𝑒𝑐2𝑦

𝑡𝑎𝑛𝑦 
𝑑𝑦 = −

𝑠𝑒𝑐2𝑥

𝑡𝑎𝑛𝑥
𝑑𝑥 

 Integrating both sides 

                        ∫
𝑠𝑒𝑐2𝑦

𝑡𝑎𝑛𝑦 
𝑑𝑦 = − ∫

𝑠𝑒𝑐2𝑥

𝑡𝑎𝑛𝑥
𝑑𝑥 

                        log 𝑡𝑎𝑛𝑦 = − log 𝑡𝑎𝑛𝑥 + 𝑐1           [𝑐1 = log 𝑐] 

Finally 

                        log 𝑡𝑎𝑛𝑦 + log 𝑡𝑎𝑛𝑥 = 𝑐1 = log 𝑐 

                        log 𝑡𝑎𝑛𝑦 𝑡𝑎𝑛𝑥 = log 𝑐 

                         𝑡𝑎𝑛𝑦 𝑡𝑎𝑛𝑥 = 𝑐 

b. Let 
𝑑𝑦

𝑑𝑥
=

𝑠𝑖𝑛𝑥+𝑥𝑐𝑜𝑠𝑥

(2𝑦𝑙𝑜𝑔𝑦+1)
 

                          (𝑠𝑖𝑛𝑥 + 𝑥𝑐𝑜𝑠𝑥)𝑑𝑥 = (2𝑦𝑙𝑜𝑔𝑦 + 1)𝑑𝑦 

      ∫(𝑠𝑖𝑛𝑥 + 𝑥𝑐𝑜𝑠𝑥)𝑑𝑥 = ∫(2𝑦𝑙𝑜𝑔𝑦 + 1)𝑑𝑦                   … (1) 

        Now  

                    ∫(𝑥𝑐𝑜𝑠𝑥)𝑑𝑥 = 𝑥 𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥 

Also 

                    ∫(𝑦𝑙𝑜𝑔𝑦)𝑑𝑦 = (𝑙𝑜𝑔𝑦) × (𝑦2 2⁄ ) − ∫{(1 𝑦⁄ ) × (𝑦2 2⁄ )} 𝑑𝑦 

                                             = (𝑙𝑜𝑔𝑦)(𝑦2 2⁄ ) − (𝑦2 4⁄ ) 

Putting the value of ∫(𝑥𝑐𝑜𝑠𝑥)𝑑𝑥 and ∫(𝑦𝑙𝑜𝑔𝑦)𝑑𝑦 in (1) 

                   −𝑐𝑜𝑠𝑥 + 𝑥𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥 = 2 {(
𝑦2

2
) 𝑙𝑜𝑔𝑦 − 𝑦2 4⁄ } + 𝑦2 2⁄ + 𝑐 

           ⇒          𝑥𝑠𝑖𝑛𝑥 = 𝑦2 𝑙𝑜𝑔𝑦 + 𝑐  

c. Let 𝑦 − 𝑥 (
𝑑𝑦

𝑑𝑥
) = 𝑎 (𝑦2 +

𝑑𝑦

𝑑𝑥
) 

    

          𝑥𝑦 − 𝑥2 𝑑𝑦

𝑑𝑥
= 𝑦 

          −𝑥2 𝑑𝑦

𝑑𝑥
= 𝑦 − 𝑥𝑦 

         −𝑥2 𝑑𝑦

𝑑𝑥
= 𝑦(1 − 𝑥) 

         𝑥2 𝑑𝑦

𝑑𝑥
= 𝑦(𝑥 − 1) 
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        ∫
𝑑𝑦

𝑦
= ∫(1 − 𝑥)𝑑𝑥 = ∫ (

1

𝑥
−

1

𝑥2) 𝑑𝑥 

        𝑙𝑜𝑔𝑦 = 𝑙𝑜𝑔𝑥 +
1

𝑥
+ 𝑐 

d. Given (𝑥2 − 𝑦𝑥2)𝑑𝑦 + (𝑦2 + 𝑥𝑦2)𝑑𝑥 = 0 

        𝑥2(1 − 𝑦)𝑑𝑦 + 𝑦2(1 + 𝑥)𝑑𝑥 = 0 

       
1−𝑦

𝑦2 𝑑𝑦 +
1+𝑥

𝑥2 𝑑𝑥 = 0    

                               or 

    (
1

𝑦2 −
1

𝑦
) 𝑑𝑦 + (

1

𝑥2 +
1

𝑥
) 𝑑𝑦 = 0    

Integrating both sides 

 

    ∫ (
1

𝑦2 −
1

𝑦
) 𝑑𝑦 = ∫ (

1

𝑥2 +
1

𝑥
) 𝑑𝑦 

   −
1

𝑦
− 𝑙𝑜𝑔𝑦 −

1

𝑥
+ 𝑙𝑜𝑔𝑥 = 𝑐 

   𝑙𝑜𝑔
𝑥

𝑦
− (

1

𝑥
+

1

𝑦
) = 𝑐 

e. 
𝑑𝑦

𝑑𝑥
= 𝑥𝑦 + 𝑥 + 𝑦 + 1 

 

   
𝑑𝑦

𝑑𝑥
= (𝑥 + 1)(𝑦 + 1) 

     ∫
𝑑𝑦

(1+𝑦)
= ∫(𝑥 + 1)𝑑𝑥 

    𝑙𝑜𝑔(1 + 𝑦) =
𝑥2

2
+ 𝑥 + 𝑐 

    
𝑥2

2
+ 𝑥 − 𝑙𝑜𝑔(1 + 𝑦) + 𝑐 = 0 

 

2.5 HOMOGENEOUS EQUATIONS:- 

A differential equation of first order and first degree is said to be 

homogeneous if  

𝑑𝑦

𝑑𝑥
= 𝑓 (

𝑦

𝑥
) 

Working rule: 

Suppose                  

𝑑𝑦

𝑑𝑥
= 𝑓 (

𝑦

𝑥
)                       … (1) 

Let                     
𝑦

𝑥
= 𝑢         i.e.,    𝑦 = 𝑢𝑥            … (2)    

Now differentiating (2) w.r.t.𝑥, 
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𝑑𝑦

𝑑𝑥
= 𝑢 + 𝑥

𝑑𝑢

𝑑𝑥
                 … (3) 

Putting the value of (2) and (3) in (1) 

           𝑢 + 𝑥
𝑑𝑢

𝑑𝑥
= 𝑓(𝑢)      or               𝑥

𝑑𝑢

𝑑𝑥
= 𝑓(𝑢) − 𝑢 

 Separating variable 𝑥 and 𝑢, we get 

𝑑𝑥

𝑥
=

𝑑𝑢

𝑓(𝑢) − 𝑢
 

So  

∫
𝑑𝑥

𝑥
= ∫

𝑑𝑢

𝑓(𝑢) − 𝑢
 

𝑙𝑜𝑔𝑥 + 𝑐 =
𝑑𝑢

𝑓(𝑢) − 𝑢
 

Where c is an arbitrary constant and after integrating, replace 𝑢 by 𝑦 𝑥⁄ . 

 

SOLVED EXAMPLES 
EXAMPLE1. Solve (𝑥2 − 𝑦2)𝑑𝑥 + 2𝑥𝑦𝑑𝑦 = 0 

SOLUTION: The given equation can be defined as  

                            (𝑥2 − 𝑦2)𝑑𝑥 + 2𝑥𝑦𝑑𝑦 = 0 

                            (𝑥2 − 𝑦2)𝑑𝑥 = −2𝑥𝑦𝑑𝑦     

                                
𝑑𝑦

𝑑𝑥
= −

(𝑥2−𝑦2)

2𝑥𝑦
             … (1) 

                        Putting 𝑦 = 𝑢𝑥 and 
𝑑𝑦

𝑑𝑥
= 𝑢 + 𝑥

𝑑𝑢

𝑑𝑥
 in (1), we have 

                             𝑢 + 𝑥
𝑑𝑢

𝑑𝑥
= −

(𝑥2−(𝑢𝑥)2)

2𝑥𝑦
= −

(𝑥2−𝑢2𝑥2)

2𝑢𝑥2 = −
(1−𝑢2)

2𝑢
 

                            𝑥
𝑑𝑢

𝑑𝑥
= −

(1+𝑢2)

2𝑢
 

Separating variables 

                    
2𝑢

(1+𝑢2)
𝑑𝑢 = −

1

𝑥
𝑑𝑥             

              integrating, we have       log(1 + 𝑢2) = − log 𝑥 + log 𝑐 

             log(1 + 𝑢2) = log
𝑐

𝑥
 

             (1 + 𝑢2) =
𝑐

𝑥
 

  ⇒           1 +
𝑦2

𝑥2 =
𝑐

𝑥
. 

EXAMPLE2. Solve𝑥2𝑦𝑑𝑥 − (𝑥3 + 𝑦3)𝑑𝑦 = 0. 

SOLUTION: The given equation 

  ⇒           𝑥2𝑦𝑑𝑥 − (𝑥3 + 𝑦3)𝑑𝑦 = 0. 

            𝑥2𝑦𝑑𝑥 = (𝑥3 + 𝑦3)𝑑𝑦 
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𝑑𝑦

𝑑𝑥
=

𝑥2𝑦

(𝑥3+𝑦3)
        Putting 𝑦 = 𝑢𝑥 and 

𝑑𝑦

𝑑𝑥
= 𝑢 + 𝑥

𝑑𝑢

𝑑𝑥
 

           𝑢 + 𝑥
𝑑𝑢

𝑑𝑥
=

𝑥2𝑢𝑥

(𝑥3+𝑢3𝑥3)
=

𝑥3𝑢

𝑥3(1+𝑢3)
=

𝑢

(1+𝑢3)
      

           𝑥
𝑑𝑢

𝑑𝑥
=

𝑢

(1+𝑢3)
− 𝑢    ⇒       𝑥

𝑑𝑢

𝑑𝑥
= −

𝑢3

(1+𝑢3)
  , separating variables 

           
(1+𝑢3)

𝑢3 𝑑𝑢 = −
1

𝑥
𝑑𝑢                 (

1

𝑢3 +
1

𝑢
) 𝑑𝑢 = −

1

𝑥
𝑑𝑢 

  Integrating, we have       −
u−3

3
+ log 𝑢 = − log 𝑥 + log 𝑐 

        −
1

3u3 + log 𝑢 = − log 𝑥 + log 𝑐 

          log 𝑢 + log 𝑐 + log 𝑥 =
1

3u3 

             log 𝑢𝑥𝑐 =
1

3u3      ⇒         log 𝑢𝑥𝑐 =
1

3u3  

              Putting the value of 𝑢 =
𝑦

𝑥
  

                 log
𝑦

𝑥
𝑥𝑐 =

1

3(
𝑦

𝑥
)

3        ⇒  log 𝑦𝑐 =
x3

3y3 is required solution. 

EXAMPLE3. Solve 𝑥
𝑑𝑦

𝑑𝑥
− 𝑦 = √𝑥2 + 𝑦2 

SOLUTION:  The given equation is  𝑥
𝑑𝑦

𝑑𝑥
− 𝑦 = √𝑥2 + 𝑦2 

                                              
𝑑𝑦

𝑑𝑥
=

𝑦+√𝑥2+𝑦2

𝑥
                     … (1)          

    put 𝑦 = 𝑢𝑥, then  
𝑑𝑦

𝑑𝑥
= 𝑢 + 𝑥

𝑑𝑢

𝑑𝑥
 

         𝑢 + 𝑥
𝑑𝑢

𝑑𝑥
=

𝑢𝑥+√𝑥2+𝑢2𝑥2

𝑥
                         𝑢 + 𝑥

𝑑𝑢

𝑑𝑥
=

𝑢𝑥+𝑥√1+𝑢2

𝑥
           

     𝑥
𝑑𝑢

𝑑𝑥
=  √1 + 𝑢2             

𝑑𝑢

√1+𝑢2
=  

1

𝑥
𝑑𝑥 

      integrating, we get 

          sinh−1 𝑢 = log 𝑥 + log 𝑐                 log(𝑢 + √𝑢2 + 1) =  log 𝑐𝑥     

     sinh−1 𝑥 = log(𝑥 + √𝑥2 + 1)  

      (𝑢 + √𝑢2 + 1) = 𝑐𝑥             (
𝑦

𝑥
+ √

𝑦2

𝑥2 + 1) = 𝑐𝑥 

              
𝑦+√𝑦2+𝑥2

𝑥
= 𝑐𝑥              𝑦 + √𝑦2 + 𝑥2 = 𝑐𝑥2 is required solution. 

EXAMPLE4.  Solve 𝑥𝑑𝑦 − 𝑦𝑑𝑥 = √𝑥2 + 𝑦2 

SOLUTION: The given equation is 𝑥𝑑𝑦 − 𝑦𝑑𝑥 = √𝑥2 + 𝑦2𝑑𝑥 

              𝑥𝑑𝑦 = (𝑦 + √𝑥2 + 𝑦2)𝑑𝑥 

               
𝑑𝑦

𝑑𝑥
=

(𝑦+√𝑥2+𝑦2)

𝑥
=

𝑦

𝑥
+ {1 + (𝑦 𝑥⁄ )2}1/2   

               take  
𝑦

𝑥
= 𝑢,    ie.,     𝑦 = 𝑢𝑥,    

𝑑𝑦

𝑑𝑥
= 𝑢 + 𝑥

𝑑𝑢

𝑑𝑥
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So that 

           𝑢 + 𝑥
𝑑𝑢

𝑑𝑥
= 𝑢 + √1 + 𝑢2                ⇒      

𝑑𝑥

𝑥
=

𝑑𝑢

√1+𝑢2
 

    Integrating,                   log 𝑥 + log 𝑐 = log[𝑢 + √1 + 𝑢2]                    

𝑥𝑐 = 𝑢 + √1 + 𝑢2 

      putting the value 𝑢 =
𝑦

𝑥
                     𝑥𝑐 =

𝑦

𝑥
+ √1 +

𝑦2

𝑥2 

        𝑥2𝑐 = 𝑦 + √𝑥2 + 𝑦2 is required result. 

 

2.5.1 EQUATION REDUCIBLE TO HOMOGENEOUS FORM:- 

The differential equation of the form 

                                   
𝑑𝑦

𝑑𝑥
=

𝑎𝑥+𝑏𝑦+𝑐

𝑎1𝑥+𝑏1𝑦+𝑐1
,                     where 

𝑎

𝑎1
≠

𝑏

𝑏1
     

Can be reduced to homogeneous form by taking variables 𝑋  and 𝑌 such that  

𝑥 = 𝑋 + ℎ            𝑦 = 𝑌 + 𝑘                         … (1) 

Where   and 𝑘 are constants, then 𝑑𝑥 = 𝑑𝑋, 𝑑𝑦 = 𝑑𝑌       

Now given equation becomes,                
𝑑𝑦

𝑑𝑥
=

𝑎𝑥+𝑏𝑦+𝑐

𝑎1𝑥+𝑏1𝑦+𝑐1
                    

           
𝑑𝑌

𝑑𝑋
=

𝑎(𝑋+ℎ)+𝑏(𝑌+𝑘)+𝑐

𝑎1(𝑋+ℎ)+𝑏1(𝑌+𝑘)+𝑐1
=  

𝑎𝑋+𝑏𝑌+(𝑎ℎ+𝑏𝑘+𝑐)

𝑎1𝑋+𝑏1𝑌+(𝑎1𝑥+𝑏1𝑦+𝑐1)
            … (2)                                                                                       

Solving by cross multiplication 

       
ℎ

𝑏𝑐1−𝑏1𝑐
=

𝑘

𝑐𝑎1−𝑐1𝑎
=

1

𝑎𝑏1−𝑎1𝑏
 

        ℎ =
𝑏𝑐1−𝑏1𝑐

𝑎𝑏1−𝑎1𝑏
 ,                   𝑘 =

𝑐𝑎1−𝑐1𝑎

𝑎𝑏1−𝑎1𝑏
 

Now equation (2) becomes 
𝑑𝑦

𝑑𝑥
=

𝑎𝑋+𝑏𝑌

𝑎1𝑋+𝑏1𝑌
 

Which is homogeneous equation and can be solve 𝑦 = 𝑢𝑥 . In solution putting  

𝑋 = 𝑥 − ℎ   , 𝑌 = 𝑦 − 𝑘, then we get the required solution. 

 

SOLVED EXAMPLES 

EXAMPLE1. Solve 
𝑑𝑦

𝑑𝑥
=

𝑦−𝑥+1

𝑦+𝑥−5
 

SOLUTION: The given equation  

𝑑𝑦

𝑑𝑥
=

𝑦 − 𝑥 + 1

𝑦 + 𝑥 − 5
                                   … (1) 

[𝐻𝑒𝑟𝑒   𝑎 = −1, 𝑏 = 1, 𝑎1 = 1, 𝑏1 = 1,
𝑎

𝑎1
≠

𝑏

𝑏1
] 

Now we put 𝑥 = 𝑋 + ℎ, 𝑦 = 𝑌 + 𝑘, then 𝑑𝑥 = 𝑑𝑋, 𝑑𝑦 = 𝑑𝑌 
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Form(1) 

𝑑𝑌

𝑑𝑋
=

𝑌 + 𝑘 − 𝑋 − ℎ + 1

𝑌 + 𝑘 + 𝑋 + ℎ − 5
=

(−𝑋 + 𝑌) + (−ℎ + 𝑘 + 1)

(𝑋 + 𝑌) + (ℎ + 𝑘 − 5)
    … . (2) 

Choose  and  𝑘 so that 

−ℎ + 𝑘 + 1 = 0
ℎ + 𝑘 − 5 = 0

}                … (3) 

 

solving equation (3), we obtain ℎ = 3, 𝑘 = 2 

from(2)                                 
𝑑𝑌

𝑑𝑋
=

−𝑋+𝑌

𝑋+𝑌
                    … (4) 

Put put 𝑌 = 𝑢𝑋, then  
𝑑𝑌

𝑑𝑋
= 𝑢 + 𝑋

𝑑𝑢

𝑑𝑋
 

From (4)           𝑢 + 𝑥
𝑑𝑢

𝑑𝑋
=

−𝑋+𝑢𝑋

𝑋+𝑢𝑋
=

−1+𝑢

1+𝑢
 

                                  𝑋
𝑑𝑢

𝑑𝑋
=

−1+𝑢

1+𝑢
− 𝑢 

                                     𝑋
𝑑𝑢

𝑑𝑋
=

−1+𝑢−𝑢−𝑢2

1+𝑢
 

                                     𝑋
𝑑𝑢

𝑑𝑋
= −

1+𝑢2

1+𝑢
 

Separating variables   ∫
1+𝑢

1+𝑢2 𝑑𝑢 = − ∫
1

𝑋
𝑑𝑋 

Integrating      ∫
1

1+𝑢2 𝑑𝑢 +
1

2
∫

2𝑢

1+𝑢2 𝑑𝑢 = − log 𝑋 + 𝑐 

            tan−1 𝑢 +
1

2
log(1 + 𝑢2) = − log 𝑋 + 𝑐 

           Putting 𝑢 =
𝑌

𝑋
 ,         tan−1 𝑌

𝑋
+

1

2
log (1 +

𝑌2

𝑋2) = − log 𝑋 + 𝑐 

           tan−1 𝑌

𝑋
+

1

2
log (

𝑋2+𝑌2

𝑋2 ) = − log 𝑋 + 𝑐 

           tan−1 𝑌

𝑋
+

1

2
[log(𝑋2 + 𝑌2) − log 𝑋2] = − log 𝑋 + 𝑐 

           tan−1 𝑌

𝑋
+

1

2
[log(𝑋2 + 𝑌2) − 2 log 𝑋] = log 𝑋 + 𝑐 

            tan−1 𝑌

𝑋
+

1

2
[log(𝑋2 + 𝑌2)] =  𝑐     

  ∴                 𝑋 = 𝑥 − ℎ = 𝑥 − 3,  𝑌 = 𝑦 − 𝑘 = 𝑦 − 3 

            tan−1 𝑥−3

𝑦−2
+

1

2
[log((𝑥 − 3)2 + (𝑦 − 2)2)] =  𝑐 is required solution. 

EXAMPLE2. Solve (𝑥 − 𝑦)𝑑𝑦 = (𝑥 + 𝑦 + 1)𝑑𝑥 

SOLUTION: The given equation    
𝑑𝑦

𝑑𝑥
=

𝑥+𝑦+1

𝑥−𝑦
                 … (1) 

         [𝐻𝑒𝑟𝑒   𝑎 = 1, 𝑏 = 1, 𝑎1 = 1, 𝑏1 = −1,
𝑎

𝑎1
≠

𝑏

𝑏1
] 

Put  𝑥 = 𝑋 + ℎ, 𝑦 = 𝑌 + 𝑘, then  𝑑𝑥 = 𝑑𝑋, 𝑑𝑦 = 𝑑𝑌 

From (1)            
𝑑𝑌

𝑑𝑋
=

𝑋+ℎ+𝑌+𝑘+1

𝑋+ℎ−𝑌−𝑘
=

(𝑋+𝑌)+(ℎ+𝑘+1)

(𝑋+𝑌)−(ℎ−𝑘)
          … (2)            

        choose  and 𝑘   such that 

                         (ℎ + 𝑘 + 1) = 0,          (ℎ − 𝑘) = 0         
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Since               ℎ = −
1

2
= 𝑘 

Putting the value of  and 𝑘 in (2) 

𝑑𝑌

𝑑𝑋
=

(𝑋+𝑌)+0

(𝑋+𝑌)−0
=

(𝑋+𝑌)

(𝑋+𝑌)
  is required solution. 

2.6 PFAFFIAN DIFFERENTIAL EQUATION:- 

The Pfaffian differential equation is a type of first-order partial differential 

equation. It is an expression of the form: 

∑ 𝑓𝑖 (𝑥1, 𝑥2, 𝑥3 … . . , 𝑥𝑛)𝑑𝑥𝑖 = 0

𝑛

𝑖=1

 

where 𝑓𝑖  is a function of 𝑛 variables 𝑥1, 𝑥2, 𝑥3 … . . , 𝑥𝑛. 

This equation is called Pfaffian because it can be expressed as the exterior 

derivative of a differential form, which is said to be the Pfaffian form. 

𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦 = 0 and 𝑃(𝑥, 𝑦, 𝑧)𝑑𝑥 + 𝑄(𝑥, 𝑦, 𝑧)𝑑𝑦 + 𝑅(𝑥, 𝑦, 𝑧)𝑑𝑧 =

0 are examples of Pfaffian differential equations in two and three variables. 

2.7 EXACT DIFFERENTIAL EQUATION:- 

The equation 𝑀(𝑥, 𝑦) + 𝑁(𝑥, 𝑦) = 0 is said to be an exact differential equation 

when  a function 𝑓(𝑥, 𝑦) of two variables 𝑥 and 𝑦 having continuous partial 

derivatives such that 

𝑑[𝑓(𝑥, 𝑦)] = 𝑀𝑑𝑥 + 𝑁𝑑𝑦, 

(𝜕𝑓 𝜕𝑥⁄ )𝑑𝑥 + (𝜕𝑓 𝜕𝑦⁄ )𝑑𝑦 = 𝑀𝑑𝑥 + 𝑁𝑑𝑦 

Remarks. The equation  𝑦2𝑑𝑥 + 2𝑥𝑦𝑑𝑦 = 0 is an exact differential equation,  

a function𝑥𝑦2, such that 

 𝑑(𝑥𝑦2) =
𝜕

𝜕𝑥
(𝑥𝑦2)𝑑𝑥 +

𝜕

𝜕𝑦
(𝑥𝑦2)𝑑𝑦          or          𝑑(𝑥𝑦2) = 𝑦2𝑑𝑥 + 2𝑥𝑦𝑑𝑦 

So the equation 𝑦2𝑑𝑥 + 2𝑥𝑦𝑑𝑦 = 0 may be written as 𝑑(𝑥𝑦2) = 0. This on 

integration yields 𝑥𝑦2 = 0, where 𝑐 as arbitrary constant. And the general 

solution of 𝑥𝑦2 = 𝑐. 

The exact differential equation have the following important property: An exact 

differential equation can always be derived from its general solution directly by 

differentiating without any subsequent multiplication, elimination, etc. 

THEOREM:  To determine the necessary and sufficient condition for a 

differential equation of first order and first degree to be exact. 

Proof: 
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Statement: The necessary and sufficient condition for the differential equation 

                                                     𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 0             … (1) 

to be exact                                  𝜕𝑀 𝜕𝑥⁄ = 𝜕𝑁 𝜕𝑦⁄              … (2) 

Necessary condition: Let us consider the equation 𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 0 be exact. 

Hence by the definition,  a function 𝑓(𝑥, 𝑦) of 𝑥 and 𝑦, such that 

                   𝑑[𝑓(𝑥, 𝑦)] = (𝜕𝑓 𝜕𝑥⁄ )𝑑𝑥 + (𝜕𝑓 𝜕𝑦⁄ )𝑑𝑦 = 𝑀𝑑𝑥 + 𝑁𝑑𝑦 

  Comparing the equation, we get 

 ⇒                                               𝑀 = (𝜕𝑓 𝜕𝑥⁄ )                   … (4) 

⇒                                               𝑁 = (𝜕𝑓 𝜕𝑦⁄ )                      … (5)   

Now differentiating equation (4) and (5) with respect to 𝑦 and𝑥, respectively 

obtaining 

𝜕𝑀

𝜕𝑦
=

𝜕

𝜕𝑦
(

𝜕𝑓

𝜕𝑥
) =

𝜕2𝑓

𝜕𝑦𝜕𝑥
 

𝜕𝑁

𝜕𝑥
=

𝜕

𝜕𝑥
(

𝜕𝑓

𝜕𝑦
) =

𝜕2𝑓

𝜕𝑥𝜕𝑦
 

Since
𝜕2𝑓

𝜕𝑦𝜕𝑥
=

𝜕2𝑓

𝜕𝑥𝜕𝑦
. Hence, if equation (1) is exact,  𝑀 and 𝑁 satisfy 

condition(2). 

Sufficient condition:  Suppose that (2) holds and proof that (1) is an exact. For 

the function of 𝑓(𝑥, 𝑦), such that     𝑑[𝑓(𝑥, 𝑦)] = 𝑀𝑑𝑥 + 𝑁𝑑𝑦 

Let us consider                   𝑔(𝑥, 𝑦) = ∫ 𝑀𝑑𝑥                                  … (6) 

Be the partial integral of 𝑀, the integral defined by keeping 𝑦 fixed. We first 

show that (𝑁 − 𝜕𝑔 𝜕𝑦⁄ ) is a function of 𝑦 only, so 

                   
𝜕

𝜕𝑦
(𝑁 − 𝜕𝑔 𝜕𝑦⁄ ) =

𝜕𝑁

𝜕𝑥
−

𝜕2𝑔

𝜕𝑥 𝜕𝑦
= 

𝜕𝑁

𝜕𝑥
−

𝜕2𝑔

𝜕𝑦 𝜕𝑥
 as        

𝜕2𝑔

𝜕𝑥 𝜕𝑦
=

𝜕2𝑔

𝜕𝑦 𝜕𝑥
 

                                               =
𝜕𝑁

𝜕𝑥
−

𝜕

𝜕𝑦
(

𝜕𝑔

𝜕𝑥
) =

𝜕𝑁

𝜕𝑥
−

𝜕𝑀

𝜕𝑦
,  using (6) 

                                               = 0, using(2) 

Now we take       

                         𝑓(𝑥, 𝑦) = 𝑔(𝑥, 𝑦) + ∫{𝑁 − (𝜕𝑔 𝜕𝑦⁄ )} 𝑑𝑦       … (7) 

From (9) 

             𝑑𝑓 = 𝑑𝑔 + (𝑁 −
𝜕𝑔

𝜕𝑦
) 𝑑𝑦 = (

𝜕𝑔

𝜕𝑥
𝑑𝑥 +

𝜕𝑔

𝜕𝑦
𝑑𝑦) + 𝑁𝑑𝑦 −

𝜕𝑔

𝜕𝑦
𝑑𝑦 

                                 = (𝜕𝑔 𝜕⁄ 𝑥)𝑑𝑥 + 𝑁𝑑𝑦 = 𝑀𝑑𝑥 + 𝑁𝑑𝑦, using (6) 

Hence if equation (2) is satisfied,  (1) is an exact equation. 

WORKING RULE: To solve the given equation𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 0, find out 𝑀 

and 𝑁.  Then first ascertain with the help of 𝜕𝑀 𝜕𝑥⁄ = 𝜕𝑁 𝜕𝑦⁄ , whether then the 

equation is an exact or not. If the equation is exact then  

i. Integrate 𝑀 w.r.t. 𝑥 treating 𝑦 as constant. 
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ii. Integrate with respect to 𝑦 only those terms of 𝑁 which do not 

contain 𝑥. 

iii. Equates the sum of these two integrals [i and ii] to an arbitrary 

constant and we express the required solution. If  the given equation 

𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 0 is an exact, then 

 

 ∫ 𝑀𝑑𝑥                                   +                          ∫ 𝑁𝑑𝑥   =                 𝑐 

treating 𝑦 as constant             taking only those term in N  

                                                which do not contain 𝑥  

SOLVED EXAMPLES 

EXAMPLE1: Solve (𝑎𝑥 + ℎ𝑦 + 𝑔)𝑑𝑥 + (ℎ𝑥 + 𝑏𝑦 + 𝑓)𝑑𝑦 = 0 

SOLUTION: Let comparing the equation with 𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 0, we  obtain 

               
𝜕𝑀

𝜕𝑦
= ℎ,

𝜕𝑁

𝜕𝑥
= ℎ  so  𝜕𝑀 𝜕𝑥⁄ = 𝜕𝑁 𝜕𝑦⁄  the given equation is exact. 

Hence  

              ∫ 𝑀𝑑𝑥                           +

                         ∫ 𝑁𝑑𝑥                                                = 𝑐 

treating 𝑦 as constant                 taking only those term in N  

                                   which do not contain 𝑥              

       ∫(𝑎𝑥 + ℎ𝑦 + 𝑔)𝑑𝑥   +    ∫(ℎ𝑥 + 𝑏𝑦 + 𝑓)𝑑𝑦   =     0        

        
1

2
𝑎𝑥2 + ℎ𝑥𝑦 + 𝑔𝑥 +

1

2
𝑏𝑥2 + 𝑓𝑦 = 𝑐 

       𝑎𝑥2 + 2ℎ𝑥𝑦 + 2𝑔𝑥 + 𝑏𝑥2 + 2𝑓𝑦 + 𝑐 = 0 

        where c is constant and replaced −2𝑐 = 𝑐. 

EXAMPLE2: Solve 𝑥𝑑𝑥 + 𝑦𝑑𝑦 +
𝑥𝑑𝑦−𝑦𝑑𝑥

𝑥2+𝑦2 = 0. 

SOLUTION: The given differential equation can be defined as 

                              [𝑥 −
𝑦

𝑥2+𝑦2
] 𝑑𝑥 + [𝑦 +

𝑥

𝑥2+𝑦2
] 𝑑𝑦 = 0 

   Here, 𝑀 = 𝑥 −
𝑦

𝑥2+𝑦2 ,        𝑁 = 𝑦 +
𝑥

𝑥2+𝑦2. 

Then 

                          
𝜕𝑀

𝜕𝑦
=

𝑦2−𝑥2

(𝑥2+𝑦2)2              &               
𝜕𝑁

𝜕𝑦
=

𝑦2−𝑥2

(𝑥2+𝑦2)2         

So 𝜕𝑀 𝜕𝑥⁄ = 𝜕𝑁 𝜕𝑦⁄  hence the given equation is exact. Therefore 

              ∫ 𝑀𝑑𝑥                                    +

                   ∫ 𝑁𝑑𝑥                                          = 𝑐 

treating 𝑦 as constant                     taking only those term in N  

                                          which do not contain 𝑥    

        
𝑥2

2
− 𝑦.

1

𝑦
tan−1 𝑥

𝑦
+

𝑦2

2
= 𝑐.    
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𝑥2

2
− 2 tan−1 𝑥

𝑦
+ 𝑦2 = 2𝑐 = 𝑘.               

EXAMPLE3: Solve (1 + 𝑒𝑥 𝑦⁄ )𝑑𝑥 + 𝑒𝑥 𝑦⁄ (1 − 𝑥 𝑦⁄ )𝑑𝑦 = 0 

SOLUTION: Comparing the given equation can be written as 

                   (1 + 𝑒𝑥 𝑦⁄ )𝑑𝑥 + 𝑒𝑥 𝑦⁄ (1 − 𝑥 𝑦⁄ )𝑑𝑦 = 0 

                  𝑀 = 1 + 𝑒𝑥 𝑦⁄ ,                            𝑁 = 𝑒𝑥 𝑦⁄ (1 − 𝑥 𝑦⁄ )  

                 
𝜕𝑀

𝜕𝑦
= 𝑒𝑥 𝑦⁄ (− 𝑥 𝑦2⁄ )             &      

𝜕𝑁

𝜕𝑦
=   𝑒𝑥 𝑦⁄ (− 𝑥 𝑦2⁄ )         

So its solution is 𝜕𝑀 𝜕𝑥⁄ = 𝜕𝑁 𝜕𝑦⁄ . Hence 

              ∫ 𝑀𝑑𝑥                                    +

                         ∫ 𝑁𝑑𝑥                                                = 𝑐 

treating 𝑦 as constant                               taking only those term in N  

                                               which do not contain 𝑥    

            ∫(1 + 𝑒𝑥 𝑦⁄ )𝑑𝑥 = 𝑐     or        𝑥 + 𝑦𝑒𝑥 𝑦⁄ = 𝑐. 

 

EXAMPLE3: Solve (𝑥2 − 4𝑥𝑦 − 2𝑦2)𝑑𝑥 + (𝑦2 − 4𝑥𝑦 − 2𝑥2)𝑑𝑦 = 0 

SOLUTION: The given equation can be written as 

  ⇒                (𝑥2 − 4𝑥𝑦 − 2𝑦2)𝑑𝑥 + (𝑦2 − 4𝑥𝑦 − 2𝑥2)𝑑𝑦 = 0 

      𝑀 = (𝑥2 − 4𝑥𝑦 − 2𝑦2),                            𝑁 = (𝑦2 − 4𝑥𝑦 − 2𝑥2)  

        
𝜕𝑀

𝜕𝑦
=  −4𝑥 − 4𝑦                      &                        

𝜕𝑁

𝜕𝑦
= −4𝑦 − 4𝑥  

So that    𝜕𝑀 𝜕𝑥⁄ = 𝜕𝑁 𝜕𝑦⁄ .Hence 

                ∫ 𝑀𝑑𝑥                                    +

                         ∫ 𝑁𝑑𝑥                                         = 𝑐 

treating 𝑦 as constant                              taking only those term in N  

                                               which do not contain 𝑥    

            ∫(𝑥2 − 4𝑥𝑦 − 2𝑦2)𝑑𝑥 + ∫ 𝑦2 𝑑𝑦 = 𝑐1      

            𝑥3 3⁄ − 4𝑦 × (𝑥2 2⁄ ) − 2𝑦2𝑥 + 𝑦3 3⁄ = 𝑐 3,⁄         ∴ [𝑐1 = 𝑐/3] 

            𝑥3 + 𝑦3 − 6𝑥𝑦(𝑥 + 𝑦) = 𝑐, c being an arbitrary constant. 

2.8 INTEGRATING FACTOR:- 

The equation𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 0, is not exact can sometimes be made exact by 

multiplying by some suitable function of 𝑥 and 𝑦.  Such a function is said to be 

an Integrating Factor. 

Theorem: The differential equation 𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 0 possess an infinite 

number of integrating factor. 

Proof:  Let the given equation            𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 0                        … (1) 
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Suppose 𝜇(𝑥, 𝑦)be an I.F. of (1), then by definition\ 

𝜇(𝑀𝑑𝑥 + 𝑁𝑑𝑦) = 0 

Must be an exact differential equation and  a function 𝑉(𝑥, 𝑦), such that 

𝑑𝑉 = 𝜇(𝑀𝑑𝑥 + 𝑁𝑑𝑦) 

  where 𝑉 =constant is a solution of (1) 

Since 𝑓(𝑉) be any function of 𝑉. So 

         𝑓(𝑉)𝑑𝑉 = 𝜇𝑓(𝑉)(𝑀𝑑𝑥 + 𝑁𝑑𝑦)      

Since the expression on L.H.S. of (3) is an exact differential equation, it follows 

that the expression on R.H.S. of (3) must also be an exact differential.             

In this section, the following list of exact differential equation is   

     (i).   𝑑 (
𝑦

𝑥
) =

𝑥𝑑𝑦−𝑦𝑑𝑥

𝑥2                            ( ii)      (
𝑦

𝑥
) =

𝑥𝑑𝑦−𝑦𝑑𝑥

𝑦2  

   (iii)   𝑑 (
𝑦2

𝑥
) =

2𝑥𝑦𝑑𝑦−𝑦2𝑑𝑥

𝑥2                      (iv)    𝑑 (
𝑥2

𝑦
) =

2𝑦𝑥𝑑𝑦−𝑥2𝑑𝑥

𝑦2  

    (v)  𝑑 (
𝑦2

𝑥2) =
2𝑥2𝑦𝑑𝑦−2𝑥𝑦2𝑑𝑥

𝑥4                   (vi)    𝑑 (
𝑥2

𝑦2) =
2𝑦2𝑥𝑑𝑦−2𝑦𝑥2𝑑𝑥

𝑦4  

   (vii)   d[log(𝑥𝑦)] =
𝑥𝑑𝑦+𝑦𝑑𝑥

𝑥𝑦
                  (viii)    𝑑(𝑥𝑦) = 𝑥𝑑𝑦 + 𝑦𝑑𝑥 

    (ix)  𝑑 (tan−1 𝑦

𝑥
) =

𝑥𝑑𝑦−𝑦𝑑𝑥

𝑥2+𝑦2                     (x)     𝑑 (tan−1 𝑥

𝑦
) =

𝑦𝑑𝑦−𝑥𝑑𝑥

𝑥2+𝑦2  

    (xi)  𝑑 [log (
𝑦

𝑥
)] =

𝑥𝑑𝑦−𝑦𝑑𝑥

𝑥𝑦
                      (xii)   𝑑 [log (

𝑥

𝑦
)] =

𝑦𝑑𝑥−𝑥𝑑𝑦

𝑥𝑦
 

   (xiii)  d[
1

2
log(𝑥2 + 𝑦2)] =

𝑥𝑑𝑥+𝑦𝑑𝑦

𝑥2+𝑦2            (xiv)  𝑑 (−
1

𝑥𝑦
) =

𝑥𝑑𝑦+𝑦𝑑𝑥

𝑥2𝑦2  

   (xv)   𝑑 (
𝑒𝑥

𝑦
) =

𝑦𝑒𝑥𝑑𝑥−𝑒𝑥𝑑𝑦

𝑦2                         (xvi)  𝑑(sin−1 𝑥𝑦) =
𝑥𝑑𝑦+𝑦𝑑𝑥

(1−𝑥2𝑦2)1/2 

Rule I: The integrating factor of given equation 𝑴𝒅𝒙 + 𝑵𝒅𝒚 = 𝟎 can be 

explore by inspection as explained below. 

 

SOLVED EXAMPLES 
EXAMPLE1. Solve 𝑦(2𝑥𝑦 + 𝑒𝑥)𝑑𝑥 = 𝑒𝑥𝑑𝑦. 

SOLUTION: Given equation     𝑦(2𝑥𝑦 + 𝑒𝑥)𝑑𝑥 = 𝑒𝑥𝑑𝑦 

                2𝑥𝑦2𝑑𝑥 + 𝑦𝑒𝑥𝑑𝑥 = 𝑒𝑥𝑑𝑦 

               2𝑥𝑑𝑥 +
𝑦𝑒𝑥𝑑𝑥−𝑒𝑥𝑑𝑦

𝑦2 = 0     or         2𝑥𝑑𝑥 + 𝑑 (
𝑒𝑥

𝑦
) = 0 

    Now integrating, 𝑥2 +
𝑒𝑥

𝑦
= 𝑐       or          𝑥2 + 𝑒𝑥 = 𝑐𝑦 

EXAMPLE2. Solve (𝑥3 + 𝑥𝑦2 + 𝑎2𝑦)𝑑𝑥 + (𝑦3 + 𝑦𝑥2 − 𝑎2𝑥)𝑑𝑦 = 0. 

SOLUTION: Given equation     (𝑥3 + 𝑥𝑦2 + 𝑎2𝑦)𝑑𝑥 + (𝑦3 + 𝑦𝑥2 −

𝑎2𝑥)𝑑𝑦 = 0 

     𝑥(𝑥2 + 𝑦2)𝑑𝑥 + 𝑦(𝑥2 + 𝑦2)𝑑𝑦 + 𝑎2(𝑦𝑑𝑥 − 𝑥𝑑𝑦) = 0 

   𝑥𝑑𝑥 + 𝑦𝑑𝑦 + 𝑎2 (𝑦𝑑𝑥−𝑥𝑑𝑦)

(𝑥2+𝑦2)
= 0         or      𝑥𝑑𝑥 + 𝑦𝑑𝑦 + 𝑎2 tan−1 𝑥

𝑦
= 0 
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 By   integrating,    
𝑥2

2
+

𝑦2

2
+ 𝑎2 tan−1 𝑥

𝑦
=

𝑐

2
   or      𝑥2 + 𝑦2 + 𝑎2 tan−1 𝑥

𝑦
= 𝑐 

 

Rule II: If the given equation 𝑴𝒅𝒙 + 𝑵𝒅𝒚 = 𝟎 is homogeneous and 𝑴𝒙 +

𝑵𝒚 ≠ 𝟎, then show that  the integrating factor is 𝟏 (𝑴𝒙 + 𝑵𝒚)⁄ . 

Proof:  Let the given equation𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 0, we get 

            𝑀𝑑𝑥 + 𝑁𝑑𝑦 =
1

2
{(𝑀𝑥 + 𝑁𝑦) (

𝑑𝑥

𝑥
+

𝑑𝑦

𝑦
) + (𝑀𝑥 − 𝑁𝑦) (

𝑑𝑥

𝑥
−

𝑑𝑦

𝑦
)} 

            
𝑀𝑑𝑥+𝑁𝑑𝑦

(𝑀𝑥−𝑁𝑦)
=

1

2
{(

𝑑𝑥

𝑥
+

𝑑𝑦

𝑦
) +

(𝑀𝑥−𝑁𝑦)

(𝑀𝑥+𝑁𝑦)
(

𝑑𝑥

𝑥
−

𝑑𝑦

𝑦
)}            … (1) 

    Since   𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 0  is a homogeneous, 𝑀 and  𝑁 must be same degree 

in variables 𝑥 and 𝑦 and hence 

                                                 
(𝑀𝑥−𝑁𝑦)

(𝑀𝑥+𝑁𝑦)
= 𝑓 (

𝑥

𝑦
)                        … (2) 

Now putting the value of (2) in (1) 

            
𝑀𝑑𝑥+𝑁𝑑𝑦

(𝑀𝑥−𝑁𝑦)
=

1

2
{(

𝑑𝑥

𝑥
+

𝑑𝑦

𝑦
) + 𝑓 (

𝑥

𝑦
) (

𝑑𝑥

𝑥
−

𝑑𝑦

𝑦
)}                … (3) 

           
1

2
{log(𝑥𝑦) + 𝑓(𝑒log(𝑥 𝑦⁄ ))𝑑 (log

𝑥

𝑦
)}  =

1

2
{log(𝑥𝑦) +

𝑔 (log
𝑥

𝑦
) 𝑑 (log

𝑥

𝑦
)}    [∴ 𝑓(𝑒log(𝑥 𝑦⁄ )) = 𝑔 log(𝑥 𝑦⁄ )] 

         𝑑[(1 2⁄ ) × log(𝑥𝑦) + (1 2⁄ ) × ∫ 𝑔 log(𝑥 𝑦⁄ ) 𝑑 log(𝑥 𝑦⁄ )] 

        displaying that the  1 (𝑀𝑥 + 𝑁𝑦)⁄  is an integrating factor  for a given 

equation 𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 0. 

SOLVED EXAMPLES 

EXAMPLE: Solve (𝑥2𝑦 − 2𝑥𝑦2)𝑑𝑥 − (𝑥3 − 3𝑥2𝑦)𝑑𝑦 = 0 

SOLUTION: The given equation (𝑥2𝑦 − 2𝑥𝑦2)𝑑𝑥 − (𝑥3 − 3𝑥2𝑦)𝑑𝑦 = 0 

       The given equation is homogeneous differential equation and comparing 

𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 0,          𝑀 = (𝑥2𝑦 − 2𝑥𝑦2),        𝑁 = (𝑥3 − 3𝑥2𝑦) 

    𝑀𝑥 + 𝑁𝑦 = 𝑥(𝑥2𝑦 − 2𝑥𝑦2) − 𝑦(𝑥3 − 3𝑥2𝑦) = 𝑥2𝑦2 ≠ 0, 

 Then the integrating factor,  1 (𝑀𝑥 + 𝑁𝑦)⁄ =
1

𝑥2𝑦2. on multiplying factor by 

1

𝑥2𝑦2,  

         (𝑦/2 − 2/𝑥)𝑑𝑥 − (𝑥 𝑦2⁄ − 3 𝑦⁄ )𝑑𝑦 = 0,    

         ∫{(𝑦/2 − 2/𝑥)𝑑𝑥} + ∫(3 𝑦⁄ )𝑑𝑦 = 0      or        𝑥 𝑦⁄ − 2 log 𝑥 +

3 log 𝑦 = log 𝑐 

         log 𝑦2 − log 𝑥2 − log 𝑐 = − 𝑥 𝑦⁄              or          log(𝑦2 𝑐𝑥2⁄ ) = − 𝑥 𝑦⁄  

        𝑦2 = 𝑐𝑥2𝑒−𝑥 𝑦⁄ ,                   where 𝑐 is an arbitrary constant. 
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Rule III: If the given equation 𝑴𝒅𝒙 + 𝑵𝒅𝒚 = 𝟎 is of the form 𝒇𝟏(𝒙𝒚)𝒚𝒅𝒙 +

𝒇𝟐(𝒙𝒚)𝒙𝒅𝒚 = 𝟎,  then prove that 𝟏 (𝑴𝒙 + 𝑵𝒚)⁄  is an integrating factor of 

𝑴𝒅𝒙 + 𝑵𝒅𝒚 = 𝟎 provided (𝑴𝒙 − 𝑵𝒚) ≠ 𝟎. 

Proof: Suppose                                    𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 0                          … (1)     

  is of the form                              𝑓1(𝑥𝑦)𝑦𝑑𝑥 + 𝑓2(𝑥𝑦)𝑥𝑑𝑦 = 0             … (2)  

Comparing both equations 

                                   
𝑀

𝑦𝑓1(𝑥𝑦)
=

𝑁

𝑥𝑓2(𝑥𝑦)
= 𝜇 

                                  𝑀 = 𝜇𝑦𝑓1(𝑥𝑦)       or        𝑁 = 𝜇𝑥𝑓2(𝑥𝑦)           … (3)   

  Now 

              𝑀𝑑𝑥 + 𝑁𝑑𝑦 =  
1

2
{(𝑀𝑥 + 𝑁𝑦) (

𝑑𝑥

𝑥
+

𝑑𝑦

𝑦
) + (𝑀𝑥 − 𝑁𝑦) (

𝑑𝑥

𝑥
−

𝑑𝑦

𝑦
)} 

               
𝑀𝑑𝑥+𝑁𝑑𝑦

𝑀𝑥−𝑁𝑦
=

1

2
{

(𝑀𝑥+𝑁𝑦)

(𝑀𝑥−𝑁𝑦)
(

𝑑𝑥

𝑥
+

𝑑𝑦

𝑦
) + (

𝑑𝑥

𝑥
−

𝑑𝑦

𝑦
)} 

           =
1

2
{

𝑓1(𝑥𝑦)+𝑓2(𝑥𝑦)

𝑓1(𝑥𝑦)−𝑓2(𝑥𝑦)
𝑑(log 𝑥𝑦) + 𝑑 (log

𝑥

𝑦
)} ,  from (3 

            =
1

2
{𝑓(𝑥𝑦)𝑑(log 𝑥𝑦) + 𝑑 (log

𝑥

𝑦
)},   where 

𝑓1(𝑥𝑦)+𝑓2(𝑥𝑦)

𝑓1(𝑥𝑦)−𝑓2(𝑥𝑦)
= 𝑓(𝑥𝑦) 

           =
1

2
{𝑓(𝑒log 𝑥𝑦)𝑑(log 𝑥𝑦) + 𝑑 (log

𝑥

𝑦
)} =

1

2
{𝑔(log 𝑥𝑦)𝑑(log 𝑥𝑦) +

𝑑 (log
𝑥

𝑦
)}                                                              [∴ 𝑓(𝑒log(𝑥𝑦)) = 𝑔 log(𝑥𝑦)] 

           𝑑[(1 2⁄ ) × log(𝑥 𝑦⁄ ) + (1 2⁄ ) × ∫ 𝑔 log(𝑥𝑦) 𝑑 log(𝑥𝑦)] 

  Hence prove that 𝑀𝑥 − 𝑁𝑦 is an integrating factor of 𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 0. 

SOLVED EXAMPLES 
EXAMPLE. Solve (𝑥ysin𝑥y + cos𝑥y)yd𝑥 + (𝑥ysinxy − cos𝑥y)𝑥dy = 0 

SOLUTION: Suppose 

              (𝑥ysin𝑥y + cos𝑥y)yd𝑥 + (𝑥ysinxy − cos𝑥y)𝑥dy = 0      … (1) 

The equation (1) Comparing 𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 0, we get, 

𝑀 = (𝑥ysin𝑥y + cos𝑥y)y    and    𝑁 = (𝑥ysinxy − cos𝑥y)𝑥 

The equation (1) is the form   𝑓1(𝑥𝑦)𝑦𝑑𝑥 + 𝑓2(𝑥𝑦)𝑥𝑑𝑦 = 0 

Again,          

               𝑀𝑥 − 𝑁𝑦 = 𝑥𝑦(𝑥ysin𝑥y + cos𝑥y) − xy(𝑥ysinxy − cos𝑥y) 

            𝑀𝑥 − 𝑁𝑦 = 2𝑥𝑦𝑐𝑜𝑠𝑥𝑦 ≠ 0. 

Since the integrating factor of (1)  

= 1 (𝑀𝑥 + 𝑁𝑦)⁄ = 1 (2𝑥𝑦𝑐𝑜𝑠𝑥𝑦)⁄  

On multiplying (1) by 1 (2𝑥𝑦𝑐𝑜𝑠𝑥𝑦)⁄ , we obtain 

 [(1 2⁄ ) × (𝑦 tan 𝑥𝑦 + 1 𝑥⁄ )𝑑𝑥 + (1 2⁄ ) × (𝑥 tan 𝑥𝑦 − 1 𝑦⁄ )𝑑𝑦]     … (2) 

From (2) 

          ∫(1 2⁄ ) × (𝑦 tan 𝑥𝑦 + 1 𝑥⁄ )𝑑𝑥 + ∫(− 1 2𝑦⁄ )𝑑𝑦 = (1 2⁄ ) log 𝑐 

          (1 2⁄ ) × (log 𝑠𝑒𝑐𝑥𝑦 + log 𝑥)𝑑𝑥 − (1 2⁄ ) × log 𝑦 = (1 2⁄ ) log 𝑐 
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          (log 𝑠𝑒𝑐𝑥𝑦 + log 𝑥 𝑦⁄ ) = log 𝑐     or            (𝑦 𝑥⁄ )𝑠𝑒𝑐𝑥𝑦 = 𝑐 . 

          

Rule IV: If 
𝟏

𝑵
(

𝝏𝑴

𝝏𝒚
−

𝝏𝑵

𝝏𝒙
) is a function 𝒙 alone 𝒇(𝒙) , then 𝒆∫ 𝒇(𝒙)𝒅𝒙  is an 

integrating factor of 𝑴𝒅𝒙 + 𝑵𝒅𝒚 = 𝟎. 

Proof: The given equation    𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 0                               … (1)           

and  
1

𝑁
(

𝜕𝑀

𝜕𝑦
−

𝜕𝑁

𝜕𝑥
) = 𝑓(𝑥)    so that          𝑁𝑓(𝑥) = (

𝜕𝑀

𝜕𝑦
−

𝜕𝑁

𝜕𝑥
)     … (2) 

Multiplying both sides of equation (1) by 𝑒∫ 𝑓(𝑥)𝑑𝑥 ,   we have       

𝑀1𝑑𝑥 + 𝑁1𝑑𝑦 = 0,  

where 

 ⇒     𝑀1 = 𝑀𝑒∫ 𝑓(𝑥)𝑑𝑥 and   𝑁1 = 𝑁𝑒∫ 𝑓(𝑥)𝑑𝑥                                   … (3) 

From (3)                                             
𝜕𝑀1

𝜕𝑦
=

𝜕𝑀

𝜕𝑦
𝑒∫ 𝑓(𝑥)𝑑𝑥                 … (4) 

and     
𝜕𝑁1

𝜕𝑦
=

𝜕𝑁

𝜕𝑥
𝑒∫ 𝑓(𝑥)𝑑𝑥 + 𝑁𝑒∫ 𝑓(𝑥)𝑑𝑥𝑓(𝑥) = 𝑒∫ 𝑓(𝑥)𝑑𝑥 {

𝜕𝑁

𝜕𝑥
+ 𝑁𝑓(𝑥)} 

          𝑒∫ 𝑓(𝑥)𝑑𝑥(𝜕𝑁 𝜕𝑥⁄ + 𝜕𝑀 𝜕𝑦⁄ − 𝜕𝑁 𝜕𝑥⁄ ),       from(2) 

So that                              
𝜕𝑁1

𝜕𝑦
=

𝜕𝑀

𝜕𝑦
𝑒∫ 𝑓(𝑥)𝑑𝑥 

      Now from (5)  and (6),            𝜕𝑀1 𝜕𝑦⁄ = 𝜕𝑁1 𝜕𝑥⁄            

Hence    𝑀1𝑑𝑥 + 𝑁1𝑑𝑦 = 0 must be exact and 𝑒∫ 𝑓(𝑥)𝑑𝑥 is integrating factor. 

 

SOLVED EXAMPLES 
EXAMPLE. Solve (𝑥2 + 𝑦2 + 𝑥)𝑑𝑥 + 𝑥𝑦𝑑𝑦 = 0 

SOLUTION. Let     (𝑥2 + 𝑦2 + 𝑥)𝑑𝑥 + 𝑥𝑦𝑑𝑦 = 0                     … (1) 

Now the equation (1) comparing with 𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 0, we have  

 𝑀 = (𝑥2 + 𝑦2 + 𝑥),           𝑁 = 𝑥𝑦 

     𝜕𝑀 𝜕𝑦⁄ = 2𝑦,       𝜕𝑁 𝜕𝑥⁄ = 𝑦.   

   S                          𝜕𝑀 𝜕𝑦⁄ ≠ 𝜕𝑁 𝜕𝑦⁄ . 

Then we obtain 

    
1

𝑁
(

𝜕𝑀

𝜕𝑦
−

𝜕𝑁

𝜕𝑥
) =

1

𝑥𝑦
(2𝑦 − 1) =

1

𝑥
,   which is a function of 𝑥. 

   Since the integration factor is  

              𝑒∫(1 𝑥⁄ )𝑑𝑥 = 𝑒log 𝑥 = 𝑥. 

          multiplying (1) by 𝑥, we get 

            (𝑥3 + 𝑥𝑦2 + 𝑥2)𝑑𝑥 + 𝑥2𝑦𝑑𝑦 = 0 is an exact, so 

       ∫(𝑥3 + 𝑥𝑦2 + 𝑥2)𝑑𝑥 = (1 6⁄ ) × 𝑐     or     (1 4⁄ ) × 𝑥4 + (1 2⁄ ) ×

𝑥2𝑦2 + (1 3⁄ ) × 𝑥3 = 𝑐 6.⁄  

      3𝑥4 + 6𝑥2𝑦2 + 4𝑥3 = 𝑐,      where 𝑐 is an arbitrary constant. 
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Rule V: If 
𝟏

𝑵
(

𝝏𝑴

𝝏𝒚
−

𝝏𝑵

𝝏𝒙
) is a function 𝒚 alone 𝒇(𝒚) , then 𝒆∫ 𝒇(𝒚)𝒅𝒚  is an 

integrating factor of 𝑴𝒅𝒙 + 𝑵𝒅𝒚 = 𝟎. 

Proof: Proceed exactly as for Rule IV. 

SOLVED EXAMPLES 
EXAMPLE. Solve 

           (2𝑥𝑦4𝑒𝑦 + 2𝑥𝑦3 + 𝑦)𝑑𝑥 + (𝑥2𝑦4𝑒𝑦 − 𝑥2𝑦2 − 3𝑥)𝑑𝑦 = 0            … (1) 

SOLUTION.  From (1) compare with 𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 0, we have   

⇒     𝑀 = (2𝑥𝑦4𝑒𝑦 + 2𝑥𝑦3 + 𝑦),           𝑁 = (𝑥2𝑦4𝑒𝑦 − 𝑥2𝑦2 − 3𝑥)      … (2) 

Here   

  ⇒  𝜕𝑀 𝜕𝑦⁄ = 8𝑥𝑦3𝑒𝑦 + 2𝑥𝑦4𝑒𝑦 + 6𝑥𝑦2 + 1,  𝜕𝑁 𝜕𝑥⁄ = 2𝑥𝑦4𝑒𝑦 − 𝑥2𝑦2 −

3𝑥.   

    
𝜕𝑁

𝜕𝑥
−

𝜕𝑀

𝜕𝑦
 = −4(2𝑥𝑦4𝑒𝑦 + 2𝑥𝑦2 + 1) = −

4

𝑦
(2𝑥𝑦4𝑒𝑦 + 2𝑥𝑦2 + 𝑦) = −

4𝑀

𝑦
 

    
1

𝑀
(

𝜕𝑁

𝜕𝑥
−

𝜕𝑀

𝜕𝑦
) = −

4

𝑦
 

  Since the integrating factor of equation (1) is 

                                      =𝑒∫ −4 𝑦⁄ 𝑑𝑦 = 𝑒−4 log 𝑦 = (1/𝑦4). 

   Multiplying (1) by 1/𝑦4, we get 

  {2𝑥𝑒𝑦 + (2𝑥 𝑦⁄ ) + (1 𝑦3⁄ )}𝑑𝑥 + {𝑥2𝑒𝑦 − (𝑥2 𝑦2⁄ ) − 3(𝑥 𝑦4⁄ )}𝑑𝑦 = 0 

  ∫{2𝑥𝑒𝑦 + (2𝑥 𝑦⁄ ) + (1 𝑦3⁄ )}𝑑𝑥 = 𝑐    or    𝑥2𝑒𝑦 + (𝑥2 𝑦⁄ ) + (𝑥 𝑦3⁄ ) = 𝑐. 

Rule VI: If the given equation 𝑴𝒅𝒙 + 𝑵𝒅𝒚 = 𝟎, is of the form 

𝒙𝜶𝒚𝜷(𝒎𝒚𝒅𝒙 + 𝒏𝒙𝒅𝒚) = 𝟎, then its integrating factor is 𝒙𝒌𝒎−𝟏−𝜶𝒚𝒌𝒏−𝟏−𝜷, 

where 𝒌 have any value. 

Proof. By assumption, the given equation can be defined as 

                                   𝑥𝛼𝑦𝛽(𝑚𝑦𝑑𝑥 + 𝑛𝑥𝑑𝑦) = 0                              … (1) 

 Multiplying (1) by𝑥𝑘𝑚−1−𝛼𝑦𝑘𝑛−1−𝛽, we get 

                                     𝑥𝑘𝑚−1−𝛼𝑦𝑘𝑛−1(𝑚𝑦𝑑𝑥 + 𝑛𝑥𝑑𝑦) = 0 

      𝑘𝑚 𝑥𝑘𝑚−1𝑦𝑘𝑛𝑑𝑥 + 𝑘𝑛𝑦𝑘𝑛−1𝑥𝑘𝑚𝑑𝑦 = 0     or    𝑑(𝑥𝑘𝑚 , 𝑦𝑘𝑛) = 0 

     so that 𝑥𝑘𝑚−1−𝛼𝑦𝑘𝑛−1−𝛽integrating factor of given equation                    

                                      𝑥𝛼𝑦𝛽(𝑚𝑦𝑑𝑥 + 𝑛𝑥𝑑𝑦) = 0. 

 

SOLVED EXAMPLES 
EXAMPLE. Solve (𝑦2 + 2𝑥2𝑦)𝑑𝑥 + (2𝑥3 − 𝑥𝑦)𝑑𝑦 = 0                   … (1) 

SOLUTION. The given equation (1) in standard form 

                 𝑥𝛼𝑦𝛽(𝑚𝑦𝑑𝑥 + 𝑛𝑥𝑑𝑦) + 𝑥𝛼′𝑦𝛽′(𝑚′𝑦𝑑𝑥 + 𝑛′𝑥𝑑𝑦) = 0 … (2) 

  we have 
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                            𝑦(𝑦𝑑𝑥 − 𝑥𝑑𝑦) + 𝑥2(2𝑦𝑑𝑥 + 2𝑥𝑑𝑦) = 0                  … (3) 

  From (2) and (3), we get 

  𝛼 = 0,   𝛽 = 1,   𝑚 = 1, 𝑛 = −1, 𝛼′ = 2,   𝛽′ = 0, 𝑚′ = 2, 𝑛′ = 2 

  Since, the integrating factor for first term on L.H.S. of (3)  is  

     𝑥𝑘−1𝑦−𝑘−1−1,       i. e. ,              𝑥𝑘−1𝑦−𝑘−2                                         … (4) 

     The second term on L.H.S.of (3) is  

  22𝑘′−1−2𝑦2𝑘′−1                               𝑖. 𝑒. ,      22𝑘′−3𝑦2𝑘′−1                      … (5) 

  from (4) and (5),  𝑘 − 1 = 2𝑘′ − 3  and  −𝑘 − 2 = 2𝑘′ − 1 

    𝑘 − 2𝑘′ = −2   and   𝑘 + 2𝑘′ = −1 ⇒  𝑘 = − 3 2⁄       and      𝑘′ = 1/4 

Putting the value of 𝑘 in (4) or 𝑘′ in (5),   then the integrating factor of (3) or (1) 

is 𝑥−5 2⁄ 𝑦−1 2⁄ . Multiplying (1) by 𝑥−5 2⁄ 𝑦−1 2⁄ , we obtain  

 ⇒    (𝑥−5 2⁄ 𝑦3 2⁄ + 2𝑥−1 2⁄ 𝑦1 2⁄ )𝑑𝑥 + (𝑥1 2⁄ 𝑦−1 2⁄ − 𝑥−3 2⁄ 𝑦1 2⁄ )𝑑𝑦 = 0 

    
𝑥−3 2⁄ 𝑦3 2⁄

−(3 2⁄ )
+

2𝑥1 2⁄ 𝑦1 2⁄

(1 2⁄ )
=

2𝐶

3
        or      6𝑥1 2⁄ 𝑦1 2⁄ − 𝑥−3 2⁄ 𝑦3 2⁄ = 𝐶. 

2.9 LINEAR DIFFERENTIAL EQUATION:- 

A differential equation is called linear if it can be obtained in the form 

𝑑𝑦

𝑑𝑥
+ 𝑃𝑦 = 𝑄                           … (1) 

where  𝑃 and 𝑄 are constants and are the function of 𝑥 is called Linear 

differential equation of first order with y as dependent  variable. So to solve the 

equation, multiply both sides by 𝑒∫ 𝑃𝑑𝑥 , then  

𝑒∫ 𝑃𝑑𝑥
𝑑𝑦

𝑑𝑥
+ 𝑒∫ 𝑃𝑑𝑥𝑃𝑦 = 𝑄𝑒∫ 𝑃𝑑𝑥        

Or                                      
𝑑

𝑑𝑥
{𝑦𝑒∫ 𝑃𝑑𝑥} = 𝑄𝑒∫ 𝑃𝑑𝑥  

Integrating both sides 

𝑦𝑒∫ 𝑃𝑑𝑥 = ∫ 𝑄𝑒∫ 𝑃𝑑𝑥𝑑𝑥 + 𝑐 

Which is the required solution of differential equation. 

Working Rule:  

1. The given equation in the form 
𝑑𝑦

𝑑𝑥
+ 𝑃𝑦 = 𝑄 and 

𝑑𝑦

𝑑𝑥
+ 𝑃𝑥 = 𝑄 as may 

be. 

2. Find integrating factor 𝑒∫ 𝑃𝑑𝑥 or 𝑒∫ 𝑃𝑑𝑦 . 

3. The solution of Differential equation either 
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𝑦. (𝐼. 𝐹. ) = ∫{𝑄. (𝐼. 𝐹)}𝑑𝑥 + 𝑐 

Or   

                                              𝑥. (𝐼. 𝐹. ) = ∫{𝑄. (𝐼. 𝐹)}𝑑𝑦 + 𝑐  as may be. 

 

SOLVED EXAMPLES 

EXAMPLE1. Solve
𝑑𝑦

𝑑𝑥
+ 2𝑥𝑦 = 𝑒−𝑥2

. 

SOLUTION: The given equation 

𝑑𝑦

𝑑𝑥
+ 2𝑥𝑦 = 𝑒−𝑥2

                             … (1) 

where 𝑦 is dependent variable 

   𝑃 = 2𝑥    and 𝑄 = 𝑒−𝑥2
, then ∫ 𝑃𝑑𝑥 = ∫ 2𝑥𝑑𝑥 = 2.

1

2
𝑥2 = 𝑥2. 

  Therefore    𝐼. 𝐹. = 𝑒∫ 𝑃𝑑𝑥 = 𝑒𝑥2
. 

 Hence     

                                𝑦. (𝐼. 𝐹. ) = ∫{𝑄. (𝐼. 𝐹)}𝑑𝑥 + 𝑐 

                                  𝑦. 𝑒𝑥2
= ∫(𝑒−𝑥2

. 𝑒𝑥2
)𝑑𝑥 + 𝑐 

                               𝑦𝑒𝑥2
= ∫ 𝑑𝑥 + 𝑐   or   𝑦𝑒𝑥2

= 𝑥 + 𝑐. 

 

EXAMPLE2. Solve
𝑑𝑦

𝑑𝑥
(𝑥 + 2𝑦3) = 𝑦. 

SOLUTION. Let                       
𝑑𝑦

𝑑𝑥
(𝑥 + 2𝑦3) = 𝑦                 … (1)     

 where 𝑥 is dependent.  

    Thus, we have    
𝑑𝑥

𝑑𝑦
=

𝑥+2𝑦3

𝑦
,      or     

𝑑𝑥

𝑑𝑦
−

1

𝑦
𝑥 = 2𝑦2      … (2)       

   from (2) 

                ∫ 𝑃𝑑𝑦 = − ∫(1 𝑦⁄ )𝑑𝑦 = − log 𝑦    so IF.of (2)= 𝑒− log 𝑦 =
1

𝑦
 

               Hence 𝑥 𝑦⁄ = ∫ 2𝑦2. (1/𝑦)𝑑𝑥 + 𝑐   

               𝑥 𝑦⁄ = 𝑦2 + 𝑐, where 𝑐 is an arbitrary constant. 

2.10 EQUATION REDUCIBLE TO THE LINEAR 

FORM:- 

An differential equation of the form   

𝑓′(𝑦)
𝑑𝑦

𝑑𝑥
+ 𝑃𝑓(𝑦) = 𝑄              … (1) 
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where  𝑃 and 𝑄 are constants. Putting 𝑓(𝑦) = 𝑣 so that 𝑓′(𝑦)(𝑑𝑦 𝑑𝑥⁄ ) =

𝑑𝑣 𝑑𝑥,⁄    (1) becomes 

                                          𝑑𝑣 𝑑𝑥 + 𝑃𝑣 = 𝑄⁄                  … (2) 

Which is linear in 𝑣 and 𝑥 and its solution can be defined by Linear differential 

equation. Thus we get, 

 𝐼. 𝐹 = 𝑒∫ 𝑃𝑑𝑥       and        𝑣. 𝑒∫ 𝑃𝑑𝑥 = ∫ 𝑄𝑒∫ 𝑃𝑑𝑥𝑑𝑥 + 𝑐 

Finally, replace 𝑣 by 𝑓(𝑣) to solution in terms of 𝑥 and  𝑦 alone. 

 

2.11 BERNOULLI’S EQUATION:- 

Particular Case of Linear differential equation:- 

An equation of the form   
𝑑𝑦

𝑑𝑥
+ 𝑃𝑦 = 𝑄 𝑦𝑛                                 … (1) 

Where  𝑃 and 𝑄 are constants or function of 𝑥 and 𝑛 is constant except 0 and 1, 

is known as Bernoulli’s Equation. 

From (1)                                       𝑦−𝑛 𝑑𝑦

𝑑𝑥
+ 𝑃𝑦1−𝑛 = 𝑄          … (2) 

Suppose                                                       𝑦1−𝑛 = 𝑣               … (3)    

Differentiating (3) w.r.t. 𝑥    
1

(1−𝑛)

𝑑𝑣

𝑑𝑥
𝑦−𝑛 𝑑𝑦

𝑑𝑥
=

𝑑𝑣

𝑑𝑥
,  or    𝑦−𝑛 𝑑𝑦

𝑑𝑥
=

1

(1−𝑛)

𝑑𝑣

𝑑𝑥
       … (4) 

Putting the value of (3) and(4) in (1) 

 
1

(1−𝑛)

𝑑𝑣

𝑑𝑥
+ 𝑃𝑣 = 𝑄        or          

𝑑𝑣

𝑑𝑥
+ 𝑃(1 − 𝑛)𝑣 = 𝑄(1 − 𝑛) 

Which is linear in 𝑣 and 𝑥. Its 𝐼. 𝐹. =  𝑒∫ 𝑃(1−𝑛)𝑑𝑥 = 𝑒(1−𝑛) ∫ 𝑃𝑑𝑥  

Hence   𝑣. 𝑒(1−𝑛) ∫ 𝑃𝑑𝑥 = ∫ 𝑄. 𝑒(1−𝑛) ∫ 𝑃𝑑𝑥𝑑𝑥 + 𝑐,   c being arbitrary constant.  

𝑦1−𝑛𝑒(1−𝑛) ∫ 𝑃𝑑𝑥 = ∫ 𝑄. 𝑒(1−𝑛) ∫ 𝑃𝑑𝑥𝑑𝑥 + 𝑐,   from(3) 

 

SOLVED EXAMPLES 
EXAMPLE. Solve (𝑑𝑦 𝑑𝑥⁄ ) + 𝑥 𝑠𝑖𝑛2𝑦 = 𝑥3𝑐𝑜𝑠2𝑦. 

SOLUTION: Given equation (𝑑𝑦 𝑑𝑥⁄ ) + 𝑥 𝑠𝑖𝑛2𝑦 = 𝑥3𝑐𝑜𝑠2𝑦          … (1) 

Now dividing by 𝑐𝑜𝑠2𝑦  in equation (1) 

                                                        𝑠𝑒𝑐2𝑦(𝑑𝑦 𝑑𝑥⁄ ) + 2𝑥 𝑡𝑎𝑛𝑦 = 𝑥3   … (2) 

Putting 𝑡𝑎𝑛𝑦 = 𝑣  so that 𝑠𝑒𝑐2𝑦(𝑑𝑦 𝑑𝑥⁄ ) = 𝑑𝑣 𝑑𝑥⁄ . 

Hence   𝑑𝑣 𝑑𝑥⁄ + 2𝑥𝑣 = 𝑥3, which is linear in 𝑣 and 𝑥 and its solution              

                                      𝑒∫ 2𝑥𝑑𝑥 = 𝑒𝑥2
. 

              𝒗. 𝑒𝑥2
= ∫ 𝑥3 . 𝑒𝑥2

𝑑𝑥 + 𝑐,   𝑐 being an arbitrary constant. 

            𝒗. 𝑒𝑥2
= (1/2) × ∫ 𝑡. 𝑒𝑡𝑑𝑡 + 𝑐, Now 𝑥2 = 𝑡  and 2𝑥𝑑𝑥 = 𝑑𝑡 
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           = (1/2) × [𝑡 × 𝑒𝑡 − ∫(1 × 𝑒𝑡)𝑑𝑡] + 𝑐 = (1/2) × (𝑡𝑒𝑡 − 𝑒𝑡) + 𝑐 

          𝑡𝑎𝑛𝑦  𝑒𝑥2
=  (

1

2
) × 𝑒𝑥2

(𝑥2 − 1) + 𝑐   as 𝑣 = 𝑡𝑎𝑛𝑦     &      𝑡 = 𝑥2 

         𝑡𝑎𝑛𝑦 = (1/2) × (𝑥2 − 1) + 𝑐𝑒−𝑥2
, dividing by 𝑒𝑥2

 

2.12 DIFFERENTIAL EQUATION OF FIRST ORDER 

BUT NOT A FIRST DEGREE:- 

A differential equation of first order but not a first degree is defined as 

𝑃0𝑝𝑛 + 𝑃1𝑝𝑛−1 + ⋯ ⋯ ⋯ + 𝑃𝑛−1𝑝 + 𝑝𝑛 = 0         … (1) 

where 
𝑑𝑦

𝑑𝑥
= 𝑝 and 𝑃0, 𝑃1, 𝑃2 … 𝑃𝑛 are the function of 𝑥 &𝑦. 

Differential equation of first order but not a first degree can be solved by four 

method given below. 

Method I : Equation Solvable for p 

Suppose      

                   𝑃0𝑝𝑛 + 𝑃1𝑝𝑛−1 + ⋯ ⋯ ⋯ + 𝑃𝑛−1𝑝 + 𝑝𝑛 = 0         … (1)  

 be given differential equation o first order but not a first degree𝑛 > 1. 

From (1) solvable for p, it can be put in the form 

           [𝑝 − 𝑓1(𝑥, 𝑦)][𝑝 − 𝑓2(𝑥, 𝑦)] … … … . [𝑝 − 𝑓𝑛(𝑥, 𝑦)] = 0   … (2) 

From (2) 

 𝑝 = 𝑑𝑦 𝑑𝑥⁄ = 𝑓1(𝑥, 𝑦),    𝑝 = 𝑑𝑦 𝑑𝑥⁄ = 𝑓2(𝑥, 𝑦) … … . . 𝑝 = 𝑑𝑦 𝑑𝑥⁄ = 𝑓𝑛(𝑥, 𝑦)  

Suppose the 𝑛 components equations are 

 𝐹1(𝑥, 𝑦, 𝑐1) = 0,   𝐹2(𝑥, 𝑦, 𝑐2) = 0, … … … 𝐹𝑛(𝑥, 𝑦, 𝑐𝑛) = 0    

Which 𝑐1, 𝑐2, … … 𝑐𝑛 are arbitrary constants of integration. 

If we replace 𝑐1, 𝑐2, … … 𝑐𝑛 = 𝑐, then 

𝐹1(𝑥, 𝑦, 𝑐) = 0,   𝐹2(𝑥, 𝑦, 𝑐) = 0, … … … 𝐹𝑛(𝑥, 𝑦, 𝑐) = 0 

                     𝐹1(𝑥, 𝑦, 𝑐),   𝐹2(𝑥, 𝑦, 𝑐), … … … 𝐹𝑛(𝑥, 𝑦, 𝑐) = 0 

 

SOLVED EXAMPLES 
EXAMPLE1: Solve   p2 − 7p + 12 = 0 

SOLUTION: Let             p2 − 7p + 12 = 0                                … (1) 

       p2 − 4p − 3p + 12 = 0 ⇒                (p − 3)(p − 4) = 0 

     Its components are p = 3, 4 

   Solving the equation p = 3 i. e., dy dx⁄ = 3, we have    

                    y = 3x + c 

    also  p = 4 i. e., dy dx⁄ = 4,      is  y = 4x + c 
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So the solution of differential equation are y = 3x + c, y = 4x + c. 

The single solution are (y − 3x − c)(y − 4x − c) = 0. 

EXAMPLE2: Solve   𝑝2 + 2𝑝𝑦𝑐𝑜𝑡𝑥 = 𝑦2. 

SOLUTION: The given equation is 𝑝2 + 2𝑝𝑦𝑐𝑜𝑡𝑥 = 𝑦2                 (1) 

Solving for 𝑝, we have  

    𝑝 =
𝑑𝑦

𝑑𝑥
=

−2𝑦𝑐𝑜𝑡𝑥±√4𝑦2𝑐𝑜𝑡2𝑥+4𝑦2

2
= −𝑦 𝑐𝑜𝑡𝑥 ± 𝑦𝑐𝑜𝑠𝑒𝑐𝑥 

= 𝑦(−𝑐𝑜𝑡𝑥 ± 𝑐𝑜𝑠𝑒𝑐𝑥) 

              
𝑑𝑦

𝑑𝑥
=  𝑦(−𝑐𝑜𝑡𝑥 + 𝑐𝑜𝑠𝑒𝑐𝑥)        … (1)      

              
𝑑𝑦

𝑑𝑥
=  −𝑦(𝑐𝑜𝑡𝑥 + 𝑐𝑜𝑠𝑒𝑐𝑥)         … (2)   

              from (1), we get  

⇒             
𝑑𝑦

𝑦
=  (−𝑐𝑜𝑡𝑥 + 𝑐𝑜𝑠𝑒𝑐𝑥)𝑑𝑥        ∫

𝑑𝑦

𝑦
= ∫(−𝑐𝑜𝑡𝑥 + 𝑐𝑜𝑠𝑒𝑐𝑥)𝑑𝑥                

 ⇒            log 𝑦 − log 𝑐 = − log 𝑠𝑖𝑛𝑥 + log 𝑡𝑎𝑛
1

2
𝑥 

⇒             log (
𝑦

𝑐
) = log (

𝑡𝑎𝑛
1

2
𝑥

𝑠𝑖𝑛𝑥
) = log {

𝑠𝑖𝑛𝑥
2

𝑐𝑜𝑠𝑥
2

2𝑠𝑖𝑛𝑥 2  ⁄ 𝑐𝑜𝑠𝑥 2⁄
} 

=  log {
1

2𝑐𝑜𝑠2 𝑥
2

} = log {
1

1 + 𝑐𝑜𝑠𝑥
} 

⇒             𝑦 𝑐⁄ = 
1

1+𝑐𝑜𝑠𝑥
                𝑦 =

𝑐

1+𝑐𝑜𝑠𝑥
       … (3) 

⇒           similarly,  from (2), we get     

⇒             
𝑑𝑦

𝑦
=  −(𝑐𝑜𝑡𝑥 + 𝑐𝑜𝑠𝑒𝑐𝑥)𝑑𝑥        ∫

𝑑𝑦

𝑦
= − ∫(𝑐𝑜𝑡𝑥 + 𝑐𝑜𝑠𝑒𝑐𝑥)𝑑𝑥                

 ⇒            log 𝑦 − log 𝑐 = − (log 𝑠𝑖𝑛𝑥 + log 𝑡𝑎𝑛
1

2
𝑥) 

⇒             log (
𝑦

𝑐
) = − log {(𝑠𝑖𝑛𝑥) (𝑡𝑎𝑛

1

2
𝑥)} = − log 2𝑠𝑖𝑛

𝑥

2
𝑐𝑜𝑠

𝑥

2
. (

𝑠𝑖𝑛
𝑥

2

𝑐𝑜𝑠
𝑥

2

) 

= −log {2𝑠𝑖𝑛2
𝑥

2
} 

⇒           log (
𝑦

𝑐
) = − log(1 − 𝑐𝑜𝑠𝑥) = − log(1 − 𝑐𝑜𝑠𝑥)−1 = log (

1

1−𝑐𝑜𝑠𝑥
) 

⇒             𝑦 𝑐⁄ = 
1

1−𝑐𝑜𝑠𝑥
                𝑦 =

𝑐

1−𝑐𝑜𝑠𝑥
        … (4) 

From (3) and (4) the combined solution is  

⇒            (𝑦 −
𝑐

1+𝑐𝑜𝑠𝑥
) ( 𝑦 −

𝑐

1−𝑐𝑜𝑠𝑥
 ) = 0   

Method II : Equation Solvable for y 
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If the given differential equation is solvable for y, then we can express 𝑦 

explicitly in terms of 𝑥 and 𝑝. Thus an equation solvable for 𝑦 can put in the 

form                                            𝑦 = 𝑓(𝑥, 𝑝)                  … (1) 

Differentiating (1) w.r.t. 𝑥 and obtaining 𝑝 for
𝑑𝑦

𝑑𝑥
, we have  

                                                     𝑝 = 𝜙(𝑥, 𝑝, 𝑑𝑝 𝑑𝑥⁄ )  … (2)        

Which is an differential equation assuming two variables 𝑥 and 𝑝. Let its 

solution be  

 ⇒  𝜓(𝑥, 𝑝, 𝑐) = 0,   c being an arbitrary constant.        … (3) 

Eliminating 𝑝 between (1) and (3), the solution of (1) is 

                                                 𝑔(𝑥, 𝑦, 𝑐) = 0                   … (4) 

Eliminating 𝑝 between (1) and (3) is not possible, then we have  

⇒               𝑥 = 𝑓1(𝑝, 𝑐)                    𝑦 = 𝑓2(𝑝, 𝑐) 

where 𝑝 being parameter. 

 

Special Case:  

 Equation that do not contain 𝒙 

in this case the equation has in the form𝑓(𝑦, 𝑝) = 0. If it is solvable for 𝑝, it will 

obtain                                𝑝 = 𝜙(𝑦)  𝑖. 𝑒. , 𝑑𝑦 𝑑𝑥⁄ = 𝜙(𝑦) 

If it is solvable for𝑦, it will obtain𝑦 = 𝜓(𝑝), which can be solved by the method 

just explained. 

 Lagrange ‘s Equation 

The equation of the form   

                                        𝑦 = 𝑥𝐹(𝑝) + 𝑓(𝑝)                … (1)  is called 

Lagrange’s equation. 

Differentiating (1) w.r.t.𝑥, we get  

                     𝑝 = 𝐹(𝑝) + 𝑥 𝐹′(𝑝)(𝑑𝑝 𝑑𝑥⁄ ) +  𝑓′(𝑝)(𝑑𝑝 𝑑𝑥⁄ ) 

 

       𝑝 − 𝐹(𝑝) =
𝑑𝑝

𝑑𝑥
[𝑥𝐹′(𝑝) + 𝑓′(𝑝)]    or            

𝑑𝑥

𝑑𝑝
=

𝑥𝐹′(𝑝)+𝑓′(𝑝)

𝑝−𝐹(𝑝)
 

      
𝑑𝑥

𝑑𝑝
−

𝐹′(𝑝)

𝑝−𝐹(𝑝)
𝑥 =

𝑓′(𝑝)

𝑝−𝐹(𝑝)
 

Which is linear equation in 𝑥 and 𝑝 and can be resolved by usual method in the 

form 

                                                  𝑥 = 𝜙(𝑝, 𝑐)                         … (2)  

Since  eliminate 𝑝 between  (1) and (2) to obtain the required solution. 

If 𝑝 cannot be eliminated, then 

                                   𝑦 = 𝜙(𝑝, 𝑐)𝐹(𝑝) + 𝑓(𝑝)                    … (3) 

Hence the required solution in parametric form, 𝑝 being parameter. 

 Clairaut form 
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An equation of the form 𝑦 = 𝑝𝑥 + 𝑓(𝑝) is called Clairaut equation. 

To prove that the general solution of Clairaut’s equation 𝒚 = 𝒑𝒙 + 𝒇(𝒑) is 

𝒚 = 𝒄𝒙 + 𝒇(𝒄) which is obtained by replacing 𝒑 by 𝒄, where 𝒄 is an 

arbitrary constant. 

Proof. The given equation          𝑦 = 𝑝𝑥 + 𝑓(𝑝)                       … (1) 

Differentiating (1) w.r.t. 𝑥 and assuming 𝑝 for 𝑑𝑦 𝑑𝑥⁄ , we get 

 𝑝 = 𝑝 + 𝑥(𝑑𝑝/𝑑𝑥) + 𝑓′(𝑝)(𝑑𝑝/𝑑𝑥)    or   [𝑥 + 𝑓′(𝑝)](𝑑𝑝/𝑑𝑥) = 0  … (2) 

The factor 𝑥 + 𝑓′(𝑝) which does not involve 𝑑𝑝/𝑑𝑥, from (2) given as 

𝑑𝑝 𝑑𝑥⁄ = 0   so that      𝑝 = 𝑐,    c being constant. 

Hence substituting the value of 𝑝 in (1) 

𝑦 = 𝑐𝑥 + 𝑓(𝑐). 

Method III: Equations Reducible to Clairaut’s form by transformation 

Form I: To solve 𝒚𝟐 = (𝒑𝒚 𝒙⁄ )𝒙𝟐 + 𝒇(𝒑𝒚 𝒙⁄ ),  put 𝒙𝟐 = 𝒖  and 𝒚𝟐 = 𝒗. 

Now 𝑥2 = 𝑢  and 𝑦2 = 𝑣            2𝑥𝑑𝑥 = 𝑑𝑢     and    2𝑦𝑑𝑦 = 𝑑𝑣 

     
2𝑦𝑑𝑦

2𝑥𝑑𝑥
=

𝑑𝑣

𝑑𝑢
      or       

𝑝𝑦

𝑥
= 𝑃,  where   𝑃 =

𝑑𝑣

𝑑𝑢
 

Hence the given differential equation to appropriate 𝑣 = 𝑃𝑢 + 𝑓(𝑃) 

This is in Clairaut’s form and so  

 𝑣 = 𝑐𝑢 + 𝑓(𝑐)          or                 𝑦2 = 𝑐𝑥2 + 𝑓(𝑐),  

 𝑐   being an arbitrary constant. 

Form II: To solve equation of the form 𝒆𝒃𝒚(𝒂 − 𝒃𝒑) = 𝒇(𝒑𝒆𝒃𝒚−𝒂𝒙),   we use 

the transformation  𝒆𝒂𝒙 = 𝒖   and   𝒆𝒃𝒚 = 𝒗. 

EXAMPLE: Solve 𝑒3𝑥(𝑝 − 1) + 𝑝3𝑒2𝑦 = 0 

SOLUTION:  Given          𝑒3𝑥(𝑝 − 1) + 𝑝3𝑒2𝑦 = 0                    … (1) 

From (1) 

      1 − 𝑝 = 𝑝3𝑒2𝑦−3𝑥            or         𝑒𝑦(1 − 𝑝) = (𝑝𝑒𝑦−𝑥)3, 

Now formII𝑎 = 1, 𝑏 = 1. 

Substituting 𝑒𝑥 = 𝑢   and   𝑒𝑦 = 𝑣  so that𝑒𝑥𝑑𝑥 = 𝑢𝑑𝑢   and   𝑒𝑦𝑑𝑦 = 𝑑𝑣,  we 

obtain 

    
𝑒𝑦𝑑𝑦

𝑒𝑥𝑑𝑢
=

𝑑𝑣

𝑑𝑢
     or       

𝑣

𝑢
𝑝 = 𝑃       or       𝑝 =

𝑢𝑃

𝑣
     where  𝑃 =

𝑑𝑣

𝑑𝑢
. 

Which is in Clairaut’s form. So 

      𝑣 = 𝑢𝑐 + 𝑐3     or          𝑒𝑦 = 𝑐𝑒𝑥 + 𝑐3,    

where c being constant. 

Form III: Sometimes the substitution 𝒚𝟐 = 𝒗  will transform the given 

equation to Clairaut’s form. 

EXAMPLE: Solve 𝑦 = 2𝑝𝑥 + 𝑦2𝑝3. 

SOLUTION: given                       𝑦 = 2𝑝𝑥 + 𝑦2𝑝3                        … (1) 
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Multiplying equation (1) both sides by𝑦, we have  

         𝑦 = 2𝑝𝑥 + 𝑦2𝑝3     or      𝑦 = 𝑥(2𝑝𝑦) + (1/8)(2𝑦𝑝)3   … (2) 

     Substituting  𝑦2 = 𝑣 so that 

                                    2𝑦(𝑑𝑦/𝑑𝑥) = 𝑑𝑣/𝑑𝑥    or     2𝑦𝑝 = 𝑃  

 where 𝑃 = 𝑑𝑣/𝑑𝑥 

     From (2),    𝑣 = 𝑥𝑃 + 𝑃3 8⁄ , Which is in Clairaut’s form.. 

So replacing 𝑝 = 𝑐 in (1) 

   𝑣 = 𝑥𝑐 + 𝑐3 8⁄             or                    𝑦 = 𝑐𝑥 + 𝑐3 8⁄  

 SOLVED EXAMPLES 
EXAMPLE1. Solve𝑦 + 𝑝𝑥 = 𝑥4𝑝2. 

SOLUTION: The given equation 𝑦 + 𝑝𝑥 = 𝑥4𝑝2,  

                                          where  𝑝 = 𝑑𝑦 𝑑𝑥⁄          … (1) 

                    𝑦 = 𝑥4𝑝2 − 𝑝𝑥                                    … (2) 

Differentiating (2) w.r.t. 𝑥  𝑝 = 4𝑥3𝑝2 + 2𝑥4𝑝(𝑑𝑝 𝑑𝑥⁄ ) − [𝑝 + 𝑥(𝑑𝑝 𝑑𝑥⁄ )] 

           2𝑝 − 4𝑥3𝑝2 + (𝑑𝑝 𝑑𝑥⁄ )(𝑥 − 2𝑥4𝑝) = 0     

or 

              2𝑝(1 − 2𝑥3𝑝2) + 𝑥(𝑑𝑝 𝑑𝑥⁄ )(1 − 2𝑥3𝑝) = 0  

     (1 − 2𝑥3𝑝2)[2𝑝 + 𝑥(𝑑𝑝 𝑑𝑥⁄ )] = 0                 … (3)  

      Now from (3) 

    2𝑝 + 𝑥(𝑑𝑝 𝑑𝑥⁄ ) = 0       or         1 𝑝⁄ 𝑑𝑝 + 2(1 𝑥⁄ )𝑑𝑥 = 0                       

   Now we integrating,  log 𝑝 + 2 log 𝑥 = log 𝑐    or         𝑝𝑥2 = 𝑐       or      

𝑝 = 𝑐 𝑥2⁄      

Substituting the value of 𝑝  in (1), then 

      𝑦 + 𝑥(𝑐 𝑥2⁄ ) = 𝑥4(𝑐2 𝑥4⁄ )        or           𝑥𝑦 + 𝑐 = 𝑐2𝑥 

EXAMPLE2. Solve 𝑦 = 𝑝𝑡𝑎𝑛𝑝 + log 𝑐𝑜𝑠𝑝. 

SOLUTION: Given       𝑦 = 𝑝𝑡𝑎𝑛𝑝 + log 𝑐𝑜𝑠𝑝                … (1) 

Differentiating (1) w.r.t. 𝑥  and assuming 𝑝 for 𝑑𝑦 𝑑𝑥⁄ , we obtain 

 ⇒                          𝑝 = [tan 𝑝 + 𝑝 𝑠𝑒𝑐2𝑝 + {1/𝑐𝑜𝑠𝑝}(−𝑠𝑖𝑛𝑝)](𝑑𝑝 𝑑𝑥⁄ ) 

        𝑝 = 𝑝𝑠𝑒𝑐2𝑝(𝑑𝑝 𝑑𝑥⁄ )             or                𝑑𝑥 = 𝑠𝑒𝑐2𝑝𝑑𝑝            … (2) 

     Integrating, (2),                                           𝑥 = 𝑡𝑎𝑛𝑝 + 𝑐                … (3)             

𝑐 being an arbitrary constant. Hence (1) and (3) form the solution in parametric 

form,  𝑝 being the parameter.                  

Method IV: Equation Solvable for 𝒙 

If the given differential equation 𝑓(𝑥, 𝑦, 𝑝) = 0 is solvable for 𝑥. Then it can be 

written in the form  

  ⇒                                                          𝑓(𝑦, 𝑝) = 0                                   … (1)  
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Now differentiating (1) with respect to 𝑦 and writing 1 𝑝⁄  for 𝑑𝑦 𝑑𝑥⁄ , we have  

   ⇒                                                 
1

𝑝
= 𝜙 (𝑦, 𝑝,

𝑑𝑝

𝑑𝑦
)                                     … (2) 

Which is the equation assuming 𝑦 and 𝑝. Let us suppose its solution 

   ⇒                                                 𝜓(𝑥, 𝑝, 𝑐) = 0                                        … (3) 

where 𝑐 being arbitrary constant. 

Substituting 𝑝 between (1) and (3), we get the desired solution of (1) in the form  

⇒                                                 𝜓(𝑥, 𝑦, 𝑐) = 0                                        … (4) 

Now we solve equation (1) and (3) to explore 𝑥 and 𝑦 in term of 𝑝 and 𝑐 in the 

form 

⇒                       𝑥 = 𝑓1(𝑝, 𝑐),                                  𝑦 = 𝑓2(𝑝, 𝑐)                … (5) 

 Which obtain us the solution of (1) in the form of parametric equations, 𝑝 being 

parameter. 

 SOLVED EXAMPLES 
EXAMPLE. Solve 𝑦 = 2𝑝𝑥 + 𝑦2𝑝3. 

SOLUTION: Given        𝑦 = 2𝑝𝑥 + 𝑦2𝑝3                                                  … (1) 

Solving, 2𝑝𝑥 = 𝑦 − 𝑦2𝑝3         ⇒              𝑥 = 𝑦(1 2𝑝⁄ ) − 𝑦2𝑝2 2⁄         … (2) 

Differentiating (2) w.r.t.𝑦 and writing 1 𝑝⁄  for 𝑑𝑦 𝑑𝑥⁄ , we explained 

             
1

𝑝
= (1 2𝑝⁄ ) − 𝑦 2𝑝2⁄ 𝑑𝑝 𝑑𝑦⁄ − 2𝑦𝑝2 2⁄ − 𝑦2 2⁄ × 2𝑝 × 𝑑𝑝 𝑑𝑦⁄  

                 
1

2𝑝
+ 𝑦𝑝2 + (

𝑦

2𝑝2 + 𝑝𝑦2)
𝑑𝑝

𝑑𝑦
= 0 

           𝑝 (
1

2𝑝2 + 𝑝𝑦) + 𝑦 (
1

2𝑝2 + 𝑝𝑦)
𝑑𝑝

𝑑𝑦
= 0 

                          (
1

2𝑝2 + 𝑝𝑦) (𝑝 + 𝑦
𝑑𝑝

𝑑𝑦
) = 0 

                𝑝 + 𝑦
𝑑𝑝

𝑑𝑦
= 0         or       

1

2𝑝2 + 𝑝𝑦 = 0     

                𝑝 + 𝑦
𝑑𝑝

𝑑𝑦
= 0  will obtain the solution of (2) . From 𝑝 + 𝑦

𝑑𝑝

𝑑𝑦
= 0,  

we get   
𝑑𝑝

𝑑𝑦
= −

𝑝

𝑦
   Integrating,  log 𝑝 = − log 𝑦 + log 𝑐            or                 

log 𝑝𝑦 = log 𝑐 

      𝑝𝑦 = 𝑐            or                𝑝 = 𝑐 𝑦⁄  

Putting the value of 𝑝 in equation (1), we obtain 

                        𝑦 = 2(𝑐 𝑦⁄ )𝑥 + 𝑦2(𝑐 𝑦⁄ )3   or    𝑦 = 2𝑐𝑥 𝑦⁄ + 𝑐3 𝑦⁄   is 

required solution. 

2.13 PRINCIPLE OD DUALITY:- 

The principle of duality in differential equations refers to the fact that certain 

differential equations can be transformed into a dual form by interchanging 

certain variables or operators. In other words, the dual form of a differential 
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equation is obtained by making a particular transformation that switches the 

roles of certain variables or operators in the original equation. 

Formally, let us consider a linear differential equation of the form: 

𝐿[𝑦] = 𝑓(𝑥) 

where 𝐿 is a linear differential operator, 𝑦 is the dependent variable, and 𝑓(𝑥) is 

a given function. The principle of duality states that if we apply a certain 

transformation to the differential equation, such as interchanging certain 

variables or operators, we can obtain a dual equation of the form: 

𝐿 ∗ [𝑧] = 𝑔(𝑥) 

where 𝐿 ∗ is the dual operator, z is the dual variable, and 𝑔(𝑥) is a new function 

related to 𝑓(𝑥) by the transformation. 

The principle of duality has many applications in mathematics and physics, 

particularly in the study of partial differential equations and their solutions. Dual 

equations often provide a simpler or more intuitive way to understand the 

properties of a system, and can also lead to new insights or techniques for 

solving differential equations. 

The principle of duality has numerous applications in mathematics and 

physics. Here are some examples: 

1. Electromagnetism: In electromagnetism, the principle of duality is used 

to relate electric and magnetic fields. Specifically, the electric and 

magnetic fields are related by a duality transformation that interchanges 

the electric and magnetic field vectors. This transformation is useful in 

understanding the symmetries of Maxwell's equations and in solving 

certain problems in electromagnetism. 

2. Laplace transform: The Laplace transform is a mathematical tool used to 

solve differential equations. The principle of duality can be applied to the 

Laplace transform by interchanging the roles of time and frequency. This 

leads to a dual transform, known as the Fourier transform, which is 

useful in signal processing and other applications. 

3. Partial differential equations: The principle of duality can be used to 

transform certain partial differential equations into dual equations, which 

can provide a simpler way to understand the properties of the system 

being studied. For example, the heat equation can be transformed into 

the wave equation by a duality transformation that interchanges the roles 

of time and space variables. 

4. Quantum mechanics: In quantum mechanics, the principle of duality is 

used to relate particles and waves. Specifically, the wave-particle duality 

principle states that particles can exhibit wave-like behavior and waves 

can exhibit particle-like behavior. This principle is essential to the 
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understanding of the behavior of quantum systems, such as atoms and 

subatomic particles. 

Overall, the principle of duality is a powerful tool for understanding the 

symmetries and properties of mathematical and physical systems, and has many 

applications in diverse areas of science and engineering. 

 

2.14 SUMMARY:-  

The first-order, first-degree differential equations are linear and can be solved 

using a variety of methods, including separation of variables, integrating factors, 

and homogeneous equations. The first-order differential equation that is not a 

first-degree differential equation can be more challenging to solve than a simple 

first-degree equation, and may require the use of specific techniques to obtain a 

solution. 

 

2.15 GLOSSARY:-  

 Exact Differential Equation. 

 Integrating factor.  

 Linear Differential equation.  

 Equations reducible to linear form 

 Bernoulli’s Equation (particular case) 
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2.18 TERMINAL QUESTION:-  

(TQ-1) Solve the following differential equations: 

a. (1 + 𝑥)𝑦𝑑𝑥 + (1 − 𝑦)𝑥𝑑𝑦 = 0. 

b. (1 − 𝑥2)(1 − 𝑦) = 𝑥𝑦(1 + 𝑦)𝑑𝑦. 

c. 
𝑑𝑦

𝑑𝑥
=

𝑥(2 𝑙𝑜𝑔 𝑥+1)

.𝑠𝑖𝑛𝑦+𝑦𝑐𝑜𝑠𝑦
. 

d. 𝑑𝑦 𝑑𝑥⁄ = 𝑒𝑥 + 𝑥2𝑒−𝑦. 

e. 𝑥 + 𝑦(𝑑𝑦 𝑑𝑥⁄ ) = 2𝑦. 

f. (𝑑𝑠 𝑑𝑥⁄ ) + 𝑥2 = 𝑥2𝑒3𝑠. 

g. 𝑦 − 𝑥(𝑑𝑦 𝑑𝑥⁄ ) = 𝑥 + 𝑦(𝑑𝑦 𝑑𝑥⁄ ). 

h. 𝑥
𝑑𝑦

𝑑𝑥
+

𝑦2

𝑥
= 𝑦. 

i. 2
𝑑𝑦

𝑑𝑥
=

𝑥

𝑦
− 1. 

j. 
𝑑𝑦

𝑑𝑥
=

𝑦

𝑥
+ tan

𝑦

𝑥
. 

k. (𝑥 − 𝑦)𝑑𝑦 = (𝑥 + 𝑦 + 1)𝑑𝑥 

l. 
𝑑𝑦

𝑑𝑥
=

𝑥−𝑦+3

2𝑥−2𝑦+5
 

m. 
𝑑𝑦

𝑑𝑥
=

𝑥+𝑦+7

2𝑥+2𝑦+3
 

n. (𝑑𝑦 𝑑𝑥⁄ ) + (1 𝑥⁄ )𝑦 = 𝑥𝑛 

o. (𝑑𝑦 𝑑𝑥⁄ ) + 𝑦 = 𝑒−𝑥 

p. 𝑝2 + 2𝑝𝑦𝑐𝑝𝑡𝑥 = 𝑦2 

q. 𝑝2 − 5𝑝 + 6 = 0 

r. 𝑦 = 𝑝𝑥 + 𝑎/𝑝 

s. 𝑦 = 𝑝𝑥 + 𝑙𝑜𝑔𝑝  

SELF CHECK QUESTIONS 
Choose the Correct Option: 

1. The solution of differential equation 𝑝2 − 8𝑝 + 15 = 0 is 

(a)   𝑝 = 5, 𝑝 = 3                            (b)  (𝑦 − 5𝑥 − 𝑐)(𝑦 − 3𝑥 − 𝑐) = 0 

(c)    (𝑦 + 5𝑥)(𝑦 + 3𝑥 + 𝑐) = 0     (d)  None 

 

2. Solution of the equation 𝑦2𝑙𝑜𝑔𝑦 = 𝑥𝑦𝑝 + 𝑝2 is  
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(a)   log 𝑦 = 𝑐𝑥 + 𝑥2                                   (b)        log 𝑦 = 𝑐𝑥2 + 𝑒𝑥    

(c)    (𝑦 + 5𝑥)(𝑦 + 3𝑥 + 𝑐) = 0                 (d)  None 

  

3. Solution of the equation 𝑦 = 𝑝𝑥 + log 𝑝  is  

(a) 𝑦 = 𝑒𝑥 + 𝑐                                              (b)    𝑦 = 𝑐𝑥 + log 𝑐 

(c)    𝑦 = 𝑙𝑜𝑔𝑐𝑥                                             (d) 𝑥 = 𝑒𝑦 + 𝑐         

4. The differential equation 𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 0,  where M and N are the 

functions of 𝑥  and 𝑦 is exact if  

(a)    
𝜕𝑀

𝜕𝑦
=

𝜕𝑁

𝜕𝑥
                                              (b)    

𝜕𝑀

𝜕𝑥
=

𝜕𝑁

𝜕𝑦
 

(c)    𝑀 + 𝑁 = 0                                          (d) 𝑀 = 𝑁         

                

2.19 ANSWERS:-  

 

TERMINAL ANSWERS 
(a) 𝑥𝑦 = 𝑐𝑒𝑦−𝑥,   

(b)    log{𝑥(1 − 𝑦)2} =
1

2
𝑥2 −

1

2
𝑥2 − 2𝑦 + 𝑐,      

(c) 𝑦 𝑠𝑖𝑛𝑦 = 𝑥2 log 𝑥 + 𝑐  

(d)       𝑒𝑦 = 𝑒𝑥 +
1

3
𝑥3 + 𝑐,      

(e)   (𝑒3𝑠 − 1) = 𝑐1𝑒(3𝑠+𝑥3),   where 𝑐1 = 𝑒3𝑠 

(f) log(𝑦 − 𝑥) = 𝑐 + 𝑥 (𝑦 − 𝑥)⁄ ,  

(g)    
1

2
log(𝑥2 + 𝑦2) + tan−1(𝑦 𝑥⁄ ) = 𝑙𝑜𝑔𝑐,     

(h)     𝑐𝑥 = 𝑒𝑥/𝑦 ,         (i)   (𝑥 − 2𝑦)(𝑥 + 𝑦)2 = 𝑐,              

(j)  𝑠𝑖𝑛(𝑦/𝑥) = 𝑐𝑥    

(k)  2 tan−1{(2𝑦 + 1) (2𝑥 + 1)⁄ } = log {𝑐2 (𝑥2 + 𝑦2 + 𝑥 + 𝑦 +
1

2
)},       

(i)  𝑥 − 2𝑦 + log(𝑥 − 𝑦 + 2) = 𝑐,   

(m) (2 3⁄ )(𝑥 + 𝑦) − (11/9) log(3𝑥 + 3𝑦 + 10) = 𝑥 + 𝑐    

(n) 𝑥𝑦 = 𝑥𝑛+2 (𝑛 + 2) + 𝑐⁄  

(o)  𝑦𝑒𝑥 = 𝑥 + 𝑐  (p)  (𝑦 −
𝑐

1+𝑐𝑜𝑠𝑥
) (𝑦 −

𝑐

1−𝑐𝑜𝑠𝑥
) = 0,    

(q)  (𝑦 − 2𝑥 − 𝑐)(𝑦 − 3𝑥 − 𝑐) = 0 

(r)    𝑦 = 𝑐𝑥 + 𝑎/𝑥,     (s)   𝑦 = 𝑐𝑥 + log 𝑐 

 

SELF CHECK ANSWERS 

1. (b),  2. (a),  3. (b), 4. (a)  



ADVANCED DIFFERENTIAL EQUATIONS-I          MAT 504 
 

Department of mathematics  
Uttarakhand Open University Page 52 
 
 

 

 

 

 

 

 

 

 

 

BLOCKII 

GENERAL THEORY OF LINEAR 

DIFFERENTIAL EQUATION 
 

 

 

 

 

 



ADVANCED DIFFERENTIAL EQUATIONS-I MAT 504 
 

Department of mathematics 
Uttarakhand Open University  Page 53 
 

UNIT 3:- LINEAR DIFFERENTIAL 

EQUATIONS 
CONTENT: 
3.1 Introduction 

3.2 Objectives 

3.3 Basic Concepts 

3.3.1 Independent and dependent variables 

3.3.2  Derivatives 

           3.3.3    Differential equations 

3.3.4  Classification of differential equations 

3.3.4.1  Ordinary differential equation 

         3.3.4.2  Partial differential equation 

           3.3.5    Classification of ordinary differential equation          

                       3.3.5.1 Simple ordinary differential equation 

                       3.3.5.2  System of ordinary differential equations 

           3.3.6    Classification of partial differential equation 

                       3.3.6.1 Simple partial differential equation 

                       3.3.6.2 System of partial differential equations 

           3.3.7     Order and degree of a differential equation 

            3.4 Linear and Non-Linear Differential Equation 

           3.4.1 First order first degree linear differential equation 

           3.4.2 Solution of first order first degree linear differential    

                        equation 

3.4.3 Equation reducible to linear form 

3.5 General Theory of Linear Differential Equation of Higher        

Order 

            3.5.1 Classification of linear differential equation 

                       3.5.2 Solution of linear differential equation with constant 

Coefficient 

                       3.5.3   Complementary function of homogenous linear  

                                  differential equation 

3.5.4 Working rule for finding complete solution of the 

given homogenous linear differential equation 

                       3.5.5   Inverse operator 

                       3.5.6    Some important results 

3.5.7 Rules for finding the particular integral of non-

homogenous linear differential equation with constant 

coefficients 

3.5.8 Working rule to solve the non-homogenous linear 

differential equation with  constant coefficients 

            3.5.9   Linear differential equations with variable coefficients 
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              3.6  Picard’s Method of Successive Approximation for First   

                       Order First Degree Initial Value Problem 

             3.7      Lipschitz Condition 

            3.7.1 Sufficient condition for Lipschitz condition 

  3.8  Existence and Uniqueness Theorem 

  3.9      Summary 

  3.10    Glossary 

  3.11    References 

  3.12    Suggested Reading 

  3.13    Terminal questions 

  3.14      Answers 

 

3.1 INTRODUCTION:- 

The course is devoted to the solution of the linear differential 

equations of higher order with constant or variable coefficients. In this 

course, learners also learn method of successive approximations, the 

existence and uniqueness of initial value problem and their solution. The 

course matter has many applications in several fields. This course 

develops the problem-solving skills of learners. 

 

3.2  OBJECTIVES:- 

On completion of the course, learners will be able to- 

 Identify the type of a given differential equation and select and 

apply the appropriate analytical technique for finding the solution. 

 Learner will be able to solve first order first degree differential 

equations utilizing the standard techniques. 

 Determine the complete solution of a differential equation with 

constant coefficients. 

 Solve linear differential equations of higher order with variable 

coefficients. 

 Understand method of successive approximations, the existence 

and uniqueness of IVPs and their solution. 

 

3.3 BASIC CONCEPTS:- 

Linear differential equations are a fundamental concept in 

mathematics and physics. A linear differential equation is an equation that 

involves a function and its derivatives, where the highest power of the 
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function and its derivatives is one. The basic concept of linear differential 

equations are given below 

 

3.3.1 INDEPENDENT AND DEPENDENT VARIABLES:- 

The variable whose value is assigned is called independent variables. In 

another words, the variables whose domain is known is called independent 

variables and the variable whose value is obtained corresponding to the 

assigned value is called dependent variable. 

If 𝑓 be a function defined from 𝐴 to 𝐵, 𝑖. 𝑒. , 𝑓: 𝐴 → 𝐵 then ∀ 𝑥 ∈ 𝐴  ∃!  𝑦 ∈
𝐵 such that    𝑓(𝑥) = 𝑦.Here, the variable 𝑥 is called independent variable 

and the variable 𝑦 is called dependent variable. 

                        REMARK: Independent variable causes a change in dependent variable 

but it is not possible that dependent variable could cause a change in 

independent variable. 

 

 3.3.2 DERIVATIVES:- 

The rate of change of one variable with respect to another variable is 

called derivative. 

Consider a function 𝑦 = 𝑓(𝑥) then the derivative of 𝑦 at a point 𝑃(𝑥, 𝑦) is 

the slope of tangent to the curve 𝑦 = 𝑓(𝑥) at a point 𝑃(𝑥, 𝑦) and it is 

denoted by 
𝑑𝑦

𝑑𝑥
 and called total derivative or ordinary derivative. 

If 𝑧 = 𝑧(𝑥, 𝑦) then at any point 𝑃(𝑥, 𝑦, 𝑧) on the surface, the slope of 

tangent in 𝑥 −direction is denoted by 
𝜕𝑧

𝜕𝑥
 and it is called partial derivative 

of 𝑧 with respect to 𝑥 and the slope of tangent in 𝑦 −direction is denoted 

by 
𝜕𝑧

𝜕𝑦
 and it is called partial derivative of 𝑧 with respect to 𝑦. 

 

3.3.3 DIFFERENTIAL EQUATIONS:- 

An equation which expressed the relationship between dependent 

variables, independent variables and derivatives of dependent variable 

with respect to independent variable is called differential equation. 

 

3.3.4 CLASSIFICATION OF DIFFERENTIAL 

EQUATIONS:- 
 

3.3.4.1 ORDINARY DIFFERENTIAL EQUATION (O.D.E.):- 



ADVANCED DIFFERENTIAL EQUATIONS-I MAT 504 
 

Department of mathematics 
Uttarakhand Open University  Page 56 
 

A differential equation which involves derivatives of one or more than one 

dependent variables with respect to single independent variable, 𝑖. 𝑒., 
differential equation involves only ordinary derivatives, is called ordinary 

differential equation. 

 

3.3.4.2 PARTIAL DIFFERENTIAL EQUATION (P. D. E.):- 

A differential equation which involves derivatives of one or more than one 

dependent variables with respect to more than one independent variable, 

𝑖. 𝑒., differential equation involves partial derivatives, is called partial 

differential equation. 

3.3.5 CLASSIFICATION OF ORDINARY DIFFERENTIAL 

EQUATION:- 
 

3.3.5.1 SIMPLE ORDINARY DIFFERENTIAL EQUATION:- 

An ordinary differential equation which contains only one dependent 

variable. 

                            EXAMPLE1: The differential equation  
𝑑2𝑦

𝑑𝑥2 +
𝑑𝑦

𝑑𝑥
= tan 𝑥 contains only 

one dependent variable.   

 

3.3.5.2 SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS:- 

An ordinary differential equation which contains more than one dependent 

variable. 

  EXAMPLE2: The differential equations
𝑑𝑧

𝑑𝑥
+ 𝑥

𝑑𝑦

𝑑𝑥
= sin 𝑥 and  

𝑑𝑧

𝑑𝑥
+

𝑑𝑦

𝑑𝑥
= cos 𝑥 contains two dependent variables. 

 

3.3.6 CLASSIFICATION OF PARTIAL DIFFERENTIAL 

EQUATION:- 

 

Partial Differential Equations (PDEs) can be classified based on various 

criteria. Here are some common ways to classify them: 

 

3.3.6.1 SIMPLE PARTIAL DIFFERENTIAL EQUATION:- 

A partial differential equation which contains only one dependent variable. 

EXAMPLE1: The differential equation  
𝜕2𝑧

𝜕𝑥2 +
𝜕2𝑧

𝜕𝑦2 = 0 contains only one 

dependent variable. 
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3.3.6.2 SYSTEM OF PARTIAL DIFFERENTIAL EQUATIONS:- 

A partial differential equation which contains more than one dependent 

variable. 

EXAMPLE2: The differential equations
𝜕2𝑧

𝜕𝑥2 +
𝜕2𝑤

𝜕𝑦2 = 0 and  
𝜕2𝑧

𝜕𝑦2 +
𝜕2𝑤

𝜕𝑥2 =

0 contains two dependent variables.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig.1: Classifications of Differential Equations 

 

3.3.7 ORDER AND DEGREE OF A DIFFERENTIAL 

EQUATION:- 

The highest order derivative occurs in a differential equation is called the 

order of the differential equation. 

The highest power of the highest order derivative occurring in the 

differential equation is called degree of the differential equation, after 

making it free from radicals, fractions and transcendental functions as per 

the derivatives are concerned. 

In another words, the highest exponent of the highest order 

derivative in differential equation is called degree of differential 

equation provided all the derivatives are in natural power. 

REMARK- The order of the differential equation is always defined but 

the degree of differential equation may or may not define. 

EXAMPLE1:  The differential equation 𝑣 = cos
𝑑𝑣

𝑑𝑢
 is of first order but 

degree does not exist. 

EXAMPLE2: The differential equation 𝑒𝑦′′′
− 𝑦′′ + 𝑥𝑦 = 0 is of order 

three but degree does not exist. 

EXAMPLE3:  The differential equation (
𝑑3𝑦

𝑑𝑥3)
3

2⁄

+ (
𝑑3𝑦

𝑑𝑥3)
2

3⁄

= 0 is of 

order three and degree   nine. 
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             SELF CHECK QUESTIONS-1 
(SCQ-1)Find the order and degree of the following differential 

equations:- 

i. (
𝑑𝑦

𝑑𝑥
)

3

− 4 (
𝑑𝑦

𝑑𝑥
) + 𝑦 = 3𝑒𝑥 

ii. (
𝑑2𝑦

𝑑𝑥2)
3

+ 7 (
𝑑𝑦

𝑑𝑥
)

4

= 5 sin 𝑥 

iii. 
𝑑2𝑦

𝑑𝑥2 + 𝑎2𝑦 = 0 

iv. (
𝑑𝑦

𝑑𝑥
)

2

− 3
𝑑3𝑦

𝑑𝑥3 + 7
𝑑2𝑦

𝑑𝑥2 + 4
𝑑𝑦

𝑑𝑥
− log 𝑥 = 0 

v. √1 + (
𝑑𝑦

𝑑𝑥
)

2

= 4𝑥 

vi. [1 + (
𝑑𝑦

𝑑𝑥
)

2

]

2
3⁄

=
𝑑2𝑦

𝑑𝑥2 

vii. 
𝑑2𝑦

𝑑𝑥2 − √
𝑑𝑦

𝑑𝑥
= 0 

 

 

 3.4 LINEAR AND NON-LINEAR DIFFERENTIAL 

EQUATION:- 

A differential equation of n-th order is denoted as 𝑓(𝑥, 𝑦, 𝑦′, 𝑦′′, … , 𝑦𝑛) =
0 is said to be linear if: 

i. All the derivatives and dependent variables are of degree one 

only, and 

ii. There does not exist any term containing product of two 

derivatives or product of derivative and/or dependent variables. 

A differential equation which is not linear is called a non-linear 

differential equation. 

EXAMPLE1: The differential equation  𝑥2 𝑑2𝑦

𝑑𝑥2 + 𝑥
𝑑𝑦

𝑑𝑥
+ 𝑦 = sin 𝑥 is a 

linear differential equation of second order. 

 

                SELF CHECK QUESTIONS-2 

(SCQ-1)Which of the following differential equations is linear? 

i. (𝑦 + 𝑥)
𝑑𝑦

𝑑𝑥
+ 𝑦 = 0 

ii. 3
𝑑𝑦

𝑑𝑥
+ (𝑥 + 4)𝑦 = 𝑥2 +

𝑑2𝑦

𝑑𝑥2 

iii. 
𝑑3𝑦

𝑑𝑥3 = cos(2𝑡𝑦) 

iv. 𝑦(4) + √𝑥𝑦′′′ + cos(𝑥) = 𝑒𝑦 

               (SCQ-2) Let 𝑓(𝑥, 𝑦, 𝑦′, 𝑦′′, … , 𝑦𝑛) = 0 be differential equation of 

order 𝑛. Then choose the incorrect statement. 



ADVANCED DIFFERENTIAL EQUATIONS-I MAT 504 
 

Department of mathematics 
Uttarakhand Open University  Page 59 
 

i. If deg 𝑓 = 1 ⟹ 𝑓(𝑥, 𝑦, 𝑦′, 𝑦′′, … , 𝑦𝑛) = 0 is linear differential 

equation. 

ii. If 𝑓(𝑥, 𝑦, 𝑦′, 𝑦′′, … , 𝑦𝑛) = 0 is linear differential equation ⟹
deg 𝑓 = 1. 

iii. If deg 𝑓 > 1 ⟹ 𝑓(𝑥, 𝑦, 𝑦′, 𝑦′′, … , 𝑦𝑛) = 0 is non-linear 

differential equation. 

iv. If 𝑓(𝑥, 𝑦, 𝑦′, 𝑦′′, … , 𝑦𝑛) = 0 is non-linear differential equation ⟹
deg 𝑓 > 1. 

              (SCQ-3)If 𝑦(𝑥) = 𝑥|𝑥| is solution of n-thorder differential equation 

defined ∀ 𝑥 ∈ ℝ, then possible value of 𝑛 is? 

 

3.4.1 FIRST ORDER FIRST DEGREE LINEAR 

DIFFERENTIAL EQUATION:- 

A linear differential equation of first order first degree is of the form  

𝑎0(𝑥)
𝑑𝑦

𝑑𝑥
+ 𝑎1(𝑥)𝑦 = 𝑓(𝑥) where 𝑎0(𝑥) ≠ 0 

The most general form of first order first degree linear differential 

equation is  
𝑑𝑦

𝑑𝑥
+ 𝑃𝑦 = 𝑄 

Where 𝑃 and 𝑄 are constants or functions of 𝑥 only. 

REMARK: In general, the differential equation  
𝑑𝑦

𝑑𝑥
+ 𝑃𝑦 = 𝑄 is non-

exact. 

 

3.4.2 SOLUTION OF FIRST ORDER FIRST DEGREE 

LINEAR DIFFERENTIAL EQUATION 
𝒅𝒚

𝒅𝒙
+ 𝑷𝒚 = 𝑸:- 

The given differential equation is 

            
𝑑𝑦

𝑑𝑥
+ 𝑃𝑦 = 𝑄     ...(1) 

where 𝑃 and 𝑄 are constants or functions of 𝑥 only. 

To solve such type of differential equation we multiplied both side by its 

integrating factor, 𝑖. 𝑒., first we find out its integrating factor. 

The differential equation 
𝑑𝑦

𝑑𝑥
+ 𝑃𝑦 = 𝑄 can be re-written as 

(𝑃𝑦 − 𝑄)𝑑𝑥 + 𝑑𝑦 = 0  …(2) 

Compare equation (2) with 𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦 = 0, we get 

𝑀 = 𝑃𝑦 − 𝑄 and 𝑁 = 1 

So,                                     
𝜕𝑀

𝜕𝑦
= 𝑃 and 

𝜕𝑁

𝜕𝑥
= 0 

⟹
𝜕𝑀

𝜕𝑦
≠

𝜕𝑁

𝜕𝑥
  Therefore, the given differential equation is non-exact.  

So, if 

𝜕𝑀

𝜕𝑦
−

𝜕𝑁

𝜕𝑥

𝑁
= 𝜙(𝑥) (function of 𝑥 only) 



ADVANCED DIFFERENTIAL EQUATIONS-I MAT 504 
 

Department of mathematics 
Uttarakhand Open University  Page 60 
 

Then integrating factor is given by 

I.F. = 𝑒∫ 𝜙(𝑥)𝑑𝑥 

Here, 

𝜕𝑀

𝜕𝑦
−

𝜕𝑁

𝜕𝑥

𝑁
=

𝑃−0

1
= 𝑃 (function of 𝑥 only) 

So, I.F. = 𝑒∫ 𝜙(𝑥)𝑑𝑥 = 𝑒∫ 𝑃𝑑𝑥  

𝑒∫ 𝑃𝑑𝑥 is an integrating factor. Hence the differential equation 
𝑑𝑦

𝑑𝑥
+ 𝑃𝑦 =

𝑄 always reducible into exact differential equation by multiplying both 

side by 𝑒∫ 𝑃𝑑𝑥 . We get 

𝑒∫ 𝑃𝑑𝑥 ∙ {
𝑑𝑦

𝑑𝑥
+ 𝑃𝑦} = 𝑒∫ 𝑃𝑑𝑥 ∙ 𝑄 

⟹ 𝑒∫ 𝑃𝑑𝑥 ∙
𝑑𝑦

𝑑𝑥
+ 𝑃𝑦 ∙ 𝑒∫ 𝑃𝑑𝑥 = 𝑄 ∙ 𝑒∫ 𝑃𝑑𝑥  

⟹ 𝑒∫ 𝑃𝑑𝑥 ∙ 𝑑𝑦 + 𝑃𝑦 ∙ 𝑒∫ 𝑃𝑑𝑥𝑑𝑥 = 𝑄 ∙ 𝑒∫ 𝑃𝑑𝑥𝑑𝑥 

⟹ 𝑑(𝑦 ∙ 𝑒∫ 𝑃𝑑𝑥) = 𝑄 ∙ 𝑒∫ 𝑃𝑑𝑥𝑑𝑥 

Integrating, 𝑦 ∙ 𝑒∫ 𝑃𝑑𝑥 = ∫ 𝑄 ∙ 𝑒∫ 𝑃𝑑𝑥𝑑𝑥 + 𝑐 

Which is required solution of given differential equation. 

WORKING RULE:- 

Change the linear differential equation in standard form 
𝑑𝑦

𝑑𝑥
+ 𝑃𝑦 = 𝑄 

Find an integrating factor by using formula, I.F.= 𝑒∫ 𝑃𝑑𝑥 

The required solution is obtained by using formula  

𝑦 ∙ (𝐼. 𝐹. ) = ∫ 𝑄 ∙ (𝐼. 𝐹. ) ∙  𝑑𝑥 + 𝑐 

Where  𝑐 is arbitrary constant. 

EXAMPLE:Solve 
𝑑𝑦

𝑑𝑥
+

𝑦

𝑥
= 𝑥2 if 𝑦 = 1 when 𝑥 = 1. 

SOLUTION:-Since the given differential equation is linear differential 

equation of first order first degree. Compare the given differential 

equation with standard form 
𝑑𝑦

𝑑𝑥
+ 𝑃𝑦 = 𝑄, we get 

𝑃 =
1

𝑥
and𝑄 = 𝑥2 

So, integrating factor is 𝑒∫ 𝑃𝑑𝑥 = 𝑒∫(
1

𝑥
)𝑑𝑥 = 𝑥 

Therefore, the general solution of the given differential equation is 

𝑦 ∙ (𝐼. 𝐹. ) = ∫ 𝑄 ∙ (𝐼. 𝐹. ) ∙  𝑑𝑥 + 𝑐 

⟹ 𝑦 ∙ 𝑥 = ∫ 𝑥2 ∙ 𝑥 ∙ 𝑑𝑥 + 𝑐 

⟹ 𝑥𝑦 =
1

4
𝑥4 + 𝑐                                          …(1) 

where𝑐 is an arbitrary constant. 

Now, the given condition is 𝑦 = 1 when 𝑥 = 1 

So, from (1) 𝑐 =
3

4
 

Hence, the required solution is 𝑥𝑦 =
1

4
𝑥4 +

3

4
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3.4.3 EQUATION REDUCIBLE TO LINEAR FORM:- 

CASE I: 
An equation of the form  

𝑓′(𝑦)
𝑑𝑦

𝑑𝑥
+ 𝑃 ∙ 𝑓(𝑦) = 𝑄                                              …(1) 

where 𝑃 and 𝑄 are constants or functions of 𝑥 only. 

The given differential equation can be reduced to linear form by putting 

𝑓(𝑦) = 𝑡 

Now differentiating both sides with respect to 𝑥 

𝑓′(𝑦)
𝑑𝑦

𝑑𝑥
 =

𝑑𝑡

𝑑𝑥
 

So, from (1), 
𝑑𝑡

𝑑𝑥
+ 𝑃 ∙ 𝑡 = 𝑄                                                              …(2)  

Which is linear in  𝑡 and  𝑥. 
So, its solution can be obtained by using the working rule defined above. 

Hence the solution is 𝑡 ∙ 𝑒∫ 𝑃𝑑𝑥 = ∫ 𝑄 ∙ 𝑒∫ 𝑃𝑑𝑥𝑑𝑥 + 𝑐 

Replace 𝑡 by 𝑓(𝑦) we get solution in terms of 𝑥 and 𝑦 

𝑓(𝑦) ∙ 𝑒∫ 𝑃𝑑𝑥 = ∫ 𝑄 ∙ 𝑒∫ 𝑃𝑑𝑥𝑑𝑥 + 𝑐 

CASE II: 

An equation of the form 𝑓′(𝑥)
𝑑𝑥

𝑑𝑦
+ 𝑃 ∙ 𝑓(𝑥) = 𝑄         …(1) 

where 𝑃 and 𝑄 are constants or functions of 𝑦 only. 

The given differential equation can be reduced to linear form by putting 

𝑓(𝑥) = 𝑡 

Now differentiating both sides with respect to 𝑦 

𝑓′(𝑥)
𝑑𝑥

𝑑𝑦
 =

𝑑𝑡

𝑑𝑦
 

So, from (1), 
𝑑𝑡

𝑑𝑦
+ 𝑃 ∙ 𝑡 = 𝑄                                                                …(2)  

 Which is linear in  𝑡 and  𝑦. 

Integrating factor of equation (2) is 𝑒∫ 𝑃𝑑𝑦. So, its solution is  

𝑡 ∙ 𝑒∫ 𝑃𝑑𝑦 = ∫ 𝑄 ∙ 𝑒∫ 𝑃𝑑𝑦𝑑𝑦 + 𝑐 

Replace 𝑡 by 𝑓(𝑥) we get solution in terms of 𝑥 and 𝑦 

𝑓(𝑥) ∙ 𝑒∫ 𝑃𝑑𝑦 = ∫ 𝑄 ∙ 𝑒∫ 𝑃𝑑𝑦𝑑𝑦 + 𝑐 

     

            SELF CHECK QUESTIONS-3 

 
    (SCQ-1)Solve the following differential equations:- 

i. (1 + 𝑦2) + (𝑥 − 𝑒tan−1 𝑦) (
𝑑𝑦

𝑑𝑥
) = 0 

ii. 𝑥 (
𝑑𝑦

𝑑𝑥
) − 𝑦 = 2𝑥2 csc 𝑥 
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iii. 𝑥 log 𝑥 (
𝑑𝑦

𝑑𝑥
) + 𝑦 = 2 log 𝑥 

iv. (2𝑥 − 10𝑦3) (
𝑑𝑦

𝑑𝑥
) + 𝑦 = 0 

v. (
𝑑𝑦

𝑑𝑥
) + (

1

𝑥
) =

𝑒𝑦

𝑥2 

vi. (
𝑑𝑦

𝑑𝑥
) + 𝑦 sec 𝑥 = tan 𝑥 

vii. (𝑥2 + 𝑦2 + 2𝑥)𝑑𝑥 + 2𝑦𝑑𝑦 = 0 

viii. (
𝑑𝑦

𝑑𝑥
) −

(tan 𝑦)
(1 + 𝑥)⁄ = (1 + 𝑥)𝑒𝑥 sec 𝑦 

 

3.5 GENERAL THEORY OF LINEAR 

DIFFERENTIAL EQUATION OF HIGHER 

ORDER:- 

 We have already discussed that linear differential equation are those in 

which the dependent variable and its derivatives occurs only in the first 

degree and there is no term containing their product. Thus, the general 

form of linear differential equation of nth order is 

𝑎0(𝑥)
𝑑𝑛𝑦

𝑑𝑥𝑛 + 𝑎1(𝑥)
𝑑𝑛−1𝑦

𝑑𝑥𝑛−1 + 𝑎2(𝑥)
𝑑𝑛−2𝑦

𝑑𝑥𝑛−2 + ⋯ + 𝑎𝑛−1(𝑥)
𝑑𝑦

𝑑𝑥
+ 𝑎𝑛(𝑥)𝑦 =

                     𝑄(𝑥)                                                                          …(1) 

Where 𝑥 ∈ [𝑎, 𝑏] 
𝑎0(𝑥), 𝑎1(𝑥), 𝑎2(𝑥), … , 𝑎𝑛(𝑥) and 𝑄(𝑥)all are continuous function of 

𝑥 and𝑎0(𝑥) ≠ 0 ∀ 𝑥 ∈ [𝑎, 𝑏] 
In terms of operator 𝐷 equation (1) can be rewritten as  

[𝑎0(𝑥)𝐷𝑛 + 𝑎1(𝑥)𝐷𝑛−1 + 𝑎2(𝑥)𝐷𝑛−2 + ⋯ + 𝑎𝑛−1(𝑥)𝐷 + 𝑎𝑛(𝑥)]𝑦 =
𝑄(𝑥)  

Where 𝐷 =
𝑑

𝑑𝑥
⟹ 𝐿[𝐷]𝑦 =  𝑄(𝑥) 

Where 𝐿[𝐷] = 𝑎0(𝑥)𝐷𝑛 + 𝑎1(𝑥)𝐷𝑛−1 + 𝑎2(𝑥)𝐷𝑛−2 + ⋯ + 𝑎𝑛−1(𝑥)𝐷 +
𝑎𝑛(𝑥) 

 

 3.5.1 CLASSIFICATION OF LINEAR DIFFERENTIAL 

EQUATION:- 

 

 HOMOGENEOUS LINEAR DIFFERENTIAL 

EQUATION:-  
The linear differential equation (1) is said to be homogeneous linear 

differential equation of order 𝑛if 𝑄(𝑥) ≡ 0 𝑖. 𝑒., the n-th order 

homogeneous linear differential equation can be written as 

[𝑎0(𝑥)𝐷𝑛 + 𝑎1(𝑥)𝐷𝑛−1 + 𝑎2(𝑥)𝐷𝑛−2 + ⋯ + 𝑎𝑛−1(𝑥)𝐷 + 𝑎𝑛(𝑥)]𝑦
= 0 ∀ 𝑥 ∈ [𝑎, 𝑏] 

Particular Case: 
The second order homogeneous linear differential equation is 
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𝑎0(𝑥)𝑦′′ + 𝑎1(𝑥)𝑦′ + 𝑎2(𝑥)𝑦 = 0  

where 𝑎0(𝑥) ≠ 0, 𝑎0(𝑥), 𝑎1(𝑥), 𝑎2(𝑥) all are continuous on the given 

domain. 

 NON-HOMOGENEOUS LINEAR DIFFERENTIAL 

EQUATION:- 
The linear differential equation (1) is said to be non-homogeneous linear 

differential equation of order n if  𝑄(𝑥)is not identically zero in the 

given domain. 

 LINEAR DIFFERENTIAL EQUATION WITH 

CONSTANT COEFFICIENT:- 
The linear differential equation (1) said to be linear differential equation 

with constant coefficient of order 𝑛 if all the coefficient 

𝑎0(𝑥), 𝑎1(𝑥), 𝑎2(𝑥), … , 𝑎𝑛(𝑥) of the given differential equation are 

constant. 

 LINEAR DIFFERENTIAL EQUATION WITH 

VARIABLE COEFFICIENT:- 
The linear differential equation (1) is said to be linear differential equation 

with variable coefficient if atleast one of the coefficients of the differential 

equation is not constant. 

EXAMPLE1:2
𝑑2𝑦

𝑑𝑥2 − 5
𝑑𝑦

𝑑𝑥
+ 3𝑦 = 0 is second order linear homogenous 

differential equation with constant coefficients. 

EXAMPLE2:𝑥2 𝑑4𝑦

𝑑𝑥4 + 𝑥2(𝑥 − 2)
𝑑𝑦

𝑑𝑥
+ (𝑥 − 2)𝑦 = 0 is second order 

linear homogenous differential equation with variable coefficients. 

EXAMPLE3:
𝑑2𝑦

𝑑𝑥2 + 𝑥
𝑑𝑦

𝑑𝑥
+ (1 − 𝑥2)𝑦 = sin 𝑥 is second order linear 

non-homogenous differential equation with variable coefficients. 

 

3.5.2 SOLUTION OF LINEAR DIFFERENTIAL 

EQUATION WITH CONSTANT COEFFICIENT:- 

The linear differential equation with constant coefficient of order 𝑛 is  

𝑎0

𝑑𝑛𝑦

𝑑𝑥𝑛
+ 𝑎1

𝑑𝑛−1𝑦

𝑑𝑥𝑛−1
+ 𝑎2

𝑑𝑛−2𝑦

𝑑𝑥𝑛−2
+ ⋯ + 𝑎𝑛−1

𝑑𝑦

𝑑𝑥
+ 𝑎𝑛𝑦 = 𝑄(𝑥) 

or, 

 [𝑎0𝐷𝑛 + 𝑎1𝐷𝑛−1 + 𝑎2𝐷𝑛−2 + ⋯ + 𝑎𝑛−1𝐷 + 𝑎𝑛]𝑦 = 𝑄(𝑥)    …(1) 

where 𝑎0, ≠ 0,𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑛 all are constant. 

The general form of (1) can be written as 

[𝐷𝑛 + 𝑘1𝐷𝑛−1 + ⋯ + 𝑘𝑛]𝑦 = 𝑄(𝑥) 

Where 𝑓(𝐷) = 𝐷𝑛 + 𝑘1𝐷𝑛−1 + ⋯ 𝑘𝑛 is a polynomial in 𝐷. 
Thus, the operator 𝐷 stands for the operations of differential and can be 

treated much the same as an algebraic quantity. 𝑖. 𝑒. , 𝑓(𝐷) can be 

factorized by ordinary roots of algebra and the factors may be taken in any 

order. 
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3.5.3 COMPLEMENTARY FUNCTION OF 

HOMOGENOUS LINEAR DIFFERENTIAL EQUATION:- 

 

Consider a homogenous linear differential equation of order 𝑛 is  
𝑑𝑛𝑦

𝑑𝑥𝑛 + 𝑘1
𝑑𝑛−1𝑦

𝑑𝑥𝑛−1 + 𝑘2
𝑑𝑛−2𝑦

𝑑𝑥𝑛−2 + ⋯ + 𝑘𝑛−1
𝑑𝑦

𝑑𝑥
+ 𝑘𝑛𝑦 = 0 …(1) 

Where 𝑘1, 𝑘2, … , 𝑘𝑛 are constant. 

In terms of operator 𝐷 equation (1) can be re-written as 
[𝐷𝑛 + 𝑘1𝐷𝑛−1 + 𝑘2𝐷𝑛−2 + ⋯ + 𝑘𝑛]𝑦 = 0         …(2) 

Its symbolic coefficient equal to zero 

𝑖. 𝑒. , 𝐷𝑛 + 𝑘1𝐷𝑛−1 + 𝑘2𝐷𝑛−2 + ⋯ + 𝑘𝑛 = 0       …(3) 

is called the auxiliary equation. 

Since the auxiliary equation is of degree 𝑛 so, by fundamental theorem of 

algebra 𝑚1, 𝑚2, … , 𝑚𝑛 be its 𝑛 roots. 

Now, we have different cases arise: 

CASE I: 
If all the roots of the auxiliary equation be real and distinct, then equation 

(3) is equivalent to 

[(𝐷 − 𝑚1)(𝐷 − 𝑚2) … (𝐷 − 𝑚𝑛)]𝑦 = 0      …(4) 

Since the factors in equation (4) can be taken in any order, so it will be 

satisfied by the solution of (𝐷 − 𝑚𝑟)𝑦 = 0 where 1 ≤ 𝑟 ≤ 𝑛. 
Now for (𝐷 − 𝑚𝑟)𝑦 = 0 

 ⟹
𝑑𝑦

𝑑𝑥
− 𝑚𝑟𝑦 = 0 

 ⟹
𝑑𝑦

𝑦
= 𝑚𝑟𝑑𝑥 

⟹ 𝑦 = 𝑐𝑟𝑒𝑚𝑟𝑥 where 1 ≤ 𝑟 ≤ 𝑛. 
⟹ 𝑦 = 𝑐𝑟𝑒𝑚𝑟𝑥 satisfies (𝐷 − 𝑚𝑟)𝑦 = 0. 
⟹ 𝑦 = 𝑐𝑟𝑒𝑚𝑟𝑥 satisfies [(𝐷 − 𝑚1)(𝐷 − 𝑚2) … (𝐷 − 𝑚𝑛)]𝑦 = 0. 
So, 𝑦 = 𝑐𝑟𝑒𝑚𝑟𝑥 where 1 ≤ 𝑟 ≤ 𝑛is solution of equation (4). 

Thus, the complete solution of equation (4) is 

 𝑦 = 𝑐1𝑒𝑚1𝑥 + 𝑐2𝑒𝑚2𝑥 + ⋯+𝑐𝑛𝑒𝑚𝑛𝑥      or      𝑦 = ∑ 𝑐𝑟𝑒𝑚𝑟𝑥𝑛
𝑟=1  

 

CASE II: 
If two roots of equation (4) are equal [𝑖. 𝑒. , 𝑚1 = 𝑚2 = 𝑚 (say)] then 

equation (4) can be rewritten as  

(𝐷 − 𝑚)2(𝐷 − 𝑚3)(𝐷 − 𝑚4) … (𝐷 − 𝑚𝑛) = 0 

Now, for            (𝐷 − 𝑚)2𝑦 = 0   …(5) 

Put (𝐷 − 𝑚)𝑦 = 𝑧 

So, from equation (5) (𝐷 − 𝑚)𝑧 = 0 

 ⟹
𝑑𝑧

𝑑𝑥
− 𝑚𝑧 = 0 

 ⟹
𝑑𝑧

𝑧
= 𝑚𝑑𝑥 

  ⟹ 𝑧 = 𝑐1𝑒𝑚𝑥 

 ⟹ (𝐷 − 𝑚)𝑦 = 𝑐1𝑒𝑚𝑥  
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⟹
𝑑𝑦

𝑑𝑥
− 𝑚𝑦 = 𝑐1𝑒𝑚𝑥                  …(6) 

Equation (6) is linear differential equation of first order first degree. Its 

integrating factoris 𝑒−𝑚𝑥 

So, the solution of equation (6) is 

𝑦 ∙  𝑒−𝑚𝑥 = ∫[𝑐1𝑒𝑚𝑥 ∙  𝑒−𝑚𝑥]𝑑𝑥 + 𝐶 

⟹  𝑦 ∙  𝑒−𝑚𝑥 = 𝑐1𝑥 + 𝑐2 

⟹ 𝑦 = (𝑐1𝑥 + 𝑐2) 𝑒𝑚𝑥 

Therefore, with the help of case I the complete solution of equation (4) is 

given by 

𝑦 = (𝑐1𝑥 + 𝑐2)𝑒𝑚𝑥 + 𝑐3𝑒𝑚3𝑥 + ⋯ + 𝑐𝑛𝑒𝑚𝑛𝑥 

Particular Case: 
If the given auxiliary equation has three equal roots [𝑖. 𝑒. , 𝑚1 = 𝑚2 =
𝑚3 = 𝑚 (say)] then the complete solution is given as  

𝑦 = (𝑐1𝑥2 + 𝑐2𝑥 + 𝑐3)𝑒𝑚𝑥 + 𝑐4𝑒𝑚4𝑥 + ⋯ + 𝑐𝑛𝑒𝑚𝑛𝑥 

CASE III: 
When the auxiliary equation has complex roots. 

If one pair of roots of equation (4) be imaginary. 𝑖. 𝑒. , 𝑚1 = 𝛼 + 𝑖𝛽,  𝑚2 =
𝛼 − 𝑖𝛽 
Then with the help of case I the complete solution is given as  

𝑦 = 𝑐1𝑒(𝛼+𝑖𝛽)𝑥 + 𝑐2𝑒(𝛼−𝑖𝛽)𝑥 + 𝑐3𝑒𝑚3𝑥 + ⋯ + 𝑐𝑛𝑒𝑚𝑛𝑥 

  ⟹ 𝑦 = 𝑒𝛼𝑥[𝑐1𝑒𝑖𝛽𝑥 + 𝑐2𝑒−𝑖𝛽𝑥] + 𝑐3𝑒𝑚3𝑥 + ⋯ + 𝑐𝑛𝑒𝑚𝑛𝑥 

⟹ 𝑦 = 𝑒𝛼𝑥[𝑐1(cos 𝛽𝑥 + 𝑖 sin 𝛽𝑥) + 𝑐2(cos 𝛽𝑥 − 𝑖 sin 𝛽𝑥)] + 𝑐3𝑒𝑚3𝑥

+ ⋯ + 𝑐𝑛𝑒𝑚𝑛𝑥 

 ⟹ 𝑦 = 𝑒𝛼𝑥[𝐶1 cos 𝛽𝑥 + 𝐶2 sin 𝛽𝑥] + 𝑐3𝑒𝑚3𝑥 + ⋯ + 𝑐𝑛𝑒𝑚𝑛𝑥 

where 𝐶1 = 𝑐1 + 𝑐2 and𝐶2 = 𝑖(𝑐1 − 𝑐2) 

Particular Case: 
If the given auxiliary equation has two pairs of imaginary roots be equal. 

𝑖. 𝑒. , 𝑚1 = 𝑚2 = 𝛼 + 𝑖𝛽and 𝑚3 = 𝑚4 = 𝛼 − 𝑖𝛽 

Then the complete solution is given as  

𝑦 = 𝑒𝛼𝑥[(𝐶1𝑥 + 𝐶2) cos 𝛽𝑥 + (𝐶3𝑥 + 𝐶4) sin 𝛽𝑥] + 𝑐5𝑒𝑚5𝑥 + ⋯
+ 𝑐𝑛𝑒𝑚𝑛𝑥 

CASE IV: 
When the auxiliary equation has surd roots. If one pair of roots of 

auxiliary equation be surds.𝑖. 𝑒. , 𝑚1 = 𝛼 + √𝛽, 𝑚2 = 𝛼 − √𝛽 

Then the complete solution is given as  

𝑦 = 𝑐1𝑒(𝛼+√𝛽)𝑥 + 𝑐2𝑒(𝛼−√𝛽)𝑥 + 𝑐3𝑒𝑚3𝑥 + ⋯+𝑐𝑛𝑒𝑚𝑛𝑥 

 ⟹ 𝑦 = 𝑒𝛼𝑥[𝑐1𝑒√𝛽𝑥 + 𝑐1𝑒−√𝛽𝑥] + 𝑐3𝑒𝑚3𝑥 + ⋯ + 𝑐𝑛𝑒𝑚𝑛𝑥  

⟹ 𝑦 = 𝑒𝛼𝑥[𝑐1(cosh 𝑥√𝛽 + sinh 𝑥 √𝛽) + 𝑐2(cosh 𝑥√𝛽 − sinh 𝑥 √𝛽)]

+ ⋯ + 𝑐𝑛𝑒𝑚𝑛𝑥 

𝑦 = 𝑒𝛼𝑥[𝐶1 cosh 𝑥√𝛽 + 𝐶2 sinh 𝑥 √𝛽] + 𝑐3𝑒𝑚3𝑥 + ⋯ + 𝑐𝑛𝑒𝑚𝑛𝑥  

where 𝐶1 = 𝑐1 + 𝑐2 and 𝐶2 = 𝑐1 − 𝑐2 
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3.5.4 WORKING RULE FOR FINDING 

COMPLETE SOLUTION OF THE GIVEN 

HOMOGENOUS LINEAR DIFFERENTIAL 

EQUATION:- 

Consider the homogenous linear differential equation of order 𝑛 with 

constant coefficients is 

𝑑𝑛𝑦

𝑑𝑥𝑛 + 𝑘1
𝑑𝑛−1𝑦

𝑑𝑥𝑛−1 + 𝑘2
𝑑𝑛−2𝑦

𝑑𝑥𝑛−2 + ⋯ + 𝑘𝑛−1
𝑑𝑦

𝑑𝑥
+ 𝑘𝑛𝑦 = 0 …(1) 

Step I: Re-write the equation (1) in the symbolic form as  

[𝐷𝑛 + 𝑘1𝐷𝑛−1 + 𝑘2𝐷𝑛−2 + ⋯ + 𝑘𝑛]𝑦 = 0 

Step II: The auxiliary equation is 

                         𝐷𝑛 + 𝑘1𝐷𝑛−1 + 𝑘2𝐷𝑛−2 + ⋯ + 𝑘𝑛 = 0 

Step III: Find the roots of auxiliary equation. 

Step IV: Write down the complete solution with the help of the following 

table. 

 

 

S. 

No. 

Nature of roots of auxiliary 

equation 

Complementary Function 

1. If all the roots of auxiliary equation 

are real and distinct say, 

𝑚1, 𝑚2, 𝑚3, …  

𝑐1𝑒𝑚1𝑥 + 𝑐2𝑒𝑚2𝑥 + 𝑐3𝑒𝑚3𝑥

+ ⋯ 

2. If all the roots of auxiliary equation 

are real and two equal roots say, 

𝑚1, 𝑚2, 𝑚3, … where 𝑚1 = 𝑚2 =
𝑚 

(𝑐1𝑥 + 𝑐2)𝑒𝑚𝑥 + 𝑐3𝑒𝑚3𝑥

+ ⋯ 

3. If all the roots of auxiliary equation 

are real and three equal roots say, 

𝑚1, 𝑚2, 𝑚3, 𝑚4 … where 𝑚1 =
𝑚2 = 𝑚3 = 𝑚 

(𝑐1𝑥2 + 𝑐2𝑥 + 𝑐3)𝑒𝑚𝑥

+ 𝑐4𝑒𝑚4𝑥

+ ⋯ 

4. If auxiliary equation has one pair of 

imaginary roots say 𝛼 + 𝑖𝛽, 𝛼 −
𝑖𝛽,  𝑚3, … 

𝑒𝛼𝑥[𝐶1 cos 𝛽𝑥 + 𝐶2 sin 𝛽𝑥]
+ 𝑐3𝑒𝑚3𝑥

+ ⋯ 

5. If auxiliary equation have two pair 

of imaginary roots say, 𝛼 ± 𝑖𝛽, 𝛼 ±
𝑖𝛽,  𝑚5, … 

𝑒𝛼𝑥[(𝐶1𝑥 + 𝐶2) cos 𝛽𝑥
+ (𝐶3𝑥
+ 𝐶4) sin 𝛽𝑥]

+ 𝑐5𝑒𝑚5𝑥

+ ⋯ 

6. If auxiliary equation has one pair of 

surd roots say, 𝑚1 = 𝛼 +

√𝛽, 𝑚2 = 𝛼 − √𝛽,  𝑚3, … 

𝑒𝛼𝑥[𝐶1 cosh 𝑥√𝛽

+ 𝐶2 sinh 𝑥 √𝛽] + 𝑐3𝑒𝑚3𝑥

+ ⋯ 
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EXAMPLE1: Solve(𝐷3 + 𝐷2 + 4𝐷 + 4)𝑦 = 0 

SOLUTION: Here the given differential equation is (𝐷3 + 𝐷2 + 4𝐷 +
4)𝑦 = 0 

Its corresponding auxiliary equation is𝐷3 + 𝐷2 + 4𝐷 + 4 = 0  
𝑖. 𝑒. , (𝐷2 + 4)(𝐷 + 1) = 0 

 ⟹ 𝐷 = −1, ±2𝑖 
Hence the complete solution is  

𝑦 = 𝑐1𝑒−𝑥 + 𝑒0𝑥(𝑐2𝑐𝑜𝑠2𝑥 + 𝑐3𝑠𝑖𝑛2𝑥) 

 ⟹                           𝑦 = 𝑐1𝑒−𝑥 + 𝑐2𝑐𝑜𝑠2𝑥 + 𝑐3𝑠𝑖𝑛2𝑥 

EXAMPLE2: Solve 
𝑑4𝑥

𝑑𝑡4 + 4𝑥 = 0 

SOLUTION: Given equation in symbolic form is (𝐷4 + 4)𝑥 = 0 

Therefore, Auxiliary equation is 𝐷4 + 4 = 0 

Or,(𝐷4 + 4𝐷2 + 4) − 4𝐷2 = 0 

⟹ (𝐷2 + 2)2 − (2𝐷)2 = 0 

⟹ (𝐷2 + 2𝐷 + 2)(𝐷2 − 2𝐷 + 2) = 0 

Therefore, either 𝐷2 + 2𝐷 + 2 = 0 or 𝐷2 − 2𝐷 + 2 = 0 

⟹ 𝐷 =
−2±√(−4)

2
 and 𝐷 =

2±√(−4)

2
 

⟹  𝐷 = −1 ± 𝑖and𝐷 = 1 ± 𝑖 
Hence the required solution is 𝑥 = 𝑒−𝑡(𝑐1𝑐𝑜𝑠𝑡 + 𝑐2𝑠𝑖𝑛𝑡) + 𝑒𝑡(𝑐3𝑐𝑜𝑠𝑡 +
𝑐4𝑠𝑖𝑛𝑡) 
 

EXAMPLE3: Solve 
𝑑2𝑦

𝑑𝑥2 + (𝑎 + 𝑏)
𝑑𝑦

𝑑𝑥
+ 𝑎𝑏𝑦 = 0 

SOLUTION: Here the given differential equation is (𝐷2 + (𝑎 + 𝑏)𝐷 +
𝑎𝑏)𝑦 = 0 

The corresponding auxiliary equation is𝐷2 + (𝑎 + 𝑏)𝐷 + 𝑎𝑏 = 0 

⟹ (𝐷 + 𝑎)(𝐷 + 𝑏) = 0 

⟹ 𝐷 = −𝑎, −𝑏 

Hence the required solution is 𝑦 = 𝑐1𝑒−𝑎𝑥 + 𝑐2𝑒−𝑏𝑥 

EXAMPLE 4: Solve (𝐷2 − 4𝐷 + 1)𝑦 = 0 

SOLUTION: Here the given differential equation is (𝐷2 − 4𝐷 + 1)𝑦 =
0 
The corresponding auxiliary equation is𝐷2 − 4𝐷 + 1 = 0 

⟹ 𝐷 =
4 ± √(16 − 4)

2
 

⟹ 𝐷 = 2 ± √3 

Hence the required solution is 𝑦 = 2𝑐1𝑒(2+√3)𝑥 + 𝑐2𝑒(2−√3)𝑥 

⟹ 𝑦 = 𝑒2𝑥{𝑐1𝑒𝑥√3 + 𝑐2𝑒−𝑥√3} 

EXAMPLE 5: Solve  (𝐷3 − 2𝐷2 − 4𝐷 + 8)𝑦 = 0 

SOLUTION: Here the given differential equation is (𝐷3 − 2𝐷2 − 4𝐷 +
8)𝑦 = 0 

The corresponding auxiliary equation is𝐷3 − 2𝐷2 − 4𝐷 + 8 = 0 

⟹ 𝐷2(𝐷 − 2) − 4(𝐷 − 2) = 0 
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⟹ (𝐷 − 2)(𝐷2 − 4) = 0 

⟹ (𝐷 − 2)(𝐷 − 2)(𝐷 + 2) = 0 

⟹ 𝐷 = 2, 2, −2 

Therefore, the required solution is 𝑦 = (𝑐1 + 𝑐2𝑥)𝑒2𝑥 + 𝑐3𝑒−2𝑥 

EXAMPLE 6:Solve (𝐷4 − 7𝐷3 + 18𝐷2 − 20𝐷 + 8)𝑦 = 0 

SOLUTION: Here given differential equation is (𝐷4 − 7𝐷3 + 18𝐷2 −
20𝐷 + 8)𝑦 = 0 

The corresponding auxiliary equation is𝐷4 − 7𝐷3 + 18𝐷2 − 20𝐷 + 8 =
0 

⟹ 𝐷3(𝐷 − 1) − 6𝐷2(𝐷 − 1) + 12𝐷(𝐷 − 1) − 8(𝐷 − 1) = 0 

⟹ (𝐷 − 1)(𝐷3 − 6𝐷2 + 12𝐷 − 8) = 0 

⟹ (𝐷 − 1)[𝐷2(𝐷 − 2) − 4𝐷(𝐷 − 2) + 4(𝐷 − 2)] = 0 

⟹ (𝐷 − 1)(𝐷 − 2)(𝐷2 − 4𝐷 + 4) = 0 

⟹ (𝐷 − 1)(𝐷 − 2)(𝐷 − 2)2 = 0 

⟹ 𝐷 = 1, 2 (Thrice) 

Therefore, the required solution is 𝑦 = 𝑐1𝑒𝑥 + (𝑐2𝑥2 + 𝑐3𝑥 + 𝑐4)𝑒2𝑥 

EXAMPLE 7:Solve (𝐷4 + 4)𝑦 = 0 

SOLUTION: Here the given differential equation is (𝐷4 + 4)𝑦 = 0 

The corresponding auxiliary equation is𝐷4 + 4 = 0 

⟹ 𝐷4 = −4 

⟹ 𝐷2 = ±2𝑖 
⟹ 𝐷2 = 2𝑖and−2𝑖        

  (1) 

Or,𝐷 = ±√(2𝑖) 𝑎𝑛𝑑 ± √(−2𝑖) 

Let √(2𝑖) = 𝑎 + 𝑖𝑏 

Squaring both sides, we get 

2𝑖 = (𝑎2 − 𝑏2) + (2𝑎𝑏)𝑖 
Equating real and imaginary parts on both sides, we get  

𝑎2 − 𝑏2 = 0and2𝑎𝑏 = 2 𝑜𝑟 𝑎𝑏 = 1 

Therefore 𝑎2 − (
1

 𝑎2) = 0 since 𝑏 =
1

𝑎
 

Or 𝑎4 − 1 = 0 or 𝑎4 = 1 

⟹ 𝑎 = ±1, ±𝑖 
 If 𝑎 = 1, we have from 𝑎𝑏 = 1, 𝑏 = 1 

Hence √(2𝑖) = 1 + 𝑖 

Similarly, we can prove that√(−2𝑖) = 1 − 𝑖 
Therefore from (1), the roots of the auxiliary equation are  

±(1 + 𝑖)and±(1 − 𝑖) 

𝑖. 𝑒. , 1 ± 𝑖 𝑎𝑛𝑑 − 1 ± 𝑖 
Therefore, the required solution is 

𝑦 = 𝑒𝑥[𝑐1𝑐𝑜𝑠𝑥 + 𝑐2𝑠𝑖𝑛𝑥] + 𝑒−𝑥[𝑐3𝑐𝑜𝑠𝑥 + 𝑐4𝑠𝑖𝑛𝑥] 
EXAMPLE 8:Solve (𝐷4 + 𝐷2 + 1)𝑦 = 0 

SOLUTION: Here the given differential equation is 

                                  (𝐷4 + 𝐷2 + 1)𝑦 = 0 
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The corresponding auxiliary equation is 

                  𝐷4 + 𝐷2 + 1 = 0     …(1) 

⟹ (𝐷4 + 𝐷2 + 1) − 𝐷2 = 0 

⟹ (𝐷2 + 1)2 − 𝐷2 = 0 

⟹ (𝐷2 + 1 + 𝐷)(𝐷2 + 1 − 𝐷) = 0 

Now 𝐷2 + 𝐷 + 1 = 0 gives 𝐷 =
1

2
[−1 ± √(1 − 4)] 

⟹ 𝐷 =
1

2
[−1 ± 𝑖√3] 

Similarly, 𝐷2 − 𝐷 + 1 = 0 gives 𝐷 =
1

2
[1 ± 𝑖√3] 

Therefore, the solution of auxiliary equation (1) is
1

2
[−1 ± 𝑖√3] ,

1

2
[1 ±

𝑖√3] 
Therefore, the required solution is 

𝑦 = 𝑒−𝑥 2⁄ [𝑐1𝑐𝑜𝑠 (
𝑥√3

2
) + 𝑐2𝑠𝑖𝑛 (

𝑥√3

2
)]

+ 𝑒𝑥 2⁄ [𝑐3𝑐𝑜𝑠 (
𝑥√3

2
) + 𝑐4𝑠𝑖𝑛 (

𝑥√3

2
)] 

EXAMPLE 9:Solve (𝐷6 − 1)𝑦 = 0 

SOLUTION: Here the given differential equation is (𝐷6 − 1)𝑦 = 0 

The corresponding auxiliary equation is𝐷6 − 1 = 0 

⟹ (𝐷6 − 1)(𝐷4 + 𝐷2 + 1) = 0 

⟹ (𝐷 − 1)(𝐷 + 1)(𝐷2 − 𝐷 + 1)(𝐷2 + 𝐷 + 1) = 0 

Its roots are 1, −1,
1

2
±

1

2
𝑖√3 and −

1

2
±

1

2
𝑖√3 

Therefore, the required solution is 

𝑦 = 𝑐1𝑒𝑥 + 𝑐2𝑒−𝑥 + 𝑒𝑥 2⁄ [𝑐3 cos (
1

2
𝑥√3) + 𝑐4 sin (

1

2
𝑥√3)]

+ 𝑒−𝑥 2⁄ [𝑐5 cos (
1

2
𝑥√3) + 𝑐6 sin (

1

2
𝑥√3)] 

 

SELF CHECK QUESTIONS-4 

(SCQ-1)Solve the following differential equations: 

i. (𝐷3 − 13𝐷 + 12)𝑦 = 0 

ii. (𝐷2 + 7𝐷 + 10)𝑦 = 0 

iii. (𝐷3 − 4𝐷2 + 5𝐷 − 2)𝑦 = 0 
 

3.5.5 INVERSE OPERATOR:- 
1

𝑓(𝐷)
𝑄(𝑥) is that function of 𝑥, not containing any arbitrary constant which 

when operated upon by 𝑓(𝐷)gives 𝑄(𝑥).  𝑖. 𝑒. , 𝑓(𝐷) [
1

𝑓(𝐷)
𝑄(𝑥)] = 𝑄(𝑥). 
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Hence 
1

𝑓(𝐷)
𝑄(𝑥) satisfies the equation 𝑓(𝐷)𝑦 = 𝑄(𝑥) and is therefore its 

particular integral. 

REMARK:𝑓(𝐷) and  
1

𝑓(𝐷)
 are inverse operators. 

 

3.5.6 SOME IMPORTANT RESULTS:- 

 

 
𝟏

𝑫
𝑸(𝒙) = ∫ 𝑸(𝒙) 𝒅𝒙 

PROOF: Let 
1

𝐷
𝑄(𝑥) = 𝑦      

 …(1) 

Operating both sides by 𝐷 

𝐷.
1

𝐷
𝑄(𝑥) = 𝐷 ∙ 𝑦 

⟹ 𝑄(𝑥) = 𝐷 ∙ 𝑦 

⟹ 𝑄(𝑥) =
𝑑𝑦

𝑑𝑥
 

Integrating both side with respect to 𝑥, we get 

𝑦 = ∫ 𝑄(𝑥) 𝑑𝑥, Since equation (1) does not contain any arbitrary constant. 

So, no constant of integration be added. 

Hence, 
1

𝐷
𝑄(𝑥) = ∫ 𝑄(𝑥) 𝑑𝑥 

 

 
𝟏

(𝑫−𝒂)
𝑸(𝒙) = 𝒆𝒂𝒙 ∫ 𝑸(𝒙) ∙  𝒆−𝒂𝒙𝒅𝒙 

PROOF: Let 
1

(𝐷−𝑎)
𝑄(𝑥) = 𝑦   …(1) 

Operating both sides by (𝐷 − 𝑎) 

(𝐷 − 𝑎) ∙
1

(𝐷 − 𝑎)
𝑄(𝑥) = (𝐷 − 𝑎) ∙ 𝑦 

⟹ 𝑄(𝑥) = (𝐷 − 𝑎) ∙ 𝑦 

⟹ 𝑄(𝑥) =
𝑑𝑦

𝑑𝑥
− 𝑎𝑦 

Which is first order, first degree linear differential equation. Its integrating 

factor is 𝑒−𝑎𝑥 . 
So, its solution is 

𝑦𝑒−𝑎𝑥 = ∫ 𝑄(𝑥) ∙ 𝑒−𝑎𝑥𝑑𝑥, Since equation (1) does not contain any 

arbitrary constant. So, no constant of integration be added. 

𝑦 = 𝑒𝑎𝑥 ∫ 𝑄(𝑥) ∙ 𝑒−𝑎𝑥𝑑𝑥 

Hence, 
1

(𝐷−𝑎)
𝑄(𝑥) = 𝑒𝑎𝑥 ∫ 𝑄(𝑥) ∙ 𝑒−𝑎𝑥𝑑𝑥 

 

3.5.7 RULES FOR FINDING THE PARTICULAR 

INTEGRAL OF NON-HOMOGENOUS LINEAR 
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DIFFERENTIAL EQUATION WITH CONSTANT 

COEFFICIENTS:- 

 

General method for finding particular integral with constant 

coefficient: 
Consider the non-homogenous linear differential equation of order 𝑛. 

                     
𝑑𝑛𝑦

𝑑𝑥𝑛 + 𝑘1
𝑑𝑛−1𝑦

𝑑𝑥𝑛−1 + 𝑘2
𝑑𝑛−2𝑦

𝑑𝑥𝑛−2 + ⋯ + 𝑘𝑛𝑦 = 𝑄(𝑥)  …(1) 

In terms of operator 𝐷 equation (1) can be rewritten as  
(𝐷𝑛 + 𝑘1𝐷𝑛−1 + 𝑘2𝐷𝑛−2 + ⋯ + 𝑘𝑛)𝑦 = 𝑄(𝑥) 

Therefore, particular integral is 
1

𝐷𝑛 + 𝑘1𝐷𝑛−1 + 𝑘2𝐷𝑛−2 + ⋯ + 𝑘𝑛
𝑄(𝑥) 

or, 
1

(𝐷−𝛼1)(𝐷−𝛼2)…(𝐷−𝛼𝑛)
𝑄(𝑥) 

Where 𝛼1, 𝛼2, 𝛼3, … , 𝛼𝑛be n roots of 𝐷𝑛 + 𝑘1𝐷𝑛−1 + 𝑘2𝐷𝑛−2 + ⋯ + 𝑘𝑛 

Therefore  
1

(𝐷−𝛼1)(𝐷−𝛼2)…(𝐷−𝛼𝑛)
𝑄(𝑥) =

1

(𝐷−𝛼2)(𝐷−𝛼3)…(𝐷−𝛼𝑛)
[

1

(𝐷−𝛼1)
. 𝑄(𝑥)] 

=
1

(𝐷 − 𝛼2)(𝐷 − 𝛼3) … (𝐷 − 𝛼𝑛)
{

𝑒𝛼1𝑥

𝑄(𝑥)𝑒−𝛼1𝑥
 𝑑𝑥} 

 Repeat this process for each factor in same manner, we get the required 

particular integral. 

Some Particular Cases: 

CASE I: 
Consider (𝐷𝑛 + 𝑘1𝐷𝑛−1 + 𝑘2𝐷𝑛−2 + ⋯ + 𝑘𝑛)𝑦 = 𝑄(𝑥) 

When R.H.S. of equation (1) is of the form 𝑒𝑎𝑥 

𝑖. 𝑒. , 𝑄(𝑥) = 𝑒𝑎𝑥provided𝑓(𝑎) ≠ 0 

Since 𝐷𝑒𝑎𝑥 = 𝑎𝑒𝑎𝑥 

𝐷2𝑒𝑎𝑥 = 𝑎2𝑒𝑎𝑥 

In general, 𝐷𝑛𝑒𝑎𝑥 = 𝑎𝑛𝑒𝑎𝑥 

⟹ (𝐷𝑛 + 𝑘1𝐷𝑛−1 + 𝑘2𝐷𝑛−2 + ⋯ + 𝑘𝑛)𝑒𝑎𝑥

= (𝑎𝑛 + 𝑘1𝑎𝑛−1 + 𝑘2𝑎𝑛−2 + ⋯ + 𝑘𝑛)𝑒𝑎𝑥 

𝑖. 𝑒. , [𝑓(𝐷)𝑒𝑎𝑥] = [𝑓(𝑎)𝑒𝑎𝑥] 

Now, operating on both sides by 
1

𝑓(𝐷)
 ,we get 

1

𝑓(𝐷)
[𝑓(𝐷)]𝑒𝑎𝑥 =

1

𝑓(𝐷)
[𝑓(𝑎)]𝑒𝑎𝑥 

⟹ 𝑒𝑎𝑥 = 𝑓(𝑎).
1

𝑓(𝐷)
𝑒𝑎𝑥 

⟹
1

𝑓(𝐷)
𝑒𝑎𝑥 =

1

𝑓(𝑎)
𝑒𝑎𝑥 Provided 𝑓(𝑎) ≠ 0  …(1)        

Particular Case:  
In the above case if 𝑎 is simple root of auxiliary equation. 

𝑖. 𝑒. , 𝑎 is root of the auxiliary equation 𝑓(𝐷) = 0 
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⟹ (𝐷 − 𝑎)is factor of 𝑓(𝐷) 

⟹ 𝑓(𝐷) = (𝐷 − 𝑎)∅(𝐷) 

Where∅(𝑎) ≠ 0 

Now, P.I. =
1

𝑓(𝐷)
𝑒𝑎𝑥 =

1

(𝐷−𝑎)

1

∅(𝐷)
𝑒𝑎𝑥 

 =  
1

(𝐷−𝑎)

1

∅(𝑎)
𝑒𝑎𝑥     

 {by (1)} 

 =
1

∅(𝑎)

1

(𝐷−𝑎)
𝑒𝑎𝑥 

 =
1

∅(𝑎)
𝑒𝑎𝑥 ∫ 𝑒𝑎𝑥  𝑒−𝑎𝑥 𝑑𝑥 

 =
1

∅(𝑎)
𝑒𝑎𝑥 ∫ 𝑑𝑥 

 = 𝑥
1

∅(𝑎)
𝑒𝑎𝑥 

Therefore  
1

𝑓(𝐷)
𝑒𝑎𝑥 =  𝑥

1

∅(𝑎)
𝑒𝑎𝑥 

Or,
1

𝑓(𝐷)
𝑒𝑎𝑥 =  𝑥

1

𝑓′(𝑎)
𝑒𝑎𝑥 provided 𝑓′(𝑎) ≠ 0 

Similarly, if 𝑎 is root of auxiliary equation of order two, then  
1

𝑓(𝐷)
𝑒𝑎𝑥 =  𝑥2 1

𝑓′′(𝑎)
𝑒𝑎𝑥 provided 𝑓′′(𝑎) ≠ 0 

and so on. 

CASE II: 
When the R.H.S. of auxiliary equation is of the form sin(𝑎𝑥 + 𝑏) or  

cos(𝑎𝑥 + 𝑏),provided 𝑓( −𝑎2) ≠ 0. 

Since 𝐷 sin(𝑎𝑥 + 𝑏) = 𝑎 cos(𝑎𝑥 + 𝑏) 

⟹ 𝐷2 sin(𝑎𝑥 + 𝑏) = −𝑎2 sin(𝑎𝑥 + 𝑏) 

⟹ 𝐷3 sin(𝑎𝑥 + 𝑏) = −𝑎3 cos(𝑎𝑥 + 𝑏) 

⟹ 𝐷4 sin(𝑎𝑥 + 𝑏) = 𝑎4 sin(𝑎𝑥 + 𝑏) 
In general, 

(𝐷2)𝑘 sin(𝑎𝑥 + 𝑏) = (−𝑎2)𝑘 sin(𝑎𝑥 + 𝑏) 

⟹ 𝑓(𝐷2) sin(𝑎𝑥 + 𝑏) = 𝑓(−𝑎2) sin(𝑎𝑥 + 𝑏) 

Operating both sides by 
1

𝑓(𝐷2)
 

1

𝑓(𝐷2)
𝑓(𝐷2) sin(𝑎𝑥 + 𝑏) =

1

𝑓(𝐷2)
𝑓(−𝑎2) sin(𝑎𝑥 + 𝑏) 

⟹ sin(𝑎𝑥 + 𝑏) = 𝑓(−𝑎2)
1

𝑓(𝐷2)
sin(𝑎𝑥 + 𝑏) 

⟹
1

𝑓(𝐷2)
sin(𝑎𝑥 + 𝑏) =

1

𝑓(−𝑎2)
sin(𝑎𝑥 + 𝑏) Provided 𝑓(−𝑎2) ≠ 0  

  (4) 

Particular Case: 
If 𝑓(−𝑎2) = 0 

By Euler’s formula  

cos(𝑎𝑥 + 𝑏) + 𝑖 sin(𝑎𝑥 + 𝑏) = 𝑒𝑖(𝑎𝑥+𝑏)  
Therefore,        

1

𝑓(𝐷2)
sin(𝑎𝑥 + 𝑏) = Imaginary Part of 

1

𝑓(𝐷2)
𝑒𝑖(𝑎𝑥+𝑏) since 𝑓(−𝑎2) = 0 
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⟹
1

𝑓(𝐷2)
sin(𝑎𝑥 + 𝑏) =Imaginary Part of of 𝑥

1

𝑓′(𝐷2)
𝑒𝑖(𝑎𝑥+𝑏) where 

𝐷2 = −𝑎2 

Therefore,
1

𝑓(𝐷2)
sin(𝑎𝑥 + 𝑏) =  𝑥

1

𝑓′(−𝑎2)
sin(𝑎𝑥 + 𝑏)provided 𝑓′(−𝑎2)  ≠

0 

If  𝑓′(−𝑎2) = 0 

Then 
1

𝑓(𝐷2)
sin(𝑎𝑥 + 𝑏) = 𝑥2 1

𝑓′′(−𝑎2)
sin(𝑎𝑥 + 𝑏)provided 𝑓′′(−𝑎2)  ≠ 0 

and so on. 

Similarly, 
1

𝑓(𝐷2)
cos(𝑎𝑥 + 𝑏) = 

1

𝑓(−𝑎2)
cos(𝑎𝑥 + 𝑏)provided𝑓(−𝑎2) ≠ 0 

If 𝑓(−𝑎2) = 0 , 
1

𝑓(𝐷2)
cos(𝑎𝑥 + 𝑏) = 𝑥

1

𝑓′(−𝑎2)
cos(𝑎𝑥 + 𝑏)provided  

𝑓′(−𝑎2)  ≠ 0 

If 𝑓′(−𝑎2) = 0,  

Then  
1

𝑓(𝐷2)
cos(𝑎𝑥 + 𝑏) = 𝑥2 1

𝑓′′(−𝑎2)
cos(𝑎𝑥 + 𝑏)provided  𝑓′′(−𝑎2)  ≠

0 and so on. 

CASE III:When 𝑄(𝑥) = 𝑥𝑚 

P.I.  =
1

𝑓(𝐷)
𝑥𝑚 = [𝑓(𝐷)]−1𝑥𝑚 

Now expand [𝑓(𝐷)]−1 in ascending powers of 𝐷 as far as the term in 𝐷𝑚 

or operate on 𝑥𝑚 term by term. 

Since the (𝑚 + 1)𝑡ℎare higher order derivatives of 𝑥𝑚 are zero. We need 

not be considered terms beyond𝐷𝑚. 

CASE IV: When 𝑄(𝑥) = 𝑒𝛼𝑥𝑊 when 𝑊 being a function of 𝑥. 

Let 𝑉 be any function of 𝑥. 
Since 𝐷(𝑒𝛼𝑥𝑉) = 𝑒𝛼𝑥𝐷𝑉 + 𝛼𝑒𝛼𝑥𝑉 

                           = 𝑒𝛼𝑥(𝐷 + 𝛼)𝑉 

Again, 𝐷2(𝑒𝛼𝑥𝑉) = 𝑒𝛼𝑥𝐷2𝑉 + 2𝛼𝑒𝛼𝑥𝐷𝑉 + 𝛼2𝑒𝛼𝑥𝑉 

                  = 𝑒𝛼𝑥(𝐷 + 𝛼)2𝑉 

In general, 𝐷𝑛(𝑒𝛼𝑥𝑉) = 𝑒𝛼𝑥(𝐷 + 𝛼)𝑛𝑉 

Therefore 𝑓(𝐷)(𝑒𝛼𝑥𝑉) = 𝑒𝛼𝑥𝑓(𝐷 + 𝛼)𝑉 

Operating both sides by 
1

𝑓(𝐷)
 

1

𝑓(𝐷)
𝑓(𝐷)(𝑒𝛼𝑥𝑉) =

1

𝑓(𝐷)
[𝑒𝛼𝑥𝑓(𝐷 + 𝛼)]𝑉 

⟹ 𝑒𝛼𝑥𝑉 =
1

𝑓(𝐷)
[𝑒𝛼𝑥𝑓(𝐷 + 𝛼)]𝑉 

Now put 𝑓(𝐷 + 𝛼)𝑉 = 𝑊 

𝑉 =
1

𝑓(𝐷+𝛼)
𝑊, so that 

𝑒𝛼𝑥
1

𝑓(𝐷 + 𝛼)
𝑊 =

1

𝑓(𝐷)
(𝑒𝛼𝑥𝑊) 

⟹
1

𝑓(𝐷)
(𝑒𝛼𝑥𝑊) = 𝑒𝛼𝑥

1

𝑓(𝐷 + 𝛼)
𝑊 

CASE V: When 𝑄(𝑥) is any other function of 𝑥 of the above form. 
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Then           P.I. =
1

𝑓(𝐷)
𝑄(𝑥) =

1

(𝐷−𝑚1)(𝐷−𝑚2)…(𝐷−𝑚𝑛)
𝑄(𝑥) 

Resolving into partial fractions, we get 
1

(𝐷 − 𝑚1)(𝐷 − 𝑚2) … (𝐷 − 𝑚𝑛)
𝑄(𝑥)

= [
𝐴1

(𝐷 − 𝑚1)
+

𝐴2

(𝐷 − 𝑚2)
+ ⋯

𝐴𝑛

(𝐷 − 𝑚𝑛)
] 𝑄(𝑥) 

or, 
1

(𝐷−𝑚1)(𝐷−𝑚2)…(𝐷−𝑚𝑛)
𝑄(𝑥) = 𝐴1

1

(𝐷−𝑚1)
𝑄(𝑥) + 𝐴2

1

(𝐷−𝑚2)
𝑄(𝑥) + ⋯ +

𝐴𝑛
1

(𝐷−𝑚𝑛)
𝑄(𝑥) 

Hence particular integral is given by 

P.I.= 𝐴1𝑒𝑚1𝑥 ∫ 𝑄(𝑥)𝑒−𝑚1𝑥𝑑𝑥 + 𝐴2𝑒𝑚2𝑥 ∫ 𝑄(𝑥)𝑒−𝑚2𝑥𝑑𝑥 + ⋯ +
𝐴𝑛𝑒𝑚𝑛𝑥 ∫ 𝑄(𝑥)𝑒−𝑚𝑛𝑥𝑑𝑥 

 

3.5.8 WORKING RULE TO SOLVE THE NON-

HOMOGENOUS LINEAR DIFFERENTIAL EQUATION 

WITH CONSTANT COEFFICIENTS:- 

Consider the non-homogenous linear differential equation with constant 

coefficient of order 𝑛 is 

𝑑𝑛𝑦

𝑑𝑥𝑛 + 𝑘1
𝑑𝑛−1𝑦

𝑑𝑥𝑛−1 + 𝑘2
𝑑𝑛−2𝑦

𝑑𝑥𝑛−2 + ⋯ + 𝑘𝑛𝑦 = 𝑄(𝑥)  …(1) 

Equation (1) can be rewritten in terms of operator 𝐷 as 
(𝐷𝑛 + 𝑘1𝐷𝑛−1 + 𝑘2𝐷𝑛−2 + ⋯ + 𝑘𝑛)𝑦 = 𝑄(𝑥) 

StepI: Find the complementary function for its homogenous part(Dn +
k1Dn−1 + k2Dn−2 + ⋯ + kn)𝑦 = 0with the help of following table. 

 

 

S. 

No. 

Nature of roots of auxiliary 

equation 

Complementary Function 

1. If all the roots of auxiliary equation 

are real and distinct say, 

𝑚1, 𝑚2, 𝑚3, …  

𝑐1𝑒𝑚1𝑥 + 𝑐2𝑒𝑚2𝑥 + 𝑐3𝑒𝑚3𝑥

+ ⋯ 

2. If all the roots of auxiliary equation 

are real and two equal roots say, 

𝑚1, 𝑚2, 𝑚3, … where 𝑚1 = 𝑚2 = 𝑚 

(𝑐1𝑥 + 𝑐2)𝑒𝑚𝑥 + 𝑐3𝑒𝑚3𝑥

+ ⋯ 

3. If all the roots of auxiliary equation 

are real and three equal roots say, 

𝑚1, 𝑚2, 𝑚3, 𝑚4 … where 𝑚1 =
𝑚2 = 𝑚3 = 𝑚 

(𝑐1𝑥2 + 𝑐2𝑥 + 𝑐3)𝑒𝑚𝑥

+ 𝑐4𝑒𝑚4𝑥 + ⋯ 

4. If auxiliary equation has one pair of 

imaginary roots say 𝛼 + 𝑖𝛽, 𝛼 −
𝑖𝛽,  𝑚3, … 

𝑒𝛼𝑥[𝐶1 cos 𝛽𝑥 + 𝐶2 sin 𝛽𝑥]
+ 𝑐3𝑒𝑚3𝑥 + ⋯ 
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5. If auxiliary equation have two pair of 

imaginary roots say, 𝛼 ± 𝑖𝛽, 𝛼 ±
𝑖𝛽,  𝑚5, … 

𝑒𝛼𝑥[(𝐶1𝑥 + 𝐶2) cos 𝛽𝑥
+ (𝐶3𝑥
+ 𝐶4) sin 𝛽𝑥]

+ 𝑐5𝑒𝑚5𝑥 + ⋯ 

6. If auxiliary equation has one pair of 

surd roots say, 𝑚1 = 𝛼 + √𝛽, 𝑚2 =

𝛼 − √𝛽,  𝑚3, … 

𝑒𝛼𝑥[𝐶1 cosh 𝑥√𝛽

+ 𝐶2 sinh 𝑥 √𝛽] + 𝑐3𝑒𝑚3𝑥

+ ⋯ 

 

StepII:Find the particular integral by using any of the above form. 

StepIII:The general solution of equation (1) is given by C.F.+P.I 

 

SOLVED EXAMPLES 
EXAMPLE1: Solve (𝐷2 − 7𝐷 + 6)𝑦 = 𝑒2𝑥 , given that 𝑦 = 0 when 𝑥 =
0 

SOLUTION:-The given differential equation is (𝐷2 − 7𝐷 + 6)𝑦 = 𝑒2𝑥 

Its auxiliary equation is 𝐷2 − 7𝐷 + 6 = 0 

⟹ 𝐷 = 1, 6 

Therefore,𝐶. 𝐹. = 𝑐1𝑒𝑥 + 𝑐2𝑒6𝑥 , where 𝑐1 and 𝑐2 are arbitrary constants. 

Now 𝑃. 𝐼. =
1

𝐷2−7𝐷+6
𝑒2𝑥 

⟹ 𝑃. 𝐼. =
1

(2)2−7(2)+6
𝑒2𝑥 = −

1

4
𝑒2𝑥   …(1) 

Given that 𝑦 = 0 when 𝑥 = 0 

Therefore from (1),  0 = 𝑐1𝑒0 + 𝑐2𝑒0 −
1

4
𝑒0 

Or,𝑐2 =
1

4
− 𝑐1 

Hence from (1) the required solution is  

𝑦 = 𝑐1𝑒𝑥 + (
1

4
− 𝑐1) 𝑒6𝑥 −

1

4
𝑒2𝑥 

⟹ 𝑦 = 𝑐1(𝑒𝑥 − 𝑒6𝑥) +
1

4
(𝑒6𝑥 − 𝑒2𝑥) 

⟹ 𝑦 = 𝑐1(𝑒𝑥 − 𝑒6𝑥) +
1

4
𝑒2𝑥(𝑒4𝑥 − 1) 

EXAMPLE2:  Solve 𝐷2(𝐷 + 1)2(𝐷2 + 𝐷 + 1)2𝑦 = 𝑒𝑥 

SOLUTION:- Here the given differential equation is  

𝐷2(𝐷 + 1)2(𝐷2 + 𝐷 + 1)2𝑦 = 𝑒𝑥 

Its auxiliary equation is𝐷2(𝐷 + 1)2(𝐷2 + 𝐷 + 1)2𝑦 = 0 

The roots are0, 0, −1, −1,
1

2
[−1 ± 𝑖√3],   

1

2
[−1 ± 𝑖√3] 

𝑖. 𝑒. , 0, −1,
1

2
[−1 ± 𝑖√3]twice each.  

Therefore, 
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𝐶. 𝐹. = (𝑐1𝑥 + 𝑐2)𝑒0𝑥 + (𝑐3𝑥 + 𝑐4)𝑒−𝑥

+ 𝑒−𝑥 2⁄ [(𝑐5𝑥 + 𝑐6)𝑐𝑜𝑠 (
1

2
√3𝑥)

+ (𝑐7𝑥 + 𝑐8)𝑠𝑖𝑛 (
1

2
√3𝑥)] 

And,𝑃. 𝐼. =  
1

𝐷2(𝐷+1)2(𝐷2+𝐷+1)2 𝑒𝑥 

𝑃. 𝐼. =  
1

12(1 + 1)2(12 + 1 + 1)2
𝑒𝑥 =  

1

36
𝑒𝑥 

Therefore, required solution is  

𝑦 = 𝐶. 𝐹. +𝑃. 𝐼.,where𝐶. 𝐹. and 𝑃. 𝐼. are given above. 

EXAMPLE3: Solve (𝐷2 − 𝐷 − 2)𝑦 = 𝑠𝑖𝑛2𝑥 

SOLUTION:- Here the given differential equation is  

(𝐷2 − 𝐷 − 2)𝑦 = 𝑠𝑖𝑛2𝑥 

Its auxiliary equation is𝐷2 − 𝐷 − 2 = 0, which gives  

𝐷 =
1

2
[1 ± √(1 + 8)] 

⟹ 𝐷 =
1

2
[1 ± 3] 

⟹ 𝐷 = 2, −1 

Therefore, 𝐶. 𝐹. = 𝑐1𝑒2𝑥 + 𝑐2𝑒−𝑥 

And,𝑃. 𝐼. =  
1

𝐷2−𝐷−2
𝑠𝑖𝑛2𝑥 

⟹ 𝑃. 𝐼. =  
1

−22 − 𝐷 − 2
𝑠𝑖𝑛2𝑥 

⟹ 𝑃. 𝐼. = − 
1

(𝐷 + 6)
𝑠𝑖𝑛2𝑥 

⟹ 𝑃. 𝐼. = − 
(𝐷 − 6)

(𝐷 − 6)(𝐷 + 6)
𝑠𝑖𝑛2𝑥 

⟹ 𝑃. 𝐼. = − 
(𝐷 − 6)

(𝐷2 − 36)
𝑠𝑖𝑛2𝑥 

⟹ 𝑃. 𝐼. = − 
(𝐷 − 6)

(22 − 36)
𝑠𝑖𝑛2𝑥 

⟹ 𝑃. 𝐼. =
1

40
[𝐷(𝑠𝑖𝑛2𝑥) − 6(𝑠𝑖𝑛2𝑥)] 

⟹ 𝑃. 𝐼. =
1

40
[2𝑐𝑜𝑠2𝑥 − 6𝑠𝑖𝑛2𝑥] 

⟹ 𝑃. 𝐼. =
1

20
[𝑐𝑜𝑠2𝑥 − 3𝑠𝑖𝑛2𝑥] 

Hence the required solution is 

𝑦 = 𝐶. 𝐹. +𝑃. 𝐼.  

𝑦 = 𝑐1𝑒2𝑥 + 𝑐2𝑒−𝑥 +
1

20
[𝑐𝑜𝑠2𝑥 − 3𝑠𝑖𝑛2𝑥] 

EXAMPLE4:  Solve (𝐷2 − 𝐷 − 8)𝑦 = 2𝑠𝑖𝑛2𝑥 

SOLUTION:- Here the given differential equation is 

                              (𝐷2 − 𝐷 − 8)𝑦 = 2𝑠𝑖𝑛2𝑥 
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Its auxiliary equation is𝐷2 − 𝐷 − 8 = 0 

⟹ 𝐷 =
1

2
[1 ± √(1 + 32)] 

⟹ 𝐷 =
1

2
[1 ± √(33)] 

Therefore 𝐶. 𝐹. = 𝑒𝑥 2⁄ [𝑐1𝑒−√33𝑥 2⁄ + 𝑐2𝑒√33𝑥 2⁄ ]    

  (1) 

And,𝑃. 𝐼. =  
1

𝐷2−𝐷−8
2𝑠𝑖𝑛2𝑥 

⟹ 𝑃. 𝐼. =  
1

𝐷2 − 𝐷 − 8
(1 − 𝑐𝑜𝑠2𝑥) 

⟹ 𝑃. 𝐼. =  
1

𝐷2 − 𝐷 − 8
(𝑒0𝑥) −  

1

𝐷2 − 𝐷 − 8
𝑐𝑜𝑠2𝑥 

⟹ 𝑃. 𝐼. =  
1

02 − 0 − 8
(𝑒0𝑥) −  

1

−22 − 𝐷 − 8
𝑐𝑜𝑠2𝑥 

⟹ 𝑃. 𝐼. = −
1

8
(1) −

1

(𝐷 + 12)
.
(𝐷 − 12)

(𝐷 − 12)
𝑐𝑜𝑠2𝑥 

⟹ 𝑃. 𝐼. = −
1

8
−

(𝐷 − 12)

(𝐷2 − 144)
𝑐𝑜𝑠2𝑥 

⟹ 𝑃. 𝐼. = −
1

8
−

(𝐷 − 12)

(−22 − 144)
𝑐𝑜𝑠2𝑥 

⟹ 𝑃. 𝐼. = −
1

8
+

1

148
(−2𝑠𝑖𝑛2𝑥 − 12𝑐𝑜𝑠2𝑥)  …(2) 

Hence the required solution is 

𝑦 = 𝐶. 𝐹. +𝑃. 𝐼. , where 𝐶. 𝐹. and 𝑃. 𝐼. are given by (1) and (2) above. 

EXAMPLE5:  Solve (𝐷2 − 4)𝑦 = 𝑥2 

SOLUTION:- Here the given differential equation is 

                                            (𝐷2 − 4)𝑦 = 𝑥2 

Its auxiliary equation is 𝐷2 − 4 = 0  
⟹ 𝐷 = ±2 

Therefore 𝐶. 𝐹. =  𝑐1𝑒2𝑥 + 𝑐2𝑒−2𝑥  

And, 𝑃. 𝐼. =
1

𝐷2−4
𝑥2 

⟹ 𝑃. 𝐼. =
1

−4 (1 −
1
4 𝐷2)

𝑥2 

⟹ 𝑃. 𝐼. =
−1

  4
(1 −

1

4
𝐷2)

−1

𝑥2 

⟹ 𝑃. 𝐼. =
−1

  4
(1 +

1

4
𝐷2 + ⋯ ) 𝑥2 

⟹ 𝑃. 𝐼. =
−1

  4
[𝑥2 +

1

4
𝐷2(𝑥2)] 

⟹ 𝑃. 𝐼. =
−1

  4
[𝑥2 +

1

4
(2)] 

⟹ 𝑃. 𝐼. =
−1

  4
[𝑥2 +

1

2
] 

Therefore the required solution is 𝑦 = 𝐶. 𝐹. +𝑃. 𝐼. 
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𝑦 = 𝑐1𝑒2𝑥 + 𝑐2𝑒−2𝑥 −
1

  4
[𝑥2 +

1

2
] 

EXAMPLE6: Solve (𝐷2 − 4𝐷 + 4)𝑦 = 𝑥2 + 𝑒𝑥 + 𝑐𝑜𝑠2𝑥 

SOLUTION:- Here the given differential equation is  

(𝐷2 − 4𝐷 + 4)𝑦 = 𝑥2 + 𝑒𝑥 + 𝑐𝑜𝑠2𝑥 

Its auxiliary equation is 𝐷2 − 4𝐷 + 4 = 0 

⟹ (𝐷 − 2)2 = 0 

⟹ 𝐷 = 2, 2 

Therefore 𝐶. 𝐹. = (𝑐1𝑥 + 𝑐2)𝑒2𝑥 

Now, 𝑃. 𝐼. =
1

𝐷2−4𝐷+4
(𝑥2 + 𝑒𝑥 + 𝑐𝑜𝑠2𝑥) 

⟹ 𝑃. 𝐼. =
1

(𝐷 − 2)2
𝑥2 +

1

(𝐷 − 2)2
𝑒𝑥 +

1

(𝐷2 − 4𝐷 + 4)
𝑐𝑜𝑠2𝑥 

⟹ 𝑃. 𝐼. =
1

4 (1 −
1
2

𝐷)
2 𝑥2 +

1

(1 − 2)2
𝑒𝑥 +

1

(−22 − 4𝐷 + 4)
𝑐𝑜𝑠2𝑥 

⟹ 𝑃. 𝐼. =
1

4
(1 −

𝐷

2
)

−2

𝑥2 +
𝑒𝑥

1
−

1

4𝐷
𝑐𝑜𝑠2𝑥 

⟹ 𝑃. 𝐼. =
1

4
(1 + 𝐷 +

3

4
𝐷2 + ⋯ ) 𝑥2 + 𝑒𝑥 −

1

4
∫ 𝑐𝑜𝑠 2𝑥  𝑑𝑥 

⟹ 𝑃. 𝐼. =
1

4
[𝑥2 + 𝐷(𝑥2) +

3

4
𝐷2(𝑥2) + 𝑒𝑥 −

1

4
.
1

2
𝑠𝑖𝑛2𝑥] 

⟹ 𝑃. 𝐼. =
1

4
{𝑥2 + 2𝑥 + (3

2⁄ )} + 𝑒𝑥 − (1
8⁄ )𝑠𝑖𝑛2𝑥 

Therefore, the required solution is 𝑦 = 𝐶. 𝐹. +𝑃. 𝐼. 

⟹ 𝑦 = (𝑐1𝑥 + 𝑐2)𝑒2𝑥 +
1

4
{𝑥2 + 2𝑥 + (3

2⁄ )} + 𝑒𝑥 − (1
8⁄ )𝑠𝑖𝑛2𝑥 

EXAMPLE7: Solve (𝐷2 − 2𝐷 + 5)𝑦 = 𝑒2𝑥𝑠𝑖𝑛𝑥 

SOLUTION:- Here the given differential equation is 

                                   (𝐷2 − 2𝐷 + 5)𝑦 = 𝑒2𝑥𝑠𝑖𝑛𝑥 

Its auxiliary equation is 𝐷2 − 2𝐷 + 5 = 0 

⟹ 𝐷 =
1

2
[2 ± √(4 − 20)] 

⟹ 𝐷 = 1 ± 2𝑖 
⟹ 𝐶. 𝐹. =  𝑒𝑥(𝑐1𝑐𝑜𝑠2𝑥 + 𝑐2𝑠𝑖𝑛2𝑥) 

And, 𝑃. 𝐼. =
1

𝐷2−2𝐷+5
𝑒2𝑥𝑠𝑖𝑛𝑥 

⟹ 𝑃. 𝐼. = 𝑒2𝑥
1

{(𝐷 + 2)2 − 2(𝐷 + 2) + 5}
. 𝑠𝑖𝑛𝑥  

⟹ 𝑃. 𝐼. = 𝑒2𝑥
1

𝐷2 + 2𝐷 + 5
𝑠𝑖𝑛𝑥 

⟹ 𝑃. 𝐼. = 𝑒2𝑥
1

(−1 + 2𝐷 + 5)
𝑠𝑖𝑛𝑥 

⟹ 𝑃. 𝐼. = 𝑒2𝑥
1

(2𝐷 + 4)
𝑠𝑖𝑛𝑥 
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⟹ 𝑃. 𝐼. = 𝑒2𝑥
1

(2𝐷 + 4)
.
(2𝐷 − 4)

(2𝐷 − 4)
𝑠𝑖𝑛𝑥 

⟹ 𝑃. 𝐼. = 𝑒2𝑥
1

4𝐷2 − 16
(2𝐷 − 4)𝑠𝑖𝑛𝑥 

⟹ 𝑃. 𝐼. = 𝑒2𝑥
1

4(−1)2 − 16
(2𝐷 − 4)𝑠𝑖𝑛𝑥 

⟹ 𝑃. 𝐼. = −𝑒2𝑥 (
1

20
) (2𝑐𝑜𝑠𝑥 − 4𝑠𝑖𝑛𝑥) 

⟹ 𝑃. 𝐼. = −𝑒2𝑥 (
1

10
) (𝑐𝑜𝑠𝑥 − 2𝑠𝑖𝑛𝑥) 

 Therefore, the required solution is 𝑦 = 𝐶. 𝐹. +𝑃. 𝐼. 

⟹ 𝑦 = 𝑒𝑥(𝑐1𝑐𝑜𝑠2𝑥 + 𝑐2𝑠𝑖𝑛2𝑥) − (
1

10
) 𝑒2𝑥(𝑐𝑜𝑠𝑥 − 2𝑠𝑖𝑛𝑥) 

EXAMPLE8: Solve (𝐷2 − 5𝐷 + 6)𝑦 = 𝑥𝑒4𝑥 

SOLUTION:-Here the given differential equation is 

                                        (𝐷2 − 5𝐷 + 6)𝑦 = 𝑥𝑒4𝑥 

Its auxiliary equation is 𝐷2 − 5𝐷 + 6 = 0, which gives 𝐷 = 2, 3 

Therefore,𝐶. 𝐹. = 𝑐1𝑒2𝑥 + 𝑐2𝑒3𝑥 

And,𝑃. 𝐼. =  
1

𝐷2−5𝐷+6
 𝑥𝑒4𝑥 

⟹ 𝑃. 𝐼. =  𝑒4𝑥
1

(𝐷 + 4)2 − 5(𝐷 + 4) + 6
 𝑥 

⟹ 𝑃. 𝐼. =  𝑒4𝑥
1

𝐷2 − 3𝐷 + 2
 𝑥 

⟹ 𝑃. 𝐼. =  𝑒4𝑥
1

2{1 + (3
2⁄ )𝐷 + (1

2⁄ )𝐷2}
 𝑥 

⟹ 𝑃. 𝐼. =  
1

2
𝑒4𝑥 [1 + {((3

2⁄ )𝐷 + (1
2⁄ )𝐷2)}]

−1

𝑥 

⟹ 𝑃. 𝐼. =  
1

2
𝑒4𝑥 [1 − {((3

2⁄ )𝐷 + (1
2⁄ )𝐷2)} + ⋯ ] 𝑥 

⟹ 𝑃. 𝐼. =  
1

2
𝑒4𝑥 [𝑥 − ((3

2⁄ )𝐷(𝑥))] 

⟹ 𝑃. 𝐼. =  
1

2
𝑒4𝑥[𝑥 − (3

2⁄ )] 

Therefore, the required solution is 𝑦 = 𝐶. 𝐹. +𝑃. 𝐼. 

⟹ 𝑦 = 𝑐1𝑒2𝑥 + 𝑐2𝑒3𝑥 +  
1

2
𝑒4𝑥[𝑥 − (3

2⁄ )] 

EXAMPLE9: Solve  
𝑑2𝑦

𝑑𝑥2 − 3
𝑑𝑦

𝑑𝑥
+ 2𝑦 = 𝑒𝑥 

SOLUTION:- Here the given differential equation is  

(𝐷2 − 3𝐷 + 2)𝑦 = 𝑒𝑥 

Its auxiliary equation is 𝐷2 − 3𝐷 + 2 = 0 

⟹ 𝐷 = 1, 2  
Therefore,𝐶. 𝐹. = 𝑐1𝑒𝑥 + 𝑐2𝑒2𝑥  

And,𝑃. 𝐼. =  
1

𝐷2−3𝐷+2
𝑒𝑥 
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⟹ 𝑃. 𝐼. = 𝑒𝑥
1

(𝐷 + 1)2 − 3(𝐷 + 1) + 2
1 

⟹ 𝑃. 𝐼. = 𝑒𝑥
1

𝐷2 − 𝐷
1 

⟹ 𝑃. 𝐼. = −𝑒𝑥
1

𝐷(1 − 𝐷)
1 

⟹ 𝑃. 𝐼. = −𝑒𝑥
1

𝐷
(1 − 𝐷)−11 

⟹ 𝑃. 𝐼. = −𝑒𝑥
1

𝐷
(1 + 𝐷 + ⋯ )1 

⟹ 𝑃. 𝐼. = −𝑒𝑥
1

𝐷
(1) 

⟹ 𝑃. 𝐼. = −𝑒𝑥(𝑥) 

Therefore, the required solution is 𝑦 = 𝐶. 𝐹. +𝑃. 𝐼. 
⟹ 𝑦 = 𝑐1𝑒𝑥 + 𝑐2𝑒2𝑥 − 𝑒𝑥(𝑥) 

EXAMPLE10:(4𝐷2 − 12𝐷 + 9)𝑦 = 144𝑒3𝑥 2⁄  

SOLUTION:- Here the given differential equation is 

                                   (4𝐷2 − 12𝐷 + 9)𝑦 = 144𝑒3𝑥 2⁄  

Its auxiliary equation is 4𝐷2 − 12𝐷 + 9 = 0 

𝑖. 𝑒. , (2𝐷 − 3)2 = 0 

⟹ 𝐷 = 3/2 (twice) 

Therefore,𝐶. 𝐹. = (𝑐1𝑥 + 𝑐2)𝑒3𝑥 2⁄  

And,𝑃. 𝐼. =  
1

4𝐷2−12𝐷+9
. 144𝑒3𝑥 2⁄  

⟹ 𝑃. 𝐼. = 144𝑒3𝑥 2⁄
1

4 [𝐷 + (
3
2)]

2

− 12 [𝐷 + (
3
2)] + 9

1 

⟹ 𝑃. 𝐼. = 144𝑒3𝑥 2⁄
1

4𝐷2
1 

⟹ 𝑃. 𝐼. = 36𝑒3𝑥 2⁄ (
1

2
𝑥2) 

⟹ 𝑃. 𝐼. = 18𝑥2𝑒3𝑥 2⁄  

Therefore, the required solution is 𝑦 = 𝐶. 𝐹. +𝑃. 𝐼. 

⟹ 𝑦 = (𝑐1𝑥 + 𝑐2)𝑒3𝑥 2⁄ + 18𝑥2𝑒3𝑥 2⁄  

EXAMPLE11:Solve (𝐷3 − 𝐷)𝑦 = 𝑒𝑥 + 𝑒−𝑥 

SOLUTION:- Here the given differential equation is 

                                           (𝐷3 − 𝐷)𝑦 = 𝑒𝑥 + 𝑒−𝑥 

Its auxiliary equation is 𝐷3 − 𝐷 = 0 

⟹ ( 𝐷2 + 1) = 0 

⟹ 𝐷 = 0, −1, 1 

Therefore,𝐶. 𝐹. = 𝑐1𝑒0𝑥 + 𝑐2𝑒−𝑥 + 𝑐3𝑒𝑥 

Or, 𝐶. 𝐹. = 𝑐1 + 𝑐2𝑒−𝑥 + 𝑐3𝑒𝑥 

And,𝑃. 𝐼. =  
1

𝐷3−𝐷
(𝑒𝑥 + 𝑒−𝑥) 

⟹ 𝑃. 𝐼. =  
1

𝐷3 − 𝐷
(𝑒𝑥) +

1

𝐷3 − 𝐷
(𝑒−𝑥) 
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⟹ 𝑃. 𝐼. = 𝑒𝑥
1

(𝐷 + 1)3 − (𝐷 + 1)
(1) + 𝑒−𝑥

1

(𝐷 − 1)3 − (𝐷 − 1)
(1) 

⟹ 𝑃. 𝐼. = 𝑒𝑥
1

𝐷3 + 3𝐷2 + 2𝐷
(1) + 𝑒−𝑥

1

𝐷3 − 3𝐷2 + 2𝐷
(1) 

⟹ 𝑃. 𝐼. = 𝑒𝑥
1

2𝐷
(1 +

3

2
𝐷 +

1

2
𝐷2)

−1

(1)

+ 𝑒−𝑥
1

2𝐷
(1 −

3

2
𝐷 +

1

2
𝐷2)

−1

(1) 

⟹ 𝑃. 𝐼. = 𝑒𝑥
1

2𝐷
(1) + 𝑒−𝑥

1

2𝐷
(1) 

⟹ 𝑃. 𝐼. =
1

2
𝑒𝑥𝑥 +

1

2
𝑒−𝑥𝑥 

⟹ 𝑃. 𝐼. =
1

2
𝑥(𝑒𝑥 + 𝑒−𝑥) 

Therefore, the required solution is 𝑦 = 𝐶. 𝐹. +𝑃. 𝐼. 

⟹ 𝑦 = 𝑐1 + 𝑐2𝑒−𝑥 + 𝑐3𝑒𝑥 +
1

2
𝑥(𝑒𝑥 + 𝑒−𝑥) 

                         

                              SELF CHECK QUESTIONS-5 

(SCQ-1)Solve the following differential equations: 

i. (𝐷2 − 6𝐷 + 7)𝑦 = 𝑒𝑥 + 𝑒−𝑥 

ii. (𝐷2 − 5𝐷 + 6)𝑦 = 𝑒4𝑥 

iii. (𝐷 + 𝑎)𝑦 = 𝑒𝑚𝑥 

iv. (𝐷2 + 9) = 𝑐𝑜𝑠2𝑥 + 𝑠𝑖𝑛2𝑥 

v. (𝐷4 − 2𝐷2 + 1)𝑦 = 𝑐𝑜𝑠𝑥 

vi. (𝐷3 + 𝐷2 − 𝐷 − 1) = 𝑠𝑖𝑛2𝑥 

vii. (𝐷2 − 4)𝑦 = 𝑒𝑥 + 𝑠𝑖𝑛3𝑥 

viii. (𝐷2 + 2𝐷 + 1)𝑦 = (𝑥 − 1) 

ix. (𝐷2 + 𝐷 − 6)𝑦 = 2𝑥 + 𝑥2 

x. (𝐷 − 1)(𝐷2 + 1)2(𝐷2 + 𝐷 + 1)3𝑦 = 2 

xi. (𝐷2 + 1)𝑦 = 𝑒𝑥𝑐𝑜𝑠𝑥 

xii. (𝐷4 − 2𝐷3 − 3𝐷2 + 4𝐷 + 5)𝑦 = 𝑥2𝑒2𝑥 

xiii. (𝐷2 + 4𝐷)𝑦 = 5𝑥𝑒−2𝑥 

xiv. (𝐷 − 2)2𝑦 = 8(𝑒2𝑥 + 𝑥2) 

xv. (𝐷2 − 4𝐷 + 4)𝑦 = 𝑥2𝑒2𝑥 

xvi. (𝐷2 + 𝐷 − 2)𝑦 = 𝑒𝑥 
 

3.5.9 LINEAR DIFFERENTIAL EQUATIONS WITH 

VARIABLE COEFFICIENTS:- 
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 CAUCHY’S HOMOGENOUS LINEAR 

DIFFERENTIAL EQUATION:- 
A differential equation is of the form  

𝑥𝑛 𝑑𝑛𝑦

𝑑𝑥𝑛 + 𝑎1𝑥𝑛−1 𝑑𝑛−1𝑦

𝑑𝑥𝑛−1 + 𝑎2𝑥𝑛−2 𝑑𝑛−2𝑦

𝑑𝑥𝑛−2 + ⋯ + 𝑎𝑛−1𝑥
𝑑𝑦

𝑑𝑥
+ 𝑎𝑛𝑦 = 𝑄(𝑥) 

                                                     …(1) 

Where 𝑎1, 𝑎2, … , 𝑎𝑛 are constants, 𝑄(𝑥) a function of 𝑥, is called 

Cauchy’s homogenous linear differential equation. 

To solve such types of differential equations first we convert into linear 

differential equation with constant coefficients by putting 𝑥 = 𝑒𝑡 or 𝑡 =

log 𝑥. Then if 𝐷 =
𝑑

𝑑𝑡
 

𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑡
∙

𝑑𝑡

𝑑𝑥
 

⟹  
𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑡
∙

1

𝑥
 

⟹ 𝑥
𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑡
 

or, 𝑥
𝑑𝑦

𝑑𝑥
= 𝐷𝑦 

Similarly, 𝑥2 𝑑2𝑦

𝑑𝑥2 = 𝐷(𝐷 − 1)𝑦 

𝑥3
𝑑3𝑦

𝑑𝑥3
= 𝐷(𝐷 − 1)(𝐷 − 2)𝑦 

In general,𝑥𝑛 𝑑𝑛𝑦

𝑑𝑥𝑛 = 𝐷(𝐷 − 1)(𝐷 − 2) … (𝐷 − (𝑛 − 1))𝑦 

Put these values in equation (1), equation (1) converts into linear 

differential equation with constant coefficients, which can be solved as 

before. 

 LEGENDRE’S LINEAR DIFFERENTIAL EQUATION:- 
A differential equation is of the form  

(𝑎𝑥 + 𝑏)𝑛 𝑑𝑛𝑦

𝑑𝑥𝑛 + 𝑎1(𝑎𝑥 + 𝑏)𝑛−1 𝑑𝑛−1𝑦

𝑑𝑥𝑛−1 + ⋯ + 𝑎𝑛−1(𝑎𝑥 + 𝑏)
𝑑𝑦

𝑑𝑥
+ 𝑎𝑛𝑦 =

𝑄(𝑥)                                                  …(1) 

Where 𝑎1, 𝑎2, … , 𝑎𝑛 are constants, 𝑄(𝑥) a function of 𝑥, is called 

Legendre’s linear differential equation. 

To solve such types of differential equations first we convert into linear 

differential equation with constant coefficients by putting 𝑎𝑥 + 𝑏 = 𝑒𝑡 or 

𝑡 = log(𝑎𝑥 + 𝑏). Then if 𝐷 =
𝑑

𝑑𝑡
 

𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑡
∙

𝑑𝑡

𝑑𝑥
 

⟹  
𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑡
∙

𝑎

𝑎𝑥 + 𝑏
 

⟹ (𝑎𝑥 + 𝑏)
𝑑𝑦

𝑑𝑥
= 𝑎

𝑑𝑦

𝑑𝑡
 

or, (𝑎𝑥 + 𝑏)
𝑑𝑦

𝑑𝑥
= 𝑎𝐷𝑦 
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Similarly, (𝑎𝑥 + 𝑏)2 𝑑2𝑦

𝑑𝑥2 = 𝑎2𝐷(𝐷 − 1)𝑦 

(𝑎𝑥 + 𝑏)3
𝑑3𝑦

𝑑𝑥3
= 𝑎3𝐷(𝐷 − 1)(𝐷 − 2)𝑦 

In general,(𝑎𝑥 + 𝑏)𝑛 𝑑𝑛𝑦

𝑑𝑥𝑛 = 𝑎𝑛𝐷(𝐷 − 1)(𝐷 − 2) … (𝐷 − (𝑛 − 1))𝑦 

Put these values in equation (1), equation (1) converts into linear 

differential equation with constant coefficients, which can be solved as 

before. 

EXAMPLE1: Solve 𝑥2 𝑑2𝑦

𝑑𝑥2 + 𝑥
𝑑𝑦

𝑑𝑥
− 𝑦 = 𝑥𝑚 

SOLUTION:  Here the given differential equation is (𝑥2𝐷2 + 𝑥𝐷 −
1)𝑦 = 𝑥𝑚 

Putting𝑥 = 𝑒𝑧 or 𝑧 = 𝑙𝑜𝑔𝑥 and 𝐷 ≡ 𝑑 𝑑𝑧⁄  in the given equation, we get 

[𝐷(𝐷 − 1) + 𝐷 − 1]𝑦 = 𝑒𝑚𝑧 

⟹ (𝐷2 − 1)𝑦 = 𝑒𝑚𝑧 ,which is a linear equation in 𝑦. 
Therefore, the auxiliary equation is 𝐷2 − 1 = 0 

⟹ 𝐷 =  −1, 1 

Therefore 𝐶. 𝐹. = 𝑐1𝑒𝑧 + 𝑐2𝑒−𝑧 

Or,𝐶. 𝐹. = 𝑐1𝑥 + 𝑐2𝑥−1 

And,𝑃. 𝐼. =
1

𝐷2−1
𝑒𝑚𝑧 

⟹ 𝑃. 𝐼. =
1

𝑚2 − 1
𝑥𝑚 

Therefore, the required solution is 𝑦 = 𝐶. 𝐹. +𝑃. 𝐼.  

⟹ 𝑦 = 𝑐1𝑥 + 𝑐2𝑥−1 +
1

𝑚2 − 1
𝑥𝑚 

EXAMPLE 2:Solve 𝑥3 𝑑3𝑦

𝑑𝑥3 + 2𝑥2 𝑑2𝑦

𝑑𝑥2 + 3𝑥
𝑑𝑦

𝑑𝑥
− 3𝑦 = 𝑥2 + 𝑥. 

SOLUTION:Here the given differential equation is 

(𝑥3𝐷3 + 2𝑥2𝐷2 + 3𝑥𝐷 − 3)𝑦 = 𝑥2 + 𝑥 

Putting𝑥 = 𝑒𝑧 or 𝑧 = 𝑙𝑜𝑔𝑥 and 𝐷 ≡ 𝑑 𝑑𝑧⁄  in the given equation, we get   
[𝐷(𝐷 − 1)(𝐷 − 2) + 2𝐷(𝐷 − 1) + 3𝐷 − 3]𝑦 = 𝑒2𝑧 + 𝑒𝑧  

⟹ (𝐷3 − 𝐷2 + 3𝐷 − 3) = 𝑒2𝑧 + 𝑒𝑧 ,which is a linear equation in 𝑦 with 

constant coefficients. 

Its auxiliary equation is 𝐷3 − 𝐷2 + 3𝐷 − 3 = 0 

⟹ 𝐷2(𝐷 − 1) + 3(𝐷 − 1) = 0 

⟹ (𝐷2 + 3)(𝐷 − 1) = 0 

⟹ 𝐷 = 1, ±𝑖√3 

Therefore 𝐶. 𝐹. = 𝑐1𝑒𝑧 + 𝑐2 cos(𝑧√3), where 𝑧 = log 𝑥 

Or,𝐶. 𝐹. = 𝑐1𝑥 + 𝑐2 cos(√3 log 𝑥) + 𝑐3 si n(√3 log 𝑥) 

And,𝑃. 𝐼. =
1

𝐷3−𝐷2+3𝐷−3
(𝑒2𝑧 + 𝑒𝑧) 

⟹ 𝑃. 𝐼. =
1

𝐷3 − 𝐷2 + 3𝐷 − 3
𝑒2𝑧 +

1

𝐷3 − 𝐷2 + 3𝐷 − 3
𝑒𝑧 
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⟹ 𝑃. 𝐼. =
1

8 − 4 + 6 − 3
𝑒2𝑧

+ 𝑒𝑧
1

(𝐷 + 1)3 − (𝐷 + 1)2 + 3(𝐷 + 1) − 3
(1) 

⟹ 𝑃. 𝐼. =
1

7
𝑒2𝑧 + 𝑒𝑧 

1

𝐷3+2𝐷2+4𝐷
(1) 

⟹ 𝑃. 𝐼. =
1

7
𝑒2𝑧 + 𝑒𝑧

1

4𝐷 (1 +
1
2 𝐷 +

1
4 𝐷2)

(1) 

⟹ 𝑃. 𝐼. =
1

7
𝑒2𝑧 + 𝑒𝑧

1

4𝐷
(1 +

1

2
𝐷 +

1

4
𝐷2)

−1

(1) 

⟹ 𝑃. 𝐼. =
1

7
𝑒2𝑧 + 𝑒𝑧 1

4𝐷
(1),after expansion and differentiation.  

⟹ 𝑃. 𝐼. =
1

7
𝑒2𝑧 + 𝑒𝑧 (

1

4
𝑧) 

⟹ 𝑃. 𝐼. = (
1

7
) 𝑥2 + 𝑥 (

1

4
log 𝑥) 

Therefore, the required solution is 𝑦 = 𝐶. 𝐹. +𝑃. 𝐼.  

⟹ 𝑦 = 𝑐1𝑥 + 𝑐2 cos(√3 log 𝑥) + 𝑐3 si n(√3 log 𝑥) + (
1

7
) 𝑥2

+ 𝑥 (
1

4
log 𝑥) 

⟹ 𝑦 = 𝑐1𝑥 + 𝑐2 cos(√3 log 𝑥) + 𝑐3 si n(√3 log 𝑥) + (
1

7
) 𝑥2 +

1

4
𝑥 log 𝑥 

EXAMPLE3: Solve 𝑥2 𝑑2𝑦

𝑑𝑥2 − 𝑥
𝑑𝑦

𝑑𝑥
− 3𝑦 = 𝑥2 log 𝑥 

SOLUTION: Here the given differential equation is (𝑥2𝐷2 − 𝑥𝐷 −
3)𝑦 = 𝑥2 log 𝑥 

Putting𝑥 = 𝑒𝑧 or 𝑧 = 𝑙𝑜𝑔𝑥 and 𝐷 ≡ 𝑑 𝑑𝑧⁄  in the given equation, we get  
[𝐷(𝐷 − 1) − 𝐷 − 3]𝑦 = 𝑧𝑒2𝑧 ,which is a linear equation in 𝑦 with 

constant   coefficients. 

Its auxiliary equation is 𝐷2 − 2𝐷 − 3 = 0 

⟹ 𝐷 = −1, 3 

Therefore,𝐶. 𝐹. = 𝑐1𝑒−𝑧 + 𝑐2𝑒3𝑧 

⟹ 𝐶. 𝐹. = 𝑐1𝑥−1 + 𝑐2𝑥3,    

And,𝑃. 𝐼. =
1

𝐷2−2𝐷−3
𝑧𝑒2𝑧 

⟹ 𝑃. 𝐼. = 𝑒2𝑧
1

𝐷2 − 2𝐷 − 3
𝑧 

⟹ 𝑃. 𝐼. = 𝑒2𝑧
1

(𝐷 + 2)2 − 2(𝐷 + 2) − 3
𝑧 

⟹ 𝑃. 𝐼. = 𝑒2𝑧
−1

   3
[1 − (

2

3
) 𝐷 − (

2

3
) 𝐷2]

−1

𝑧 

⟹ 𝑃. 𝐼. =
−1

   3
𝑒2𝑧 [1 + (

2

3
) 𝐷 + ⋯ ] 𝑧 

⟹ 𝑃. 𝐼. =
−1

   3
𝑒2𝑧 [𝑧 + (

2

3
)] 
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⟹ 𝑃. 𝐼. =
−1

   3
𝑥2 [

2

3
+ log 𝑥] 

Therefore, the required solution is 𝑦 = 𝐶. 𝐹. +𝑃. 𝐼.  

⟹ 𝑦 = 𝑐1𝑥−1 + 𝑐2𝑥3 −
1

  3 
𝑥2 [

2

3
+ log 𝑥] 

 

SELF CHECK QUESTIONS-6 

 
(SCQ-1)Solve the following differential equations: 

i. (𝑥2𝐷2 + 𝑥𝐷 + 1)𝑦 = log 𝑥 

ii. 𝑥2 𝑑2𝑦

𝑑𝑥2 + 𝑥
𝑑𝑦

𝑑𝑥
+ 𝑦 = 𝑥 

iii. (𝑥3𝐷3 + 3𝑥2𝐷2 + 𝑥𝐷 + 1)𝑦 = 𝑥 log 𝑥 

iv. 𝑥2 𝑑2𝑦

𝑑𝑥2 − 3𝑥
𝑑𝑦

𝑑𝑥
+ 4𝑦 =   𝑥2 log 𝑥 

 

3.6 PICARD’S METHOD OF SUCCESSIVE 

APPROXIMATION FOR FIRST ORDER FIRST 

DEGREE INITIAL VALUE PROBLEM:- 

Consider an initial value problem 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦), 𝑦(𝑥0) = 𝑦0      …(1) 

Integrate equation (1) over the range 𝑥0 to 𝑥, we get 

∫ 𝑑𝑦
𝑥

𝑥0

= ∫ 𝑓(𝑥, 𝑦)𝑑𝑥
𝑥

𝑥0

 

or,                 𝑦(𝑥) − 𝑦0 = ∫ 𝑓(𝑥, 𝑦)𝑑𝑥
𝑥

𝑥0
 

or,                𝑦(𝑥) = 𝑦0 + ∫ 𝑓(𝑥, 𝑦)𝑑𝑥
𝑥

𝑥0
                                       …(2) 

Therefore, solution of initial value problem (1) is same as finding a 

function 𝑦(𝑥) which satisfies equation (2). Since the information 

concerning the expression of 𝑦 in terms of 𝑥 is absent in the integral on the 

right-hand side of (2). So, the exact value of 𝑦 cannot be obtained. 

Therefore, we determine a sequence of approximate solution of (2) as 

follows.  

For the first approximation, we put 𝑦 = 𝑦0 in the integral on the right-

hand side of (2), we get 

              𝑦1(𝑥) = 𝑦0 + ∫ 𝑓(𝑥, 𝑦0)𝑑𝑥
𝑥

𝑥0
       …(3) 

Where 𝑦1 denotes the corresponding value of 𝑦 and is said to be first 

approximation. 

To determine second approximation, we put 𝑦 = 𝑦1 in the integral on the 

right-hand side of (2), we get 

𝑦2(𝑥) = 𝑦0 + ∫ 𝑓(𝑥, 𝑦1)𝑑𝑥
𝑥

𝑥0
    …(4) 

Proceeding in the similar fashion, we get a sequence of approximate 

solution 𝑦1(𝑥), 𝑦2(𝑥), … , 𝑦𝑛(𝑥), … where 
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             𝑦𝑛(𝑥) = 𝑦0 + ∫ 𝑓(𝑥, 𝑦𝑛−1)𝑑𝑥
𝑥

𝑥0
   …(5) 

The above method is known as Picard’s iteration method or Picard’s 

method of successive approximation. 

EXAMPLE: Find the third approximation of the solution of equation 
𝑑𝑦

𝑑𝑥
= 𝑥2 − 𝑦, where 𝑦 = 0 when 𝑥 = 0 by Picard’s method of successive 

approximations. 

SOLUTION: Given problem is 
𝑑𝑦

𝑑𝑥
= 𝑥2 − 𝑦, where 𝑦 = 0 when 𝑥 = 0 

 …(1) 

By Picard’s method of successive approximations, we know the 𝑛 th 

approximation 𝑦𝑛 of the initial value problem 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦), 𝑦(𝑥0) = 𝑦0 is 

𝑦𝑛 = 𝑦0 + ∫ 𝑓(𝑥, 𝑦𝑛−1)𝑑𝑥
𝑥

𝑥0
 …(2) 

Comparing equation (2) with equation (1), we get 

𝑓(𝑥, 𝑦) = 𝑥2 − 𝑦, 𝑥0 = 0 and 𝑦0 = 0     

 …(3) 

Therefore from (2) 𝑦𝑛 = 𝑦0 + ∫ (𝑥2 − 𝑦𝑛−1)𝑑𝑥
𝑥

𝑥0
    

 …(4) 

For first approximation putting 𝑛 = 1 in equation (4) and using equation 

(3), we get 

𝑦1 = 𝑦0 + ∫ (𝑥2 − 𝑦0)𝑑𝑥
𝑥

𝑥0

 

⟹  𝑦1 = 0 + ∫ (𝑥2 − 0)𝑑𝑥
𝑥

0

 

⟹  𝑦1 = ∫ 𝑥2𝑑𝑥
𝑥

0

= [
1

3
𝑥3]

0

𝑥

 

⟹  𝑦1 =
1

3
𝑥3                         …(5)  

For second approximation putting 𝑛 = 2 in equation (4) and using 

equation (5), we get 

𝑦2 = 𝑦0 + ∫ (𝑥2 − 𝑦1)𝑑𝑥
𝑥

𝑥0

 

⟹  𝑦2 = 0 + ∫ (𝑥2 −
1

3
𝑥3) 𝑑𝑥

𝑥

0

 

⟹  𝑦2 = [
1

3
𝑥3 −

1

12
𝑥4]

0

𝑥

 

⟹  𝑦2 =
1

3
𝑥3 −

1

12
𝑥4                       …(6)  

For third approximation putting 𝑛 = 3 in equation (4) and using equation 

(6), we get 

𝑦3 = 𝑦0 + ∫ (𝑥2 − 𝑦2)𝑑𝑥
𝑥

𝑥0
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⟹  𝑦3 = 0 + ∫ [𝑥2 − (
1

3
𝑥3 −

1

12
𝑥4)] 𝑑𝑥

𝑥

0

 

⟹  𝑦3 = [
1

3
𝑥3 −

1

12
𝑥4 +

1

60
𝑥5]

0

𝑥

 

⟹  𝑦3 =
1

3
𝑥3 −

1

12
𝑥4 +

1

60
𝑥5 

          

              SELF CHECK QUESTIONS-7 

 
(SCQ-1)Using the Picard’s method of successive approximations, find 

the third approximation of the solution of the equation  
𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦2, 

where 𝑦 = 0 when 𝑥 = 0. 

(SCQ-2)Find the third approximation of the solution of the equation 
𝑑𝑦

𝑑𝑥
=

𝑧,
𝑑𝑧

𝑑𝑥
= 𝑥2𝑧 + 𝑥4𝑦 by Picard’s method, 𝑦 = 5, 𝑧 = 1 when 𝑥 = 0. 

 

3.7   LIPSCHITZ CONDITION:- 
A function 𝑓(𝑥, 𝑦) is said to satisfy Lipschitz condition in a domain 𝐷 in 

ℝ2 if there exists a positive integer 𝐾 such that 

            |𝑓(𝑥, 𝑦2) − 𝑓(𝑥, 𝑦1)| ≤ 𝐾|𝑦2 − 𝑦1| where (𝑥, 𝑦1), (𝑥, 𝑦2) ∈ 𝐷 

The constant 𝐾 is known as Lipschitz constant. 

3.7.1 SUFFICIENT CONDITION FOR LIPSCHITZ 

CONDITION:- 

Consider a function 𝑓(𝑥, 𝑦) is defined on a convex set 𝐷 in ℝ2. If there 

exists a constant 𝐾 > 0 such that 

                     |
𝜕𝑓

𝜕𝑦
(𝑥, 𝑦)| ≤ 𝐾 for all (𝑥, 𝑦) ∈ 𝐷 

Then function 𝑓(𝑥, 𝑦) satisfies Lipschitz condition on 𝐷 with Lipschitz 

constant 𝐾. 

3.8 EXISTENCE AND UNIQUENESS THEOREM:- 
 

 PICARD’S THEOREM FOR EXISTENCE OF 

SOLUTION OF INITIAL VALUE PROBLEM: 

STATEMENT: Consider the initial value problem 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) 

with 𝑦(𝑥0) = 𝑦0 

Let us consider a rectangular region 𝑅 which is defined as |𝑥 −
𝑥0| < 𝑎, |𝑦 − 𝑦0| < 𝑏  
If 

 

i. 𝑓(𝑥, 𝑦) is continuous in region 𝑅. 
ii. 𝑓(𝑥, 𝑦) is bounded in 𝑅. 𝑖. 𝑒. , |𝑓(𝑥, 𝑦)| < 𝑀  ∀(𝑥, 𝑦) ∈ 𝑅, for some 

positive real number 𝑀. 
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         Then there exists a solution of given initial value problem in           

          |𝑥 − 𝑥0| < ℎ where                        ℎ = min {𝑎,
𝑏

𝑀
}. 

 

 PICARD’S THEOREM FOR EXISTENCE AND 

UNIQUENESS OF SOLUTION OF INITIAL VALUE 

PROBLEM: 

STATEMENT: Consider the initial value problem 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) 

with 𝑦(𝑥0) = 𝑦0. Let us consider a rectangular region 𝑅 which is 

defined as |𝑥 − 𝑥0| < 𝑎, |𝑦 − 𝑦0| < 𝑏 If 
i. 𝑓(𝑥, 𝑦) is continuous in region 𝑅. 

ii. 𝑓(𝑥, 𝑦) is bounded in 𝑅. 𝑖. 𝑒. , |𝑓(𝑥, 𝑦)| < 𝑀  ∀(𝑥, 𝑦) ∈ 𝑅, for 

some positive real number 𝑀. 
iii. 𝑓(𝑥, 𝑦) satisfies Lipschitz condition in region 𝑅, then there exists 

a unique solution of given initial value problem  in |𝑥 − 𝑥0| < ℎ 

where  ℎ = min {𝑎,
𝑏

𝑀
}. 

EXAMPLE1: Test the existence and uniqueness of the solutions of the 

initial value problem       
𝑑𝑦

𝑑𝑥
= √𝑦, 𝑦(1) = 0 in the suitable rectangle 𝑅.If 

more than one solution exists, then find all solutions. 

SOLUTION: The given initial value problem is 
𝑑𝑦

𝑑𝑥
= √𝑦, 𝑦(1) = 0 

Here 𝑓(𝑥, 𝑦) = √𝑦, 𝑥0 = 1, 𝑦0 = 0. 

Since 𝑓(𝑥, 𝑦) is continuous and bounded in a rectangular region 𝑅 which 

containing point (1,0). 
Hence, by Picard’s existence theorem, there exists at least one solution in 

𝑅. 
Let us now test the Lipschitz condition: 

For any two points (𝑥, 𝑦1), (𝑥, 𝑦2) ∈ 𝑅, we have 

|𝑓(𝑥, 𝑦2) − 𝑓(𝑥, 𝑦1)| = |√𝑦2 − √𝑦1| 

= |
(√𝑦2 − √𝑦1)(√𝑦2 + √𝑦1)

(√𝑦2 + √𝑦1)
| 

= |
𝑦2 − 𝑦1

√𝑦2 + √𝑦1

| 

Or, 
|𝑓(𝑥,𝑦2)−𝑓(𝑥,𝑦1)|

|𝑦2−𝑦1|
=

1

√𝑦2+√𝑦1
 

The above equation can be made as large as possible by choosing 𝑦1 and 

𝑦2 sufficiently small, 𝑖. 𝑒., a finite value for the Lipschitz constant 𝐾 

cannot be determined. 

Since √𝑦1 + √𝑦2 < 2√𝑦, if 𝑦 = 𝑚𝑎𝑥{𝑦1, 𝑦2} 

⟹ |
1

√𝑦1+√𝑦2
| >

1

2√𝑦
> 𝑀if√𝑦 <

1

2𝑀
 

So, in the neighbourhood of 𝑦 = 0, the above inequality is satisfied for 

every 𝑀 > 0. 
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Therefore, the initial value problem does not have a unique solution. 

Now we can find the solution of given initial value problem 
𝑑𝑦

𝑑𝑥
= √𝑦,

𝑦(1) = 0, where 𝑦 ≠ 0, by using variable separable method. 

The given differential equation is 
𝑑𝑦

𝑑𝑥
= √𝑦 

Or, 
𝑑𝑦

√𝑦
= 𝑑𝑥      …(1) 

Integrating equation (1), we get 

2√𝑦 = 𝑥 + 𝑐 

Or, 𝑦 = (
𝑥+𝑐

2
)

2

     …(2) 

Put 𝑥 = 1 and 𝑦 = 0, we get 

𝑐 = −1 

Hence, one solution of the given problem is 𝑦 = (
𝑥−1

2
)

2

 

Also 𝑦 ≡ 0 also satisfies the given initial value problem. 

Hence, the solutions of the given initial value problem are 𝑦 ≡ 0 and 𝑦 =

(
𝑥−1

2
)

2

.     

                     Remark: If arbitrary constant 𝑐 can be determined uniquely then we 

cannot say the initial value problem has a unique solution. 

                           

3.9 SUMMARY:- 
In this unit we have studied the linear differential equation 

typically involves finding the general solution, which includes an arbitrary 

constant, or initial conditions can be used to determine a particular 

solution. 

 

3.10 GLOSSARY:- 
 Classification of ordinary differential equation. 

 Equation reducible to linear form. 

 Picard’s Methods. 

 Lipschitz Conditions 

 

3.11 REFERENCES:- 
 E.L.INCE (2012) Ordinary Differential Equations. 
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 M.D. Raisinghania,( 2021). Ordinary and Partial Differential 

equation (20th Edition), S. Chand. 
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Equations, Orient. 

 A.K.Nandakumarsan, P.S.Datti &Raju K.George (2017) Ordinary 

Differential Equations (Principles and Applications) 

 Nita H.Sah (2010) Ordinary and Partial Differential Equations: 

Theory and applications. 

 

3.13 TERMINAL QUESTIONS:- 
                 (TQ-1)Examine the existence and uniqueness of solution of the initial 

value problem 
𝑑𝑦

𝑑𝑥
= 𝑦

1
3⁄ , 𝑦(0) = 0. 

                  (TQ-2)Discuss the existence and uniqueness of solution of the initial 

value problem 
𝑑𝑦

𝑑𝑥
= 𝑦

4
3⁄ , 𝑦(𝑥0) = 𝑦0. 

                  (TQ-3)Examine the existence and uniqueness of solution of the initial 

value problem 
𝑑𝑦

𝑑𝑥
= 𝑦2, 𝑦(1) = −1. 

                   (TQ-4)Examine whether the following differential equation possesses 

unique solution. Justify your answer. 
𝑑𝑦

𝑑𝑥
= {

𝑦(1 − 2𝑥), 𝑥 > 0

𝑦(2𝑥 − 1), 𝑥 < 0
subject to 

the condition: 𝑦 = 1 at 𝑥 = 1. 
                 (TQ-5)Discuss the existence and uniqueness of solution of the initial 

value problem                 

                       
𝑑𝑦

𝑑𝑥
= 𝑥2 + 𝑦2, 𝑦(0) = 0. 

 

3.14  ANSWERS:- 

SELF CHECK ANSWERS-1 
i. order-3, degree-3,  ii.order-2, degree-3, iii.Order-2,degree-1 

iv.       order-3,degree-2,  v. order-2,degree-1, vi. order-2,degree-3 

vii.  order-2,degree-2  

 

SELF CHECK ANSWERS-2 
 (SCQ-1)  i. Non-linear differential equation 

                        ii. Linear differential equation 

                          iii. Non-linear differential equation 

                         iv. Non-linear differential equation 

     (SCQ-2)       i. Incorrect statement, ii. Correct statement,  

                        iii. Correct statement, iv. Incorrect statement, 

     (SCQ-3)      2   

 

SELF CHECK ANSWERS-3 

i. 𝑥𝑒tan−1 𝑦 =
𝑒tan−1 𝑦

2
+ 𝑐,     
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ii. 𝑦 = 2𝑥 log|𝑐𝑜𝑠𝑥 − 𝑐𝑜𝑡𝑥| + 𝑐,   

iii.  𝑦 = 𝑙𝑜𝑔𝑥 + 𝑐(𝑙𝑜𝑔𝑥)−1,    

iv. 𝑥𝑦2 − 2𝑦5 = 𝑐,   

v. 𝑦(𝑠𝑒𝑐𝑥 + 𝑡𝑎𝑛𝑥) = 𝑠𝑒𝑐𝑥 + 𝑡𝑎𝑛𝑥 − 𝑥𝑡𝑎𝑛𝑥,   

vi. log(𝑥2 + 𝑦2) + 𝑥 = 𝑐,   

vii. 𝑠𝑖𝑛𝑦 (1 + 𝑥) = (1 + 𝑥)2𝑒𝑥 − 2(1 + 𝑥)𝑒𝑥 + 𝑒𝑥 + 𝑐,  

viii.   𝑐𝑜𝑠𝑒𝑐𝑦 =
1

2𝑥
+ 𝑐. 

 

SELF CHECK ANSWERS-4 

 𝐢.     𝑦 = 𝑐1𝑒𝑥 + 𝑐2𝑒2√3𝑥 + 𝑐2𝑒−2√3𝑥 , 𝐢𝐢.    𝑐1𝑒−2𝑥 + 𝑐2𝑒−5𝑥 ,  
 𝐢𝐢𝐢.  𝑦 = (𝑐1 + 𝑐2𝑥) + 𝑐3𝑒2𝑥 

 

 

SELF CHECK ANSWERS-5 
 

i. 𝑦 = 𝑒3𝑥(𝑐1 𝑐𝑜𝑠ℎ √2𝑥 + 𝑐2 𝑠𝑖𝑛ℎ √2𝑥) +
𝑒𝑥

2
+

𝑒−𝑥

14
 

ii. 𝑦 = 𝑐1𝑒2𝑥 + 𝑐2𝑒3𝑥 +
𝑒4𝑥

2
 

iii. 𝑦 = 𝑐1𝑒−𝑎𝑥 +
𝑒𝑚𝑥

𝑚+𝑎
 

iv. 𝑦 = 𝑐1𝑐𝑜𝑠3𝑥 + 𝑐2𝑠𝑖𝑛3𝑥 +
1

5
𝑐𝑜𝑠2𝑥 +

1

5
𝑠𝑖𝑛2𝑥 

v. 𝑦 = (𝑐1 + 𝑐2𝑥)𝑒𝑥 + (𝑐3 + 𝑐4𝑥)𝑥𝑒𝑥 +
1

4
𝑐𝑜𝑠𝑥 

vi. 𝑦 = 𝑐1𝑒𝑥 + (𝑐2 + 𝑐3𝑥)𝑒−𝑥 +
1

101
[

1

2
𝑐𝑜𝑠2𝑥 − 𝑠𝑖𝑛2𝑥] 

vii. 𝑦 = 𝑐1𝑒2𝑥 + 𝑐2𝑒−2𝑥 −
𝑒𝑥

3
−

𝑠𝑖𝑛3𝑥

13
 

viii. 𝑦 = (𝑐1 + 𝑐2𝑥)𝑒−𝑥 + 𝑥 − 3 

ix. 𝑦 = 𝑐1𝑒2𝑥 + 𝑐2𝑒−3𝑥 −
1

216
[36𝑥2 + 84𝑥 + 26] 

x. 𝑦 = 𝑐1𝑒𝑥 + (𝑐2 + 𝑐3𝑥)𝑐𝑜𝑠𝑥 + (𝑐4 + 𝑐5𝑥)𝑠𝑖𝑛𝑥 +
(𝑐6 + 𝑐7𝑥)𝑐𝑜𝑠𝑥 + (𝑐8 + 𝑐9𝑥)𝑠𝑖𝑛𝑥 + (𝑐10 + 𝑐11𝑥 +

𝑥2𝑐12)𝑐𝑜𝑠
√3

2
𝑥 + (𝑐13 + 𝑐14𝑥 + 𝑥2𝑐15)𝑠𝑖𝑛

√3

2
𝑥 

xi. 𝑦 = 𝑐1𝑐𝑜𝑠𝑥 + 𝑐2𝑠𝑖𝑛𝑥 +
1

2
𝑒𝑥𝑠𝑖𝑛𝑥 

xii. 𝑦 = 𝑐1𝑒𝑥 + 𝑐2𝑥𝑒𝑥 + 𝑐3𝑒−𝑥 + 𝑐4𝑒−5𝑥 +
1

12
𝑥2𝑒2𝑥 

xiii. 𝑦 = 𝑐1 + 𝑐2𝑒−4𝑥 −
5

4
𝑥𝑒−2𝑥 

xiv. 𝑦 = (𝑐1 + 𝑐2𝑥)𝑒2𝑥 + 4𝑥2𝑒2𝑥 + 4𝑥 + 8 

xv. 𝑦 = (𝑐1 + 𝑐2𝑥)𝑒2𝑥 +
𝑥4

2
𝑒2𝑥 

xvi. 𝑦 = 𝑐1𝑒𝑥 + 𝑐2𝑒2𝑥 +
1

3
𝑥𝑒𝑥 

 

SELF CHECK ANSWERS-6 
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i. 𝑦 = 𝑐1𝑐𝑜𝑠𝑙𝑜𝑔𝑥 + 𝑐2𝑠𝑖𝑛𝑙𝑜𝑔𝑥 + 𝑙𝑜𝑔𝑥 
ii. 𝑦 = 𝑐1𝑐𝑜𝑠𝑙𝑜𝑔𝑥 + 𝑐2𝑠𝑖𝑛𝑙𝑜𝑔𝑥 +

𝑥

2
 

iii. 𝑦 = (𝑐1 + 𝑐2𝑙𝑜𝑔𝑥)𝑥2 +
𝑥2

6
(𝑙𝑜𝑔𝑥)3 

 

SELF CHECK ANSWERS-7 
 

i. 𝑦1(𝑥) =
𝑥2

2
+ 𝑐1,   𝑦2(𝑥) =

𝑥3

3
+ 𝑥𝑐1 + 𝑐2, 𝑦3(𝑥) =

𝑥4

4
+

1

3
𝑥𝑐1 + 𝑐2𝑥 + 𝑐3 

ii. 
𝑑𝑦

𝑑𝑥
= 𝑧1(𝑥) =

𝑥3

3
+ 𝑥5 + 𝑐1, 𝑦1(𝑥) =

𝑥4

12
+

1

6
𝑥6 + 𝑐1𝑥 + 𝑐2 

 

 

TERMINAL ANSWERS 

 

(TQ-1) 𝑦1 = 𝑥2, 𝑦2 =
𝑥2

2
+

𝑥5

5
, 𝑦3 =

𝑥2

2
+

𝑥5

20
+

𝑥11

275
+

𝑥8

40
 

(TQ-2) 𝑦1 = 1 + 𝑥2, 𝑦2 = 1 + 𝑥2 +
𝑥4

2
, 𝑦3 = 1 + 𝑥2 +

𝑥4

2
+

𝑥6

6
 

(TQ-3) 𝑦1 = 2 + 𝑥 + 𝑥2, 𝑦2 = 2 + 𝑥 + 𝑥2 +
𝑥3

3
+

𝑥4

4
, 

             𝑦3 = 2 + 𝑥 + 𝑥2 +
𝑥3

3
+

𝑥4

4
+

𝑥5

15
+

𝑥6

24
 

(TQ-4) 𝑦1 = 1 + 𝑥 +
𝑥2

2
, 𝑦2 = 1 + 𝑥 + 𝑥2 +

𝑥3

6
,   

             𝑦3 = 1 + 𝑥 + 𝑥2 +
𝑥3

3
+

𝑥4

24
 

(TQ-5) 𝑦1 = 3(𝑒𝑥 − 1), 𝑦2 = 9(𝑒𝑥 − 1) − 6𝑥, 
             𝑦3 = −18𝑥 − 6𝑥2 + 21𝑒𝑥 − 21,   
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UNIT-4: VARIATION OF PARAMETERS 
 

CONTENT: 
4.1 Introduction 

4.2 Objectives 

4.3 Wronskian of homogenous linear differential equation of 

order n 

            4.4 Abel’s Formula 

 4.4.1 Observations (Using Abel’s Formula) 

 4.4.2  Results and Properties 

            4.5  Second Order Linear Differential Equation with Variable    

                        Coefficients 

              4.5.1  Solution of Second Order Linear Differential Equation         

                                    with Variable Coefficients 

             4.5.1.1   Method I: Reduction of Order 

             4.5.1.2   Method II: Change of Independent     

                           Variable 

                                    4.5.1.3   Method III: Change of Dependent Variable   

                                                                                           or  

                                                   Normal form or Removal of Second Term 

                                    4.5.1.4    Method IV: Variation of Parameter 

             4.6  Variation of Parameter for Linear Differential Equation of    

                        any  Order 

             4.7       Summary 

             4.8       Glossary 

             4.9       References 

             4.10     Suggested Reading 

 4.11      Terminal questions  

 4.12      Answers  
 

4.1 INTRODUCTION:- 

The course is devoted to the solution of the linear differential 

equations of second order with variable coefficients. In this course, 

learners also learn Wronskian, the existence and uniqueness of initial 

value problem and their solution. The course matter has many applications 

in several fields. This course develops the problem-solving skills of 

learners. 

4.2 OBJECTIVES:- 

On completion of the course, learners will be able to- 
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 Identify the type of a given differential equation and select and 

apply the appropriate analytical technique for finding the solution. 

 Learners will be able to solve first order first degree differential 

equations utilizing the standard techniques. 

 Determine the complete solution of a differential equation with 

constant coefficients. 

 Solve linear differential equations of higher order with variable 

coefficients. 

 Understand method of successive approximations, the existence 

and uniqueness of IVPs and their solution. 

 

4.3 WRONSKIAN OF HOMOGENOUS LINEAR 

DIFFERENTIAL EQUATION OF ORDER n:- 

Consider the homogenous linear differential equation of order n is of the 

form 

                                                                     
                                                                                                 …(1) 

Where  and  all are 

continuous functions of  

Let  be any  solutions of the differential equation (1), then 

Wronskian of the solutions   is defined as 

and is 

called Wronskian of  solutions. 

Remark: If  be any  solutions of nth order homogenous 

linear differential equation then Wronskian of these solutions is always 

continuous and differentiable function but higher order derivative of 

Wronskian may or may not exists. 

Particular Case: 

Wronskian of Second Order Homogenous Linear Differential 

Equation: 
Consider the second order homogenous linear differential equation is of 

the form 

  … (1) 
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Where  and  all are continuous 

functions of  

Let  be any two solutions of the differential equation (2), then 

Wronskian of the solutions   is defined as 

 

 
 

4.4 ABEL’S FORMULA:- 

Consider the second order homogenous linear differential equation is of 

the form 

  …(1) 

Where  and  all are continuous 

functions of  

Let  be any two solutions of the differential equation (1), then we 

have 

   …(2) 

and    …(3) 

Multiply equation (2) by  and equation (3) by  and subtract we get 

 

 

 
Therefore  is a solution of first order first degree linear differential 

equation and is given by 

 
Where  be any arbitrary constant. The above formula is called Abel’s 

Formula. In short, if  be any two solutions of the second order 

homogenous linear differential equation  

 
Where  and  all are continuous 

functions of  

Then Wronskian of the solutions   is given by  
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4.4.1   OBSERVATIONS (USING ABEL’S FORMULA):- 

Let  be any two solutions of the second order homogenous linear 

differential equation  

 
Where  and  all are continuous 

functions of  

Then Wronskian  of the solutions   is given by  

 
 

1.  Wronskian of  is either identically 

zero or never zero.  if  for some  then  

and if  for some  

then   

2. If  for some  then 

 

3. If  for some  then 

 

4.  and  are linearly dependent on  if and 

only if  Wronskian of  is identically zero on 

 

5.  and  are linearly independent on  if and 

only if  Wronskian of is never zero on 

 

6.  and  are linearly dependent on  if and 

only if there exist  such that  

7.  and  are linearly independent on  if and 

only if there exist  such that  

4.4.2   RESULTS AND PROPERTIES:- 

Let  be any two solutions of the second order homogenous linear 

differential equation  
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Where  and  all are continuous 

functions of  

Then Wronskian  of the solutions   is given by  

 
1. If  be a common zero of  and  then  and 

 are linearly dependent. 

Proof: Since  be common zero of  and then  

So,  

and  are linearly dependent. 

Remark: If  and  are linearly independent then they never have 

common zero. 

1. If  be common point of extrema of  and  

then  and  are linearly dependent. 

Proof: Since  be common point of extrema of  and 

then  

So,  

and  are linearly dependent. 

                        Remark: If  and  are linearly independent then they never have  

                          common point of extrema. 

1. If  be repeated zero of 

then  and  are linearly 

dependent. 

Proof: Since  be repeated zero of then  

So,  

and  are linearly dependent. 

                     Remark: If either  or  has repeated zero then  and  are linearly  

dependent. So, therefore  and  are linearly independent, then neither 

nor  have repeated zero. 
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 SOLVED EXAMPLES 
EXAMPLE1: Consider the differential equation 

 Let  and  be two linear independent 

solution on  If  then  may takes the 

value – 

i. 1 

ii. 0 

iii. π/2 

iv. All of them 

SOLUTION:  

Since  and  be two linear independent solution on  

Therefore     

 
Since  

 

 

 
 may takes value  or  

EXAMPLE2: Let  and  be two solutions of differential equation 

 

then   is 

i.  

ii.  

iii.  

iv.  

SOLUTION: Here,  

Therefore,  

 

Since  
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Therefore  

Since  

 

 
EXAMPLE3: Let  and  be two linear independent solutions of 

differential equation  where  Let 

 Then 

i.  

ii.  

iii.  vanishes at only one point of  

iv.  vanishes at all point of  

SOLUTION: Here,  

Therefore  

  

EXAMPLE4: Consider the differential equation 

Let be two solutions of the given 

differential equation such that 

Then  is 

i.   

ii.   

iii.  

iv.  

SOLUTION: Since,   

So,  

   

 
Also,  

 
Therefore  

Hence,  
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EXAMPLE5: Let  and  be two distinct solutions of equation 

 and suppose that  

Then prove that  is monotonic function. 

SOLUTION: Since   

 
Since denominator is always positive. Now we have following 

possibilities: 

 If numerator is  is constant function. 

is monotonic function. 

If numerator  is positive. 

is strictly monotonic increasing 

function. 

If numerator  is negative. 

Strictly monotonic decreasing function. 

Therefore, in all the cases  is monotonic function. 

             SELF CHECK QUESTIONS 

 
(SCQ-1)Consider the functions and  Then 

i. is a linearly independent pair of functions on  

ii. is a linearly independent pair of functions on  

iii. is a linearly dependent pair of functions on  

iv. is a linearly independent pair of functions on  

(SCQ-2)Consider the two functions and  

Then,  is  

i. Linearly independent on  

ii. Linearly independent on  

iii. Linearly dependent on  

iv. Linearly independent on  

(SCQ-3)Consider and  Then, the pair  is 

i. Linearly independent on  

ii. Linearly dependent on  for some  

iii. Linearly independent on  
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iv. Linearly independent on  

(SCQ-4)Let  and defined on  be twice continuously 

differentiable functions satisfying . Let  be 

the Wronskian of  and  and satisfy  Then  

i. for  

ii. for  

iii. for  

iv. for  

(SCQ-5)Let  where 

a positive monotonically increasing continuous function is. Then 

i. as  

ii. as  

iii. has finitely many zeros in  

iv. All 

 

 (SCQ-6) Consider the differential equation 

Let be two solutions of the given 

differential equation such that   

Then  is 

 

i.  

ii.  

iii.  

iv. e 

(SCQ-7) Let  and  be two solutions of differential equation 

 

then   is 

i.  

ii.  

iii.  

iv.  
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4.5 SECOND ORDERS LINEAR DIFFERENTIAL 

EQUATION WITH VARIABLE COEFFICIENTS:- 

An equation of the form  where 

…(1) 

is called linear differential equation of second order with variable 

coefficients. 

The standard form of equation (1) is  

NOTE:  be the corresponding homogenous 

linear differential equation of  

4.5.1 SOLUTION OF SECOND ORDER LINEAR     

DIFFERENTIAL EQUATION WITH VARIABLE      

COEFFICIENTS:- 

 

4.5.1.1 METHOD I: REDUCTION OF ORDER:- 

Consider the linear differential equation of second order with variable 

coefficients is  

   …(1) 

Let  be the non-zero solution of corresponding homogenous equation 

    … (2) 

Let  be the general solution of (1). So from (1), we have 

 

 

as  be solution of equation (2). 

Put  in above equation, we get 

 

Or,    …(3)  

which is linear differential equation of first order. 

To solve equation (3) we get the value of  
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Now put  and integrating we find the value of . 

So the general solution of equation (1) is  

                               Limitation: This method is applicable only when a non- zero solution 

of corresponding homogenous equation is given. 

EXAMPLE: Find the solution of the differential 

equation  by using reduction of order method. 

SOLUTION: Here the given differential equation is 

    …(1) 

linear differential equation of second order with variable coefficients. Its 

corresponding homogenous part is . 

So, the auxiliary equation is  

 
Therefore, Complementary Function is  

Let us take one non-zero solution. (say ) 

Therefore, by using method of reduction of order its general solution is of 

the form 

      …(2) 

Now we have  

In the given differential equation (1) we have 

 

Therefore  

 

 
    …(3) 

Now, integrating factor is  

Therefore, solution is: 

 

 
       …(4) 

Since,  
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Therefore, the general solution of equation (1) is    

  

 

 

 
4.5.1.2 METHOD II: CHANGE OF INDEPENDENT VARIABLE:- 

Consider the linear differential equation of second order with variable 

coefficients is  

   …(1) 

We want to change the independent variable by some transformation 

 

So,  

and  

 

 

 

 
So from equation (1) 
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We choose  so that  constant  

Limitation: This method is applicable if  is constant. 

EXAMPLE1: Solve the differential equation 

 by using method of change of 

independent variable. 

SOLUTION: Here the given differential equation is 

 

Or,    …(1) 

linear differential equation of second order with variable coefficients. 

Compare equation (1) with  we get 

 
By using method of change of independent variable, equation (1) reduces 

to  

  …(2) 

Where  is given by  

 

 

 

In this case,  

Therefore, from equation (2) 

     …(3) 

                          …(4) 

The corresponding auxiliary equation is  
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Therefore, complementary function is  

Now, the particular integral is  

 

 

 

 

 
Therefore, general solution is  

 

 
EXAMPLE2: The general solution of differential equation 

 is- 

i.  

ii.  

iii.  

iv. All of the above 

SOLUTION: Here the given differential equation is 

    …(1) 

Compare equation (1) with  we get 

 
Therefore, by using method of change of independent variable equation 

(1) reduces to 

 
Where  is given by  
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Now,   

Therefore  

The corresponding auxiliary equation is  

 

 
Therefore, general solution is  

 

 

 

 

Similarly,  

 

 

EXAMPLE3: The particular integral of   is- 

i.  

ii.  

iii.   

iv.  

SOLUTION: Here the given differential equation is 

 

Or,        

  (1) 

Compare equation (1) with  we get 

 
Therefore, by using method of change of independent variable equation 

(1) reduces to 
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   …(2) 

Where  is given by  

 

 

Now,  

Therefore, from equation (2), we have 

 
Hence the particular integral is  

 

 
4.5.1.3 METHOD III: CHANGE OF DEPENDENT VARIABLE    

OR NORMAL FORM OR REMOVAL OF SECOND TERM:- 

Consider the linear differential equation of second order with variable 

coefficients is  

              …(1) 

Let  be the general solution of (1). So from (1) 

 

…(2)  

We choose  so that coefficient of  is zero. 

 

 

 
Therefore from (2) 
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which is the required normal form. 

Since  

 

 

 

So,  

 

 

                             Limitation: This method is applicable if   is either  

constant or  where  be any constant. In short, if the given differential 

equation is ,then general solution is 

 

Where  and  is given by solving the differential equation 

 

EXAMPLE: Solve the differential equation 

 by using normal form.  

SOLUTION: Here the given differential equation is 

   …(1) 

Compare equation (1) with  we get 

 

Therefore,  

Therefore, by using normal form, let  be the general solution of 

(1). 
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Where  is given by  

 

 
Also  is given by solving the differential equation 

 

 
The corresponding auxiliary equation is  

 
Therefore auxiliary equation is  

Now, particular integral is  

 

 

 

Therefore,  

Hence the general solution is  

4.5.1.4 METHOD IV: METHOD OF VARIATION OF 

PARAMETER:- 

Consider the linear differential equation of second order with variable 

coefficients is  

    …(1) 

Let the solution of corresponding homogenous differential equation be  

 
Let the particular integral of equation (1) be  

                        …(2)  

Now,  

We choose  and  so that    …(3) 

Therefore  

Also,  
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Since  is always a solution of (1). So, from equation (1) we have 

 

 

..(4) 

Since  and  are solutions of corresponding homogeneous differential 

equation. 

Therefore,  and  

So, from equation (4), we get 

     …(5)  

Solving (3) and (5), 

 

 

 

Therefore  

Therefore  

Where  

Put  in equation (2)  

 
Then the general solution of equation (1) is  

 
Limitation: This method is applicable if   is known. 

EXAMPLE1: Solve by method by variation of parameters 

  

SOLUTION: Here the given differential equation is  

                                …(1) 

Its complementary function is  

Let  be particular solution of equation (1). 
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Therefore,  

We choose  and  such that 

     …(2) 

 

 
Substituting these values in (1), we get  

 
 

   …(3) 

Solving these two equations (2) and (3), we have   

 and = -  

 and  

Therefore,  

Hence general solution is  

 
EXAMPLE2: Solve  Given that are 

solutions of   

SOLUTION: Since are solutions of   Therefore 

complementary function of given differential equation is 

 
Here  

Let   be particular integral of given 

differential equation, where  and  be functions of  given by 

 and  is Wronskian of  and  is given 

by 

 

 

 
Therefore  
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Also,  

 

 

 

 
Therefore, general solution is  

 

EXAMPLE3: Solve  by using variation of parameter 

method. 

SOLUTION: Here the given differential equation is 

                     …(1) 

Compare equation (1) with  we get 

 

The corresponding homogenous part of equation (1) is  

So, auxiliary equation is  

 

 
Therefore complementary function is  

Here,  

 

Therefore,  

Now,  
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And,  

 
Therefore,

 

Hence the general solution of equation (1) is  

 

4.6VARIATION OF PARAMETER FOR LINEAR 

DIFFERENTIAL EQUATION OF ANY ORDER:- 

Consider  be a linear differential equation of order . 

Let  be complementary function of the 

given differential equation which is given. Then its particular integral is 

defined as 

                                         .  

Where  is the Wronskian of  

 
 

and where is the determinant given by replacing the k-

the column of  by  
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4.7 SUMMARY:-  
In this unit we have studied the wronskian of homogeneous linear 

differential equation of order N, Abel’s Formula, second order differential 

equation with variable coefficients, variation of parameter for linear 

differential equation of any order. 

 

4.8 GLOSSARY:- 
 Observation(Abel Formula) 

 Normal form 

4.9 REFERENCES:-  
 H.S.Bear (2013) Differential Equations: A Consice Course. 

 Micheal E. Taylor (2021) Introduction to Differential Equations: 

Second Edition. 

4.10 SUGGESTED READING:- 
 Bernd S.W. Schroder (2009) A workbook for differential 

equations. 

 Michael E. Taylor (2021) Introduction to Differential equations: 

Second Addition 

 A.K.Sharma (2010)Text of Differential Equations. 

4.11 TERMINAL QUESTIONS:- 

 (TQ-1)Solve the following equations by the method of variation of 

parameter: 

i.  

ii.  

iii.  

iv.  

v.  

 

4.12 ANSWERS:- 

SELF CHECJK ANSWERS 

 
(SCQ-1)- iii,(SCQ-2)-iii, (SCQ-3)-i,  (SCQ-4)-i,  (SCQ-5)-iv 

(SCQ-6)-iv, (SCQ-7)-iv 

 

TERMINAL ANSWERS (TQ’S) 
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i.  

ii.  

iii.  

iv.  

v.  
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UNIT 5:- ORDINARY, REGULAR AND 

SINGULAR POINTS 

CONTENTS:- 
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5.2    Objectives 

5.3    Ordinary Points 

5.4    Regular Singular Points 

5.5    Autonomous System 

5.6    Critical Point 

5.7    Physical Significance of Stability 

5.8    Definitions 

5.9    Geometrical Interpretation of Stability 

5.10   Stability for Linear System with Constant Coefficients 

5.11   Linear Plane Autonomous System 

5.12   Perturbed System 

5.13   Method of Lypunov for Non-Linear Systems 

5.14   Discussion  

5.15   Limit Cycle 

5.16   Exercise 

5.17   Objective Questions 

5.18   Self Check Questions 

5.19   Summary 

5.20   Glossary 

5.21   References 

5.22   Suggested Reading 

5.23   Terminal Questions 

5.24   Answers  
          

5.1 INTRODUCTION:- 

In this unit we study of differential equations, the concepts of 

ordinary points, singular points, and regular singular points play a 

significant role. These terms are used to classify points in the domain of a 

differential equation based on their behavior and properties. 

 

5.2 OBJECTIVES:- 

After studying this unit you will be able to understanding the 

nature of ordinary points, singular points, and regular singular points helps 
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mathematicians and scientists analyze and solve differential equations in 

different contexts. By classifying points in the domain based on their 

behavior, it becomes possible to develop appropriate methods and 

techniques for finding solutions and studying the properties of these 

equations. 

5.3 ORDINARY POINTS:- 

Since the process for non-homogeneous equations is so similar, we only 

take into account homogeneous equations. We focus on the second-order 

linear example to keep things simple. The aim is to solve them locally 

around 0xx   

Definition: Consider the homogeneous second order linear ordinary 

differential equation (ODE) 

0)()()( '''  yxRyxQyxP . 

If around 0xx   the function )(/)( xPxQ  and )(/)( xPxR  are analytic, 

then 0x  is an ordinary point. Otherwise it is called a singular point. At an 

ordinary point, we can rewrite the ODE as  

)(

)(
)(,

)(

)(
)(,0)()( '''

xP

xR
xq

xP

xQ
xpyxqyxpy  . 

To find a series solution, it suffices to plug the general form 















n

n

n xxa )(
0

0  into the ODE and solve for the coefficients }{ na . These 

coefficients will satisfy some recurrence relation, which relate na  to ma  

for nm . 

Example: Consider the first-order ODE 

 0'  yy  

We already know the solution 
xcey   to this, but instead let’s find a 

series solution around 0x . By uniqueness, the series we get must be 

equal to 
xcey   around 0x , for some c . We have  
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0
00

1 










n

n

n

n

n

n xanxa . 

Hence the coefficient of nx is zero, for each n . Rewrite the first sum so 

that we can more easily extract this coefficient 

0)1(
00

1  










n

n

n

n

n

n xaxna  

It follows that 

,...2,1,0,0)1(1  nana nn  

This is a recurrence relation for the coefficient }{ na . For example, the first 

few coefficient are 

....,
!33

,
!22

,
1

02
3

00
20

0
1

aa
a

aa
aa

a
a   

In general, we can use the recurrence relation to write all the coefficient in 

terms of 0a  

!

0

k

a
ak   

There are no constraints on what 0a  is; it plays the role of the constant c. 

The series solution is  

xn

n
eax

n

a
y 00

0

!





, as expected. 

There is a deep relationship between ODEs and recurrence relations. A 

second order constant coefficient ODE will produce a recurrence 

involving 2na  (coming from 
''y ) and 1na  (coming from 

'y ) and na  

(from y). In general, an n-th order constant coefficient ODE produces an 

n-th order recurrence. Then we are free to choose the first n coefficients 

1210 ,...,,, naaaa  these act as initial conditions and are analogous to the 

constants forming the general solution. An easy way to get the i-th 

solution in a fundamental system of solutions is to set 1ia  and all other 

0ka . 
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5.4 REGULAR SINGULAR PONTS 

Series solutions that revolve around regular points perform better than 

those that revolve around irregular points. Series solutions might not exist 

at the singular points of ODEs because such points may have non-analytic 

solutions. This might happen with very harmless ODEs. However, we may 

still apply the series techniques from the preceding section, appropriately 

modified, to a class of mild singularities. 

Definition:  Suppose the ODE 0)()()( '''  yxRyxQyxP  has a 

singular point 0xx  . This means that )(/)( xPxQ  and )(/)( xPxR  are not 

analytic at 0xx  . However if both  

2

00 )(
)(

)(
lim),(

)(

)(
lim

00

xx
xP

xR
xx

xP

xQ

xxxx



                                      … (1) 

exist, then we say 0xx   is a regular singular point and we can still find 

series solutions. Otherwise it is an irregular singular point. 

Equation (1) means that the function )(/)( xPxQ  has a pole of order at 

most one at 0xx  , and )(/)( xPxR  has pole of order at most two. For 

e.g., a rational function having a pole of order at most n at 0xx   means it 

is of the form  

nxx

xg

)(

)(

0
 

For some function )(xg  which is well-defined, i.e., has no pole at 0xx  . 

(Equivalently, it means that in a series expansion around 0xx  , we must 

include terms of negative order up to .))( 0

nxx   

Example 1: Find the regular-singular points of the differential equation 

0)1(2)1( '''2  yxyyx  , where  is a real constant. 

Solution: Since, 

x

x

xP

xRx

x

x

xP

xQx













1

)]1()[1(

)(

)()1(
,

1

2

)(

)()1( 2 
. 
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Furthermore, the following limits are finite, 

0
)(

)()1(
lim,1

)(

)()1(
lim

2

11







 xP

xRx

xP

xQx

xx
 

We conclude that 10 x  is a regular singular point. 

5.5 AUTONOMOUS SYSTEMS:- 

If F (t, X) is a continuous function, satisfying Lipschitz condition in  some 

domain D of (n+1)-dimensional (t,X) space ,then the initial value problem, 

 
𝒅𝑿

𝒅𝒕 
=F (t,X)     with x(t0)=X0 

 

has a unique solution in D. This unique solution depends continuously on 

the initial values t0 and X0. It means, if we perturb the initial value X0 by 

an infinitesimal amount or by a small amount,  the solution X(t) is 

changed also by a small amount in a very small interval about t0. Here a 

question arises- 

 

“whether a small change in the initial data leads to a small change in 

the solution for large values of t.”? 

 

Study of solution of above problem is known as ‘stability theory’. This 

theory has been applied successfully in various areas and ‘automatic 

controls’, is one of them. Historically, stability theory is related to non-

linear differential equations. To get exact (or explicit) solution of such 

differential equations is very difficult. So we focus on qualitative behavior 

of solutions, without actually solving the equations. 

In this chapter, we shall study only time independent systems. So their 

general form will be 

                         = F(X)                    ...(1.1) 

Here dot(.) represents differentiation with respect to time. Such a system 

defines a time independent vector field in a region of n- space. A good 

example of it, is steady fluid flow in three dimensional space. Here F(X) 

represents the velocity of the fluid at the point X. The solution X (t,c) 

describes a streamline of a moving fluid particle. 

 We shall focus on a special case viz. where F vanishes at some value c. In 

such situation, the function X(t)=c is  the solution of equation (1.1) and the 
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streamline becomes a point at c where the velocity F vanishes. This point 

is called stagnation point. 

 

5.6 CRITICAL POINT:-  

A point c in 𝑥𝑛, at which F(c)=0 is called an equilibrium point or 

critical point of an autonomous system =F(X). 

Let us restrict ourselves to the two dimensional system  

                         =f(x,y) &  =g(x,y)                                   …(1.2)                                                                 

We observe that every solution x=x(t) , y=y(t) of the system (1.2) defines 

a curve in the x-y plane. This curve is called orbit or trajectory of the 

system and the x-y plane is called phase plane of the system. We shall 

define stability of the equilibrium point after this mathematical 

discussion 

    Let us consider the motion of a simple pendulum consisting of a 

concentrated mass m, suspended by a weightless rod of length l. Let s be 

the arc length subtended by angle θ. Then 

S=l  

 
 

Fig.1 

 

The tangential component of the gravitation force is (-mgsin ).So by 

Newton’s second law of motion, the equation of motion is  

m(d2s/dt2) =-mgsin  
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 (d2(l  /dt2) = -gsin  

 (d2  /dt2) =  - sin  

Let g/l=k. 

So , (d2  /dt2) + ksin  =0.    ...(1.3)                                                                  

From the knowledge of mechanics, we know that ω =  

  =  

So, we have   + ksin  = 0. 

Hence, we have an autonomous system 

 = ω, 

= -ksin . 

Since dω/dt =(dω/d )(d /dt) =  ω(dω/d ). 

So, the above equation becomes 

ω(dω/d )+ ksin  = 0. 

ωdω +ksin d  =0. 

On integration ,we get 

                           ω2 = 2kcos  + h                                            …(1.4)                                                                                                   

Maximum value of RHS is h+ 2K , which must always be  non negative as 

ω2  0. 

So, h  -2k. 

These curves on phase plane are shown as below:  

From the figure, it is evident that there are infinite many critical points at 

ω=0 and       

 

 

                                   Fig.2 

The pendulum will be in stable equilibrium if n is even. It means, in such 

cases, the pendulum will be in a vertically downward position.Pendulum 

will be in unstable equilibrium when n is odd (i.e. when the pendulum is 

in a vertically upward position) From equation (1.4) we observe that for |h| 

< 2k ; curves are closed, surrounding the points ω=0 and  =2n . For h> 
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2k, curves are open curve (figure 2). when h=2k, curves have transition 

i.e. when ω2 = 4kcos2( . 

 

5.7 PHYSICAL SIGNIFICANCE OF STABILITY:-  

If ω2 ˂ 4kcos2( , The pendulum oscillates about its equilibrium 

position (  =2n ).If the initial velocity is such that ω2 > 4kcos2( , then 

the pendulum always turns in the same direction, about the point of 

suspension. After the study of this discussion, we are in a situation to 

define stability in a formal way  

5.8 DEFINITONS:-  

Definitions: Let c be a critical point for the system    =F(X). 

The point c , is said to be  

(i) stable : If for given  ,there exists a  such that whenever  

                         || X(0) – c|| <  ; ||X(t) – c||<  

(ii) Asymptotically stable, if there exist a  such that whenever 

                         || X(0) – c|| <  ,  =0: 

(iii)Strictly stable, if it is stable and asymptotically stable, 

(iv) unstable, if it is NOT stable. 

 

5.9 GEOMETRICAL INTERPRETATION OF 

STABILITY:-  

Let us discuss the geometric meaning of stability. Let Rδ be a spherical 

region of radius δ and Rϵ be a spherical region of radius ϵ. 

 

 
                                                           Fig.3 
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The equilibrium point c will be called stable if each trajectory in Rδ , at 

time t = 0, remains inside Rϵ for all t > 0. The equilibrium point c is 

asymptotically stable if every trajectory which is sufficiently near c at 

t = 0 approaches c as t . The equilibrium point c is unstable if every 

trajectory in Rδ at t=0, escapes from the region Rϵ. It should be noted that 

asymptotic stability does NOT imply strict stability. Actually we can 

construct an asymptotically stable autonomous system which is unstable. 

 

5.10 STABILITY FOR LINEAR SYSTEM WITH 

CONSTANT COEFFICIENTS:-  

Let us consider a linear autonomous system with Constant Coefficients 

                                                       = AX                              … (2.1)                                                                                                                    

Here A is a nonsingular real  matrix. Also we suppose that origin is a 

Critical point for this system. 

Theorem 1: Suppose  =AX is a linear autonomous system with  

real non-singular constant coefficient matrix A. Also we suppose critical 

points at the origin of Rn. Then the critical point is  
(i) Strictly stable, if real parts of Eigen values of A are negative. 

(ii)Stable if A has at least one pair of purely imaginary eigenvalues of 

multiplicity one; 

(iii) Unstable otherwise. 

Proof: 

 As we know, fundamental solutions of linear systems can be expressed in 

terms of the eigenvalues. Also fundamental solutions are of the form Ptk

cos  , Qtk sin . Here P and & Q are constant vectors while  

are real and imaginary parts of eigenvalues of A respectively. Also k is a 

non-negative integer, which depends on the multiplicity of the 

eigenvalues. 

(i) As the origin is the critical point, so we have 

      | Ptk cos  |  |P|tk  

Since k is finite while  is negative and P depends on the initial condition 

in such a way that |P| < . So we have | Ptk cos  | <  whenever |P| <  

In a similar manner, we can prove that 

| Qtk sin  | <  whenever |Q |˂δ. 

This proves the stability. 

Now, for the asymptotic stability, We observe that if ,  <0. 

 = 0, by L’ hospital rule. 

Similarly, = 0 

Hence, the origin is strictly stable, provided  <0. 
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(ii) Suppose eigenbalues of A be  it means  So, fundamental 

solution will be Pcos  and Qsin  Whenever |P| <  and  |Q| <  ,we 

observe that |Pcos | < and |Qsin | < . 

Here, one thing is interesting. Since cos  do not tend to zero 

as t So, the origin is stable, but not asymptotically. Other pairs of 

pure imaginary eigenvalues of multiplicity one can be treated in a similar 

way. 

(iii) If  then both |Ptk cos | and |Qtk sin | are unbounded. 

Which means origin is unstable. 

 

EXAMPLE:   Discuss the stability of damped harmonic motion given by 

 + 2  +2x = 0. 

Solution: Let us take  = y 

So, given equation becomes  +2y +2x = 0. 

 Or   = y   &   = -2y -2x                                            …(2.2) 

The characteristic equation is given by  

   =0 

 

Or     k2 + 2k + 2 = 0 

Or     (k + 1)2 + 1 = 0 

 k = -1  

According to above theorem, the origin is strictly stable. 

The solution of equation (2.2) is: 

x =  

x + y =  

The trajectories associated with equation (2.2) can be obtained by 

introducing polar coordinates. 

So, the system (2.2) takes the form  

x = rcos  = ce-tcos(t-a)  ,    c = (a2 + b2)1/2    

 x + y = rsin  = ce-tsin(t-a) ;  tan-1(b/a) 

by eliminating ‘t’ we get 

r = c  

This describes a family of spirals. 

 

5.11 LINEAR PLANE AUTONOMOUS SYSTEM:-  

In this section, we shall discuss the linear autonomous system 

                             = AX                                                   ...(3.1) 
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where   A =    is a non-singular constant matrix. The characteristic 

equation for the system is  

            | A –kI | = 0 

  = 0 

k2–(a+d)k+(ad–bc)=0                                                 …(3.2)                                                                             

Suppose we introduce p = a+d, 

               q = ad – bc  

The equation (3.2) becomes k2 – pk + q = 0. If k1 and k2 are roots of above 

equation, then, 

 k1= ]andk2= ]              … (3.3)                                                    

 Obviously, stability of this linear system of equations depends upon the 

discriminant     

(1) If then k1 and k2 have same sign and both are 

+ve or –ve according as p>0 or p< 0. If  ˃0and q˂0, then k1,  k2 

have different signs. 

(2) If  =0, then k1and k2 are equal and positive or negative according 

as p>0 or p<0. 

(3)  If , then k1 and k2 are complex numbers where the real part 

is +ve ,zero or –ve  according as p>0, p=0, p<0. 

If we discuss these situations with the help of theorem (2.1), we 

conclude that origin for the system is 

(1) Strictly stable ,if  

 

 

 
(2) Stable if  

 
(3) Unstable if  

 

 

 
To discuss the behavior of the trajectories near a critical point, we apply a 

linear transformation  

           Y = BX with |B|                                      …(3.4) 

We choose this transformation in such a way that the essential behavior 

near the critical point remains unchanged.  

(1)Real and distinct root: 
If we apply the transformation with B given by  

B =  

The system (3.1) transforms into the system 
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k1x,      = k2y                                                    …(3.5) 

                                                                                                                 

Where (for simplicity) x and y are used again as the new coordinates. 

The new solutions are 

x(t) = c1 , y(t) = c2e
k2t           .                               ...(3.6) 

where c1 and c2 are arbitrary real constants. 

If we eliminate ‘t’ from  above equations, we get   

               y = cxk2/k1                                                   …(3.7) 

                                                                                                                    

Where c is an arbitrary constant. 

 If  k1 and k2  have same sign, then equation (3.7) represents parabolic 

curves tangent at the origin as shown in figure. This critical point is called 

a ‘proper node’ for the system. When k1 and k2 are negative, the origin is 

stable and is called stable node. It is also asymptotically stable. 

 
 

Fig.4 

 

When k1and k2 are positive, the origin is unstable and is called unstable 

node. If k1 and k2 have opposite signs, equation (3.7) represents hyperbolic 

curves as shown in fig 4-1(b). In this case, the origin is called a saddle 

point and is unstable. 

 

(2) Real And Equal Roots: In this case, = (a-d)² + 4 bc=0, and 

hence,                    k1= k2 = (a+d)/2   =k (say) 

The first simpler case arises when b=0 or c=0 and a=d. Then the system 

(3.1) becomes 

                                   =kx and =ky. 

On solving these equations, we obtain  
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                     x =c1e
kt and y =c2e

kt 

where c1 and c2 are arbitrary constants. 

If we eliminate ‘t’from above equations, we obtain 

                           y= (c2/c1)x 

It means trajectories are straight lines. 

If k<0, the origin is asymptotically stable and is a proper node. If k>0, it is 

unstable. 

Now, we discuss a more general situation i.e. we consider other 

possibilities which are more complicated. In general case, we may choose 

B =  

Now, the equation system (3.1) is transformed into  

  
If we solve these equations, we obtain 

x = c1e
kt and  y= (c1t +c2 ) e

kt 

These trajectories are shown in figure (3-1d) 

The critical point is an improper node. It is asymptotically stable if k<0 

and unstable if k>0. 

Complex conjugate roots:   

Let k1 =  

In this situation, we choose 

                       B=  

Now, the equation system (3.1) is transformed as 

                                
                      …(3.8)                                                                                                                   

(a) if  

             and     

General solution of the above equation system is 

x= c1cos  

y=  

where c1 and c2 are arbitrary constants. On squaring and adding above 

equations we get  

x2 + y2 =  

now, trajectories are circles , as shown by figure(3-1(e)) the critical point 

is a centre which is obviously stable. However, it is NOT asymptotically 

stable. 

  

(b) If , the solution of the system (3.8) is given by  

x = (c1cos ) 

y = ( ) 

On squaring and adding, we get 
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x2 + y2 = )2  

so, the trajectories are the family of a spirals. The critical point is a focal 

point, shown by figure 3-1(f). It is asymptotically stable

 

5.12 PERTURBED SYSTEM:-  

Suppose we consider an autonomous non-linear system 

                            and                    …..(4.1)                                                                                       

With f(0,0)  = g(0,0) = 0, so that origin is a critical point. 

Let f and g be real analytic functions of x and y. So, by expanding f(x,y) 

and g(xy) with the help of Taylor’s theorem , we get  

f(x,y) = f(0,0) + fx(0,0)x + fy(0,0)y +fxx(0,0)  + fxy(0,0)xy +fyy(0,0)  
 + 

……..and  g(x,y) = g(0,0) + gx(0,0)x + gy(0,0)y +fgxx(0,0)  + gxy(0,0)xy 

+gyy(0,0)  
 + ……. 

Let us denote fx(0,0) ,fy(0,0), gx(0,0) and gy(0,0) by a,b,c and d 

respectively and remaining higher order terms by f1(x,y) and g1(x,y), we 

get 

  And     …(4.2)                                                      

We should note that f(0,0) = g(0,0) = 0. 

Also we assume that ad-bc  

Both the functions f1 and g1 are called perturbations and they satisfy 

f1 = 0(r), g1=0(r)   , r  =  

This condition ensures that f1 and g1  0, faster than the linear terms in 

equation (4.2). Hence, it would seem that the nature of critical point of the 

non-linear system (4.2) is similar to that of the associated linear system. 

                                       …(4.3)                                                                                            

In general the nature o the critical point of the non-linear system will be 

same as that of the associated linear system.  

However, there are some exceptional cases          

 when the roots of (4.3) are purely imaginary, the origin is the centre of the 

linear system, whereas it may be centre of spiral point of non-linear 

system. When the roots real and equal and b=c=0 and a=d, then origin is a 

node of the linear system, whereas it may be centre of spiral point of non-

linear system. 

All the discussion can be summarized as  

“If the critical point (0,0) of the associated linear system is strictly stable, 

then critical point of the non-linear system 

                    
is also strictly stable provided that f1 =0(r) and g1 =0(r) .” 
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5.13 METHOD OF LYPUNOV FOR NON-LINEAR 

SYSTEM:-  

 Lyapunov was a leading Russian Mathematician, who investigated the 

stability of non-linear autonomous systems of differential equation without 

actually determining the solutions. The basis of this concept method is the 

concept that the potential energy of a Conservative dynamical system has 

a relative minimum at a stable equilibrium point.   

Suppose V(x) be a potential function. Let us consider a trajectory, on 

which V(x(t)) decreases to zero, then any trajectory of the system which 

crosses the surface V(x(t)) = Constant, surrounding the origin remains in 

that region. This confirms that origin is stable and indeed asymptotically 

stable. 

Let us define the function V(x) formally 

 

Definition:  
Let V(x) be a real-valued function of class c1 in some open region Ω about 

the origin. The function V(x) is said to be positive definite if  

 

(i)V(x) > 0 for all x  

(ii) V(x) =0 if and only if x=0 

 

Definition: If the function V(X) is positive definite and satisfies  

(t) = V(x(t))= V(X).  = (X). F(X) 0; in Ω, 

where  is the vector operator  = ( ,  ...) ; 

 then V is called a Lyapunov function for the autonomous non-linear 

system  = F(X) 

 

Theorem 1: If there exists a Lyapunov function V (X) in Ω, then the 

origin is stable. 

 

Proof: Suppose  be a sphere of radius , with contre at the origin in Ω. 

Since V is continuous on the compact set , it assumes its minimum 

value m on . Since, V is positive definite, so it assumes a positive 

minimum on  Since V(0)= 0 and is continuous at the origin, there exists 

 such that V(X)<m for |X| < . Suppose this sphere be  

Let X(t, X0) be a trajectory of the system initially at X0 in .  
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Then V(X0) <m. By hypothesis  for X in Ω. Thus 

V(X(t))  V(X(0)) < m. But V(X(t))  m on .  We conclude that X(t) 

must remain in  for all t>0.Hence the origin is stable. 

 

Theorem 2: If V is a Lyapunov function such that -  is 

positive definite in Ω, then the origin is asymptotically stable. 

 

Proof: As the origin is stable by the previous theorem, V(X) decreases 

along a trajectory of the system to V0 as t tends to infinity. Now, we shall 

prove that V0=0. but us assume that V0>0. Then there exists Lt such 

that V(X) < V0 for all X in  Now, let -V assumes a minimum value m in 

the region  

 

Since –V>0, we have V  for all t . 

Thus, V(X(t,X0)) – V(X0) =    

Consequently, as t , V(X (t, X0) tends to negative infinity. 

But, this contradicts the assumption that Vis positive definite in Ω. And 

equals V0 when t  Hence V0 must vanish. 

=>   the origin is asymptotically stable. 

 

Theorem3: Let V be a real valued function of class C1 in Ω with V(0) = 0, 

and let V(X0) >0 for all X in |X|<  If )  is positive definite in 

Ω. then the origin is unstable 

Proof: Let X0 be the initial point in of the trajectory of the system. By 

hypothesis V(0) = 0 and V(X0)>0   for all X in  Since V>0, V is 

increasing, and thus along the trajectory  we have 

                                                                      
where m is the positive minimum value of  

in the region 0< |X|  

thus, V(X(t,X0)) – V(X0) =    

 

Consequently, as t  , V(X(t, X0) approaches infinity. 

=> origin is unstable. 

 

5.14 DISCUSSION:-  

If we can construct Lyapunov functions, we can determine by the 

application of preceding theorems the stability or instability of critical 

points for autonomous systems. Actually there is NO general method of 
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constructing Lyapunov function. There are very few exceptions 

of methods applicable to certain classes of systems. 

Example 1:Let us consider the system 

                                    

                                    
which has a critical point at the origin. Suppose the Lyapunov function be 

V= ½(x2 +y2) . Then,                        

                                      = x (-y+xy) +y(x-x2) = 0, 

As V is positive definite and = 0, the Lyapunov function V exists. 

Hence with the help of Theorem 5.1, the origin is stable. 

 

Example 2: Consider the system 

                                          = y 

                                          , having a critical point at the 

origin. 

Solution: Suppose V= (2x²+2y² + ). Then 

=y(x+x3)+(-x-y-x3)y=-y2 

As V is positive definite and (y=0 is NOT a trajectory of the 

system), the Lyapunov function V exists. Also with the help of Theorem 

5.2, we conclude that the origin is asymptotically stable. 

 

5.15 LIMIT CYCLE:-  

 Already we have observed that an autonomous system sometimes 

possesses periodic solutions whose trajectories are represented by closed 

curves in the phase plane. Autonomous system, viz. negatively damped 

non-linear oscillator, admit solutions which generally tend to a limiting 

finite periodic solution. Such limiting closed curve in the phase plane is 

called a limit cycle. A limit cycle is a closed curve. No other solution 

which is a closed curve exists in its neighborhood. 

It is an isolated, closed curve. 

 Every neighboring trajectory spirals and tends to limit cycle from the 

inside or from the outside as t  

If all the neighboring trajectories approach a limit cycle, as t

 then the limit cycle is said to be stable. 

Note: 
It should be noted that limit cycles arise physically only in non-linear, 

non-conservative systems. Now we illustrate a well known example and 

discuss limit cycle. 
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Example 1 Let us consider the system 

 

                                                …..(1) 

Let x = rcos  and y = rsin . Then, we get 

 

                                                  ….(2) 

As we know  

 

 
Putting these in equation (2) and solving, we obtain  

 

 
From the second equation, we get 

 where a is an arbitrary constant. 

First equation can be solved by using the method of separation of 

variables. 

 
Where c is an arbitrary constant. 

Suppose  

This implies a = 0 and hence  

Hence, the solution of system may be written as  

 

                                                                              ….(3) 

If c =0, then the solution will given by x2 + y2 = 1. 

If c > 0, then trajectories are spirals inside the circle x2 + y2 = 1, 

approaching the circle as t  

If c < 0, then trajectories approach the circle spirally from outside as t  

In this way conclude that this circle is a limit cycle of the system (1) 

Note- In the above example, we showed how a limit cycle was 

determined. Generally it is very difficult (sometimes almost impossible) to 
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find a limit cycle of a system. 

Now in the next theorem, we shall discuss of closed trajectories of the 

system. 

 

 &                                                            …..(4) 

 

Theorem1: Suppose f(x,y) and g(x,y) have continuous first partial 

derivatives in a simply connected domain D in R². If fx + gy has the same 

sign in D, then the system given by equation (4) has no closed trajectory in 

D. 

Proof :Suppose C be a closed curve in D. Then using the concept of 

Green's theorem, we get  

∫(𝑓(𝑥, 𝑦)𝑑𝑦 − 𝑔(𝑥, 𝑦)𝑑𝑥)
𝐶

= ∬ (𝑓𝑥 + 𝑔𝑦)
𝑅

𝑑𝑥𝑑𝑦   … (1) 

Suppose C is represented parametrically by x= x(t), y=y(t). then 

 =  

Where T is the period of C. If we use equation 6.4, we have  

 
So, by using equation (6.5) ,we get  

 
Above result is true only if fx + gy changes sign. But, this is a 

contradiction. Hence, C is not a closed trajectory in D. 

 

5.16 EXERCISES:-  

1. Describe the nature of the critical point of each system and sketch 

the trajectories 

(a)  = x, 

       

(b)  = -x +2y, 

       x - y. 

(c) = 2x - 8y, 

        = x - 2y. 

(d) = -x,  

       = x-y 

            (e) = -x+y,  

       =2x 
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             (f)  = -3x+2y, 

                   = - 2x 

         2. Determine the asymptotic behavior of the solution of each system   

              near the critical point. Sketch the trajectories of the associated         

              linear system. 

 

(a) =2sin x + y, 

     =sin x-3y. 

 

(b) = -x- x2 + xy, 

      = - y + xy-y2 

 

(c) =x+e-y-1, 

      =-y-e-y+1. 

3. The equation of motion of a mass-spring system with damping is 

given by 

 
where m, c and k are positive constants. By changing this equation 

into a system, discuss the nature and stability of the critical point. 

 

4. Determine the type of the critical point (0,0) depending on a real 

parameter µ of the nonlinear system 

= - 2x - y + x2 

 = 4x+µy – y2, 

where µ 2.  

 

5. Prove that if x(t), y(t), t1 < t < t2, is a solution of  = f(x,y),   = 

g(x,y), then x(t+ c), y(t + c) for any real constant c is also a 

solution. This property does not hold in general for non 

autonomous systems. Illustrate with the example = x, = tx. 

 

6. Using the Lyapunov function V(x,y) = (x2 + y2), determine the 

stability of the critical point (0,0) for each system. 

(a)  = -x- Cosy, 

       = -y-y3 

(b) = -y-xsin2x, 

      =x-ysin2x. 

(c) =x- y², 

     = y + xy. 

 

7. Consider the system 
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                                         =y- xf(x,y), 

                                        = -x- yf(x,y), 

where f(x,y) is analytic at the origin and f(0,0)=0. Describe the 

relation between f(x,y) and the type of stability.  
 

5.17 OBJECTIVE QUESTIONS:-  

Q1    If a continuous function satisfies … condition in some domain D,  

         then the initial value problem   =F(t,X) with x(t0)=X0     has a      

         unique solution in D- 

i. Lipschitz                                                                                

ii. Riemann 

iii.  Lagrange 

iv.  Gauss        

Q2    “ whether a small change in the  initial data leads to a small change 

in the solution for large values of t.”? Study of solution of above problem 

is known as 

i.  Initial value problem 

ii.  Existence theory 

iii.  Stability theory    

iv. None of these. 

Q3    A point c in 𝑥𝑛 , at which F(c)=0 is called a …of an autonomous    

        system =F(X). Initial value problem 

i. Null point 

ii. Critical point   

iii. Extraordinary point  

iv. None of these. 

Q4   If we define a system =F(X) , then it is  

i. Always time dependent   

ii. Always time independent   

iii. Occasionally time dependent   

iv. None of these. 

Q5    If a continuous function satisfies Lipschitz condition in some domain  

         D, then the initial value problem   =F(t,X)  with x(t0)=X0    has  

         … solution in D- 

i. At least two                                                                                

ii.   Infinite 

iii.   Unique 
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iv.   Nothing can be said                                            

Q6     Let c be a critical point for the system  =F(X).  If there exist a  

           such that whenever || X(0) – c|| <  ,  =0,  

          then the point is called- 
i. Asymptotically stable 

ii. Asymptotically unstable 

iii. Stable 

iv. None of these. 

Q7   Let c be a critical point for the system  =F(X),  then the point c , is    

        said to be … If for given  ,there exists a    

        such that whenever || X(0) – c|| <  ; ||X(t) – c||<  

i. Asymptotically stable 

ii. Asymptotically unstable 

iii. Stable 

iv. None of these. 

Q8   Let c be a critical point for the system   =F(X), then the point c, is  

        said to be… if it is stable and asymptotically stable, 

i. Strictly unstable 

ii.  Strictly stable 

iii. Unstable 

iv. None of these 

Q9   Suppose  =AX is a linear autonomous system with  real non-

singular constant coefficient matrix A. Also we suppose critical points at 

the origin of Rn. Then the critical point is … if real parts of eigen values of 

A are negative. 

i. Strictly stable 

ii. Unstable 

iii. Stable but not strictly 

iv. None of these 

Q10   Suppose  =AX is a linear autonomous system with  real non-

singular constant coefficient matrix A. Also we suppose critical points at 

the origin of Rn. Then the critical point is …if A has at least one pair of 

purely imaginary eigenvalues of multiplicity one      

i. Stable but not strictly 

ii. Stable 

iii. Unstable 

iv. None of these. 

Q11   Let V(x) be a real-valued function of class c1 in some open region Ω 

about the origin. The function V(x) is said to be …if  V(x) > 0 for all x

 and  V(x) =0 if and only if x=0 
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i. Neither positive definite nor negative definite 

ii. Negative definite  

iii. Positive definite  

iv. None of these. 

Q12   If there exists a Lyapunov function V(x) in Ω, then the origin is-     

i. Unstable but not strictly 

ii. Stable 

iii. Always unstable 

iv. None of these. 

Q13   If V is a Lyapunov function such that -  is positive  

         definite in Ω, then the origin is -     

i. asymptotically stable  

ii. always unstable 

iii. always stable 

iv. None of these. 

Q14    Let V be a real valued function of class C1 in Ω  with V(0) = 0, and 

let V(X0) >0 for all X in |X|<  If )  is positive definite in Ω. 

then the origin is -     

i. asymptotically stable  

ii. occasionally unstable 

iii. unstable  

iv. None of these 

Q15     A limit cycle is a -     

i. closed curve  

ii. never a closed curve  

iii. may be a closed curve  

iv. None of these. 

 

5.18 SELF CHECK QUESTIONS:-  

EXAMPLE 1. Let us consider the system 

 

 
which has a critical point at the origin. 

SOLUTION: Suppose the Lyapunov function be 

V= ½(x2 +y2)  

Then,  = x(-y+xy) +y(x-x2) = 0, 

As V is positive definite and = 0, the Lyapunov function V exists. 

Hence with the help of Theorem 6.9.1, the origin is stable. 
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EXAMPLE 2 .  Discuss the stability of damped harmonic motion given 

by  + 2  +2x = 0. 

SOLUTION: Let us take  = y 

So, given equation becomes  +2y +2x = 0. 

 Or                         = y   &   = -2y -2x             ………(2.2) 

 

The characteristic equation is given by  

 =0 

 

Or                                      k2 + 2k + 2 = 0 

Or                                     (k + 1)2 + 1 = 0 

                                  k = -1  

According to above theorem , the origin is strictly stable.The solution of 

equation (2.2) is: 

x =  

x + y =  

The trajectories associated with equation (2.2) can be obtained by 

introducing polar coordinates. So, the system (2.2) takes the form  

x = rcos  = ce-tcos(t-a)  ,    c = (a2 + b2)1/2 

x + y = rsin  = ce-tsin(t-a) ;  tan-1(b/a) 

by eliminating ‘t’ we get 

r = c  

Which describes a family of spirals. 

Example 3: Using the Lyapunov function V(x,y) = (x2 + y2), determine 

the stability of the critical point (0,0) for each system. 

(a)  = -x- Cosy 

       = -y-y3 

(b) = -y-xsin2x, 

      =x-ysin2x. 

(c) =x- y², 

     = y + xy. 

Example 4: Find the regular-singular points of the differential equation 

02)1(3)1()2( '''2  yyxxyxx . 

Solution: Since, 

2
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Furthermore, the following limits are finite, 

0
)(

)()1(
lim,0

)(

)()1(
lim

2

11







 xP

xRx

xP

xQx

xx
 

We conclude that 11 x  is a regular singular point. 

5.19 SUMMARY:-  

In this unit, we understood the process of generalization of 

dynamical systems. , If we perturb the initial value X0 by an infinitesimal 

amount or by a small amount, the solution X(t) is changed also by a small 

amount in a very small interval about t0. Here a question arises- 

“whether a small change in the initial data leads to a small change in 

the solution for large values of t.”? 

Study of solution of above problem is known as ‘stability theory’. This 

theory has been applied successfully in various areas and ‘automatic 

controls’, is one of them. Autonomous system, viz. negatively damped 

non-linear oscillator, admit solutions which generally tend to a limiting 

finite periodic solution. Such limiting closed curve in the phase plane is 

called a limit cycle. 

 

5.20 GLOSSARY:-  

 

CRITICAL POINT:   
A point c in 𝑥𝑛 , at which F(c)=0 is called an equilibrium point or critical 

point of an autonomous system =F(X). 

Limit Cycle: Autonomous system, viz. negatively damped non-linear 

oscillator, admit solutions which generally tend to a limiting finite 

periodic solution. Such limiting closed curve in the phase plane is called a 

limit cycle. 

Lyapunov :  A Lyapunov was a leading Russian Mathematician, who 

investigated the stability of non-linear autonomous systems of differential 

equation without actually determining the solutions. The basis of this 

concept method is the concept that the potential energy of a Conservative 

dynamical system has a relative minimum at a stable equilibrium point.  

 

5.21 REFERENCES:-  

 G F Simmons (1991) Differential Equations with Historical Notes. 
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5.22 SUGGESTED READING:-  

 NPTEL videos. 

 Schaum series. 

 Advanced mathematical Methods for Scientists and Engineers 

 

5.23 TERMINAL QUESTIONS:-  

 

(TQ-1) Prove that a limit cycle is a closed curve. 

(TQ-2) Discuss the various types of critical points. 

(TQ-3) Discuss the importance of Lyapunov constant. 
 

5.24   ANSWERS:- 

 

OBJECTIVE ANSWERS  

 

 

1a     2c   3b    4b    5c    6a    7c    8b    9a    10b    11c    12b    13a    14c    

15a 
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UNIT6:- SECOND ORDER DIFFERENTIAL 

EQUATIONS 
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6.12    Method of Successive Approximation 
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6.14    Fourier Convergence Theorem 

6.15    Objective Questions 

6.16    Self Check Questions 

6.17    Summary 

6.18    Glossary 

6.19    References 

6.20    Suggested Reading 

6.21    Terminal Questions 

6.22    Answers 
 

6.1 INTRODUCTION:- 

In this unit, we will study the second-order differential equation of a 

mathematical equation which involves the second derivative of an 

unknown function. It is widely used in various fields of science and 

engineering to describe physical phenomena and model dynamic systems. 

Second-order differential equations are of great importance because they 

capture more complex behaviors and dynamics than first-order equations. 

6.2 OBJECTIVES:- 

After studying this unit you will be able to mathematicians and scientists 

can gain a deeper understanding of the behavior and properties of second-
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order differential equations, enabling them to solve complex problems and 

make accurate predictions in diverse fields of study. 

6.3 LINEARLY  INDEPENDENT FUNCTIONS:- 

Suppose two functions f(x) and g(x) are defined on interval [a, b]. If one 

of the functions, say f(x), be a constant multiple of other (here g(x)), then 

both are said to be linearly dependent functions on [a, b]. 

If neither of them is a constant multiple of other then both are said to be 

linearly independent. Here we should note that if f(x) is identically zero 

then f(x) and g(x) are linearly dependent, for each and every g(x), because 

                                                     f(x)  =  0.g(x). 

THEOREM- 

Let y1(x) and y2(x) be two linearly independent solutions of the 

homogenous equation. 

                                  y′′ + P(x)y′ +Q(x)y  = 0                                 ..(1) 

on the interval [a,b]. Then 

                                            c1y1(x) +c2y2(x)                                      …(2) 

is the general solution of the equation (1) on [a, b], in the sense that every 

solution of equation (1) over the interval [a, b] can be obtained from (2) by 

a suitable choice of the arbitrary constants c1 and c2.  

PROOF- 

Suppose y(x) is the solution of equation (1) on [a, b]. We already know 

that solution of equation (1) on [a, b] is completely determined by its value 

and the value of its derivative at a single point.  

If y1(x) and y2(x) be the solution of equation (1) then c1y1(x) +c2y2(x) is 

also a solution of (1) Where c1 and c2  R. 

As c1y1(x) +c2y2(x) and y(x) are both solution of equation (1) on [a, b], it 

is sufficient to prove that for some point x0  [a, b], we can find c1 and c2 

so that  

c1y1(x0) +c2y2(x0)   =   y(x0) 

c1y′1(x0) +c2y′2(x0)   =   y′(x0). 

This system of equations is solvable for c1 and c2 if  

   =    0 

It means that we have to discuss Wronskian, given as  

W(y1 , y2 ) =  

Now, we prove a Lemma which simplifies the problem of the Showing 

that the location of the point x0 is of no consequence. 

 

LEMMA 1: 

If y1(x) and y2(x) are two solutions of (1) on [a, b], then the Wronskian of 

 either identical to zero or never zero on [a, b]. 
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PROOF: 

Here it is given that         W = W(y1, y2 ) =  

W′(y1 , y2 ) =   

W′(y1 , y2) =  

Also y1 and y2 are both solutions of (1), we have  

y1′′ + Py1′ + Qy1 = 0                                                 …(1) 

y2′′ + Py2′+ Qy2 = 0                                                  …(2) 

If we multiply (1) by y2 and (2) by y1 and then subtracting, we get  

y1 y2′′  -y2 y1′′ + P(y1y2′ - y2y1′)  = 0. 

 W′ + PW  = 0 

   + PW = 0 

   = - PW  

   = - P  

On integrating, we get      W =C                    …(3) 

From calculus we know that exponential function is never zero . 

So W is zero only if C=0. 

 W is either identically zero or never zero in [a, b]. 

Now, more than half work is done. To prove the theorem, now we have to 

show that the Wronskian of two linearly independent solutions of (1) is 

not identically zero.  

 

LEMMA 2: 

If y1(x) and y2(x) are two solutions of equation (1) on [a, b], then y1(x) and 

y2(x) are linearly independent on [a, b] if and only if Wronskian  

                                    W = W(y1 , y2 ) =  

is identically zero. 

 

PROOF: 
Suppose y1(x) and y2(x) be linearly dependent. 

If either function is identically zero on [a, b] , then W(y1, y2) is obviously 

zero. If none of them is identically zero, then each one is a constant 

multiple of other (due to linear dependence). 

Let y1 = cy2 for some constant c. So y1′ =cy2′  

Now very easily it can be shown,    W(y1 , y2 ) =   =0. 

Conversely, suppose the Wronskian be identically zero. 

If y1 (or y2) is identically zero in [a, b]. Then obviously y1 and y2 are 

linearly dependent. 

Now, suppose y1 is not identically zero in on [a,b]. 

Then by continuity, there exist a sub-interval [c, d] on [a, b] where y1 is 

not vanishing at every point.  

So, we can write  
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  =  = 0 

 (  )′ = 0 

On integration, (  ) = constant on [c,d] and they have equal deviation 

also. 

Hence, y2(x) = c.y1(x). 

 y1 and y2 are linearly independent. 

 

Note - From above theorem, we have two tests to determine linear 

dependence of y1 and y2  

A) If it is convenient, show y1(x)/y2(x) = constant. 

B) Otherwise, show that W(y1,y2) = 0. 

 

EXAMPLE: Prove that y = c1sinx + c2cosx is general solution of y′′ + y = 

0 on any interval. Also obtain the particular solution for which y(0) = 2 

and Y′(0) =3. 

SOLUTION: We observe that y1(x) =sinx and y2(x) = cosx satisfy y′′ + y 

= 0. So y1(x) and y2(x) are the solution of given differential equation. 

Now, we find W(y1,y2) on [a, b]. 

                    W(y1,y2)  =  = -1  0. 

Also P(x) = 0 and Q(x) = 1 are naturally continuous on [a, b]. 

 y = c1sinx + c2cosx is the general solution of y′′ + y = 0, on [a, b]. 

We can extend [a, b] to R as it does not affects the continuity of p(x) and 

Q(x). So the general solution is valid for every x. 

For particular solution, c1sin0 + c2cos0 = 2 and c1cos0 – c2sin0 =3. 

For particular solution, c1 =3, c2 =2 

So, y = 3sinx +2cosx is the general solution with given conditions. 

 

6.4 QUALITATIVE PROPERTIES OF SOLUTONS:- 

Sometimes it is really very difficult to get the solution of 

                   y" + P(x)y' + Q(x)y = 0                                             …(1) 

in terms of known elementary functions. In such situations, we try to 

understand essential characteristic of the solution of (1) by direct analysis 

of equation itself, in the absence of formal expressions.  

To make our work easy (there is no loss of generality), let us discuss 

                                 y" + y = 0                                                     …(2) 

we have already discussed its general solution thoroughly.  

Suppose we don't know all this.  

Let's start from the scratch. Our purpose is to observe how their 

properties can be determined by (2) and initial conditions they satisfy.  
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Suppose y= s(x) be the solution of (2) with initial conditions s(0) = 0, and 

s'(0) = 1. 

 
 

Fig.1 

 

If we draw the curve, we observe that the graph of s(x) by letting x 

increase from zero, the initial conditions inform us to start the curve from 

the origin & let it rise with slope beginning at 1 

Since s"(x) = -s(x). So above x-axis, s"(x) < 0 and increase in 

magnitude. We know that s"(x) is the rate of change of s'(x) i.e. slope ; 

which decrease at an increasing rate as the curve lifts. Suppose it reaches 

at zero at,  say x= m. After that curve falls towards x-axis & the curve cuts 

x-axis at a point, say x= π. As s"(x) depends only on s(x) , we observe that 

graph between x = 0 and x = π is symmetric about x = m = π/2 and s'(π) = 

-1. A similar argument can be made for the next portion and so on 

indefinitely.  

Now, we introduce y = c(x) as the solution of (2) , determined by the 

initial condition c(0) = 1 and c'(0) = 0. With the same reasoning, as 

discussed earlier we shall show that  

s'(x) = c(x) and c'(x) = -s'(x)                                                     … (3) 

PROOF:  
From (2), we observe that  

y''' + y' = 0  

Or (y')" + y' = 0. 

Implies that derivative of solution of (2) is again a solution.  It also implies 

s(x) and c(x) are both solutions of equation (2).  From previously 

discussed theorem, it is sufficient to prove that both have the same 

derivative and same value at x = 0. This is obvious as s'(0) = - s'(x) , c(0) = 

1 and s"(0) = - s(x)= 0 , c'(0) = 0. The second formula in (3) is a natural 

consequence of the first.  

for c'(x) = s"(x) = -s(x) .  

 

Claim: 

We now use (3) to prove that  
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s(x)² + c(x)² = 1                                                                         …(4) 

On differentiating, with respect to x, we get 

2s(x).c(x) - 2c(x) s(x) is the derivative of LHS of (4),  

Which is zero also.  

=> s(x)² + c(x)² = constant  

But s(0)² + c(0)² = 1  

=> constant = 1  

Hence , s(x)² + c(x)² = 1. 

Claim : s(x) and c(x) are linearly independent.  

W[s(x), c(x) ] = s(x)c'(x) - c(x).s'(x) = -s(x)² - c(x)² = -1 ≠ 0. 

So, s(x) and c(x) are linearly independent.  

Note - From above discussion, we concluded two major things: 

1) We have squeezed almost every significant property of sinx and cosx 

from (2) by the method of differential equation alone (without using 

trigonometry).  

2) Mainly we used convexity arguments (which involves sign and 

magnitude of the second derivative)  

Generalization of above discussion is called Sturm separation theorem.  

 

6.5 STURM SERARATION THEOREM:- 

  If y1(x) and y2(x) are two linearly independent solutions of y" + P(x)y' + 

Q(x)y = 0 ,  then the zeros of these functions are distinct and occur 

alternatively , in the sense that y1(x) vanishes exactly once between two 

successive zeroes of y2(x), and conversely.  

PROOF :  Since y1 and y2 are linearly independent. So, W (y1, y2) ≠ 0. 

Since it is continuous, so must have constant sign.  

Now we show that y1 and y2 have a common zero.  

Otherwise, W(y1, y2) = 0 , which is not possible.  

So we now assume that x1 and x2 are successive zeroes of y2 and we shall 

prove that y1 vanishes between these two points.  

Obviously, in this situation W(y1, y2) = y1(x)y'2(x) - 0  

  both factors y1(x) and y′2(x) ≠ 0. 

Also y′2(x1) and y′2(x2) must have opposite sign, because if y2 is increasing 

at x1, it must be decreasing at x2 and vice -versa.  

As the wronskian has constant sign, y1(x1) and y2(x2) must also have 

opposite signs. 

But y1(x) is continuous. 

 y1(x) must be zero at some point between x1 and x2. 

Now we show that y1(x) can’t be zero more than once between x1 and x2. 

For if, it vanish more than once between x1 and x2, then the same 

argument shows that y2 must vanish between these zeroes of y. But this is 

a contradiction to the initial assumption that x1 and x2 are successive 

zeroes of y2. 
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EXAMPLE – Reduce y′′+ P(x)y′+ Q(x)y = 0                    …(1) 

                        into  u′′+ q(x)u = 0                                        …(2) 

by suitable choice of dependent variable. 

SOLUTION – Generally form (1) is termed as ‘standard form’ while (2) 

is known as ‘normal form’. 

Let us put y(x) = u(x)v(x) in (1), 

y′ = uv′+ u′v 

and                                      y′′ = uv′′+2u′v′ + u′′v 

From (1) ,  

                    vu′′+ (2v′+ Pv)u′ + (v′′+Pv′+ Qv)u   =  0                  …(3) 

If we make coefficient of u′ as zero, then 

                         2v′+ Pv = 0 or v =                                    …(4) 

Putting this in equation (3) and after some manipulation, we get (2) with 

               q(x) = Q(x) –(1/4)P(x2) – (1/2)P′(x)                                 …(5) 

From(4), we observe that v  0, for any point, so the above transformation 

of (1) into (2) has no effect whatever on the zeroes of solution. 

 

NOTE  

Now we shall observe that if q(x) in (2) is negative function, then the 

solutions of this equation don’t oscillate. 

 

THEOREM – If q(x) < 0, and if u(x) is non-trivial solution of u′′+ q(x)u 

= 0, then u(x) has at most one zero. 

PROOF: Here we assume that u(x) is not identically zero i.e. u(x) is non-

trivial.  Let x0 be a zero of u(x) i.e. u(x0) = 0. So u′(x0)  0.  

Let us assume u′(x0) > 0. 

 u(x) is positive over some interval to the right of x0. 

Given that q(x) < 0. So u′′(x) = -q(x)u(x) is positive function on the same 

interval. 

 u′(x) is an increasing function. 

 u(x) can’t have zero to the right of x0. 

In the similar way we can prove that u(x) has no root to the left of x0. 

A similar argument hold when u′(x) < 0. 

Hence u(x) has either no zeroes at all or only one. 

 

THEOREM: Let u(x) be a non-trivial solution of u′′+q(x)u = 0, where 

q(x) > 0, for all x > 0. If  

                                                                   …(6) 

Then u(x) has infinitely many zeroes on the +ve x-axis. 

 

PROOF: We prove the result by the method of contradiction. 

Let us assume that u(x) = 0, at most finite number of times for 0 < x < , 
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So that a point x0 > 1 exist, with property that u(x)  0 for all x  0.  As 

u(x) can be replaced by –u(x), if necessary,  so without loss of generality , 

we can assume that u(x) > 0, for every x  x0. 

Claim: u′(x) will be negative somewhere to right of x0, so that there will 

be one or more zero after x0. 

Let v(x) =  for some x   0.  A simple calculation shows v′(x) = q(x) 

+ v(x)2  

 on integrating from x0 to x, x > x0, 

v(x) – v(x0) = +  

From (6), we conclude that v(x) is positive if x is large enough. 

 u(x) and u′(x) have opposite signs if x is very large. 

 u′(x) is –ve. 

 u(x) has one more root. 

So the proof is complete. 

 

6.6    SECOND ORDER DIFFERENTIAL         

        EQUATIONS:- 

 

Ordinary and singular point - 
All of us know that the general homogeneous second order differential 

equation is of the form 

                   y" + P(x)y' + Q(x) = 0                                     …(1) 

Sometimes it is not possible to solve a above equation in terms of familiar 

elementary functions. On some other occasion viz when P(x) and Q(x) are 

constant and in a few other cases, it is possible to solve equation (1) 

explicitly.  

These types of equations have a huge significance in pure and applied 

mathematics. But in general, power series solutions are only choices as 

solutions.  

The main concept behind the solution of equation (1) is that the behavior 

of its solution near the point x0 depends on the behavior of its coefficient 

functions P(x) and Q(x) near x0. Here we restrict ourselves to the case 

when P(x) and Q(x) are “well behaved” in the sense of being analytic at 

x0. It means each P(x) and Q(x) has a power series expansion valid in 

some neighborhood of x0. 

In such cases x0 is called 'ordinary point' of equation (1). Consequently 

every solution of equation (1) is also analytic at this point. It means, we 

can say that the analyticity of P(x) and Q(x) at a certain point say x0 imply 

that solutions of equation (1) are also analytic at there.  

Now we can define 'singular point'. A point which is not ordinary point 

is called singular point.  

Before proving the claims in the above paragraph let us discuss some 

elementary concepts, which will be use frequently here.  
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6.7 A REVIEW OF POWER SERIES:- 

 When we study 'elementary analysis', we generally encounter with some 

specific functions known as 'elementary functions'.  There are two types 

of 'elementary functions' viz- 

 

Algebraic functions - Such functions y = f(x) satisfy an equation of the 

form  

                 Pn(x)yn + Pn-1(x)yn-1 + ................. + P1(x)y + P0(x) = 0  

where each Pi(x) is a polynomial. The functions may be polynomial or 

rational functions.  

 

Transcendental/Non-algebraic Functions-  All non algebraic functions 

viz trigonometric, inverse trigonometric, exponential and logarithmic 

functions with all possible combinations viz adding, subtracting, 

multiplying and dividing or forming a 'function of a functions' are 

transcendental functions.  

If you move ahead that is beyond elementary functions, there are higher 

'transcendental functions' which are generally called 'special functions'. 

Some important special functions are Gamma and Beta Function, 

Reimann- zeta function, elliptical functions and some other used 

especially in 'Mathematical Physics'.  

In 18th and 19th centuries various mathematician's developed the field of 

special functions viz Eular, Gauss, Abel, Jacobi, Weirstrass, Reimann, 

Hermite, Poincare etc. But with time the taste of mathematical community 

changed to broader class of functions i.e. class of continuous functions, 

class of integrable functions etc.  

So instead of studying biography (that is a particular type of special 

function), we preferred sociology (i.e. a class of particular type of 

functions). For balance treatment of analysis we need both of them.  

Special functions have a huge variety on their origin, nature and 

applications. However one large group with considerable degree of unity 

consists of those which arise as solutions of second order linear 

differential equations.  

 

DISCUSSION-   Now we try to understand (in general way), how 

these functions arise?  
Let us take                                 y" + y' = 0                         …(1) 

Then from the knowledge of elementary calculus,  

y = sinx          and           y = cosx 

Satisfy equation (1). So their linear combination will also be a solution.  

Now we discuss the equation,  

                                          x y" + y'  + xy= 0                      …(2) 



ADVANCED DIFFERENTIAL EQUATIONS-I MAT 504 
 

Department of Mathematics  
Uttarakhand Open University Page 152 
 

Here situation is very typical.  We can't solve this equation in terms of 

elementary functions.  

We know that we can solve second order linear equations with constant 

coefficients by change of independent variable in terms of elementary 

functions.  

But other second order linear differential equations can't be solved in this 

way. 

In this chapter we solve these equations in terms of power series & define 

special functions  

 

POWER SERIES – 
An infinite series of the form 

   = a0 + a1x + a2x
2 + ……..                              …(3) 

is called a power series in x. 

If we generalize above series, we may write  

= a0 + a1 + a2
2 + …    …(4) 

as a generalized power series in (x-x0). 

By  the translation of coordinates, equation(4) can be reduced to 

equation(3). 

The series (3) is said to converge at a point x, if      

exists and in this case the sum of series is the value of this limit. 

Obviously this power series is convergent at x = 0. If we discuss the 

convergence of power series, we observe three pattern which can be 

illustrated by these examples  

  =   1 + x + 2!x2 + 3!x3 ……..           …(5) 

    =   1 + x + x2/2!  + x3/3! + …….  …(6) 

  =  1 + x + x2 + x3 ……..                       …(7) 

Equation (5) converges only for x = 0. If x  0, it diverges. 

Equation (6) converges for each x  R. 

Equation (7) converges if |x| < 1 and diverges if |x| > 1. 

Power series of type (5) have no much practical uses; while of type (6) are 

easiest to handle. 

Generally, majority power series of type (7), with a “radius of 

convergence” defined as   

‘Each power series in x has a radius of convergence, R where 0   R  ,     

with the property that the series converges if |x| < R and diverge if |x| > R.’ 

We observe that R always exists. If R is finite and non-zero, then we can 

determine ‘radius of convergence’ (-R, R) s.t. power series converges 

within the interval while diverges outside the interval. At the end points of 

interval of convergence, a power series may or may not converge. 

Let us suppose   converges for |x| < R, R > 0. 

We denote its sum by f(x). So 

             f(x) =    =    a0 + a1x + a2x
2 + ……..          …(8) 
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Then for |x| < R, f(x) is continuous and derivatives of all order exists. Also 

the series can be differentiated term by term as : 

f ′(x) =  = a1 + 2a2x + 3a3x
2 + … 

f ′′(x) =  = 2a2 + 3.2a3x +… 

and so on. 

Each of these resulting series is convergent for |x| < R. 

These successive differentiated series produce the following basic formula 

                              an   =                                              …(9) 

Also we know that the series (8) can be integrated term by term, provided 

the limits of integration lie inside the interval (-R, R). 

Suppose we have another power series in x, which converges to function 

g(x) for |x| <R,  i.e. 

          g(x) =  = b0 + b1x + b2x2 + ……..           …(10) 

then we can define  

f(x)   g(x) =  = a0 b0 + (a1  b1)x + ….. ……..     

i.e. term by term addition/ subtraction is possible. Also f(x) & g(x) can be 

multiplied as these are polynomials. 

i.e.  f(x)g(x)  =   , where cn = a0bn + a1bn-1 + …… anb0. 

Explicitly, f(x)g(x) = (a0 + a1x + a2x
2 + … )(b0 + b1x + b2x2 +……..) 

f(x)g(x) = a0b0 + (a0b1 + a1b0)x + (a0b2 + a1b1 + a0b1 + a2b0)x
2 + …… 

                                 (a0bn + a1bn-1 +…….. anb0)x
n + ….. 

If both series converge to the same function i.e. f(x) = g(x) for  |x| < R, 

then equation (9) reflects that a0 = b0,  a1 = b1,…… 

Suppose f(x) is a continuous function with derivates of  all order for |x| < 

R and R > 0. 

Is it possible to represent f(x) by a power series?  

If we use equation (9) to an, the naturally we’ll hope  

           f(x) = xn = f(0) + f ′(0)x + x2 + ……    …(11) 

             will hold for |x| < R. 

Generally above equation is true, but unfortunately there are some counter 

examples to disprove it (we shall study this in real analysis). 

If a function is analytic at x0, then definitely we can obtain its power series 

expansion. 

A function f(x) with the property that power series expansion of the form  

                       f(x) =                                  …(12) 

is valid for some x0 is said to be analytic at x0. 

This is one of the advantages (there are many more) of complex analysis 

over real analysis. 

 

NOTE – 

Though according to syllabus, we have to discuss differential 

equations of second order. But before jumping there, it would be 

better to discuss series solution of first order differential equations. 
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First order differential equations can also be solved with the help of 

elementary functions. 

Let’s discuss              y′   =   y                                           …(1) 

Let us consider that this equation has a power series solution. 

y = a0 + a1x + a2x
2 + ………… +anx

n + ….        …(2) 

which converges for |x| < R, R > 0. 

It means we assume that equation (1) has a solution, which is analytic at 

the origin. 

So, equation (2) can be differentiated term by term for |x| < R. 

 y′ = a1+ 2a2x + 3a3x
2 + ………… +(n+1)an+1x

n + ….   …(3) 

As  y′ = y, so the series (2) and (3) must have the same coefficients. 

 a1 = a0, 2a2 = a1, 3a3 = a2,……… (n+1)an+1 = an,….. 

 a1 = a0, a2 = a1/2, a3 = a0/2.3, …….   , an =a0/n!, …… 

So y = a0( 1 + x + x2/2!  + x3/3! + ….. xn/n! +…)                    …(4) 

Here, a0  R. 

This example suggests a useful method for obtaining the power series 

expansion of a given function. 

 

Note – Now we return to the study of second order linear differential 

equations : 
First of all we discuss some illustrations  

 

EXAMPLE : Let us discuss     y′′ + y = 0                             …(1) 

We know that general homogenous second order differential equation is of 

the form 

                      y′′ + P(x)y′ + Q(x)y = 0                             …(2) 

here P(x) = 0, Q(x) = 1 

As these are analytic at all points, so we can think of a solution as 

y = a0 + a1x + a2x
2 + ………… +anx

n + ….                        …(3) 

y′  =  a1+ 2a2x + 3a3x
2 + ………… +(n+1)an+1x

n + ….       …(4) 

y′′  =  2a2+ 3.2a3x + 3.4a4x
2 +…… +(n+1)(n+2)an+2x

n + ….        …(5) 

Putting equation (3) & (5) in equation (1) and adding term by term, we get  

(2a2+ a0) + (2.3a3 +a1)x + (3.4a4 + a2)x
2 +   ………………. 

                                            [(n+1)(n+2)an+2 +an]x
n +   …. = 0. 

Equating to zero, the coefficients of successive power of x, we get  

2a2 + a0 = 0, 2.3a3 + a1 =0,   3.4a4 + a2 = 0, (n+1)(n+2)an+2 + an =0,….. 

On solving  

a2 = -a0/2,  a3 =-a1/2.3,     a4 =a0/2.3.4,    a5 = a1/2.3.4.5, ….. 

So from (3), 

y = a0( 1- x2/2! + x4/4! +….. ) + a1(x – x3/3! + x5/5!- ….)      … (6) 

So,                             y1(x) =(1- x2/2! + x4/4! +….. ) 

And                          y2(x) = (x – x3/3! + x5/5! - …… )    

With the help of ratio test, it can easily shown that both series are 

convergent for every x   R. 
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So their addition is justified. Also from calculus  

                                             y1(x) = cosx  and y2(x) = sinx 

                                   y = a0cosx    +a1sinx : a0,a1  R. 

NOTE – 

The problem was simple. So we easily got two familiar elementary 

functions to make its solution very easy. But in general, we are unable to 

get a familiar elementary function. Let’s see  

 

6.8 LEGENDRE’S EQUATIONS:- 

Let us discuss the series solution of Legendre’s equation  

(1 - x2)y′′ – 2xy′+ p(p+1)y = 0                                      …(7) 

Here p is a constant. Obviously the coefficient functions  

P(x) =     and     Q(x) =                                     ...(8) 

are analytic at the origin. 

 Origin is an ordinary point & so we can think about a solution  

            y =                                                  …(i) 

            y′ =  

and      y′′ =                     …(ii) 

Replacing n+1 by n in equation (i), we get 

y′ =   or xy′ =  

                      -2xy′ =                                            …(iii) 

Now  replacing n+2 by n in equation (ii), we get 

y′′ =   

                -xy′′   =                                         …(iv) 

And                      p(p+1)y =                            …(v) 

From equation (7), the sum of these series is required to be zero, so the 

coefficient of xn must be zero for each n. 

 (n+1)(n+2)an-2 – (n-1)nan -2nan + p(p+1)an = 0. 

On solving we get, 

                                                            …(9) 

RECURSION FORMULA: enables us to express an in terms of a0 and a1 

according as n is even or odd  
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…..and so on. 

Putting all these in y =  , we obtain 

y = a0[ 1- +  -  + 

…….] 

   + [ x -    - 

  

  + ……….]                                                                                  …(10) 

This is the formal solution of equation (10) with a0, a1  R 

Both bracket series are called Legendre’s functions. 

   

Note – Whatever we have learnt from the examples, can be generalized 

as following theorem, which can tell us about the nature of solutions near 

ordinary points. 

 

THEOREM: Let x0 be an ordinary point of the differential equation 
y′′+ P(x)y′ + Q(x)y = 0                                                           …(11) 

with a0 and a1 as arbitrary constants. 

Then there exists a unique function y(x) which is analytic at x0, is the 

solution of equation (11) in a certain neighborhood of this point and 

satisfy the initial condition y1(x0) = a0 and y′(x0) = a1 

Furthermore, if the power series expansion of P(x) and Q(x) are valid on 

interval  

|x- x0 | < R, R > 0; then the power series expansion of this solution is also 

on the same interval. 

PROOF: There is no loss of generality, if we restrict ourselves at x0 = 0. 

With this slight simplification, the hypothesis of theorem is that P(x) and 

Q(x) are analytic at x0 and therefore has a power series expansion. 
P(x) =  = p0 + p1x + p2x

2 +…                                             …(12) 

 Q(x) =  = q0 + q1x + q2x
2 +…                                           …(13) 

which converge on |x| < R, R > 0. 

Keeping in view the specified initial conditions, we try to find out the 

solution of equation for  

for (11) in the form a power series. 
y =  = a0 + a1x + a2x

2 +…                                                  …(14) 
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with radius of convergence at least R. 

Now y′ =   = a1 + 2a2x + 3a3x
2 +…                   …(15) 

And  

y′′ =  = 2a2 + 2.3a3x + 3.4a4x
2 +…       … (16) 

As we now know the rule of multiplication of power series, so 

p(x)y′ = ( )[  ] 

            =                                        …(17) 

Q(x)y = ( )( ) 

            = )                                                       …(18) 

If we substitute all these in equation (11) and add series term by term, we 

obtain 

 +   + ]xn 

=0 

Hence we the following recursion formula for an : 

(n+1)(n+2)an+2 = -                   … (19) 

If we put n = 0,1,2,3,….in equation (19), we get 

2a2 = -(p0a1 + q0a0 ), 

2.3a3 = -(p1a1 +2p0a2 + q1a0 + q0a1 ), 

3.4a4 = -( p2a1 + 2 p1a2 +3 p0a3 + q2a0 + q1a1 + q0a2 ) and so on. 

Thus we have determined a2, a3, a4, …… in terms of a0 and a1. 

So the resulting series (14), which formally satisfy (11) and the given 

initial conditions, is uniquely determined by these requirements. 

As we discussed some examples, we observed very simple ‘two term 

recursion formulae ‘for the coefficients of the unknown series solutions. 

These are very simple expressions which makes very easy to determine 

the general term & precise information about their radii of convergence. 

But if we observe equation (19), it is clear that it may not be possible in 

general. In many cases, the best we can do to find the radii of convergence 

of the series expansion of P(x) and Q(x) & to conclude from the theorem 

that the radius of convergence for the solution must be at least as large as 

the smaller of these numbers. 

Thus for Legendre’s equation, it is clear from (8) and the familiar 

expansion  

 = 1 + x2 + x4 + ………; R =1. 

That R = 1, for both P(x) and Q(x). 

 Any solution of the form y must be valid at least on the |x| 

< 1.  

EXAMPLE1:  Find the general solution of (1+x2)y”+ 2xy’- 2y = 0, in 

terms of power series in x. Can you express this solution by means of 

elementary functions? 
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SOLUTION:           y = a0(1 + x2 -1/3 (x4 ) + 1/5(x6) + …..) + a1x 

            =a0(1+xtan-1x) +a1x 

EXAMPLE2: Now discuss the solution of y” + xy’ + y = 0…...(1) 

Obtain the general solution y =  in the form of y = a0y1(0) + 

a1y2(x), where y1(x) and y2(x) are power series. 

(1) By ratio test, determine that y1(x) and y2(x) converges for every x 

 R. 

(2) Prove that y1(x) is the series expansion of  . 

SOLUTION (1):  y1(x) = 1 -  +   -  + …. 

                          y2(x) = x -  +  - …… 

EXAMPLE3: Verify that the equation y′′ + y′ – xy = 0 has three term 

recursion formula. Also find its series solution y1(x) and y2(x) such that – 

SOLUTION: y1(0) = 1,  = 0. 

                   y2(0) = 0,  = 1 

                   an+2  =   

                  y1(x) = 1 +  -  +  + ….. , 

                y2(x) = x -   +  +  -  + …. 

 

6.9 REGULAR SINGULAR POINTS:- 

As we already know that a point x0 is a singular point of differential 

equation  

      y′′ + P(x)y′ + Q(x)y = 0                                                 …(1) 

If one or other (or both) of the coefficient functions P(x) and Q(x) fails to 

be analytic at x0. 

Now in such situations, if we want to study the solution of equation (1) 

near x0, methods and theorems discussed in previous section are not 

applicable. 

There are many physical situations, where we come across such 

singularities; and we need appropriate method to study the behavior of 

solution near x0. So such singularities demand particular attention. As a 

simple example, x = 0 is a singular point of 

y′′+ (2/x)y′ + (-2/x2)y = 0. 

It can be easily verified that y1 =x and y2 =x-2 are independent solutions 

provided x > 0. 

 y = c1x +c2x-2 is the general solution for x > 0. 
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 If we want to discuss the behavior of solution near x = 0, it is 

possible by taking  

c2 =0; otherwise very little information can be obtained near the singular 

point x0. 

To overcome (up to great extent) this difficulty, let us define: 

 

Regular Singular Point   
A singular point x0 of equation (1) is said to a regular point if the function 

if  (x –x0)P(x) – (x – x0)
2Q(x) are analytic. Roughly speaking, it means the 

singularity in P(x) cannot be worse than (1/x-x0) and that in Q(x) cannot 

be worse than (1/x-x0)
2,  otherwise x0 will be called ‘irregular point’.e.g. : 

Legendre’s Equation is: 

(1-x2)y′′ -2xy′ + p(p+1)y = 0 

                               y′′ - ( )y′ + y = 0 

Obviously x = 1 and x = -1 are singular points. 

Now for x = 1, 

(x – 1)P(x) =  =  

(x – 1)2Q(x) =  =  

Since (x – 1)P(x) and (x – 1)2Q(x) are analytic at x = 1. 

                           x = 1 is a regular singular point. 

Similarly x = - 1 is a regular singular point. 

 

6.10 BESSEL’S EQUATION OF ORDER ‘p’:- 

 

Let us take Bessel’s equation of order p, where p is a non-negative 

constant. 

                                    x2y′′ + xy′ + (x2 –p2)y = 0 

                       y′′+(1/x)y′+ [(x2 –p2)/x2]y = 0 

Obviously x = 0 is a singular point. 

Now , xP(x) = x.1/x and x2Q(x) = x2 – p2 

Clearly xP(x) and x2Q(x) are analytic. 

So x = 0 is a regular singular point. 

 

SOLVED EXAMPLE 
 

QUESTION 1: For each of the following differential equation, locate and 

classify its singular point on the x-axis   

(i) x3(x-1)y′′- 2(x-1)y′+ 3xy = 0 

(ii) x2(x2 -1)2y′′ - x(x-1)y′+2y = 0 
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(iii) x2y′′+ (2-x)y′= 0 

(iv) (3x + 1)xy′′ - (x+1)y′+ 2y = 0. 

SOLUTION: 
(i) x = 0 is irregular , x = 1 is regular 

(ii) x = 0,1 are regular ; x = -1 is irregular. 

(iii) x =0 is irregular. 

(iv) x = 0, -1/3 are regulars. 

 

  QUESTION2:  Discuss the nature of the point x = 0, for each of the 

following equation  

(i) y′′ + (sinx)y = 0 

(ii) xy′′ + (sinx)y = 0 

(iii) x2y′′ +(sinx)y = 0 

(iv) x3y′′+ (sinx)y = 0 

(v) x4y′′+ (sinx)y = 0. 

SOLUTION:  

(i)  ordinary point 

(ii) ordinary point 

(iii) regular singular point 

(iv) regular singular point 

(v) iregular singular point. 

 

6.11 PICARD’S THEOREM:- 

 

Let f(x,y) and  be continuous functions of x and yon a closed 

rectangle R with sides parallel to x-axis. If x0,y0 be an interior point of R, 

then there exist a number h > 0 with the property that the initial value 

problem 

                         y’= f(x,y), y(x0) = y0                              … (1) 

has one and only solution y =y(x) on the interval |x –x0 |  h. 

Proof- Proof of the theorem is very long and intricate. So we will do it in 

various steps as  

Step 1 – We already know that every solution of (1) is also a continuous 

solution of the integral solution. 

                y(x)  = y0 +                             … (2)   

and vice versa. 

This helps us to conclude that (1) has a unique solution on an interval 

 |x –x0|  h, if and only if (2) has unique continuous solution in the same 

interval. 

Now these sequence of functions yn is defined as  

y0 (x) = y0 
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                y1(x) = y0 +            …(3) 

                 y2(x) = y0 +          …(4) 

yn(x) = y0 +  

which converges to the solution of equation (2). Also we observe that 

yn(x) is nth partial sum of series of the functions 

y0 +  = y0 + [ y1(x) – y0(x) ] + …..… [yn(x) – yn-

1(x) ] + …… 

 Convergence of the sequence (3) is equivalent to the convergence 

of of this series. 

To prove it, let us take h > 0 s.t. |x – x0 |  h. 

Claim: Now we show that on this interval, following statements are true. 

(i) The series (4) converges to a function y(x), 

(ii) y(x) is a continuous solution of (2) 

(iii) y(x) is the only continuous solution of (2). 

Now we prove these one by one   

(I) As again is in the statement, f(x,y) and  are continuous 

functions on the rectangle R. As R includes its boundaries so it 

is closed and bounded. 

     f(x,y) and  are also bounded on R. 

     there exist constant M & k such that  

|f(x,y)|  M                                                         … (5) 

| f(x,y)|  k                                                         …(6) 

For every (x,y)  R. 

Suppose (x,y1) and (x,y2) be distinct points in R with same x-coordinates. 

We can use mean value theorem such that 

f(x,y*)| 

Or                = f(x,y*)|. |   …(7) 

For some y1 <  y2 

Using equation (6), we can write  

          |f(x,y1) – f(x,y2)|  k|y1 –y2|                                          … (8) 

For any points (x,y1) and (x,y2)  R. 

Using Archimedean property, we can choose h > 0 s.t. 

Kh < 1                                                                    …(9) 

Observe that the rectangle R′ defined by |x –x0 |  h and |y – y0|  mh is 

contained in R. 
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Now, we restrict ourselves on |x –x0 |  h. 

To prove (1), it is sufficient to prove that the series  

|y0(x)| + |y1(x) – y0(x)| +|y2(x) – y1(x)| + ……|yn(x) – yn-1(x)| …(10) 

Converges. 

For that purpose first we estimate the terms |yn(x) – yn-1(x)|. 

We essentially observe that each of the function yn(x) has a graph, which 

lies in rectangle R′  and consequently in R.This is obvious for y0(x) = y0. 

 Points [ t,y0(t)] are in R′. 

From (5), we have f[t,y0(t)]   M and  

|y1(x) – y0 | = | |   Mh 

Which proves the statement for y1(x). 

 Points [ t,y1(t)] are in R′. 

So, f[t,y1(t)]   M and |y2(x) – y0 | = | |   Mh. 

Similarly, |y3(x) – y0 | = | |   Mh, and so on. 

We know that continuous function on closed interval have maximum 

and minimum value. Here y1(x) is continuous. Let us define  

 a = max|y1(x) – y0 | 

 |y1(x) – y0 |  a. 

 Also the points [t, y1(t)] and [t, y0(t)] lie in R′. 

So, from (8), we have 

 |f[t,y1(t)] – f[t,y0+(t)]|  k|y1(t) –y2(t)|  ka; 

and we have  

 |y2(x) – y1(x)| = | |   kah =a(kh). 

In the similar way, 

| y3(x) – y2(x)| = | |   k2ah =a(kh)2, 

If we continue in this way, we obtain  

| yn(x) – yn-1(x)|   a(kh)n-1 ,     n=1,2,3……….. 

Hence each term of series (10) is less than or equal to the corresponding 

term of the series of the constants. 

|y0| + a + a(kh) + a(kh)2 + ………. + a(kh)n-1 + … 

From (9), kh < 1 

 This is a G.P. with common ratio less than 1. Hence it is 

convergent. 

 By comparison test, (10) is also convergent. 

 (4) converges to a sum, say y(x). 

Hence yn(x)  y(x) 
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Since the graph of each yn(x) less in R′, then obviously y(x) will 

follow this tradition. 

(ii) Now we show that y(x) is continuous. 

From (i), we observe that convergence of yn(x) to y(x) is uniform i.e. 

by choosing sufficient large n, we can make yn(x) as close as we please 

to y(x) forch every x in the interval . 

 If  is given, n0  N such that if n  n0,  we have  

| y(x0) - yn(x) | < t , for every x in the interval. 

Hence each yn(x) is continuous sequence & sequence is uniformly 

convergent. Hence the limit function y(x) is also continuous. 

Now we show that y(x) is actually the solution of equation (2). 

i.e. we have to show that  

y(x) – y0 -   = 0                                          …(11) 

we already know that  

yn(x) – y0 -   = 0                            …(12) 

if we subtract left side of equation (12) from the left side of (11) , we get  

y(x) – y0 -  = y(x) -  yn(x) - 

 

so we obtain  

| y(x) – y0 -  | = | y(x) -  yn(x) - 

 | 

As the graph of y(x) lies in R′. 

 Graph of y(x) lies in R. So from (8), 

 | y(x) – y0 -  |  | y(x) – yn(x)| + kh.max|yn-1(x)  - 

y(x)|                                                                            …(13) 

Now uniform convergence of yn(x) implies that RHS of (13) can 

be made as small as we please by taking large n. 

 LHS of (13) must be zero. 

 y(x) is the solution of (2). 

 
 (iii)  Uniqueness of the solution :  

      Suppose Y(x) is another solution of equation (2), on the interval |x – x0 

|  h. We will prove that y(x) = Y(x) on this interval. For that, it is 

necessary to know that graph of Y(x) lies in R′ and consequently in R. 

Let us establish this. 
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Fig.2 

                                                
   Suppose the graph Y(x) leaves R′. Then the properties of this function 

(i.e. continuity and he fact Y(x0)  = (y0). 

Imply that there exist an x1 such that |x1 – x0 | < k,   |Y(x1) – y0| < Mh, 

and |Y(x) – y0| < Mh if |x – x0 | < |x1 – x0 | 

So    =  >  = M. 

Now by using mean value theorem, there exist a number x* with x0 < x* < 

x1 such that  

  =  |Y(x*) | =  | f[x*, Y(x*)] |  M 

Because the point [x*, Y(x*)]  R′. But this is contradiction. 

So the graph of Y(x) lies in R′. 

Now we prove the uniqueness  part. 

Since y(x) and Y(x) both are solution of (2). 

|Y(x) – y(x)| = |  ) |  kh.max| Y(x) – y(x)|  

As graph y(x) and Y(x) lies in R′, so we used equation (8). 

 max|Y(x) – y(x)|     kh.max|Y(x) – y(x)| . 

 max|Y(x) – y(x)|   = 0, otherwise 1  kh, contradicts ! 

 Y(x) = y(x) 

i.e. solution of (2) is unique. 

 

NOTE- 



ADVANCED DIFFERENTIAL EQUATIONS-I MAT 504 
 

Department of Mathematics  
Uttarakhand Open University Page 165 
 

This theorem is called local existence and uniqueness theorem, because 

it guarantees the existence of a unique solution in some interval |x – x0|  

h, where h may be very small. 

 

6.12 METHOD OF SUCCESSIVE 

APPROXIMATION:- 

 

Some simple types of differential equations can be solved explicitly in 

terms of elementary functions. Some other can be solved with the help of 

power series. 

However many differential equations falls outside these categories. 

Now we discuss another method say successive approximation to solve 

initial value problems. 

Let us take y′ = f(x,y) , y(x0) = y0                                   …(1) 

Here f(x,y) is an arbitrary function which is continuous in some 

neighborhood of (x0,y0). 

 
Fig.3 

 

Geometrically speaking, we are devise a method for constructing a 

function y = f(x), whose graph passes through the point (x0,y0) & also 

satisfy y′ = f(x,y) in some neighborhood of x0. 

The key to this method lies in replacing the IVP (1) by the equivalent 

integral equation. 

y(x) = y0 +                                                …(2) 

Since the known function occurs under the integral sign, so it is called 

integral equation. 
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Suppose y(x) be the solution of equation (1).  

 y(x) is continuous and RHS of y′(x) = f[x,y(x)] is a continuous 

function of x. 

Now we can integrate from x0 to x & by using y(x0) = y0, we get the result 

(2). Since upper limit is also x, so to avoid confusion, dummy suffix x can 

be replace by t and we get exactly (2). 

Thus any solution of (1) is continuous solution of (2). 

Conversely suppose y(x) be continuous solution of (2). 

Integral will vanish when x = x0 and so y(x0) = y0.If we differentiate (2) 

we get  

                                              y′(x) = f[x, y(x)]. 

 (1) and (2) are equivalent in the sense that the solutions of (1) (if 

any exist) are precisely the continuous solution of (2). 

Now we try to solve (2) by a process of integration. We start with a rough 

approximation to a solution and prove it in every next step by applying a 

repeatable process. 

Let us start with y0(x) = y0. 

Actually it is a horizontal straight line through the point (x0,y0). 

We put in RHS of (2) to obtain possibly a better approximation y1(x) as 

 y1(x) = y0 +           

To make it further a better approximation y2(x), we do 

y2(x) = y0 +  

After n steps, we get 

yn(x) = y0 +                                              …(3) 

This method is known as Picard’s method of successive approximation. 

EXAMPLE: Discuss the solution of initial value problem 

  y′ = -y,  y(0) = 1                                                                    …(1) 

if we use ordinary calculus, we have  

 = y 

  =  

 logey = x + c                                                                  …(i) 

given x =0 and y = 1 

 logey = 0+ c 

 c = 0. 

So,  logey = x or y = ex                                                        …(ii) 

We again solve this IVP by successive approximations. 

Let y0(x) = 1 and yn(x) = 1 +                       …(iii) 
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So y1(x) = 1 +    =  1  + x 

            y2(x) = 1 +    =  1  + x +   

Similarly y3(x)  =  1  + x +   +  

And in general 

yn(x) = 1  + x +   +  + ….       + + . 

We observe that when n  , RHS  

This is the solution. 

EXAMPLE: Solve the initial value problems by Picard’s method : 

(i) y′ = x +y,    y(0) = 1. 

(ii) y′ = y2,         y(0) = 1 

(iii) y′ = 2x(1+y),   y(0) = 0. 

SOLUTION:(i) y1(x) = 1  + x +  

                       y2(x) = 1  + x +   +  

                        y3(x) = 1  + x +   +  +  

and  

 Finally             y(x) = 2ex – x – 1. 

SOLUTION: (ii) y1(x)   =  1  + x 

                     y2(x) = 1  + x + x2  +  

        y3(x)  = 1  + x + x2  + x3 + (2/3)x4 + (1/5)x5 + (1/4)x6  +(1/63)x7 

SOLUTION: (iii) y1(x)   = x2  

                            y2(x) = x2 +  

                         y3(x) = x2 +  + , and so on. 

                                 y(x) = - 1 

Note – Now one may have doubt whether solution of an initial value 

problem by approximation method always exist? For that reason we 

already have proved Picard’s Theorem. This theorem emphasizes on 

existence of unique solution of given IVP. That’s why this theorem is 

called ‘existence and uniqueness theorem’. There are some other versions 

of this theorem, you can explore them now. 

 

6.13 EIGENVALUES, EIGENFUNCTIONS & THE 

VIBRATING STRING:- 
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Let us assume a non-trivial solution y(x) of the equation 

y′′ + y  = 0                           …(1) 

satisfying two boundary conditions 

y(0) = 0 and y  = 0.              …(2) 

Erstwhile we solve the initial value problems. Actually we try to solve 

second order differential equations with conditions at a single point x0. 

But now we are discussing boundary value problems.i.e. a second order 

differential equation with two different conditions at two different points. 

This types of problems are more difficult and deep (in both theory and 

applications) than initial value problems. 

If λ = 0, in equation (1),  y(x) = c1x + c2 

If λ < 0, then by theorem discussed initial part of this chapter, only the 

trivial solution of (1) can satisfy. 

If λ > 0, then solution of equation (1) is  

y(x) = c1sin x + c2cos x. 

Using y(0) = 0, we get y(x) = c1sin x                                   …(3) 

For y( ) = 0,  .  = n , n is a positive integer. 

So,  = n2 i.e. ,  = 1,4,9,16,……. 

These values of ,  are called ‘eigenvalues’ of the problem. 

Corresponding solutions of sinx, sin2x, sin3x, ……                 …(4) 

Are called respective ‘eigenfunction’. 

Obviously eigenvalues are unique while eigenfunctions are not. Before 

going ahead, we remember two points  

(i) Eigenvalues from an increasing sequence of natural numbers, 

diverging to infinity. 

(ii) nth eigen function i.e. sin(nx), becomes zero at end point of  

[0, ] & has exactly (n-1) zeroes inside the interval. 

We use this concept thoroughly in various physical phenomena 

viz vibrating strings, harmonic oscillator, heat equations etc. 

 

NOTE : Observing huge size of this unit, we are giving only statement of 

following theorem. 

 

6.14 FORIER CONVERGENCE THEOREM:- 

 

The Fourier series for f(x) converges to f(x) at all values of x where f(x) is 

continuous. 
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If f(x) has a discontinuity at x = a, then Fourier series converges to  [f(a+) 

+ f(a-)]. It means at the point of discontinuity, the value of function is 

redefined as the average of its two one sided limits there, 

                                        f(a) = [f(a+) + f(a-)] 

Then the Fourier series represents the function everywhere. 

 

6.15 OBJECTIVE QUESTIONS:- 

 

Q1    If  f(x) is identically zero and g(x) is non-zero over a common 

domain, then f(x) and g(x) are - 

i. Always linearly dependent                                                                              

ii. Always linearly independent                                                                              

iii.  Never linearly dependent                                                                              

iv. Nothing can be said. 

Q2    If y1(x) and y2(x) are two linearly independent solutions of the 

homogenous equation y′′ + P(x)y′ +Q(x)y  = 0 , on [a,b], then for any 

constants c1 and c2, the term c1y1(x)+c2y2(x)                                                                                        

i. Can’t be a solution 

ii. Will always be a solution 

iii.  May be a solution for finitely many values only 

iv. Nothing can be said. 

Q3   If y1(x) and y2(x) are two solutions of   y′′ + P(x)y′ +Q(x)y  = 0 , on    

        [a,b], then the Wronskian of y1(x) and y2(x) is  

i. Always zero 

ii. Never zero 

iii.   Identical to zero or never zero on [a,b] 

iv. Nothing can be said. 

 

Q4   y1(x) and y2(x) are two linearly independent solutions of   y′′ + P(x)y′  

        +Q(x)y  = 0 , on [a,b], if and only if the Wronskian W(y1, y2)- 

i. Never zero 

ii. Zero only once 

iii. always zero 

iv. Nothing can be said. 

Q5    If y1(x) and y2(x) are two linearly independent solutions of   y′′ +  

        P(x)y′ +Q(x)y  = 0 , then zeros of these function 

i. Are always distinct 

ii. Are always identical 

iii.   Have at least one common value 
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iv. Nothing can be said. 

Q6    If y1(x) and y2(x) are two linearly independent solutions of   y′′ +  

         P(x)y′ +Q(x)y  = 0 , then zeros of these function  

i. Occur at same points 

ii. Occur alternatively 

iii.   Are all zero 

iv. Nothing can be said. 

Q7    If y1(x) and y2(x) are two linearly independent solutions of y" +  

         P(x)y' + Q(x)y = 0 ,  then the zeros of these functions are distinct and  

         occur alternatively. This theorem is called  

i. Gauss  Separation Theorem 

ii. Leibnitz  Separation Theorem 

iii.  Euler  Separation Theorem 

iv. Sturm Separation Theorem                                                                             

Q8    If  we reduce y′′+ P(x)y′+ Q(x)y = 0 , into  u′′+ q(x)u = 0, by suitable  

       choice of dependent variable, then reduced form is called                                                                                                                                        

i. Normal form 

ii. Echelon form 

iii.   General form 

iv. None of these. 

 

Q9   If q(x) < 0, and if u(x) is non-trivial solution of u′′+ q(x)u = 0, then  

        u(x) has 

i. at least one zero  

ii. exactly one zero 

iii. at most one zero  

iv. Nothing can be said. 

 

Q10   Let u(x) be a non-trivial solution of u′′+q(x)u = 0, where q(x) > 0,  

          for all x > 0. If ,   then u(x) has                                                                                                   

i. infinitely many zeroes on the -ve x-axis  

ii. infinitely many zeroes on the +ve x-axis 

iii. finitely many zeroes on the +ve x-axis 

iv. Nothing can be said. 

 

6.16 SELF CHECK QUESTIONS:- 

EXAMPLE 1: Prove that y = c1sinx + c2cosx is general solution of y′′ + y 

= 0 on any interval. Also obtain the particular solution for which y(0) = 2 

and Y′(0) =3. 
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SOLUTION : We observe that Y1(x) =sinx and Y2(x) = cosx satisfy y′′ + 

y = 0. So Y1(x) and Y2(x) are the solution of given differential equation. 

Now, we find W(y1,y2) on [a, b]. 

 

W(y1,y2)  =  = -1  0. 

Also P(x) = 0 and Q(x) = 1 are naturally continuous on [a, b]. 

 Y = c1sinx + c2cosx is the general solution of y′′ + y = 0, on [a, b]. 

We can extend [a, b] to R as it does not affects the continuity of p(x) and 

Q(x). So the general solution is valid for every x. 

For particular solution, c1sin0 + c2cos0 = 2  and c1cos0 – c2sin0 =3. 

For particular solution, c1 =3, c2 =2 

So, y = 3sinx +2cosx is the general solution with given conditions. 

 

EXAMPLE 2:   Let us discuss y′′ + y = 0                             …(1) 

We know that general homogenous second order differential equation is of 

the form 

y′′ + P(x)y′ + Q(x)y = 0 

here                P(x) = 0, Q(x) = 1                                              …(2) 

As these are analytic at all points, so we can think of a solution as 

                  y = a0 + a1x + a2x
2 + ………… +anx

n + ….            …(3)                                                          

 y′  =  a1+ 2a2x + 3a3x
2 + ………… +(n+1)an+1x

n + …  …(4) 

 y′′  =  2a2+ 3.2a3x + 3.4a4x
2 +…… +(n+1)(n+2)an+2x

n +.. (5)                

Putting equation (3) & (5) in equation (1) and adding term by term, we get  

(2a2+ a0) + (2.3a3 +a1)x + (3.4a4 + a2)x
2 +   ………………. 

                                            [(n+1)(n+2)an+2 +an]x
n +   …. = 0. 

Equating to zero, the coefficients of successive power of x, we get  

2a2 + a0 = 0, 2.3a3 + a1 =0,   3.4a4 + a2 = 0, (n+1)(n+2)an+2 + an =0,….. 

On solving  

a2 = -a0/2,  a3 =-a1/2.3,     a4 =a0/2.3.4,    a5 = a1/2.3.4.5, ….. 

So from (3), 

y = a0( 1- x2/2! + x4/4! +….. ) + a1(x – x3/3! + x5/5!- ….)      …(6) 

So,                          y1(x) =(1- x2/2! + x4/4! +….. ) 

And                         y2(x) = (x – x3/3! + x5/5! - …… )    

With the help of ratio test, it can easily shown that both series are 

convergent for every x   R. So their addition is justified. Also from 

calculus  

y1(x) = cosx  and y2(x) = sinx 

                        y = a0cosx    +a1sinx : a0,a1  R. 

 

6.17 SUMMARY:- 

Sometimes it is really very difficult to solve a differential equation 

explicitly. Then we discuss QUALITATIVE MEHODS to understand the 
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nature of solutions. Whatever we have done in this unit is actually this 

qualitative discussion. 

 

6.18 GLOSSARY:- 

 Ordinary point 

 Singular point 

 Elementary  Function 

 Regular Singular point 

 Eigenvalues 

 Eigenfunction 
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6.21 TERMINAL QUESTIONS:- 

Example 1:  Discuss the linear independence of two functions. 
Example 2 : What are transcendental functions ? 

Example 3 : What are algebraic functions ? 

Example 4 : Discuss the importance of singular points. 

 

6.22  ANSWERS:- 
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OBJECTIVE ANSWERS 
 

1-i  ,2- ii ,   3- iii,  4-   iii,    5-   I, 6-   ii,  7-    iv, 8-  i ,  9-    iii, 10-   ii       



ADVANCED DIFFERENTIAL EQUATIONS I                MAT 504 
 

Department of mathematics  
Uttarakhand Open University Page 174 
 
 

 

 

 

 

 

 

 

BLOCKIII 

INTEGRAL CURVES AND DAMPED LINEAR 

OSCILLATOR 
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UNIT 7: - TRAJECTORIES 

CONTENTS: 
7.1      Introduction 

7.2      Objectives 

7.3      Trajectories 

7.4      Self Orthogonal family of curves 

7.5      Orthogonal trajectories in Cartesian Coordinates 

7.6      Orthogonal trajectories in Polar Coordinates 

7.7      Oblique trajectories in Cartesian Coordinates 

7.8      Summary 

7.9      Glossary 

7.10     References 

7.11     Suggested Reading 

7.12     Terminal questions  

7.13     Answers  

  

7.1 INTRODUCTION:- 

In this previous unit, you have already studied 

 About the Variation of parameter. 

 About the Second Order differential equations with suitable 

examples. 

 About the Linear differential equation with examples. 

In this unit, we discuss about the trajectories, orthogonal trajectories in 

Cartesian coordinates, Orthogonal of trajectories in polar coordinates, 

Oblique trajectories in Cartesian coordinates. 

7.2 OBJECTIVES:- 

After studying this unit you will be able to  

 Understanding the trajectories. 

 Understanding the orthogonal trajectories in Cartesian 

coordinates. 
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 Analyzing the use of trajectories in this context is important for 

studying these systems. 

 

 

 

 

7.3 TRAJECTORIES:- 

Definition:  

Trajectory: A curve which cuts every number of a given family of curves 

in accordance with some given law is known as a Trajectory of the family 

of curves. 

Orthogonal Trajectory: If a curve cuts every member of given family of 

curves at right angles, it is called an Orthogonal Trajectories of the family 

of the curve.  

Oblique Trajectory: If a curve cuts every member of given family of 

curves at constant angles𝛼(≠ 900), it is called an Oblique Trajectories of 

the family of the curve.  

 

7.4 SELF ORTHOGONAL FAMILY OF CURVES:- 

Definition: If each member of a given family of curves intersects all 

other members orthogonally, then the given family of curves is said to be 

self orthogonal. 

From self orthogonal family of the curves, if the differential equation of 

the family of the curves is identical with the differential equation of 

orthogonal trajectories, then the family of curves must be self orthogonal. 

 

7.5 ORTHOGONAL TRAJECTORIES IN 

CARTESIAN COORDINATES:- 

Let the equation of the given family of the curves be  

                           𝑓(𝑥, 𝑦, 𝑐) = 0                                     … (1) 

Where 𝑐 is parameter 
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Differentiating (1)w.r.t.𝑥 and eliminating 𝑐, between (1) and given curves 

(1), we have 

                                𝐹(𝑥, 𝑦, 𝑑𝑦/𝑑𝑥) = 0                      … (2) 

 

 

 
Fig.1 

Let 𝜓 be the angle between the tangents PT to the member PQ and 𝑥 −

𝑎𝑥𝑖𝑠 at any point 𝑝(𝑥, 𝑦), then we have 

𝑡𝑎𝑛𝜓 =
𝑑𝑦

𝑑𝑥
                           … (3) 

Let (𝑋, 𝑌) be the current coordinates of any point of trajectories. At any 

point of intersection P of (2) with 𝑃𝑄′, let  𝜓′ be the angle which the 

tangent 𝑃𝑇′ to the trajectories makes with 𝑥 − 𝑎𝑥𝑖𝑠. 

𝑡𝑎𝑛𝜓′ =
𝑑𝑌

𝑑𝑋
                          … (4) 

Hence from (3) and (4), we get 

               𝑡𝑎𝑛𝜓𝑡𝑎𝑛𝜓′ = −1          𝑜𝑟             
𝑑𝑦

𝑑𝑥
×  

𝑑𝑌

𝑑𝑋
= −1    

𝑑𝑦

𝑑𝑥
×  

𝑑𝑌

𝑑𝑋
= −1 

𝑑𝑦

𝑑𝑥
= −

1

𝑑𝑌/𝑑𝑋
= −

𝑑𝑋

𝑑𝑌
 

Now the point of intersection of (2) with trajectory, we obtain 

𝑥 = 𝑋,                                       𝑦 = 𝑌 

Eliminating 𝑥, 𝑦 and 𝑑𝑦 𝑑𝑥⁄   from above equations, we have 

 

𝐹(𝑋, 𝑌, 𝑑𝑋/𝑑𝑌) = 0                       

Hence, which is the differential equation of required family of trajectories. 

Now  

                                                                 𝐹(𝑥, 𝑦, 𝑑𝑦/𝑑𝑥) = 0                       
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                                                                 𝐹(𝑥, 𝑦, −𝑑𝑥/𝑑𝑦) = 0                       

Showing that it can be obtained by replacing 𝑑𝑟/𝑑𝜃 by (−𝑑𝑥/𝑑𝑦). 

 

SOLVED EXAMPLES 
EXAMPLE1: Find the orthogonal trajectories of family of curves𝑦 =

𝑎𝑥2, 𝑎 being parameter. 

SOLUTION: Given family of curves is  

𝑦 = 𝑎𝑥2                               … (1) 

where 𝑎 being parameter. Differentiating w.r.t.𝑥, we obtain 

𝑑𝑦 𝑑𝑥⁄ = 2𝑎𝑥                         … (2) 

From (1),     𝑎 = 𝑦 𝑥2⁄  

Putting the value of 𝑎 in (2), we get 

𝑑𝑦 𝑑𝑥⁄ = 2𝑥 𝑦 𝑥2⁄                          

𝑑𝑦 𝑑𝑥⁄ =  2𝑦 𝑥⁄                     

Replacing 𝑑𝑦 𝑑𝑥⁄  by − 𝑑𝑥 𝑑𝑦⁄ , the differential equation of orthogonal 

trajectories is  

− 𝑑𝑥 𝑑𝑦⁄ =  2𝑦 𝑥⁄              𝑜𝑟       𝑥𝑑𝑥 + 𝑦𝑑𝑦 = 0       

Integrating,   𝑥2 2⁄ + 𝑦2 = 𝑏2     𝑜𝑟                   𝑥2 2𝑏2⁄ + 𝑦2 𝑏2⁄ = 1 

Which is required the orthogonal trajectories, b being parameter. 

 

EXAMPLE2: Find the orthogonal trajectories of parabolas whose 

equation is𝑦2 = 4𝑎𝑥. 

SOLUTION: The equation of parabolas is                     

 𝑦2 = 4𝑎𝑥                              … (1) 

Differentiating (1)                2𝑦
𝑑𝑦

𝑑𝑥
= 4𝑎    ⇒  𝑦

𝑑𝑦

𝑑𝑥
= 2𝑎     

From (1),     𝑎 = 𝑦2 4𝑥⁄  

Putting the value of 𝑎  in above equation 

  𝑦
𝑑𝑦

𝑑𝑥
= 2 𝑦2 4𝑥⁄ ⇒

𝑑𝑦

𝑑𝑥
= 𝑦 2𝑥⁄  

Replacing 𝑑𝑦 𝑑𝑥⁄  by − 𝑑𝑥 𝑑𝑦⁄ , the differential equation of orthogonal 

trajectories is  

                                          
𝑑𝑥

𝑑𝑦
= −𝑦 2𝑥⁄   ⇒ 𝑦𝑑𝑦 = −2𝑥𝑑𝑥 

Integrating above equation               

                                    
𝑦2

2
= −𝑥2 + 𝑐 ⇒  𝑦2 = −2𝑥2 + 𝑐    

EXAMPLE3: Find the orthogonal trajectories of the system of curves 

(𝑑𝑦 𝑑𝑥⁄ )2 = 𝑎 𝑥⁄ . 
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SOLUTION: The given curve is                                                                  

                                    (𝑑𝑦 𝑑𝑥⁄ )2 = 𝑎 𝑥⁄              … (1) 

Where 𝑎 is constant. Replacing 𝑑𝑦 𝑑𝑥⁄  by − 𝑑𝑥 𝑑𝑦⁄ , the differential 

equation of orthogonal trajectories is given as below 

−(𝑑𝑥 𝑑𝑦⁄ )2 = 𝑎 𝑥⁄          𝑜𝑟                    𝑑𝑦 = ±𝑥1/2𝑎1/2𝑑𝑥 

Integrating above equation            

                                            𝑦 + 𝑐 = 1 𝑎1/2⁄ × 2 3⁄ × 𝑥3/2 

3√𝑎(𝑦 + 𝑐) = ±2𝑥3/2 

Squaring both sides 

9𝑎(𝑦 + 𝑐)2 = 4𝑥3 

Which is required orthogonal trajectories, 𝑐 being parameter. 

 

7.6 ORTHOGONAL TRAJECTORIES IN POLAR 

COORDINATES:- 

Let the equation of the given family of the curves be  

                           𝑓(𝑟, 𝜃, 𝑐) = 0                                     … (1) 

Where 𝑐 is parameter. 

Differentiating (1)w.r.t.𝑥 and eliminating 𝑐, between (1) and given curves 

(1), we have 

                                𝐹(𝑟, 𝜃, 𝑑𝑟/𝑑𝜃) = 0                      … (2) 

 

Fig.2 

Let 𝜙 be the angle between the tangents PT to the member PQ and 𝑥 −

𝑎𝑥𝑖𝑠 at any point 𝑝(𝑟, 𝜃), then we have 

𝑡𝑎𝑛𝜙 =
𝑑𝑦

𝑑𝑥
                           … (3) 
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Let (𝑅, Θ) be the current coordinates of any point of trajectories. At any 

point of intersection P of (2) with 𝑃𝑄′, let  𝜙′ be the angle which the 

tangent 𝑃𝑇′ to the trajectories makes with 𝑥 − 𝑎𝑥𝑖𝑠. 

𝑡𝑎𝑛𝜙′ = 𝑅
𝑑Θ

𝑑𝑅
                          … (4) 

Hence from (3) and (4), we get 

           𝜙′ − 𝜙 = 900          𝑠𝑜 𝑚𝑢𝑐ℎ         𝜙′ = 900 + 𝜙    

                                  𝑡𝑎𝑛𝜙′ = 𝑡𝑎𝑛(900 + 𝜙 ) =

−𝑐𝑜𝑡𝜙   𝑜𝑟       𝑡𝑎𝑛𝜙𝑡𝑎𝑛𝜙′ = −1 

Putting the value of (3) and (4) in above equation 

             (𝑟
𝑑𝜃

𝑑𝑟
) (𝑅

𝑑Θ

𝑑𝑅
) = 1       𝑜𝑟           

𝑑𝑟

𝑑𝜃
= −𝑟𝑅

𝑑Θ

𝑑𝑅
 

Now the point of intersection of (2) with trajectory, we obtain 

𝑟 = 𝑅,                                       𝜃 = Θ 

Eliminating 𝑟, 𝜃 and 𝑑𝑟 𝑑𝜃⁄  from above equations, we have 

𝐹(𝑅, Θ, −𝑅2𝑑Θ/𝑑𝑅) = 0                       

Hence, which is the differential equation of required family of trajectories. 

Now  

𝐹(𝑟, 𝜃, 𝑑𝑟/𝑑𝜃) = 0 

𝐹(𝑟, 𝜃, −𝑟2𝑑𝜃/𝑑𝑟) = 0 

Showing that it can be obtained by replacing 𝑑𝑟/𝑑𝜃 by −𝑟2𝑑𝜃/𝑑𝑟. 

 

SOLVED EXAMPLES 
EXAMPLE1: Find the orthogonal trajectories of cardioids𝑟 =

𝑎(1 + 𝑐𝑜𝑠𝜃). 

SOLUTION: The given curve is      𝑟 = 𝑎(1 + 𝑐𝑜𝑠𝜃) 

Take both sides logarithm 

log 𝑟 = log 𝑎 + log(1 + 𝑐𝑜𝑠𝜃) 

Differentiating both sides w.r.t 𝜃 

1

𝑟

𝑑𝑟

𝑑𝜃
= −

𝑠𝑖𝑛𝜃

(1 + 𝑐𝑜𝑠𝜃)
 

Replacing 𝑑𝑟 𝑑𝜃⁄  by −𝑟2 𝑑𝜃 𝑑𝑟⁄ , the differential equation of orthogonal 

trajectories is 

1

𝑟
(−𝑟2

𝑑𝜃

𝑑𝑟
) = −

𝑠𝑖𝑛𝜃

(1 + 𝑐𝑜𝑠𝜃)
 

= −
2𝑠𝑖𝑛 𝜃 2⁄ 𝑐𝑜𝑠 𝜃 2⁄

(1 + 2𝑐𝑜𝑠2 𝜃 2⁄ − 1)
= −𝑡𝑎𝑛 𝜃 2⁄  
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𝑟
𝑑𝜃

𝑑𝑟
= 𝑡𝑎𝑛 𝜃 2⁄    𝑜𝑟 

1

𝑟

𝑑𝑟

𝑑𝜃
= 𝑐𝑜𝑡

𝜃

2
 

Now integrating factor       ∫
1

𝑟
 𝑑𝑟 = ∫ 𝑐𝑜𝑡

𝜃

2
 𝑑𝜃 

log 𝑟 = 2 log 𝑠𝑖𝑛 (
𝜃

2
) + log 𝑐 

log 𝑟 = log 𝑠𝑖𝑛2 (
𝜃

2
) + log 𝑐 

𝑟 = 𝑐𝑠𝑖𝑛2 (
𝜃

2
) 

𝑟 = 𝑐
(1 − 𝑐𝑜𝑠𝜃)

2
= 𝑏(1 − 𝑐𝑜𝑠𝜃) 𝑡𝑎𝑘𝑖𝑛𝑔 𝑏 = 𝑐 2⁄  

EXAMPLE2: Find the orthogonal trajectories of the series logarithmic 

spirals𝑟 = 𝑎𝜃. 

SOLUTION: The given curve is                                                                                          

                            𝑟 = 𝑎𝜃 ⇒ log 𝑟 = 𝜃 log 𝑎                     … (1) 

Differentiating both sides w.r.t.𝜃 

𝑑𝑟

𝑑𝜃
= 𝑎𝜃 log 𝑎 = 𝑟 log 𝑎 = 𝑟

log 𝑟

𝜃
                    𝑓𝑟𝑜𝑚(1) 

Replacing 𝑑𝑟 𝑑𝜃⁄  by −𝑟2 𝑑𝜃 𝑑𝑟⁄ , the differential equation of orthogonal 

trajectories is 

−𝑟2
𝑑𝜃

𝑑𝑟
= 𝑟

log 𝑟

𝜃
⇒ −𝜃𝑑𝜃 =

1

𝑟
log 𝑟 𝑑𝑟 

Integrating both sides 

∫
1

𝑟
log 𝑟 𝑑𝑟 = ∫ −𝜃𝑑𝜃 + 𝑐2 

(log 𝑟)2

2
= −

𝜃2

2
+ 𝑐2 ,         ∴  𝑐2 =

𝑐

2

2

 

(log 𝑟)2

2
= −

𝜃2

2
+

𝑐

2

2

 

(log 𝑟)2 = 𝑐2 − 𝜃2 

log 𝑟 = √𝑐2 − 𝜃2 

𝑟 = 𝑒√𝑐2−𝜃2
 

Which is required equation. 

EXAMPLE3: Find the orthogonal trajectories of 𝑟𝑛𝑐𝑜𝑠𝑛𝜃 = 𝑎𝜃 is 

𝑟𝑛𝑠𝑖𝑛𝑛𝜃 = 𝑐𝑛. 

SOLUTION: Given    𝑟𝑛𝑐𝑜𝑠𝑛𝜃 = 𝑎𝑛,  where 𝑎 is a parameter. 

Since taking both sides logarithm  

𝑛 log 𝑟 + log 𝑐𝑜𝑠𝑛𝜃 = 𝑛 log 𝑎 
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Differentiating both sides w.r..t. 𝜃 

𝑛

𝑟

𝑑𝑟

𝑑𝜃
− 𝑡𝑎𝑛𝑛𝜃 = 0          𝑜𝑟     (

1

𝑟
)

𝑑𝑟

𝑑𝜃
− 𝑡𝑎𝑛𝑛𝜃 = 0           

Replacing 𝑑𝑟 𝑑𝜃⁄  by −𝑟2 𝑑𝜃 𝑑𝑟⁄ , the differential equation of orthogonal 

trajectories is 

(
1

𝑟
) (−𝑟2)

𝑑𝜃

𝑑𝑟
− 𝑡𝑎𝑛𝑛𝜃 = 0           

(
1

𝑟
) 𝑑𝑟 + 𝑐𝑜𝑡𝑛𝜃𝑑𝜃 = 0   

Now integrating factor 

log 𝑟 +
1

𝑛
log 𝑠𝑖𝑛𝑛𝜃 = log 𝑐 

Where 𝑐 being constant. 

𝑛 log 𝑟 + log 𝑠𝑖𝑛𝑛𝜃 = 𝑛 log 𝑐 

𝑟𝑛𝑠𝑖𝑛𝑛𝜃 = 𝑐𝑛 

Which is the required equation of orthogonal trajectories. 

 

7.7 OBLIQUE TRAJECTORIES IN CARTESIAN 

COORDINATES:- 

Let the equation of the given family of the curv 

                     𝑓(𝑥, 𝑦, 𝑐) = 0                                     … (1) 

Where 𝑐 is parameter. 

Differentiating (1)w.r.t.𝑥 and eliminating 𝑐, between (1) and given curves 

(1), we have     

                          𝐹(𝑥, 𝑦, 𝑑𝑦/𝑑𝑥) = 0                      … (2) 

 
Fig.3 

Let 𝜓 be the angle between the tangents PT to the member PQ and 𝑥 −

𝑎𝑥𝑖𝑠 at any point 𝑃(𝑥, 𝑦), then we have 
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𝑡𝑎𝑛𝜓 =
𝑑𝑦

𝑑𝑥
                           … (3) 

Let (𝑋, 𝑌) be the current coordinates of any point of trajectories. At any 

point of intersection P of (2) with 𝑃𝑄′, let  𝜓′ be the angle which the 

tangent 𝑃𝑇′ to the trajectories makes with 𝑥 − 𝑎𝑥𝑖𝑠. 

𝑡𝑎𝑛𝜓′ =
𝑑𝑌

𝑑𝑋
                          … (4) 

Suppose 𝑃𝑇 and 𝑃𝑇′ intersect at angle  𝛼, then we get  

                  𝑡𝑎𝑛𝛼 =
(𝑑𝑦/𝑑𝑥)−(𝑑𝑌/𝑑𝑋)

1+(𝑑𝑦/𝑑𝑥)(𝑑𝑌/𝑑𝑋)
                  

so that              
𝑑𝑦

𝑑𝑥
=

(𝑑𝑦/𝑑𝑥)+(𝑑𝑌/𝑑𝑋)

1−(𝑑𝑦/𝑑𝑥)(𝑑𝑌/𝑑𝑋)
    

Now from (2) with trajectory, we get 

𝑥 = 𝑋,                                       𝑦 = 𝑌 

Eliminating 𝑥, 𝑦 and 𝑑𝑦 𝑑𝑥⁄   from above equations, we have 

 

𝐹 (𝑋, 𝑌,
(𝑑𝑦/𝑑𝑥) + 𝑡𝑎𝑛𝛼

1 − (𝑑𝑦/𝑑𝑥) 𝑡𝑎𝑛𝛼
) = 0                       

Hence, which is the differential equation of required family of trajectories. 

Now  

                               𝐹(𝑥, 𝑦, 𝑑𝑦/𝑑𝑥) = 0                       

                                  𝐹 (𝑥, 𝑦,
(𝑑𝑦/𝑑𝑥)+𝑡𝑎𝑛𝛼

1−(𝑑𝑦/𝑑𝑥) 𝑡𝑎𝑛𝛼
) = 0 

Showing that it can be obtained by replacing 𝑑𝑦/𝑑𝑥 by [
(𝑑𝑦/𝑑𝑥)+𝑡𝑎𝑛𝛼

1−(𝑑𝑦/𝑑𝑥) 𝑡𝑎𝑛𝛼
] ,

𝑖. 𝑒. ,   (𝑝 + 𝑡𝑎𝑛𝛼) (1 − 𝑝𝑡𝑎𝑛𝛼)⁄ where 𝑝 = 𝑑𝑦 𝑑𝑥⁄ . 

 

EXAMPLE: Find the family of the curves whose tangents form the angle 

of 
𝜋

4
 with the hyperbola 𝑥𝑦 = 𝑐. 

SOLUTION: Let the given curve                           

                                                      𝑥𝑦 = 𝑐                          … (1) 

where 𝑐 is parameter 

Differentiating (1),       

 𝑦 + 𝑥(𝑑𝑦 𝑑𝑥⁄ ) = 0       𝑜𝑟             𝑦 + 𝑝𝑥 = 0,    𝑤ℎ𝑒𝑟𝑒 𝑝 = 𝑑𝑦 𝑑𝑥⁄  

Replacing 𝑝 by 
𝑝+𝑡𝑎𝑛(

𝜋

4
)

1−(
𝜋

4
) 𝑡𝑎𝑛(

𝜋

4
)

    𝑖. 𝑒. ,
𝑝+1

1−𝑝
 the differential equation of desired 

family of curves is 

𝒚 +
𝑝 + 1

1 − 𝑝
𝑥 = 0     𝑜𝑟      𝑝 =

𝑦 + 𝑥 

𝑦 − 𝑥
        𝑜𝑟                 

𝑑𝑦

𝑑𝑥
=

(𝑦/𝑥) + 1

(𝑦/𝑥) − 1
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Suppose 
𝑦

𝑥
= 𝑣,   𝑖. 𝑒., 𝑦 = 𝑣𝑥       so that       

𝑑𝑦

𝑑𝑥
= 𝑣 + (𝑑𝑣/𝑑𝑥) 

From above equations    𝑣 +
𝑑𝑣

𝑑𝑥
=

𝑣+1

𝑣−1
           𝑜𝑟             𝑥

𝑑𝑣

𝑑𝑥
= −

𝑣2−2𝑣−1

𝑣−1
 

(
2

𝑥
) 𝑑𝑥 = − {

2(𝑣 − 1)

(𝑣2 − 2𝑣 − 1)
} 𝑑𝑣 

Integrating,        2 log 𝑥 = − log(𝑣2 − 2𝑣 − 1) + log 𝑐,                    

 c being an arbitrary constant. 

log 𝑥2 + log(𝑣2 − 2𝑣 − 1) = log 𝑐           𝑜𝑟        𝑥2  (𝑣2 − 2𝑣 − 1) = 𝑐   

Putting the value of 
𝑦

𝑥
= 𝑣 in above equation 

𝑥2   ((
𝑦

𝑥
)

2

− 2
𝑦

𝑥
− 1) = 𝑐   

𝑥2 − 2𝑥𝑦 − 𝑦2 = 𝑐 

SELF CHECK QUESTIONS 
1. Find the orthogonal trajectories of the family of parabolas 𝑦2 =

4𝑎𝑥.     

2. Find the orthogonal trajectories of the system of the curve 

(
𝑑𝑦

𝑑𝑥
)

2

=
𝑎

𝑥
. 

3. Which among the following is true for the curve 𝑟𝑛 = 𝑎 𝑠𝑖𝑛𝑛𝜃 

a. Given family of a curve is self orthogonal. 

b. Orthogonal trajectories is 𝑟𝑛 = 𝑘𝑐𝑜𝑠𝑛𝜃. Where 𝑘 is constant. 

c. Orthogonal trajectories is 𝑟𝑛 = 𝑘𝑐𝑜𝑠𝑒𝑐𝑛𝜃. Where 𝑘 is 

constant. 

d. Orthogonal trajectories is 𝑟𝑛 = 𝑘𝑠𝑖𝑛𝑛𝜃. Where 𝑘 is constant. 

4. What is oblique trajectories? 

 

7.8 SUMMARY:- 

 

In this unit we studied the trajectories of the family of the curve, 

orthogonal trajectories and oblique trajectories with example. 

 

7.9 GLOSSARY:- 

 

 Trajectory: The path followed by an object as it moves through 

space, often influenced by forces such as gravity, friction, or other 

interactions. 
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 Cartesian Coordinates 

 Oblique trajectories 

 Polar Coordinates 

 

7.10 REFERENCES:- 

 Daniel A. Murray (2003). Introductory Course in Differential 

Equations, Orient. 

 B. Rai, D. P. Choudhury & H. I. Freedman (2013). A Course in 

Ordinary Differential Equations (2nd edition). Narosa. 

 

7.11 SUGGESTED READING:- 

 N.P.Bali (2006). Goldan Differential Equations. 

 M.D. Raisinghania,( 2021). Ordinary and Partial Differential equation 

(20th Edition), S. Chand. 

 

7.12 TERMINAL QUESTIONS:- 

(TQ-1) Find the orthogonal trajectories of the family of curves𝑦 = 𝑎𝑥2, 𝑎 

being a parameter. 

(TQ-2) Find the orthogonal trajectories of the family of curves3𝑥𝑦 =

𝑥3 − 𝑎3, 𝑎 being a parameter. 

(TQ-3) Find the orthogonal trajectories of 𝑥2 + 𝑦2 = 2𝑎𝑥.     

(TQ-4) Find the orthogonal trajectories of the family of curves:  

a. 
𝑥2

𝑎2 +
𝑦2

(𝑏2+𝜆)
= 1, 𝜆 being the parameter.   

b. 
𝑥2

𝑎2
+

𝑦2

(𝑎2+𝜆)
= 1, 𝜆 being the parameter.  

(TQ-5) Find the orthogonal trajectories of the family of parabolas 𝑦2 =

4𝑎(𝑥 + 𝑎),  where 𝑎 being a parameter. 

 (TQ-6) Find the orthogonal trajectories of the family of cardioids 𝑟 =

𝑎(1 − 𝑐𝑜𝑠𝜃), where 𝑎 being a parameter.  

(TQ-7) Find the orthogonal trajectories of the family of cardioids 𝑟 =

𝑎(1 + 𝑐𝑜𝑠𝜃), where 𝑎 being a parameter.  

(TQ-8) Find the orthogonal trajectories of 𝑟 = 𝑎(1 + 𝑐𝑜𝑠𝑛𝜃).  

(TQ-9) Find the orthogonal trajectories of 𝑟𝑛𝑠𝑖𝑛𝑛𝜃 = 𝑎𝑛.  
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(TQ-10) Find the orthogonal trajectories of the family of parabolas 𝑟 =
2𝑎

(1+𝑐𝑜𝑠𝜃)
, where 𝑎 being a parameter. 

(TQ-11) Find the orthogonal trajectories of the family of curves: 

i. 𝑦 = 𝑎𝑥𝑛.      

ii. 𝑦 = 𝑎𝑥3. 

iii. 𝑦 = 4𝑎𝑥.      

iv. 𝑥2 + 𝑦2 = 𝑎2.  

v.  

7.13 ANSWERS:- 

SELF CHECK ANSWERS 

1. 2𝑥2 + 𝑦2 = 𝑘 ,   

2. 9𝑎(𝑦 + 𝑐)2 = 4𝑥3, 

 3. b,  

 4. A curve which intersects the curves of the given family at a constant 

angle 𝛼 is called an oblique trajectory of the given family. 

TERMINAL ANSWERS 

(TQ-1) 
𝑥2

2𝑏2 +
𝑦2

𝑏2 = 1 

(TQ-2) 𝑥2 = 𝑦 − (1/2) + 𝑐𝑒−2𝑦 

(TQ-3) 𝑥2 + 𝑦2 = 𝑐𝑦 

 (TQ-4)   

    a. 𝑥2 + 𝑦2 − 2𝑎2 log 𝑥 = 𝑐     

    b. 𝑥2 + 𝑦2 − 2𝑎2 log 𝑥 = 𝑐 

 (TQ-5) 𝑦 = 2𝑥
𝑑𝑦

𝑑𝑥
+ 𝑦 (

𝑑𝑦

𝑑𝑥
)

2

 

 (TQ-6) 𝑟 = 𝑏(1 + 𝑐𝑜𝑠𝜃) 

 (TQ-7) 𝑟 = 𝑏(1 − 𝑐𝑜𝑠𝜃) 

 (TQ-8) 𝑟𝑛2
= 𝑏(1 − 𝑐𝑜𝑠𝑛𝜃) 

 (TQ-9) 𝑟𝑛𝑐𝑜𝑠𝑛𝜃 = 𝑐𝑛  

(TQ-10) 𝑟 =
2𝑐

(1−𝑐𝑜𝑠𝜃)
 

(TQ-11)  

i. 𝑥2 + 𝑛𝑦2 = 𝑐  

ii.  𝑥2 + 3𝑦2 = 𝑐 

iii. 2𝑥2 + 𝑦2 = 𝑐2 

iv. 𝑦 = 𝑐𝑥 
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UNIT 8:- INTEGRAL CURVES AND 

DAMPED OSCILLATION 

CONTENTS: 
8.1      Introduction 

8.2      Objectives 

8.3      Integral Curves 

8.4      ODE (in Local Charts): Existence, Uniqueness and   

           Smoothness 

8.5      Damped Oscillation  

8.6      Damped Harmonic Oscillation 

8.7      Logarithmic Decrement 

8.8      Power Dissipation in DHO 

8.9      Quality Factor 

8.10     Summary  

8.11     Glossary 

8.12     References 

8.13     Suggested Reading 

8.14     Terminal questions 

8.15     Answers 

 

8.1 INTRODUCTION:- 

In this previous class, you have already studied 

 About Trajectories. 

 About orthogonal trajectories in Cartesian coordinates. 

 About Orthogonal of trajectories in polar coordinates. 

 About Oblique trajectories in Cartesian coordinates. 

In this unit, we will study the integral curves and damped oscillation and 

concepts that are closely related in the study of differential equations 

particularly in the context of damped harmonic oscillators. Understanding 

the behavior of integral curves and damped oscillation is essential for 

analyzing and modeling various physical systems. 
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8.2 OBJECTIVES:- 

After studying this unit you will be able to  

 Understanding the Integral Curves and ODE in Local Chart with 

theorems. 

 To visualize and understand the behavior of solutions to the ODE. 

 To discuss about damped Oscillation. 

 To analyze and understand the behavior of the system undergoing 

damped oscillation. 

 

8.3 INTEGRAL CURVES:- 

An integral Curve is a parametric curve that represents a specific solution 

to the ordinary differential equation represented by the vector field. 

Geometrically, they are curves so that the given vector field is the tangent 

vector to the curves everywhere.  

Here is an example of vector fields with many integral curves drawn: 

Fig.1 

 

Above conception of integral curves can be generalized to smooth 

manifolds easily. Recall that a smooth curve in a smooth manifold M is 

smooth map  

𝛾: 𝐼 → 𝑀 

where 𝐼 is an interval in .  𝑎𝜖𝐼, the tangent vector of 𝛾 at the point 𝛾(𝑎) 

is given below 
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𝛾̇(𝑎) =
𝑑𝛾

𝑑𝑡
(𝑎) ≔ 𝑑𝛾𝑎 (

𝑑

𝑑𝑡
) 

Where 
𝑑

𝑑𝑡
 is the standard coordinate tangent vector of . 

Definition: Let 𝑿 ∈ 𝚪∞(𝑻𝑴) be a smooth vector field on 𝑴. A smooth 

curve 𝜸: 𝑰 → 𝑴 is called an integral curve of 𝑿 if for any 𝒕 ∈ 𝑰, 

𝜸̇(𝒕) = 𝑿𝜸(𝒕) 

 

EXAMPLES: 

Lemma 1.2. If 𝛾: 𝐼 → 𝑀 is an integral curve of a vector field 𝑋, then 

1. Let 𝑰𝒂 = {
𝒕

𝒕+𝒂
∈ 𝑰} , 𝒕𝒉𝒆𝒏  

𝜸𝒂: 𝑰𝒂 → 𝑴,          𝜸𝒂(𝒕) ≔ 𝜸(𝒕 + 𝒂) 

      is an integral curve of 𝑿. 

Solution: Suppose the vector field  𝑋 =
𝜕

𝜕𝑥1 on , then the integral curves 

of 𝑋 are the straight lines parallel ti 𝑥1 − 𝑎𝑥𝑖𝑠, parameterized given as 

below 

𝛾(𝑡) = (𝑐1 + 𝑡, 𝑐2, . . , 𝑐𝑛). 

Now we note that ∀ the smooth function 𝑓 𝑜𝑛 ℝ, we get 

𝑑𝛾 (
𝑑

𝑑𝑡
) 𝑓 =

𝑑

𝑑𝑡
(𝑓𝑜𝛾) = ∇𝑓.

𝑑𝛾

𝑑𝑡
=

𝜕𝑓

𝜕𝑥1
 

Note: The curve 

𝛾(𝑡) = (𝑐1 + 2𝑡, 𝑐2, . . , 𝑐𝑛) 

Has the same picture as 𝛾, it is not an integral curve of 𝑋, but an integral 

curve of 2𝑋, since 𝛾̇ = 2
𝜕

𝜕𝑥1. 

2. Let 𝑰𝒂 = {
𝒕

𝒂𝒕
∈ 𝑰} , (𝒂 ≠ 𝟎) 𝒕𝒉𝒆𝒏 

𝜸𝒂: 𝑰𝒂 → 𝑴,          𝜸𝒂(𝒕) ≔ 𝜸(𝒂𝒕) 

            is an integral curve of 𝑿𝒂 = 𝒂𝑿. 

Solution: Suppose  𝑋 = 𝑥
𝜕

𝜕𝑦
− 𝑦

𝜕

𝜕𝑥
 onℝ2. Then if 𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) is 

an integral curve of 𝑋,   𝑓 ∈ 𝐶∞(ℝ2), then we get 

𝑥′(𝑡)
𝜕𝑓

𝜕𝑥
+ 𝑦′ 𝜕𝑓

𝜕𝑦
= ∇𝑓.

𝑑𝛾

𝑑𝑡
= 𝑋𝛾(𝑡)𝑓 = 𝑥(𝑡)

𝜕𝑓

𝜕𝑦
− 𝑦(𝑡)

𝜕𝑓

𝜕𝑥
 

Fig.2. 
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Which is equivalent to this system is  

𝑥′(𝑡) =  −𝑦(𝑡),   𝑦′(𝑡) =  𝑥(𝑡)  

 

Since the solution of the system is given by 

𝑥(𝑡) = 𝑎𝑐𝑜𝑠𝑡 − 𝑏𝑠𝑖𝑛𝑡,           𝑦(𝑡) = 𝑎𝑠𝑖𝑛𝑡 + 𝑏𝑐𝑜𝑠𝑡 

These are circles centre at the origin in the plane parameterized by the 

angle. 

 

8.4 ODE (LOCAL CHARTS): EXISTENCE, 

UNIQUENESS AND SMOOTHNESS:- 

To study further properties of integral curves, we need to convert the 

equation 𝛾̇(𝑡) = 𝑋𝛾(𝑡) in to ODEs on function defined on Euclidian 

region. The following nice local formula for a vector field, whose proof is 

left as an exercise: 

Lemma1.3. Let X be a smooth vector field on 𝑴. Then in Local chart 

(𝝋, 𝑼, 𝑽) we have 𝑿 = ∑ 𝑿(𝒙𝒊) 𝝏𝒊,  where 𝒙𝒊: 𝑼 → ℝ is the 𝒊𝒕𝒉 

coordinate function defined by 𝝋. 

Proof: Suppose 𝛾: 𝐼 → 𝑀 be an integral curve of 𝑋.Since 𝛾̇(𝑡) = 𝑋𝛾(𝑡) at a 

given point 𝛾(𝑡), assume 𝛾(𝑡) ∈ 𝑈 and (𝜑, 𝑈, 𝑉)0  is coordinate chart. 

By using the Local Chart map 𝜑,  one can convert the point 𝛾(𝑡) ∈ 𝑈 to 

𝜑(𝛾(𝑡)) = (𝑥1(𝛾(𝑡)), … , 𝑥𝑛(𝛾(𝑡))) ∈ ℝ𝑛 

If we denote  𝑦𝑖 = 𝑥𝑖𝑜𝛾: 𝐼 → ℝ, then convert the equation defining 

integral curves into equations on these one-variable functions  𝑦𝑖,𝑠. 

According to previous lemma, we obtain 

𝛾̇(𝑡) = 𝑑𝛾𝑡 (
𝑑

𝑑𝑡
) = ∑ 𝑑𝛾𝑡

𝑖

(
𝑑

𝑑𝑡
) (𝑥𝑖)𝜕𝑖 = ∑(𝑥𝑖𝑜𝛾)

′
(𝑡)𝜕𝑖

𝑖

= ∑(𝑦𝑖)
′
(𝑡)

𝑖

𝜕𝑖 

So that 𝛾̇(𝑡) = 𝑋𝛾(𝑡) becomes 

∑(𝑦𝑖)
′
(𝑡)

𝑖

𝜕𝑖 = ∑ 𝑋𝑖

𝑖

(𝛾(𝑡))𝜕𝑖 = ∑ 𝑋𝑖

𝑖

𝑜𝜑−1(𝑦1(𝑡), … 𝑦𝑛(𝑡))𝜕𝑖    ∀   𝑡

∈ 𝐼. 

Now we convert the following system of ODEs on the one-variable 

functions (𝑦𝑖)′s. 

(𝑦𝑖)
′
(𝑡) = ∑ 𝑋𝑖

𝑖

𝑜𝜑−1(𝑦1, … 𝑦𝑛),           ∀ 𝑡 ∈ 𝐼, ∀1 ≤ 𝑖 ≤ 𝑛. 
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Hence this is a system of first order ODEs on the (one-variable) functions 

𝑦𝑖 = 𝑥𝑖𝑜𝛾: ℝ → ℝ. conversely, any solution of a system of ODEs defines 

an integral curve of the vector field 𝑋 inside the open set 𝑈. 

8.5 DAMMPED OSCILLATION:- 

The oscillation which takes place in the presence of dissipative force are 

known as damped oscillation. 

 Here amplitude of oscillation decreases w.r.t.time 

 Dampingforcealwaysactsinaoppositedirectiontothatofmotionandisvelo

citydependence. 

 Forsmallvelocitythedampingforceisdirectlyproportionaltothevelocity 

Mathematically 

𝐹𝑑 ∝ 𝑣 

𝐹𝑑 = −𝑏𝑣                               … (1) 

 

8.6 DAMMPED HARMONIC OSCILLATION:- 

Suppose a body of mass 𝑚 oscillating under a spring force of constant𝑘. 

Let 𝑥 be a displacement of a body from equilibrium position at any instant 

and instantaneous velocity is 
𝑑𝑥

𝑑𝑡
.The force acting on a body  at this instant 

are: 

i. A restoring force proportional to displacement, but acting in 

the opposite direction, which can be written as 

−𝑘𝑥 

Where 𝑘 is constant. 

ii. A  frictional (Damping) force proportional to the velocity, but 

opposite to the direction of motion, which can be written as  

−𝑏
𝑑𝑥

𝑑𝑡
 

                 where 𝑏 is a positive constant. 

So the net force acting on a body is 

𝐹 = −𝑘𝑥 − 𝑏
𝑑𝑥

𝑑𝑡
 

But by Newton’s Law 𝐹 = 𝑚(𝑑2𝑥 𝑑𝑡2⁄ ), where 𝑚 is mass of the body 

and 𝑑2𝑥 𝑑𝑡2⁄  is the instantaneous acceleration, then we get 

𝑚
𝑑2𝑥

𝑑𝑡2
= −𝑘𝑥 − 𝑏

𝑑𝑥

𝑑𝑡
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                                            𝑚
𝑑2𝑥

𝑑𝑡2 + 𝑘𝑥 + 𝑏
𝑑𝑥

𝑑𝑡
= 0 

Substituting 
𝑏

𝑚
= 2𝑟 and 

𝑘

𝑚
= 𝜔2, we have 

𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝜔2𝑥 + 2𝑟

𝑑𝑥

𝑑𝑡
= 0        … (1) 

Hence this is the homogeneous linear differential equation of second 

order. 

Now let                                       𝑥 = 𝐶𝑒𝛼𝑡 

where 𝐶 and 𝛼 are arbitrary constants.  

Differentiating w.r.t. to 𝑡, we obtain 

𝑑𝑥

𝑑𝑡
= 𝐶𝛼𝑒𝛼𝑡 

And                     

𝑑2𝑥

𝑑𝑡2
= 𝐶𝛼2𝑒𝛼𝑡 

Putting the value of 
𝑑2𝑥

𝑑𝑡2 ,
𝑑𝑥

𝑑𝑡
 and 𝑥 in above equation, we have 

𝐶𝛼2𝑒𝛼𝑡 + 2𝑟𝐶𝛼𝑒𝛼𝑡 + 𝜔𝐶𝑒𝛼𝑡 = 0 

𝐶𝑒𝛼𝑡(𝛼2 + 2𝑟𝛼 + 𝜔2) = 0 

𝛼2 + 2𝑟𝛼 + 𝜔2 = 0 

𝛼 = 𝑟 ± √𝑟2−𝜔2 

The general solution of (1) for 𝑟 ≠ 𝜔 is 

𝑥 = 𝐶1𝑒{−𝑟+√𝑟2−𝜔2}𝑡 + 𝐶2𝑒{−𝑟−√𝑟2−𝜔2}𝑡                      … (2) 

Where 𝐶1 and 𝐶2 are arbitrary constants depends on the initial position and 

velocity of oscillator. Depending on the values of 𝑟 and 𝜔, three types of 

motion are possible. Such as 

 Under Damping (𝑟2 < 𝜔2) 

 Over  Damping(𝑟2 > 𝜔2) 

 Critical Damping (𝑟2 = 𝜔2) 

 

I. Under Damped 𝒓𝟐 < 𝝎𝟐:    
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Fig.3. 

So                    𝑟2−𝜔2 = −𝑣𝑒          

Hence          √𝑟2−𝜔2 =  √−(𝜔2 − 𝑟2) = 𝑖𝜔′ 

Where 𝜔′ = √𝜔2 − 𝑟2 

Hence the solution becomes 

𝑥 = 𝐶1𝑒{−𝑟+𝑖𝜔′}𝑡 + 𝐶2𝑒{−𝑟−𝑖𝜔′}𝑡 

𝑥 = 𝑒−𝑟𝑡[𝐶1𝑒{𝑖𝜔′}𝑡 + 𝐶2𝑒{−𝑖𝜔′}𝑡] 

𝑥 = 𝑒−𝑟𝑡[𝐶1(𝑐𝑜𝑠𝜔′𝑡 + 𝑖𝑠𝑖𝑛𝜔′𝑡) + 𝐶2(𝑐𝑜𝑠𝜔′𝑡 − 𝑖𝑠𝑖𝑛𝜔′𝑡)] 

𝑥 = 𝑒−𝑟𝑡[(𝐶1 + 𝐶2)𝑐𝑜𝑠𝜔′𝑡 + 𝑖(𝐶1 − 𝐶2)𝑖𝑠𝑖𝑛𝜔′𝑡] 

Substituting 𝐶1 + 𝐶2 = 𝑎 𝑠𝑖𝑛𝜙and 𝑖(𝐶1 − 𝐶2) = 𝑎𝑐𝑜𝑠𝜙,   where 𝑎 and 𝜙 

are arbitrary constants, then we have 

𝑥 = 𝑒−𝑟𝑡[𝑎 𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜔′𝑡 + 𝑖𝑎𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜔′𝑡] 

𝑥 = 𝑒−𝑟𝑡𝑠𝑖𝑛(𝜔′𝑡 + 𝜙) = 𝑒−𝑟𝑡𝑠𝑖𝑛 (√𝜔2 − 𝑟2𝑡 + 𝜙)                     … (3) 

Equation (3) represents damped harmonic oscillation with amplitude 

𝑎𝑒−𝑟𝑡 which decreases exponentially with time and the time period of 

vibration is 𝑇 =
2𝜋

√𝜔2−𝑟2
 which is greater than that in absence of damping. 

Example: Motion of simple pendulum. 

 

II. Over Damped 𝒓𝟐 > 𝝎𝟐: 

In this case √𝑟2−𝜔2 is real and less than 𝑟. Therefore from (2), both 

{−𝑟 ± √𝑟2−𝜔2} are negative. Its means that the displacement of 𝑥 of the 

particle continuously decreases with time and when once displaced returns 

to its equilibrium position quite slowy without performing any oscillation. 

This motion is called over damped or a periodic motion and it shown by 

figure 3. 
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III. Critical Damped 𝒓𝟐 = 𝝎𝟐: 

If we substituting 𝑟2 = 𝜔2 in equation (2), then this solution does not 

satisfy equation (1). 

Hence  

√𝑟2−𝜔2 = ℎ 

𝑥 = 𝐶1𝑒{−𝑟+ℎ}𝑡 + 𝐶2𝑒{−𝑟−ℎ}𝑡 

= 𝑒−𝑟𝑡(𝐶1𝑒{ℎ}𝑡 + 𝐶2𝑒{−ℎ}𝑡) 

= 𝑒−𝑟𝑡(𝐶1(1 + ℎ𝑡 + ⋯ ) + 𝐶2(1 − ℎ𝑡 + ⋯ )) 

= 𝑒−𝑟𝑡[(𝐶1 + 𝐶2) + ℎ𝑡(𝐶 − 𝐶2)] 

= 𝑒−𝑟𝑡[𝐷 + 𝐸𝑡] 

Where 𝐷 = (𝐶1 + 𝐶2) and 𝐸 = ℎ(𝐶 − 𝐶2) 

Above Fig.3. is clear that in case the particle tends to the position of 

equilibrium much rapidly than when 𝑟2 > 𝜔2(Case II). Hence the motion 

is called critically damped motion. 

 

8.7 LOGARITHMIC DECREMENT:- 

This measures the rate at which the amplitude dies away. Let 

𝑥 = 𝑎𝑒−𝑟𝑡𝑐𝑜𝑠𝜔′𝑡 

So 𝑥 = 𝑎0 𝑎𝑡 𝑡 = 0 and  𝑎1, 𝑎2, 𝑎3 … .. be the amplitudes at time 𝑡 =

𝑇, 2𝑇, 3𝑇 … where T is period oscillation, then we get 

𝑎1 = 𝑎0𝑒−𝑟𝑇 

𝑎2 = 𝑎0𝑒−2𝑟𝑇 

𝑎3 = 𝑎0𝑒−3𝑟𝑇 

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 

Now  
𝑎0

𝑎1
=

𝑎1

𝑎2
=

𝑎2

𝑎3
= ⋯ 𝑒𝑟𝑇 = 𝑒𝜆 

Where 𝜆(= 𝑟𝑇 = 𝑏𝑇/2𝑚) is Logarithmic decrement. Hence 

𝜆 = log𝑒

𝑎0

𝑎1
= log𝑒

𝑎1

𝑎2
= log𝑒

𝑎2

𝑎3
= ⋯ 

Hence it is clear that the Logarithmic decrement is the logarithm of the 

ratio of two amplitudes of oscillation which are separated by one period. 

 

8.8 POWER DISSIPATION IN DHO:- 
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Whenever a system is set into oscillations, it is subject to frictional 

(damping) forces arising from air resistance or from within the system 

itself. These forces oppose the motion of the system. The work done 

against these forces is dissipated out of the system as heat. Therefore the 

mechanical energy of the system continuously decreases with time, and 

the amplitude of oscillation gradually decays to zero. Suppose obtain an 

expression for this power dissipation from the oscillator. 

Now the damped harmonic oscillator is given by 

𝑥 = 𝑎𝑒−𝑟𝑡𝑐𝑜𝑠𝜔′𝑡                     … (1) 

Where 𝑎 and 𝜙 are arbitrary constants, 𝑟 is damping constant and 𝜔′ =

√𝜔2 − 𝑟2 is the angular frequency of the (damped) oscillator. 𝜔 is the 

angular frequency of undamped oscillator, 𝑘 being the force-constant. 

Hence 

𝑢 =
𝑑𝑥

𝑑𝑡
== 𝑒−𝑟𝑡[−𝑟sin (𝜔′𝑡 + 𝜙) + 𝜔′cos (𝜔′𝑡 + 𝜙)] 

 

Now the damping is very small so that 𝑟 ≪ 𝜔, then the term −𝑟sin (𝜔′𝑡 +

𝜙) in the equation for 𝑢 can be neglected and we can write  

𝑢 = 𝑎𝑒−𝑟𝑡𝜔′ cos(𝜔′𝑡 + 𝜙)      … (2) 

Now the total energy can be written as 

𝐸 = 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 + 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 

=
1

2
𝑚𝜇2 +

1

2
𝑘𝑥2 

Putting the values of 𝑥 and 𝑢 from (1) and (2) , we have 

𝐸 =
1

2
𝑚𝑎2𝑒−2𝑟𝑡𝜔′ cos2(𝜔′𝑡 + 𝜙) +

1

2
𝑘𝑎2𝑒−2𝑎𝑡𝜔′ sin2(𝜔′𝑡 + 𝜙) 

Again, since 𝑟 ≪ 𝜔, then we have 

𝜔′2 = 𝜔2 − 𝑟2 = 𝜔2 =
𝑘

𝑚
 

𝐸 =
1

2
𝑚𝑎2𝑒−2𝑟𝑡 (

𝑘

𝑚
) cos2(𝜔′𝑡 + 𝜙) +

1

2
𝑘𝑎2𝑒−2𝑟𝑡 sin2(𝜔′𝑡 + 𝜙) 

=
1

2
𝑘𝑎2𝑒−2𝑟𝑡(cos2(𝜔′𝑡 + 𝜙) + sin2(𝜔′𝑡 + 𝜙)) 

𝐸 =
1

2
𝑘𝑎2𝑒−2𝑟𝑡 

This is that the energy of the oscillator decreases with time. The rate at 

which the energy is lost is the power dissipation P. 

𝑃 = −
𝑑𝐸

𝑑𝑡
= −

1

2
𝑘𝑎2𝑒−2𝑟𝑡(−2𝑟) 

=
1

2
𝑘𝑎2𝑒−2𝑟𝑡(2𝑟) 
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From above equation becomes 

𝑷 = 𝟐𝒓𝑬                           … (3) 

Relaxation Time: The relaxation time is the time taken for the total 

mechanical energy to decay to 1 𝑒⁄  of its original value. If the energy is 𝐸0 

at 𝑡 = 0, then 

𝐸0 =
1

2
𝑘𝑎2 

Since                                                           𝐸 = 𝐸0𝑒−2𝑟𝑡  

Now if 𝜏 be the relaxation time, then at 𝑡 = 𝜏, and 𝐸 =
𝐸0

𝑒
, we get 

𝐸0

𝑒
= 𝐸0𝑒−2𝑟𝑡 

𝑒−1 = 𝑒−2𝑟𝑡 

−1 = −2𝑟𝑡 

𝜏 =
1

2𝑟
 

Putting the value 𝐸 and 𝜏 in (3), we have 

𝑃 = 2𝑟𝐸                

                                                 𝑃 =
𝐸

𝜏
 

𝐸 = 𝐸0𝑒−𝑡/𝜋  

The dissipated energy appears as heat in the following oscillating system. 

 

8.9 QUALITY FACTOR:- 

The quality factor Q of an oscillating system is a measure of damping, or 

the rate of energy decay, of the system. It is defined as 2𝜋 times the ratio 

of the energy stored in the system to the energy lost per period.  

𝑄 = 2𝜋
𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑡𝑜𝑟𝑒𝑑 𝑖𝑛 𝑠𝑦𝑠𝑡𝑒𝑚

𝑒𝑛𝑒𝑟𝑔𝑦 𝑙𝑜𝑠𝑠 𝑝𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑
 

Mean Life-time: The mean life time of damped oscillator is the time 

taken for the amplitude of oscillation to decay to 1 𝑒⁄  of the initial value. 

Relation between Quality Factor and Relaxation Time: 

The quality factor is  

𝑄 = 2𝜋
𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑡𝑜𝑟𝑒𝑑 𝑖𝑛 𝑠𝑦𝑠𝑡𝑒𝑚

𝑒𝑛𝑒𝑟𝑔𝑦 𝑙𝑜𝑠𝑠 𝑝𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑
 

If E is total energy of oscillator and 𝑃 is the rate of energy decay, then 

𝑄 = 2𝜋
𝐸

𝑃𝑇
 

Where 𝑇 is the period. Now if 𝜏 be the relaxation time, then 
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𝑃 =
𝐸

𝜏
 

So that 

𝑄 = 2𝜋
𝐸

(𝐸 𝜏⁄ )𝑇
=

2𝜋𝜏

𝑇
 

But   
2𝜋

𝑇
= 𝜔, the angular frequency of oscillator, therefore 

𝑄 = 𝜔𝜏 

Which is required solution. 

 

SOLVED EXAMPLES 
EXAMPLE1: The differential equation of oscillating system is  

𝑑2𝑥

𝑑𝑡2
+ 2𝑟

𝑑𝑥

𝑑𝑡
+ 𝜔2𝑥 = 0 

If 𝜔 ≫ 𝑟, then find the time in which 

i. Amplitude becomes 1 𝑒⁄  of its initial value. 

ii. Energy becomes 1 𝑒⁄  of its initial value. 

iii. Energy becomes 1 𝑒4⁄  of its initial value. 

SOLUTION: The given equation with condition 𝜔 ≫ 𝑟, is the equation of 

Harmonic oscillator is 

𝑥 = 𝑎𝑒−𝑟𝑡sin (𝜔′𝑡 + 𝜙)                      

Where 𝑎 and 𝜙 are arbitrary constants and 𝜔′ = √(𝜔2 − 𝑟2)and 

amplitude is 𝑎𝑒−𝑟𝑡. 

i. Suppose 𝑎0 be the amplitude at 𝑡 = 0 and 𝑎0 𝑒⁄  at 𝑡. Then we 

obtain 

𝑎0 = 𝑎 

and 
𝑎0

𝑒
= 𝑎𝑒−𝑟𝑡 = 𝑎0𝑒−𝑟𝑡 

 Now                                            𝑒−1 = 𝑒−𝑟𝑡 ⇒ −1 = −𝑟𝑡 ⇒ 𝑡 =
1

𝑟
𝑠𝑒𝑐. 

ii. The energy of damped oscillation is given by 

𝐸 = 𝐸0𝑒−2𝑟𝑡 

When the energy falls to 𝐸0 𝑒⁄ , we obtain 

𝐸0

𝑒
= 𝐸0𝑒−2𝑟𝑡 ⇒ 𝑒−1 = 𝑒−2𝑟𝑡 ⇒ −1 = −2𝑟𝑡 ⇒ 𝑡 =

1

2𝑟
𝑠𝑒𝑐. 

iii. When the energy falls to 𝐸0 𝑒4⁄ , we obtain 

𝐸0

𝑒4
= 𝐸0𝑒−2𝑟𝑡 

𝑒−4 = 𝑒−2𝑟𝑡 ⇒ −4 = −2𝑟𝑡 ⇒ 𝑡 =
2

𝑟
𝑠𝑒𝑐. 
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EXAMPLE2: The quality factor 𝑄 of a tuning fork is 5 × 104. Find the 

value of time-interval after which its energy becomes 1 10⁄  of its initial 

value. 

SOLUTION: The quality factor of a damped oscillator is given below 

𝑄 = 𝜔𝜏 

Where 𝜔 is angular frequency and 𝜏 is relaxation time. Then 

𝜏 =
𝑄

𝜔
 

Here 𝑄 = 5 × 104 and 𝜔 = 2𝜋𝑛 = 600 𝜋 𝑠𝑒𝑐.⁄  

𝜏 =
5 × 104

600𝜋
𝑠𝑒𝑐. 

Now, the energy of damped is     

                       𝐸 = 𝐸0𝑒−2𝑟𝑡 = 𝐸0𝑒−𝑡/𝜏                              [∵  𝜏 = 1 2𝑟⁄ ] 

Let the time-interval 𝑡′ which the energy becomes1 10⁄  of its initial value. 

Now substituting  
𝐸

𝐸0
=

1

10
 and 𝑡′ = 𝑡 in the last expression, we obtain 

1

10

1

10
= 𝑒−𝑡′/𝜏 

10 = 𝑒−𝑡′/𝜏 

log𝑒 10 =
𝑡′

𝜏
 

𝑡′ = 𝜏 log𝑒 10 

=
5 × 104

600 × 3.14
× 2.3 = 61𝑠𝑒𝑐. 

EXAMPLE3: A body of mass 0.2𝑘𝑔 is hung from a spring of constant 

80 𝑁 𝑚⁄ . The body is subjected to a resistive force given by 𝑏𝑣, where 𝑣 

is the velocity in 𝑚 𝑠⁄ . Calculate the value of the undamped frequency and 

the value of 𝜏 if the damped frequency is √3/2 of the undamped 

frequency. 

SOLUTION: The undamped frequency of mass 𝑚 suspended by a spring 

of force-constant 𝑘 is given below 

𝑛 =
1

2𝜋
√

𝑘

𝑚
 

Here 𝑚 = 0.2𝑘𝑔 and 𝑘 = 80𝑁/𝑚 

𝑛 =
1

2𝜋
√

80

0.2
=

10

𝜋
= 3.18𝑠−1 

The damped frequency 𝑛′ is 𝑛′ =
1

2𝜋
√𝜔2 − 𝑟2 

Where 𝜔 = √𝑘 𝑚⁄  and 𝑟 = 𝑏/2𝑚. 
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𝑛′ =
1

2𝜋
√

𝑘

𝑚
− 𝑟2 

But 𝑛′ =
√3

2
𝑛. 

                                          
1

2𝜋
√

𝑘

𝑚
− 𝑟2 =

√3

2

10

𝜋
 

                  
𝑘

𝑚
− 𝑟2 = 300                      [∵

𝑘

𝑚
=

80

0.2
= 400] 

                           400 − 𝑟2 = 300 ⇒ 𝑟 = 10 

Therefore, the relaxation time is 

𝜏 =
1

2𝑟
=

1

20
= 0.05𝑠𝑒𝑐. 

 

EXAMPLE4: Q is a sonometer wire  is 2 × 103. On plucking, it executes 

240 vibrations per second. Calculate time in which the amplitude 

decreases to 1 𝑒2⁄  of the initial value. 

SOLUTION: The quality factor is  

𝑄 = 𝜔𝜏 

Here  𝑄 = 2 × 103 and 𝜔 = 2𝜋𝑛 = 2 × 3.14 × 240𝑠−1 

𝜏 =
𝑄

𝜔
=

2 × 103

2 × 3.14 × 240
= 1.327𝑠 

Now 

If 𝑎0 be initial amplitude and 
𝑎0

𝑒2 the amplitude after time 𝑙 then, we get 

𝑎0

𝑒2
= 𝑎0𝑒−𝑟𝑡 

        𝑒−2 = 𝑒−𝑟𝑡 ⇒ 2 = 𝑟𝑡 ⇒ 𝑡 =
2

𝑟
= 4𝜏                    [𝜏 = 1/2𝑟] 

= 4 × 1.327 = 5.2𝑠 

 

 

SELF CHECK QUESTIONS 
1. Due to damping, the period of an oscillator slightly increases.    

(True/False) 

2. The relation between quality factor 𝑄 and relaxation time 𝜏 of an 

oscillator is 𝑞 = 𝜔𝜏. (True/False) 
 

8.10 SUMMARY:- 
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In this unit we studied the Integral Curves, ODE (in Local Charts): 

Existence, Uniqueness and Smoothness and Damped Oscillation with 

suitable example. 

8.11 GLOSSARY:- 

 Integral Curve: A curve in a vector field that represents the path 

traced by a particle moving according to the field's vector values at 

each point. 

 Damped Oscillation: A type of oscillatory motion in which the 

amplitude of the oscillation gradually decreases over time due to the 

presence of damping forces or resistances. 

 Oscillation: A repetitive and periodic motion around an equilibrium 

position. 

 Quality Factor (Q): A measure of the sharpness of resonance in a 

damped system, calculated as the ratio of the natural frequency to the 

damping rate. 

 Underdamped, Overdamped, and Critically Damped: Different 

classifications of damped systems based on the value of the damping 

ratio with respect to certain thresholds. 

 

8.12  REFERENCES:- 

  

 George F. Simmons(2017) 2nd edition Differential Equations with 

Applications and Historical Notes 

 Morris Tenenbaum and Harry Pollard (1985) Ordinary Differential 

Equations. 

 

8.13  SUGGESTED READING:- 

 

 John R. Taylor (2004) Classical Mechanics. 

 Shepely L.Ross (2007) 3rd edition Differential Equation. 

 

8.14 TERMINAL QUESTIONS:- 

(TQ-1)Find the equation of motion for damped harmonic oscillator and 

discuss the cases of under, over and critical Damping’s. 
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(TQ-2)Discuss logarithmic decrement for a damped harmonic oscillator. 

(TQ-3)A particle is oscillating under a damping force. Show that the 

power dissipation is 𝑃 = 𝐸 𝜏⁄ , where 𝐸 is the average energy and 𝜏 the 

relaxation time. What happens to the dissipated energy? 

(TQ-4) Define quality factor, mean life-time and relaxation time for a 

damped harmonic oscillator. 

(TQ-5) Obtain a relation between quality factor and relaxation time. 

(TQ-6) Explain the effect of damping on oscillatory motion. 

(TQ-7) If the relaxation time of a damped harmonic oscillator is 50 

second, find the time in which  

i. The amplitude falls to 1 𝑒⁄  the initial value. 

ii. Energy of the system falls to 1 𝑒⁄  times the initial value. 

iii. Energy falls to 1 𝑒4⁄  of the initial value. 

(TQ-8)The oscillations of a tuning fork of frequency 200 cps die away to 

1 𝑒⁄  times their amplitude in I second. Show that the reduction in 

frequency due to air damping is exceedingly small. 

(TQ-9)A damped vibrating system starting from rest has an initial 

amplitude of 20 cm which reduces to 2cm after 100 complete oscillations, 

each of period 2.3 second. Find the logarithmic decrement of a system. 

 

8.15 ANSWERS:- 

SELF CHECK ANSWERS 

1. True   

2. True 

  

 

TERMINAL ANSWERS 

 (TQ-7)        i. 100sec.   ii. 50 sec.     iii. 200 sec. 

(TQ-9)       0.023 
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UNIT 9:- FUNDAMENTAL EXISTENCE 

THEOREM 

CONTENTS: 
9.1      Introduction 

9.2      Objectives 

9.3      Fundamental Existence theorem 

9.4      Almost linear system 

9.5      Stable and unstable critical point 

9.6      Stability properties of the critical point 

9.7      Liapunov’s function 

9.8      Theorems on stability and unstability by Liapunov’s function 

9.9      Summary  

9.10    Glossary 

9.11    References 

9.12    Suggested Reading 

9.13    Terminal questions   

9.14    Answers  

 

9.1 INTRODUCTION:- 

In the previous units you should have already studied 

An Autonomous system:- A system of two first order differential 

equations of the form 

                               
 𝑑𝑥

𝑑𝑡
 =  𝑓(𝑥, 𝑦), 

𝑑𝑦

𝑑𝑡
=  𝑔(𝑥, 𝑦)                ....(1) 

is said to be autonomous, when the independent variable t does not appear 

explicitly. 

That system (1) gives the slope of a path passing through a point 𝑃(𝑥, 𝑦) 

as 

                                 
𝑑𝑦

𝑑𝑥
=

𝑔(𝑥,𝑦)

𝑓(𝑥,𝑦)
                                 ...(2) 

If 𝑓(𝑥, 𝑦) = 0 but 𝑔(𝑥, 𝑦)  ≠ 0at 𝑃, we can take 
𝑑𝑥

𝑑𝑦
=

𝑓(𝑥,𝑦)

𝑔(𝑥,𝑦)
instead of (2) 

and conclude from 
𝑑𝑥

𝑑𝑦
= 0 that the tangent at P is vertical. 
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Phase Plane:- If 𝑓 (𝑥, 𝑦) and 𝑔 (𝑥, 𝑦) be continuously differentiable 

functions in some region R in the xy- plane, then 𝑥𝑦 – plane is called the 

phase plane of (1) 

Critical Point:- A critical point of the system (1) is a point (𝑥0,𝑦0) at 

which both 𝑓 (𝑥, 𝑦) and 𝑔(𝑥, 𝑦) are zero.The nature of the critical point 

(0,0) i.e., node, saddle points, spiral, centre of the system (1) is determined 

by the nature of the eigenvalues. 

9.2 OBJECTIVES:- 

After studying this unit you will be able to  

 Describe the Fundamental Existence Theorem. 

 Understand and explain the concept of stability. 

 Investigate the stability of the trivial solution 𝑥 = 0, 𝑦 = 0 of an 

autonomous system. 

 Understand the Liapunov function.  

9.3 FUNDAMENTAL EXISTENCE THEOREM:- 

For the first order differential equation  

                                     𝑦 ′ = 𝑓(𝑥, 𝑦)                              ..... (1) 

𝑦(𝑥0) = 𝑦0 

Consider the rectangular region T defined by |𝑥 − 𝑥0| ≤ 𝑐𝑎𝑛𝑑|𝑦 − 𝑦0| ≤

𝑑 in this region, centre is the point (𝑥0, 𝑦0).Let the function 𝑓  and  
𝛿𝑓

𝛿𝑦
  is 

continuous at each point in T.Then there exists an interval,|𝑥 − 𝑥0| ≤ ℎ   

and a function (𝑥)that has the following properties: 

(a) 𝑦 = (𝑥)   is a solution of equation(1) in the interval|𝑥 − 𝑥0| ≤ ℎ 

(b) (𝑥)satisfies the inequality |(𝑥) − 𝑦0| ≤ 𝑑 in the interval  

|𝑥 − 𝑥0| ≤ ℎ 

(c) (𝑥0) = 𝑦0 

(d) (𝑥)is unique in the interval |𝑥 − 𝑥0| ≤ ℎ 

PROOF: We shall prove this theorem by the method of successive 

approximations. Let us define a sequence of functions 

𝑦0(𝑥), 𝑦1(𝑥), 𝑦2(𝑥), … 𝑦𝑛(𝑥), … as follows: 

𝑦0(𝑥) = 𝑦0,𝑦1(𝑥) = 𝑦0 + ∫ 𝑓(𝑡, 𝑦0(𝑡))𝑑𝑡
𝑥

𝑥0
, 

                                                   𝑦2(𝑥) = 𝑦0 + ∫ 𝑓(𝑡, 𝑦1(𝑡))𝑑𝑡
𝑥

𝑥0
 ,    .... (2) 

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 
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𝑦𝑛(𝑥) = 𝑦0 + ∫ 𝑓(𝑡, 𝑦𝑛−1(𝑡))𝑑𝑡
𝑥

𝑥0
  , 

We shall divide the proof into next three sections. Since 𝑓 is continuous in 

the rectangle T. It follows that 𝑓 must be bounded in T. Let 𝑀 > 0  be a 

number such that |𝑓(𝑥, 𝑦)| ≤ 𝑀  for every point in T. We now take  to 

be the smaller of the two numbers c and 
𝑑

𝑀
, and define the rectangle R to 

be the set of points (𝑥, 𝑦) for which|𝑥 − 𝑥0| ≤ ℎ,|𝑦 − 𝑦0| ≤ 𝑑. 

LEMMA 1:If |𝑥 − 𝑥0| ≤ ℎ  then   

                        |𝑦𝑛(𝑥) − 𝑦0| ≤ 𝑑   for n=1,  2, 3,..........  

The proof of this lemma will be accomplished by induction on n. 

If |𝑥 − 𝑥0| ≤ ℎ , Then   

                                |𝑦1(𝑥) − 𝑦0| = |∫ 𝑓(𝑡, 𝑦0(𝑡))𝑑𝑡
𝑥

𝑥0
|      .......by (2) 

≤ 𝑀 |∫ 𝑑𝑡
𝑥

𝑥0

| 

≤ 𝑀|𝑥 − 𝑥0| 

≤ 𝑀ℎ 

≤ 𝑑 

This proves the desired result for n=1. Now suppose that it is true for k 

i.e., for  |𝑥 − 𝑥0| ≤ ℎ ,|𝑦𝑘(𝑥) − 𝑦0| ≤ 𝑑, it follows that the point 

(𝑥, 𝑦𝑘(𝑥)) is in R so that |𝑓(𝑥, 𝑦𝑘(𝑥))| ≤ 𝑀 . Thus 

|𝑦𝑘+1(𝑥) − 𝑦0| = |∫ 𝑓(𝑡, 𝑦𝑘(𝑡))𝑑𝑡
𝑥

𝑥0

| 

≤ 𝑀|𝑥 − 𝑥0| 

≤ 𝑀ℎ 

≤ 𝑑 

Which shows that (𝑥, 𝑦𝑘+1(𝑥)) lies in R. Thus we can say if|𝑥 − 𝑥0| ≤ ℎ , 

then the point(𝑥, 𝑦𝑛(𝑥)), 𝑛 = 1, 2, 3 … … … . are in R which is a slightly 

different way of saying Lemma1. The Lipschitz condition may now be 

used to deduce the following lemma. 

LEMMA 2:If  |𝑥 − 𝑥0| ≤ ℎ  then 

|𝑓(𝑥, 𝑦𝑛(𝑥)) − 𝑓(𝑥, 𝑦𝑛−1(𝑥))| ≤ 𝐾|𝑦𝑛(𝑥) − 𝑦𝑛−1(𝑥)| 

for n=1, 2, 3....... 

We are now in a position to give an inductive proof of still another lemma. 

LEMMA 3:If  |𝑥 − 𝑥0| ≤ ℎ then 

|𝑦𝑛(𝑥) − 𝑦𝑛−1(𝑥)| ≤
𝑀𝐾𝑛−1|𝑥−𝑥0|𝑛

𝑛
≤

𝑀𝐾𝑛−1ℎ𝑛

𝑛
𝑓𝑜𝑟𝑛 = 1,2,3 …      ...(3) 

We have already verified (3) for 𝑛 = 1   in Lemma 1 where we have 

shown that 
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|𝑦1(𝑥) − 𝑦0| ≤ 𝑀|𝑥 − 𝑥0| 

Assuming that  

                                  |𝑦𝑛−1(𝑥) − 𝑦𝑛−2(𝑥)| ≤
𝑀𝐾𝑛−2|𝑥−𝑥0|𝑛−1

(𝑛−1)
         .... (4) 

We now show that  

|𝑦𝑛(𝑥) − 𝑦𝑛−1(𝑥)| ≤
𝑀𝐾𝑛−1|𝑥 − 𝑥0|𝑛

𝑛
 

We will prove this for the case 𝑥0 ≤ 𝑥 ≤ 𝑥0 + ℎ  . 

|𝑦𝑛(𝑥) − 𝑦𝑛−1(𝑥)| = |∫ [𝑓(𝑡, 𝑦𝑛−1(𝑡)) − 𝑓(𝑡, 𝑦𝑛−2(𝑥))]𝑑𝑡
𝑥

𝑥0
|    using (2) 

≤ ∫ |𝑓(𝑡, 𝑦𝑛−1(𝑡)) − 𝑓(𝑡, 𝑦𝑛−2(𝑥))|
𝑥

𝑥0

|𝑑𝑡| 

Using Lemma 2 we conclude that 

|𝑦𝑛(𝑥) − 𝑦𝑛−1(𝑥)| ≤ 𝐾 ∫ |𝑦𝑛−1(𝑡) − 𝑦𝑛−2(𝑡)||𝑑𝑡|
𝑥

𝑥0

 

≤
𝑀𝐾𝑛−1

(𝑛−1)
∫ |𝑥 − 𝑥0|𝑛−1𝑥

𝑥0
𝑑𝑡using (4) 

Or           |𝑦𝑛(𝑥) − 𝑦𝑛−1(𝑥)| ≤
𝑀𝐾𝑛−1

(𝑛)
|𝑥 − 𝑥0|𝑛              ...(5) 

For the case 𝑥0 − ℎ ≤ 𝑥 ≤ 𝑥0, the same type of argument will yield the 

same result which completes the proof of the Lemma. 

To utilize the results of Lemma 3 we now compare the two infinite series 

∑ [𝑦𝑛(𝑥) − 𝑦𝑛−1(𝑥)]∞
𝑛=1 and∑

𝑀𝐾𝑛−1ℎ𝑛

(𝑛)

∞
𝑛=1  

The second of these series is an absolutely convergent series. Moreover, 

by Lemma 3 the second series dominates the first series. Hence by the 

Weierstrass’s M test the series 

∑ [𝑦𝑛(𝑥) − 𝑦𝑛−1(𝑥)]∞
𝑛=1                                ... (6) 

Converges absolutely and uniformly on the interval|𝑥 − 𝑥0|ℎ. If we 

consider the 𝑘𝑡ℎ partial sum of the series (4) 

∑[𝑦𝑛(𝑥) − 𝑦𝑛−1(𝑥)]

𝑘

𝑛=1

= [𝑦1(𝑥) − 𝑦0(𝑥)] + [𝑦2(𝑥) − 𝑦1(𝑥)] … …

+ [𝑦𝑘(𝑥) − 𝑦𝑘−1(𝑥)], 

We see that  ∑ [𝑦𝑛(𝑥) − 𝑦𝑛−1(𝑥)]∞
𝑛=1 = 𝑦𝑘(𝑥) . 

That is the statement that the series (6) converges absolutely and 

uniformly is equivalent to the statement that the sequence 𝑦𝑛(𝑥) converges 

uniformly on the interval |𝑥 − 𝑥0| ≤ ℎ . 

If we now define𝑓(𝑥) = lim
𝑛→∞

𝑦𝑛(𝑥) 



ADVANCED DIFFERENTIAL EQUATIONS-I MAT 504 
 

Department of Mathematics    
Uttarakhand Open University Page 206 
 

And recall from the definition of the sequence 𝑦𝑛(𝑥) that each 𝑦𝑛(𝑥) is 

continuous on|𝑥 − 𝑥0|ℎ, it follows (since the convergence is uniform) 

that ∅(𝑥)  is also continuous and ∅(𝑥) = lim
𝑛→∞

𝑦𝑛(𝑥) = 𝑦0 +

lim
𝑛→∞

∫ 𝑓(𝑡, 𝑦𝑛−1(𝑡))𝑑𝑡
𝑥

𝑥0
 

Because of the continuity of f and the uniform convergence of the 

sequence𝑦𝑛(𝑥), we may interchange the order of the two limiting 

processes to show that ∅(𝑥) is a solution of the integral equation. 

∅(𝑥) = 𝑦𝑛 + ∫ 𝑓(𝑡, ∅(𝑡))𝑑𝑡 
𝑥

𝑥0
                                      ....(7) 

It follows immediately upon differentiation of equation (7) that ∅(𝑥)is a 

solution of the differential equation 𝑦 ′ = 𝑓(𝑥, 𝑦) on the interval|𝑥 − 𝑥0| ≤

ℎ. Furthermore, it is clear from equation (7)(𝑥0) = 𝑦0. 

Finally, since it have shown in Lemma 1 that |𝑦𝑛(𝑥) − 𝑦0| ≤ 𝑑for each n 

and for |𝑥 − 𝑥0| ≤ ℎ,  it follows that the same inequality must hold for 

∅(𝑥) = lim
𝑛→∞

𝑦𝑛(𝑥) that is if ,|𝑥 − 𝑥0| ≤ ℎ  then |(𝑥) − 𝑦0| ≤ 𝑑. 

This completes the proof of parts (a), (b) and (c) of the existence theorem. 

9.4  ALMOST LINEAR SYSTEM:- 

Consider the non –linear system of the form
𝑑𝑥

𝑑𝑡
= 𝑎1𝑥 + 𝑏1𝑦 + 𝑓1(𝑥, 𝑦) 

                
𝑑𝑦

𝑑𝑡
= 𝑎2𝑥 + 𝑏2𝑦 + 𝑓2(𝑥, 𝑦)                                  ...(1)  

The system (1) can be written in matrix form as  

𝑑

𝑑𝑡
(

𝑥
𝑦) = (

𝑎1 𝑏1

𝑎2 𝑏2
) (

𝑥
𝑦) + (

𝑓1(𝑥, 𝑦)
𝑓2(𝑥, 𝑦)

)                         ...(2) 

where𝑎1,𝑏1,𝑎2,𝑏2,are constants.  

By dropping the non linear terms𝑓1(𝑥, 𝑦)and𝑓2(𝑥, 𝑦), the related linear 

system is 

𝑑𝑥

𝑑𝑡
= 𝑎1𝑥 + 𝑏1𝑦 

                          
𝑑𝑦

𝑑𝑡
= 𝑎2𝑥 + 𝑏2𝑦                                      ...(3) 

For system (2) let us assume that 

       (a)                |
𝑎1 𝑏1

𝑎2 𝑏2
| ≠ 0   

then the related linear system (3) has (0,0) as a critical point. 

(b) 𝑓1(𝑥, 𝑦)and𝑓2(𝑥, 𝑦) are continuous and have continuous partial 

derivatives for all (x,y). 

(c) lim
(𝑥,𝑦)→(0,0)

𝑓1(𝑥,𝑦)

√𝑥2+𝑦2
= 0 



ADVANCED DIFFERENTIAL EQUATIONS-I MAT 504 
 

Department of Mathematics    
Uttarakhand Open University Page 207 
 

lim
(𝑥,𝑦)→(0,0)

𝑓2(𝑥,𝑦)

√𝑥2+𝑦2
= 0                                                 …(4) 

Then (0,0) is said to be simple critical point of the system (2) and system 

(2) is called almost linear system. 

9.5 STABLE AND UNSTABLE CRITICAL POINT:- 

DEFINITION1-(Stable and Unstable): If 𝑋(𝑡) =  (𝑥(𝑡), 𝑦(𝑡)),  𝑋0  = (𝑥0, 𝑦
0

) 

and 𝑋∗ = (𝑥∗, 𝑦∗) then the critical point (𝑥∗, 𝑦∗) is said to be stable 

provided for given 𝜀 > 0 there exists a >  0 such that |(𝑋(𝑡) − X∗| <

𝜀whenever|𝑋0 − X∗| < 𝛿, ∀ 𝑡 > 0. The critical point(𝑥∗, 𝑦∗)is said to be 

unstable if it is not stable. 

DEFINITION 2-(Asymptotically stable): The critical point (𝑥∗, 𝑦∗) is 

asymptotically stable if it is stable and every trajectory that begins 

sufficiently close to (𝑥∗, 𝑦∗) also approaches (𝑥∗, 𝑦∗)as 𝑡 → i.e., for  >

 0,  (𝑥∗, 𝑦∗) also approaches (𝑥∗, 𝑦∗)as 𝑡 →  i.e., for  >  0,  

|(𝑋 (𝑡) − X| < 𝜀 

⟹ lim
𝑡→∞

𝑋(𝑡)𝑋 

9.6  STABILITY PROPERTIES OF CRITICAL 

POINT (0, 0):- 

Consider the linear autonomous system of the form  

𝑑𝑥

𝑑𝑡
= 𝑎1𝑥 + 𝑏1𝑦,        

𝑑𝑦

𝑑𝑡
= 𝑎2𝑥 + 𝑏2𝑦                  ...(1) 

we may assume that|
𝑎1 𝑏1

𝑎2 𝑏2
| ≠ 0 

Clearly the system (1) has origin (0,0) as a critical point. 

System (1) can be written in matrix form as 
𝑑

𝑑𝑡
(

𝑥
𝑦)𝐴 (

𝑥
𝑦) 

where the coefficient matrix  𝐴 = (
𝑎1 𝑏1

𝑎2 𝑏2
).   

Then,eigen values of A are the roots of the characteristic equation 

│A-I│ = 0or (𝑎1 + 𝑏2) + (𝑎1𝑏2 − 𝑎2𝑏1) = 0 .…(2) 
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Fig.1 

 

Now if 1and 2are the eigen values, then the equation (2) can be written 

in the form  

                (1)(2) = 
2 + 𝑝 + 𝑞 = 0                     …(3) 

where𝑝 = −(1 + 2) = −(𝑎1 + 𝑏2) and 𝑞 =  12 = (𝑎1𝑏2 − 𝑎2𝑏1) 

Equation (3) gives  =
−𝑝±√𝑝2−4𝑞

2
 

 i.e.,1,   λ2 =
−𝑝±√𝑝2−4𝑞

2
 

Above the parabola𝑝2 − 4𝑞 = 0, we have𝑝2 − 4𝑞 < 0,so  1 and 2are 

conjugate complex numbers.If both1 and2have non-negative real 

parts,then the critical point, which is a spiral point, is unstable and if 

both1and2have non positive real parts then the critical point, which is a 

spiral point,is asymptotically stable.Again if 𝑝 = 0 then both1 and2are 

pure imaginary. In this case the critical point, which is a centre, is stable. 

Below the p–axis we have 𝑞 < 0 which means that 1 and 2are real, 

distinct and have opposite signs. In this case the critical point, which is a 

saddle point, is unstable. 

In the region between 𝑝2 − 4𝑞 ≥ 0  and 𝑞 > 0 , 1and 2 are real and of 

the same sign so in this case the critical point, which is a node, is 

asymptotically stable. On the basis of the theory given above, a stability 

criterion is given in table 1 and figure1, which at a glance shows the 

nature and stability properties of the critical point(0, 0). 

Table1 

 

𝑟1, 𝑟2 

            Linear system               Almost linear system 

   Type          Stability         Type        Stability 
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𝜆1 < 𝜆2 < 0 

𝜆1 > 𝜆2 > 0 

𝜆1 > 0 > 𝜆2 

𝜆1 = 𝜆2 > 0 

𝜆1 = 𝜆2 < 0 

Node 

Node 

Saddle point 

Node 

Node 

Asymptotically stable 

Unstable 

Unstable 

Unstable 

Asymptotically stable 

Node 

Node 

Saddle point 

Node or 𝑆𝑝𝑃  

Node or 𝑆𝑝𝑃  

Asymptotically 

stable 

Unstable 

Unstable 

Unstable 

Asymptotically 

stable 

 

𝜆1, 𝜆2 = 𝜆 ± 𝑖𝜇     

𝜆 > 0 

𝜆 < 0 

𝜆 = 0 

𝑆𝑝𝑃  

𝑆𝑝𝑃  

Centre 

Unstable 

Asymptotically stable 

Stable 

𝑆𝑝𝑃  

𝑆𝑝𝑃  

Centre or 𝑆𝑝𝑃  

 Unstable 

Asymptotically 

stable 

Indeterminate  

𝑆𝑝𝑃 = Spiral Point 

 

SOLVED EXAMPLES 

EXAMPLE1:For the system of equations 

𝑑𝑥

𝑑𝑡
= 2𝑥 + 𝑦 + 𝑥𝑦2,

𝑑𝑦

𝑑𝑡
= 𝑥 2𝑦𝑥𝑦....(1) 

Verify that (0, 0) is a critical point. Show that the system is almost linear 

and discuss the type and stability of the critical point (0,0). 

SOLUTION: For critical points we must have 

𝑑𝑥

𝑑𝑡
= 0,     

𝑑𝑦

𝑑𝑡
= 0 

This gives                            2𝑥 + 𝑦 + 𝑥𝑦20 

and                                         𝑥 2𝑦𝑥𝑦 0    

Solving these equations we obtain 𝑥 = 0  and 𝑦 = 0, Thus (0,0) is a 

critical point. 

The given system can be written as
𝑑𝑥

𝑑𝑡
= 2𝑥 + 𝑦 + 𝑓(𝑥, 𝑦) 

𝑑𝑦

𝑑𝑡
= 𝑥 2𝑦 +  𝑔(𝑥, 𝑦) 

where   𝑓(𝑥, 𝑦) = 𝑥𝑦2 and𝑔(𝑥, 𝑦) = −𝑥𝑦. 

Using the polar co-ordinates𝑥𝑟 cos 𝜃 and𝑦𝑟 sin 𝜃, 

We get 

                          
𝑓(𝑥,𝑦)

𝑟
=

𝑟3 cos 𝜃𝑠𝑖𝑛2𝜃

𝑟
= 𝑟2 cos 𝜃𝑠𝑖𝑛2𝜃 

which tends to 0 as r tends to 0. 

Similarly, 
𝑔(𝑥,𝑦)

𝑟
= −

𝑟2 cos 𝜃 sin 𝜃

𝑟
= −𝑟 cos 𝜃 sin 𝜃 

which again tends to 0 as r tends 0. 

Therefore, system (1) is almost linear. 

Also, the related linear system in the neighbourhood of (0,0) is  
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𝑑𝑥

𝑑𝑡
 =  2𝑥 + 𝑦 

𝑑𝑦

𝑑𝑡
=  𝑥 − 2𝑦 

Its matrix form is  
𝑑

𝑑𝑡
(

𝑥
𝑦) = (

2 1
1 −2

) (
𝑥
𝑦)                                 ..(2) 

Theeigen values of (2) are the roots of the equation  

|2 − 𝜆 1
1 −2 − 𝜆

| = 0 

⇒ 
2 − 5 =  0  =  ±√5 

Therefore  1 =  + √5  and 2 = −√5 

The eigen values are real, distinct and of opposite sign. Therefore the 

critical point (0,0) is an unstable saddle point of the system (2). 

EXAMPLE 2:For the set of non–linear differential Equations  

𝑑𝑥

𝑑𝑡
= 𝑥 − 𝑥𝑦,

𝑑𝑦

𝑑𝑡
= 𝑥𝑦 − 𝑦                               ...(1) 

(i) Show that the point (0,0) and (1,1) are equilibrium points of the above 

system. 

(ii) Show that the point (0,0) is a saddle point and (1,1) is a centre of 

above system. 

SOLUTION :(i) For the equilibrium points, we have 

𝑑𝑥

𝑑𝑡
= 0,     

𝑑𝑦

𝑑𝑡
= 0 

This gives𝑥 − 𝑥𝑦 0 𝑥 (1 – 𝑦 )  =  0𝑥 = 0 , 𝑦 = 1 

– 𝑦 +  𝑥𝑦 =  0𝑦 (𝑥 − 1 )  =  0𝑦 = 0 , 𝑥 =  1 

Hence  (0, 0) and (1, 1) are the equilibrium points or critical points. 

(ii) In the neighborhood of (0,0), the above given system reduces to related 

linear     system 
𝑑𝑥

𝑑𝑡
= 𝑥,       

𝑑𝑦

𝑑𝑡
= −𝑦 

This system can be written in matrix form as  

𝑑

𝑑𝑡
(

𝑥
𝑦) = (

1 0
0 −1

) (
𝑥
𝑦)                                               ...(2) 

Eigen values of (2) are the roots of the equation  

|1 −  0
0 −1 − 

| = 0 

(1 – ) (1 – ) = 0  

  1, 1 

Therefore 1 1, 21 are the eigenvalues,both are real, distinct and of 

opposite sign.Therefore(0, 0) is a saddle point. 
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In the neighbored of (1,1),the given system can be reduced to the new 

system by putting  

𝑥 =  𝑢 + 1, 𝑦 =  𝑣 + 1 
𝑑𝑥

𝑑𝑡
=

𝑑𝑢

𝑑𝑡
,
𝑑𝑦

𝑑𝑡
=

𝑑𝑣

𝑑𝑡
 

 Putting these values in (1), we find  

𝑑𝑢

𝑑𝑡
( 𝑢 + 1 ) (−𝑣)   =  −𝑣– 𝑢𝑣 

𝑑𝑣

𝑑𝑡
𝑢 (𝑣 + 1)   =  𝑢𝑣 + 𝑢 

The auxiliary equation of the associated linear system  

𝑑𝑢

𝑑𝑡
 − 𝑣 

𝑑𝑣

𝑑𝑡
= 𝑢 

Its matrix form is 

                            
𝑑

𝑑𝑡
(

𝑢
𝑣

)= (
0 1
1 0

) (
𝑢
𝑣

)                          ...(3) 

The Eigen values of (3) are the roots of the equation  

|0 −  −1
1 0 − 

| = 0 ⇒ 𝜆2 + 1 =  0 

      𝜆 =  0  ± 𝑖 

i. e.,𝜆1 = 𝑖, 𝜆2 = −𝑖 

These are of the form  + 𝑖𝜇with  = 0.Thus𝑢(𝑡) and 𝑣(𝑡) oscillate with 

constant amplitudes as t increases in closed curve surrounding the 

equilibrium point (1,1) and hence (1,1) is the centre. 

EXAMPLE 3: Find the critical points of the System 

𝑑𝑥

𝑑𝑡
= 𝑦25𝑥 + 6 

                      
𝑑𝑦

𝑑𝑡
=  𝑥𝑦                                         ...(1) 

SOLUTION: For Critical Points, we must have  

𝑑𝑥

𝑑𝑡
= 0,     

𝑑𝑦

𝑑𝑡
= 0 

This gives𝑦25𝑥 + 6 0 and𝑥𝑦 0 

Solving these we get𝑦25𝑦 + 6 0𝑦 =  3, 2 

Since 𝑥𝑦so (3,3) and(2,2) are the critical points of the system (1). 

EXAMPLE 4: Find the critical point of the system  

𝑑𝑥

𝑑𝑡
=  𝑥 

𝑑𝑦

𝑑𝑡
=  −𝑥 +  2𝑦 
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Discuss the type and stability of the critical point and find the general 

solution of the system. 

SOLUTION: For critical Points we must have  

𝑑𝑥

𝑑𝑡
 =  0,

𝑑𝑦

𝑑𝑡
  =  0 

⇒ 𝑥 =  0  and– 𝑥 + 2𝑦 = 0 

On solving these equations we obtain 𝑥 = 0 and𝑦 = 0  thus (0, 0)is a 

critical point. 

The given system can be written in the matrix from as  

𝑑

𝑑𝑡
(

𝑥

𝑦
)  =  (

1 0
−1 2

) (
𝑥

𝑦
) 

The eigenvalues of given system are the characteristic roots of the 

equation 

|
1 − 𝜆 0

−1 2 − 𝜆
| = 0 

⇒ (1 − 𝜆)(2 − 𝜆) = 0 

⇒ 𝜆 = 1, 2. 

Since eigenvalues are real distinct and of the same sign, the critical point 

is a node. Also, since 𝜆1 > 0, 𝜆2 > 0,it is unstable. 

To find the general solution of given system, we find the eigenvectors 

corresponding to the eigenvalues𝜆1 = 1, 𝜆2 = 2. 

Eigen vector corresponding to the eigenvalue𝜆1 = 1 is given by  

(
1 0

−1 2
) (

𝑥

𝑦
) − 𝜆1 (

1 0
0 1

) (
𝑥

𝑦
) = (

0

0
) 

⇒ (
0 0

−1 1
) (

𝑥

𝑦
) = (

0

0
) 

⇒ −𝑥 + 𝑦 = 0 

⇒ (1
1
)is one possible eigen vector. 

Eigen vector corresponding to the eigen value 𝜆2 = 2 is given by  

(
1 0

−1 2
) (

𝑥

𝑦
) − 𝜆2 (

1 0
0 1

) (
𝑥

𝑦
) = (

0

0
) 

⇒ (
−1 0
−1 0

) (
𝑥

𝑦
) = (

0

0
) 

⇒ −𝑥 = 0 

⇒ (0
1
)is the other possible eigenvector.  

Then the general solution of given system can be written as  

(
𝑥

𝑦
) = 𝑐1 (

1

1
) 𝑒𝑡 + 𝑐2 (

0

1
) 𝑒2𝑡 

⇒ 𝑥 = 𝑐1𝑒𝑡 
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𝑦 = 𝑐1𝑒𝑡 + 𝑐2𝑒2𝑡 

where𝑐1and𝑐2are arbitrary constants. 

9.7 LIAPUNOV’S FUNCTION:- 

Let 𝑉(𝑥)  =  𝑉(𝑥1, 𝑥2, … … … . . 𝑥𝑛) be a function of class C in an open 

region H containing the origin. Suppose 𝑉 (0)  = 0 and that V is positive 

at all other points of H. Then 𝑉 has a minimum at the origin and we say 

that 𝑉 is positive definite in H. Obviously the origin is a critical point of 𝑉  

i.e. a point at which all the partial derivatives 
𝜕𝑉

𝜕𝑥1
,

𝜕𝑉

𝜕𝑥2
, … … ,

𝜕𝑉

𝜕𝑥𝑛
 vanish. 

The origin will said to be an isolated critical point, if there is a circular 

disk about the origin, such that the origin is the only critical point of 𝑉 

inside the circular disk. The derivative 𝑉 along trajectories of an 

autonomous system is defined by the equation  

𝑉̇ =
𝑑𝑉

𝑑𝑡
=

𝜕𝑉

𝜕𝑥1
𝑋1(𝑥) +

𝜕𝑉

𝜕𝑥2
𝑋2(𝑥) + ⋯

𝜕𝑉

𝜕𝑥𝑛
𝑋𝑛(𝑥). 

If 𝑉 (𝑥) is positive definite in H and if 𝑉̇ ≤  0 throughout H then V(x) is 

said to be a Liapunov`s function for the equilibrium point at the origin of 

the system 
𝑑𝑥

𝑑𝑡
= 𝑋(𝑥). 

9.8  THEOREMS ON STABILITY AND 

UNSTABILITY BY LIAPUNOV’S FUNCTION:- 

THEOREM 1:( Liapunov’s Stability Theorem):If for a system 

of differential equation 
𝑑𝑥𝑖

𝑑𝑡
𝑓𝑖(𝑥1,𝑥2,

… 𝑥𝑛), i =1,2,….....,n there exists a 

Liapunov function𝑉(𝑥1,𝑥2,
… 𝑥𝑛) of fixed sign whose total derivative

𝑑𝑉

𝑑𝑡
 

with respect to time composed by virtue of above system is a function of 

constant signs, of sign opposite to that of 𝑉,or identically equal to zero, 

then the stationary point 𝑥𝑖 =  0 , 𝑖 = 1, 2 , … … … . 𝑛of the above system 

is stable. 

THEOREM2 :(Liapunov`sAsymptotic–Stability Theorem): 

If for a system of differential equations  
𝑑𝑥𝑖

𝑑𝑡
𝑓𝑖(𝑥1,𝑥2,

… 𝑥𝑛) , ί = 1, 2, 

…….., n there exists a function of fixed sign𝑉(𝑥1,𝑥2,
… 𝑥𝑛) (a Liapunov 

function) whose total derivative
𝑑𝑉

𝑑𝑡
 with respect to time composed by virtue 

of above system is a function of constant signs ,of sign opposite to that of 
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𝑉 ,then the stationary point𝑥𝑖 =  0 , ί =  1, 2 , … … … . 𝑛of the above 

system is asymptotically stable.  

THEOREM3 :(Liapunov`s Asymptotic–Stability Theorem): 

If for a system of differential equations  
𝑑𝑥𝑖

𝑑𝑡
𝑓𝑖(𝑥1,𝑥2,

… 𝑥𝑛) , ί = 1, 

2,..….., n there exists a function 𝑉(𝑥1,𝑥2,
… 𝑥𝑛) differentiable in the 

neighbourhood of the origin of coordinates such that 𝑉(0, 0, … ,0) = 0. If 

the total derivative
𝑑𝑉

𝑑𝑡
 composed by virtue of above system is a positive 

definite function and arbitrarily close to the origin of coordinates there are 

points in which the function 𝑉(𝑥1,𝑥2,
… 𝑥𝑛), takes positive values, then the 

stationary point𝑥𝑖 =  0 , 𝑖 =  1, 2 , … … … . 𝑛of the above system is 

unstable. 

NOTE: There is no general method for constructing Liapunov functions. 

Simply a Liapunov function may be sought in the form 

𝑉(𝑥, 𝑦) = 𝑎𝑥2 + 𝑏𝑦2 

𝑉(𝑥, 𝑦) = 𝑎𝑥4 + 𝑏𝑦2 

𝑉(𝑥, 𝑦) = 𝑎𝑥4 + 𝑏𝑦4, (𝑎 > 0, 𝑏 > 0). 

 

SOLVED EXAMPLES 

EXAMPLE1: Using a Liapunov function investigate for stability, the 

trivial solution 𝑥 = 0, 𝑦 = 0  of the system 

𝑑𝑥

𝑑𝑡
= 𝑦 − 𝑥3,

𝑑𝑦

𝑑𝑡
= −𝑥 3𝑦3 

SOLUTION: We choose   𝑥2 + 𝑦2 as the function 𝑉(𝑥, 𝑦). It is 

positive definite. The derivative of the function𝑉 is
𝑑𝑉

𝑑𝑡
=

𝜕𝑉

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝑉

𝜕𝑦

𝑑𝑦

𝑑𝑡
 

𝑑𝑉

𝑑𝑡
= 2𝑥

𝑑𝑥

𝑑𝑡
+ 2𝑦

𝑑𝑦

𝑑𝑡
 

= 2𝑥(𝑦 − 𝑥3) + 2𝑦(−𝑥 − 3𝑦3) 

=  −2𝑥4 6𝑦4 

 

=  −2 (𝑥4 +  3𝑦4) 

Thus
𝑑𝑉

𝑑𝑡
  is negative definite function. It follows by Liapunov’s 

asymptotic–stability theorem that the stationary point (0,0) of the given 

system is asymptotically–stable.  
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EXAMPLE2: Using a Liapunov function investigate for stability, the 

trivial solution 𝑥 = 0, 𝑦 = 0  of the system 

𝑑𝑥

𝑑𝑡
= 𝑦,

𝑑𝑦

𝑑𝑡
= −𝑥 

SOLUTION: Let us take   𝑥2 + 𝑦2 as the function 𝑉(𝑥, 𝑦). It is 

positive definite. The derivative of the function𝑉 is 
𝑑𝑉

𝑑𝑡
=

𝜕𝑉

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝑉

𝜕𝑦

𝑑𝑦

𝑑𝑡
 

𝑑𝑉

𝑑𝑡
= 2𝑥

𝑑𝑥

𝑑𝑡
+ 2𝑦

𝑑𝑦

𝑑𝑡
 

= 2𝑥(𝑦) + 2𝑦(−𝑥) 

=  2𝑥𝑦 2𝑦𝑥 

=  0     

It follows by Liapunov’s stability theorem that the stationary point (0,0) of 

the given system is stable. It is not asymptotically–stable. 

EXAMPLE3: Investigate the stationary point 𝑥 = 0, 𝑦 = 0  of the 

system 
𝑑𝑥

𝑑𝑡
= 𝑥,

𝑑𝑦

𝑑𝑡
= −𝑦 for stability. 

SOLUTION: Let us consider the function𝑉(𝑥, 𝑦) = 𝑥2 − 𝑦2. 

The derivative of the function𝑉 is
𝑑𝑉

𝑑𝑡
=

𝜕𝑉

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝑉

𝜕𝑦

𝑑𝑦

𝑑𝑡
 

𝑑𝑉

𝑑𝑡
= 2𝑥

𝑑𝑥

𝑑𝑡
− 2𝑦

𝑑𝑦

𝑑𝑡
 

= 2𝑥(𝑥) − 2𝑦(−𝑦) 

=  2𝑥2 +  2𝑦2 
𝑑𝑉

𝑑𝑡
is a positive definite function.  Since arbitrarily close to the origin of 

coordinate there are points in which  𝑉 0. It follows by Liapunov’s in 

stability theorem that the stationary point (0,0) is unstable. 

SELF CHECK QUESTIONS 
Choose the Correct Option: 

(SCQ-1)The nature and stability of the critical point (0,0) of the linear 

system of  
𝑑𝑥

𝑑𝑡
= 3𝑥 + 4𝑦,   

𝑑𝑦

𝑑𝑡
= 2𝑥 + 3𝑦is 

(a) Centre , stable  

(b) Centre , unstable  

(c) Node , unstable  

(d) None of these 

(SCQ-2)The type and stability of the critical point (0 ,0) of the system 
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𝑑𝑥

𝑑𝑡
= 3𝑥 + 5𝑦,   

𝑑𝑦

𝑑𝑡
=  5𝑥 − 3𝑦 

(a) Node, unstable  

(b) Centre, stable  

(c) Centre, unstable  

(d) Saddle point, stable  

(SCQ -3) For the system 𝑥̇  =  −𝑥 + ℎ𝑦, 𝑦̇  =  𝑥 − 𝑦 

(i) The nature and stability of the critical point(0 ,0)  if h=0 is  

(a) Node, unstable 

(b) Centre, stable  

(c) Node, asymptotically stable 

(d) None of these 

(ii) For the same system the nature and stability of the critical point (0,0) if 

h<0 is  

(a) Spiral point ,unstable 

(b) Spiral point , asymptotically stable  

(c) Saddle point ,unstable 

(d) Node , asymptotically stable 

(iii) For the same system the nature and stability of the critical point (0 

,0), if 0<h <1is  

(a) Node, asymptotically stable  

(b) Saddle point, stable  

(c) Node, unstable 

(d) None of these 

(SCQ-4) The type and Stability of the Critical point (0,0) of the system  

𝑥̇  =  𝑦 + 𝑥( 1 − 𝑥2– 𝑦2) 

𝑦̇  =  −𝑥 + 𝑦 ( 1 − 𝑥2– 𝑦2 )  is 

(a) Spiral point ,unstable  

(b) Node, unstable  

(c) Saddle point, unstable  

(d) None of these  

(SCQ-5) The type and nature of critical point (0, 0) of 𝑥̇  =  𝑥, 𝑦̇  =  2𝑦        

                 is 

(a) Node, unstable  

(b) Saddle point, stable  

(c) Spiral point, stable  

(d) None of these  

(SCQ-6)The nature of critical point (0,0) of 𝑥̇  =  𝑥 + 3𝑦 ,   𝑦̇  = 3𝑥 + 𝑦  

                  is  

(a) Unstable  
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(b) Stable  

(c) None of these 

(SCQ-7)The stability of the trivial solution 𝑥 = 0, 𝑦 = 0 of the 

system
𝑑𝑥

𝑑𝑡
= 𝑥,   

𝑑𝑦

𝑑𝑡
= 𝑦 using 𝑥2 + 𝑦2 as aLiapunov function is 

(a) Unstable  

(b) Asymptotically stable  

(c) None of these 

(SCQ-8)The stability of the trivial solution 𝑥 = 0, 𝑦 = 0 of the 

system
𝑑𝑥

𝑑𝑡
= 𝑦,   

𝑑𝑦

𝑑𝑡
= 𝑥 using 𝑥2 + 𝑦2 as aLiapunov function is 

(a) Stable  

(b) Asymptotically stable  

(c) None of these 

(SCQ-9)The stability of the trivial solution 𝑥 = 0, 𝑦 = 0 of the system   

𝑑𝑥

𝑑𝑡
= −𝑦 −

𝑥

2
−

𝑥3

4
,   

𝑑𝑦

𝑑𝑡
= 𝑥 −

𝑦

2
−

𝑦3

4
 using 𝑥2 + 𝑦2 as aLiapunov function 

is 

(a) Unstable  

(b) Asymptotically stable  

(c) None of these 

 

9.9 SUMMARY:- 

In this unit, first of all you are explained the fundamental existence 

theorem. Then linear system and almost linear system has been explained. 

After that critical points and their stability for these systems has been 

discussed.  That is a discussion on how the critical points are checked for 

their stability by finding the Eigen values for the system has been done. 

Another method for checking whether the system is stable, asymptotically 

stable or instable by using Liapunov. 

9.10 GLOSSARY:- 

 Autonomous System 

 Sable Critical and Unstable Critical points. 

 Liapunov Functions. 

 

9.11 REFERENCES:- 



ADVANCED DIFFERENTIAL EQUATIONS-I MAT 504 
 

Department of Mathematics    
Uttarakhand Open University Page 218 
 

 E.L.Ince (2012) Ordinary Differential Equation. 

 Shepley L.Ross (2007) Differential Equations 3rd edition. 

 M.D.Raisinghania (2013) Ordinary and Partial Differential 

Equation18th edition. 

 

9.12 SUGGESTED READING:- 

 Suman Kumar Tumuluri (2021) A first course in Ordinary 

Differential Equations. 

 Stanley J. Farlow (2012) An introduction to Differential Equations 

and their application. 

. 

9.13TERMINAL QUESTIONS:- 

(TQ-1)Write a note on the stability of critical points of the plane 

autonomous system  

𝑑𝑥

𝑑𝑡
 =  𝐹(𝑥, 𝑦),

𝑑𝑦

𝑑𝑡
=  𝐺(𝑥, 𝑦) 

(TQ-2)Determine the type and stability of the critical point (0, 0) of the 

almost linear system 

𝑥̇  =  4𝑥 + 2𝑦 + 2𝑥2 − 3𝑦2, 𝑦̇  =  4𝑥 − 3𝑦 + 7𝑥𝑦. 

Also, find the general solution of the corresponding linear System. 

(TQ-3)For the system of equations  

𝑥̇  =  𝑥 − 𝑦 + 𝑥𝑦 , 𝑦̇  =  3𝑥 − 2𝑦 − 𝑥𝑦, verify that (0,0)is a critical point.  

Show that the system is almost linear and discuss the type and stability of 

the critical point (0,0). 

(TQ-4) Define Liapunov function. 

(TQ-5) Write a note on Liapunov’s theorem on stability.  

(TQ-6) Investigate the trivial solution  𝑥 = 0, 𝑦 = 0  of the system below 

for stability 

(a) 
𝑑𝑥

𝑑𝑡
= −𝑥𝑦4 𝑑𝑦

𝑑𝑡
= 𝑦𝑥4 

       Hint:𝑉(𝑥, 𝑦) = 𝑥4 + 𝑦4 

(b) 
𝑑𝑥

𝑑𝑡
= 𝑦 + 𝑥3 𝑑𝑦

𝑑𝑡
= −𝑥 + 𝑦3 

        Hint:𝑉(𝑥, 𝑦) = 𝑥2 + 𝑦2 
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9.14 ANSWERS:- 

SELF CHECK ANSWERS 
(SCQ-1) a                          (SCQ-2) b                            (SCQ-3(i)) c  

(SCQ-3(ii)) b          (SCQ-3(iii)) a    (SCQ-4) a 

(SCQ-5) a                     (SCQ-6) a                            (SCQ-7) b 

(SCQ-8) a                            (SCQ-9) b 

 

TERMINAL ANSWERS  

(TQ-2)  1 = 4  , 2  = 5 are real , unequal and have opposite sign. Critical 

point (0,0) is an unstable saddle point. The general solution is  

𝑥 = 𝑐1𝑒−4𝑡 + 2𝑐2𝑒5𝑡 

𝑦 = −4𝑐1𝑒−4𝑡 + 𝑐2𝑒5𝑡 

(TQ-3) Spiral Point, asymptotically stable. 

(TQ-(6a)) Stable 

(TQ-(6b)) Unstable 
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UNIT 10:- DIFFERENTIAL EQUATION 

WITH PERIODIC SOLUTION 

CONTENTS: 

10.1      Introduction 

10.2      Objectives 

10.3      Periodic solutions 

10.4      Poincare- Bendixson theorem 

10.5       Lienard’s theorem 

10.6       Summary 

10.7       Glossary 

10.8       References 

10.9       Suggested Reading 

10.10     Terminal questions 

10.11     Answers  

 

10.1 INTRODUCTION:- 

 

In the previous classes, you have already studied 

 About an autonomous system 

 About phase plane 

 About critical points 

 

10.2 OBJECTIVES:- 

 

After studying this unit, you will be able  

 To define and explain the periodic solution 

 To understand the Poincare-Bendixson theorem 

 To understand the Lienard’s theorem 

 

10.3 PERIODIC SOLUTIONS:- 

 

Let us consider a nonlinear autonomous system 

                                                  
𝑑𝑥

𝑑𝑡
= 𝐹(𝑥, 𝑦)                      …(1) 

                                                   
𝑑𝑦

𝑑𝑡
= 𝐺(𝑥, 𝑦) 

where the functions 𝐹(𝑥, 𝑦) and 𝐺(𝑥, 𝑦) are continuous and have 

continuous first order partial derivatives throughout the phase plane. So 

far we have studied practically nothing about paths of (1) except in the 

neighborhood of certain types of critical points. However, sometimes it 
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looks more interesting to know the global properties of paths in 

comparison to local properties. The properties that describe their 

behaviour over large regions of the phase plane are known as the global 

properties of paths.They are in general very difficult to establish. 

Now, the problem is to determine whether (1) has closed paths. This 

problem has very close connection with the issue of whether (1)has 

periodic solutions. A solution x(𝑡) and y(𝑡) of (1) is said to be periodic if 

neither function is constant, if both are defined for all t, and if there exists 

a number 𝑇 > 0 such that x(𝑡 + 𝑇) = x(𝑡)  and y(𝑡 + 𝑇) = y(𝑡) for all t. 

The smallest T with this property is called the period of the solution. 

Evidently each periodic solution of (1) defines a closed path that is 

traversed once as t increases from 𝑡0 to 𝑡0 + 𝑡 for any 𝑡0. Conversely, if 

C = [x(𝑡), y(𝑡)] is a closed path of (1), then x(𝑡), y(𝑡) is a periodic 

solution. So the problem of searching for periodic solutions of (1) reduces 

to a problem of searching for closed paths. A nonlinear system can 

perfectly have a closed path that is isolated, in the sense that no other 

closed paths are near to it. 

 

SOLVED EXAMPLE 

EXAMPLE 1: Show that the system 
𝑑𝑥

𝑑𝑡
= −𝑦 + 𝑥(1 − 𝑥2 − 𝑦2).... (1) 

𝑑𝑦

𝑑𝑡
=  𝑥 + 𝑦(1 − 𝑥2 − 𝑦2) ....(2) 

has a periodic solution. 

SOLUTION: Using the polar coordinates 𝑟 and 𝜃 as𝑥 = 𝑟 cos 𝜃,   𝑦 =
𝑟 sin 𝜃, we have 

𝑥2 + 𝑦2 = 𝑟2                 .... (3) 

𝜃 = tan−1 (
𝑦

𝑥
)               .... (4) 

Differentiating (3) and (4), we get 

𝑥
𝑑𝑥

𝑑𝑡
+ 𝑦

𝑑𝑦

𝑑𝑡
= 𝑟

𝑑𝑟

𝑑𝑡
           ... (5) 

𝑥
𝑑𝑦

𝑑𝑡
− 𝑦

𝑑𝑥

𝑑𝑡
= 𝑟2 𝑑𝜃

𝑑𝑡
         .... (6) 

On multiplying (1) by 𝑥 and (2) by 𝑦  and adding we get 

𝑟
𝑑𝑟

𝑑𝑡
= 𝑟2(1 − 𝑟2)            .... (7) 

On multiplying (1) by 𝑦 and (2) by 𝑥  and subtracting we get 

𝑟2 𝑑𝜃

𝑑𝑡
= 𝑟2                         .... (8) 

The given system has a single critical point at𝑟 = 0. For finding the paths 

let us consider 𝑟 > 0.  

From (7) and (8) we have  
𝑑𝑟

𝑑𝑡
= 𝑟(1 − 𝑟2)                   .... (9) 

𝑑𝜃

𝑑𝑡
= 1                                 .... (10) 

Integrating (9) 
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∫
𝑑𝑟

𝑟(1 − 𝑟2)
= ∫ 𝑑𝑡 

∫ [
1

𝑟
+

1

2(1 − 𝑟)
−

1

2(1 + 𝑟)
] 𝑑𝑟 = ∫ 𝑑𝑡 

 log (
1−𝑟2

𝑟2𝑐
) = −2𝑡 

   
1−𝑟2

𝑟2𝑐
= 𝑒−2𝑡 

                       𝑟2(1 + 𝑐𝑒−2𝑡) = 1 

                        𝑟 =
1

√1+𝑐𝑒−2𝑡
                        .... (11) 

Integrating (10) we get 

𝜃 = 𝑡 + 𝑡0                        .... (12) 

The corresponding general solution of given system is 

𝑥 =
cos(𝑡 + 𝑡0)

√1 + 𝑐𝑒−2𝑡
 

𝑦 =
sin(𝑡 + 𝑡0)

√1 + 𝑐𝑒−2𝑡
 

Analyzing (11) and (12) geometrically, we find that if 𝑐 = 0, then 𝑟 = 1 

and 𝜃 = 𝑡 + 𝑡0 which trace out the closed circular path 𝑥2 + 𝑦2 = 1 in the 

counter-clockwise direction. If 𝑐 < 0 it is clear that 𝑟 > 1 and that𝑟 → 1as 

𝑡 → ∞.  

 

 

 

 

 

 

 

Fig.1 

 

 

 

 

 

Fig.1 

 

Also if 𝑐 > 0 we see that𝑟 < 1, and again 𝑟 → 1 as 𝑡 → ∞.  These 

observations show that there exists a single closed path (𝑟 = 1)which all 

other paths approach spirally from the outside or inside as 𝑡 → ∞. This 

proves that the given system has a closed path(periodic solution). 

Note: In the given system a closed path is shown by actually finding such 

a path. Now here is a test based theorem that can make possible to 

conclude that certain regions of the phase plane do or do not contain 

closed paths. 

THEOREM: A closed path of the system  

y 

x 
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𝑑𝑥

𝑑𝑡
= 𝐹(𝑥, 𝑦) 

                        
 𝑑𝑦

𝑑𝑡
= 𝐺(𝑥, 𝑦)                               .... (1) 

necessarily surrounds at least one critical point of this system. 

PROOF: Let C be a closed curve in the phase plane, and assume that C 

does not pass through any critical point of the system (1). If 𝑃 = (𝑥, 𝑦)is a 

point on C, then 

𝑉(𝑥, 𝑦) = 𝐹(𝑥, 𝑦)𝑖 + 𝐺(𝑥, 𝑦)𝑗is a nonzero vector and therefore has a 

definite direction given by the angle 𝜃. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

       

 

Fig.2 

If P moves once around C in the counter-clockwise direction, the angle 𝜃 

changes by an amountΔ𝜃 = 2𝜋𝑛, where n is positive integer, zero or a 

negative integer .This integer n is called the index of C. If Cshrinks 

continuously to a smaller simple closed curve 𝐶0 without passing over any 

critical point then its index varies continuously and since the index is an 

integer, it cannot change. 

(a) If C is a path of (1), show that its index is 1. 

(b) If C is a path of (1) that contains no critical points, show that a 

small 𝐶0 has index 0, and from this inference theorem 1 is 

complete.   

THEOREM: If 
𝜕𝐹

𝜕𝑥
+

𝜕𝐺

𝜕𝑦
 is always positive or always negative in a 

certain region of the phase plane, then the system 
𝑑𝑥

𝑑𝑡
= 𝐹(𝑥, 𝑦) 

𝑑𝑦

𝑑𝑡
= 𝐺(𝑥, 𝑦) 

can not have closed paths in that region. 

 

P=(x, y) 

C 

v 

 

x 

y 
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PROOF: Let us assume that the region contains a closed path C =
[x(𝑡), y(𝑡)] with interior R. Then Green’s theorem and our hypothesis give 

∫(𝐹 𝑑𝑦 − 𝐺 𝑑𝑥) = ∬ (
𝜕𝐹

𝜕𝑥
+

𝜕𝐺

𝜕𝑦
) 𝑑𝑥 𝑑𝑦 ≠ 0 . 

However, along C we have 𝑑𝑥 = 𝐹 𝑑𝑡 and 𝑑𝑦 = 𝐺𝑑𝑡, so 

∫(𝐹 𝑑𝑦 − 𝐺 𝑑𝑥) = ∫ (𝐹𝐺 − 𝐺𝐹) 𝑑𝑡 = 0
𝑇

0

 

This contradiction shows that our initial assumption is false, so the region 

under consideration can not contain any closed path. 

 

10.4 POINCARE-BENDIXSON THEOREM: 

 

Let R be a bounded region of the phase plane together with its boundary 

and assume that R does not contain any critical points of the system  
𝑑𝑥

𝑑𝑡
= 𝐹(𝑥, 𝑦) 

𝑑𝑦

𝑑𝑡
= 𝐺(𝑥, 𝑦) 

If C = [x(𝑡), y(𝑡)]  is a path of (1) that lies in R for some 𝑡0 and remains in 

R for all 𝑡 ≥ 𝑡0, then  is either itself a closed path or it spirals toward a 

closed path as 𝑡 → ∞. Thus in either case the system (1) has a closed path 

in R.  

ILLUSTRATION WITH THE HELP OF AN EXAMPLE:-   
Because a closed path like 𝐶0 must surround a critical point P and R must 

exclude all critical points. 

    The system                                  
𝑑𝑥

𝑑𝑡
= −𝑦 + 𝑥(1 − 𝑥2 − 𝑦2) 

𝑑𝑦

𝑑𝑡
=  𝑥 + 𝑦(1 − 𝑥2 − 𝑦2) 

provides a simple application of these ideas. It is clear that (2) has a 

critical point at (0,0), and also that the region R between the circles 𝑟 =
1

2
 

and 𝑟 = 2 contains no critical points.Taking 𝑥 = 𝑟 cos 𝜃,   𝑦 = 𝑟 sin 𝜃, we 

find that  
𝑑𝑟

𝑑𝑡
= 𝑟(1 − 𝑟2) for 𝑟 > 0. This shows that 

𝑑𝑟

𝑑𝑡
> 0on the inner 

circle and 
𝑑𝑟

𝑑𝑡
< 0 on the outer circle, so the vector    𝑉(𝑥, 𝑦) = 𝐹(𝑥, 𝑦)𝑖 +

𝐺(𝑥, 𝑦)𝑗 points into R at all boundary points. 
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Fig.3 

 

Thus any path through a boundary point will enter R and remain in R as 

𝑡 → ∞, and by the Poincare- Bendixson theorem we know that R contains 

a closed path 𝐶0 and we have already seen that the circle 𝑟 = 1  is the 

closed path. 

When we speak about the existence of closed paths for equations of the 

form
𝑑2𝑥

𝑑𝑡2
+ 𝑓(𝑥)

𝑑𝑥

𝑑𝑡
+ 𝑔(𝑥) = 0,...(1)which is called Lienard’s equation 

,we of course mean a closed path of the equivalent system 
𝑑𝑥

𝑑𝑡
= 𝑦,

𝑑𝑦

𝑑𝑡
=

−𝑔(𝑥) − 𝑓(𝑥)𝑦; 

A more practical criterion has been developed for the system of the form 

(1)  in the form of the Lienard’s theorem which is as follows:- 

 

10.5 LIENARD’S THEOREM:- 

 

Let the function 𝑓(𝑥) and 𝑔(𝑥)satisfy the following conditions:  

(i) Both are continuous and have continuous derivatives for all x; 

(ii) 𝑔(𝑥) is an odd function such that 𝑔(𝑥) > 0 for (𝑥) > 0, and 𝑓(𝑥) is 

an even function 

(iii) The odd function 𝐹(𝑥) = ∫ 𝑓(𝑥) 𝑑𝑥
𝑥

0
 has exactly one positive zero at 

𝑥 = 𝑎, and 𝐹(𝑥) → ∞ as 𝑥 → ∞. 

Then equation (1) has a unique closed path surrounding the origin i the 

phase plane, and this path is approached spirally by every other path as 

𝑡 → ∞. 

 

 

 

C 
 

P 
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SOLVED EXAMPLE 

EXAMPLE:-Show that the differential equation 

𝑑2𝑥

𝑑𝑡2
+ (𝑥2 − 1)

𝑑𝑥

𝑑𝑡
+ 𝑥 = 0 

has a periodic solution, is assumed to be a positive constant. 

SOLUTION:- Here 𝑓(𝑥) = (𝑥2 − 1) 

𝑔(𝑥) = 𝑥 

Obviously condition (1) and (2) are satisfied. Now since 

𝐹(𝑥) = ∫ 𝑓(𝑥) 𝑑𝑥 = ∫ (𝑥2 − 1) 𝑑𝑥
𝑥

0

𝑥

0

 

𝐹(𝑥) =
𝑥3

3
− 𝑥 

=
1

3
𝑥(𝑥2 − 3), 

We see that 𝐹(𝑥) has a single positive zero at 𝑥 = √3 

is a negative for 0 < 𝑥 < √3 

 is positive for 𝑥 > √3 

𝐹(𝑥)tends to  as 𝑥 → ∞. 

And 𝐹′(𝑥) = (𝑥2 − 1) is positive for 𝑥 > 1, so 𝐹(𝑥)  is certainly non-

decreasing (in-fact increasing) for 𝑥 > √3. Since all the conditions of the 

theorem are true, we can conclude that equation 
𝑑2𝑥

𝑑𝑡 2
+ (𝑥2 − 1)

𝑑𝑥

𝑑𝑡
+ 𝑥 =

0 has a unique closed path (periodic solution) that is approached spirally 

(asymptotically) by every other path(nontrivial solution). 

 

SELF CHECK QUESTIONS 

(SCQ-1) Explain the periodic solutions. 

(SCQ-2) Write the statements of Poincare-Bendixson theorem and  

                  Lienard theorem. 

(SCQ-3) Transform the system 
𝑑𝑥

𝑑𝑡
= 4𝑥 + 4𝑦 − 𝑥(𝑥2 + 𝑦2) 

𝑑𝑦

𝑑𝑡
= −4𝑥 + 4𝑦 − 𝑦(𝑥2 + 𝑦2) into polar co-ordinate form. 

 

 

10.6 SUMMARY:- 
 

In this unit, you have learnt about the periodic solutions. Poincare 

Bendixson’s theorem and Lienard’s theorem are also explained in this 

unit. Now you are able to check whether the given system has a periodic 

solution or not with the help of Poincare Bendixson’s theorem and 

Lienard’s theorem. 
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10.7 GLOSSARY:- 

 Period solution 

 Path 

 Bounded region 

 Critical point 
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Differential Equations: An Introduction for Scientists and 

Engineers . 

 

10.9 SUGGESTED READING:- 

 Gerald Teschl (2012) Ordinary Differential Equations and 

Dynamical Systems. 

 M.D.Raisinghania(2021)Ordinary and Partial Differential equation 

(20th Edition), S. Chand. 

 Lawrence Perko (2001) Differential Equation and Dynamical 

System.  

 

10.10 TERMINAL QUESTIONS:-  

 (TQ-1)In each of the following questions, determine whether or not   

              given differential equation has a periodic solution 

(a) 
𝑑2𝑥

𝑑𝑡 2
− (𝑥2 + 1)

𝑑𝑥

𝑑𝑡
+ 𝑥5 = 0 

         Hint: Use Poincare-Bendixson theorem. 

 (b) 

𝑑2𝑥

𝑑𝑡2
+

𝑑𝑥

𝑑𝑡
+ (

𝑑𝑥

𝑑𝑡
)

5

− 3𝑥3 = 0 

              Hint: Use Poincare-Bendixson theorem.  

 (c) 
𝑑2𝑥

𝑑𝑡2
+ 𝑥6

𝑑𝑥

𝑑𝑡
− 𝑥2

𝑑𝑥

𝑑𝑡
+ 𝑥 = 0 

              Hint: Use Lienard’s theorem. 

(TQ-2)  Show that the differential equation 

𝑑2𝑥

𝑑𝑡2
+ (𝑥2 − 1)

𝑑𝑥

𝑑𝑡
+ 𝑥 = 0 

 has a periodic solution, is assumed to be a positive constant. 
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10.11 ANSWERS:- 

 

SELF CHECK ANSWERS 

(SCQ-3) 
dr

dt
= r(1 − r2),

dθ

dt
= −4. 

 
                          TERMINAL ANSWERS 

(TQ-1(a)) No periodic solution  

(TQ-1(b)) No periodic solution 
(TQ-1(c)) A periodic solution 
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UNIT 11:- METHOD OF BOGOLIUBOV 

AND KRYLOV 

CONTENTS:  

11.1      Introduction 

11.2       Objectives 

11.3       First approximation of Krylov and Bogoliubov 

11.4       Summary 

11.5       Glossary 

11.6       References 

11.7       Suggested Reading 

11.8       Terminal questions 

11.9       Answers  

 

11.1 INTRODUCTION:- 

  

In the previous classes, you should have studied and learnt 
 To solve the linear differential equation with constant coefficients. 

 The methods of finding integration and differentiation. 

 About the periodic functions. 

In this unit, a method of treating weakly nonlinear differential equations of 

the form  

d2y

dx2
+ y = ϵF (y,

dy

dt
)                   0 < ϵ << 1 

originally developed by Krylov and Bogoliobov is being discussed. In 

13.3 we will show how to determine the solution to first order of 

approximation using the method of Krylov and Bogoliobov. 

 

11.2 OBJECTIVES:- 

 

After studying this unit, you will be able to  
 Find the solution of a non linear equation by Bogoliubov and 

Krylovmethod. 

 Understand the Bogoliubov and Krylov method. 
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11.3 FIRST APPROXIMATION OF KRYLOV AND 

BOGOLIOBOV:- 

 

Let us consider a nonlinear differential equation having the form 

                                
𝑑2y

𝑑𝑡 2
+ y =  𝜖F (y,

dy

dt
)          0 < ϵ << 1       …(1) 

If 𝜖 =0, then equation (1) reduces to the linear equation   

                                   
d2y

dt2
+ y = 0                                    …(2) 

Auxiliary equation(𝐷2 + 1) = 0 gives the roots  

                                     𝐷 = ±𝑖, 

so the solution of equation (2) may be written as 

       y =  a cos(t + ϕ)                                                     ….(3) 

where𝑎𝑎𝑛𝑑ϕ are constants.  

The derivative of the solution given by equation (3) is 

                   
dy

dt  
= −a sin(t + ϕ)                                      …(4) 

 

If 𝜖 ≠ 0, but is sufficiently small, one can assume that the nonlinear 

equation (1) also has a solution of the form of equation (3) with derivative 

of the form of equation (4), provided that 𝑎𝑎𝑛𝑑ϕ are functions of  t rather 

than being constants.  

That is, we assume a solution of equation (1) of the form  

            𝑦 = a(t)cos[t + ϕ(t)]                                         ...(5) 

where 𝑎𝑎𝑛𝑑ϕ are functions of t to be determined such that the derivative 

of the solution (5) is of the form 

           
 dy

dt 
=  −a(t) sin[t + ϕ(t)]                                  ...(6) 

Differentiating this assumed solution (5), we obtain 

dy

dt  
=  

da

dt 
cos[t + ϕ(t)] − a sin[t + ϕ(t)] (1 +

dϕ

dt
) 

dy

dt  
=

da

dt 
cos[t + ϕ(t)] − a sin[t + ϕ(t)] − a

dϕ

dt
sin[t + ϕ(t)] …(7) 

In order for  
dy

dt
 to have the form given by equation (6), we must require 

                    
da

dt 
cos[t + ϕ(t)] − a

dϕ

dt
sin[t + ϕ(t)] = 0             ...(8) 

Differentiating the assumed derivative, equation(6), we obtain  

          
d2y

dt2
= −

da

dt
sin(t + ϕ) − a cos(t + ϕ) − a

dϕ

dt
cos (t + ϕ)…(9) 

Substituting the assumed solution, its derivative and the second derivative 

from equation (5), (6), and (9) in to the differential equation (1), we obtain 
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−
da

dt
sin(t + ϕ) − a cos(t + ϕ) − a

dϕ

dt
cos(t + ϕ) + a cos(t + ϕ) 

= ϵF [a cos(t + ϕ), − a sin(t + ϕ)]                                      ...(10) 

Or 
da

dt 
sin(t + ϕ) + a

dϕ

dt
cos(t + ϕ) = −ϵF[a cos(t + ϕ), −asin(t + ϕ)] …(11) 

If we let ψ(t) denotet + ϕ(t), then equation (8) and (11) may be written 

              
da

dt
cos ψ(t) − a 

dϕ

dt
sin ψ(t) = 0                            …(12a) 

         
da

dt
sin ψ(t) + a

dϕ

dt
cos ψ(t) = −ϵ F (a cosψ, −asinψ)....(12b) 

Solving equations (12a) and (12b)for 
da

dt
and 

dϕ

 dt
 , we obtain the following 

equations   

               
da

dt 
= −ϵF [a(t)cosψ(t), −a(t)sinψ(t)]sinψ(t).… (13a) 

         
dϕ

dt
= − [

ϵ

a(t)
] F[a(t)cosψ(t), −a(t)sinψ(t)]cosψ(t).…(13b) 

These are the exact equations for the functions a and  when the solution 

for y and its derivative take the forms given by equations (5) and (6). 

These equations are coupled first order nonlinear differential equation. 

Since F sin 𝜓and F cos 𝜓are the periodic functions of with period 2𝜋, so 

the Fourier expansion of both of these functions is possible. Therefore, 

F sin 𝜓 = K0(𝑎) + ∑ [Km(a)cos(mψ) + Lm(a)sin(mψ)]∞
m=1 , …. (14a) 

F cos 𝜓 = P0(a) + ∑ [Pm(a) cos(mψ) + Qm(a) sin(mψ)],∞
m=1 …. (14b) 

Where                             K0(a) =
1

2π
∫ F sin ψ dψ,

2π

0
.…(15a) 

                         Km(a) =
1

π
∫ F sin ψ cos mψ dψ

2π

0
 ,…. (15b) 

 Lm(a) =
1

π
∫ F sin ψ sin 𝑚ψ dψ

2π

0
, .... (15c) 

Pο(a) =
1

2π
∫ F cos ψ dψ

2π

ο
,          …. (15d) 

                        𝙿m(a) =
1

π
∫ F cos ψ cos mψ dψ

2π

0
 ,…. (15e) 

                        Qm(a) =
1

π
∫ F cos ψ sin 𝑚ψ dψ

2π

0
 ,.… (15f) 

Thus equations (13a) and(13b) can be written as 
da

dt
= −ϵK0(a) − ϵ ∑ [Km(a)cos(mψ) + Lm(a)sin(mψ)]∞

m=1 ,….(16a) 

dϕ

dt
= − (

ϵ

a
) P0(a) − (

ϵ

a
) ∑ [Pm(a)cos(mψ) + Qm(a)sin(mψ)]∞

m=1 ,....(16b) 

The first approximation of Krylov and Bogoliubov consists of neglecting 

all the terms on the right side of equations (16a) and (16b)except for the 

first; that is 
da

dt
= −ϵΚ0(a)  = − (

ϵ

2π
) ∫ F (a cosψ, −asinψ)sinψ dψ,

2π

0
     … (17a) 
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dϕ

dt
= − (

ϵ

a
) 𝙿0(a) = − (

ϵ

2πa
) ∫ F (a cosψ, −a sinψ)cosψ dψ

2π

0
,....(17b) 

These two equations can be written as 

                          
da

dt
=   ϵA1(a),…. (18a) 

                     
dϕ

dt
=  ϵB1(a),               .... (18b) 

The general procedure consists of solving equation (18a) for 𝑎 and 

substituting this result into equation (18b) and solving for 𝜙. 
Case I:Let F be a function only of y, i.e. 

F (y,
dy

dt
)  = F1 (y),                          .... (19) 

For this case, the equation for 𝑎(𝑡) is 
da

dt
= − (

ϵ

2π
) ∫ F1(a cosψ)sinψ dψ ,

2π

0
    .... (20) 

The integrand is an odd function of 𝜓 and thus the integral is zero i.e., 
da

dt
= 0. 

Consequentlya (t)  = A,…. (21)  

where A is a constant, and  ϕ(t) is given by the expression 

ϕ(t) =  ϵΩ(A)t + ϕ0 ,…. (22) 

where ϕ0  is a constant andΩ(A) = − (
1

2π A
) ∫ F1(Acosψ)

2π

0
cosψ dψ, .... 

(23) 

Thus, for the case where F depends only on y,the first order approximation 

will have the form 

y = A cos{[1 + ϵΩ(A)]t + ϕ0}.…(24) 

This case corresponds to a conservative oscillator. The effect of the non 

linearity is seen in the fact that the frequency of the oscillation, 𝜔 = 1 +

𝜖Ω(A), depends on the amplitude A of the motion. 
Case II: Let F depends only on

dy

dt
, i. e. 

F (y ,
dy

dt
) =  F2 (

dy

dt
) ,                                      ….(25) 

For this case, the equation for ϕ(t) is  
dϕ

dt
= − (

ϵ

2πa
) ∫ F2(−asinψ)cosψ dψ

2π

0
.               ....(26) 

If F2(v) is an even function of v, then this case reduces to that of the 

previous situation given above. If F2(v) is an odd function of v, then  
dϕ

dt
= 0 ⟹ ϕ(t) =  ϕ0  , .… (27) 

da

dt
= − (

ϵ

2π
) ∫ F2(−asinψ)sinψ dψ = ϵA1(a)

2π

0
.…(28) 

Thus in the first approximation, where the function F is a function of 
dy

dt
 

only, the solution is 
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𝑦 = a(t) cos(t + ϕ
0 

)                                    .…(29) 

The oscillation has a variable amplitude and a frequency𝜔 = 1. 
                      

SOLVED EXAMPLES 

EXAMPLE1: Using Bogoliubov and Krylov method solve the 

differential equation 

                                      
d2y

dt2
+ y + ϵy2 = 0 .… (1) 

SOLUTION: Comparing equation (1) with 
d2y

dt2
+ y = ϵF (y,

dy

dt
), 

we see that 𝐹 = −y2 (i. e., F depends only on y) 

Using the results of case I, we obtain  
da

dt
 = 0 ⟹ a(t) = A = constant.…. (2) 

The equation for 𝜙(t) is 
dϕ

dt
= − (

ϵ

2πA
) ∫ − (A2cos2ψ)cosψdψ

2π

0
.... (3) 

Using the relation cos3ψ =
1

4
(3cosψ + cos3ψ)in(3) and solving we get 

dϕ

dt
= 0 ⟹ ϕ(t) = ϕ0…. (4) 

where A and  ϕ0 are constants . Consequently, the solution of Equation 

(1), using the first approximation of Krylov and Bogoliubov is 

𝑦 = A cos(t + ϕ0
).… (5) 

Thus the first approximation gives exactly the same solution as the linear 

equation obtained by letting  𝜖 = 0.The amplitude is constant and the 

frequency is 1 that is 𝜔 = 1. 
EXAMPLE 2: Using the method by Krylov and Bogoliubov, solve the 

conservative differential equation  

d2y

dt2
+ y + ϵy3 = 0 

SOLUTION: The conservative differential equation  

d2y

dt2
+ 𝑦 + ϵ𝑦3 = 0…. (1) 

hasF = −y3. 

For this case, we have   
da

dt
 = 0 

⟹  a(t) = A = constant…. (2) 

andϕ(t)is determined by the differential equation 

dϕ

dt
= − (

𝜖

2πA
) ∫ −( A3cos3ψ)cosψ dψ

2𝜋

0
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=
ϵA3

2πA
∫ cos4ψ dψ

2π

0

 

 =
ϵA3

2πA
(

3π

4
) 

dϕ

dt
=

3ϵA2

8
                                                          .… (3) 

Solving for ϕ(t) ,we obtain  

                ϕ(t) = (
3ϵA

8

2
) t + ϕ0                        …. (4) 

whereϕ
0
is a  constant. Therefore, to the first approximation, the solution 

of equation (1) is  

                  𝑦 = A cos{[1 + (
3ϵA2

8
)] t + ϕ0}…. (5) 

EXAMPLE 3:Using the method by Krylov and Bogoliubov, solve the 

differential equation  

d2y

dt2
+ 𝑦 + 𝜖 (

dy

dt
)

2

= 0 

SOLUTION:The differential equation 

d2y

dt2
+ 𝑦 + 𝜖 (

dy

dt
)

2
= 0.… (1) 

has     F = − (
dy

dt
)

2
.  

In the first approximation we have 

dϕ

dt
 = 0 

orϕ(t) = ϕ0 = constant, and   

da

dt
= − (

ϵ

2π
) ∫ (−a2sin2

2π

0

ψ) sin ψ dψ 

=
ϵa2

2π
∫ sin3ψ dψ

2π

0
                                  …. (2) 

Substituting the result sin3ψ =
1

4
(3 sinψ − sin3ψ)into equation (2) and 

integrating, we obtain  
da

dt
= 0                                                     …. (3) 

or a(t) = A = constant. Consequently, the first approximation of Krylov 

–Bogoliubov gives the following solution for equation (1)  

y = A cos(t + ϕ0
) 

This is exactly the same result as obtained in example 1. 



ADVANCED DIFFERENTIAL EQUATIONS-I MAT 504 
 

Department of mathematics 
Uttarakhand Open University Page 235 
 

NOTE: When the function𝐹 is equal to either y2or (
dy

dt
)

2
 or a linear 

combination of them, then the solution in the first approximation is the 

same as in the linearcase(i. e. , ϵ = 0). This means that the effect of the 

non-linearity show up only in the higher–order approximations to the 

solution. 
EXAMPLE 4:Using the method by Krylov and Bogoliubov, solve the 

differential equation  

d2y

dt2
+ 𝑦 + 2𝜖

dy

dt
= 0𝜖 > 0 

SOLUTION: The differential equation    

                         
d2y

dt2
+ 𝑦 + 2𝜖

dy

dt
= 0                               ...(1) 

hasF = −
2dy

dt
 .  

In the first approximation we have  
dϕ

dt
= 0.…(2) 

orϕ = ϕ0 = constantand 

da

dt
= − (

ϵ

2𝜋
) ∫ (2a sinψ)sinψ dψ

2𝜋

0
…. (3) 

Since,sin2ψ =
1

2
(1 − cos2ψ) .…(4) 

Substituting equation (4) into equation (3) and integrating gives  

da

dt
= −

ϵa

2π
(2π) 

⟹
da

dt
= −ϵa…. (5) 

⟹a(t) = Ae−ϵt….  (6) 

whereA is an arbitrary constant. 

Thus the first approximation of Krylov and Bogoliubovyields the 

following solution to equation (1) 

𝑦 = Ae−ϵtcos(t + ϕ
0

). 

EXAMPLE 5: Using the method by Krylov and Bogoliubov, solve the 

differential equation  

d2y

dt2
+ 𝑦 + 𝜖

dy

dt
= 0𝜖 > 0 

SOLUTION: The differential equation    

d2y

dt2
+ 𝑦 + 𝜖

dy

dt
= 0…..(1) 

hasF = −
dy

dt
 .  

In the first approximation we have  
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dϕ

dt
= 0.…(2) 

orϕ = ϕ
0

= constant  and   

da

dt
= − (

ϵ

2𝜋
) ∫ (a sinψ)sinψ dψ

2𝜋

0
               …. (3) 

Since,sin2ψ =
1

2
(1 − cos2ψ)  .… (4) 

Substituting equation (4) into equation (3) and integrating gives  

da

dt
= −

ϵa

2π
(π) 

⟹
da

dt
= −

ϵa

2
…. (5) 

The solution to equation (5) is 

a(t) = A e−
ϵt

2 ….  (6) 

where  A is an arbitrary constant.  

Thus the first approximation of Krylov and Bogoliubovyields the 

following solution to equation (1) 

𝑦 = Ae−
ϵt

2 cos(t + ϕ
0

)....(7) 

This may be compared with the exact solution of equation (1) which is 

𝑦 = 𝐴𝑒
−𝜖𝑡

2 cos [(1 −
𝜖2

4
)

1

2
𝑡 + 𝜙0]. 

Thus the Krylov-Bogoliubov technique gives the correct frequency to 

terms of order𝜖2. 

SELF CHECK QUESTIONS 

(SCQ-1) Using the method by Krylov and Bogoliubov, solve the 

differential equation  

d2y

dt2
+ y +  ϵ |

dy

dt
|

dy

dt
= 0 

11.4 SUMMARY:- 

 

In this unit, you have studied that the first approximation of Krylov and 

Bogoliubovto the oscillatory solution of  

d2y

dt2
+ 𝑦 = 𝜖F (y,

dy

dt
) ,                0 < 𝜖 << 1  

is𝑦(t) = a(t)cos {t + ϕ(t)} 

where  a(t) and ϕ(t) are solutions to the following system of first order 

differential equations  
da

dt
= − (

ϵ

2π
) ∫ F

2π

0
(a cosψ, −asinψ)sinψ dψ . 
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11.5   GLOSSARY:-  

 First approximation of Krylov and Bogoliubov 

11.6   REFERENCES:-  

1. Introduction to Non- linear  Mechanics , N. Krylov and Bogoliubov, 

Princeton  Univ. Press, Princeton NJ.1943. 

2. Non- linear Differential Equations , R.A . Struble ,Mc-grawhill ,New-

York,1962. 

3. An Introduction to Non-linear Oscillations, Ronald E. Mickens , 

Cambridge Univ. Press. 1981. 

11.7 SUGGEDTED READING:- 

1. Introduction to Non- linear  Mechanics, N. Krylov and Bogoliubov, 

Princeton Univ. Press, Princeton NJ.1943. 

2. Non- linear Differential Equations, R. A. Struble ,Mcgrawhill,New-

York,1962. 

3. An Introduction to Non-linear Oscillations, Ronald E. Mickens, 

Cambridge Univ. Press. 1981. 

11.8 TERMINAL QUESTIONS:- 

(TQ-1) Explain Krylov and Bogoliubov method for finding the solution 

of a differential equation of the form
d2y

dt2
+ 𝑦 = 𝜖F (y,

dy

dt
)when 

(i) F depends only on y  

(ii)  F depends only on 
dy

dt
 . 

(TQ-2) Using the method by Krylov and Bogoliubov, solve the 

differential equation  

d2y

dt2
+ 𝑦 +  𝜖

dy

dt
= 0                  𝜖 > 0 

11.9 ANSWERS 

SELF CHECK ANSWERS 

(SCQ-1) ϕ = ϕ0, a(t) =
a0

[1+(4ϵa0/3π)t]
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𝑦 =
a0 cos(t + ϕ

0
)

1 + (4𝜖a0/3π)t
 

TERMINAL ANSWERS 

(TQ-2) ϕ = ϕ0 , a (t) = Ae−ϵt/2 

𝑦 = Ae−ϵt/2cos(t + ϕ0
) 
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UNIT 12:- Chebyshev Polynomials and 

Legendre Polynomials 

CONTENTS: 
 

12.1     Introduction 

12.2     Objectives 

12.3     Chebyshev Polynomials 

12.4     Orthogonal Properties 

12.5     Recurrence Relation  

12.6.    Generating Function for Chebyshev Polynomials  

12.7.     Legendre’s Equation and Its Solution 

12.8.     Generating Function for Legendre Polynomials 

12.9.     Orthogonal Properties Of Legendre Polynomials 

12.10    Recurrence Relations for Legendre Polynomials 

12.11    Beltrami’s Result 

12.12    Christoffel’s Summation Formula 

12.13    Rodrigue’s Formula 

12.14    Laplace’s Definite Integrals ForPn(x) 

12.15    Recurrence Relations  ForQn(x) 

12.16    Cristoffel’s Second Summation Formula 

12.17    A Relation Connecting Pn(x) And Qn(x) 

12.18     Summary 

12.19     Glossary 

12.20     References 

12.21     Suggested Reading 

12.22     Terminal Questions 
 

12.1 INTRODUCTION:- 

Legendre's polynomials are used to represent a wide range of 

physical phenomena, such as the wave function of the hydrogen atom, the 

spherical harmonics, and the Legendre functions of the second kind, which 

are used in the solution of Laplace's equation in spherical coordinates. The 

Legendre polynomials also appear in the solution of boundary value 

problems for linear differential equations, and in numerical analysis as a 

basis for approximating functions on the interval [-1, 1]. 

Chebyshev polynomials are used in a variety of applications, such as 

signal processing, data compression, and numerical analysis. They are 

particularly important in the field of approximation theory, where they are 

used as a basis for approximating functions on the interval [-1, 1] or [0, 1]. 
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Chebyshev polynomials also have applications in the study of orthogonal 

polynomials, where they are used to construct other families of orthogonal 

polynomials. 

12.2 OBJECTIVES:- 

After studying this unit you will be able to  

 To discuss about Chebyshev polynomial, Legendre’s polynomials 

and its equation and generating function. 

 To study the recurrence formulae of Chebyshev polynomial and 

Legendre’s polynomials. 

 To study the important properties for this polynomials. 

 To study the orthogonal properties of Chebyshev polynomial and 

Legendre’s polynomials. 

The main objectives of Legendre's polynomials and Chebyshev 

polynomials are provide to the numerous applications in mathematics, 

physics, and engineering. They are used to represent a wide range of 

physical phenomena and to solve a variety of mathematical problems. 

12.3 CHEBYSHEV POLYNOMIALS:- 

The Chebyshev polynomials of first and second kind are described by 

𝑇𝑛(𝑥) = 𝑐𝑜𝑠(𝑛𝑐𝑜𝑠−1𝑥) 

𝑈𝑛(𝑥) = 𝑠𝑖𝑛(𝑛𝑐𝑜𝑠−1𝑥) 

Where 𝑇𝑛(𝑥) and 𝑈𝑛(𝑥)  are first and second kind, 𝑛  is a non-negative 

integer. 

 

Theorem: 𝑻𝒏(𝒙) and 𝑼𝒏(𝒙) are independent solutions of Chebyshev 

equation. 

(1 − 𝑥2)(𝑑2𝑦 𝑑𝑥2⁄ ) − 𝑥(𝑑𝑦 𝑑𝑥⁄ ) + 𝑛2𝑦 = 0 
Proof: The Chebyshev equation is 

(1 − 𝑥2)(𝑑2𝑦 𝑑𝑥2⁄ ) − 𝑥(𝑑𝑦 𝑑𝑥⁄ ) + 𝑛2𝑦 = 0                     … (1) 
By the definition of Chebyshev polynomials, we get 

𝑦 = 𝑇𝑛(𝑥) = 𝑐𝑜𝑠(𝑛𝑐𝑜𝑠−1𝑥) 

 ∴           
𝑑𝑦

𝑑𝑥
=

𝑑

𝑑𝑥
𝑇𝑛(𝑥) =

𝑑

𝑑𝑥
𝑐𝑜𝑠(𝑛𝑐𝑜𝑠−1𝑥) = −𝑠𝑖𝑛(𝑛𝑐𝑜𝑠−1𝑥). 𝑛.

−1

(1 − 𝑥2)1/2

= 𝑠𝑖𝑛(𝑛𝑐𝑜𝑠−1𝑥).
𝑛

(1 − 𝑥2)1/2
 

Again  
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𝑑2𝑦

𝑑𝑥2
=

𝑑2

𝑑𝑥2
𝑇𝑛(𝑥) =

𝑑

𝑑𝑥
( 

𝑑

𝑑𝑥
𝑇𝑛(𝑥))

= 𝑛 
𝑑

𝑑𝑥
(𝑠𝑖𝑛(𝑛𝑐𝑜𝑠−1𝑥).

𝑛

(1 − 𝑥2)1/2
) 

= 𝑛 [−
1

2
(1 − 𝑥2)−3/2(−2𝑥). 𝑠𝑖𝑛(𝑛𝑐𝑜𝑠−1𝑥)

+ (1 − 𝑥2)1/2𝑐𝑜𝑠(𝑛𝑐𝑜𝑠−1𝑥).
𝑛

(1 − 𝑥2)1/2
] 

𝑑2

𝑑𝑥2
𝑇𝑛(𝑥) =

𝑛𝑥

(1 − 𝑥2)3/2
𝑠𝑖𝑛(𝑛𝑐𝑜𝑠−1𝑥) −

𝑛2

1 − 𝑥2
𝑐𝑜𝑠(𝑛𝑐𝑜𝑠−1𝑥) 

Using above equations, we obtain 

(1 − 𝑥2)
𝑑2

𝑑𝑥2
𝑇𝑛(𝑥) − 𝑥

𝑑

𝑑𝑥
𝑇𝑛(𝑥) + 𝑛2𝑇𝑛(𝑥) = 0 

𝑛𝑥

(1−𝑥2)3/2 𝑠𝑖𝑛(𝑛𝑐𝑜𝑠−1𝑥) −
𝑛2

1−𝑥2 𝑐𝑜𝑠(𝑛𝑐𝑜𝑠−1𝑥) −

𝑠𝑖𝑛(𝑛𝑐𝑜𝑠−1𝑥).
𝑛𝑥

(1−𝑥2)1/2 + 𝑛𝑐𝑜𝑠(𝑛𝑐𝑜𝑠−1𝑥)=0 

Showing that 𝑇𝑛(𝑥) is a solution of (1).  

Similarly, to show that 𝑼𝒏(𝒙) is a solution of (1): Proceed as above 

 

To show that 𝑻𝒏(𝒙) and 𝑼𝒏(𝒙) are independent solution of (1): we 

given by the definition 

𝑇𝑛(𝑥) = 𝑐𝑜𝑠(𝑛𝑐𝑜𝑠−1𝑥) and    𝑈𝑛(𝑥) = 𝑠𝑖𝑛(𝑛𝑐𝑜𝑠−1𝑥) 

 ∴            𝑇𝑛(1) = 𝑐𝑜𝑠(𝑛𝑐𝑜𝑠−11) = 𝑐𝑜𝑠(𝑛 × 0) = 1    

 and         𝑈𝑛(1) = 𝑠𝑖𝑛(𝑛𝑐𝑜𝑠−11) = 𝑠𝑖𝑛(𝑛 × 0) = 0                         

Finally 𝑈𝑛(𝑥) cannot intimated as a constant multiple of 𝑇𝑛(𝑥). This is 

prove that 𝑇𝑛(𝑥) and 𝑈𝑛(𝑥) are independent solution of (1) 

12.4 ORTHOGONAL PROPERTIES:- 

To show that 

i. ∫
𝑇𝑟(𝑥)𝑇𝑛(𝑥)

√1−𝑥2

1

−1
𝑑𝑥 = {

0,               𝑟 ≠ 𝑛
𝜋 2⁄ , 𝑟 = 𝑛 ≠ 0
𝜋,       𝑟 = 𝑛 = 0

 

ii. ∫
𝑈𝑟(𝑥)𝑈𝑛(𝑥)

√1−𝑥2

1

−1
𝑑𝑥 = {

0,               𝑚 ≠ 𝑛
𝜋 2⁄ , 𝑟 = 𝑛 ≠ 0
𝜋,       𝑟 = 𝑛 = 0

 

 

Proof: We given, by the definition 

i. 𝑇𝑟(𝑥) = 𝑐𝑜𝑠(𝑚𝑐𝑜𝑠−1𝑥)   &   𝑇𝑛(𝑥) = 𝑐𝑜𝑠(𝑛𝑐𝑜𝑠−1𝑥)      … (1) 
        

 ∴ Putting 𝑥 = 𝑐𝑜𝑠𝜃, 𝑑𝑥 = −𝑠𝑖𝑛𝜃𝑑𝜃 in (1) 

𝑇𝑟(𝑐𝑜𝑠𝜃) = 𝑐𝑜𝑠(𝑚𝑐𝑜𝑠−1𝑐𝑜𝑠𝜃)           &          𝑇𝑛(𝑥)
= 𝑐𝑜𝑠(𝑛𝑐𝑜𝑠−1𝑐𝑜𝑠𝜃)     
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𝑇𝑟(𝑐𝑜𝑠𝜃) = 𝑐𝑜𝑠(𝑚𝜃)           &          𝑇𝑛(𝑥) = 𝑐𝑜𝑠(𝑛𝜃) 
Let  

∫
𝑇𝑟(𝑥)𝑇𝑛(𝑥)

√1 − 𝑥2

1

−1

𝑑𝑥 = ∫
𝑐𝑜𝑠𝑚𝜃𝑐𝑜𝑠𝑛𝜃

𝑠𝑖𝑛𝜃

0

𝜋

(−𝑠𝑖𝑛𝜃)𝑑𝜃 = ∫ 𝑐𝑜𝑠𝑚𝜃𝑐𝑜𝑠𝑛𝜃
𝜋

0

𝑑𝜃 

⇒          If 𝒓 ≠ 𝒏so that (𝒓 − 𝒏) ≠ 𝟎, then 

𝐼 =
1

2
∫ 2𝑐𝑜𝑠𝑟𝜃𝑐𝑜𝑠𝑛𝜃

𝜋

0

𝑑𝜃 =
1

2
∫ [𝑐𝑜𝑠(𝑟 + 𝑛)𝜃 + 𝑐𝑜𝑠(𝑟 − 𝑛)𝜃]

𝜋

0

𝑑𝜃 

=
1

2
[
𝑐𝑜𝑠(𝑟 + 𝑛)𝜃

𝑟 + 𝑛
+

𝑐𝑜𝑠(𝑟 − 𝑛)𝜃

𝑟 − 𝑛
]

0

𝜋

= 0 

⇒         If 𝒓 = 𝒏 ≠ 𝟎, then 

 

𝐼 = ∫ 𝑐𝑜𝑠𝑟𝜃𝑐𝑜𝑠𝑛𝜃
𝜋

0

𝑑𝜃 = ∫ 𝑐𝑜𝑠2𝑟𝜃
𝜋

0

𝑑𝜃 = ∫
1 + 𝑐𝑜𝑠2𝑟𝜃

2

𝜋

0

𝑑𝜃

=
1

2
[𝜃 +

𝑠𝑖𝑛2𝑟𝜃

2𝑟
]

0

𝜋

=
𝜋

2
 

 

 

⇒         If 𝒓 = 𝒏 = 𝟎, then 𝒄𝒐𝒔𝒎𝜽 = 𝒄𝒐𝒔𝒏𝜽 = 𝟏 

𝐼 = ∫ 𝑐𝑜𝑠𝑟𝜃𝑐𝑜𝑠𝑛𝜃
𝜋

0

𝑑𝜃 = ∫ (1)(1)
𝜋

0

𝑑𝜃 = [𝜃]0
𝜋 = 𝜋 

ii. ∫
𝑈𝑟(𝑥)𝑈𝑛(𝑥)

√1−𝑥2

1

−1
𝑑𝑥 = {

0,               𝑟 ≠ 𝑛
𝜋 2⁄ , 𝑟 = 𝑛 ≠ 0
𝜋,       𝑟 = 𝑛 = 0

 

Proof: 𝑈𝑟(𝑥) = 𝑠𝑖𝑛(𝑟𝑐𝑜𝑠−1𝑥)           &          𝑈𝑛(𝑥) =
𝑠𝑖𝑛(𝑛𝑐𝑜𝑠−1𝑥)         … (1) 
        

 ∴ Putting 𝑥 = 𝑐𝑜𝑠𝜃, 𝑑𝑥 = −𝑠𝑖𝑛𝜃𝑑𝜃 in (1) 

𝑈𝑟(𝑐𝑜𝑠𝜃) = 𝑠𝑖𝑛(𝑟𝑐𝑜𝑠−1𝑐𝑜𝑠𝜃)           &          𝑈𝑛(𝑥) = 𝑠𝑖𝑛(𝑛𝑐𝑜𝑠−1𝑐𝑜𝑠𝜃)     
        

𝑈𝑟(𝑐𝑜𝑠𝜃) = 𝑠𝑖𝑛(𝑟𝜃)           &          𝑈𝑛(𝑥) = 𝑠𝑖𝑛(𝑛𝜃) 
Let  

∫
𝑈𝑟(𝑥)𝑈𝑛(𝑥)

√1 − 𝑥2

1

−1

𝑑𝑥 = ∫
𝑠𝑖𝑛𝑟𝜃𝑠𝑖𝑛𝑛𝜃

𝑠𝑖𝑛𝜃

0

𝜋

(−𝑠𝑖𝑛𝜃)𝑑𝜃 = ∫ 𝑠𝑖𝑛𝑟𝜃𝑠𝑖𝑛𝑛𝜃
𝜋

0

𝑑𝜃 

⇒          If 𝒓 ≠ 𝒏so that (𝒓 − 𝒏) ≠ 𝟎, then 

𝐽 =
1

2
∫ 2𝑠𝑖𝑛𝑟𝜃𝑠𝑖𝑛𝑛𝜃

𝜋

0

𝑑𝜃 =
1

2
∫ [𝑐𝑜𝑠(𝑟 − 𝑛)𝜃 + 𝑐𝑜𝑠(𝑟 + 𝑛)𝜃]

𝜋

0

𝑑𝜃 

=
1

2
[
𝑠𝑖𝑛(𝑟 − 𝑛)𝜃

𝑟 − 𝑛
+

𝑐𝑜𝑠(𝑟 + 𝑛)𝜃

𝑟 + 𝑛
]

0

𝜋

= 0 

⇒         If 𝒓 = 𝒏 ≠ 𝟎, then 
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𝐼 = ∫ 𝑠𝑖𝑛𝑟𝜃𝑠𝑖𝑛𝑛𝜃
𝜋

0

𝑑𝜃 = ∫ 𝑠𝑖𝑛2𝑟𝜃
𝜋

0

𝑑𝜃 = ∫
1 − 𝑐𝑜𝑠2𝑟𝜃

2

𝜋

0

𝑑𝜃

=
1

2
[𝜃 −

𝑠𝑖𝑛2𝑟𝜃

2𝑟
]

0

𝜋

=
𝜋

2
 

 

 

⇒         If 𝒓 = 𝒏 = 𝟎, then 𝒔𝒊𝒏𝒓𝜽 = 𝒔𝒊𝒏𝒏𝜽 = 𝟏 

𝐼 = ∫ 𝑠𝑖𝑛𝑟𝜃𝑠𝑖𝑛𝑛𝜃
𝜋

0

𝑑𝜃 = ∫ (0)(0)
𝜋

0

𝑑𝜃 = 0 

 

12.5 RECURRENCE RELATION:- 

 

i. 𝑇𝑛+1(𝑥) − 2𝑥𝑇𝑛(𝑥) + 𝑇𝑛−1(𝑥) = 0 

ii. (1 − 𝑥2)𝑇′𝑛(𝑥) = −𝑛𝑥𝑇𝑛(𝑥) + 𝑛𝑇𝑛−1(𝑥) 

iii. 𝑈𝑛+1(𝑥) − 2𝑥𝑈𝑛(𝑥) + 𝑈𝑛−1(𝑥) = 0 

iv. (1 − 𝑥2)𝑈′𝑛(𝑥) = −𝑛𝑥𝑈𝑛(𝑥) + 𝑛𝑈𝑛−1(𝑥) 
 

Proof :   We given, by the definition of Chebyshev polynomials 

i.                                                                                                      

  𝑻𝒏(𝒙) = 𝒄𝒐𝒔(𝒏𝒄𝒐𝒔−𝟏𝒙)                                      … (𝟏) 

So     ∴ Putting 𝑥 = 𝑐𝑜𝑠𝜃, 𝑑𝑥 = −𝑠𝑖𝑛𝜃𝑑𝜃 in (1) 

 

           𝑇𝑛(𝑥) = 𝑐𝑜𝑠(𝑛𝑐𝑜𝑠−1𝑐𝑜𝑠𝜃) = 𝑐𝑜𝑠𝑛𝜃 

   𝑇𝑛+1(𝑥) = 𝑐𝑜𝑠(𝑛 + 1)𝜃,                 𝑇𝑛−1(𝑥) = 𝑐𝑜𝑠(𝑛 − 1) 

We prove that  𝑻𝒏+𝟏(𝒙) − 𝟐𝒙𝑻𝒏(𝒙) + 𝑻𝒏−𝟏(𝒙) = 𝟎 

Now we take L.H.S 

 ⇒                      𝑇𝑛+1(𝑥) − 2𝑥𝑇𝑛(𝑥) + 𝑇𝑛−1(𝑥) = 𝑐𝑜𝑠(𝑛 + 1)𝜃 −
2𝑥𝑐𝑜𝑠𝑛𝜃 + 𝑐𝑜𝑠(𝑛 − 1)𝜃 

⇒                            = [𝑐𝑜𝑠(𝑛 + 1)𝜃 + 𝑐𝑜𝑠(𝑛 − 1)𝜃] − 2𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝑛𝜃 

⇒                            = [𝑐𝑜𝑠(𝑛 + 1)𝜃 + 𝑐𝑜𝑠(𝑛 − 1)𝜃] − 2𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝑛𝜃 

⇒                            = 𝟐𝒄𝒐𝒔𝜽𝒄𝒐𝒔𝒏𝜽 − 𝟐𝒄𝒐𝒔𝜽𝒄𝒐𝒔𝒏𝜽 = 𝟎 

ii.      (𝟏 − 𝒙𝟐)𝑻′𝒏(𝒙) = −𝒏𝒙𝑻𝒏(𝒙) + 𝒏𝑻𝒏−𝟏(𝒙)   … (𝟐) 

Proof:   differentiating (1) 

𝑇′𝑛(𝑥) = −𝑠𝑖𝑛(𝑛𝑐𝑜𝑠−1𝑥).
−𝑛

√1 − 𝑥2
  

= −𝑠𝑖𝑛(𝑛𝑐𝑜𝑠−1𝑐𝑜𝑠𝜃).
−𝑛

√1 − 𝑐𝑜𝑠2𝜃
 

=
𝑛𝑠𝑖𝑛𝑛𝜃

𝑠𝑖𝑛𝜃
 

      Putting the value of   𝑇′𝑛(𝑥), 𝑇𝑛(𝑥), 𝑇𝑛−1(𝑥)  and Putting 𝑥 = 𝑐𝑜𝑠𝜃,
𝑑𝑥 = −𝑠𝑖𝑛𝜃𝑑𝜃  in (2) 

(1 − 𝑥2)𝑇′𝑛(𝑥) = −𝑛𝑥𝑇𝑛(𝑥) + 𝑛𝑇𝑛−1(𝑥)         
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(1 − 𝑐𝑜𝑠2𝜃)
𝑛𝑠𝑖𝑛𝑛𝜃

𝑠𝑖𝑛𝜃
= −𝑛𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝑛𝜃 + 𝑛𝑐𝑜𝑠(𝑛 − 1)𝜃         

 

𝑠𝑖𝑛2𝜃
𝑛𝑠𝑖𝑛𝑛𝜃

𝑠𝑖𝑛𝜃
= −𝑛𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝑛𝜃 + 𝑛𝑐𝑜𝑠(𝑛 − 1)𝜃   

𝑛𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝑛𝜃 = −𝑛𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝑛𝜃 + 𝑛𝑐𝑜𝑠(𝑛 − 1)𝜃        … (3)  
Now we take R.H.S of above equation(3) 

= −𝑛𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝑛𝜃 + 𝑛𝑐𝑜𝑠(𝑛𝜃 − 𝜃)   
= −𝑛𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝑛𝜃 + 𝑛𝑐𝑜𝑠(𝑛 − 1)𝜃  

= −𝑛𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝑛𝜃 + 𝑛𝑐𝑜𝑠𝑛𝜃𝑐𝑜𝑠𝜃 + 𝑛𝑠𝑖𝑛𝑛𝜃𝑠𝑖𝑛𝜃   
= 𝑛𝑠𝑖𝑛𝑛𝜃𝑠𝑖𝑛𝜃   

𝑳. 𝑯. 𝑺 = 𝑹. 𝑯. 𝑺   
iii. 𝑼𝒏+𝟏(𝒙) − 𝟐𝒙𝑼𝒏(𝒙) + 𝑼𝒏−𝟏(𝒙) = 𝟎 

 

Proof:                                     𝑈𝑛(𝑥) = 𝑠𝑖𝑛(𝑛𝑐𝑜𝑠−1𝑥)                          … (1) 
        

 ∴ Putting 𝑥 = 𝑐𝑜𝑠𝜃, 𝑑𝑥 = −𝑠𝑖𝑛𝜃𝑑𝜃 in (1) 

 

 𝑈𝑛(𝑥) = 𝑠𝑖𝑛(𝑛𝑐𝑜𝑠−1𝑐𝑜𝑠𝜃)     
                                       𝑈𝑛(𝑥) = 𝑠𝑖𝑛(𝑛𝜃) 

We prove that  𝑼𝒏+𝟏(𝒙) − 𝟐𝒙𝑼𝒏(𝒙) + 𝑼𝒏−𝟏(𝒙) = 𝟎 

Similarly we take L.H.S. 

 ⇒                      𝑈𝑛+1(𝑥) − 2𝑥𝑈𝑛(𝑥) + 𝑈𝑛−1(𝑥) = 𝑠𝑖𝑛(𝑛 + 1)𝜃 −
2𝑐𝑜𝑠𝜃𝑠𝑖𝑛(𝑛𝑐𝑜𝑠−1𝑐𝑜𝑠𝜃) + 𝑠𝑖𝑛(𝑛 − 1)𝜃 

⇒                            = [𝑠𝑖𝑛(𝑛 + 1)𝜃 + 𝑠𝑖𝑛(𝑛 − 1)𝜃] − 2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝑛𝜃 

⇒                            = 2𝑠𝑖𝑛𝑛𝜃𝑐𝑜𝑠𝜃 − 2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝑛𝜃 

⇒                            = 𝟐𝒄𝒐𝒔𝜽𝒔𝒊𝒏𝒏𝜽 − 𝟐𝒄𝒐𝒔𝜽𝒔𝒊𝒏𝒏𝜽 = 𝟎 

 

iv. (𝟏 − 𝒙𝟐)𝑼′𝒏(𝒙) = −𝒏𝒙𝑼𝒏(𝒙) + 𝒏𝑼𝒏−𝟏(𝒙)                     … (2) 
Proof:   differentiating (2) 

𝑈′𝑛(𝑥) = 𝑐𝑜𝑠(𝑛𝑐𝑜𝑠−1𝑥).
−𝑛

√1 − 𝑥2
  

= 𝑐𝑜𝑠(𝑛𝑐𝑜𝑠−1𝑐𝑜𝑠𝜃).
−𝑛

√1 − 𝑐𝑜𝑠2𝜃
 

= −
𝑛𝑐𝑜𝑠𝑛𝜃

𝑠𝑖𝑛𝜃
 

      Putting the value of   𝑈′𝑛(𝑥), 𝑈𝑛(𝑥), 𝑈𝑛−1(𝑥)  and Putting 𝑥 = 𝑐𝑜𝑠𝜃,
𝑑𝑥 = −𝑠𝑖𝑛𝜃𝑑𝜃  in (2) 

(1 − 𝑥2)𝑈′𝑛(𝑥) = −𝑛𝑥𝑈𝑛(𝑥) + 𝑛𝑈𝑛−1(𝑥)       
 

−(1 − 𝑐𝑜𝑠2𝜃)
𝑛𝑐𝑜𝑠𝑛𝜃

𝑠𝑖𝑛𝜃
= −𝑛𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝑛𝜃 + 𝑛𝑠𝑖𝑛(𝑛 − 1)𝜃         

 

−𝑠𝑖𝑛2𝜃
𝑛𝑐𝑜𝑠𝑛𝜃

𝑠𝑖𝑛𝜃
= −𝑛𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝑛𝜃 + 𝑛𝑠𝑖𝑛(𝑛 − 1)𝜃   
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−𝑛𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝑛𝜃 = −𝑛𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝑛𝜃 + 𝑛𝑠𝑖𝑛(𝑛 − 1)𝜃        … (3)  
Again we take R.H.S of above equation(3) 

= −𝑛𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝑛𝜃 + 𝑛𝑠𝑖𝑛(𝑛𝜃 − 𝜃)   
= −𝑛𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝑛𝜃 + 𝑛𝑠𝑖𝑛(𝑛 − 1)𝜃  

= −𝑛𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝑛𝜃 + 𝑛𝑠𝑖𝑛𝑛𝜃𝑐𝑜𝑠𝜃 − 𝑛𝑐𝑜𝑠𝑛𝜃𝑠𝑖𝑛𝜃   
= −𝑛𝑐𝑜𝑠𝑛𝜃𝑠𝑖𝑛𝜃   
𝑳. 𝑯. 𝑺 = 𝑹. 𝑯. 𝑺   

Theorem I: To prove that 𝑻𝒏(𝒙) = (𝟏 𝟐⁄ ) × [{𝒙 + 𝒊(𝟏 − 𝒙𝟐)𝟏/𝟐}
𝒏

+

𝒊{𝒙 − 𝒊(𝟏 − 𝒙𝟐)𝟏/𝟐}
𝒏

] 
Proof: we take  

𝑇𝑛(𝑥) = 𝑐𝑜𝑠(𝑛𝑐𝑜𝑠−1𝑥) 

Now we put 𝑥 = 𝑐𝑜𝑠𝜃 

𝑇𝑛(𝑥) = 𝑐𝑜𝑠(𝑛𝑐𝑜𝑠−1𝑐𝑜𝑠𝜃) = 𝑐𝑜𝑠𝑛𝜃 =
(𝑒𝑖𝑛𝜃 + 𝑒−𝑖𝑛𝜃)

2
 

=
[(𝑒𝑖𝜃)

𝑛
+ (𝑒−𝑖𝜃)

𝑛
]

2
 

=
[(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)𝑛 + (𝑐𝑜𝑠𝜃 − 𝑖𝑠𝑖𝑛𝜃)𝑛]

2
 

=
[(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)𝑛 + (𝑐𝑜𝑠𝜃 − 𝑖𝑠𝑖𝑛𝜃)𝑛]

2
 

𝑻𝒏(𝒙) =
[(𝒙 + 𝒊{𝟏 − 𝒙𝟐})𝒏 + (𝒙 − 𝒊{𝟏 − 𝒙𝟐})𝒏]

𝟐
 

TheoremII: To prove that 𝑼𝒏(𝒙) = −(𝒊 𝟐⁄ ) × [{𝒙 + 𝒊(𝟏 − 𝒙𝟐)𝟏/𝟐}
𝒏

−

𝒊{𝒙 − 𝒊(𝟏 − 𝒙𝟐)𝟏/𝟐}
𝒏

] 
Proof: we take  

𝑈𝑛(𝑥) = 𝑠𝑖𝑛(𝑛𝑐𝑜𝑠−1𝑥) 

Now we put 𝑥 = 𝑐𝑜𝑠𝜃 

𝑇𝑛(𝑥) = 𝑠𝑖𝑛(𝑛𝑐𝑜𝑠−1𝑐𝑜𝑠𝜃) = 𝑠𝑖𝑛𝑛𝜃 =
(𝑒𝑖𝑛𝜃 − 𝑒−𝑖𝑛𝜃)

2
 

=
[(𝑒𝑖𝜃)

𝑛
− (𝑒−𝑖𝜃)

𝑛
]

2𝑖
 

=
[(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)𝑛 − (𝑐𝑜𝑠𝜃 − 𝑖𝑠𝑖𝑛𝜃)𝑛]

2𝑖
 

=
[(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)𝑛 − (𝑐𝑜𝑠𝜃 − 𝑖𝑠𝑖𝑛𝜃)𝑛]

2𝑖
 

𝑻𝒏(𝒙) = −
𝒊

𝟐
[(𝒙 + 𝒊{𝟏 − 𝒙𝟐})𝒏 + (𝒙 − 𝒊{𝟏 − 𝒙𝟐})𝒏] 

 

Theorem III: To prove that 𝑻𝒏(𝒙) = ∑ (−𝟏)𝒔𝒏/𝟐
𝒔=𝟎

𝒏!

(𝟐𝒔)!(𝒏−𝟐𝒔)!
(𝟏 −

𝒙𝟐)𝒔𝒙𝒏−𝟐𝒔 

Proof: As in theorem I, we obtain 
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𝑇𝑛(𝑥) =
[(𝑥 + 𝑖{1 − 𝑥2})𝑛 + (𝑥 − 𝑖{1 − 𝑥2})𝑛]

2

=
1

2
[∑ 𝑛𝐶𝑟

𝑥𝑛−𝑟{𝑖(𝟏 − 𝒙𝟐)1/2}
𝑟

𝑛

𝑟=0

+ ∑ 𝑛𝐶𝑟
𝑥𝑛−𝑟{−𝑖(𝟏 − 𝒙𝟐)1/2}

𝑟
𝑛

𝑟=0

] 

Since by binomial theorem, we obtain 

(𝑎 + 𝑏)𝑛 = 𝑎𝑛 + 𝑛𝐶1
𝑎𝑛−1𝑏 + 𝑛𝐶1

𝑎𝑛−1𝑏2 + ⋯ + 𝑛𝑛𝑏𝑛 = ∑ 𝑛𝐶𝑟
𝑎𝑛−𝑟𝑏𝑟

𝑛

𝑟=0

 

𝑇𝑛(𝑥) = ∑ 𝑛𝐶𝑟
𝑥𝑛−𝑟𝑖𝑟(𝟏 − 𝒙𝟐)𝑟/2

𝑛

𝑟=0

[1 + (−1)𝑟] 

But                                          1 + (−1)𝑟 = {
0, 𝑖𝑓 𝑟 𝑖𝑠 𝑜𝑑𝑑

2, 𝑖𝑓 𝑟 𝑖𝑠 𝑒𝑣𝑒𝑛
 

𝑇𝑛(𝑥) = ∑ 𝑛𝐶𝑟
𝑥𝑛−𝑟𝑖𝑟(𝟏 − 𝒙𝟐)𝑟/2

𝑟𝑒𝑣𝑒𝑛,≤𝑛

     … (1) 

Since 𝑟 is even, so 𝑟 = 2𝑠 , where 𝑠  be an integer. 𝑟 ≤ 𝑛 ⇒    2𝑠 ≤ 𝑛 ⇒
  𝑠 ≤ 𝑛/2 

 ⇒ Now if 𝑛 is even 𝑟  goes 0 𝑡𝑜 𝑛/2, if 𝑛 is odd 𝑟  goes 0 𝑡𝑜 (𝑛 − 1)/2, 

then 

(𝑛/2) = {

𝑛/2, 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
(𝑛 − 1)

2
, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

 

Hence 𝑟 = 2𝑠 from (1) 

𝑻𝒏(𝒙) = ∑ 𝒏𝑪𝟐𝒔
𝒙𝒏−𝟐𝒔𝒊𝟐𝒔(𝟏 − 𝒙𝟐)𝒔

𝒏/𝟐

𝒔=𝟎

= ∑(−𝟏)𝒔

𝒏/𝟐

𝒔=𝟎

𝒏!

(𝟐𝒔)! (𝒏 − 𝟐𝒔)!
(𝟏 − 𝒙𝟐)𝒔𝒙𝒏−𝟐𝒔 

TheoremIV: To prove that 𝑼𝒏(𝒙) = ∑ (−𝟏)𝒔(𝒏−𝟏)/𝟐
𝒔=𝟎

𝒏!

(𝟐𝒔+𝟏)!(𝒏−𝟐𝒔−𝟏)!
(𝟏 −

𝒙𝟐)𝒔+𝟏 𝟐⁄ 𝒙𝒏−𝟐𝒔−𝟏 

Proof: As in theorem II, we obtain 

𝑈𝑛(𝑥) = −
𝒊

𝟐
[(𝒙 + 𝒊{𝟏 − 𝒙𝟐})𝒏 + (𝒙 − 𝒊{𝟏 − 𝒙𝟐})𝒏]

= −
𝑖

2
[∑ 𝑛𝐶𝑟

𝑥𝑛−𝑟{𝑖(𝟏 − 𝒙𝟐)1/2}
𝑟

𝑛

𝑟=0

− ∑ 𝑛𝐶𝑟
𝑥𝑛−𝑟{−𝑖(𝟏 − 𝒙𝟐)1/2}

𝑟
𝑛

𝑟=0

] 
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Since by binomial theorem, we obtain 

(𝑎 + 𝑏)𝑛 = 𝑎𝑛 + 𝑛𝐶1
𝑎𝑛−1𝑏 + 𝑛𝐶1

𝑎𝑛−1𝑏2 + ⋯ + 𝑛𝑛𝑏𝑛 = ∑ 𝑛𝐶𝑟
𝑎𝑛−𝑟𝑏𝑟

𝑛

𝑟=0

 

𝑈𝑛(𝑥) = −
𝑖

2
∑ 𝑛𝐶𝑟

𝑥𝑛−𝑟𝑖𝑟(𝟏 − 𝒙𝟐)𝑟/2

𝑛

𝑟=0

[1 − (−1)𝑟] 

But                                          1 + (−1)𝑟 = {
0, 𝑖𝑓 𝑟 𝑖𝑠 𝑒𝑣𝑒𝑛
2, 𝑖𝑓 𝑟 𝑖𝑠 𝑜𝑑𝑑

 

𝑇𝑛(𝑥) = −𝑖 ∑ 𝑛𝐶𝑟
𝑥𝑛−𝑟𝑖𝑟(𝟏 − 𝒙𝟐)𝑟/2

𝑟𝑜𝑑𝑑,𝑟≤𝑛

     … (1) 

Since 𝑟 is odd, so 𝑟 = 2𝑠 + 1, where 𝑠 be an integer. 𝑟 ≤ 𝑛 ⇒    2𝑠 + 1 ≤
𝑛 ⇒   𝑠 ≤ (𝑛 − 1)/2 

 ⇒ Now if 𝑛 is odd 𝑟  goes 0 𝑡𝑜 (𝑛 − 1)/2, if 𝑛 is odd 𝑟  goes 0 𝑡𝑜 (𝑛 −
2)/2, then 

[
(𝑛 − 2)

2
] = {

(𝑛 − 1)

2
, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

(𝑛 − 2)

2
, 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

 

Hence 𝑟 = 2𝑠 + 1 from (1) 

𝑼𝒏(𝒙) = ∑ 𝒏𝑪𝟐𝒔+𝟏
𝒙𝒏−𝟐𝒔−𝟏𝒊𝟐𝒔+𝟏(𝟏 − 𝒙𝟐)𝒔+𝟏/𝟐

(𝒏−𝟏)/𝟐

𝒔=𝟎

= ∑ (−𝟏)𝒔

(𝒏−𝟏)/𝟐

𝒔=𝟎

𝒏!

(𝟐𝒔 + 𝟏)! (𝒏 − 𝟐𝒔 − 𝟏)!
(𝟏

− 𝒙𝟐)𝒔+𝟏/𝟐𝒙𝒏−𝟐𝒔−𝟏 

 

12.6 GENERATING FUNCTION FOR 

CHEBYSHEV PLOYNOMIALS:- 

i. 
𝟏−𝒌𝟐

𝟏−𝟐𝒌𝒙−𝒌𝟐 = 𝑻𝟎(𝒙) + 𝟐 ∑ 𝑻𝒏(𝒙)∞
𝒏=𝟏 𝒌𝒏 

 

 Proof:  Let for 𝑛 = 0 ,putting 𝑥 = 𝑐𝑜𝑠𝜃 = (𝑒𝑖𝜃 + 𝑒−𝑖𝜃) 2⁄  

L.H.S. ⇒    
1−𝑘2

1−2𝑘𝑥−𝑘2 =
1−𝑘2

1−2𝑘(𝑒𝑖𝜃+𝑒−𝑖𝜃) 2⁄ −𝑘2 =
1−𝑘2

1−𝑘(𝑒𝑖𝜃+𝑒−𝑖𝜃)−𝑘2 =

1−𝑘2

1−𝑘(𝑒𝑖𝜃+𝑒−𝑖𝜃)−𝑘2 

=
1 − 𝑘2

1 − 𝑘𝑒𝑖𝜃 − 𝑘𝑒−𝑖𝜃 − 𝑘2
 

=
1 − 𝑘2

(1 − 𝑘𝑒𝑖𝜃) − 𝑘𝑒−𝑖𝜃(1 − 𝑘𝑒𝑖𝜃)
=

1 − 𝑘2

(1 − 𝑘𝑒−𝑖𝜃)(1 − 𝑘𝑒𝑖𝜃)

= (1 − 𝑘2)(1 − 𝑘𝑒−𝑖𝜃)
−1

(1 − 𝑘𝑒𝑖𝜃)
−1
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= (1 − 𝑘2) ∑(𝑘𝑒𝑖𝜃)
𝑎

∞

𝑎=0

∑(𝑘𝑒−𝑖𝜃)
𝑏

∞

𝑏=0

 

= (1 − 𝑘2) ∑ ∑ 𝑒𝑖(𝑎−𝑏)𝜃

∞

𝑏=0

∞

𝑎=0

𝑘𝑎+𝑏

= ∑ ∑ 𝑒𝑖(𝑎−𝑏)𝜃

∞

𝑏=0

∞

𝑎=0

𝑘𝑎+𝑏 + ∑ ∑ 𝑒𝑖(𝑎−𝑏)𝜃

∞

𝑏=0

∞

𝑎=0

𝑘𝑎+𝑏+2    … (1) 

Now we taking 𝑎 = 0, 𝑏 = 0  in (1), we have  = 𝑒𝑖(0−0)𝜃 = 𝑒0 = 1 =
𝑇0(𝑥) 

For 𝑛 ≥ 1, we obtain 𝑘𝑛by taking 

⇒   𝑎 + 𝑏 = 𝑛, (𝑖. 𝑒. , 𝑏 = 𝑛 − 𝑎 𝑠𝑜 𝑠 ≥ 0 ⇒ 𝑛 − 𝑎 ≥ 0 ⇒ 𝑎 ≤ 𝑛 𝑓𝑜𝑟 𝑘𝑛) 
in (1) and  

⇒ 𝑎 + 𝑏 + 2 = 𝑛(𝑖. 𝑒. , 𝑏 = 𝑛 − 𝑎 − 2 𝑠𝑜 𝑠 ≥ 0 ⇒ 𝑛 − 𝑎 − 2 ≥ 0 ⇒ 𝑎 ≤
𝑛 − 2 𝑓𝑜𝑟 𝑘𝑛) in (1) 

Hence the total coefficient of 𝑘𝑛 in (1) 

= ∑ 𝑒𝑖(𝑎−{𝑛−𝑎})𝜃

𝑛

𝑎=0

− ∑ 𝑒𝑖(𝑎−{𝑛−𝑎−2})𝜃

𝑛−2

𝑏=0

= 𝑒−𝑖𝑛𝜃 ∑ 𝑒2𝑖𝑎𝜃

𝑛

𝑎=0

− 𝑒−𝑖(𝑛−2)𝜃 ∑ 𝑒2𝑖𝑎𝜃

𝑛

𝑎=0

 

= 𝑒−𝑖𝑛𝜃[1 + 𝑒2𝑖𝜃 + 𝑒4𝑖𝜃 + ⋯ 𝑡𝑜 (𝑛 + 1)𝑡𝑒𝑟𝑚𝑠]

− 𝑒−𝑖(𝑛−2)𝜃[1 + 𝑒2𝑖𝜃 + 𝑒4𝑖𝜃 + ⋯ 𝑡𝑜 (𝑛 + 1)𝑡𝑒𝑟𝑚𝑠] 

= 𝑒−𝑖𝑛𝜃
−(𝑒2𝑖𝜃)

𝑛+1

1 − 𝑒2𝑖𝜃
− 𝑒−𝑖(𝑛−2)𝜃

1 − (𝑒2𝑖𝜃)
𝑛−1

1 − 𝑒2𝑖𝜃
 

=
𝑒−𝑖𝑛𝜃 − 𝑒𝑖(𝑛+2)𝜃

1 − 𝑒2𝑖𝜃
−

𝑒−𝑖(𝑛−2)𝜃 − 𝑒𝑖𝑛𝜃

1 − 𝑒2𝑖𝜃

=
𝑒−𝑖𝑛𝜃 − 𝑒𝑖(𝑛+2)𝜃 − 𝑒−𝑖(𝑛−2)𝜃 + 𝑒𝑖𝑛𝜃

1 − 𝑒2𝑖𝜃
 

=
𝑒−𝑖𝑛𝜃(1 − 𝑒2𝑖𝜃) + 𝑒𝑖𝑛𝜃(1 − 𝑒2𝑖𝜃)

(1 − 𝑒2𝑖𝜃)
= 𝑒−𝑖𝑛𝜃 + 𝑒𝑖𝑛𝜃 = 2𝑐𝑜𝑠𝑛𝜃 

= 𝑐𝑜𝑠𝑛𝜃 = (𝑒𝑖𝑛𝜃 + 𝑒−𝑖𝑛𝜃) 2⁄

= 2𝑇𝑛(𝑥),    [𝑇𝑛(𝑥) = 𝑐𝑜𝑠(𝑛𝑐𝑜𝑠−1𝑥) = 𝑐𝑜𝑠(𝑛𝑐𝑜𝑠−1𝑐𝑜𝑠𝜃)
= 𝑐𝑜𝑠𝑛𝜃] 

ii. 
√𝟏−𝒙𝟐

𝟏−𝟐𝒌𝒙−𝒌𝟐 = ∑ 𝑼𝒏+𝟏(𝒙)∞
𝒏=𝟏 𝒌𝒏 

Proof: Now we take L.H.S 

   

=
√1 − 𝑥2

1 − 2𝑘𝑥 − 𝑘2
 

Putting 𝑥 = 𝑐𝑜𝑠𝜃 
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=
√1 − 𝑐𝑜𝑠2𝜃

1 − 2𝑘𝑐𝑜𝑠𝜃 − 𝑘2
=

𝑠𝑖𝑛𝜃

1 − 𝑘(𝑒𝑖𝜃 + 𝑒−𝑖𝜃) − 𝑘2

=
𝑠𝑖𝑛𝜃

1 − 𝑘(𝑒𝑖𝜃 + 𝑒−𝑖𝜃) − 𝑘2
=

𝑠𝑖𝑛𝜃

1 − 𝑘(𝑒𝑖𝜃 + 𝑒−𝑖𝜃) − 𝑘2
 

=
𝑠𝑖𝑛𝜃

1 − 𝑘𝑒𝑖𝜃 − 𝑘𝑒−𝑖𝜃 − 𝑘2
=

𝑠𝑖𝑛𝜃

(1 − 𝑘𝑒−𝑖𝜃)(1 − 𝑘𝑒𝑖𝜃)
 

=
𝑠𝑖𝑛𝜃

(1 − 𝑘𝑒−𝑖𝜃)(1 − 𝑘𝑒𝑖𝜃)
= 𝑠𝑖𝑛𝜃 ∑(𝑘𝑒𝑖𝜃)

𝑎
∞

𝑎=0

∑(𝑘𝑒−𝑖𝜃)
𝑏

∞

𝑏=0

 

= 𝑠𝑖𝑛𝜃 ∑(𝑘𝑒𝑖𝜃)
𝑎

∞

𝑎=0

∑(𝑘𝑒−𝑖𝜃)
𝑏

∞

𝑏=0

= ∑ ∑ 𝑘𝑎+𝑏𝑒𝑖(𝑎−𝑏)𝜃

∞

𝑏=0

∞

𝑎=0

 

For 𝑛 ≥ 1, we obtain 𝑘𝑛by taking 

⇒   𝑎 + 𝑏 = 𝑛, (𝑖. 𝑒. , 𝑏 = 𝑛 − 𝑎 𝑠𝑜 𝑠 ≥ 0 ⇒ 𝑛 − 𝑎 ≥ 0 ⇒ 𝑎 ≤ 𝑛 𝑓𝑜𝑟 𝑘𝑛) 
in (1) and  

⇒ 𝑎 + 𝑏 + 2 = 𝑛(𝑖. 𝑒. , 𝑏 = 𝑛 − 𝑎 − 2 𝑠𝑜 𝑠 ≥ 0 ⇒ 𝑛 − 𝑎 − 2 ≥ 0 ⇒ 𝑎 ≤
𝑛 − 2 𝑓𝑜𝑟 𝑘𝑛), 

Hence the total coefficient of 𝑘𝑛 in (1) 

= 𝑠𝑖𝑛𝜃𝑒−𝑖𝑛𝜃 ∑ 𝑒2𝑎𝑖𝜃

∞

𝑎=0

 

= 𝑠𝑖𝑛𝜃𝑒−𝑖𝑛𝜃[1 + 𝑒2𝑖𝜃 + 𝑒4𝑖𝜃 + ⋯ 𝑡𝑜 (𝑛 + 1)𝑡𝑒𝑟𝑚𝑠] 

= 𝑠𝑖𝑛𝜃 𝑒−𝑖𝑛𝜃
1 − (𝑒2𝑖𝜃)

𝑛+1

1 − 𝑒2𝑖𝜃
=

𝑒𝑖𝜃 − 𝑒−𝑖𝜃

2𝑖
×  𝑒−𝑖𝑛𝜃 ×

1 − (𝑒2𝑖𝜃)
𝑛+1

−𝑒𝑖𝜃(𝑒𝑖𝜃 − 𝑒−𝑖𝜃)
 

 

=  𝑒−𝑖(𝑛+1)𝜃 ×
[(𝑒2𝑖𝜃)

𝑛+1
− 1]

(𝑒𝑖𝜃 − 𝑒−𝑖𝜃)
= 𝑠𝑖𝑛(𝑛 + 1)𝜃 

= 𝒔𝒊𝒏{(𝒏 + 𝟏)𝒄𝒐𝒔−𝟏𝒙} = 𝑼𝒏+𝟏(𝒙), 𝒂𝒔 𝒙 = 𝒄𝒐𝒔𝜽 &    𝜃 = 𝒄𝒐𝒔−𝟏𝒙. 
 

SOLVED EXAMPLES 
EXAMPLE1: To show that 

i. 𝑇𝑛(1) = 1, 𝑇𝑛(−1) = (−1)𝑛 , 𝑇2𝑛(0) = (−1)𝑛 , 𝑇2𝑛+1(0) = 0  
ii. 𝑈𝑛(1) = 0, 𝑈𝑛(−1) = 0,   𝑇2𝑛(0) = 0, 𝑇2𝑛+1(0) = (−1)𝑛 

 

PROOF:  

i. We given      𝑇𝑛(𝑥) = 𝑐𝑜𝑠(𝑛𝑐𝑜𝑠−1𝑥)                   … (1), 

 Then putting 𝑥 = 1, we obtain  

𝑇𝑛(1) = 𝑐𝑜𝑠(𝑛𝑐𝑜𝑠−11) = 𝑐𝑜𝑠(𝑛 × 0) = 1 

Now 𝑇𝑛(𝑥) = 𝑐𝑜𝑠(𝑛𝑐𝑜𝑠−1𝑥), then again putting 𝑥 = −1 

𝑇𝑛(−1) = 𝑐𝑜𝑠(𝑛𝑐𝑜𝑠−1 − 1) = 𝑐𝑜𝑠(𝑛 × 𝜋) = (−1)𝑛 

Since again replacing 𝑥by 0 and 𝑛 by 2𝑛 in (1), we get 

𝑇2𝑛(0) = 𝑐𝑜𝑠(2𝑛𝑐𝑜𝑠−10) = 𝑐𝑜𝑠(2𝑛 × 𝜋 2⁄ ) = 𝑐𝑜𝑠𝑛𝜋 = (−1)𝑛 

Since again replacing 𝑥by 0 and 𝑛 by 2𝑛 + 1 in (1), we given below 
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𝑇2𝑛+1(0) = 𝑐𝑜𝑠((2𝑛 + 1)𝑐𝑜𝑠−10) = 𝑐𝑜𝑠((2𝑛 + 1) × 𝜋 2⁄ ) = 0. 
ii. Proceed as above yourself. 

EXAMPLE2:  To show that 𝑇𝑚{𝑇𝑛(𝑥)} = 𝑇𝑛{𝑇𝑚(𝑥)} = 𝑇𝑛𝑚(𝑥) 

SOLUTION: We have 𝑇𝑛(𝑥) = 𝑐𝑜𝑠(𝑛𝑐𝑜𝑠−1𝑥) 

𝑇𝑚{𝑇𝑛(𝑥)} = 𝑇𝑚{𝑐𝑜𝑠(𝑛𝑐𝑜𝑠−1𝑥)} = 𝑐𝑜𝑠[𝑚𝑐𝑜𝑠−1{𝑐𝑜𝑠(𝑛𝑐𝑜𝑠−1𝑥)}] 
= 𝑐𝑜𝑠[𝑛𝑚𝑐𝑜𝑠−1𝑥] 

Again 𝑇𝑚(𝑥) = 𝑐𝑜𝑠(𝑛𝑐𝑜𝑠−1𝑥) 

𝑇𝑛{𝑇𝑚(𝑥)} = 𝑛{𝑐𝑜𝑠(𝑚𝑐𝑜𝑠−1𝑥)} = 𝑐𝑜𝑠[𝑛𝑐𝑜𝑠−1{𝑐𝑜𝑠(𝑚𝑐𝑜𝑠−1𝑥)}] 
= 𝑐𝑜𝑠[𝑚𝑛𝑐𝑜𝑠−1𝑥] 

Hence  

𝑻𝒎{𝑻𝒏(𝒙)} = 𝑻𝒏{𝑻𝒎(𝒙)} = 𝑻𝒏𝒎(𝒙) 

 

EXAMPLE3:  To show that (1 − 𝑥2)1/2{𝑇𝑛(𝑥)} = {𝑈𝑛+1(𝑥)} − 𝑥𝑈𝑛(𝑥) 

SOLUTION: We have                     𝑇𝑛(𝑥) = 𝑐𝑜𝑠(𝑛𝑐𝑜𝑠−1𝑥) 

𝑈𝑛(𝑥) = 𝑠𝑖𝑛(𝑛𝑐𝑜𝑠−1𝑥) 

putting 𝑥 = 𝑐𝑜𝑠𝜃 in above equation 

           𝑇𝑛(𝑐𝑜𝑠𝜃 ) = 𝑐𝑜𝑠(𝑛𝑐𝑜𝑠−1𝑐𝑜𝑠𝜃 ) = 𝑐𝑜𝑠𝑛𝜃 ,    𝑈𝑛(𝑐𝑜𝑠𝜃 ) =
𝑠𝑖𝑛(𝑛𝑐𝑜𝑠−1𝑐𝑜𝑠𝜃 ) = 𝑠𝑖𝑛𝑛𝜃 

(1 − 𝑐𝑜𝑠2𝜃)1/2{𝑇𝑛(𝑐𝑜𝑠𝜃)} = {𝑈𝑛+1(𝑐𝑜𝑠𝜃)} − 𝑐𝑜𝑠𝜃 𝑈𝑛(𝑐𝑜𝑠𝜃) 

𝑠𝑖𝑛𝜃{𝑇𝑛(𝑐𝑜𝑠𝜃)} = {𝑈𝑛+1(𝑐𝑜𝑠𝜃)} − 𝑐𝑜𝑠𝜃 𝑈𝑛(𝑐𝑜𝑠𝜃) 

𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝑛𝜃 = 𝑠𝑖𝑛(𝑛 + 1)𝜃 − 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝑛𝜃 

                                       𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝑛𝜃 = 𝑠𝑖𝑛(𝑛𝜃 + 𝜃) −
𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝑛𝜃                                 … (1) 
Now we take R.H.S. 

= 𝑠𝑖𝑛𝑛𝜃𝑐𝑜𝑠𝜃 + 𝑐𝑜𝑠𝑛𝜃𝑠𝑖𝑛𝜃 − 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝑛𝜃 

= 𝑐𝑜𝑠𝑛𝜃𝑠𝑖𝑛𝜃 = 𝑳. 𝑯. 𝑺. 

12.7 LEGENDRE’S EQUATION AND ITS 

SOLUTION:- 

The differential equation of the form  

                                  

(1 − 𝑥2)
𝑑2𝑦

𝑑𝑥2 − 2𝑥
𝑑𝑦

𝑑𝑥
+ 𝑛(𝑛 + 1)𝑦 = 0

𝑜𝑟
(1 − 𝑥2)𝑦′′ − 2𝑥𝑦′ + 𝑛(𝑛 + 1)𝑦 = 0

}                  … (1)                               

 

is called Legendre’s equation, where 𝑛 is a positive integer. Now solve 

equation (1) in series of descending power of 𝑥 . Let the solution of 

equation (1) is  

                             𝑦 = ∑ 𝑎𝑙𝑥𝑘−𝑙∞
𝑙=0 , 𝑎0 ≠ 0                … (2) 
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𝑑𝑦

𝑑𝑥
= ∑ 𝑎𝑙𝑥𝑘−𝑙−1(𝑘 − 𝑙)

∞

𝑙=0

 

𝑑2𝑦

𝑑𝑥2
= ∑ 𝑎𝑙𝑥𝑘−𝑙−2(𝑘 − 𝑙)(𝑘 − 𝑙 − 1)

∞

𝑙=0

 

Substituting the value of 𝑦,
𝑑𝑦

𝑑𝑥
 and 

𝑑2𝑦

𝑑𝑥2 in equation (1), we obtain 

(1 − 𝑥2) ∑ 𝑎𝑙(𝑘 − 𝑙)(𝑘 − 𝑙 − 1)𝑥𝑘−𝑙−2

∞

𝑙=0

− 2𝑥 ∑ 𝑎𝑙(𝑘 − 𝑙)𝑥𝑘−𝑙−1

∞

𝑙=0

+ 𝑛(𝑛 + 1) ∑ 𝑎𝑙𝑥𝑘−𝑙

∞

𝑙=0

= 0 

𝑜𝑟 

(∑ 𝑎𝑙(𝑘 − 𝑙)(𝑘 − 𝑙 − 1)𝑥𝑘−𝑙−2

∞

𝑙=0

− ∑ 𝑎𝑙(𝑘 − 𝑙)(𝑘 − 𝑙 − 1)𝑥𝑘−𝑙−2+2

∞

𝑙=0

)

− 2𝑥 ∑ 𝑎𝑙(𝑘 − 𝑙)𝑥𝑘−𝑙−1

∞

𝑙=0

+ 𝑛(𝑛 + 1) ∑ 𝑎𝑙𝑥
𝑘−𝑙

∞

𝑙=0

= 0 

𝑜𝑟 

∑ 𝑎𝑙(𝑘 − 𝑙)(𝑘 − 𝑙 − 1)𝑥𝑘−𝑙−2

∞

𝑙=0

− ∑ 𝑎𝑙(𝑘 − 𝑙)(𝑘 − 𝑙 − 1)𝑥𝑘−𝑙

∞

𝑙=0

− 2 ∑ 𝑎𝑙(𝑘 − 𝑙)𝑥𝑘−𝑙−1+1

∞

𝑙=0

+ 𝑛(𝑛 + 1) ∑ 𝑎𝑙𝑥𝑘−𝑙

∞

𝑙=0

= 0 

𝑜𝑟 

∑ 𝑎𝑙(𝑘 − 𝑙)(𝑘 − 𝑙 − 1)𝑥𝑘−𝑙−2

∞

𝑙=0

− ∑ 𝑎𝑙(𝑘 − 𝑙)(𝑘 − 𝑙 − 1)𝑥𝑘−𝑙

∞

𝑙=0

− 2 ∑ 𝑎𝑙(𝑘 − 𝑙)𝑥𝑘−𝑙

∞

𝑙=0

+ 𝑛(𝑛 + 1) ∑ 𝑎𝑙𝑥𝑘−𝑙

∞

𝑙=0

= 0 

𝑜𝑟 

∑ 𝑎𝑙(𝑘 − 𝑙)(𝑘 − 𝑙 − 1)𝑥𝑘−𝑙−2

∞

𝑙=0

+ ∑{𝑛(𝑛 + 1) − 2(𝑘 − 𝑙) − (𝑘 − 𝑙)(𝑘 − 𝑙 − 1)}

∞

𝑙=0

𝑎𝑙𝑥
𝑘−𝑙

= 0 
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𝑜𝑟 ∑ 𝑎𝑙(𝑘 − 𝑙)(𝑘 − 𝑙 − 1)𝑥𝑘−𝑙−2

∞

𝑙=0

+ ∑{𝑛(𝑛 + 1) − 2(𝑘 − 𝑙) − (𝑘 − 𝑙)(𝑘 − 𝑙 − 1)}

∞

𝑙=0

𝑎𝑙𝑥
𝑘−𝑙

= 0 

Now the coefficient of 𝑎𝑙𝑥
𝑘−𝑙 is  

{𝑛(𝑛 + 1) − 2(𝑘 − 𝑙) − (𝑘 − 𝑙)(𝑘 − 𝑙 − 1)}
= 𝑛2 + 𝑛 − 2(𝑘 − 𝑙) − (𝑘 − 𝑙)2 + (𝑘 − 𝑙)
= {𝑛2 − (𝑘 − 𝑙)2 + 𝑛 − 2(𝑘 − 𝑙)} + (𝑘 − 𝑙)
= {𝑛 − 𝑘 + 𝑙}{𝑛 + 𝑘 − 𝑙} + 𝑛 − 2𝑘 + 2𝑙 + 𝑘 − 𝑙
= {𝑛 − 𝑘 + 𝑙}{𝑛 + 𝑘 − 𝑙} + 𝑛 − 𝑘 + 𝑙
= {𝑛 − 𝑘 + 𝑙}{𝑛 + 𝑘 − 𝑙} + {𝑛 − 𝑘 + 𝑙}
= {𝑛 − 𝑘 + 𝑙}{𝑛 − 𝑘 + 𝑙 + 1} 

Hence the equation (2) may be written as 

∑ 𝑎𝑙{𝑘 − 𝑙}{𝑘 − 𝑙 + 1}𝑥𝑘−𝑙−2

∞

𝑙=0

+ ∑{𝑛 − 𝑘 + 𝑙}{𝑛 − 𝑘 + 𝑙 + 1}

∞

𝑙=0

𝑎𝑙𝑥𝑘−𝑙

= 0                                                                      … (3)  
Equating to zero coefficient of 𝑥 namely 𝑥𝑙 in above equation, we obtain 

𝑎0(𝑛 − 𝑘)(𝑛 + 𝑘 − 1) = 0 

𝑜𝑟 

                    𝑘 = 𝑛, −(𝑛 + 1)                              (∵    𝑎0 ≠ 0)      

Now the next power of 𝑥 is 𝑘 − 1, so 
(𝑛 − 𝑘 + 1)(𝑛 + 𝑘)𝑎1 = 0 

For 𝑘 = 𝑛  and −(𝑛 + 1) , neither (𝑛 − 𝑘 + 1)  nor (𝑛 + 𝑘) in zero. 

Therefore 𝑎1 = 0 

From (3) 

{𝑘 − 𝑙 + 2}{𝑘 − 𝑙 + 1}𝑎𝑙−2 + {𝑛 − 𝑘 + 𝑙}{𝑛 − 𝑘 + 𝑙 + 1}𝑎𝑙 = 0 

                                                                     𝑎𝑙 =
{𝑘−𝑙+2}{𝑘−𝑙+1}

{𝑛−𝑘+𝑙}{𝑛−𝑘+𝑙+1}
𝑎𝑙−2                  … (4) 

Substituting 𝑛 = 3,5,7 …. in above equation and nothing 𝑎1 = 0, we obtain 

𝑎1 = 𝑎3 = 𝑎5 = 𝑎7 = ⋯ ⋯ = 0  to obtain 𝑎2 = 𝑎4 = 𝑎6 ⋯ ⋯ 𝑒𝑡𝑐, we 

consider two cases 

CaseI: When 𝒌 = 𝒏 then (4) becomes 

𝑎𝑙 =
{𝑛 − 𝑙 + 2}{𝑛 − 𝑙 + 1}

{𝑙}{2𝑛 − 𝑙 + 1}
𝑎𝑙−2 

Substituting 𝑙 = 2,4,6 …. in  (4) 

𝑎2 = −
𝑛{𝑛 − 1}

2{2𝑛 − 1}
𝑎0,   𝑎4 = −

𝑛{𝑛 − 2}{𝑛 − 3}

4{2𝑛 − 3}
𝑎2

=
𝑛{𝑛 − 1}{𝑛 − 2}{𝑛 − 3}

2.4{2𝑛 − 1}{2𝑛 − 3}
𝑎0   … …. 
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From (2) 

𝑦 = 𝑎0𝑥𝑛 + 𝑎1𝑥𝑛−1 + 𝑎2𝑥𝑛−2 + ⋯ ⋯ ⋯ ⋯ 

𝑦 = 𝑎0 [𝑥𝑛 −
𝑛{𝑛 − 1}

2{2𝑛 − 1}
𝑥𝑛−2 +

𝑛{𝑛 − 1}{𝑛 − 2}{𝑛 − 3}

2.4{2𝑛 − 1}{2𝑛 − 3}
𝑥𝑛−4

− ⋯ ]    … (5) 

CaseII: When 𝒌 = −(𝒏 + 𝟏) then (4) becomes 

𝑎𝑙 =
{𝑛 + 𝑙 − 1}{𝑛 + 𝑙}

{𝑙}{2𝑛 + 𝑙 + 1}
𝑎𝑙−2 

 

Substituting = 2,4,6 …. , we obtain 

𝑎2 = −
{𝑛 + 1}{𝑛 + 2}

2{2𝑛 + 3}
𝑎0,   𝑎4 = −

{𝑛 + 2}{𝑛 + 3}

4{2𝑛 + 5}
𝑎2

=
{𝑛 + 1}{𝑛 + 2}{𝑛 + 3}{𝑛 + 4}

2.4{2𝑛 + 3}{2𝑛 + 5}
𝑎0   … …. 

From (2) 

𝑦 = 𝑎0𝑥−𝑛−1 + 𝑎1𝑥−𝑛−2 + 𝑎2𝑥−𝑛−3 + ⋯ ⋯ ⋯ ⋯ 

𝑦 = 𝑎0 [𝑥−𝑛−1 −
{𝑛 + 1}{𝑛 + 2}

2{2𝑛 + 3}
𝑥−𝑛−3

+
{𝑛 + 1}{𝑛 + 2}{𝑛 + 3}{𝑛 + 4}

2.4{2𝑛 + 3}{2𝑛 + 5}
𝑥−𝑛−5 − ⋯ ]   … (6) 

If we take𝑎0 =
1.3.5…(2𝑛+1)

𝑛!
, then the solution (5) is denoted by 𝑃𝑛(𝑥) and 

is called Legendre polynomial of first kind or Legendre polynomial of 

degree 𝑛.If we take 𝑎0 =
𝑛!

1.3.5…(2𝑛+1)
 then the solution (6) is denoted by 

𝑄𝑛(𝑥) and is called Legendre polynomial of second kind. 

Hence the general solutions of (1) is 

                                     𝑦 = 𝐴𝑃𝑛(𝑥) + 𝐵𝑄𝑛(𝑥)  
Where A and B are constants. 

Definition: Legendre polynomial of first kind or Legendre’s 

polynomial of degree 𝒏 is denoted and defined by 

𝑃𝑛(𝑥) =
1.3.5 … (2𝑛 + 1)

𝑛!
[𝑥𝑛 −

𝑛{𝑛 − 1}

2{2𝑛 − 1}
𝑥𝑛−2

+
𝑛{𝑛 − 1}{𝑛 − 2}{𝑛 − 3}

2.4{2𝑛 − 1}{2𝑛 − 3}
𝑥𝑛−4 − ⋯ ]   … (1) 

= ∑(−1)𝑙
(2𝑛 − 2𝑙)

2𝑛𝑙! (𝑛 − 𝑙)! (𝑛 − 2𝑙)!
𝑥𝑛−2𝑙

𝑛/2

𝑙=0

 

Where 

                                                        [
𝑛

2
] = {

𝑛

2
, 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

(𝑛−1)

2
, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑
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Definition: Legendre polynomial of second kind is denoted and defined 

by 

𝑄𝑛(𝑥) =
𝑛!

1.3.5 … (2𝑛 + 1)
[𝑥−𝑛−1 −

{𝑛 + 1}{𝑛 + 2}

2{2𝑛 + 3}
𝑥−𝑛−3

+
{𝑛 + 1}{𝑛 + 2}{𝑛 + 3}{𝑛 + 4}

2.4{2𝑛 + 3}{2𝑛 + 5}
𝑥−𝑛−5 + ⋯ ] 

Putting 𝑛 = 0,1,2,3,4 … … in (1), we obtain 

𝑃0(𝑥) =
1

0!
𝑥0 = 1,  

𝑃1(𝑥) =
1

1!
𝑥1 = 𝑥,  

𝑃2(𝑥) =
1.3

2!
[𝑥2 −

2.1

2.3
𝑥0] =

1

2
(3𝑥2 − 1),  

𝑃3(𝑥) =
1

2
(5𝑥2 − 3𝑥), 

 𝑃4(𝑥) =
1

8
(35𝑥4 − 30𝑥2 + 3)  

  and  

𝑃5(𝑥) =
1

8
(63𝑥4 − 70𝑥2 + 15𝑥) 

And so on 

EXAMPLE: Express 2 − 3𝑥 + 4𝑥2  in terms of Legendre polynomial. 

SOLUTION:  ⇒            1 = 𝑃0(𝑥), 𝑥 = 𝑃1(𝑥), (3𝑥2 − 1) 2⁄ = 𝑃2(𝑥) 

 ⇒             Now 2 − 3𝑥 + 4𝑥2 = 2𝑃0(𝑥) − 3𝑃1(𝑥) + (4/3)[2𝑃2(𝑥) + 1],   
by (1)  

                                                   = 2𝑃0(𝑥) − 3𝑃1(𝑥) + (8/3)𝑃2(𝑥) +
(4/3)𝑃0(𝑥) 

                                                 = (10/3)𝑃0(𝑥) − 3𝑃1(𝑥) + (8/3)𝑃0(𝑥). 

12.8 GENERATING FUNCTION FOR LEGENDRE 

POLYNOMIALS:- 

THEOREM: To show that (1 − 2𝑥𝑧 + 𝑧2)−1/2 = ∑ 𝑧𝑛∞
𝑛=0 𝑃𝑛(𝑥), |𝑥| ≤

1, |𝑧| ≤ 1 

𝑂𝑅 

To show that 𝑃𝑛(𝑥) is the coefficient of 𝑧𝑛 in the expansion of (1 − 2𝑥𝑧 +
𝑧2)−1/2 in ascending powers of z. 

Note: (𝟏 − 𝟐𝒙𝒛 + 𝒛𝟐)−𝟏/𝟐 is called the generating function of Legendre 

polynomial𝑷𝒏(𝒙). 

PROOF: Since |𝑥| ≤ 1, |𝑧| ≤ 1, we obtain  

⇒                        (1 − 2𝑥𝑧 + 𝑧2)−1/2 =  [1 − ℎ(2𝑥 − 𝑧)]−1/2 
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⇒   = 1 +
1

2
ℎ(2𝑥 − 𝑧) +

1.3

2.4
𝑧2(2𝑥 − 𝑧)2 + ⋯ ⋯

+
1.3 … (2𝑛 − 3)

2.4 … (2𝑛 − 2)
𝑧𝑛−1(2𝑥 − 𝑧)𝑛−1

+
1.3 … (2𝑛 − 1)

2.4 … (2𝑛)
𝑧𝑛(2𝑥 − 𝑧)𝑛

+ ⋯                                                                           (1) 

Now the coefficient of 𝑧𝑛 in  

⇒    
1.3 … (2𝑛 − 1)

2.4 … (2𝑛)
𝑧𝑛(2𝑥 − 𝑧)𝑛 =

1.3.5 … (2𝑛 − 1)

2.4.6 … (2𝑛)
(2𝑥)𝑛

=   
1.3.5 … (2𝑛 − 1)

𝑛!
(𝑥)𝑛     … (2)   

Again the coefficient of 𝑧𝑛 in 

⇒            
1.3 … (2𝑛 − 3)

2.4 … (2𝑛 − 2)
𝑧𝑛−1(2𝑥 − 𝑧)𝑛−1

=
1.3 … (2𝑛 − 3)

2𝑛−1. 1.2.4 … (𝑛 − 1)
𝑧𝑛−1[−(𝑛 − 1)2𝑛−2𝑥𝑛−2]  

⇒                                                     

=  −
1.3 … (2𝑛 − 3)

𝑛!
×

𝑛(𝑛 − 1)

2(2𝑛 − 1)
𝑥𝑛−2                    (3) 

And so on. Using (2), (3),…., we see the coefficient of 𝑧𝑛 in expansion of 

(1 − 2𝑥𝑧 + 𝑧2)−1/2, form (1) is obtained by 

1.3.5 … (2𝑛 − 1)

𝑛!
(𝑥)𝑛 [𝑥𝑛 −

𝑛(𝑛 − 1)

2(2𝑛 − 1)
𝑥𝑛−2

+
𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

2.4(2𝑛 − 1)(2𝑛 − 3)
𝑥𝑛−4 − ⋯ ] = 𝑃𝑛(𝑥) 

Thus we can say that 𝑃1(𝑥), 𝑃2(𝑥), … … … ..  . Will be coefficients of 

𝑧, 𝑧2, …. in the expansion of(1 − 2𝑥𝑧 + 𝑧2)−1/2. Hence we obtain 

(1 − 2𝑥𝑧 + 𝑧2)−1/2 = 1 + 𝑧𝑃1(𝑥) + 𝑧2𝑃2(𝑥) + 𝑧3𝑃3(𝑥) + ⋯ + 𝑧𝑛𝑃𝑛(𝑥) 

(1 − 2𝑥𝑧 + 𝑧2)−1/2 = ∑ 𝑧𝑛𝑃𝑛(𝑥)

∞

𝑛=0

 

SOLVED EXAMPLES 
EXAMPLE1: Prove that: 1 +

1

2
𝑃1(𝑐𝑜𝑠𝜃) +

1

3
𝑃2(𝑐𝑜𝑠𝜃) + ⋯ =

log [(1 + 𝑠𝑖𝑛
𝜃

2
) 𝑠𝑖𝑛

𝜃

2
⁄ ] 

SOLUTION: From generating function, we obtain 

∑ 𝑧𝑛𝑃𝑛(𝑥)

∞

𝑛=0

= (1 − 2𝑥𝑧 + 𝑧2)−1/2                  … (1) 

Integrating (1) w.r.t. 𝑧 from 0 𝑡𝑜 1, we have 
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∑ ∫ 𝑧𝑛𝑃𝑛(𝑥)
1

0

∞

𝑛=0

𝑑𝑧 = ∫
𝑑𝑧

√(1 − 2𝑥𝑧 + 𝑧2)

1

0

       … (2) 

Now replacing 𝑥 by 𝑐𝑜𝑠𝜃 on both sides, (2) obtain 

∑ 𝑃𝑛(𝑐𝑜𝑠𝜃) ∫ 𝑧𝑛
1

0

𝑑𝑧

∞

𝑛=0

= ∫
𝑑𝑧

√(1 − 2𝑐𝑜𝑠𝜃𝑧 + 𝑧2)

1

0

 

∑ 𝑃𝑛(𝑐𝑜𝑠𝜃) [
𝑧𝑛+1

𝑛 + 1
]

0

1∞

𝑛=0

= ∫
𝑑𝑧

√(𝑧 − 𝑐𝑜𝑠𝜃)2 + 𝑠𝑖𝑛2𝜃

1

0

 

∑
𝑃𝑛(𝑐𝑜𝑠𝜃)

𝑛 + 1

∞

𝑛=0

= [log(𝑧 − 𝑐𝑜𝑠𝜃) + √(𝑧 − 𝑐𝑜𝑠𝜃)2 + 𝑠𝑖𝑛2𝜃]
0

1

 

= log {(1 − 𝑐𝑜𝑠𝜃) + √(1 − 𝑐𝑜𝑠𝜃)2 + 𝑠𝑖𝑛2𝜃} − log(1 − 𝑐𝑜𝑠𝜃) 

= log
(1 − 𝑐𝑜𝑠𝜃) + √2√(1 − 𝑐𝑜𝑠𝜃)

1 − 𝑐𝑜𝑠𝜃
 

= log
√(1 − 𝑐𝑜𝑠𝜃)√(1 − 𝑐𝑜𝑠𝜃) + √2√(1 − 𝑐𝑜𝑠𝜃)

√(1 − 𝑐𝑜𝑠𝜃)√(1 − 𝑐𝑜𝑠𝜃)

= log
√(1 − 𝑐𝑜𝑠𝜃) + √2

√(1 − 𝑐𝑜𝑠𝜃)
 

= log
√(2𝑠𝑖𝑛2 1

2 𝜃) + √2

√(2𝑠𝑖𝑛2 1
2 𝜃)

= log
1 + 𝑠𝑖𝑛

1
2 𝜃

𝑠𝑖𝑛
1
2 𝜃

 

=
𝑃0(𝑐𝑜𝑠𝜃)

1
+

1

2
𝑃1(𝑐𝑜𝑠𝜃) +

1

3
𝑃2(𝑐𝑜𝑠𝜃)+. . . = log

1 + 𝑠𝑖𝑛
1
2 𝜃

𝑠𝑖𝑛
1
2 𝜃

 

𝑜𝑟   1 +
1

2
𝑃1(𝑐𝑜𝑠𝜃) +

1

3
𝑃2(𝑐𝑜𝑠𝜃)+. . .

= log
1 + 𝑠𝑖𝑛

1
2 𝜃

𝑠𝑖𝑛
1
2 𝜃

.                 [∵ 𝑃0(𝑐𝑜𝑠𝜃) = 1] 

EXAMPLE2: Prove that
1+𝑧

𝑧√1−2𝑥𝑧+𝑧2
−

1

𝑧
= ∑ (𝑃𝑛 + 𝑃𝑛+1)𝑧𝑛∞

𝑛=0 . 

SOLUTION:  we have  

∑ 𝑧𝑛𝑃𝑛(𝑥)

∞

𝑛=0

= (1 − 2𝑥𝑧 + 𝑧2)−1/2                 … (1) 

 ∴   We take L.H.S. 

= (1/𝑧)(1 − 2𝑥𝑧 + 𝑧2)−1/2 + (1 − 2𝑥𝑧 + 𝑧2)−1/2 − (1/𝑧) 

=
1

𝑧
∑ 𝑧𝑛𝑃𝑛

∞

𝑛=0

+ ∑ 𝑧𝑛𝑃𝑛 −

∞

𝑛=0

1

𝑧
, 𝑏𝑦 (1)            … (2) 
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But     

∑ 𝑧𝑛𝑃𝑛

∞

𝑛=0

= 𝑃0 + 𝑧𝑃1 + 𝑧2𝑃2 + ⋯ + 𝑧2𝑃𝑛 + 𝑧𝑛+1𝑃𝑛+1 

= 1 + 𝑧(𝑃1 + 𝑧𝑃2 + ⋯ + 𝑧𝑛𝑃𝑛+1 + ⋯ )            (∵ 𝑃0 = 1) 

= 1 + ∑ 𝑧𝑛𝑃𝑛+1

∞

𝑛=0

 

Using above equation in (2), we obtain 

=
1

𝑧
[1 + ∑ 𝑧𝑛𝑃𝑛+1

∞

𝑛=0

] + ∑ 𝑧𝑛𝑃𝑛 −

∞

𝑛=0

1

𝑧
= ∑ 𝑧𝑛𝑃𝑛+1

∞

𝑛=0

+ 1 + ∑ 𝑧𝑛𝑃𝑛

∞

𝑛=0

= ∑ 𝑧𝑛

∞

𝑛=0

(𝑃𝑛 + 𝑃𝑛+1) = 𝑅. 𝐻. 𝑆. 

EXAMPLE3: Prove that 

1 − 𝑧2

(1 − 2𝑥𝑧 + 𝑧2)−1/2
= ∑(2𝑛 + 1)𝑧𝑛𝑃𝑛

∞

𝑛=0

 

SOLUTION: We have    

∑ 𝑧𝑛𝑃𝑛

∞

𝑛=0

= (1 − 2𝑥𝑧 + 𝑧2)−1/2       … (1) 

Differentiating w.r.t. 𝑧 we obtain 

−
𝟏

𝟐
(1 − 2𝑥𝑧 + 𝑧2)−3/2(−2𝑥 + 2𝑧) = ∑ 𝑛𝑧𝑛−1𝑃𝑛

∞

𝑛=0

 

(1 − 2𝑥𝑧 + 𝑧2)−3/2(−𝑥 + 𝑧) = ∑ 𝑛𝑧𝑛−1𝑃𝑛

∞

𝑛=0

    … (2) 

Multiplying both sides of (1) by 2𝑧, we have 

2𝑧(1 − 2𝑥𝑧 + 𝑧2)−3/2(−𝑥 + 𝑧) = 2 ∑ 𝑛𝑧𝑛𝑃𝑛

∞

𝑛=0

 

Adding (1) and (3), we get 

1

(1 − 2𝑥𝑧 + 𝑧2)1/2
+

2𝑧(𝑥 − 𝑧)

(1 − 2𝑥𝑧 + 𝑧2)3/2
= ∑ 𝑧𝑛𝑃𝑛

∞

𝑛=0

+ ∑ 2𝑛𝑧𝑛𝑃𝑛

∞

𝑛=0

 

1 − 2𝑥𝑧 + 𝑧2 + 2𝑧(𝑥 − 𝑧)

(1 − 2𝑥𝑧 + 𝑧2)3/2
= ∑(2𝑛 + 1)𝑧𝑛𝑃𝑛

∞

𝑛=0

. 

 

12.9 ORTHOGONAL PROPERTIES OF 

LEGENDRE POLYNOMIALS:- 

Prove that  
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i.  ∫ 𝑃𝑚(𝑥)
1

−1
𝑃𝑛(𝑥)𝑑𝑥 = 0     𝑖𝑓 𝑚 ≠ 𝑛. 

ii. ∫ [𝑃𝑛(𝑥)]21

−1
𝑑𝑥 =

2

2𝑛+1
       𝑜𝑟    ∫ 𝑃𝑚(𝑥)

1

−1
𝑃𝑛(𝑥)𝑑𝑥 =

{
0  𝑖𝑓 𝑚 ≠ 𝑛
2

(2𝑛+1)
𝑖𝑓 𝑚 = 𝑛

     𝑜𝑟 ∫ 𝑃𝑚(𝑥)
1

−1
𝑃𝑛(𝑥)𝑑𝑥 =

2

(2𝑛+1)
𝛿𝑚𝑛,

𝑤ℎ𝑒𝑟𝑒 𝛿𝑚𝑛 = {
0  𝑖𝑓 𝑚 ≠ 𝑛
1  𝑖𝑓 𝑚 = 𝑛

   

 Where 𝛿𝑚𝑛 is called Kronecker delta. 

Proof: 

i. When 𝒎 ≠ 𝒏. 

The Legendre equation is  
(1 − 𝑥2)𝑃′′𝑚 − 2𝑥𝑃′𝑚 + 𝑚(𝑚 + 1)𝑃𝑚 = 0       … (1) 

And                                      
(1 − 𝑥2)𝑃′′𝑛 − 2𝑥𝑃′𝑛 + 𝑛(𝑛 + 1)𝑃𝑛 = 0          … . (2) 

Multiplying (1) by 𝑃𝑛 and (2) by 𝑃𝑚 and the subtracting 
(1 − 𝑥2)(𝑃𝑛𝑃′′𝑚 − 𝑃𝑚𝑃′′𝑛) − 2𝑥(𝑃𝑛𝑃′𝑚 − 𝑃𝑚𝑃′𝑛)

+ [𝑚(𝑚 + 1) − 𝑛(𝑛 + 1)]𝑃𝑚𝑃𝑛 = 0 

(1 − 𝑥2)
𝑑

𝑑𝑥
(𝑃𝑛𝑃′𝑚 − 𝑃𝑚𝑃′𝑛) − 2𝑥(𝑃𝑛𝑃′𝑚 − 𝑃𝑚𝑃′𝑛)

= (𝑛2 − 𝑚2 + 𝑛 − 𝑚)𝑃𝑚𝑃𝑛 
𝑑

𝑑𝑥
(𝑃𝑛𝑃′𝑚 − 𝑃𝑚𝑃′𝑛)(1 − 𝑥2) = (𝑛 − 𝑚)(𝑛 + 𝑚 + 1)𝑃𝑚𝑃𝑛 

Integrating both sides w.r.t. 𝑥 from(−1 𝑡𝑜 1), we obtain 

(𝑛 − 𝑚)(𝑛 + 𝑚 + 1) ∫ 𝑃𝑚(𝑥)
1

−1

𝑃𝑛(𝑥) = [(1 − 𝑥2)(𝑃𝑛𝑃′𝑚 − 𝑃𝑚𝑃′𝑛)]𝑥=−1
𝑥=1  

 

∫ 𝑃𝑚(𝑥)
1

−1

𝑃𝑛(𝑥) = 0,    𝑎𝑠 𝑚 ≠ 𝑛             … (3) 

ii. When 𝒎 = 𝒏, we take the form 

∫ [𝑃𝑛(𝑥)]2
1

−1

𝑑𝑥 = 2 (2𝑛 + 1)⁄  

From the generating function 

∑ 𝑧𝑛𝑃𝑛

∞

𝑛=0

= (1 − 2𝑥𝑧 + 𝑧2)−1/2           … (4) 

Also 

∑ 𝑧𝑚𝑃𝑚

∞

𝑛=0

= (1 − 2𝑥𝑧 + 𝑧2)−1/2          … (5) 

Multiplying the corresponding sides of (4) and (5), we obtain 

(1 − 2𝑥𝑧 + 𝑧2)−1 = ∑ ∑ 𝑃𝑚(𝑥)𝑃𝑛(𝑥)𝑧𝑚+𝑛

∞

𝑛=0

∞

𝑚=0

 

Integrating both sides of above equation w.r.t. 𝑥, we have 
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∫ (1 − 2𝑥𝑧 + 𝑧2)−1
1

−1

𝑑𝑥 = ∑ ∑ {∫ 𝑃𝑚(𝑥)𝑃𝑛(𝑥)
1

−1

𝑑𝑥}

∞

𝑛=0

∞

𝑚=0

𝑧𝑚+𝑛 

Use of (3), in above equation reduces to 

∑ [∫ [𝑃𝑛(𝑥)]2
1

−1

𝑑𝑥]

∞

𝑛=0

𝑧2𝑛 = ∫
𝑑𝑥

1 + 𝑧2 − 2𝑥𝑧

1

−1

 

= [
log(1 + 𝑧2 − 2𝑥𝑧)

−2𝑧
]

−1

1

= −
1

2𝑧
[log(1 − 𝑧)2 − log(1 + 𝑧)2] 

= −
1

2𝑧
[2 log(1 − 𝑧) − 2 log(1 + 𝑧)] = −

1

𝑧
[log(1 − 𝑧) − log(1 + 𝑧)] 

= −
1

𝑧
[(𝑧 −

𝑧2

2
+

𝑧3

3
− ⋯ ⋯ ) − (−𝑧 −

𝑧2

2
−

𝑧3

3
− ⋯ ⋯ )]

=
2

𝑧
(𝑧 −

𝑧3

3
+

𝑧5

5
− ⋯ ⋯ ) =

2

𝑧
∑

𝑧2𝑛+1

2𝑛 + 1

∞

𝑛=0

 

 

∑ [∫ [𝑃𝑛(𝑥)]2
1

−1

𝑑𝑥]

∞

𝑛=0

= ∑
2

2𝑛 + 1

∞

𝑛=0

𝑧2𝑛 

Equating coefficients of 𝑧2𝑛 from both sides, (7) gives 

∫ [𝑃𝑛(𝑥)]2
1

−1

𝑑𝑥 = 2 (2𝑛 + 1)⁄ . 

12.10 RECURRENCE RELATIONS FOR 

LEGENDRE POLYNOMIALS:- 

    

i. 𝒏𝑷𝒏 = (𝟐𝒏 − 𝟏)𝒙𝑷𝒏−𝟏 − (𝒏 − 𝟏)𝑷𝒏−𝟐,   𝒏 ≥ 𝟐          
                                                 𝒐𝒓     

 (𝒏 + 𝟏)𝑷𝒏+𝟏 = (𝟐𝒏 + 𝟏)𝒙𝑷𝒙 − 𝒏𝑷𝒏−𝟏, 𝒏 ≥ 𝟏 

Proof: We know that the generating function, we get 

∑ 𝑧𝑛𝑃𝑛

∞

𝑛=0

= (1 − 2𝑥𝑧 + 𝑧2)−1/2           … (1) 

Differentiating both sides of (1) w.r.t.𝑧, we obtain 

−
1

2
(1 − 2𝑥𝑧 + 𝑧2)−3/2(−2𝑥 + 2𝑧) = ∑ 𝑛

∞

𝑛=0

𝑧𝑛−1𝑃𝑛 

(1 − 2𝑥𝑧 + 𝑧2)−3/2(𝑥 − 𝑧) = ∑ 𝑛

∞

𝑛=0

𝑧𝑛−1𝑃𝑛 

Multiplying both sides by 1 − 2𝑥𝑧 + 𝑧2, (2) gives 
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(1 − 2𝑥𝑧 + 𝑧2)−1/2(𝑥 − 𝑧) = (1 − 2𝑥𝑧 + 𝑧2) ∑ 𝑛

∞

𝑛=0

𝑧𝑛−1𝑃𝑛 

(𝑥 − 𝑧) ∑ 𝑧𝑛𝑃𝑛

∞

𝑛=0

= (1 − 2𝑥𝑧 + 𝑧2) ∑ 𝑛

∞

𝑛=0

𝑧𝑛−1𝑃𝑛 ,    𝑏𝑦 (1) 

 

(𝑥 ∑ 𝑧𝑛𝑃𝑛

∞

𝑛=0

− 𝑧 ∑ 𝑧𝑛𝑃𝑛

∞

𝑛=0

(𝑥))

= (∑ 𝑛

∞

𝑛=0

𝑧𝑛−1𝑃𝑛 − 2𝑥 ∑ 𝑛

∞

𝑛=0

𝑧𝑛𝑃𝑛 + ∑ 𝑛

∞

𝑛=0

𝑧𝑛+1𝑃𝑛) 

Equating coefficients of 𝑧𝑛 from both sides, we obtain 

𝑥𝑃𝑛 − 𝑃𝑛−1 = (𝑛 + 1)𝑃𝑛+1 − 2𝑥𝑛𝑃𝑛 + (𝑛 − 1)𝑃𝑛−1 
(𝑛 + 1)𝑃𝑛+1 = (2𝑛 + 1)𝑥𝑃𝑛 − 𝑛𝑃𝑛−1                  … (3) 

𝑥𝑃𝑛 =
𝑛 + 1

2𝑛 + 1
𝑃𝑛+1 +

𝑛

2𝑛 + 1
𝑃𝑛−1 

Replacing 𝑛 by 𝑛 − 1 in (3), we obtain 

𝑛𝑃𝑛 = (2𝑛 − 1)𝑥𝑃𝑛−1 − (𝑛 − 1)𝑃𝑛−2 
 

ii. 𝒏𝑷𝒏 = 𝒙𝑷′𝒏 − 𝑷′𝒏−𝟏 

Proof: From the generating function 

∑ 𝑧𝑛𝑃𝑛

∞

𝑛=0

= (1 − 2𝑥𝑧 + 𝑧2)−1/2           … (1) 

Differentiating both sides of (1) w.r.t. 𝑧, we have 

−
1

2
(1 − 2𝑥𝑧 + 𝑧2)−3/2(−2𝑥 + 2𝑧) = ∑ 𝑛

∞

𝑛=0

𝑧𝑛−1𝑃𝑛 

(1 − 2𝑥𝑧 + 𝑧2)−3/2(−𝑥 + 𝑧) = ∑ 𝑛

∞

𝑛=0

𝑧𝑛−1𝑃𝑛 

Again , differentiating both sides of (1) w.r.t. 𝑥, we get 

(1 − 2𝑥𝑧 + 𝑧2)−3/2(𝑧) = ∑ 𝑧𝑛

∞

𝑛=0

𝑃′𝑛 

𝑧(1 − 2𝑥𝑧 + 𝑧2)−3/2(−𝑥 + 𝑧) = (−𝑥 + 𝑧) ∑ 𝑧𝑛

∞

𝑛=0

𝑃′𝑛 

∑ 𝑛

∞

𝑛=0

𝑧𝑛−1𝑃𝑛 = (−𝑥 + 𝑧) ∑ 𝑧𝑛

∞

𝑛=0

𝑃′𝑛 , 𝑏𝑦 (2) 

∑ 𝑛

∞

𝑛=0

𝑧𝑛−1𝑃𝑛 = (−𝑥 ∑ 𝑧𝑛

∞

𝑛=0

𝑃′𝑛 + 𝑧 ∑ 𝑧𝑛

∞

𝑛=0

𝑃′𝑛) 

Equating coefficient of 𝑧𝑛 on both sides, we obtain 
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𝒏𝑷𝒏 = 𝒙𝑷′𝒏 − 𝑷′𝒏−𝟏 

iii. (𝟐𝒏 + 𝟏)𝑷𝒏 = 𝑷′𝒏 − 𝑷′𝒏−𝟏 

 

Proof: From recurrence relation (i), we obtain 

(2𝑛 + 1)𝑥𝑃𝑛 = (𝑛 + 1)𝑃𝑛+1 + 𝑛𝑃𝑛−1 

Differentiating w.r.t. 𝑥, we get 

(2𝑛 + 1)𝑥𝑃′𝑛 + (2𝑛 + 1)𝑃𝑛 = (𝑛 + 1)𝑃′𝑛+1 + 𝑛𝑃′𝑛−1 

𝑜𝑟 
(2𝑛 + 1)(𝑛𝑃𝑛 + 𝑥𝑃′𝑛−1) + (2𝑛 + 1)𝑃𝑛 = (𝑛 + 1)𝑃′𝑛+1 − 𝑛𝑃′𝑛−1 

[∵    from recurrence(ii), 𝑥𝑃′𝑛 = 𝑛𝑃𝑛 + 𝑃′𝑛−1] 

(2𝑛 + 1)𝑃𝑛(𝑛 + 1) = (𝑛 + 1)𝑃′𝑛+1 − (𝑛 + 1)𝑃′𝑛−1 

                                                 (2𝑛 + 1)𝑃𝑛 = 𝑃′𝑛+1 − 𝑃′𝑛−1               … (1) 

Replacing 𝑛 by 𝑛 − 1 in (1), we obtain 
(2𝑛 − 1)𝑃𝑛−1 = 𝑃′𝑛 − 𝑃′𝑛−2                

𝑑𝑃𝑛(𝑥)

𝑑𝑥
=

𝑑𝑃𝑛−2(𝑥)

𝑑𝑥
+ (2𝑛 + 1)𝑃𝑛−1(𝑥)       … (2) 

The equation (1) and (2) are the required form of the results. 

iv. (𝒏 + 𝟏)𝑷𝒏 = 𝑷′𝒏+𝟏 − 𝒙𝑷′𝒏        𝒐𝒓             𝑷′𝒏 − 𝒙 𝑷′𝒏−𝟏 =
𝒏𝑷𝒏−𝟏    

Proof: From recurrence relation (ii) and (iii), we obtain 

𝑛𝑃𝑛 = 𝑥𝑃′𝑛 − 𝑃′𝑛−1 
(2𝑛 + 1)𝑃𝑛 = 𝑃′𝑛+1 − 𝑃′𝑛−1 

Subtracting above equations, we have 

                             (2𝑛 + 1)𝑃𝑛 − 𝑛𝑃𝑛 = 𝑃′𝑛+1 − 𝑃′𝑛−1 − 𝑥𝑃′𝑛 + 𝑃′𝑛−1 

2𝑛𝑃𝑛 + 𝑃𝑛 − 𝑛𝑃𝑛 = 𝑃′𝑛+1 − 𝑃′𝑛−1 − 𝑥𝑃′𝑛 + 𝑃′𝑛−1 
(𝒏 + 𝟏)𝑷𝒏 = 𝑷′𝒏+𝟏 − 𝒙𝑷′𝒏 

v. (1 − 𝑥2)𝑃′
𝑛 = 𝑛(𝑃𝑛−1 − 𝑥𝑃𝑛)           𝑜𝑟               (1 − 𝑥2)𝑃′

𝑛 =
= 𝑛𝑥𝑃𝑛 − 𝑛𝑃𝑛−1 

Proof: From recurrence relation (ii) and (iv), we obtain 

𝑛𝑃𝑛 = 𝑥𝑃′𝑛 − 𝑃′𝑛−1 
(𝑛 + 1)𝑃𝑛 = 𝑃′𝑛+1 − 𝑥𝑃′𝑛 

Replacing 𝑛 by 𝑛 − 1 in above equation,  𝑛𝑃𝑛−1 = 𝑃′𝑛 −
𝑥𝑃′𝑛−1               … (1) 

Multiplying both sides by  , 𝑥𝑛𝑃𝑛−1 = 𝑥2𝑃′𝑛 −
𝑥𝑃′𝑛−1                               … (2) 
Subtracting (2) from (1), we get 

𝒏(𝑷𝒏−𝟏 − 𝒙𝑷𝒏) = (𝟏 − 𝒙𝟐)𝑷′𝒏   𝒐𝒓        (𝟏 − 𝒙𝟐)𝑷′𝒏 = 𝒏𝒙𝑷𝒏 − 𝒏𝑷𝒏−𝟏  
 

 

vi. (𝟏 − 𝒙𝟐)𝑷′
𝒏 = (𝒏 + 𝟏)(𝒙𝑷𝒏 − 𝑷𝒏+𝟏) 

Proof:  From recurrence relation (ii) and (v), we obtain 

(2𝑛 + 1)𝑥𝑃𝑛 = (𝑛 + 1)𝑃𝑛+1 + 𝑛𝑃𝑛−1 ⇒ [(𝑛 + 1) + 𝑛] 𝑥𝑃𝑛

= (𝑛 + 1)𝑃𝑛+1 + 𝑛𝑃𝑛−1 

 And                                                  (1 − 𝑥2)𝑃′𝑛 = 𝑛𝑃𝑛−1 − 𝑛𝑥𝑃𝑛 
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Now from above equation 

(1 − 𝑥2)𝑃′𝑛 = (𝑛 + 1)(𝑥𝑃𝑛 − 𝑃𝑛+1) 

12.11 BELTRAMI’S RESULT:- 

Prove that  

(𝟐𝒏 + 𝟏)(𝒙𝟐 − 𝟏)𝑷𝒏
′ = 𝒏(𝒏 + 𝟏)(𝑷𝒏+𝟏 − 𝑷𝒏−𝟏) 

Proof:  

(𝑥2 − 1)𝑃𝑛
′ = 𝑛(𝑃𝑛−1 − 𝑥𝑃𝑛)                                       … (1) 

(𝑥2 − 1)𝑃𝑛
′ = (𝑛 + 1)(𝑃𝑛−1 − 𝑥𝑃𝑛)                           … (2) 

Multiplying (1) 𝑛 by 𝑛 + 1 and (2) by 𝑛 and adding, we obtain 

(𝑛 + 1)(1 − 𝑥2)𝑃𝑛
′ + 𝑛(1 − 𝑥2)𝑃𝑛

′ = (𝑛(𝑛 + 1)𝑃𝑛−1 − 𝑛(𝑛 + 1)𝑃𝑛) 

(2𝑛 + 1)(1 − 𝑥2)𝑃𝑛
′ = 𝑛(𝑛 + 1)(𝑃𝑛−1 − 𝑃𝑛+1) 

(2𝑛 + 1)(𝑥2 − 1)𝑃𝑛
′ = 𝑛(𝑛 + 1)(𝑃𝑛+1 − 𝑃𝑛−1) is required solution. 

12.12 CHRISTOFFEL’S SUMMATION 

FORMULA:- 

Prove that   

∑(𝟐𝒌 + 𝟏)𝑷𝒌(𝒙)

𝒎

𝒌=𝟎

𝑷𝒌(𝒚) =
𝒎 + 𝟏

𝒙 − 𝒚
[𝑷𝒎+𝟏(𝒙)𝑷𝟏(𝒚) − 𝑷𝒎(𝒙)𝑷𝒎+𝟏(𝒚)] 

Deduce that  

∑(2𝑘 + 1)𝑃𝑘(𝑥)

𝑚

𝑘=0

=
𝑚 + 1

𝑥 − 𝑦
[𝑃𝑚+1(𝑥) − 𝑃𝑚(𝑥)] 

Proof: From recurrence relation I, we get 

(2𝑘 + 1)𝑥𝑃𝑘(𝑥) = (𝑘 + 1)𝑃𝑘+1(𝑥) + 𝑘𝑃𝑘−1(𝑥)       … (1) 
And                                 

(2𝑘 + 1)𝑦𝑃𝑘(𝑦) = (𝑘 + 1)𝑃𝑘+1(𝑦) + 𝑘𝑃𝑘−1(𝑦)     … (2) 

Multiplying (1) by 𝑃𝑘(𝑦) and (2) by 𝑃𝑘(𝑥) and then subtracting, we have 
(2𝑘 + 1)(𝑥 − 𝑦)𝑃𝑘(𝑥)𝑃𝑘(𝑦)

= (𝑘 + 1)[𝑃𝑘+1(𝑥)𝑃𝑘(𝑦) − 𝑃𝑘+1(𝑦)𝑃𝑘(𝑥)]
− 𝑘[𝑃𝑘−1(𝑥)𝑃𝑘(𝑦) − 𝑃𝑘−1(𝑦)𝑃𝑘(𝑥)] 

Replacing 𝑘 by 0, … … … .2,3, … … . . 𝑚 − 1, 𝑚 successfully in (3) and 

adding equation, we obtain 

(𝑥 − 𝑦) ∑(2𝑘 + 1)

𝑚

𝑘=0

𝑃𝑘(𝑥)𝑃𝑘(𝑦)

= (𝑚 + 1)[𝑃𝑚+1(𝑥)𝑃𝑚(𝑦) − 𝑃𝑚−1(𝑦)𝑃𝑚(𝑥)] 

∑(2𝑘 + 1)

𝑚

𝑘=0

𝑃𝑘(𝑥)𝑃𝑘(𝑦) =
𝑚 + 1

𝑥 − 𝑦
[𝑃𝑚+1(𝑥)𝑃1(𝑦) − 𝑃𝑚(𝑥)𝑃𝑚+1(𝑦)] 

To show that 

𝑷′𝒏 = (𝟐𝒏 − 𝟏)𝑷𝒏−𝟏 − (𝟐𝒏 − 𝟏)𝑷𝒏−𝟑 + (𝟐𝒏 − 𝟗)𝑷𝒏−𝟓 + ⋯ ⋯ ⋯, the 

last terms of the series being 3𝑷𝟏 or 𝑷𝟎 according as 𝒏 is even or odd. 
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𝑷′𝒏(𝒙) = ∑ (𝟐𝒏 − 𝟒𝒓 − 𝟏)𝑷𝒏−𝟐𝒓−𝟏(𝒙)

[
𝟏
𝟐

(𝒏−𝟏)]

𝒓=𝟎

, 

Where 

[
𝟏

𝟐
(𝒏 − 𝟏)] = {

(𝒏 − 𝟏) 𝟐⁄ , 𝒊𝒇 𝒏 𝒊𝒔 𝒆𝒗𝒆𝒏
(𝒏 − 𝟐) 𝟐⁄ , 𝒊𝒇 𝒏 𝒊𝒔 𝒐𝒅𝒅

 

Proof: Replacing 𝑛 by 𝑛 − 1 in recurrence relation III, we obtain 

𝑃𝑛
′ = (2𝑛 − 1)𝑃𝑛−1 + 𝑃′𝑛−2                    … (1) 

CaseI:  Let 𝒏 be even, Replacing 𝒏 by 𝒏, 𝒏 − 𝟐, 𝒏 − 𝟒, … 𝟒, 𝟐 

successively in (1) and using𝑷𝟎 = 𝟏 and 𝑷𝟎
′ = 𝟎, we have 

𝑃′𝑛 = (2𝑛 − 1)𝑃𝑛−1 + 𝑃′𝑛−2 
𝑃′𝑛−2 = (2𝑛 − 5)𝑃𝑛−3 + 𝑃′𝑛−4 
𝑃′𝑛−1 = (2𝑛 − 9)𝑃𝑛−5 + 𝑃′𝑛−6 

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 

𝑃′4 = 7𝑃3 + 𝑃′2 
𝑃′2 = 3𝑃1 + 𝑃′0 

Adding these and simplifying, we have 
𝑃′𝑛 = (2𝑛 − 1)𝑃𝑛−1 + (2𝑛 − 5)𝑃𝑛−3 + ⋯ ⋯ ⋯ + 3𝑃1      … (2) 

CaseII: Let 𝒏 is odd. Replacing 𝒏 by 𝒏, 𝒏 − 𝟐, 𝒏 − 𝟒, … 𝟓, 𝟑 

successively in (1) and using𝑷𝟏(𝒙) = 𝒙, and 𝑷𝟎 = 𝟏 so that𝑷𝟎 = 𝟏 =
𝑷𝟏

′ , we have 

𝑃′𝑛 = (2𝑛 − 1)𝑃𝑛−1 + 𝑃′𝑛−2 
𝑃′𝑛−2 = (2𝑛 − 5)𝑃𝑛−3 + 𝑃′𝑛−4 
𝑃′𝑛−1 = (2𝑛 − 9)𝑃𝑛−5 + 𝑃′𝑛−6 

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 

𝑃′4 = 9𝑃3 + 𝑃′3 
𝑃′2 = 5𝑃2 + 𝑃′1 = 5𝑃2 + 𝑃0 

Adding these and simplifying, we have 
𝑃′𝑛 = (2𝑛 − 1)𝑃𝑛−1 + (2𝑛 − 5)𝑃𝑛−3 + ⋯ ⋯ ⋯ + 5𝑃1 + 𝑃0    … (4) 

Comparing (2) and (3), we get 

𝑃′𝑛(𝑥) = ∑ (2𝑛 − 4𝑟 − 1)𝑃𝑛−2𝑟−1(𝑥)

[
1
2

(𝑛−1)]

𝑟=0

 

12.13 RODRIGUE’S FORMULA:- 

To show that  

𝑃𝑛(𝑥) =
1

2𝑛𝑛!

𝑑𝑛

𝑑𝑥𝑛
 

Proof: By the definition of Legendre polynomials, we obtain 

𝑃𝑛(𝑥) = ∑ (−1)𝑟
(2𝑛 − 2𝑟)! 𝑥𝑛−2𝑟

2𝑛𝑟! (𝑛 − 𝑟)! (𝑛 − 2𝑟)!

[𝑛/2]

𝑛=0

             … (1) 
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Where                                                   [𝑛/2] = {

𝑛

2
, 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

(𝑛−1)

2
, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

 

Now, binomial theorem, we have 

(𝑥2 − 1)𝑛 = ∑ 𝑛𝐶𝑟
(𝑥2)𝑛−𝑟(−1)𝑟

𝑛

𝑟=0

= ∑ 𝑛𝐶𝑟
𝑥2𝑛−2𝑟(−1)𝑟

𝑛

𝑟=0

 

 ∴                     
1

2𝑛𝑛!

𝑑𝑛

𝑑𝑥𝑛
(𝑥2 − 1)𝑛 =

1

2𝑛𝑛!
∑ 𝑛𝐶𝑟

(−1)𝑟𝑛
𝑟=0

𝑑𝑛

𝑑𝑥𝑛 𝑥2𝑛−2𝑟  

But  
𝑑𝑛

𝑑𝑥𝑛 𝑥𝑚 = 0 if 𝑚 < 𝑛;  
𝑑𝑛

𝑑𝑥𝑛 𝑥𝑚 =
𝑚!

(𝑚−𝑛)!
𝑥𝑚−𝑛 , if 𝑚 ≥ 𝑛 

∴          
𝑑𝑛

𝑑𝑥𝑛 𝑥2𝑛−2𝑟 = 0, if 2𝑛 − 2𝑟 < 𝑛 𝑖. 𝑒. 𝑟 >
𝑛

2
.       

Making use of above equation, we see that we must replace 

∑ 𝑏𝑦 ∑ 𝑖𝑓 
𝑛/2
𝑟=0 𝑛𝑛

𝑟=0  is even and by ∑ 𝑖𝑓 
(𝑛−1)/2
𝑟=0 𝑛 is odd. Hence 

1

2𝑛𝑛!

𝑑𝑛

𝑑𝑥𝑛
(𝑥2 − 1)𝑛 =

1

2𝑛𝑛!
∑ 𝑛𝐶𝑟

(−1)𝑟
𝑑𝑛

𝑑𝑥𝑛
𝑥2𝑛−2𝑟

𝑛/2

𝑟=0

 

=
1

2𝑛𝑛!
∑ 𝑛𝐶𝑟

(−1)𝑟
(2𝑛 − 2𝑟)!

(2𝑛 − 2𝑟 − 𝑛)!

𝑛/2

𝑟=0

𝑥2𝑛−2𝑟−𝑛  

= ∑(−1)𝑟
𝑛!

𝑟! (𝑛 − 𝑟)!

1

2𝑛𝑛!

(2𝑛 − 2𝑟)!

(𝑛 − 2𝑟)!

𝑛/2

𝑟=0

𝑥2−2𝑟 = 𝑃𝑛(𝑥) 

12.14 LAPLACE’S DEFINITE INTEGRALS 

FOR 𝑷𝒏(𝒙):- 

(I) Laplace’s first integral 𝑷𝒏(𝒙).  when is +𝒗𝒆 integer, then 

𝑷𝒏(𝒙) =
𝟏

𝝅
∫ [𝒙 ± √(𝒙𝟐 − 𝟏)𝒄𝒐𝒔𝝓]

𝒏𝝅

𝟎

𝒅𝝓 

Proof: We  Know that 

∫
𝑑𝜙

𝑎 ± 𝑏𝑐𝑜𝑠𝜙

𝜋

0

=
𝜋

√(𝑎2 − 𝑏2)
 𝑤ℎ𝑒𝑛 𝑎2 > 𝑏2 .    … (1) 

Let 𝑎 = 1 − 𝑧𝑥   and      𝑏 = 𝑧√𝑥2 − 1 

 ∴                𝑎2 − 𝑏2 = (1 − 𝑧𝑥)2 − 𝑧2(𝑥2 − 1) = 1 − 2𝑧𝑥 + 𝑧2 

Using these values of 𝑎, 𝑏 and 𝑎2 − 𝑏2,in (1) 

𝜋(1 − 2𝑧𝑥 + 𝑧2)−1/2 = ∫ [1 − 𝑧𝑥 ± 𝑧√(𝑥2 − 1)𝑐𝑜𝑠𝜙]
−1𝜋

0

𝑑𝜙 

𝜋 ∑ 𝑧𝑛𝑃𝑛(𝑥)

∞

𝑛=0

= ∫ (1 − 𝑧𝑡)−1
𝜋

0

𝑑𝜙  𝑖𝑓  𝑡 = 𝑥 ± √(𝑥2 − 1) 𝑐𝑜𝑠𝜙 
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= ∫ (1 + 𝑧𝑡 + 𝑧2𝑡2 + ⋯ ⋯ ⋯ )
𝜋

0

𝑑𝜙 = ∫ ∑(𝑧𝑡)𝑛

∞

𝑛=0

𝑑𝜙
𝜋

0

= ∑ 𝑧𝑛

∞

𝑛=0

∫ 𝑡𝑛𝑑𝜙
𝜋

0

 

 ∴                    

𝜋 ∑ 𝑧𝑛

∞

𝑛=0

𝑃𝑛(𝑥) = ∑ 𝑧𝑛

∞

𝑛=0

∫ [𝑥 ± √(𝑥2 − 1)𝑐𝑜𝑠𝜙]
𝑛

𝑑𝜙
𝜋

0

   … (2) 

From (2),[Equating coefficient of 𝑧𝑛] 

𝜋𝑃𝑛(𝑥) = ∫ [𝑥 ± √(𝑥2 − 1)𝑐𝑜𝑠𝜙]
𝑛

𝑑𝜙
𝜋

0

 

                                                  𝑃𝑛(𝑥) =
1

𝜋
∫ [𝑥 ±

𝜋

0

√(𝑥2 − 1)𝑐𝑜𝑠𝜙]
𝑛

𝑑𝜙    … (3) 

 

 

Deductions: Prove that 

i. 𝑃𝑛(𝑐𝑜𝑠𝜃) =
1

𝜋
∫ [𝑐𝑜𝑠𝜃 ± 𝑖𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙]𝑛𝑑𝜙

𝜋

0
 

ii. 𝑃1(𝑥) =
1

𝜋
∫ [𝑥 ± √(𝑥2 − 1)𝑐𝑜𝑠𝜃]

𝑛

𝑑𝜙
𝜋

0
 

     

Solution: 

i. Suppose 𝑥 = 𝑐𝑜𝑠𝜃,then we obtain 

√(𝑥2 − 1) = √𝑐𝑜𝑠2𝜃 − 1 = √{(−1)(1 − 𝑐𝑜𝑠2𝜃)} = √{𝑖2𝑠𝑖𝑛2𝜃}

= 𝑖𝑠𝑖𝑛𝜃 
From (3), we obtain 

𝑃𝑛(𝑐𝑜𝑠𝜃) =
1

𝜋
∫ [𝑐𝑜𝑠𝜃 ± 𝑖𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙]𝑛𝑑𝜙

𝜋

0

 

ii. Let 𝑛 = 1  in (3) 

𝑃1(𝑥) =
1

𝜋
∫ [𝑥 ± √(𝑥2 − 1)𝑐𝑜𝑠𝜃]

𝑛

𝑑𝜙
𝜋

0

 

 
   (II) Laplace’s second integral 𝑷𝒏(𝒙).  when is +𝒗𝒆 integer, then 

𝑷𝒏(𝒙) =
𝟏

𝝅
∫

𝟏

[𝒙 ± √(𝒙𝟐 − 𝟏)𝒄𝒐𝒔𝝓]
𝒏+𝟏

𝝅

𝟎

𝒅𝝓 

Proof:  From integral calulus,we obtain 

∫
𝑑𝜙

𝑎 ± 𝑏𝑐𝑜𝑠𝜙

𝜋

0

=
𝜋

√(𝑎2 − 𝑏2)
, 𝑤ℎ𝑒𝑟𝑒 𝑎2 > 𝑏2   … (1) 

Suppose 𝑎 = 1 − 𝑧𝑥   and      𝑏 = 𝑧√𝑥2 − 1 

 ∴                𝑎2 − 𝑏2 = (1 − 𝑧𝑥)2 − 𝑧2(𝑥2 − 1) = 1 − 2𝑧𝑥 + 𝑧2 

Using these values of 𝑎, 𝑏 and 𝑎2 − 𝑏2,in (1) 
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              𝜋(1 − 2𝑧𝑥 + 𝑧2)−1/2 = ∫ [1 − 𝑧𝑥 ± 𝑧√(𝑥2 − 1)𝑐𝑜𝑠𝜙]
−1𝜋

0
𝑑𝜙  

              
𝜋

𝑧
(1 − 2𝑥

1

𝑧
+

1

𝑧2)
−1/2

= ∫ [1 − 𝑧 {𝑥 ±
𝜋

0

√(𝑥2 − 1)𝑐𝑜𝑠𝜙}]
−1

𝑑𝜙  … (2) 

 

Let                                                    𝑡 = 𝑥 ±

√(𝑥2 − 1)𝑐𝑜𝑠𝜙                         … (3) 

We know that                             (1 − 2𝑧𝑥 + 𝑧2)−1/2 =
∑ 𝑧𝑛𝑃𝑛(𝑥)∞

𝑛=0          … (4) 

Replacing 𝑧 by 1 𝑧⁄  in (4), we have 

              (1 − 2𝑥
1

𝑧
+

1

𝑧2
)

−1/2

= ∑
1

𝑧𝑛

∞

𝑛=0

𝑃𝑛(𝑥)                    … (5) 

Now using (3) and (5), we get 

𝜋

𝑧
∑

1

𝑧𝑛

∞

𝑛=0

𝑃𝑛(𝑥) = ∫ (−1 + 𝑧𝑡)−1
𝜋

0

𝑑𝜙 = ∫ (𝑧𝑡)−1 (1 −
1

𝑧𝑡
)

−1𝜋

0

𝑑𝜙 

∫
1

𝑧𝑡
∑ (

1

𝑧𝑡
)

𝑛∞

𝑛=0

𝑑𝜙
𝜋

0

= ∑
1

𝑧𝑛+1

∞

𝑛=0

∫
𝑑𝜙

𝑡𝑛+1

𝜋

0

 

 ∴                      ∑
𝜋

𝑧𝑛+1 𝑃𝑛(𝑥)∞
𝑛=0 = ∑

1

𝑧𝑛+1
∞
𝑛=0 ∫

𝑑𝜙

[𝑥±√(𝑥2−1)𝑐𝑜𝑠𝜙]
𝑛+1

𝜋

0
      … (6) 

Equating the coefficients of 1 𝑧𝑛+1⁄  from sides, (6) obtain 

𝜋𝑃𝑛(𝑥) = ∫
𝑑𝜙

[𝑥 ± √(𝑥2 − 1)𝑐𝑜𝑠𝜙]
𝑛+1

𝜋

0

 

     𝑃𝑛(𝑥) =
1

𝜋
∫

𝑑𝜙

[𝑥 ± √(𝑥2 − 1)𝑐𝑜𝑠𝜙]
𝑛+1

𝜋

0

   … (7) 

Deductions: Replacing 𝑛 by – (𝑛 + 1) in (7), we get 

𝑃−(𝑛+1)(𝑥) =
1

𝜋
∫

𝑑𝜙

[𝑥 ± √(𝑥2 − 1)𝑐𝑜𝑠𝜙]
−𝑛

𝜋

0

=
1

𝜋
∫ [𝑥 ± √(𝑥2 − 1)𝑐𝑜𝑠𝜃]

𝑛

𝑑𝜙
𝜋

0

= 𝑃𝑛(𝑥) 

Thus 

𝑃𝑛(𝑥) = 𝑃−(𝑛+1)(𝑥) 

SOLVED EXAMPLES 
EXAMPLE1: Prove that𝑃′𝑛+1 + 𝑃′𝑛 = 𝑃0 + 3𝑃1 + ⋯ + (2𝑛 + 1)𝑃𝑛. 

𝑜𝑟 

∑(2𝑟 + 1)

𝑛

𝑟=0

𝑃𝑟(𝑥) = 𝑃′𝑛+1(𝑥) + 𝑃′𝑛(𝑥) 
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SOLUTION: From recurrence relation III, we obtain 

(2𝑛 + 1)𝑃𝑛 = 𝑃′𝑛+1 − 𝑃′𝑛−1                  … (1) 

Replacing 𝑛 by 1,2, … 𝑛 − 1, 𝑛 successively in (1), we have 

3𝑃1 = 𝑃′2 − 𝑃′0 

5𝑃2 = 𝑃′3 − 𝑃′1 

7𝑃3 = 𝑃′4 − 𝑃′2 

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 
(2𝑛 − 1)𝑃𝑛−1 = 𝑃′𝑛 − 𝑃′𝑛−2 

and                                                 (2𝑛 + 1)𝑃𝑛 = 𝑃′𝑛+1 − 𝑃′𝑛−1  
Adding these terms 

3𝑃1 + 5𝑃2 + 7𝑃3 + ⋯ ⋯ + (2𝑛 + 1)𝑃𝑛

= −𝑃′0 − 𝑃′1 + 𝑃′𝑛 + 𝑃′𝑛+1    … . (2) 
Since  

𝑃0 = 1 and 𝑃1 = 𝑥, we have 𝑃′0 = 0 and 𝑃′1 = 0 = 𝑃0.  

From (2), we obtain 

3𝑃1 + 5𝑃2 + 7𝑃3 + ⋯ ⋯ + (2𝑛 + 1)𝑃𝑛 = −0 − 𝑃0 + 𝑃′𝑛 + 𝑃′𝑛+1    
𝑜𝑟 

3𝑃1 + 5𝑃2 + 7𝑃3 + ⋯ ⋯ + (2𝑛 + 1)𝑃𝑛 = 𝑃′𝑛 + 𝑃′𝑛+1 

𝑜𝑟 

∑(2𝑟 + 1)𝑃𝑟(𝑥)

𝑛

𝑟=0

= 𝑃′𝑛(𝑥) + 𝑃′𝑛+1(𝑥) 

EXAMPLE2: Prove that  

i. 𝑐 + ∫ 𝑃𝑛 𝑑𝑥 = (𝑃𝑛+1 − 𝑃𝑛−1) (2𝑛 + 1)⁄  

ii. ∫ 𝑃𝑛
1

𝑥
𝑑𝑥 = (𝑃𝑛+1 − 𝑃𝑛−1)(2𝑛 + 1) 

Proof: From recurrence relation III, we obtain 

(2𝑛 + 1)𝑃𝑛 = 𝑃′𝑛+1 − 𝑃′𝑛−1  𝑜𝑟   𝑃𝑛 =
1

2𝑛 + 1

𝑑

𝑑𝑥
(𝑃𝑛+1 − 𝑃𝑛−1)  … (1) 

i. Now integrating above equation 

∫ 𝑃𝑛 𝑑𝑥 + 𝑐 = (𝑃𝑛+1 − 𝑃𝑛−1) (2𝑛 + 1)⁄  

ii. Integrating both sides of (1) w.r.t.𝑥 between limits 𝑥 𝑡𝑜 1, we 

get 

 

∫ 𝑃𝑛

1

𝑥

𝑑𝑥 =
1

2𝑛 + 1
[𝑃𝑛+1(𝑥) − 𝑃𝑛−1(𝑥)]𝑥

1 

=
1

2𝑛 + 1
[𝑃𝑛+1(1) − 𝑃𝑛−1(1) − 𝑃𝑛+1(𝑥) + 𝑃𝑛−1(𝑥)] 

[𝑃𝑛−1(𝑥) − 𝑃𝑛+1(𝑥)] (2𝑛 + 1),⁄                                as 𝑃𝑛+1(1) =
𝑃𝑛−1(1) = 1 
 

EXAMPLE3: Using Rodrigue’s formula, find values of 

𝑃 0(𝑥), 𝑃1(𝑥), 𝑃2(𝑥) and 𝑃3(𝑥). 
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SOLUTION: Rodrigue’s formula is given by 

𝑃𝑛(𝑥) =
1

2𝑛 . 𝑛!

𝑑𝑛

𝑑𝑥𝑛
(𝑥2 − 1)𝑛           … (1) 

Putting 𝑛 = 0 in (1), 𝑃0(𝑥) =
1

20 .0!
(𝑥2 − 1)0 = 1 

Putting 𝑛 = 1 in (1), 𝑃1(𝑥) =
1

21 .1!

𝑑

𝑑𝑥
(𝑥2 − 1) =

1

2
2𝑥 = 𝑥 

Putting 𝑛 = 2 in (1), 

  𝑃2(𝑥) =
1

22.2!

𝑑2

𝑑𝑥2
(𝑥2 − 1)2 =

1

8

𝑑

𝑑𝑥
[

𝑑

𝑑𝑥
(𝑥2 − 1)2] =

1

8

𝑑

𝑑𝑥
[2(𝑥2 −

1). 2𝑥] =
1

2

𝑑

𝑑𝑥
(𝑥3 − 𝑥) =

1

2
(3𝑥2 − 1) 

Putting 𝑛 = 3 in (1), we get 

   𝑃3(𝑥) =
1

22 .3!

𝑑3

𝑑𝑥3
(𝑥2 − 1)3 =

1

48

𝑑2

𝑑𝑥2
[

𝑑

𝑑𝑥
(𝑥2 − 1)3] 

=
1

48

𝑑2

𝑑𝑥2
[3(𝑥2 − 1)2. 2𝑥] =

1

8

𝑑

𝑑𝑥
[

𝑑

𝑑𝑥
𝑥(𝑥2 − 1)2] 

=
1

8

𝑑

𝑑𝑥
[(𝑥2 − 1)2 + 𝑥. 2(𝑥2 − 1). 2𝑥] =

1

8

𝑑

𝑑𝑥
(5𝑥4 − 6𝑥2 + 1) 

=
1

8

𝑑

𝑑𝑥
(20𝑥3 − 12𝑥) =

1

2
(5𝑥3 − 3𝑥) 

EXAMPLE4: Prove that 

i. ∫ 𝑃𝑛(𝑥)
1

−1
𝑑𝑥 = 2 𝑖𝑓 𝑛 = 0. 

ii. ∫ 𝑃𝑛(𝑥)
1

−1
𝑑𝑥 = 0 𝑖𝑓 𝑛 ≥ 1. 

SOLUTION: 

i.  When 𝑛 = 0, 𝑃𝑛(𝑥) = 𝑃0(𝑥) = 1 

              ∴         ∫ 𝑃𝑛(𝑥)
1

−1
𝑑𝑥 = ∫ 𝑑𝑥

1

−1
= 2 

ii. Using Rodrigue’s formula, we obtain 

∫ 𝑃𝑛(𝑥)
1

−1

𝑑𝑥 =
1

2𝑛 . 𝑛!
∫ 𝐷𝑛

1

−1

(𝑥2 − 1)𝑛𝑑𝑥, 𝑤ℎ𝑒𝑟𝑒 𝐷𝑛 ≡ 𝑑𝑛 𝑑𝑥𝑛⁄  

=
1

2𝑛 . 𝑛!
[𝐷𝑛−1(𝑥2 − 1)𝑛]−1

1 =
1

2𝑛 . 𝑛!
[𝐷𝑛−1(𝑥2 − 1)𝑛]−1

1  

=
1

2𝑛 . 𝑛!
[𝐷𝑛−1(𝑥 − 1)𝑛(𝑥 + 1)𝑛 + 𝑛 − 1𝐶1

𝐷𝑛−1(𝑥 − 1)𝑛𝐷(𝑥 + 1)𝑛 + ⋯

+ 𝐷𝑛−1(𝑥 − 1)𝑛(𝑥 + 1)𝑛]
−𝟏

𝟏
 

[𝐷𝑛(𝑢𝑣) = 𝐷𝑛𝑢. 𝑣 + 𝑛𝐶1
𝐷𝑛−1𝑢. 𝐷𝑣 + ⋯ + 𝑢. 𝐷𝑛𝑣] 

=
1

2𝑛 . 𝑛!
[𝑛! (𝑥 − 1)(𝑥 + 1)𝑛 + ⋯ + 𝑛! (𝑥 − 1)(𝑥 + 1)𝑛]−1

1 = 0 

[∵ 𝐷𝑛(𝑎𝑥 + 𝑏)𝑚 = 𝑎𝑛
𝑚!

(𝑚 − 𝑛)!
(𝑎𝑥 + 𝑏)𝑚−𝑛] 

12.15 RECURRENCE RELATIONS FOR𝑸𝒏(𝒙):- 

We have already defined that 
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𝑄𝑛 =
𝑛!

1.3.5 … (2𝑛 + 1)
[𝑥−(𝑛+1) +

(𝑛 + 1)(𝑛 + 2)

2(2𝑛 + 3)
𝑥−(𝑛+3) + ⋯ ⋯ ]

=
2𝑛(𝑛!)2

(2𝑛 + 1)!
[𝑥−(𝑛+1) +

(𝑛 + 1)(𝑛 + 1)

2(2𝑛 + 3)
𝑥−(𝑛+3) + ⋯ ⋯ ] 

=
2𝑛𝑛!

(2𝑛 + 1)!
[𝑥−(𝑛+1)𝑛! +

(𝑛 + 2)!

2(2𝑛 + 3)
𝑥−(𝑛+2+1) + ⋯ ⋯ ] 

=
2𝑛𝑛!

(2𝑛 + 1)!
[𝑥−(𝑛+1)𝑛! +

(𝑛 + 2)!

2(2𝑛 + 3)
𝑥−(𝑛+2+1) + ⋯ ⋯ ] 

=
2𝑛𝑛!

(2𝑛 + 1)!
∑

(𝑛 + 2𝑟)! 𝑥−(𝑛+2𝑟+1)

2.4 … 2𝑟(2𝑛 + 3)(2𝑛 + 5) … (2𝑛 + 2𝑟 + 1)

∞

𝑟=0

 

∴ 𝑸𝒏 =
𝟐𝒏𝒏!

(𝟐𝒏 + 𝟏)!
∑

(𝒏 + 𝟐𝒓)! 𝒙−(𝒏+𝟐𝒓+𝟏)

𝟐𝒓𝒓! (𝟐𝒏 + 𝟑)(𝟐𝒏 + 𝟓) … (𝟐𝒏 + 𝟐𝒓 + 𝟏)

∞

𝒓=𝟎

 

Differentiating w.r.t. 𝑥, we have 

𝑸′𝒏 = −
𝟐𝒏𝒏!

(𝟐𝒏 + 𝟏)!
∑

(𝒏 + 𝟐𝒓 + 𝟏)! 𝒙−(𝒏+𝟐𝒓+𝟐)

𝟐𝒓𝒓! (𝟐𝒏 + 𝟑)(𝟐𝒏 + 𝟓) … (𝟐𝒏 + 𝟐𝒓 + 𝟏)

∞

𝒓=𝟎

  … (𝟏) 

 

Substituting 𝑛 − 1 for 𝑛 in (3), we obtain 

𝑄′𝑛−1(𝑥) = −
2𝑛−1𝑛!

(2𝑛 − 1)!
∑

(𝑛 + 2𝑟)! 𝑥−(𝑛+2𝑟+1)

2𝑟𝑟! (2𝑛 + 1)(2𝑛 + 3) … (2𝑛 + 2𝑟 − 1)

∞

𝑟=0

 

𝑄′𝑛−1(𝑥) = −
2𝑛. 2𝑛−1𝑛!

(2𝑛 − 1)! 2𝑛
∑

(𝑛 + 2𝑟)! 𝑥−(𝑛+2𝑟+1)

2𝑟𝑟! (2𝑛 + 1)(2𝑛 + 3) … (2𝑛 + 2𝑟 − 1)

∞

𝑟=0

 

𝑸′𝒏−𝟏(𝒙) = −
𝟐𝒏. 𝒏!

𝟐𝒏!
∑

(𝒏 + 𝟐𝒓)! 𝒙−(𝒏+𝟐𝒓+𝟏)

𝟐𝒓𝒓! (𝟐𝒏 + 𝟏)(𝟐𝒏 + 𝟑) … (𝟐𝒏 + 𝟐𝒓 − 𝟏)

∞

𝒓=𝟎

 

Again, Substituting 𝑛 − 1 for 𝑛 in (3), we obtain 

𝑄′𝑛+1(𝑥)

= −
2𝑛+1(𝑛 + 1)!

(2𝑛 + 3)!
∑

(𝑛 + 2𝑟 + 2)! 𝑥−(𝑛+2𝑟+3)

2𝑟𝑟! (2𝑛 + 5) … (2𝑛 + 2𝑟 + 1)(2𝑛 + 2𝑟 + 3)

∞

𝑟=0

 

𝑄′𝑛+1(𝑥)

= −
2𝑛+1𝑛! (2𝑛 + 2)!

(2𝑛 + 3)(2𝑛 + 2)(2𝑛 + 1)(2𝑛)!
∑

(𝑛 + 2𝑟 + 2)! 𝑥−(𝑛+2𝑟+3)

2𝑟𝑟! (2𝑛 + 5) … (2𝑛 + 2𝑟 + 3)

∞

𝑟=0

 

𝑸′𝒏+𝟏(𝒙) = −
𝟐𝒏. 𝒏!

(𝟐𝒏)!
∑

(𝒏 + 𝟐𝒓 + 𝟐)! 𝒙−(𝒏+𝟐𝒓+𝟑)

𝟐𝒓𝒓! (𝟐𝒏 + 𝟏)(𝟐𝒏 + 𝟑) … (𝟐𝒏 + 𝟐𝒓 + 𝟑)

∞

𝒓=𝟎

 

 

I. 𝑸′𝒏+𝟏 − 𝑸′𝒏−𝟏 = (𝟐𝒏 + 𝟏)𝑸𝒏 

Proof: Given  

𝑸′𝒏 − 𝑸′𝒏−𝟏 = (𝟐𝒏 + 𝟏)𝑸𝒏 ⇒ 𝑸′𝒏 = 𝑸′𝒏−𝟏 + (𝟐𝒏 + 𝟏)𝑸𝒏 
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We take R.H.S 

𝑄′𝑛−1 + (2𝑛 + 1)𝑄𝑛

= −
2𝑛 . 𝑛!

2𝑛!
∑

(𝑛 + 2𝑟)! 𝑥−(𝑛+2𝑟+1)

2𝑟𝑟! (2𝑛 + 1)(2𝑛 + 3) … (2𝑛 + 2𝑟 − 1)

∞

𝑟=0

+ (2𝑛 + 1)
2𝑛𝑛!

(2𝑛 + 1)!
∑

(𝑛 + 2𝑟)! 𝑥−(𝑛+2𝑟+1)

2𝑟𝑟! (2𝑛 + 3)(2𝑛 + 5) … (2𝑛 + 2𝑟 + 1)

∞

𝑟=0

 

=
2𝑛 . 𝑛!

2𝑛!
[∑

(𝑛 + 2𝑟)! 𝑥−(𝑛+2𝑟+1)

2𝑟𝑟! (2𝑛 + 3)(2𝑛 + 5) … (2𝑛 + 2𝑟 + 1)

∞

𝑟=0

− ∑
(𝑛 + 2𝑟)! 𝑥−(𝑛+2𝑟+1)

2𝑟𝑟! (2𝑛 + 1)(2𝑛 + 3) … (2𝑛 + 2𝑟 − 1)

∞

𝑟=0

] 

=
2𝑛 . 𝑛!

2𝑛!
[∑

(𝑛 + 2𝑟)! 𝑥−(𝑛+2𝑟+1)

2𝑟𝑟! (2𝑛 + 1)(2𝑛 + 3) … (2𝑛 + 2𝑟 + 1)

∞

𝑟=0

× {(2𝑛 + 3) … (2𝑛 + 2𝑟 + 1)}] 

=
2𝑛 . 𝑛!

2𝑛!
[∑

−2𝑟(𝑛 + 2𝑟)! 𝑥−(𝑛+2𝑟+1)

2𝑟𝑟! (2𝑛 + 1)(2𝑛 + 3) … (2𝑛 + 2𝑟 + 1)

∞

𝑟=0

] 

= −
2𝑛 . 𝑛!

2𝑛!
[0 + ∑

(𝑛 + 2𝑟)! 𝑥−(𝑛+2𝑟+1)

2𝑟−1(𝑟 − 1)! (2𝑛 + 1)(2𝑛 + 3) … (2𝑛 + 2𝑟 + 1)

∞

𝑟=1

] 

= −
2𝑛 . 𝑛!

2𝑛!
[∑

(𝑛 − 2𝑠 + 2)! 𝑥−(𝑛+2𝑠+3)

2𝑠(𝑠)! (2𝑛 + 1)(2𝑛 + 3) … (2𝑛 + 2𝑠 + 3)

∞

𝑠=0

] 

[𝑝𝑢𝑡𝑡𝑖𝑛𝑔 𝑟 = 𝑠 + 1 𝑠𝑜 𝑡ℎ𝑎𝑡 𝑠 = 𝑟 − 1] 
= 𝑸′𝒏+𝟏(𝒙) = 𝑳. 𝑯. 𝑺 

 

II. 𝑸′𝒏+𝟏 + (𝒏 + 𝟏)𝑸′𝒏−𝟏 = (𝟐𝒏 + 𝟏)𝒙𝑸′𝒏 

Proof: Given  

𝑸′
𝒏+𝟏 + (𝒏 + 𝟏)𝑸′

𝒏−𝟏 = (𝟐𝒏 + 𝟏)𝑸′
𝒏 

 ⇒                                    𝑸′𝒏+𝟏 = (𝟐𝒏 + 𝟏)𝑸′𝒏 − (𝒏 + 𝟏)𝑸′𝒏−𝟏 

We take R.H.S 

 (2𝑛 + 1)𝑄′
𝑛 − (𝑛 + 1)𝑄′

𝑛−1   

= −(2𝑛 + 1)
2𝑛𝑛!

(2𝑛 + 1)!
∑

(𝑛 + 2𝑟 + 1)! 𝑥−(𝑛+2𝑟+2)

2𝑟𝑟! (2𝑛 + 3)(2𝑛 + 5) … (2𝑛 + 2𝑟 + 1)

∞

𝑟=0

− (𝑛 + 1)(−)
2𝑛 . 𝑛!

2𝑛!
∑

(𝑛 + 2𝑟)! 𝑥−(𝑛+2𝑟+1)

2𝑟𝑟! (2𝑛 + 1)(2𝑛 + 3) … (2𝑛 + 2𝑟 − 1)

∞

𝑟=0
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= −
2𝑛𝑛!

(2𝑛)!
∑

(𝑛 + 2𝑟 + 1)! 𝑥−(𝑛+2𝑟+2)(2𝑛 + 1)

2𝑟𝑟! (2𝑛 + 1)(2𝑛 + 3) … (2𝑛 + 2𝑟 + 1)

∞

𝑟=0

+
2𝑛 . 𝑛!

2𝑛!
∑

(𝑛 + 2𝑟)! 𝑥−(𝑛+2𝑟+1)(𝑛 + 1)(2𝑛 + 2𝑟 + 1)

2𝑟𝑟! (2𝑛 + 1)(2𝑛 + 3) … (2𝑛 + 2𝑟 + 1)

∞

𝑟=0

 

= −
2𝑛𝑛!

(2𝑛)!
∑

(𝑛 + 2𝑟)! 𝑥−(𝑛+2𝑟+1)

2𝑟𝑟! (2𝑛 + 1)(2𝑛 + 3) … (2𝑛 + 2𝑟 + 1)

∞

𝑟=0

× [(2𝑛 + 1)(2𝑛 + 2𝑟 + 1) − (𝑛 + 1)(2𝑛 + 2𝑟 + 1)] 

= −
𝑛. 2𝑛𝑛!

(2𝑛)!
[{∑

(𝑛 + 2𝑟)! 𝑥−(𝑛+2𝑟+1)

2𝑟−1(𝑟 − 1)! (2𝑛 + 1)(2𝑛 + 3) … (2𝑛 + 2𝑟 + 1)

∞

𝑟=1

} + 0] 

= −
𝑛. 2𝑛𝑛!

(2𝑛)!
{∑

(𝑛 + 2𝑠 + 2)! 𝑥−(𝑛+2𝑟+3)

2𝑠𝑠! (2𝑛 + 1)(2𝑛 + 3) … (2𝑛 + 2𝑠 + 3)

∞

𝑠=0

} 

[𝑝𝑢𝑡𝑡𝑖𝑛𝑔 𝑟 = 𝑠 + 1 𝑠𝑜 𝑡ℎ𝑎𝑡 𝑠 = 𝑟 − 1] 
= 𝒏𝑸′𝒏+𝟏 

 

III. (𝟐𝒏 + 𝟏)𝒙𝑸𝒏 = (𝒏 + 𝟏)𝑸𝒏+𝟏 + 𝒏𝑸𝒏−𝟏  𝒐𝒓  𝒙𝑸𝒏 =
𝒏+𝟏

𝟐𝒏+𝟏
𝑸𝒏+𝟏 +

𝒏

𝟐𝒏+𝟏
𝑸𝒏−𝟏   𝒐𝒓  (𝒏 + 𝟏)𝑸𝒏+𝟏 −  (𝟐𝒏 + 𝟏)𝒙𝑸𝒏 +

𝒏𝑸𝒏−𝟏 = 𝟎 

      Proof: We have 𝑛𝑄𝑛−1 − (2𝑛 + 1)𝑥𝑄𝑛 

= 𝑛.
2𝑛−1(𝑛 − 1)!

(2𝑛 − 1)!
∑

(𝑛 + 2𝑟 − 1)! 𝑥−(𝑛+2𝑟)

2𝑟𝑟! (2𝑛 + 3)(2𝑛 + 5) … (2𝑛 + 2𝑟 − 1)

∞

𝑟=0

− (2𝑛 + 1)𝑥
2𝑛𝑛!

(2𝑛 + 1)!
∑

(𝑛 + 2𝑟)! 𝑥−(𝑛+2𝑟+1)

2𝑟𝑟! (2𝑛 + 3)(2𝑛 + 5) … (2𝑛 + 2𝑟 + 1)

∞

𝑟=0

 

[𝑝𝑢𝑡𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑄𝑛−1𝑎𝑛𝑑 𝑄𝑛] 

=
2𝑛−1(𝑛)! .2𝑛

(2𝑛 + 1)!
∑

(𝑛 + 2𝑟 − 1)! 𝑥−(𝑛+2𝑟)(2𝑛 + 2𝑟 + 1)

2𝑟𝑟! (2𝑛 + 3)(2𝑛 + 5) … (2𝑛 + 2𝑟 − 1)(2𝑛 + 2𝑟 + 1)

∞

𝑟=0

−
2𝑛(2𝑛 + 1) 𝑛!

(2𝑛 + 1)!
∑

(𝑛 + 2𝑟)! 𝑥−(𝑛+2𝑟)

2𝑟𝑟! (2𝑛 + 3)(2𝑛 + 5) … (2𝑛 + 2𝑟 + 1)

∞

𝑟=0

 

=
2𝑛(𝑛)!

(2𝑛 + 1)!
[∑

(𝑛 + 2𝑟 − 1)! 𝑥−(𝑛+2𝑟)

2𝑟𝑟! (2𝑛 + 3)(2𝑛 + 5) … (2𝑛 + 2𝑟 + 1)

∞

𝑟=0

× {𝑛(2𝑛 + 2𝑟 + 1) − (2𝑛 + 1)(𝑛 + 2𝑟)}] 
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=
2𝑛(𝑛)!

(2𝑛 + 1)!
[∑

(𝑛 + 2𝑟 − 1)! 𝑥−(𝑛+2𝑟)(−2𝑟)(𝑛 + 1)

2𝑟𝑟! (2𝑛 + 3)(2𝑛 + 5) … (2𝑛 + 2𝑟 + 1)

∞

𝑟=0

× {𝑛(2𝑛 + 2𝑟 + 1) − (2𝑛 + 1)(𝑛 + 2𝑟)}] 

=
2𝑛(𝑛 + 1)!

(2𝑛 + 1)!
[∑

(𝑛 + 2𝑟 − 1)! 𝑥−(𝑛+2𝑟)

2𝑟−1(𝑟 − 1)! (2𝑛 + 3)(2𝑛 + 5) … (2𝑛 + 2𝑟 + 1)

∞

𝑟=0

] 

= −(𝑛

+ 1)
2𝑛(𝑛)!

(2𝑛 + 1)!
[∑

(𝑛 + 2𝑟 − 1)! 𝑥−(𝑛+2𝑟)

2𝑟−1(𝑟 − 1)! (2𝑛 + 3)(2𝑛 + 5) … (2𝑛 + 2𝑟 + 1)

∞

𝑟=1

+ 0] 

= −(𝑛

+ 1)
2𝑛(𝑛)!

(2𝑛 + 1)!
[∑

(𝑛 + 2𝑠 + 1)! 𝑥−(𝑛+2𝑠+2)

2𝑠(𝑠)! (2𝑛 + 3)(2𝑛 + 5) … (2𝑛 + 2𝑠 + 3)

∞

𝑠=0

],            

𝑡𝑎𝑘𝑖𝑛𝑔 𝑟 = 𝑠 + 1 

= −(𝑛

+ 1)
2𝑛(𝑛)! (2𝑛 + 2)

(2𝑛 + 2)!
∑

(𝑛 + 2𝑠 + 1)! 𝑥−(𝑛+2𝑠+2)

2𝑠(𝑠)! (2𝑛 + 3)(2𝑛 + 5) … (2𝑛 + 2𝑠 + 3)

∞

𝑠=0

 

= −(𝑛 + 1)
2𝑛(𝑛 + 1)!

(2𝑛 + 3)!
∑

(𝑛 + 2𝑠 + 1)! 𝑥−(𝑛+2𝑠+2)

2𝑠(𝑠)! (2𝑛 + 5) … (2𝑛 + 2𝑠 + 3)

∞

𝑠=0

= −(𝒏 + 𝟏)𝑸𝒏+𝟏 

 

IV. (𝟐𝒏 + 𝟏)(𝟏 − 𝒙𝟐)𝑸′𝒏 = 𝒏(𝒏 + 𝟏)(𝑸𝒏−𝟏 − 𝑸′𝒏+𝟏) 

Proof: Let 𝑄𝑛 is a solution of Legendre’s equation, given as below 
𝑑

𝑑𝑥
[(1 − 𝑥2)

𝑑𝑦

𝑑𝑥
] + 𝑛(𝑛 + 1)𝑦 = 0 

      ∴                                                 
𝑑

𝑑𝑥
[(1 − 𝑥2)𝑄′

𝑛
] = −𝑛(𝑛 +

1)𝑄𝑛                 … (1) 

       Integrating both sides of (1) between the limits(∞ 𝑡𝑜 𝑥), we have 

[(1 − 𝑥2)𝑄′
𝑛

]
∞

𝑥
= −𝑛(𝑛 + 1) ∫ [𝑄𝑛]

𝑥

∞

𝑑𝑥 

𝑜𝑟 

(1 − 𝑥2)𝑄′
𝑛

(𝑥) = −𝑛(𝑛 + 1) ∫ [𝑄𝑛]
𝑥

∞

𝑑𝑥 

[∵ (𝑄′
𝑛

)
𝑥=∞

= 0 𝑎𝑛𝑑 (𝑥2𝑄′
𝑛

)
𝑥=∞

= 0 ] 

        But by recurrence relation I, we have 
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                                                𝑄′𝑛−1 − 𝑄′𝑛+1 = (2𝑛 +
1)𝑄𝑛                                   … (2) 

        Integrating both sides of (3) between the limits(∞ 𝑡𝑜 𝑥), we have 

[𝑄𝑛−1 − 𝑄𝑛+1]∞
𝑥 = ∫ (2𝑛 + 1)𝑄𝑛𝑑𝑥

𝑥

∞

 

𝑜𝑟 

                                          𝑄𝑛+1(𝑥) − 𝑄𝑛−1(𝑥) = ∫ (2𝑛 +
𝑥

∞

1)𝑄𝑛𝑑𝑥                     … (3) 
 

[∵ (𝑄′
𝑛+1

)
𝑥=∞

= 0 = (𝑄𝑛−1)𝑥=∞] 

Hence 

(1 − 𝑥2)𝑄′
𝑛

(𝑥) = −𝑛(𝑛 + 1)
𝑄𝑛+1(𝑥) − 𝑄𝑛−1(𝑥)

2𝑛 + 1
 

𝑜𝑟 

(𝟐𝒏 + 𝟏)(𝟏 − 𝒙𝟐)𝑸′
𝒏

(𝒙) = −𝒏(𝒏 + 𝟏)[𝑸𝒏+𝟏(𝒙) − 𝑸𝒏−𝟏(𝒙)] 

12.16 CRISTOFFEL’S SECOND SUMMATION 

FORMULA:- 

Results.  (𝒚 − 𝒙) ∑ (𝟐𝒓 + 𝟏)𝑷𝒓(𝒙)𝑸𝒓(𝒚)𝒏
𝒓=𝟏 = 𝟏 − (𝒏 +

𝟏)[𝑷𝒏+𝟏(𝒙)𝑸𝒏(𝒚) − 𝑷𝒏(𝒙)𝑸𝒏+𝟏(𝒚)] 
Proof: From recurrence formulas for 𝑃𝑛(𝑥) and 𝑄𝑛(𝑥), we obtain 

(2𝑛 + 1)𝑥𝑃𝑛(𝑥) = (𝑛 + 1)𝑃𝑛+1(𝑥) + 𝑛𝑃𝑛−1(𝑥)              … (1) 
(2𝑛 + 1)𝑦𝑄𝑛(𝑦) = (𝑛 + 1)𝑄𝑛+1(𝑦) + 𝑛𝑄𝑛−1(𝑦)            … (2) 

Multiplying (2) by 𝑄𝑛(𝑦) and (3) by 𝑃𝑛(𝑥) and subtracting, we obtain 
(2𝑛 + 1)(𝑥 − 𝑦)𝑃𝑛(𝑥)𝑄𝑛(𝑦) + 𝑛{𝑃𝑛−1(𝑥)𝑄𝑛(𝑦) − 𝑄𝑛−1(𝑦)𝑃𝑛(𝑥)} 

= (𝑛 + 1){𝑃𝑛+1(𝑥)𝑄𝑛(𝑦) − 𝑄𝑛+1(𝑦)𝑃𝑛(𝑥)} 
Taking 𝑛 = 1,2,3 … … 𝑛 in above equation and adding, we have 

 (𝑦 − 𝑥) ∑ (2𝑟 + 1)𝑃𝑟(𝑥)𝑄𝑟(𝑦) + {𝑄1(𝑥)𝑃0(𝑦) − 𝑄0(𝑦)𝑃1(𝑥)}𝑛
𝑟=1 =

−(𝑛 + 1){𝑃𝑛+1(𝑥)𝑄𝑛(𝑦) − 𝑄𝑛+1(𝑦)𝑃𝑛(𝑥)} 
 

Since  

𝑄1(𝑦) = 𝑦, 𝑄0(𝑦) = 1, 𝑃1(𝑥) = 𝑥, 𝑃0(𝑥) = 1 
Hence  

(𝒚 − 𝒙) ∑(𝟐𝒓 + 𝟏)𝑷𝒓(𝒙)𝑸𝒓(𝒚)

𝒏

𝒓=𝟏

= 𝟏 − (𝒏 + 𝟏)[𝑷𝒏+𝟏(𝒙)𝑸𝒏(𝒚) − 𝑷𝒏(𝒙)𝑸𝒏+𝟏(𝒚)] 
The above equation gives the required results 

12.17 A RELATION CONNECTING 𝑷𝒏(𝒙) 

AND𝑸𝒏(𝒙):- 

Prove that 
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𝟏

𝒚 − 𝒙
= ∑ (𝟐𝒎 + 𝟏)

∞

𝒎=𝟎

𝑷𝒎(𝒙)𝑸𝒎(𝒚) 

And hence deduce that 

𝑸𝒎(𝒚) = ∫
𝑷𝒎(𝒙)

𝒚 − 𝒙

𝟏

−𝟏

𝒅𝒙,     (𝒚 > 1) 

Proof: Let 𝑓(𝑥) =
1

𝑦−𝑥
 

𝑓(𝑥) =
1

𝑦(1 − 𝑥/𝑦)
=

1

𝑦
(1 −

𝑥

𝑦
)

−1

= 𝑦−1 (1 +
𝑥

𝑦
+

𝑥2

𝑦
+ ⋯ +

𝑥𝑚

𝑦𝑚
+ ⋯ ) 

= 𝑦−1 + 𝑥. 𝑦−2 + 𝑥2𝑦−3 + ⋯ + 𝑥𝑚 . 𝑦−𝑚−1 + ⋯  … (1) 

= 𝐴0 + 𝑥𝐴1 + 𝐴2𝑥2 + ⋯ ⋯                                         … (2) 
Let  

𝑓(𝑥) = ∑ 𝐵𝑚𝑃𝑚(𝑥)

∞

𝑚=0

 

Then we know that 𝐵𝑚 =
1.2.3…..𝑚

1.3.5…….(2𝑚−1)
[𝐴𝑚 +

(𝑚+1)(𝑚+2)

2(2𝑚+3)
𝐴𝑚+2 + ⋯ ⋯ ] 

From (1) and (2), we obtain 

 

𝐴0 = 𝑦−1, 𝐴1 = 𝑦−2, … . , 𝐴𝑚 =  𝑦−(𝑚+1), … 

 ∴       

𝐵𝑚 =
𝑚!

1.3.5 … … . (2𝑚 − 1)
[𝑦−(𝑚+1) +

(𝑚 + 1)(𝑚 + 2)

2(2𝑚 + 3)
. 𝑦−(𝑚+3)

+ ⋯ ⋯ ] 

= (2𝑚 + 1)𝑄𝑚(𝑦) 

𝟏

𝒚 − 𝒙
= ∑ (𝟐𝒎 + 𝟏)

∞

𝒎=𝟎

𝑸𝒎(𝒚)𝑷𝒎(𝒙)            … (3) 

Now multiplying (3) by 𝑃𝑚(𝑥) and integrating w.r.t. 𝑥 in the interval 
(−1,1), we have 

∫ 𝑃𝑚(𝑥).
1

−1

1

𝑦 − 𝑥
𝑑𝑥 = ∫ 𝑃𝑚(𝑥) [ ∑ (2𝑚 + 1)

∞

𝑚=0

𝑄𝑚(𝑦)𝑃𝑚(𝑥)] 𝑑𝑥
1

−1

 

= 𝑄𝑚(𝑦) ∫ [𝑃𝑚(𝑥)]21

−1
(2𝑚 + 1)𝑑𝑥           

[∵ ∫ 𝑃𝑚(𝑥)𝑃𝑛(𝑥)
1

−1

𝑑𝑥 = 0, 𝑚 ≠ 𝑛   ] 

 

= 𝑄𝑛(𝑦). (2𝑚 + 1).
2

2𝑚 + 1
  

 ∴                 
𝟏

𝟐
∫ 𝑃𝑚(𝑥)

𝟏

−𝟏

1

𝑦−𝑥
𝑑𝑥 = 𝑄𝑛(𝑦)  

This is known as Neumann’s integral for𝑸𝒏(𝒚). 
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SOLVED EXAMPLES 
Example1: Prove that  

i. (𝑥2 − 1)(𝑄𝑛𝑃′
𝑛 − 𝑃𝑛𝑄′

𝑛
) = 𝑐 

ii. 
𝑄𝑛

𝑃𝑛
= ∫

𝑑𝑥

(𝑥2−1)𝑃𝑛
2

∞

𝑥
 

iii. From ii deduce that 

a. 𝑄0(𝑥) =
1

2
log

𝑥+1

𝑥−1
. 

b. 𝑄1(𝑥) =
1

2
log

𝑥+1

𝑥−1
− 1. 

 

Solution:  

i. Legendre’s equation is  

(1 − 𝑥2)𝑦′′ − 2𝑥𝑦′ + 𝑛(𝑛 + 1)𝑦 = 0        … (1) 
Since  

(1 − 𝑥2)𝑃𝑛
′′ − 2𝑥𝑃𝑛

′ + 𝑛(𝑛 + 1)𝑃𝑛 = 0     … (2) 

 and             (1 − 𝑥2)𝑄𝑛
′′ − 2𝑥𝑄𝑛

′ + 𝑛(𝑛 + 1)𝑄𝑛 = 0   … (3) 

Multiplying (2) by 𝑄𝑛 and (3) by 𝑃𝑛 and then subtracting, we obtain 

(1 − 𝑥2)(𝑃𝑛
′′𝑄𝑛 − 𝑄𝑛

′′𝑃𝑛) − 2𝑥(𝑃𝑛
′𝑄𝑛 − 𝑄𝑛

′𝑃𝑛) = 0 

𝑜𝑟 

(1 − 𝑥2)
𝑑

𝑑𝑥
(𝑃𝑛

′𝑄𝑛 − 𝑄𝑛
′𝑃𝑛) − 2𝑥(𝑃𝑛

′𝑄𝑛 − 𝑄𝑛
′𝑃𝑛) = 0 

𝑜𝑟 
𝑑

𝑑𝑥
{(1 − 𝑥2)(𝑃𝑛

′𝑄𝑛 − 𝑄𝑛
′𝑃𝑛)} = 0              … (4) 

Integrating w.r.t. 𝑥, (4) gives   (1 − 𝑥2)(𝑃𝑛
′𝑄𝑛 − 𝑄𝑛

′𝑃𝑛) = −𝑐 

(𝒙𝟐 − 𝟏)(𝑷𝒏
′𝑸𝒏 − 𝑸𝒏

′𝑷𝒏) = 𝒄               … (𝟓) 

ii.    From i , we obtain 

𝑃𝑛
′𝑄𝑛 − 𝑄𝑛

′𝑃𝑛 =
𝑐

𝑥2 − 1
=

𝑐

𝑥2
(1 −

1

𝑥2
)

−1

 

𝑃𝑛
′𝑄𝑛 − 𝑄𝑛

′𝑃𝑛 =
𝑐

𝑥2 − 1
=

𝑐

𝑥2
(1 +

1

𝑥2
+

1

𝑥4
+ ⋯ )   … (6) 

We know that 

𝑄𝑛 =
𝑛!

1.3.5 … (2𝑛 + 1)
[𝑥−(𝑛+1) +

(𝑛 + 1)(𝑛 + 2)

2. (2𝑛 + 3)
𝑥−(𝑛+3) + ⋯ ] 

and    

𝑃𝑛 =
1.3.5 … (2𝑛 + 1)

𝑛!
[𝑥𝑛 −

𝑛(𝑛 − 1)

2. (2𝑛 − 1)
𝑥𝑛−2 + ⋯ ] 

Using above equation, L.H.S. of (6) 
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=
𝑛!

1.3.5 … (2𝑛 + 1)
[𝑥−(𝑛+1) +

(𝑛 + 1)(𝑛 + 2)

2. (2𝑛 + 3)
𝑥−(𝑛+3) + ⋯ ]

×
1.3.5 … (2𝑛 + 1)

𝑛!
[𝑥𝑛 −

𝑛(𝑛 − 1)

2. (2𝑛 − 1)
𝑥𝑛−2 + ⋯ ]

−
1.3.5 … (2𝑛 + 1)

𝑛!
[𝑥𝑛 −

𝑛(𝑛 − 1)

2. (2𝑛 − 1)
𝑥𝑛−2 + ⋯ ]

×
𝑛!

1.3.5 … (2𝑛 + 1)
[𝑥−(𝑛+1) +

(𝑛 + 1)(𝑛 + 2)

2. (2𝑛 + 3)
𝑥−(𝑛+3)

+ ⋯ ] 

Since the coefficient of 1 𝑥2⁄  in L.H.S. of (6) 

=
𝑛!

1.3.5 … (2𝑛 + 1)
.
1.3.5 … (2𝑛 + 1)

𝑛!
𝑛

−
𝑛!

1.3.5 … (2𝑛 + 1)
.
1.3.5 … (2𝑛 + 1)

𝑛!
(−𝑛 − 1) 

=
𝑛

2𝑛 + 1
+

𝑛 + 1

2𝑛 + 1
=

2𝑛 + 1

2𝑛 + 1
= 1 

Hence from (5), we obtain 

(𝑥2 − 1)(𝑃𝑛
′𝑄𝑛 − 𝑄𝑛

′𝑃𝑛) = 1                           𝑜𝑟      -(𝑥2 − 1)(𝑄𝑛
′𝑃𝑛 −

𝑃𝑛
′𝑄𝑛) = 1   

(𝑃𝑛
′𝑄𝑛 − 𝑄𝑛

′𝑃𝑛)

𝑃𝑛
2

= −
1

(𝑥2 − 1)𝑃𝑛
2

             𝑜𝑟                   
𝑑

𝑑𝑥
(

𝑄𝑛

𝑃𝑛
)

= −
1

(𝑥2 − 1)𝑃𝑛
2
           

Integrating both sides w.r.t.𝑥 from(∞ 𝑡𝑜 𝑥), we have 

[
𝑄𝑛

𝑃𝑛
]

∞

𝑥

= − ∫
𝑑𝑥

(𝑥2 − 1)𝑃𝑛
2

𝑥

∞

= ∫
𝑑𝑥

(𝑥2 − 1)𝑃𝑛
2

∞

𝑥

 

𝑄𝑛(𝑥)

𝑃𝑛(𝑥)
− lim

𝑥→∞

𝑄𝑛(𝑥)

𝑃𝑛(𝑥)
= ∫

𝑑𝑥

(𝑥2 − 1)𝑃𝑛
2

∞

𝑥

 

Now,          

lim
𝑥→∞

𝑄𝑛(𝑥)

𝑃𝑛(𝑥)
= lim

𝑥→∞

𝑑𝑛

𝑑𝑥 𝑛𝑄𝑛(𝑥)

𝑑𝑛

𝑑𝑥 𝑛𝑃𝑛(𝑥)
 

[By L’ Hospital Rule] 

= lim
𝑥→∞

𝑛!
1.3.5 … (2𝑛 + 1) {(−1)𝑛(𝑛 + 1)(𝑛 + 2) … 2𝑛𝑥−(2𝑛+1) + ⋯ }

1.3.5 … (2𝑛 + 1)
𝑛! 𝑛!

= 0 

Hence   

𝑸𝒏(𝒙)

𝑷𝒏(𝒙)
= ∫

𝒅𝒙

(𝒙𝟐 − 𝟏)𝑷𝒏
𝟐

∞

𝒙

                         … (𝟕) 
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iii. Deductions from (ii) 

a. Replacing 𝑛 by 0 in (7), we obtain 

 

𝑸𝟎(𝒙)

𝑷𝟎(𝒙)
= ∫

𝒅𝒙

(𝒙𝟐 − 𝟏)𝑷𝟎
𝟐(𝒙)

∞

𝒙

 

                                                      𝑸𝟎(𝒙) =

∫
𝒅𝒙

(𝒙𝟐−𝟏)

∞

𝒙
                                                        (𝑃0(𝑥) = 1) 

=
1

2
[log

𝑥 − 1

𝑥 + 1
]

𝑥

∞

= −
1

2
log

𝑥 − 1

𝑥 + 1
=

1

2
log

𝑥 + 1

𝑥 − 1
 

∵ lim
𝑥→∞

log (
𝑥 − 1

𝑥 + 1
) = lim

𝑥→∞
log (

1 − 1/𝑥

1 + 1/𝑥
) = 0 

b. Replacing 𝑛 by 1 in (7), we obtain 
𝑸𝟏(𝒙)

𝑷𝟏(𝒙)
= ∫

𝒅𝒙

(𝒙𝟐 − 𝟏)𝑷𝟏
𝟐(𝒙)

∞

𝒙

 

𝑸𝟏(𝒙) = 𝒙 ∫
𝒅𝒙

(𝒙𝟐 − 𝟏)

∞

𝒙

                                                        (𝑃1(𝑥) = 𝑥) 

= 𝑥 ∫ [
1

(𝑥2 − 1)
−

1

𝑥2
]

∞

𝑥

𝑑𝑥 = 𝑥 [
1

2
log

𝑥 − 1

𝑥 + 1
+

1

𝑥
]

𝑥

∞

 

= −𝑥 [
1

2
log

𝑥 − 1

𝑥 + 1
+

1

𝑥
] 

[∵ log (
𝑥 − 1

𝑥 + 1
) = lim

𝑥→∞
log (

1 − 1/𝑥

1 + 1/𝑥
) = 0] 

= −
𝑥

2
log (

𝑥 − 1

𝑥 + 1
) − 1 =

𝑥

2
log (

𝑥 + 1

𝑥 − 1
) − 1 

EXAMPLE2: Prove that 𝑄2(𝑥) =
1

2
𝑃2(𝑥) log

𝑥+1

𝑥−1
𝑥 −

3

2
𝑥 

SOLUTION: From recurrence relation III for 𝑄𝑛(𝑥), we have 

(𝑛 + 1)𝑄𝑛−1 = (2𝑛 + 1)𝑥𝑄𝑛 − 𝑛𝑄𝑛−1      … (1) 

Replacing 𝑛 by 1 in (1), we obtain 

2𝑄2 = 3𝑥𝑄1 − 𝑄0 

= 3𝑥 [
𝑥

2
log

𝑥 + 1

𝑥 − 1
− 1] −

1

2
log (

𝑥 + 1

𝑥 − 1
) 

=
3𝑥2 − 1

2
log

𝑥 + 1

𝑥 − 1
− 3𝑥 

                                                         = 𝑃2(𝑥) log
𝑥+1

𝑥−1
− 3𝑥                                     

[𝑃2(𝑥) =
3𝑥2−1

2
] 

𝑄2(𝑥) =
1

2
𝑃2(𝑥) log

𝑥 + 1

𝑥 − 1
𝑥 −

3

2
𝑥 

 

SELF CHECK QUESTIONS 
1. Prove that 𝑥4 = (8/35)𝑃𝑛(𝑥) + (4/7)𝑃2(𝑥) + (1/5)𝑃0(𝑥). 
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2. Show that ∫ 𝑥41

−1
𝑃6(𝑥)𝑑𝑥 = 0. 

 

12.18 SUMMARY:- 

In this unit we studied the Chebyshev polynomials, Legendre 

equation and its solution as Legendre function of first and second kind. 

We have also studied the recurrence relation, generating function, 

orthogonal properties of Chebyshev polynomials and Legendre 

polynomials, Rodrigues formulae and other important formulas for these 

functions. 

 

12.19 GLOSSARY:- 

 Orthogonal properties 

 Recurrence  Relation 

 Laplace’s definite integrals  

 Christoffel’s expansion 

 

12.20 REFERENCES:- 

   

 Daniel A. Murray (2003). Introductory Course in Differential 

Equations, Orient. 

 M.D. Raisinghania,(2021). Ordinary and Partial Differential 

equation (20th Edition), S. Chand. 

 G F Simmons (1991) Differential Equations with Historical Notes. 

12.21 SUGGESTED READING:- 

 B. Rai, D. P. Choudhury & H. I. Freedman (2013). A Course in 

Ordinary Differential Equations (2nd edition). Narosa. 

 Erwin Kreyszig (2010) Advanced Engineering Mathematics. 

 

12.22 TERMINAL QUESTIONS:- 

(TQ-1) Prove that  
1+𝑧

𝑧√1−𝑥𝑧+𝑧2
−

1

𝑧
= ∑ (𝑃𝑛 + 𝑃𝑛+1)∞

𝑛=0 𝑧𝑛 

(TQ-2) Prove that  𝑃𝑛(1) = 1 and 𝑃𝑛(−1) = (−1)𝑛 

(TQ-3) Prove that (2𝑛 + 1)(𝑥2 − 1)𝑃′𝑛 = 𝑛(𝑛 + 1)(𝑃𝑛+1 − 𝑃𝑛−1) and 

deduce that 

∫ (𝑥2 − 1)
1

−1

𝑃𝑛+1(𝑥)𝑃′𝑛(𝑥)𝑑𝑥 =
2𝑛(𝑛 + 1)

(2𝑛 + 1)(2𝑛 + 3)
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(TQ-4) show that 𝑃𝑛(𝑥) =
1

𝜋
∫ [𝑥 ± √(𝑥2 − 1)𝑐𝑜𝑠𝜃]

𝑛

𝑑𝜃
𝜋

0
 where 𝑛 is a 

positive integer. 

(TQ-5) show that   ∫ 𝑥2𝑃𝑛+1𝑃𝑛−1𝑑𝑥
𝜋

0
=

2𝑛(𝑛+1)

(2𝑛−1)(2𝑛+3)(2𝑛+1)
. 

(TQ-6) Show that  ∫ 𝑥𝑃𝑛𝑃𝑛−1𝑑𝑥
+1

−1
=

2𝑛

4𝑛2−1
. 

(TQ-7) Show that 𝑛[𝑃𝑛𝑄𝑛−1 − 𝑄𝑛𝑃𝑛−1] = 1. 

(TQ-8) Show that 𝑃𝑛(𝑥) =
1

𝜋
∫

𝑑𝜙

[𝑥±√(𝑥2−1)𝑐𝑜𝑠𝜙]
𝑛+1 𝑑𝜙

𝜋

0
 

(TQ-9) Show that
𝑑𝑛+1

𝑑𝑥𝑛+1
[𝑄𝑛(𝑥)] =

(−2)𝑛𝑛!

(𝑥2−1)𝑛+1 

(TQ-10) Prove that  

i. 𝑛(𝑄𝑛𝑃𝑛−1 − 𝑃𝑛−1𝑄𝑛) = (𝑛 − 1)(𝑄𝑛−1𝑃𝑛−2 − 𝑃𝑛−1𝑄𝑛−2) and 

deduce that 

ii. 𝑛(𝑄𝑛𝑃𝑛−1 − 𝑃𝑛−1𝑄𝑛) = −1 𝑜𝑟   𝑃𝑛𝑄𝑛−1 − 𝑄𝑛𝑃𝑛−1 = 1/𝑛 

(TQ-11) Using Rodrigue’s formula, prove that 𝑃′𝑛+1 − 𝑃′𝑛−1 =
(2𝑛 + 1)𝑃𝑛 . 

(TQ-12) If 𝑥 > 1, show that 𝑃𝑛(𝑥) < 𝑃𝑛+1(𝑥) 
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UNIT 13:- Bessel Functions and Hermite 

Polynomials 

CONTENTS: 
13.1      Introduction 

13.2      Objectives 

13.3      Bessel’s Differential Equation 

13.4      Solution of Bessel’s Equation 

13.5      General Solution of Bessel’s Equation 

13.6      Recurrence Formula For 𝐽𝑛(𝑥) 

13.7      Generating Function for Bessel’s Equation 

13.8      Orthogonality Property for Bessel’s Equation 

13.9       Bessel Integrals 

13.10     Bessel Series 

13.11     Hermite’s equation and its Solution 𝐻𝑛(𝑥) 

13.12     Generating Function for 𝐻𝑛(𝑥) 

13.13     Orthogonality Property for 𝐻𝑛(𝑥) 

13.14      Recurrence Relation for 𝐻𝑛(𝑥) 

13.15      Rodrigues Formula for 𝐻𝑛(𝑥) 

13.16      Summary 

13.17      Glossary 

13.18      References 

13.19      Suggested Reading 

13.20      Terminal questions 

19.21      Answers  

 

13.1 INTRODUCTION:- 

Bessel's equation arises in many areas of physics and engineering, 

such as the theory of vibrations of circular membranes, the study of 

electric and magnetic fields in cylindrical coordinates, and the analysis of 

wave propagation in cylindrical or spherical geometries. It has important 

applications in acoustics, optics, signal processing, and quantum 

mechanics. 

In this unit, we discuss about the Bessel function through the generating 

function, recurrence formulae, orthogonal property and Integral of 

representation of Bessel Function. 

13.2 OBJECTIVES:- 

After studying this unit you will be able to  
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 To discuss about Bessel functions and its equation and generating 

function. 

 To study the recurrence formulae of Bessel functions. 

 To study the important properties for this function. 

 The main objective of Hermite polynomials is to provide a set of 

orthogonal polynomials, which means that they satisfy a particular 

inner product property. 

 To provide the Hermite polynomials also have a generating 

function that allows them to be expressed in terms of other 

mathematical functions. 

 

13.3 BESSEL’S DEFERENTIAL EQUATION:- 

The differential equation  

                             
𝑑2𝑦

𝑑𝑥2
+

1

𝑥

𝑑𝑦

𝑑𝑥
+ (1 −

𝑛2

𝑥2
) 𝑦 = 0                      … (1) 

is called the Bessel Differential equation, where 𝑛 is positive constant. 

 

13.4 SOLUTION OF BESSEL’S EQUATION:- 

 

Let the solution (1) be 

                                   𝑦 = ∑ 𝑎𝑟𝑥𝑚+𝑟

∞

𝑟=0

                                              … (2) 

Then  

𝑑𝑦

𝑑𝑥
= ∑ 𝑎𝑟

∞

𝑟=0

(𝑚 + 𝑟)𝑥𝑚+𝑟−1 ⇒
𝑑2𝑦

𝑑𝑥2

= ∑ 𝑎𝑟

∞

𝑟=0

(𝑚 + 𝑟)(𝑚 + 𝑟 − 1)𝑥𝑚+𝑟−2 

Putting the value of 
𝑑𝑦

𝑑𝑥
 and 

𝑑2𝑦

𝑑𝑥2 in equation (1), we obtain 

𝑥2 ∑ 𝑎𝑟

∞

𝑟=0

(𝑚 + 𝑟)(𝑚 + 𝑟 − 1)𝑥𝑚+𝑟−2 +
1

𝑥
∑ 𝑎𝑟

∞

𝑟=0

(𝑚 + 𝑟)𝑥𝑚+𝑟−1

+ (𝑥2 − 𝑛2) ∑ 𝑎𝑟

∞

𝑟=0

𝑥𝑚+𝑟 = 0 
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∑ 𝑎𝑟

∞

𝑟=0

(𝑚 + 𝑟)(𝑚 + 𝑟 − 1)𝑥𝑚+𝑟 + ∑ 𝑎𝑟

∞

𝑟=0

(𝑚 + 𝑟)𝑥𝑚+𝑟

+ (𝑥2 − 𝑛2) ∑ 𝑎𝑟

∞

𝑟=0

𝑥𝑚+𝑟 = 0 

∑ 𝑎𝑟

∞

𝑟=0

(𝑚 + 𝑟)(𝑚 + 𝑟 − 1)𝑥𝑚+𝑟 + ∑ 𝑎𝑟

∞

𝑟=0

(𝑚 + 𝑟)𝑥𝑚+𝑟 + ∑ 𝑎𝑟

∞

𝑟=0

𝑥𝑚+𝑟+2

− 𝑛2 ∑ 𝑎𝑟

∞

𝑟=0

𝑥𝑚+𝑟 = 0 

∑ 𝑎𝑟

∞

𝑟=0

𝑥𝑚+𝑟{(𝑚 + 𝑟)(𝑚 + 𝑟 − 1) + (𝑚 + 𝑟) − 𝑛2} + ∑ 𝑎𝑟

∞

𝑟=0

𝑥𝑚+𝑟+2 = 0 

∑ 𝑎𝑟

∞

𝑟=0

𝑥𝑚+𝑟{𝑚2 + 𝑚𝑟 + 𝑛2 + 𝑟𝑚 − 𝑚 − 𝑛 + 𝑚 + 𝑟 − 𝑛2}

+ ∑ 𝑎𝑟

∞

𝑟=0

𝑥𝑚+𝑟+2 = 0 

∑ 𝑎𝑟

∞

𝑟=0

𝑥𝑚+𝑟{(𝑚 + 𝑟)2 − 𝑛2} + ∑ 𝑎𝑟

∞

𝑟=0

𝑥𝑚+𝑟+2 = 0 

∑ 𝑎𝑟

∞

𝑟=0

𝑥𝑚+𝑟{(𝑚 + 𝑟 + 𝑛)(𝑚 + 𝑟 − 𝑛)} + ∑ 𝑎𝑟

∞

𝑟=0

𝑥𝑚+𝑟+2 = 0 

Hence equating to zero the coefficients of lowest power of 𝑥, we obtain 

(𝑚 + 𝑛)(𝑚 − 𝑛)𝑎0 = 0𝑚 = 𝑛, −𝑛 𝑎𝑠  𝑎0 ≠ 0   … (3) 

Also equating to zero coefficient of 𝑥𝑚+1, we have 

(𝑚 + 𝑟 + 𝑛)(𝑚 + 𝑟 − 𝑛)𝑎1 = 0 
But  
(𝑚 + 𝑟 + 𝑛)(𝑚 + 𝑟 − 𝑛) ≠ 0 by equation (3), so we have  𝑎1 = 0  

Similarly equating to zero the coefficients of 𝑥𝑚+𝑟 ,we get  

(𝑚 + 𝑟 + 𝑛)(𝑚 + 𝑟 − 𝑛)𝑎𝑟 + 𝑎𝑟−2 = 0 ⇒ 𝑎𝑟−2

= −
𝑎𝑟

(𝑚 + 𝑟 + 𝑛)(𝑚 + 𝑟 − 𝑛)
  … (4) 

Putting 𝑟 = 3,5,7, … .. in (4) it follows that 𝑎3 = 𝑎5 = 𝑎7 = ⋯ = 0 

Case1: If 𝑚 = +𝑛 

Also putting 𝑟 = 2,4,6, … ..in (4), we obtain 

𝑎2 = −
𝑎0

(𝑚 + 2 + 𝑛)(𝑚 + 2 − 𝑛)
⇒ 𝑎4

= −
𝑎0

(𝑚 + 2 + 𝑛)(𝑚 + 2 − 𝑛)(𝑚 + 4 + 𝑛)(𝑚 + 4 − 𝑛)
 

Putting these value  in (2), as𝑎3 = 𝑎5 = 𝑎7 = ⋯ = 0,  we have 
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𝑦 = ∑ 𝑎𝑟𝑥𝑚+𝑟

∞

𝑟=0

= 𝑎0𝑥𝑚 + 𝑎1𝑥𝑚+2 + 𝑎4𝑥𝑚+4 + ⋯ ⋯ ⋯ ⋯ 

𝑦 = 𝑎0𝑥𝑚 [1 −
𝑥2

(𝑚 + 2 + 𝑛)(𝑚 + 2 − 𝑛)

+
𝑥2

(𝑚 + 2 + 𝑛)(𝑚 + 2 − 𝑛)(𝑚 + 4 + 𝑛)(𝑚 + 4 − 𝑛)

− ⋯ ] 

Replacing 𝑚 by 𝑛 and – 𝑛, we have 

𝑦 = 𝑎0𝑥𝑛 [1 −
𝑥2

2. (2 + 2𝑛)
+

𝑥2

2.4. (4 + 2𝑛)(2𝑛 + 2)
− ⋯ ]       … (5) 

𝑦 = 𝑎0𝑥−𝑛 [1 −
𝑥2

2. (2 − 2𝑛)
+

𝑥2

2.4. (4 − 2𝑛)(−2𝑛 + 2)
− ⋯ ]  … (6) 

The particular solution of (1) obtained from (5) above by taking arbitrary 

constant 𝑎0 =
1

2𝑛Γ(𝑛+1)
 is known as Bessel function of first kind of 

order  𝒏. It is denoted by𝑱𝒏(𝒙). 

𝐽𝑛(𝑥) =
𝑥𝑛

2𝑛Γ(𝑛 + 1)
[1 −

𝑥2

4(1 + 𝑛)
+

𝑥2

4.8(2 + 𝑛)(𝑛 + 1)
− ⋯ ] 

𝐽𝑛(𝑥) = ∑(−1)𝑟

∞

𝑟=0

1

𝑟! Γ(𝑛 + 𝑟 + 1)
(

𝑥

2
)

2𝑟+𝑛

 

Similarly 

𝐽−𝑛(𝑥) = ∑(−1)𝑟

∞

𝑟=0

1

𝑟! Γ(−𝑛 + 𝑟 + 1)
(

𝑥

2
)

2𝑟−𝑛

 

It is known as Bessel function of second kind of order  𝒏. It is denoted 

by𝑱−𝒏(𝒙). 

 

13.5 GENERAL SOLUTION OF BESSEL’S 

EQUATION:- 

The general solution of Bessel’s equation (1) is 

𝑦 = 𝐴𝐽𝑛(𝑥) + 𝐵𝐽−𝑛(𝑥). 
Where A and B are arbitrary constant. 

 

13.6 RECURRENCE FORMULA FOR 𝑱𝒏(𝒙) :- 

Prove that 

I. 
𝒅

𝒅𝒙
{𝒙𝒏𝑱𝒏(𝒙)} = 𝒙𝒏𝑱𝒏−𝟏(𝒙)  𝒐𝒓   𝒙𝑱′𝒏 = 𝒏𝑱𝒏 − 𝒙𝑱𝒏+𝟏. 
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Proof. We know that  

𝐽𝑛 = ∑(−1)𝑟
1

𝑟! Γ(𝑛 + 𝑟 + 1)
(

𝑥

2
)

2𝑟+𝑛
∞

𝑟=0

 

Differentiating with respect to 𝑥, we get  

𝐽𝑛
′ = ∑

(−1)𝑟(𝑛 + 2𝑟)

𝑟! Γ(𝑛 + 𝑟 + 1)
.
1

2

∞

𝑟=0

. (
𝑥

2
)

2𝑟+𝑛−1

 

𝑥𝐽𝑛
′ = 𝑛 ∑

(−1)𝑟

𝑟! Γ(𝑛 + 𝑟 + 1)
.

∞

𝑟=0

 (
𝑥

2
)

2𝑟+𝑛−1+1

+ 𝑥 ∑
(−1)𝑟(2𝑟)

𝑟(𝑟 − 1)! Γ(𝑛 + 𝑟 + 1)
.
1

2
.

∞

𝑟=1

 (
𝑥

2
)

2𝑟+𝑛−1

 

 

𝐽𝑛
′ = 𝑛 ∑

(−1)𝑟

𝑟! Γ(𝑛 + 𝑟 + 1)
.

∞

𝑟=0

 (
𝑥

2
)

2𝑟+𝑛

+ 𝑥 ∑
(−1)𝑟

(𝑟 − 1)! Γ(𝑛 + 𝑟 + 1)
.

∞

𝑟=1

 (
𝑥

2
)

2𝑟+𝑛−1

 

= 𝑛𝐽𝑛(𝑥) + 𝑥 ∑
(−1)𝑠+1

𝑠! Γ(𝑛 + 𝑟 + 2)
.

∞

𝑠=0

 (
𝑥

2
)

2𝑠+𝑛+1

,      [𝑠 = 𝑟 − 1] 

= 𝑛𝐽𝑛(𝑥) − 𝑥 ∑
(−1)𝑠

𝑠! Γ(𝑛 + 𝑟 + 2)
.

∞

𝑠=0

 (
𝑥

2
)

2𝑠+𝑛+1

 

                                                          𝒙𝑱′𝒏 = 𝒏𝑱𝒏 −
𝒙𝑱𝒏+𝟏                                          … . . (𝟏). 

II.      𝒙𝑱′𝒏 = −𝒏𝑱𝒏 + 𝒙𝑱𝒏−𝟏. 
Proof.   

𝐽𝑛
′ = ∑

(−1)𝑟(𝑛 + 2𝑟)

𝑟! Γ(𝑛 + 𝑟 + 1)
.
1

2

∞

𝑟=0

. (
𝑥

2
)

2𝑟+𝑛−1

 

𝐽𝑛
′ = ∑

(−1)𝑟(2𝑛 + 2𝑟 − 𝑛)

𝑟! Γ(𝑛 + 𝑟 + 1)
.
1

2

∞

𝑟=0

. (
𝑥

2
)

2𝑟+𝑛−1

 

𝐽𝑛
′ = ∑

(−1)𝑟(𝑛 + 𝑟)

𝑟! Γ(𝑛 + 𝑟 + 1)

∞

𝑟=0

. (
𝑥

2
)

2𝑟+𝑛−1

− 𝑛 ∑
(−1)𝑟

𝑟! Γ(𝑛 + 𝑟 + 1)
.
1

2

∞

𝑟=0

.
𝑥

𝑥
. (

𝑥

2
)

2𝑟+𝑛−1

 

𝐽𝑛
′ = ∑

(−1)𝑟(𝑛 + 𝑟)

𝑟! Γ(𝑛 + 𝑟 + 1)

∞

𝑟=0

. (
𝑥

2
)

2𝑟+𝑛−1

−
𝑛

𝑥
∑

(−1)𝑟

𝑟! Γ(𝑛 + 𝑟 + 1)
.
1

2

∞

𝑟=0

. (
𝑥

2
)

2𝑟+𝑛
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𝐽𝑛
′ = ∑

(−1)𝑟(𝑛 + 𝑟)

𝑟! Γ(𝑛 + 𝑟 + 1)

∞

𝑟=0

. (
𝑥

2
)

2𝑟+𝑛−1

−
𝑛

𝑥
𝐽𝑛(𝑥) 

= 𝐽𝑛−1(𝑥) − −
𝑛

𝑥
𝐽𝑛(𝑥) 

                         𝒙𝑱′𝒏 = −𝒏𝑱𝒏 + 𝒙𝑱𝒏−𝟏                                        ⋯ (𝟐) 

III. 𝟐𝑱𝒏
′ = 𝑱𝒏−𝟏 − 𝑱𝒏+𝟏 

Proof. Adding (1) & (2), we obtain 

2𝑥𝐽′𝑛 = 𝑛𝐽𝑛 − 𝑥𝐽𝑛+1 + −𝑛𝐽𝑛 + 𝑥𝐽𝑛−1 

2𝑥𝐽′𝑛 = 𝑥[𝐽𝑛−1 − 𝐽𝑛+1] 
IV. 𝟐𝒏𝑱𝒏 = 𝒙(𝑱𝒏−𝟏 − 𝑱𝒏+𝟏) 

Proof. Subtracting (1) & (2), we get 

0 = 𝑛𝐽𝑛 − 𝑥𝐽𝑛+1 + 𝑛𝐽𝑛 − 𝑥𝐽𝑛−1 

0 = 2𝑛𝐽𝑛 − 𝑥𝐽𝑛+1 − 𝑥𝐽𝑛−1 

𝟐𝒏𝑱𝒏 = 𝒙𝑱𝒏+𝟏 + 𝒙𝑱𝒏−𝟏 

 

 

V. 
𝒅

𝒅𝒙
(𝒙−𝒏𝑱𝒏) = −𝒙−𝒏𝑱𝒏+𝟏 

Proof. Multiplying (1) by 𝑥−𝑛−1 

𝑥−𝑛𝐽′𝑛 = 𝑛𝑥−𝑛−1𝐽𝑛 − 𝑥−𝑛𝐽𝑛+1 

𝑥−𝑛𝐽′𝑛 − 𝑛𝑥−𝑛−1𝐽𝑛 = −𝑥−𝑛𝐽𝑛+1 
𝒅

𝒅𝒙
(𝒙−𝒏𝑱𝒏) = −𝒙−𝒏𝑱𝒏+𝟏 

VI.   
𝒅

𝒅𝒙
(𝒙𝒏𝑱𝒏) = 𝒙𝒏𝑱𝒏−𝟏 

Proof. Multiplying (2) by 𝑥−𝑛−1 

𝑥𝑛𝐽′𝑛 = −𝑛𝑥𝑛−1𝐽𝑛 + 𝑥𝑛𝐽𝑛−1 

𝑥𝑛𝐽′𝑛 + 𝑛𝑥𝑛−1𝐽𝑛 = 𝑥𝑛𝐽𝑛−1 
𝒅

𝒅𝒙
(𝒙𝒏𝑱𝒏) = 𝒙𝒏𝑱𝒏−𝟏 

 

SOLVED EXAMPLES 

EXAMPLE1: Show that  𝐽1/2(𝑥) = √
2

𝜋𝑥
. 𝑠𝑖𝑛𝑥 

SOLUTION: We know that 

𝐽𝑛(𝑥) =
𝑥𝑛

2𝑛Γ(𝑛+1)
[1 −

𝑥2

2.(2𝑛+2)
+

𝑥4

2.4.(2𝑛+2)(2𝑛+4)
− ⋯ ⋯ ⋯ ⋯ ⋯ ]\ 

Substituting  𝑛 =
1

2
 and using Γ (

3

2
) =

√𝜋

2
, we obtain 

𝑱𝟏/𝟐(𝒙) = √
2𝑥

𝜋
[1 −

𝑥2

2.3
+

𝑥4

3.5.2.4
− ⋯ ⋯ ⋯ ] 

= √
2𝑥

𝜋
[1 −

𝑥2

3!
+

𝑥4

5!
− ⋯ ] 
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= √
2𝑥

𝜋
[𝑠𝑖𝑛𝑥] 

EXAMPLE2: Show that  𝐽𝑛(𝑥) is even and odd function for even 𝑛 and 

for odd 𝑛 respectively 

SOLUTION: The definition of Bessel function  

𝐽𝑛(𝑥) = ∑(−1)𝑟
1

𝑟! Γ(𝑛 + 𝑟 + 1)
(

𝑥

2
)

2𝑟+𝑛
∞

𝑟=0

 

Replacing 𝑥 by – 𝑥, we obtain  

𝐽𝑛(−𝑥) = ∑(−1)𝑟
1

𝑟! Γ(𝑛 + 𝑟 + 1)
(−

𝑥

2
)

2𝑟+𝑛
∞

𝑟=0

= (−1)𝑛𝐽𝑛(𝑥) 

i. If 𝑛 is even 𝐽𝑛(−𝑥) = 𝐽𝑛(𝑥), therefore 𝐽𝑛(𝑥)is even. 

ii. If 𝑛 is odd 𝐽𝑛(−𝑥) = −𝐽𝑛(𝑥), therefore 𝐽𝑛(𝑥)is odd. 

 

EXAMPLE3: Prove that 
𝑑

𝑑𝑥
[𝑥𝐽𝑛(𝑥)𝐽𝑛+1(𝑥)] = 𝑥[𝐽𝑛

2(𝑥) − 𝐽𝑛+1
2 (𝑥)] 

SOLUTION: we know that 
𝑑

𝑑𝑥
[𝑥𝐽𝑛(𝑥)𝐽𝑛+1(𝑥)] = 𝑥[𝐽𝑛

2(𝑥) −

𝐽𝑛+1
2 (𝑥)]                … (1) 

Now we take L.H.S of (1) 
𝑑

𝑑𝑥
[𝑥𝐽𝑛(𝑥)𝐽𝑛+1(𝑥)]

= 𝑥𝐽𝑛(𝑥)𝐽′𝑛+1(𝑥) + 𝑥𝐽′𝑛(𝑥)𝐽𝑛+1(𝑥)
+ 𝐽𝑛(𝑥)𝐽𝑛+1(𝑥)    … (2) 

From recurrence relation I and II, we get 

𝑥𝐽′𝑛(𝑥) = 𝑛𝐽𝑛(𝑥) − 𝑥𝐽𝑛+1(𝑥) 

                             𝑥𝐽′𝑛(𝑥) = −𝑛𝐽𝑛(𝑥) −
𝑥𝐽𝑛−1(𝑥)                                                      … (3) 

Substituting 𝑛 as (𝑛 + 1) in (3), we have 

𝑥𝐽′𝑛+1(𝑥) = −(𝑛 + 1)𝑥𝐽𝑛+1(𝑥) + 𝑥𝐽𝑛(𝑥) 

Putting the value of 𝑥𝐽′𝑛(𝑥) and 𝑥𝐽′𝑛+1(𝑥)from in (3), we obtain 

= 𝐽𝑛(𝑥)[−(𝑛 + 1)𝑥𝐽𝑛+1(𝑥) + 𝑥𝐽𝑛(𝑥)] + 𝐽𝑛+1(𝑥)[𝑛𝐽𝑛(𝑥) − 𝑥𝐽𝑛+1(𝑥)]
+ 𝐽𝑛(𝑥)𝐽𝑛+1(𝑥) 

= 𝑥[𝐽𝑛
2(𝑥) − 𝐽𝑛+1

2 (𝑥)] = 𝑅. 𝐻. 𝑆  

13.7 GENERATING FUNCTION FOR BESSEL’S 

EQUATION:- 

Theorem: Show that when 𝑛 is a positive integer 𝐽𝑛(𝑥) is the coefficient 

of 𝑧𝑛 in the expansion of 𝑒𝑥𝑝 {
𝑥

𝑧
(𝑧 −

1

𝑧
)}    in ascending and descending 

power of 𝑧. 

Proof: We given,  𝑒𝑥𝑝 {
𝑥

𝑧
(𝑧 −

1

𝑧
)} = 𝑒𝑥𝑝 (

𝑥𝑧

2
) . 𝑒𝑥𝑝 (−

𝑥

2𝑧
) 
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= [1 + (
𝑥

2
) 𝑧 + (

𝑥

2
)

2 𝑧2

2!
+ ⋯ (

𝑥

2
)

𝑛

.
𝑧𝑛

𝑛!
+ (

𝑥

2
)

𝑛+1 𝑧𝑛+1

(𝑛 + 1)!
+ ⋯ ]

× [1 − (
𝑥

2
) 𝑧−1 + (

𝑥

2
)

2 𝑧−2

2!
+ ⋯ + (

𝑥

2
)

𝑛 (−1)𝑛𝑧−𝑛

𝑛!

+ (
𝑥

2
)

𝑛+1 (−1)𝑛+1

(𝑛 + 1)!
𝑧−(𝑛+1) + ⋯ ]     … (1) 

The coefficient of 𝑧𝑛 in product (1) is derived by multiplying the 

coefficient of 𝑧𝑛 , 𝑧𝑛+1, 𝑧𝑛+2, … in the 1st bracket with the coefficient of 

𝑧0, 𝑧−1, 𝑧−2, …  in the 2nd bracket 

 ⇒                      = (
𝑥

2
)

𝑛 1

𝑛!
− (

𝑥

2
)

𝑛+1 1

(𝑛+1)!
+ (

𝑥

2
)

𝑛+4 1

2!(𝑛+2)!
− ⋯ 

 ⇒        ∑
(−1)𝑟

(𝑛+𝑟)!
(

𝑥

2
)

𝑛+2𝑟
∞
𝑟=0 = ∑

(−1)𝑟

(𝑛+𝑟+1)!
(

𝑥

2
)

𝑛+2𝑟
∞
𝑟=0 = 𝐽𝑛(𝑥),       [(𝑛 +

𝑟)! = Γ(𝑛 + 𝑟 + 1)] 
Similarly the coefficient of 𝑧−𝑛 in the expansion (1) is  

= (−1)𝑛 [(
𝑥

2
)

𝑛 1

𝑛!
− (

𝑥

2
)

𝑛+2 1

(𝑛 + 1)!
+ (

𝑥

2
)

𝑛+4 1

2! (𝑛 + 2)!
]

= (−1)𝑛𝐽𝑛(𝑥) 

Finally, the term of 𝑧 is 

= 1 −
𝑥2

22
+

𝑥4

22. 42
− ⋯ = 𝐽0(𝑥) 

Thus the equation (1) gives, 

𝑒𝑥𝑝 {
𝑥

𝑧
(𝑧 −

1

𝑧
)} = 𝐽0(𝑥) + (𝑧 −

1

𝑧
) 𝐽1(𝑥) + (𝑧2 +

1

𝑧2
) 𝐽1(𝑥) + ⋯ 

Since    𝐽−𝑛(𝑥) = (−1)𝑛𝐽𝑛(𝑥),  therefore 

 

𝑒𝑥𝑝 {
𝑥

𝑧
(𝑧 −

1

𝑧
)} = ∑ 𝐽𝑛(𝑥)𝑧𝑛

∞

𝑛=−∞

 

SOLVED EXAMPLES 

 
EXAMPLE1:Show that 

I. 𝑐𝑜𝑠(𝑥𝑠𝑖𝑛𝛼) =  𝐽0 + 2 cos 2𝛼 . 𝐽2 + 4 cos 4𝛼 . 𝐽4 + ⋯ 

II. 𝑠𝑖𝑛(𝑥𝑠𝑖𝑛𝛼) = 2𝑠𝑖𝑛𝛼. 𝐽1 + 2𝑠𝑖𝑛3𝛼. 𝐽2 + ⋯ 

III. 𝑐𝑜𝑠(𝑥𝑐𝑜𝑠𝛼) =  𝐽0 − 2 cos 2𝛼 . 𝐽2 + 4 cos 4𝛼 . 𝐽4 − ⋯ 

IV. 𝑠𝑖𝑛(𝑥𝑐𝑜𝑠𝛼) =  2 cos 2𝛼 . 𝐽1 − 2𝑐𝑜𝑠3𝛼. 𝐽3 + 2 cos 5𝛼 . 𝐽5 − ⋯ 

V. 𝑐𝑜𝑠𝑥 = 𝐽0 − 2𝐽2 + 4𝐽4 − ⋯ = 𝐽0(𝑥) + 2 ∑ (−1)𝑛𝐽2𝑛(𝑥)∞
𝑛=1  

VI. 𝑠𝑖𝑛𝑥 = 2𝐽1 − 2𝐽3 + 2𝐽5 − ⋯ = 2 ∑ (−1)𝑛𝐽2𝑛+1(𝑥)∞
𝑛=1  

  Proof: We have, 

𝑒𝑥𝑝 {
𝑥

𝑧
(𝑧 −

1

𝑧
)} = 𝐽0 + (𝑧 − 𝑧−1)𝐽1 + (𝑧2 − 𝑧−2)𝐽2 + ⋯       … (1) 

Suppose 𝑧 = 𝑒𝑖𝛼 so that 𝑧𝑛 = 𝑒𝑖𝑛𝛼 and 𝑧−𝑛 = 𝑒−𝑖𝑛𝛼 ,   then from (1), we 

obtain 
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𝑒𝑥𝑝 {
𝑥

𝑧
(𝑧 −

1

𝑧
)} = 𝐽0 + (𝑒𝑖𝛼 − 𝑒−𝑖𝛼)𝐽1 + (𝑒2𝑖𝛼 + 𝑒−2𝑖𝛼 )𝐽2 + ⋯   … (2) 

Hence     𝑐𝑜𝑠𝑛𝛼 = (𝑒𝑖𝑛𝛼 + 𝑒−𝑖𝑛𝛽) 2⁄  and  𝑠𝑖𝑛𝑛𝛼 = (𝑒𝑖𝑛𝛼 − 𝑒−𝑖𝑛𝛼 ) 2𝑖⁄ , 

we obtain 

𝑒𝑥𝑖𝑠𝑖𝑛𝛼 = 𝐽0 + 2𝑖 𝑠𝑖𝑛𝛼. 𝐽1 + 2𝑐𝑜𝑠2𝛼. 𝐽2 + 2𝑖𝑠𝑖𝑛3𝛼. 𝐽3 + ⋯ 

𝑐𝑜𝑠(𝑥𝑠𝑖𝑛𝛼) + 𝑖𝑠𝑖𝑛(𝑥𝑠𝑖𝑛𝛼)
= (𝐽0 + 2𝑐𝑜𝑠2𝛼. 𝐽2 + ⋯ )
+ 2𝑖 (𝑠𝑖𝑛𝛼. 𝐽1 + 2𝑖𝑠𝑖𝑛3𝛼. 𝐽3 + ⋯ )   … (3) 

Part I: Separating the real parts in equation (3), we get 

𝑐𝑜𝑠(𝑥𝑠𝑖𝑛𝛼) = (𝐽0 + 2𝑐𝑜𝑠2𝛼. 𝐽2 + 2𝑐𝑜𝑠4𝛼. 𝐽4 + ⋯ )                      (𝑖) 
Part II: Separating the imaginary parts in equation (3), we get 

𝑠𝑖𝑛(𝑥𝑠𝑖𝑛𝛼) = (𝑠𝑖𝑛𝛼. 𝐽1 + 2𝑖𝑠𝑖𝑛3𝛼. 𝐽3 + 2 𝑠𝑖𝑛5𝛼. 𝐽5 + ⋯ )           (𝑖𝑖)  
Part III: Putting 𝛼 by 𝜋 2⁄ − 𝜙 in (i), we obtain 

𝑐𝑜𝑠(𝑥𝑐𝑜𝑠𝛼) =  𝐽0 − 2 cos 2𝛼 . 𝐽2 + 4 cos 4𝛼 . 𝐽4 − ⋯ 

Part IV: Putting 𝛼 by 𝜋 2⁄ − 𝜙 in (ii), we obtain 

𝑠𝑖𝑛(𝑥𝑐𝑜𝑠𝛼) =  2 cos 2𝛼 . 𝐽1 − 2𝑐𝑜𝑠3𝛼. 𝐽3 + 2 cos 5𝛼 . 𝐽5 − ⋯ 

Part V &VI: Putting 𝛼 by 0 in (i) and (ii), we obtain 

𝑐𝑜𝑠𝑥 = 𝐽0 − 2𝐽2 + 4𝐽4 − ⋯ = 𝐽0(𝑥) + 2 ∑(−1)𝑛𝐽2𝑛(𝑥)

∞

𝑛=1

 

𝑠𝑖𝑛𝑥 = 2𝐽1 − 2𝐽3 + 2𝐽5 − ⋯ = 2 ∑(−1)𝑛𝐽2𝑛+1(𝑥)

∞

𝑛=1

 

EXAMPLE2: Prove that 𝑥𝑠𝑖𝑛𝑥 = 2(22𝐽𝑛 − 42𝐽4 + 62𝐽6 − ⋯ ) 
SOLUTION: we have,  
 

𝑐𝑜𝑠(𝑥𝑠𝑖𝑛𝛼) = (𝐽0 + 2𝑐𝑜𝑠2𝛼. 𝐽2 + 2𝑐𝑜𝑠4𝛼. 𝐽4 + ⋯ )                      … (𝑖) 

Differentiating (i) w. r.t. 𝛼, we get 

−𝑠𝑖𝑛(𝑥𝑠𝑖𝑛𝛼). 𝑥𝑐𝑜𝑠𝛼 = (0 − 2.2𝐽2 𝑠𝑖𝑛2𝛼. −2.4𝐽4 𝑠𝑖𝑛4𝛼. + ⋯ ) 

Again differentiating (i) w. r.t. 𝛼, we have 

−𝑐𝑜𝑠(𝑥𝑠𝑖𝑛𝛼). (𝑥𝑐𝑜𝑠𝛼)2 + 𝑠𝑖𝑛(𝑥𝑠𝑖𝑛𝛼). (𝑥𝑠𝑖𝑛𝛼)
= (−2. 22𝐽2 𝑐𝑜𝑠2𝛼. −2. 42𝐽4 𝑐𝑜𝑠4𝛼. + ⋯ ) … (𝑖𝑖) 

Separating 𝛼 by 𝜋 2⁄  in (ii) 

𝑥𝑠𝑖𝑛𝑥 = 2(22𝐽2 − 42𝐽4 + 62𝐽6 − ⋯ ) 
 

13.8 ORTHOGONALITY PROPERTY FOR 

BESSEL’S EQUATION:- 

If 𝝀𝒊 and 𝝀𝒋 are roots of the equation 𝑱𝒏(𝝀𝒂) = 𝟎, then 

∫ 𝒙𝑱𝒏(𝝀𝒊𝒙)𝑱𝒏(𝝀𝒋𝒙)𝒅𝒙 = {

𝟎,    𝒊𝒇 𝒊 ≠ 𝒋

𝒂𝟐

𝟐
𝑱𝒏+𝟏

𝟐 (𝝀𝒊𝒂), 𝒊𝒇 𝒊 = 𝒋

𝒂

𝟎
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Proof:  

CaseI 

Suppose 𝑖 ≠ 𝑗 𝑖. 𝑒.,  suppose  𝜆𝑖 and 𝜆𝑗 are different roots of 𝐽𝑛(𝜆𝑎) = 0 

          ∴                           𝐽𝑛(𝜆𝑖𝑎) = 0 and  𝐽𝑛(𝜆𝑗𝑎) = 0                  … (1) 

Let                             𝑢(𝑥) = 𝐽𝑛(𝜆𝑖𝑥)  and 𝑣(𝑥) = 𝐽𝑛(𝜆𝑗𝑥)          … (2) 

Then 𝑢 and 𝑣 are Bessel functions satisfying the modified Bessel equation 

𝑥2𝑦′′ + 𝑥𝑦′ + (𝜆2𝑥2 − 𝑛2)𝑦 = 0            … (3) 

𝑥2𝑢′′ + 𝑥𝑢′ + (𝜆𝑖
2𝑥2 − 𝑛2)𝑢 = 0            … (4) 

𝑥2𝑣′′ + 𝑥𝑣′ + (𝜆𝑗
2𝑥2 − 𝑛2)𝑣 = 0            … (5) 

Multiplying (4) by v and (5) by u and then subtracting, we obtain  

𝑥2(𝑣𝑢′′ − 𝑢𝑣′′) + 𝑥(𝑣𝑢′ − 𝑢𝑣′) + 𝑥2(𝜆𝑖
2 − 𝜆𝑗

2)𝑢𝑣 = 0 ⇒ 𝑥(𝑣𝑢′′ −

𝑢𝑣′′) + (𝑣𝑢′ − 𝑢𝑣′) = 𝑥(𝜆𝑗
2 − 𝜆𝑖

2)𝑢𝑣 

 

𝑥
𝑑

𝑑𝑥
(𝑣𝑢′ − 𝑢𝑣′) + (𝑣𝑢′ − 𝑢𝑣′) = 𝑥(𝜆𝑗

2 − 𝜆𝑖
2)𝑢𝑣 

𝑥
𝑑

𝑑𝑥
[𝑥(𝑣𝑢′ − 𝑢𝑣′)] = 𝑥(𝜆𝑗

2 − 𝜆𝑖
2)𝑢𝑣 

Integrating the above equation w.r.t. 𝑥 from 0 to 𝑎, (𝜆𝑗
2 −

𝜆𝑖
2) ∫ 𝑥𝑢𝑣 𝑑𝑥 = [𝑥(𝑣𝑢′ − 𝑢𝑣′)]0

𝑎𝑎

0
 

Using (2), the equation gives 

(𝜆𝑗
2 − 𝜆𝑖

2) ∫ 𝑥𝐽𝑛(𝜆𝑖𝑥)𝐽𝑛(𝜆𝑗𝑥) 𝑑𝑥
𝑎

0

= [𝑥{𝐽𝑛(𝜆𝑗𝑥)𝐽′𝑛(𝜆𝑖𝑥) − 𝐽𝑛(𝜆𝑖𝑥)𝐽′𝑛(𝜆𝑗𝑥)}]
0

𝑎

= 𝑎{𝐽𝑛(𝜆𝑗𝑎)𝐽′𝑛(𝜆𝑖𝑎) − 𝐽𝑛(𝜆𝑖𝑎)𝐽′𝑛(𝜆𝑗𝑎)} = 0 

 

Since 𝜆𝑖 ≠ 𝜆𝑗 the above equation obtain 

∫ 𝑥𝐽𝑛(𝜆𝑖𝑥)𝐽𝑛(𝜆𝑗𝑥) 𝑑𝑥 = 0
𝑎

0

    𝑖𝑓    𝑖 ≠ 𝑗          … . (6) 

CaseII 

Suppose 𝑖 = 𝑗 𝑖. 𝑒.,  multiplying (4) by 2𝑢′, we obtain 

2𝑥2𝑢′′𝑢′ + 2𝑥(𝑢′)2 + 2(𝜆𝑖
2𝑥2 − 𝑛2)𝑢𝑢′ = 0             

𝑑

𝑑𝑥
[𝑥2(𝑢′)2 − 𝑛2𝑢2 + 𝜆𝑖

2𝑥2𝑢2] − 2𝜆𝑖
2𝑥𝑢2 = 0 

2𝜆𝑖
2𝑥𝑢2 =

𝑑

𝑑𝑥
[𝑥2(𝑢′)2 − 𝑛2𝑢2 + 𝜆𝑖

2𝑥2𝑢2] 

Integrating the above equation w.r.t. 𝑥 from 0 to 𝑎, we obtain 

2𝜆𝑖
2 ∫ 𝑥𝑢2𝑑𝑥

𝑎

0

= [𝑥2(𝑢′)2 − 𝑛2𝑢2 + 𝜆𝑖
2𝑥2𝑢2]

0

𝑎
 

Using 𝐽𝑛(0) = 0 the above equation, we have 
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2𝜆𝑖
2 ∫ 𝑥𝐽𝑛

2(𝜆𝑖𝑥)2𝑑𝑥
𝑎

0

= [𝑥2(𝐽′𝑛(𝜆𝑖𝑥))
2

− 𝑛2(𝐽𝑛(𝜆𝑖𝑥))
2

+ 𝜆𝑖
2𝑥2(𝐽𝑛(𝜆𝑖𝑥))

2
]

0

𝑎

 

2𝜆𝑖
2 ∫ 𝑥𝐽𝑛

2(𝜆𝑖𝑥)2𝑑𝑥
𝑎

0

= 𝑎2 [(𝐽′𝑛(𝜆𝑖𝑥))
2
]

𝑎𝑡 𝑥=𝑎
 … (7) 

From recurrence relation I , we get 
𝑑

𝑑𝑥
[𝐽𝑛(𝑥)] =

𝑛

𝑥
𝐽𝑛(𝑥) − 𝐽𝑛+1(𝑥) 

Replacing 𝑥 by 𝜆𝑖𝑥 in above equation, we get 

𝑑[𝐽𝑛(𝜆𝑖𝑥)]

𝑑(𝜆𝑖𝑥)
=

𝑛

(𝜆𝑖𝑥)
𝐽𝑛(𝜆𝑖𝑥) − 𝐽𝑛+1(𝜆𝑖𝑥) 

1

𝜆𝑖
.
𝑑[𝐽𝑛(𝜆𝑖𝑥)]

𝑑𝑥
=

𝑛

(𝜆𝑖𝑥)
𝐽𝑛(𝜆𝑖𝑥) − 𝐽𝑛+1(𝜆𝑖𝑥) 

 

𝐽′𝑛(𝜆𝑖𝑥) =
𝑛

(𝜆𝑖𝑥)
𝐽𝑛(𝜆𝑖𝑥) − 𝐽𝑛+1(𝜆𝑖𝑥) 

[{𝐽′𝑛(𝜆𝑖𝑥)}2]𝑎𝑡 𝑥=𝑎 = [{
𝑛

(𝜆𝑖𝑥)
𝐽𝑛(𝜆𝑖𝑥) − 𝐽𝑛+1(𝜆𝑖𝑥)}

2

]
𝑎𝑡 𝑥=𝑎

 

= {0 − 𝜆𝑖𝐽𝑛+1(𝜆𝑖𝑎)}2 = 𝜆𝑖
2𝐽𝑛+1

2 (𝜆𝑖𝑎) 

Using in equation (7), we have 

 

∫ 𝑥𝐽𝑛
2(𝜆𝑖𝑥)2𝑑𝑥

𝑎

0

=
𝑎2

2
𝐽𝑛+1

2 (𝜆𝑖𝑎)         … . (8) 

 

Combining equation (6) and (8), we can write 

∫ 𝒙𝑱𝒏(𝝀𝒊𝒙)𝑱𝒏(𝝀𝒋𝒙)𝒅𝒙 =
𝒂𝟐

𝟐
𝑱𝒏+𝟏

𝟐 (𝝀𝒊𝒂)𝜹𝒊𝒋

𝒂

𝟎

 

Where 𝛿𝑖𝑗 = (𝑘𝑟𝑜𝑛𝑖𝑘𝑒𝑟 𝑑𝑒𝑙𝑡𝑎) =  {
0, 𝑖 ≠ 𝑗
1, 𝑖 = 𝑗

 

13.9 BESSEL INTEGRALS:- 

Show that 

I. 𝐽𝑛(𝑥) =
1

𝜋
∫ 𝑐𝑜𝑠(𝑛𝛼 − 𝑥𝑠𝑖𝑛𝛼)𝑑𝛼,

𝜋

0
 where 𝑛 is a positive 

integer. 

II. 𝐽𝑛(𝑥) =
1

𝜋
∫ 𝑐𝑜𝑠(𝑛𝛼 − 𝑥𝑠𝑖𝑛𝛼)𝑑𝛼,

𝜋

0
 where 𝑛 is any integer. 

III. 𝐽0(𝑥) =
1

𝜋
∫ 𝑐𝑜𝑠(𝑥𝑠𝑖𝑛𝛼)𝑑𝛼

𝜋

0
=

1

𝜋
∫ 𝑐𝑜𝑠(𝑥𝑐𝑜𝑠𝛼)𝑑𝛼

𝜋

0
. 

IV. Deduce that 𝐽0(𝑥) = 1 −
𝑥2

22 +
𝑥4

22 .42 − ⋯ = ∑
(−1)𝑟𝑥2𝑟

(2𝑟.𝑟!)2
∞
𝑟=0 . 

 SOLUTION:  
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PartI: we shall use the following results: 

∫ 𝑐𝑜𝑠𝑚𝛼 𝑐𝑜𝑠𝑛𝛼 𝑑𝛼 =
𝜋

0

 
∫ 𝑠𝑖𝑛𝑚𝛼 𝑠𝑖𝑛𝑛𝛼 𝑑𝛼 =

𝜋

0

𝜋 2⁄  𝑤ℎ𝑒𝑛 𝑚 = 0

                                        = 0 𝑤ℎ𝑒𝑛   𝑚 ≠ 𝑛

} … (1) 

   𝑐𝑜𝑠(𝑥𝑠𝑖𝑛𝛼) = 𝐽0 + 2𝐽1𝑐𝑜𝑠2𝛼 + 2𝐽2𝑐𝑜𝑠4𝛼 + ⋯            … (2) 
And 

  𝑠𝑖𝑛(𝑥𝑠𝑖𝑛𝛼) = 2𝐽1𝑠𝑖𝑛𝛼 + 2𝐽3𝑠𝑖𝑛3𝛼 + 2𝐽5𝑠𝑖𝑛5𝛼 + ⋯    … (3) 

Now multiplying both sides of (2) by 𝑐𝑜𝑠𝑛𝛼, then integrating w.r.t.𝛼, the 

limit (0 𝑡𝑜 𝜋) and using (1), we obtain 

                                 

∫ 𝑐𝑜𝑠(𝑥𝑠𝑖𝑛𝛼)𝑐𝑜𝑠𝑛𝛼
𝜋

0
𝑑𝛼 = 0, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

                                                = 𝜋𝐽𝑛 , 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
}                  … (4) 

Now again multiplying both sides of (3) by 𝑠𝑖𝑛𝑛𝛼, then integrating 

w.r.t.𝛼, the limit (0 𝑡𝑜 𝜋) and using (1), we have 

                                    

∫ 𝑠𝑖𝑛(𝑥𝑠𝑖𝑛𝛼)𝑠𝑖𝑛𝑛𝛼
𝜋

0
𝑑𝛼 = 𝜋𝐽𝑛 , 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

                                                = 0, 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
}                       … (5) 

Let us consider 𝑛 be odd so adding above odd functions in equation (4) 

and (5), we get 

∫ [𝑐𝑜𝑠(𝑥𝑠𝑖𝑛𝛼)𝑐𝑜𝑠𝑛𝛼𝑑𝛼 +  𝑠𝑖𝑛(𝑥𝑠𝑖𝑛𝛼)𝑠𝑖𝑛𝑛𝛼]
𝜋

0

𝑑𝛼 = 𝜋𝐽𝑛 

∫ 𝑐𝑜𝑠(𝑛𝛼 − 𝑥𝑠𝑖𝑛𝑛𝛼)
𝜋

0
𝑑𝛼 = 𝜋𝐽𝑛  or 𝐽𝑛(𝑥) =

1

𝜋
∫ 𝑐𝑜𝑠(𝑛𝛼 −

𝜋

0

𝑥𝑠𝑖𝑛𝛼) 𝑑𝛼                                                                               … (6) 

Similarly, Let us consider 𝑛 be even so adding above even functions in 

equation (4) and (5), we get (6). Thus (6) holds for each positive integer 

(even as well as odd). 

PartII: Let 𝑛 be any integer, then the part I, if 𝑛 is positive integer, we 

obtain                                                

                      𝐽𝑛(𝑥) =
1

𝜋
∫ 𝑐𝑜𝑠(𝑛𝛼 − 𝑥𝑠𝑖𝑛𝛼)

𝜋

0
𝑑𝛼            … (7) 

Let 𝑛 be negative integer, then = −𝑚 , where 𝑚 is positive integer. To 

prove that the result for negative integer, we prove that 

                   𝐽−𝑚(𝑥) =
1

𝜋
∫ 𝑐𝑜𝑠(−𝑚𝛼 − 𝑥𝑠𝑖𝑛𝛼)

𝜋

0
𝑑𝛼        … (8) 

Let 𝛼 = 𝜋 − 𝛽 so that𝑑𝛼 = −𝑑𝛽, then we have the R.H.S.of (8) 

=
1

𝜋
∫ 𝑐𝑜𝑠{−𝑚(𝜋 − 𝛽) − 𝑠𝑖𝑛(𝜋 − 𝛽)}

0

𝜋

(−𝑑𝛽)

=
1

𝜋
∫ 𝑐𝑜𝑠[(𝑚𝛽 − 𝑥𝑠𝑖𝑛𝛽) − 𝑚𝜋]

𝜋

0

(𝑑𝛽)   

=
1

𝜋
∫ [𝑐𝑜𝑠(𝑚𝛽 − 𝑥𝑠𝑖𝑛𝛽)𝑐𝑜𝑠𝑚𝜋 + 𝑠𝑖𝑛(𝑚𝛽 − 𝑥𝑠𝑖𝑛𝛽)𝑠𝑖𝑛𝑚𝜋]

𝜋

0

𝑑𝛽 

                     =
1

𝜋
∫ (−1)𝑚𝑐𝑜𝑠(𝑚𝛽 − 𝑥𝑠𝑖𝑛𝛽)

𝜋

0
𝑑𝛽     [∴ 𝑠𝑖𝑛𝑚𝜋 =

0 &  𝑐𝑜𝑠𝑚𝜋 =  (−1)𝑚] 
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                     =
1

𝜋
(−1)𝑚 ∫ 𝑐𝑜𝑠(𝑚𝛽 − 𝑥𝑠𝑖𝑛𝛽)

𝜋

0
𝑑𝛽        [using (7) as 

𝑚 𝑎𝑠 +  integer] 

                     =  𝐽−𝑚(𝑥)=L.H.S. of (8) 

PartIII: Now integrating (2) w.r.t. 𝛼 between the limit (0 𝑡𝑜 𝜋) , then  

                              ∫ 𝑐𝑜𝑠𝑘𝛼 𝑑𝛼 = 0
𝜋

0
                                            … (9) 

If 𝑘 is positive integer, we get 

∫ 𝑐𝑜𝑠(𝑥𝑠𝑖𝑛𝛼)𝑑𝛼 = 𝐽0(𝑥) ∫ 𝑑𝛼
𝜋

0

+ 0 + 0 + ⋯ = 𝐽0(𝑥). 𝜋
𝜋

0

 

𝐽0(𝑥) =
1

𝜋
∫ 𝑐𝑜𝑠(𝑥𝑠𝑖𝑛𝛼)𝑑𝛼

𝜋

0

 

Substituting 𝛼 by 
𝜋

2
− 𝛼 in (2), we obtain 

        𝑐𝑜𝑠(𝑥𝑐𝑜𝑠𝛼) =  𝐽0 − 2 cos 2𝛼 . 𝐽2 + 4 cos 4𝛼 . 𝐽4 − ⋯        … (10) 

Again integrating (10) w.r.t. 𝛼 and using (9), we have 

∫ 𝑐𝑜𝑠(𝑥𝑐𝑜𝑠𝛼)𝑑𝛼
𝜋

0
= 𝐽0(𝑥). 𝜋 − 0 − 0 …    or           𝐽0(𝑥) =

1

𝜋
∫ 𝑐𝑜𝑠(𝑥𝑐𝑜𝑠𝛼)𝑑𝛼

𝜋

0
 

PartIV: From (10),    𝐽0(𝑥) =
1

𝜋
∫ (1 −

𝑥2𝑐𝑜𝑠2𝛼

2!
+

𝑥4𝑐𝑜𝑠4𝛼

4!
− ⋯ ) 𝑑𝛼

𝜋

0
 

But                          ∫ 𝑐𝑜𝑠2𝑛𝛼𝑑𝛼 =
1∙3∙5……(2𝑛−1)

2∙4∙6….(2𝑛)
𝜋

𝜋

0
 

Using this equation, 𝐽0(𝑥) =
1

𝜋
[𝑥 −

𝑥2

2!
∙

1

2
𝜋 +

𝑥2

4!
∙

1∙3

2
𝜋 − ⋯ ⋯ ] =

 ∑
(−1)𝑟𝑥2𝑟

(2𝑟∙𝑟!)2
∞
𝑟=0  

13.10 BESSEL SERIES:- 

If 𝑓(𝑥) is described in region 0 ≤ 𝑥 ≤ 𝑎 and has an expansion of the form 

𝑓(𝑥) = ∑ 𝑐𝑖𝐽𝑛(𝜆𝑖𝑥)   

∞

𝑖=1

                 … . (1) 

Where the 𝜆𝑖 are the roots of the equation 

                                                                    𝐽𝑛(𝜆𝑖𝑥) = 0                        … (2) 
Then  

                                                             𝑐𝑖 =
2 ∫ 𝑥𝑓(𝑥)

𝑎
0

𝐽𝑛(𝜆𝑖𝑥)𝑑𝑥

𝑎2𝐽𝑛+1
2 (𝜆𝑖𝑎)

                  … (3) 

Proof: Multiplying both sides 𝑥𝐽𝑛(𝜆𝑗𝑥), we have 

                                     𝑥𝑓(𝑥)𝐽𝑛(𝜆𝑗𝑥) =

∑ 𝑐𝑖𝑥𝐽𝑛(𝜆𝑖𝑥)𝐽𝑛(𝜆𝑗𝑥)∞
𝑖=1           … (4) 

Integrating both sides of (4),w.r.t. 𝑥 from 0 𝑡𝑜 𝑎, we obtain 
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∫ 𝑥𝑓(𝑥)𝐽𝑛(𝜆𝑗𝑥)𝑑𝑥 =
𝑎

0

𝑐𝑖 ∑ ∫ 𝑥𝐽𝑛(𝜆𝑖𝑥)𝐽𝑛(𝜆𝑗𝑥)𝑑𝑥
𝑎

0

∞

𝑖=0

    … (5) 

From the orthogonal property of Bessel functions, we get 

∫ 𝑥𝐽𝑛(𝜆𝑖𝑥)𝐽𝑛(𝜆𝑗𝑥)𝑑𝑥 = {

0,    𝑖𝑓 𝑖 ≠ 𝑗

𝑎2

2
𝐽𝑛+1

2 (𝜆𝑖𝑎), 𝑖𝑓 𝑖 = 𝑗

𝑎

0

    … (6) 

Using (6), (5) reduce to  

∫ 𝑥𝑓(𝑥)𝐽𝑛(𝜆𝑗𝑥)𝑑𝑥 = 𝑐𝑗

𝑎2

2
𝐽𝑛+1

2 (𝜆𝑖𝑎)
𝑎

0

 

Replacing 𝑗 by 𝑖 in above equation, we obtain 

𝑐𝑗

𝑎2

2
𝐽𝑛+1

2 (𝜆𝑖𝑎) = ∫ 𝑥𝑓(𝑥)𝐽𝑛(𝜆𝑖𝑥)𝑑𝑥
𝑎

0

 

 

𝑐𝑖 =
2 ∫ 𝑥𝑓(𝑥)

𝑎

0
𝐽𝑛(𝜆𝑖𝑥)𝑑𝑥

𝑎2𝐽𝑛+1
2 (𝜆𝑖𝑎)

 

 

SOLVED EXAMPLES 

Example1: Prove that 𝐽𝑛(𝑥) = (−2)𝑛𝑥𝑛 𝑑𝑛

𝑑(𝑥2)𝑛 𝐽0(𝑥) 

Proof: Putting the values of 𝐽0(𝑥) in series R.H.S., we obtain 

𝑅. 𝐻. 𝑆. = (−2𝑥)𝑛 [
𝑑𝑛

𝑑(𝑥2)𝑛
(∑

(−1)𝑟

𝑟! Γ(𝑟 + 1)
(

𝑥

2
)

2𝑟
∞

𝑟=0

)] 

                                              = (−2𝑥)𝑛 [
𝑑𝑛

𝑑𝑡𝑛 (∑
(−1)𝑟

𝑟Γ(𝑟+1)
(

𝑡𝑟

22𝑟)∞
𝑟=0 )] 

= (−2𝑥)𝑛 ∑
(−1)𝑟

𝑟! Γ(𝑟 − 𝑛)
(

𝑡𝑟−𝑛

22𝑟
)

∞

𝑟=0

 

= (−1)𝑛 ∑
(−1)𝑟

𝑟! Γ(𝑟 − 𝑛 + 1)
(

𝑥

2
)

−𝑛+2𝑟
∞

𝑟=0

 

= (−1)𝑛𝐽−𝑛(𝑥) = 𝐽𝑛(𝑥) 

Example2: Prove that ∫ 𝑒−𝑎𝑥𝐽0(𝑡𝑥)𝑑𝑥
∞

0
=

1

√𝑎2+𝑡2
 

Proof: Let we take L.H.S.and using series representation for the Bessel 

function and changing the order of integration and summation, we given 

below 

𝐼 = ∫ 𝑒−𝑎𝑥𝐽0(𝑡𝑥)𝑑𝑥
∞

0

= ∑
(−1)𝑟 (

𝑡
2)

2𝑟

(𝑟!)2
∫ 𝑥2𝑟𝑒−𝑎𝑥𝑑𝑥

∞

0

∞

𝑟=0

 

= ∑
(−1)𝑟 (

𝑡
2)

2𝑟

Γ(2𝑟 + 1)

(𝑟!)2𝑎2𝑟+1

∞

𝑟=0

            𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑑𝑒𝑓. 𝑜𝑓 𝑔𝑎𝑚𝑚𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

Now  
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𝐼 =
1

𝑎
∑

(1/2)𝑟

𝑟!

∞

𝑟=0

(−
𝑡2

𝑎2
)

𝑟

 

=
1

𝑎
(1 +

𝑡2

𝑎2
)

−1/2

=
1

√𝑡2 + 𝑎2
 

 

13.11 HERMITE EQUATION AND ITS SOLUTION 

𝑯𝒏(𝒙):- 

The Hermite’s equation is the form 

(
𝑑2𝑦

𝑑𝑥2
) − 2𝑥

𝑑𝑦

𝑑𝑥
+ 2𝑛𝑦 = 0                      … (1) 

where 𝑛 is a constant. Now solve equation (1) in series by using Frobenius 

method. 

Let           

𝑦 = ∑ 𝐴𝑙𝑥
𝑘+𝑙

∞

𝑙=0

,     𝐴𝑙 ≠ 0                     … (2) 

Now differentiating (2), then we substituting the value of 𝑦,
𝑑2𝑦

𝑑𝑥2 and 
𝑑𝑦

𝑑𝑥
 in 

(1), we obtain 

∑ 𝐴𝑙(𝑘 + 𝑙)(𝑘 + 𝑙 − 1)𝑥𝑘+𝑙−2

∞

𝑙=0

− 2𝑥𝐴𝑙(𝑘 + 𝑙)𝑥𝑘+𝑙−1 + 2𝑛 ∑ 𝐴𝑙𝑥𝑘+𝑙

∞

𝑙=0

= 0 

∑ 𝐴𝑙(𝑘 + 𝑙)(𝑘 + 𝑙 − 1)𝑥𝑘+𝑙−2

∞

𝑙=0

− 2 {∑ 𝐴𝑙(𝑘 + 𝑙)𝑥𝑘+𝑙 − ∑ 𝐴𝑙𝑛𝑥𝑘+𝑙

∞

𝑙=0

∞

𝑙=0

}

= 0 

∑ 𝐴𝑙(𝑘 + 𝑙)(𝑘 + 𝑙 − 1)𝑥𝑘+𝑙−2

∞

𝑙=0

− 2 ∑ 𝐴𝑙(𝑘 + 𝑙 − 𝑛)𝑥𝑘+𝑙

∞

𝑙=0

= 0     … (3) 

Since the equation is identity. We equate to zero the coefficient of smallest 

power of 𝑥, namely 𝑥𝑘−2, in equation (3) and we get 

𝐴0𝑘(𝑘 − 1) = 0    or       𝑘(𝑘 − 1) = 0    as  𝐴0 ≠ 0                           … (4) 

So the roots of indicial equation (4) and 𝑘 = 0,1. They are distinct and 

differ by an integer. 

So again equating to zero the next smallest power of 𝑥 is 𝑘 − 1 in (3), we 

obtain 

                                             𝐴1(𝑘 + 1)𝑘 = 0                                          … (5) 

when𝑘 = 0, (5) shows that 𝐴1is indeterminate. Hence 𝐴0 and 𝐴1 can be 

taken as constants, 

equating to zero the coefficient of 𝑥𝑘+𝑙−2, (3) gives 
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𝐴𝑙(𝑘 + 𝑙)(𝑘 + 𝑙 − 1) − 2𝐴𝑙−2(𝑘 + 𝑙 − 2 − 𝑛) = 0 
                                                                                      

                                         𝐴𝑙 =
2(𝑘+𝑙−2−𝑛)

(𝑘+𝑙)(𝑘+𝑙−1)
𝐴𝑙−2                              … (6) 

Putting 𝑘 = 0 in (6), we obtain                      

                                                     𝐴𝑙 =
2(𝑙−2−𝑛)

(𝑙)(𝑙−1)
𝐴𝑙−2                       … (7) 

Putting 𝑙 = 2,4,6, … 2𝑙 in (7) we get 

𝐴2 = −
2𝑛

2.1
𝐴0 = −

2𝑛

2!
𝐴0 = −

(−1)1. 21. 𝑛

2!
𝐴0 

𝐴4 =
2(2 − 𝑛)

4.3
𝐴2 =

(−1)2. 2(2 − 𝑛)

4.3
.
2𝑛

2!
𝐴0 =

(−1)2. 22. 𝑛(𝑛 − 2)

2!
𝐴0 

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 

𝐴2𝑙 =
(−1)𝑛 . 2𝑛 . (𝑛 − 1)(𝑛 − 2) … (𝑛 − 2𝑙 + 1)

(2𝑙 + 1)!
𝐴0 

Putting 𝑙 = 3,5, … 2𝑙 + 1 in (7) we get 

 

𝐴3 = −
(−1)1. 21. (𝑛 − 1)

3!
𝐴1 

𝐴5 =
(−1)2. 22. (𝑛 − 1)(𝑛 − 3)

5!
𝐴1 

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 

𝐴2𝑙+1 =
(−1)𝑛 . 2𝑛 . (𝑛 − 1)(𝑛 − 3) … (𝑛 − 2𝑙 + 1)

(2𝑙 + 1)!
𝐴1 

Substituting the above value in (2) with = 0 , we obtain 

𝑦 = 𝐴0 [1 −
2𝑛

2!
𝑥2 +

22𝑛(𝑛−2)

4!
𝑥4 − ⋯ +

(−2)𝑙.(𝑛)(𝑛−2)…(𝑛−2𝑙+1)

(2𝑙+1)!
𝑥2𝑙 +

⋯ ]+𝐴1 [𝑥 −
2(𝑛−1)

3!
𝑥3 +

22(𝑛−1)(𝑛−3)

5!
𝑥5 + ⋯ +

(−2)𝑙.(𝑛−1)(𝑛−3)…(𝑛−2𝑙+1)

(2𝑙+1)!
𝑥2𝑙+1 + ⋯ ]                                                  … (8)    

                                                                     

                      𝑦 = 𝐴0𝑈 + 𝐴1𝑉                                                              … (9) 
 

Since U and V are not constant, U and V form a fundamental set (linearly 

Independent) of (1). Hence (8) and (9) is most general solution of (1) with 

𝐴0 and 𝐴1 as two arbitrary constant. 

Remarks. In practice we require the solution of equation (1) such that 

i. It is finite for all value of 𝑥 and  

ii. As 𝑥 → ∞,   𝑒𝑥𝑝. (1 2𝑥2⁄ )𝑦(𝑥) → 0   

      

  The solution (8) does not satisfy the condition as 𝑥 →
∞,   𝑒𝑥𝑝. (1 2𝑥2⁄ )𝑦(𝑥) → 0.However, if the series terminate then this 

condition will be satisfied. Replacing 𝑙 by 𝑙 + 2 in (7) 

                                                                           

                                                𝐴𝑙+2 =
2(𝑙−𝑛)

(𝑙+1)(𝑙+2)
𝐴𝑙                          … (10) 
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If 𝑙 is a positive integer, then for 𝑙 = 𝑛, 𝐴𝑙+2 = 0  𝑖. 𝑒., the series 

terminates.We shall now define the series of (1) in descending powers of 𝑥 

by considering 𝑛 to be non-negative integer. 

For 𝑙 = 0 equation(2), we obtain 

                    𝑦 = 𝐴𝑛𝑥𝑛 + 𝐴𝑛−2𝑥𝑛−2 + 𝐴𝑛−4𝑥𝑛−4 +
⋯ ⋯ ⋯                 … (11) 

From (10),    we get 𝐴𝑙 =

−
2(𝑙+1)(𝑙+2)

2(𝑛−𝑙)
𝐴𝑙+2                                                … (12) 

Putting 𝑙 = 𝑛 − 2, 𝑛 − 4, … … …. in (12), we have 

𝐴𝑛 = −
(𝑛)(𝑛−2)

2.2
𝐴𝑛 , 𝐴𝑛−4 = −

(𝑛)(𝑛−1)(𝑛−2)(𝑛−3)

22.2.4
𝐴𝑛 and so on 

Putting these value in (11) 

𝑦 = [𝑥𝑛 −
(𝑛)(𝑛 − 2)

2.2
𝑥𝑛−2 −

(𝑛)(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

22. 2.4
𝑥𝑛−4 + ⋯ ⋯ ⋯

+  
(−1)𝑙. 𝑛(𝑛 − 1). . (𝑛 − 2𝑙 + 1)

2𝑙. 2.4 … .2𝑙
𝑥𝑛−2𝑙 + ⋯ ] 

= ∑
(−1)𝑙. 𝑛(𝑛 − 1). . (𝑛 − 2𝑙 + 1)

2𝑙. 2.4 … .2𝑙
𝑥𝑛−2𝑙

[𝑛/2]

𝑙=0

   𝑎𝑠    [𝑛/2]

= {

𝑛

2
               𝑖𝑓 𝑛 𝑖𝑠  𝑒𝑣𝑒𝑛

(𝑛 − 1)

2
    𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

 

Taking 𝐴𝑛 = 2𝑛, then the Hermite polynomial of order 𝑛 is defined by 

𝑦 = 𝐻𝑛(𝑥) ∑ (−1)𝑙
𝑛!

𝑙! (𝑛 − 2𝑙)!
(2𝑥)𝑛−2𝑙

[𝑛/2]

𝑙=0

 

where 𝑯𝒏(𝒙) is called the Hermite polynomial of order 𝒏. 

 

13.12 GENERATING FUNCTION FOR  𝑯𝒏(𝒙):- 

Theorem: Prove that 𝑒2𝑥𝑡−𝑡2
= ∑

𝑡𝑛

𝑛!

∞
𝑛=0 𝑯𝒏(𝒙). 

Proof: we given  𝑒2𝑥𝑡−𝑡2
=  𝑒2𝑥𝑡 . 𝑒−𝑡2

=  ∑
(2𝑥𝑡)𝑙

𝑙!

∞
𝑙=0 ∑

(−𝑡2)
𝑚

𝑚!

∞
𝑚=0 =

∑ ∑
(2𝑥)𝑙(−1)𝑚

𝑙!𝑚!
𝑡𝑙+2𝑚∞

𝑚=0
∞
𝑙=0  

Let 𝑙 + 2𝑚 = 𝑛 so 𝑙 = 𝑛 − 2𝑚 

Hence the coefficient of 𝑡𝑛 is defined by 

(−1)𝑙
(2𝑥)2−2𝑙

𝑙! (𝑛 − 2𝑙)!
 

Which gives all value of𝑙 for which equation (2) is the coefficient of  𝑡𝑛. 

If 𝑛 is even , 𝑙 ≤ 𝑛/2 shows that 𝑙 varies from 0 𝑡𝑜 𝑛/2. 

Again 𝑛 is odd , 𝑙 ≤ 𝑛/2 shows that 𝑙 varies from 0 𝑡𝑜 (𝑛 − 1)/2. 

So the total coefficient of 𝑡𝑛 in expansion of 𝑒2𝑡𝑥−𝑡2   is obtained by 
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∑(−𝟏)𝒍

∞

𝒊=𝟎

(𝟐𝒙)𝒏−𝟐𝒍

𝒍! (𝒏 − 𝟐𝒍)!
=

𝑯𝒏(𝒙)

𝒏!
 

 

13.13 ORTHOGONALITY PROPERTIES FOR 

𝑯𝒏(𝒙):- 

Theorem: Prove that ∫ 𝑒−𝑥2
𝑯𝒏(𝒙)𝑯𝒎(𝒙)

∞

−∞
𝑑𝑥 = 2𝑛𝑛! √𝜋 𝛿𝑛𝑚                            

or     

∫ 𝑒−𝑥2
𝑯𝒏(𝒙)𝑯𝒎(𝒙)

∞

−∞

𝑑𝑥 = {
0,              𝑖𝑓 𝑚 ≠ 𝑛

√𝜋2𝑛𝑛! ,    𝑖𝑓 𝑚 = 𝑛
 

Or 

Prove that the Hermite polynomials are orthogonal over (−∞, ∞) with 

respect to the weight function 𝑒−𝑥2
. 

Proof: Using the generating function of Hermite polynomials, we obtain   

                  ∑ 𝑯𝒏(𝒙)
𝒕𝒏

𝒏!
= 𝒆𝟐𝒕𝒙−𝒕𝟐∞

𝑛=0   and  ∑ 𝑯𝒎(𝒙)
𝒔𝒏

𝒎!
= 𝒆𝟐𝒔𝒙−𝒔𝟐∞

𝑚=0  

 ∴                       ∑ ∑
𝑯𝒏(𝒙)𝑯𝒎(𝒙)

𝒏!𝒎!

∞
𝑚=0

∞
𝑛=0 𝒕𝒏𝒔𝒏 = 𝒆𝟐𝒕𝒙−𝒕𝟐+𝟐𝒔𝒙−𝒔𝟐

 

Multiplying both sides by 𝑒−𝑥2
 and then integrating both sides w.r.t. 𝑥 

from [−∞,∞], we obtain 

∑ ∑ [∫ 𝑒−𝑥2
𝐻𝑛(𝑥)𝐻𝑚(𝑥)

∞

−∞

𝑑𝑥]

∞

𝑚=0

∞

𝑛=0

𝑡𝑛𝑠𝑛

𝑛! 𝑚!
=  ∫ 𝑒−𝑥2+2𝑥(𝑡+𝑠)−(𝑡2+𝑠2)

∞

−∞

𝑑𝑥

= ∫ 𝑒−𝑥2+2𝑥(𝑡+𝑠)−(𝑡+𝑠)2
× 𝑒(𝑡+𝑠)2−(𝑡2+𝑠2)

∞

−∞

𝑑𝑥 

= 𝑒2𝑡𝑠 ∫ 𝑒−[𝑥−(𝑡+𝑠)]2
𝑑𝑥 =

∞

−∞
𝑒2𝑡𝑠 ∫ 𝑒−𝑦2

𝑑𝑦
∞

−∞
   putting [𝑥 − (𝑡 + 𝑠) =

𝑦 𝑠𝑜 𝑡ℎ𝑎𝑡 𝑑𝑥 = 𝑑𝑦] 
 

= 𝑒2𝑡𝑠√𝜋,   as  ∫ 𝑒−𝑦2
𝑑𝑦

∞

−∞
= √𝜋 

= √𝜋 ∑
(2𝑡𝑠)𝑛

𝑛!

∞

𝑛=0

= ∑
2𝑛 √𝜋

𝑛!

∞

𝑛=0

𝑡𝑛𝑠𝑛                         … (1) 

Hence the power of 𝑡 and 𝑠 are always equal in each term of R.H.S.of (1). 

So when 𝑚 ≠ 𝑛, then we obtain 
1

𝑛! 𝑚!
∫ 𝑒−𝑥2

𝐻𝑛(𝑥)𝐻𝑚(𝑥)𝑑𝑥 = 0
∞

−∞

 

∴                      
1

𝑛! 𝑚!
∫ 𝑒−𝑥2

𝐻𝑛(𝑥)𝐻𝑚(𝑥)𝑑𝑥 = 0
∞

−∞

, 𝑤ℎ𝑒𝑛 𝑚 ≠ 𝑛   … (2) 

Again equating coefficient 𝑡𝑛𝑠𝑛 on both sides in (1), we obtain 

 

1

𝑛! 𝑛!
∫ 𝑒−𝑥2

(𝐻𝑛(𝑥))
2
𝑑𝑥 =

∞

−∞

2𝑛  √𝜋

𝑛!
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∫ 𝑒−𝑥2
(𝐻𝑛(𝑥))

2
𝑑𝑥 =

∞

−∞

𝑛! 2𝑛  √𝜋                                … (3) 

Let                                               𝛿𝑚𝑛 = {
0,        𝑖𝑓 𝑚 ≠ 𝑛
1,        𝑖𝑓 𝑚 = 𝑛

        … (4) 

From (3) and (4), we have 

∫ 𝒆−𝒙𝟐
(𝑯𝒏(𝒙))

𝟐
𝒅𝒙 =

∞

−∞

𝒏! 𝟐𝒏 √𝝅  𝜹𝒎𝒏 

 

13.14 RECURRENCE RELATION FOR 𝑯𝒏(𝒙):- 
 

I. 𝑯′
𝒏(𝒙) = 𝟐𝒏𝑯𝒏−𝟏(𝒙)(𝒏 ≥ 𝟏); 𝑯′

𝟎(𝒙) = 𝟎 

II. 𝑯𝒏+𝟏(𝒙) = 𝟐𝒏𝑯𝒏(𝒙) − 𝟐𝒙𝑯𝒏−𝟏(𝒙)(𝒏 ≥ 𝟏); 𝑯𝟏(𝒙) =
𝟐𝒙𝑯𝟎(𝒙) 

III. 𝑯′
𝒏(𝒙) = 𝟐𝒏𝑯𝒏(𝒙) − 𝑯𝒏+𝟏(𝒙) 

IV. 𝑯′′
𝒏(𝒙) − 𝟐𝒏𝑯′𝒏(𝒙) + 𝟐𝒏𝑯𝒏+𝟏(𝒙) = 𝟎 

 

Proof:  

 Part I: We have   

 

∑ 𝐻𝑛(𝑥)
𝑡𝑛

𝑛!
= 𝑒2𝑡𝑥−𝑡2

∞

𝑛=0

                  … (1) 

Differentiating  both sides w.r.t. 𝑥, we obtain 

∑ 𝐻′𝑛(𝑥)
𝑡𝑛

𝑛!

∞

𝑛=0

= 2𝑡𝑒2𝑡𝑥−𝑡2
= 2𝑡 ∑ 𝐻′𝑛(𝑥)

𝑡𝑛

𝑛!

∞

𝑛=0

 

Thus, 

∑ 𝐻′𝑛(𝑥)
𝑡𝑛

𝑛!

∞

𝑛=0

=  2 ∑ 𝐻′𝑛(𝑥)
𝑡𝑛+1

𝑛!

∞

𝑛=0

           … (2) 

The equating coefficient of 𝑡𝑛 from both sides for 𝑛 = 0, (2) obtain 

𝐻′0(𝑥) = 0 

Again equating coefficient of 𝑡𝑛 from both sides for 𝑛 ≥ 1, (2) obtain 
𝐻′𝑛(𝑥)

𝑛!
=

𝐻′𝑛−1(𝑥)

(𝑛 − 1)!
 

So                                                                                                                

                          𝐻′
𝑛(𝑥) = 2𝑛𝐻𝑛−1(𝑥)                                  … (3)          

   [∴ 𝑛! = (𝑛 − 1)!] 
Part II: We know that   

                 ∑ 𝐻𝑛(𝑥)
𝑡𝑛

𝑛!
= 𝑒2𝑡𝑥−𝑡2∞

𝑛=0                   … (4) 

Differentiating  both sides w.r.t. 𝑡, we have 

(2𝑥 − 2𝑡)𝑒2𝑡𝑥−𝑡2
= ∑ 𝐻𝑛(𝑥)

𝑡𝑛

𝑛!

∞

𝑛=0
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(2𝑥 − 2𝑡) ∑ 𝐻𝑛(𝑥)
𝑡𝑛

𝑛!

∞

𝑛=0

=
0. 𝑡0−1

0!
𝐻0(𝑥) + ∑ 𝐻𝑛(𝑥)

𝑛𝑡𝑛−1

𝑛!

∞

𝑛=0

 

2𝑥 ∑ 𝐻𝑛(𝑥)
𝑡𝑛

𝑛!

∞

𝑛=0

− 2𝑡 ∑ 𝐻𝑛(𝑥)
𝑡𝑛

𝑛!

∞

𝑛=0

= ∑ 𝐻𝑛(𝑥)
𝑡𝑛−1

(𝑛 − 1)!

∞

𝑛=0

 

[∵  0!, 𝐻𝑛(𝑥) = 1  𝑎𝑛𝑑 𝑛! = 𝑛(𝑛 − 1)!] 
The equating coefficient of 𝑡𝑛 from both sides for 𝑛 = 0, above equation 

gives 

2𝑥𝐻𝑛(𝑥) = 𝐻1(𝑥) 

Again equating coefficient of 𝑡𝑛 from both sides for 𝑛 ≥ 1, above 

equation obtain 

2𝑥
𝐻𝑛(𝑥)

𝑛!
− 2

𝐻𝑛−1(𝑥)

(𝑛 − 1)!
=

𝐻𝑛+1(𝑥)

𝑛!
 

Multiplying both sides of above equation by 𝑛!and nothing 𝑛! =
𝑛(𝑛 − 1)! then we have 

2𝑥𝐻𝑛(𝑥) − 2𝑛𝐻𝑛−1(𝑥) = 𝐻𝑛+1(𝑥)      … (5) 
Part III: From equation (3) and (5) 

𝐻′𝑛(𝑥) = 2𝑛𝐻𝑛−1(𝑥) 

2𝑥𝐻𝑛(𝑥) − 2𝑛𝐻𝑛−1(𝑥) = 𝐻𝑛+1(𝑥) ,   adding both equations 

                        𝐻′𝑛(𝑥) + 𝐻𝑛+1(𝑥) = 2𝑛𝐻𝑛−1(𝑥) + 2𝑥𝐻𝑛(𝑥) −
2𝑛𝐻𝑛−1(𝑥)  

𝑯′𝒏(𝒙) = 𝟐𝒏𝑯𝒏−𝟏(𝒙) − 𝑯𝒏+𝟏(𝒙) 

Part IV: The 𝐻𝑛(𝑥) is a solution of Hermite’s differential equation 

𝑦′′ − 2𝑥𝑦′ + 2𝑛𝑦 = 0 

 ∴                                      𝑯′′𝒏(𝒙) − 𝟐𝒙𝑯′𝒏(𝒙) + 𝟐𝒏𝑯𝒏(𝒙) = 𝟎        
 

13.15 RODRIGUES FORMULA FOR 𝑯𝒏(𝒙):- 

To prove that 𝑯𝒏(𝒙) = (−𝟏)𝒏𝒆𝒙𝟐 𝒅𝒏

𝒅𝒙𝒏
𝒆−𝒙𝟐

. 

SOLUTION: Using the generating function, we get 

∑ 𝐻𝑛(𝑥)
𝑡𝑛

𝑛!
= 𝑒2𝑡𝑥−𝑡2

∞

𝑛=0

                                   … (1) 

Expanding RH.S.by Taylor’s theorem,   (1) obtain 

∑ 𝐻𝑛(𝑥)
𝑡𝑛

𝑛!

∞

𝑛=0

= ∑ [
𝜕𝑛

𝜕𝑡𝑛
𝑒2𝑡𝑥−𝑡2

]
𝑡=0

∞

𝑛=0

𝑡𝑛

𝑛!
           

𝐻𝑛(𝑥) = [
𝜕𝑛

𝜕𝑡𝑛
𝑒2𝑡𝑥−𝑡2

]
𝑡=0

= [
𝜕𝑛

𝜕𝑡𝑛
𝑒𝑥2−(𝑥−𝑡)2

]
𝑡=0

 

 

𝑒𝑥2
[

𝜕𝑛

𝜕𝑡𝑛
𝑒−(𝑥−𝑡)2

]
𝑡=0

= 𝑒𝑥2
[(−1)𝑛

𝜕𝑛

𝜕𝑡𝑛
𝑒−(𝑥−𝑡)2

]
𝑡=0
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[∵  
𝜕𝑛

𝜕𝑡𝑛
𝑓(𝑥 − 𝑡) = (−1)𝑛

𝜕𝑛

𝜕𝑡𝑛
𝑓(𝑥 − 𝑡)] 

𝑒𝑥2
[

𝑑𝑛

𝑑𝑡𝑛
𝑒−𝑥2

]
𝑡=0

= (−1)𝑛𝑒𝑥2 𝑑𝑛

𝑑𝑡𝑛
𝑒−𝑥2

 

 

      SOLVED EXAMPLES 

EXAMPLE1: Prove that 𝐻2𝑛(0) = (−1)𝑛 (2𝑛)!

𝑛!
; 𝐻2𝑛+1(0) = 0. 

SOLUTION: Using generating function, we obtain  

 

∑ 𝐻𝑛(𝑥)
𝑡𝑛

𝑛!
= 𝑒2𝑡𝑥−𝑡2

∞

𝑛=0

                                   … (1) 

Replacing 𝑥 by 0 in (1), we get 

∑ 𝐻𝑛(0)
𝑡𝑛

𝑛!
=

∞

𝑛=0

𝑒−𝑡2
= ∑

(−𝑡2)𝑛

𝑛!

∞

𝑛=0

= ∑
(−1)𝑛

𝑛!

∞

𝑛=0

𝑡2𝑛 

From (2) equating coefficient of 𝑡2𝑛 on both sides, we have 

                                       
 𝐻2𝑛(0)

(2𝑛)!
=

(−1)𝑛

𝑛!
   or   𝐻2𝑛(0) = (−1)𝑛 (2𝑛)!

𝑛!
 

Since R.H.S.of  above equation does not contain odd powers  of 𝑡 equating 

coefficients of 𝑡2𝑛+1 on both sides in above equation define 
 𝐻2𝑛+1(0)

(2𝑛 + 1)!
= 0. 

So 

 𝑯𝟐𝒏+𝟏(𝟎) = 𝟎. 
EXAMPLE2: Prove that𝐻′′𝑛(𝑥) = 4𝑛(𝑛 − 1)𝐻𝑛−2(𝑥) 

SOLUTION: From recurrence relation, we obtain 

𝐻′𝑛(𝑥) = 2𝑛𝐻𝑛−1(𝑥) 

Differentiating w.r.t. 𝑥, we obtain 

𝐻′′
𝑛(𝑥) = 2𝑛𝐻′

𝑛−1(𝑥) 

2𝑛 × 2(𝑛 − 1)𝐻𝑛−2(𝑥) 

𝑯′′
𝒏(𝒙) = 𝟒𝒏(𝒏 − 𝟏)𝑯𝒏−𝟐(𝒙) 

EXAMPLE3: ∫ 𝒆−𝒚𝟐𝒙

𝟎
𝑯𝒏(𝒚)𝒅𝒚 = 𝑯𝒏−𝟏(𝟎) − 𝒆−𝒙𝟐

𝑯𝒏−𝟏(𝒙) 

SOLUTION: Using Rodrigue’s formula in the left hand side of above 

equation 

∫ 𝑒−𝑦2

𝑥

0

𝐻𝑛(𝑦)𝑑𝑦 = ∫(−1)𝑛  
𝑑𝑛

𝑑𝑦𝑛
(𝑒−𝑦2

)

𝑥

0

𝑑𝑦 = (−1)𝑛 [
𝑑𝑛−1

𝑑𝑦𝑛−1
(𝑒−𝑦2

)]
0

𝑥

 

= −[𝑒−𝑦2
𝐻𝑛−1(𝑦)]

0

𝑥
 

= 𝑯𝒏−𝟏(𝟎) − 𝑒−𝑥2
𝑯𝒏−𝟏(𝒙) 
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SELF CHECK QUESTION 

(SCQ-1) Prove that ∑
(𝑐)𝑛𝐻𝑛(𝑥)𝑡𝑛

𝑛!

∞
𝑛=0 = (1 − 2𝑥𝑡)−𝑐    2𝐹0 (

𝑐

2
,

𝑐

2
+

1

2
; −; −

4𝑡2

(1−2𝑥𝑡)2) 

(SCQ-2) Prove that ∫ 𝑒−𝑦2
𝐻𝑛(𝑦)𝑑𝑦 =

𝑥

0
𝐻𝑛−1(0) − 𝑒−𝑥2

𝐻𝑛−1(𝑥) 

 

 

13.16 SUMMARY:-  

In this unit we studied the Hermite differential equation and 

Hermite polynomials and we also explained the recurrence relation, 

generating function, Rodrigue formula and orthogonality property for 

Hermite polynomials. 

13.17 GLOSSARY:-  

 Bessel Series.  

 Bessel integrals. 

 Hermite polynomial. 

 Hermite differential equation. 

13.18 REFERENCES:-  

 G. N. Watson (2020) A Treatise on the theory of Bessel’s 

Function. 

 Carlo Viola (2016) An introduction to Special Function. 

13.19 SUGGESTED READING:-  

 M.D. Raisinghania,(2018). Ordinary and Partial Differential 

equation (18th Edition), S. Chand. 

 M.D. Raisinghania,(2021). Ordinary and Partial Differential 

equation (20th Edition), S. Chand. 

 Math World (Wolfram): URL link 

(https://mathworld.wolfram.com/BesselFunction.html) and 

Hermite polynomials: URL link 

(https://mathworld.wolfram.com/HermitePolynomial.html) on the 

Math World website. 
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 Wikipedia: URL link 

(https://en.wikipedia.org/wiki/Bessel_function) and Hermite 

polynomials (https://en.wikipedia.org/wiki/Hermite_polynomials)  

 

13.20 TERMINAL QUESTIONS:-  

(TQ-1)  Prove that  

i. 𝐽−1/2(𝑥) = √(2/𝜋𝑥) 𝑐𝑜𝑠𝑥. 

ii. 𝐽1/2(𝑥) = √(2/𝜋𝑥) 𝑠𝑖𝑛𝑥. 

iii. [𝐽−1/2(𝑥)]
2

+ [𝐽1/2(𝑥)]
2

= 2 𝜋𝑥⁄ . 

 

(TQ-2)   Prove that     lim
𝑧→0

𝐽𝑛(𝑥)

𝑧𝑛 =
1

2𝑛Γ(𝑛+1)𝑛 , 

(TQ-3)  Prove that ∫
𝑢𝐽0(𝑥𝑢)

(1−𝑢2)1/2

1

0
𝑑𝑢 =

𝑠𝑖𝑛𝑥

𝑥
 

(TQ-4)  (a) Prove that  𝑥𝑛𝐽𝑛(𝑥) is a solution of 

                          𝑥
𝑑2𝑦

𝑑𝑥2 + (1 − 2𝑛) ×
𝑑𝑦

𝑑𝑥
+ 𝑥𝑦 = 0. 

             (b) Prove that  𝑥𝑛𝐽−𝑛(𝑥) is a solution of  

𝑥
𝑑2𝑦

𝑑𝑥2
+ (1 + 2𝑛) ×

𝑑𝑦

𝑑𝑥
+ 𝑥𝑦 = 0. 

 

(TQ-5)   Prove that  

                               ∫ 𝑡
1

0
{𝐽𝑛(𝑡)}2𝑑𝑡 =

1

2
𝑥2{𝐽𝑛

2(𝑥) − 𝐽𝑛−1(𝑥)𝐽𝑛+1(𝑥)}. 

(TQ-6)   Show that  
𝑑

𝑑𝑥
(𝐽𝑛

2 + 𝐽𝑛+1
2 ) = 2 (

𝑛

𝑥
𝐽𝑛

2 −
𝑛+1

𝑥
𝐽𝑛+1

2 ) 

(TQ-7)   Show that     𝐽𝑛+1(𝑥) = 𝑥 ∫ 𝐽𝑛(𝑥𝑦)𝑦𝑛+11

0
𝑑𝑦. 

(TQ-8)  Show that    𝑥𝑠𝑖𝑛𝑥 = 2(22𝐽2 − 42𝐽4 + 62𝐽6 − ⋯ ⋯ )  

(TQ-9)   Show that    𝐽𝑛(−𝑥) = (−1)𝑛𝐽𝑛(𝑥). 

(TQ-10)  Expand the function 𝑓(𝑥) = 1, 0 ≤ 𝑥 ≤ 𝑎) in series of  

  ∑ 𝑐𝑖𝐽0(𝜆𝑖𝑥),∞
𝑖=1  where 𝜆𝑖 are the roots of the equation   

𝐽0(𝜆𝑎) = 0. 

(TQ-11)  Prove that 𝐻𝑛(𝑥) = 2𝑛 {𝑒𝑥𝑝 (−
1

4

𝑑2

𝑑𝑥2)} 𝑥𝑛 

(TQ-12)  Prove that 𝑃𝑛(𝑥) =
2

𝑛!√𝜋
∫ 𝑒−𝑡2

𝑡2𝐻𝑛(𝑥𝑡)𝑑𝑡
∞

0
 

(TQ-13)  Prove that ∑
𝐻𝑛+𝑠(𝑥)𝑡𝑛

𝑛!

∞
𝑛=0 = 𝑒𝑥𝑝(2𝑥𝑡 − 𝑡2)𝐻𝑠(𝑥 − 𝑡) 
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UNIT 14:- LAGUERRE POLYNOMIALS 

CONTENTS: 
14.1      Introduction 

14.2      Objectives 

14.3      Laguerre Equations. 

14.4      Generating function 

14.5      Rodrigue’s Formula 

14.6      Orthogonality Properties 

14.7      Laguerre Series Expansions 

14.8      Recurrence Relation  

14.9      Summary 

14.10    Glossary 

14.11     References 

14.12     Suggested Reading 

14.13     Terminal questions  

14.14     Answers  
 

14.1 INTRODUCTION:- 

Laguerre polynomials are a family of orthogonal polynomials 

named after the French mathematician Edmond Laguerre. They are 

described  as solutions to the Laguerre differential equation, which arises 

in various physical and mathematical problems, including quantum 

mechanics, statistical mechanics, and probability theory. 

14.2 OBJECTIVES:- 

After studying this unit you will be able to  

 Understanding the properties of Laguerre polynomials. 

 Understanding how to solve this equation using Laguerre 

polynomials. 

 Analyzing the use of Laguerre polynomials in this context is 

important for studying these systems. 

 

14.3 LAGUERRE EQUATIONS.:- 

Laguerre’s equation of order 𝑛 is  

 ⇒       𝑥
𝑑2𝑦

𝑑𝑥2 + (1 − 𝑥) (
𝑑𝑦

𝑑𝑥
) + 𝑛𝑦 = 0                       … (1) 
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where 𝑛 is a positive integer. We get the equation (1) which is finite for all 

values of 𝑥 and which tends to infinity no faster than 𝑒𝑥/2𝑎𝑠 𝑥 → ∞.  

Suppose                   

 𝑦 = ∑ 𝐶𝑚𝑥𝑘+𝑚∞
𝑚=0 ,               𝐶0 ≠ 0                           … (2) 

Differentiating (2) with respect to 𝑥  and substituting the values of 

𝑦,
𝑑𝑦

𝑑𝑥
,

𝑑2𝑦

𝑑𝑥2  in equation (1) 

     𝑥 ∑ 𝐶𝑚(𝑘 + 𝑚)(𝑘 + 𝑚 − 1)𝑥𝑘+𝑚−2

∞

𝑚=0

+ (1 − 𝑥) ∑ 𝐶𝑚(𝑘 + 𝑚)𝑥𝑘+𝑚−1

∞

𝑚=0

+ 𝑛 ∑ 𝐶𝑚

∞

𝑚=0

𝑥𝑘+𝑚 = 0 

Or 

     ∑ 𝐶𝑚(𝑘 + 𝑚)(𝑘 + 𝑚 − 1)𝑥𝑘+𝑚−1

∞

𝑚=0

+ ∑ 𝐶𝑚(𝑘 + 𝑚)𝑥𝑘+𝑚−1

∞

𝑚=0

− ∑ 𝐶𝑚(𝑘 + 𝑚)𝑥𝑘+𝑚

∞

𝑚=0

+ 𝑛 ∑ 𝐶𝑚

∞

𝑚=0

𝑥𝑘+𝑚−1 = 0 

Or 

∑ 𝐶𝑚(𝑘 + 𝑚)𝑥𝑘+𝑚−1(𝑘 + 𝑚 − 1 + 1)

∞

𝑚=0

− ∑ 𝐶𝑚𝑥𝑘+𝑚(𝑘 + 𝑚 − 𝑛)

∞

𝑚=0

= 0 
 

∑ 𝐶𝑚(𝑘 + 𝑚)2𝑥𝑘+𝑚−1

∞

𝑚=0

− ∑ 𝐶𝑚𝑥𝑘+𝑚(𝑘 + 𝑚 − 𝑛)

∞

𝑚=0

= 0  … (3) 

Now we have indicial equation, the coefficient of smallest power of 𝑥,  in 

equation (3)  and describe 

                           𝐶0𝑘2 = 0,      ∀𝑘2 = 0    (∵ 𝐶0 ≠ 0)                      … (4) 

From equation (4), next equating coefficient of𝑥𝑘+𝑚−1, we get 

𝐶𝑚(𝑘 + 𝑚)2 − 𝐶𝑚−1(𝑘 + 𝑚 − 1 − 𝑛) = 0   or     

                                                                 𝐶𝑚 =
𝑘+𝑚−1−𝑛

(𝑘+𝑚)2 𝐶𝑚−1       … (5) 

Since the two independent solution in this case are 𝑦𝑘=0 and (
𝜕𝑦

𝜕𝑘
)

𝑘=0
. But  

(
𝜕𝑦

𝜕𝑘
)

𝑘=0
 assumes a term of log 𝑥,  so we infinite when 𝑥 = 0.  

putting 𝑘 = 0 in equation (5) and (2), we get 

                                                       𝐶𝑚 =
𝑚−1−𝑛

(𝑘+𝑚)2 𝐶𝑚−1                       … (6) 

                            𝑦 = ∑ 𝐶𝑚𝑥𝑚 = 𝐶0 + 𝐶1𝑥 + 𝐶2𝑥2 + ⋯

∞

𝑚=0

           … (7)    

Substituting 𝑚 = 1,2,3, … … in (6), we get 
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 𝐶1 = −
−𝑛

12 𝐶0 =
(−1)

(1!)2 𝑛𝐶0 ,                        𝐶2 =
1−𝑛

22 𝐶1 =
(𝑛−1)

(2)2 ×

(−1)𝑛𝐶0 = (−1)2 𝑛(𝑛−1)

(2!)2 𝐶0 

𝐶3 =
2 − 𝑛

32
𝐶2 = −

(𝑛 − 2)

(3)2
× (−1)2

𝑛(𝑛 − 1)

(3!)2
𝐶0

= (−1)3
𝑛(𝑛 − 1)(𝑛 − 2)

(3!)2
𝐶0, 

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 
Since 

                           𝐶𝑟 = (−1)2 𝑛(𝑛−1)…(𝑛−𝑟+1)

(𝑟!)2 𝐶0,      for𝑟 ≤ 𝑛. 

Also,                                       𝐶𝑛+1 = 𝐶𝑛+2 = 𝐶𝑛+3 = ⋯ = 0. 
Putting the values of 𝐶1, 𝐶2,𝐶3 ⋯ ⋯ ⋯   in equation (7) 

𝑦 = 𝐶0 [1 −
𝑛

(1!)2
𝑥 +

𝑛(𝑛 − 1)

(2!)2
+ ⋯

+ (−1)𝑟
𝑛(𝑛 − 1) ⋯ ⋯ (𝑛 − 𝑟 + 1)

(𝑟!)2
𝑥𝑟 + ⋯ ⋯ ] 

= 𝐶0 ∑(−1)𝑟
𝑛(𝑛 − 1) ⋯ ⋯ (𝑛 − 𝑟 + 1)

(𝑟!)2
𝑥𝑟

∞

𝑟=0

= 𝐶0 ∑(−1)𝑟
𝑛(𝑛 − 1) ⋯ ⋯ (𝑛 − 𝑟 + 1)(𝑛 − 𝑟)(𝑛 − 𝑟 − 1) ⋯ 3.2.1

(𝑟!)2
𝑥𝑟

∞

𝑟=0

 

Hence ,  

𝑦 = 𝐶0 ∑(−1)𝑟
𝑛!

(𝑛 − 𝑟)(𝑟!)2
𝑥𝑟

∞

𝑟=0

 

Taking 𝐶0 = 1, we express the corresponding solution as the Laguerre 

polynomial and it is denoted by 𝐿𝑛(𝑥). 

𝐿𝑛(𝑥) = ∑(−1)𝑟
𝑛!

(𝑛 − 𝑟)(𝑟!)2
𝑥𝑟

∞

𝑟=0

 

Laguerre polynomial of order (or degree) 𝒏 is denoted and defined by 

𝐿𝑛(𝑥) = ∑(−1)𝑟
𝑛!

(𝑛 − 𝑟)(𝑟!)2
𝑥𝑟

∞

𝑟=0

 

 

14.4 GENERATING FUNCTION:- 

THEOREM I: show that the generating function for Laguerre 

polynomials is
𝑒𝑥𝑝{−𝑥𝑡/(1−𝑡)}

1−𝑡
= ∑ 𝐿𝑛(𝑥)𝑡𝑛∞

𝑛=0 .  

Proof: Now, we take L.H.S. 

 ⇒           
𝑒𝑥𝑝{−𝑥𝑡/(1−𝑡)}

1−𝑡
=

1

1−𝑡
∑ (

−𝑥𝑡

1−𝑡
)

𝑟

.
1

𝑟!

∞
𝑟=0    as     exp 𝑥 = 𝑒𝑥 = ∑

𝑥𝑟

𝑟!

∞
𝑟=0                
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= ∑
(−1)𝑟

𝑟!
𝑥𝑟𝑡𝑟(1 − 𝑡)−(𝑟+1) = ∑

(−1)𝑟

𝑟!

∞
𝑟=0

∞
𝑟=0 𝑥𝑟𝑡𝑟 ∑

(𝑟+𝑠)!

𝑟!𝑠!

∞
𝑠=0 ,          

{By binomial theorem}     

= ∑ ∑(−1)𝑟
(𝑟 + 𝑠)!

𝑟! 𝑠!

∞

𝑠=0

∞

𝑟=0

𝑥𝑟𝑡𝑟+𝑠 

Suppose 𝑟  be fixed, then the coefficient of 𝑡𝑛 can be given by setting 𝑟 +
𝑠 = 𝑛 i.e., 𝑠 = 𝑛 − 𝑟. 

Hence the coefficient of 𝑡𝑛 is obtained by 

 ∑ (−1)𝑟 𝑛!

(𝑛−𝑟)(𝑟!)2 𝑥𝑟∞
𝑟=0       i.e.,              𝐿𝑛(𝑥). 

 

14.5 RODRIGUE’S FORMULA.- 

Expression (Rodrigue’s Formula)for the Laguerre polynomial  

Show that  𝑳𝒏(𝒙) =  
𝒆𝒙

𝒏!

𝒅𝒏

𝒅𝒙𝒏
(𝒙𝒏𝒆−𝒙) 

Proof: By Leibnitz theorem, we get 

𝐷𝑛(𝑢𝑣) = 𝑑𝑛
(𝑢𝑣)

𝑑𝑥𝑛

= 𝐷𝑛𝑢. 𝑣 + 𝑛𝐶1
𝐷𝑛−1𝑢. 𝐷𝑣 + ⋯ ⋯ + 𝑛𝐶𝑟

𝐷𝑛−𝑟𝑢. 𝐷𝑟𝑣 + ⋯

+ 𝑢𝐷𝑛𝑣 

 𝑖. 𝑒.,                  𝐷𝑛(𝑢𝑣) = ∑ 𝑛𝐶𝑟
𝐷𝑛−𝑟𝑢. 𝐷𝑟𝑣𝑛

𝑟=0  

 ∴     
𝑒𝑥

𝑛!

𝑑𝑛

𝑑𝑥𝑛
(𝑥𝑛𝑒−𝑥) =

𝑒𝑥

𝑛!
 ∑ 𝑛𝐶𝑟

𝐷𝑛−𝑟𝑥𝑛 . 𝐷𝑟𝑒−𝑥 ,𝑛
𝑟=0              from (1)  

 

 = ∑
𝑒𝑥

𝑛!
× 𝑛𝐶𝑟

𝑛!

{𝑛−(𝑛−𝑟)!}
𝑥𝑛−(𝑛−𝑟). (−1)𝑟𝑒−𝑥 ,𝑛

𝑟=0    as     𝐷𝑛𝑥𝑚 =

𝑚!

(𝑚−𝑛)!
𝑥𝑚−𝑛  and   𝐷𝑛𝑒𝑎𝑥 = 𝑎𝑛𝑒𝑎𝑥 

= ∑
𝑒𝑥

𝑛!
×

𝑛!

𝑟! (𝑛 − 𝑟)!

𝑛!

𝑟!
𝑥𝑟 . (−1)𝑟𝑒−𝑥 =  ∑

(−1)𝑟𝑛!

(𝑟!)2(𝑛 − 𝑟)!
𝑥𝑟 =  𝐿𝑛(𝑥)

𝑛

𝑟=0

𝑛

𝑟=0

 

If we use the definition of Laguerre polynomial of (or degree)𝑛 , we 

obtain  

𝐿𝑛(𝑥) =  𝑒𝑥
𝑑𝑛

𝑑𝑥𝑛
(𝑥𝑛𝑒−𝑥)           … (1) 

We know that the given equation  

𝐿𝑛(𝑥) =  
𝑒𝑥

𝑛!

𝑑𝑛

𝑑𝑥𝑛
(𝑥𝑛𝑒−𝑥)               … (2) 

Putting 𝑛 = 0,1,2,3 … ..in equation (2) 

 ⇒    𝐿0(𝑥) =  
𝑒𝑥

0!

𝑑0

𝑑𝑥0
(𝑥0𝑒−𝑥) = 1,             𝐿1(𝑥) =  

𝑒𝑥

1!

𝑑1

𝑑𝑥1
(𝑥1𝑒−𝑥) =

𝑒𝑥(𝑒−𝑥 − 𝑥𝑒−𝑥) = 1 − 𝑥 ⇒       𝐿2(𝑥) =  
𝑒𝑥

2!

𝑑2

𝑑𝑥2
(𝑥2𝑒−𝑥) =

𝑒𝑥

2!

𝑑

𝑑𝑥
{

𝑑

𝑑𝑥
(𝑥2𝑒−𝑥)} =

𝑒𝑥

2!

𝑑

𝑑𝑥
(2𝑥𝑒−𝑥 − 𝑥2𝑒−𝑥) =

𝑒𝑥

2!
[2𝑒−𝑥 + 2𝑥(−𝑒−𝑥) −

{2𝑥𝑒−𝑥 + 𝑥2(−𝑒−𝑥)}] =
1

2!
(2 − 4𝑥 + 𝑥2), 
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⇒     𝐿3(𝑥) =  
𝑒𝑥

3!

𝑑3

𝑑𝑥3
(𝑥3𝑒−𝑥) =

𝑒𝑥

3!

𝑑2

𝑑𝑥2
{

𝑑

𝑑𝑥
(𝑥3𝑒−𝑥)} =

𝑒𝑥

3!

𝑑3

𝑑𝑥3
(3𝑥2𝑒−𝑥 −

𝑥3𝑒−𝑥) =
𝑒𝑥

3!

𝑑

𝑑𝑥
[

𝑑

𝑑𝑥
{(3𝑥2 − 𝑥3)𝑒−𝑥}] =

𝑒𝑥

3!

𝑑

𝑑𝑥
[(6𝑥 − 3𝑥2)𝑒−𝑥 −

(3𝑥2 − 𝑥3)𝑒−𝑥] =
𝑒𝑥

3!

𝑑

𝑑𝑥
[(6𝑥 − 6𝑥2 + 𝑥3)𝑒−𝑥] =

(6 − 18𝑥 + 9𝑥2 − 𝑥3) 3!⁄  

⇒     𝐿4(𝑥) =  
𝑒𝑥

4!

𝑑4

𝑑𝑥4
(𝑥4𝑒−𝑥) =

𝑒𝑥

4!

𝑑3

𝑑𝑥3
[

𝑑

𝑑𝑥
(𝑥4𝑒−𝑥)] =

𝑒𝑥

4!

𝑑3

𝑑𝑥3
[4𝑥3𝑒−𝑥 −

𝑥4𝑒−𝑥] =
𝑒𝑥

4!

𝑑2

𝑑𝑥2
[

𝑑

𝑑𝑥
{(4𝑥3 − 𝑥4)𝑒−𝑥}] =

𝑒𝑥

4!

𝑑2

𝑑𝑥2
[(12𝑥2 − 4𝑥3)𝑒−𝑥 −

(4𝑥3 − 𝑥4)𝑒−𝑥] =
𝑒𝑥

4!

𝑑

𝑑𝑥
[

𝑑

𝑑𝑥
(12𝑥2 − 8𝑥3 + 𝑥4)𝑒−𝑥] =

𝑒𝑥

4!

𝑑

𝑑𝑥
[(24𝑥 −

24𝑥2 + 4𝑥3)𝑒−𝑥 − (12𝑥2 − 8𝑥3 + 𝑥4)𝑒−𝑥] =  
𝑒𝑥

4!

𝑑

𝑑𝑥
[(24𝑥 − 36𝑥2 +

12𝑥3 − 𝑥4)𝑒−𝑥] =
𝑒𝑥

4!
[(24 − 72𝑥 + 36𝑥2 − 𝑥4)𝑒−𝑥 − (24𝑥 − 36𝑥2 +

12𝑥3 − 𝑥4)𝑒−𝑥] =
1

4!
(24𝑥 − 96𝑥 + 72𝑥2 − 16𝑥3 + 𝑥4) 

Similarly 

⇒     𝐿5(𝑥) =    
1

120
(−𝑥5 + 25𝑥4 − 200𝑥3 + 600𝑥2 − 600𝑥 + 120) 

 

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 
 

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 

⇒     𝐿𝑛(𝑥) =
1

𝑛!
{(−𝑥)𝑛 + 𝑛2(−𝑥)𝑛−1 + ⋯ + 𝑛(𝑛!)(−𝑥) + 𝑛!} 

In table 1 we express the first few polynomials 𝑳𝒏(𝒙) and as shown as 

graph 

𝐿0(𝑥) = 1 

𝐿1(𝑥) = 1 − 𝑥 

𝐿2(𝑥) = 1

2!
(2 − 4𝑥 + 𝑥2) 

𝐿3(𝑥) = 1

3!
(6 − 18𝑥 + 9𝑥2 − 𝑥3) 

𝐿4(𝑥) = 1

4!
(24𝑥 − 96𝑥 + 72𝑥2 − 16𝑥3 + 𝑥4) 

𝐿5(𝑥) = 1

120
(−𝑥5 + 25𝑥4 − 200𝑥3 + 600𝑥2 − 600𝑥 + 120) 

 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 

𝐿𝑛(𝑥) = 1

𝑛!
{(−𝑥)𝑛 + 𝑛2(−𝑥)𝑛−1 + ⋯ + 𝑛(𝑛!)(−𝑥) + 𝑛!} 
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Fig.1 

 

14.6 ORTHOGONALITY PROPERTIES.- 

Laguerre polynomial is a kind of orthogonal polynomials whose inner 

product is zero. Let the differential equation satisfied by Laguerre 

polynomials of degree 𝑛 and 𝑘. 

 

𝑥
𝑑2𝐿𝑛

𝑑𝑥2
+ (1 − 𝑥) (

𝑑𝐿𝑛

𝑑𝑥
) + 𝑛𝐿𝑛 = 0                    … (1) 

𝑥
𝑑2𝐿𝑘

𝑑𝑥2
+ (1 − 𝑥) (

𝑑𝐿𝑘

𝑑𝑥
) + 𝑛𝐿𝑘 = 0              … (2) 

Multiplying (1) by 𝑒−𝑥𝐿𝑘(𝑥) and (2) by 𝑒−𝑥𝐿𝑛(𝑥) and subtract. 
𝑑

𝑑𝑥
[𝑥𝑒−𝑥 {𝐿𝑘(𝑥)

𝑑𝐿𝑛

𝑑𝑥
− 𝐿𝑛(𝑥)

𝑑𝐿𝑘

𝑑𝑥
}] + (𝑛 − 𝑘)𝑒−𝑥𝐿𝑘(𝑥)𝐿𝑛(𝑥) = 0 

Integrating this expression 𝑥 → 0 𝑡𝑜∞ 
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 ⇒          𝑥𝑒−𝑥 [𝑥𝑒−𝑥 {𝐿𝑘(𝑥)
𝑑𝐿𝑛

𝑑𝑥
− 𝐿𝑛(𝑥)

𝑑𝐿𝑘

𝑑𝑥
}]

0

∞

+ (𝑛 −

𝑘) ∫ 𝑒−𝑥𝐿𝑘(𝑥)𝐿𝑛(𝑥)
∞

0
𝑑𝑥 = 0 

⇒                    (𝑛 − 𝑘) ∫ 𝑒−𝑥𝐿𝑘(𝑥)𝐿𝑛(𝑥)
∞

0
= 0 

If 𝑛 ≠ 𝑘, then  

⇒                                         ∫ 𝑒−𝑥𝐿𝑘(𝑥)𝐿𝑛(𝑥)𝑑𝑥
∞

0
= 0                      … (3) 

This is the by Laguerre polynomials of different degree (𝑛 and 𝑘) are 

orthogonal to the interval(0, ∞) with 𝑒−𝑥. 

To define the orthogonality relation for 𝑛 = 𝑘. Now we using the 

generating function, we get 

 
𝑒𝑥𝑝{−𝑥𝑡/(1−𝑡)}

1−𝑡
= ∑ 𝐿𝑛(𝑥)𝑡𝑛∞

𝑛=0     and       
𝑒𝑥𝑝{−𝑥𝑡/(1−𝑡)}

1−𝑡
= ∑     𝐿𝑘(𝑥)𝑡𝑘∞

𝑘=0   

we take the product of two sides   

⇒                 
𝑒𝑥𝑝{−2𝑥𝑡/(1−𝑡)}

(1−𝑡)2 = ∑ 𝐿𝑛(𝑥)𝑡𝑛∞
𝑛=0 ∑ 𝐿𝑘(𝑥)𝑡𝑘∞

𝑛=0  

Multiplying both sides by 𝑒−𝑥 and integrates from 0 to  ∞ 

⇒         
1

(1−𝑡)2 ∫ 𝑒−
1−𝑡

1+𝑡
𝑥∞

0
𝑑𝑥 =

∑ ∑ 𝑡𝑛𝑡𝑘  ∫ 𝑒−𝑥𝐿𝑛(𝑥)𝐿𝑘(𝑥)𝑑𝑥
∞

0
∞
𝑘=0

∞
𝑛=0             … (4) 

 ⇒    For 𝑛 = 𝑘, the above equation reduce to     

∑ 𝑡2𝑛∞
𝑛=0 ∫ ∫ 𝑒−𝑥𝐿𝑛

2 (𝑥)𝑑𝑥
∞

0

∞

0
 

Now we use the formula ∫ 𝑒−𝑎𝑥𝑑𝑥 = −
𝑒−𝑎𝑥

𝑎
, putting the value in equation 

(4) 

  ⇒                      [
1

(1−𝑡)2
(−) (

1−𝑡

1+𝑡
) 𝑒−

1−𝑡

1+𝑡
𝑥]

0

∞

=
1

(1−𝑡)(1+𝑡)
=

1

1−𝑡2       for 𝑡 <

<<< 1,  then we get    

  ⇒                     
1

1−𝑡2 = 1 + 𝑡2 + 𝑡4 + ⋯ ⋯ ⋯ ⋯ ⋯ = ∑ 𝑡2𝑛∞
𝑛=0      

 ⇒                     ∑ 𝑡2𝑛∞
𝑛=0 = ∑ 𝑡2𝑛 ∫ 𝑒−𝑥𝐿𝑛

2 (𝑥)𝑑𝑥
∞

0
∞
𝑛=0   

On comparing𝑡2𝑛∀  𝑛, we get  

 ⇒                                       ∫ 𝑒−𝑥𝐿𝑛
2 (𝑥)𝑑𝑥

∞

0
= 1                    ⋯ (5) 

From (3) and (5) may now combined to obtain the orthogonality relation 

for Laguerre polynomials as 

  ⇒               ∫ 𝑒−𝑥𝐿𝑛(𝑥)𝐿𝑘(𝑥)
∞

0
𝑑𝑥 = 𝛿𝑛𝑘 = {

0, 𝑖𝑓 𝑛 ≠ 𝑘
1, 𝑖𝑓 𝑛 = 𝑘

 

14.7 LAGUERRE SERIES EXPENSION:- 

THEOREM. If 𝑓(𝑥) is polynomials of degree 𝑚, prove that 𝑓(𝑥) may be 

expressed in form 

            𝑓(𝑥) = ∑ 𝐶𝑟𝐿𝑟(𝑥)𝑚
𝑟=0 ,    where 𝐶𝑟 = ∫ 𝑒−𝑥∞

0
𝐿𝑟(𝑥)𝑓(𝑥)𝑑𝑥 

Proof:  Let 𝑓(𝑥) be a polynomial of degree 𝑚, we get 
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 ⇒      𝑓(𝑥) = 𝑎𝑚𝑥𝑚 + 𝑎𝑚−1𝑥𝑚−1 + ⋯ + 𝑎1𝑥 + 𝑎0                   ⋯ (1) 

 ⇒     Again,             \ 

 

 

 

            𝐿𝑚(𝑥) = 𝑘𝑚𝑥𝑚 + 𝑘𝑚−1𝑥𝑚−1 + ⋯ + 𝑘1𝑥 + 𝑘0     ⋯ (2) 

 ⇒      Let 𝑓(𝑥) − (𝑎𝑚 𝑘𝑚⁄ )𝐿𝑚(𝑥). Two cases arise 

Case (i) Let   𝑓(𝑥) − (𝑎𝑚 𝑘𝑚⁄ )𝐿𝑚(𝑥) = 0      

so that   𝑓(𝑥) = (𝑎𝑚 𝑘𝑚⁄ )𝐿𝑚(𝑥),  Which is required result. 

Case (ii) suppose 𝑓(𝑥) = (𝑎𝑚 𝑘𝑚⁄ )𝐿𝑚(𝑥) = 𝑔𝑚−1, 𝑔𝑚−1(𝑥)  being a 

polynomial of degree 𝑚 − 1. Taking 𝐶𝑚 = 𝑎𝑚 𝑘𝑚⁄ , then we get 

 ⇒             𝑓(𝑥) = 𝐶𝑚𝐿𝑚(𝑥) + 𝑔𝑚−1(𝑥)                         ⋯ (3) 

Taking 𝑔𝑚−1(𝑥)  in place of 𝑓(𝑥), we obtain 

⇒                𝑔𝑚−1(𝑥) = 𝐶𝑚−1𝐿𝑚−1(𝑥) + 𝑔𝑚−2(𝑥)          … (4) 
Putting the value of (4) in (3) 

⇒       𝑓(𝑥) = 𝐶𝑚𝐿𝑚(𝑥) + 𝐶𝑚−1𝐿𝑚−1(𝑥) + 𝑔𝑚−2(𝑥)      ⋯ (5) 

⇒  𝑓(𝑥) = 𝐶𝑚𝐿𝑚(𝑥) + 𝐶𝑚−1𝐿𝑚−1(𝑥) + ⋯ + 𝐶1𝐿1(𝑥) + 𝐶0𝐿0(𝑥) =
                                   ∑ 𝐶𝑟𝐿𝑟(𝑥)𝑚

𝑟=0                                                ⋯ (6) 

 ⇒ ∑ 𝐶𝑠𝐿𝑠(𝑥)𝑚
𝑟=0        ∑ 𝐶𝑟𝐿𝑟(𝑥)𝑚

𝑟=0 = ∑ 𝐶𝑠𝐿𝑠(𝑥)𝑚
𝑟=0 ,     equation (6)obtain  

 

  ⇒         𝑓(𝑥) = ∑ 𝐶𝑠𝐿𝑠(𝑥)𝑚
𝑟=0                                          … (7) 

Multiplying both sides of equation (7) by 𝑒−𝑥𝐿𝑟(𝑥) and integrating w.r.t. 

𝑥 then 

⇒ ∫ 𝑒−𝑥∞

0
𝐿𝑟(𝑥)𝑓(𝑥)𝑑𝑥 = ∑ 𝐶𝑠

𝑚
𝑠=0 {∫ 𝑒−𝑥∞

0
𝐿𝑟(𝑥)𝐿𝑠(𝑥)𝑑𝑥} … (8) 

⇒   but      ∫ 𝑒−𝑥∞

0
𝐿𝑟(𝑥)𝐿𝑠(𝑥)𝑑𝑥 = {

0, 𝑖𝑓 𝑟 = 𝑠
1, 𝑖𝑓 𝑟 ≠ 𝑠

                                … (9) 

From equations (8) and (9) obtain 

  ⇒            𝐶𝑟 = ∫ 𝑓(𝑥)𝐿𝑟(𝑥)𝑑𝑥
∞

0
                                    … (10)  

which is required solution.   

14.8 RECURRENCE RELATION:- 

  We will show that some important recurrence relations as given below 

I. (𝑛 + 1)𝐿𝑛+1(𝑥) = (2𝑛 + 1 − 𝑥)𝐿𝑛(𝑥) − 𝑛𝐿𝑛−1(𝑥) 

II. 𝑥𝐿′
𝑛(𝑥) = 𝑛𝐿𝑛(𝑥) − 𝑛𝐿𝑛−1(𝑥) 

III. 𝐿′𝑛(𝑥) = − ∑ 𝐿𝑟(𝑥)𝑛−1
𝑟=0                  

 

Proof: Recurrence Relation I:   Now we using the generating function  
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                                     ∑ 𝐿𝑛(𝑥)𝑡𝑛

∞

𝑛=0

=
𝑒𝑥𝑝{−𝑥𝑡 (1 − 𝑡)⁄ }

1 − 𝑡
                                     … (1) 

Differentiating both sides with respect to (1), we have 

∑ 𝐿𝑛(𝑥). 𝑛𝑡𝑛−1

∞

𝑛=0

=
1

(1 − 𝑡)2
𝑒𝑥𝑝 {−

𝑥𝑡

1 − 𝑡
} −

1

1 − 𝑡
× 𝑒𝑥𝑝 {−

𝑥𝑡

1 − 𝑡
}

×
𝑥

(1 − 𝑡)2
 

=
1

(1 − 𝑡)2
∑ 𝐿𝑛(𝑥)𝑡𝑛

∞

𝑛=0

−
𝑥

(1 − 𝑡)2
∑ 𝐿𝑛(𝑥)𝑡𝑛

∞

𝑛=0

 

Multiplying both sides by (1 − 𝑡)2 

(1 − 𝑡)2 ∑ 𝐿𝑛(𝑥). 𝑛𝑡𝑛−1

∞

𝑛=0

= ∑ 𝐿𝑛(𝑥)𝑡𝑛

∞

𝑛=0

− 𝑥 ∑ 𝐿𝑛(𝑥)𝑡𝑛

∞

𝑛=0

− ∑ 𝐿𝑛(𝑥)𝑡𝑛+1

∞

𝑛=0

     … (2) 

Solving equation (2), we get 

(1 + 𝑡2 − 2𝑡) ∑ 𝐿𝑛(𝑥). 𝑛𝑡𝑛−1

∞

𝑛=0

= ∑ 𝐿𝑛(𝑥)𝑡𝑛

∞

𝑛=0

− 𝑥 ∑ 𝐿𝑛(𝑥)𝑡𝑛

∞

𝑛=0

− ∑ 𝐿𝑛(𝑥)𝑡𝑛+1

∞

𝑛=0

 

 

(∑ 𝐿𝑛(𝑥). 𝑛𝑡𝑛−1

∞

𝑛=0

+ ∑ 𝐿𝑛(𝑥). 𝑛𝑡𝑛−1+2

∞

𝑛=0

− 2 ∑ 𝐿𝑛(𝑥). 𝑛𝑡𝑛−1+1

∞

𝑛=0

)                      

=   ∑ 𝐿𝑛(𝑥)𝑡𝑛

∞

𝑛=0

− 𝑥 ∑ 𝐿𝑛(𝑥)𝑡𝑛

∞

𝑛=0

− ∑ 𝐿𝑛(𝑥)𝑡𝑛+1

∞

𝑛=0

 

 

                       

(∑ 𝐿𝑛(𝑥). 𝑛𝑡𝑛−1

∞

𝑛=0

+ ∑ 𝐿𝑛(𝑥). 𝑛𝑡𝑛+1

∞

𝑛=0

− 2 ∑ 𝐿𝑛(𝑥). 𝑛𝑡𝑛

∞

𝑛=0

)                      

=   ∑ 𝐿𝑛(𝑥)𝑡𝑛

∞

𝑛=0

− 𝑥 ∑ 𝐿𝑛(𝑥)𝑡𝑛

∞

𝑛=0

− ∑ 𝐿𝑛(𝑥)𝑡𝑛+1

∞

𝑛=0
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 ∴   We equating the coefficient of 𝑡𝑛 from both sides, we obtain 
(𝑛 + 1)𝐿𝑛+1(𝑥) − 2𝑛𝐿𝑛(𝑥) + (𝑛 − 1)𝐿𝑛−1(𝑥)

= 𝐿𝑛(𝑥) − 𝐿𝑛−1(𝑥) − 𝑥𝐿𝑛(𝑥) 
(𝑛 + 1)𝐿𝑛+1(𝑥) − 2𝑛𝐿𝑛(𝑥) + 𝑛𝐿𝑛−1(𝑥) − 𝐿𝑛−1(𝑥)

= 𝐿𝑛(𝑥) − 𝐿𝑛−1(𝑥) − 𝑥𝐿𝑛(𝑥) 
(𝑛 + 1)𝐿𝑛+1(𝑥)

= 𝐿𝑛(𝑥) − 𝐿𝑛−1(𝑥) − 𝑥𝐿𝑛(𝑥) + 2𝑛𝐿𝑛(𝑥) − 𝑛𝐿𝑛−1(𝑥)
+ 𝐿𝑛−1(𝑥) 

(𝑛 + 1)𝐿𝑛+1(𝑥) = 𝐿𝑛(𝑥)(2𝑛 − 𝑥 + 1) − 𝑛𝐿𝑛−1(𝑥) 

Hence (𝒏 + 𝟏)𝑳𝒏+𝟏(𝒙) = (𝟐𝒏 + 𝟏 − 𝒙)(𝒏 + 𝟏)𝑳𝒏(𝒙) − 𝒏(𝒏 +
𝟏)𝑳𝒏−𝟏(𝒙) is required solution. 

Recurrence Relation II: 𝑥𝐿′
𝑛(𝑥) = 𝑛𝐿𝑛(𝑥) − 𝑛𝐿𝑛−1(𝑥) 

Proof: Again we using the generating function  

                                     ∑ 𝐿𝑛(𝑥)𝑡𝑛

∞

𝑛=0

=
𝑒𝑥𝑝{−𝑥𝑡 (1 − 𝑡)⁄ }

1 − 𝑡
                                     … (1) 

Differentiating w. r.t.𝑥, we obtain 

∑ 𝐿′𝑛(𝑥)𝑡𝑛 =
1

(1 − 𝑡)
× 𝑒𝑥𝑝 {−

𝑥𝑡

1 − 𝑡
} × {

−𝑡

1 − 𝑡
}

∞

𝑛=0

 

∑ 𝐿′𝑛(𝑥)𝑡𝑛 =
−𝑡

(1 − 𝑡)
∑ 𝐿𝑛(𝑥)𝑡𝑛

∞

𝑛=0

∞

𝑛=0

,         𝑓𝑟𝑜𝑚(1) 

(1 − 𝑡) ∑ 𝐿′𝑛(𝑥)𝑡𝑛 = −𝑡 ∑ 𝐿𝑛(𝑥)𝑡𝑛

∞

𝑛=0

∞

𝑛=0

 

(∑ 𝐿′𝑛(𝑥)𝑡𝑛

∞

𝑛=0

− 𝑡 ∑ 𝐿′𝑛(𝑥)𝑡𝑛

∞

𝑛=0

) = − ∑ 𝐿𝑛(𝑥)𝑡𝑛+1

∞

𝑛=0

 

∑ 𝐿′𝑛(𝑥)𝑡𝑛

∞

𝑛=0

− ∑ 𝐿′𝑛(𝑥)𝑡𝑛+1

∞

𝑛=0

= − ∑ 𝐿𝑛(𝑥)𝑡𝑛+1

∞

𝑛=0

 

We equating the coefficient of 𝑡𝑛 from both sides, we give 

𝐿′𝑛(𝑥) − 𝐿′𝑛−1(𝑥) = −𝐿𝑛−1(𝑥) 

𝑳′𝒏−𝟏(𝒙) = 𝑳𝒏−𝟏(𝒙) + 𝑳′𝒏(𝒙) 

Replacing 𝑛 by 𝑛 + 1  

𝑳′𝒏+𝟏(𝒙) = 𝑳′𝒏(𝒙) − 𝑳𝒏(𝒙) 

From recurrence relation I  

(𝑛 + 1)𝐿𝑛+1(𝑥) = 𝐿𝑛(𝑥)(2𝑛 − 𝑥 + 1) − 𝑛𝐿𝑛−1(𝑥)   … (2) 

Again differentiating w.r.t. 𝑥, we obtain 

(𝑛 + 1)𝐿′𝑛+1(𝑥) = 𝐿′𝑛(𝑥)(2𝑛 − 𝑥 + 1) − 𝐿𝑛(𝑥) − 𝑛𝐿′𝑛−1(𝑥) … (3) 

Putting the values of 𝐿′𝑛−1 and 𝐿′𝑛+1 in (3) 
(𝑛 + 1)[𝐿′𝑛(𝑥) − 𝐿𝑛(𝑥)]

= 𝐿′𝑛(𝑥)(2𝑛 − 𝑥 + 1) − 𝐿𝑛(𝑥) − 𝑛[𝐿𝑛−1(𝑥) + 𝐿′𝑛(𝑥)] 
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𝐿′𝑛(𝑥)(𝑛 + 1) − 𝐿𝑛(𝑥)(𝑛 + 1)
= 2𝑛𝐿′𝑛(𝑥) − 𝑥𝐿′𝑛(𝑥) + 𝐿′𝑛(𝑥) − 𝐿𝑛(𝑥) − 𝑛𝐿𝑛−1(𝑥)
+ 𝑛𝐿′𝑛(𝑥) 

𝐿′𝑛(𝑥)[𝑛 + 1 − 2𝑛 + 𝑥 − 1 + 𝑛] = 𝐿𝑛(𝑥)[𝑛 + 1 − 1] − 𝑛𝐿𝑛−1(𝑥) 

𝒙𝑳′𝒏(𝒙) = 𝒏𝑳𝒏(𝒙) − 𝒏𝑳𝒏−𝟏(𝒙) 

Recurrence Relation III:   𝐿′𝑛(𝑥) = − ∑ 𝐿𝑟(𝑥)𝑛−1
𝑟=0        

Proof:    The generating function of Laguerre polynomials is 

𝑒𝑥𝑝{−𝑥𝑡/(1 − 𝑡)}

1 − 𝑡
= ∑ 𝐿𝑛(𝑥)𝑡𝑛

∞

𝑛=0

                              ⋯ (1) 

Differentiating w. r.t.𝑥, we have 

∑ 𝐿′𝑛(𝑥)𝑡𝑛

∞

𝑛=0

=
1

1 − 𝑡
𝑒𝑥𝑝 [−

𝑥𝑡

1 − 𝑡
] [

−𝑡

1 − 𝑡
] 

[
−𝑡

1 − 𝑡
] ∑ 𝐿′

𝑟(𝑥)𝑡𝑟

∞

𝑛=0

= −𝑡(1 − 𝑡)−1 ∑ 𝐿𝑟(𝑥)𝑡𝑟   ,    𝑢𝑠𝑖𝑛𝑔 (8)

∞

𝑛=0

 

= −𝑡 ∑ ∑ 𝐿𝑟(𝑥)

∞

𝑟=0

𝑡𝑟

∞

𝑠=0

, 𝑏𝑦 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑒𝑥𝑝𝑒𝑛𝑠𝑖𝑜𝑛 

               ∑ 𝐿′𝑛(𝑥)𝑡𝑛

∞

𝑛=0

== −𝑡 ∑ ∑ 𝐿𝑟(𝑥)

∞

𝑟=0

𝑡𝑟+𝑠+1

∞

𝑠=0

   … (2) 

It is clearly that 𝑡𝑛 on L.H.S. of equation (2) is 𝐿′𝑛(𝑥) and now we obtain 

𝑡𝑛  on R.H.S. of  (2). We substituting 𝑟 + 𝑠 + 1 = 𝑛 ⇒ 𝑠 = 𝑛 − 𝑟 −
1 &  𝑠 ≥ 0 ⇒ 𝑛 − 𝑟 − 1 ≥ 0 ⇒ 𝑟 ≤ 𝑛 − 1, which obtain all value of r are 

1,2,3, ⋯ ⋯ ⋯ 𝑛 − 1 and ∀ 𝑟, −𝐿𝑟(𝑥)is coefficient of 𝑡𝑛. 

Hence the total coefficient of 𝑡𝑛 on R.H.S. of (2) is given below  

− ∑ 𝐿𝑛(𝑥)

𝑛−1

𝑛=0

 

Thus, the equating the coefficients of 𝑡𝑛 from both sides of (2), we obtain 

𝐿′𝑛(𝑥) = − ∑ 𝐿𝑛(𝑥)

𝑛−1

𝑛=0

 

SOLVED EXAMPLES 
EXAMPLE1. Show that (i) 𝐿𝑛(0) = 1          (ii)  𝐿𝑛(0) = 𝑛!          
SOLUTION: We know that 

∑ 𝐿𝑛(𝑥)𝑡𝑛

∞

𝑛=0

=
1

1 − 𝑡
𝑒−𝑡𝑥/(1−𝑡)                  … (1) 

Substituting 𝑥 = 0 in (1), by binomial theorem 

∑ 𝑡𝑛𝐿𝑛(0)

∞

𝑛=0

= (1 − 𝑡)−1 = 1 + 𝑡 + 𝑡2 + ⋯,  
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∑ 𝑡𝑛𝐿𝑛(0)

∞

𝑛=0

= ∑ 𝑡𝑛

∞

𝑛=0

                                … (2) 

Equating the coefficient 𝑡𝑛on both sides, we have 𝐿𝑛(0) = 1. 

(ii)  𝐿𝑛(0) = 𝑛!   
    SOLUTION: We know that, the generating function is  

∑
𝑡𝑛𝐿𝑛(𝑥)

𝑛!

∞

𝑛=0

=
1

1 − 𝑡
𝑒−𝑥𝑡 (1−𝑡)⁄               ⋯ (3) 

Substituting 𝑥 = 0  in equation (3),    ∑ 𝑡𝑛𝐿𝑛(0)∞
𝑛=0 = (1 − 𝑡)−1 = 1 +

𝑡 + 𝑡2 + ⋯,   

  Equating the coefficient 𝑡𝑛 on both sides, we have 
𝑡𝑛𝐿𝑛(0)

𝑛!
= 1,

𝑜𝑟  𝐿𝑛(0) = 𝑛! 
EXAMPLE2. Show that 𝑥𝐿′′𝑛(𝑥) + (1 − 𝑥)𝐿′𝑛 + 𝐿𝑛(𝑥) = 0 and hence 

deduce that𝐿′𝑛 = −𝑛. 

SOLUTON: Now we use the Laguerre’s equation    

𝑥(𝑥2𝑦 𝑑𝑥2⁄ ) + (1 − 𝑥) 𝑑𝑦 𝑑𝑥⁄ + 𝑛𝑦 = 0, 
Putting 𝑥 = 0 in above equation 

𝐿′𝑛(0) + 𝑛𝐿𝑛(0)   or       𝐿𝑛(0) = −𝑛,           𝑎𝑠                𝐿𝑛(0) = 1. 

EXAMPLE3. Expand 𝑥3 + 𝑥2 − 3𝑥 + 2  in series of Laguerre 

polynomials. 

SOLUTION: We know that the Laguerre polynomials are  

𝐿0(𝑥) = 1, 𝐿1(𝑥) = 1 − 𝑥, 𝐿2(𝑥) =
(2 − 4𝑥 + 𝑥2)

2
 𝑎𝑛𝑑 𝐿3(𝑥)

=
1

6
(6 − 18𝑥 + 9𝑥2 − 𝑥3) 

Now 

𝑥3 = 6 − 18𝑥 + 9𝑥2 − 6𝐿3(𝑥)                                    … (1) 

𝑥2 = 4𝑥 − 2 + 2𝐿2(𝑥)                                                  … (2) 

𝑥 = 1 − 𝐿1(𝑥)                   and                 𝐿0(𝑥) = 1                … (3)                

Now              

𝑥3 + 𝑥2 − 3𝑥 + 2 = 6 − 18𝑥 + 9𝑥2 − 6𝐿3(𝑥) + 𝑥2 − 3𝑥 + 2,  by (1) 

= 8 − 21𝑥 + 10𝑥2 − 6𝐿3(𝑥) = 8 − 21𝑥 + 10[4𝑥 − 2 + 2𝐿2(𝑥)] −
66𝐿3(𝑥),    by (2) 

 = −12 + 19𝑥 + 20𝐿2(𝑥) − 6𝐿3(𝑥) = −12 + 19[1 − 𝐿1(𝑥)] +
20𝐿2(𝑥) − 6𝐿3(𝑥),  by (3) 

= 7 − 19𝐿1(𝑥) + 20𝐿2(𝑥) − 6𝐿3(𝑥) = −7𝐿0(𝑥) − 19𝐿1(𝑥) +
20𝐿2(𝑥) − 6𝐿3(𝑥),  by (3) 

SELF CHECK QUESTIONS 

(SCQ-1) 𝐿𝑛+𝑘 is a Laguerre polynomial of degree…….. 

(SCQ-2)     Associated Laguerre differential equation is ….... 
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(SCQ-3)     Express 10 − 23𝑥 + 10𝑥2 − 𝑥3 in terms of Laguerre 

polynomials. 

14.9 SUMMARY:-  

In this unit, first of all we are explained the definitions of  Laguerre 

Equations and discussed about  the  Generating function for Laguerre 

polynomials, Rodrigue’s Formula, Orthogonality Properties  Laguerre 

Series Expansions,  Recurrence Relation (Formulae). Finally, the Laguerre 

polynomials are an important tool in the study of differential equations 

and their solutions.    

14.10 GLOSSARY:-  

 Series Expansion 

 Laguerre equation 

14.11 REFERENCES:-  

 Dunham Jackson (2004) Fourier series and Orthogonal 

Polynomials. 

 Refaat El Attar (2006) Special Function and Orthogonal 

Polynomials. 

14.12 SUGGESTED READING:-  

 M.D. Raisinghania, (2018). Ordinary and Partial Differential 

equation (18th Edition), S. Chand. 

 Carlo Viola (2016) An introduction to Special Function. 

 MathWorld(Wolfram):https://mathworld.wolfram.com/Laguerre

Polynomial.html 

 Wikipedia: https://en.wikipedia.org/wiki/Laguerre_polynomials 

 Digital Library of Mathematical Functions: 
https://dlmf.nist.gov/3 

14.13 TERMINAL QUESTIONS:-  

(TQ-1) If 𝐿𝑛(𝑥)  to be the coefficient of 𝑡𝑛  in the expansion of 
1

1−𝑡
𝑒𝑥𝑝 (

𝑥𝑡

1−𝑡
), prove that ∫

𝑒−𝑡𝑎𝑛𝜃

𝑐𝑜𝑠2𝜃

𝜋 2⁄

0
𝐿𝑛(𝑡𝑎𝑛𝜃)𝐿𝑚(𝑡𝑎𝑛𝜃)𝑑𝜃 = 𝛿𝑚𝑛 . 

(TQ-2) If ∑
𝑡𝑛

𝑛!
𝐿𝑛(𝑥) =

1

1−𝑡
𝑒𝑥𝑝 {

−𝑡𝑥

1−𝑡
}∞

𝑛=0 , prove that 
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i. 𝐿′𝑛(𝑥) = 𝑛[𝐿′𝑛−1(𝑥) − 𝐿𝑛−1(𝑥)] 
ii. 𝑥𝐿′𝑛(𝑥) = 𝑛𝐿𝑛(𝑥) − 𝑛2𝐿𝑛−1(𝑥) 

(TQ-3) Prove that∫ 𝑒−𝑠𝑡𝐿𝑛(𝑡)𝑑𝑡 = (1 𝑠⁄ ) × (1 − 1 𝑠⁄ )𝑛∞

0
. 

(TQ-4) Prove that∫ 𝑒−𝑦𝑥𝑘𝐿𝑛(𝑥)𝑑𝑥 = {
0, 𝑖𝑓 𝑘 < 𝑛

(−1)𝑛𝑛!, 𝑖𝑓 𝑘 = 𝑛.
∞

0
 

 (TQ-6) State and prove that generating function for Laguerre polynomial. 

(TQ-7) Prove that the recurrence relations of the following 

I. (𝑛 + 1)𝐿𝑛+1(𝑥) = (2𝑛 + 1 − 𝑥)𝐿𝑛(𝑥) − 𝑛𝐿𝑛−1(𝑥) 

II. 𝑥𝐿′
𝑛(𝑥) = 𝑛𝐿𝑛(𝑥) − 𝑛𝐿𝑛−1(𝑥) 

III. 𝐿′𝑛(𝑥) = − ∑ 𝐿𝑟(𝑥)𝑛−1
𝑟=0                  

 

14.14  ANSWERS:-  

 

SELF CHECK ANSWERS 

(SCQ-1)  𝑛 + 𝑘 

(SCQ-2)  𝑥𝑦′′ + (1 − 𝑥 + 𝑘)𝑦′ + 𝑛𝑦 = 0  

(SCQ-3)   𝐿0(𝑥) + 𝐿1(𝑥) + 2𝐿2(𝑥) + 6𝐿3(𝑥) 
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