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COURSE INFORMATION

The present self learning material “Advanced Differential Equations-1" has been
designed for M.Sc. (First Semester) learners of Uttarkhand Open University, Haldwani.
This self learning material is writing for increase learner access to high-quality learning
materials.This course is divided into 14 units of study. The first two units are devoted to
Existence & Nature of Solution and Degree & Exactness of Differential Equation and
Principle of Duality. Unit 3 and Unit 4 explained to a concept of Linear Differential
Equation and Variation of Parameters. Unit 5 and Unit 6 are focussed on the topic
Ordinary, Regular & Singular Points and Second Order Differential Equation. The aim of
Unit 7 and 8 are to introduce the concept of Trajectories and Integral Curves and Damped
Linear Oscillator. Unit 9 and Unit 10 explain the concept of Fundamental Existence
Theorem and Differential Equations with Periodic Solution. Unit 11explain the Method
of Bogoliubov & Krylov. Unit 12, 13 and 14 will explain the Chebyshev Polynomials and
Legendre Polynomials, Bessel Functions and Hermite Polynomials and Leguerre Polynomials.
This material also used for competitive examinations. The basic principles and theory
have been explained in a simple, concise and lucid manner. Adequate numbers of
illustrative examples and exercises have also been included to enable the leaner’s to grasp

the subject easily.
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BLOCK |
EXISTENCE AND NATURE OF SOLUTIONS
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UNIT 1:- EXISTENCE & NATURE OF
SOLUTION

CONTENTS:

1.1  Introduction

1.2  Objectives

1.3  Differential Equation.

1.4 Ordinary Differential Equation.

1.5 Partial Differential Equation.

1.6 Order of Differential Equation.

1.7  Degree of a Differential Equation.

1.8  Linear and non- linear differential Equation.

1.9  Solution of Differential equation and family of curve.

1.10 Complete Primitive (General Solution), Particular Solution
and Singular Solutions.

1.11 The Wronskian.

1.12  Linearly dependent and independent set of solutions

1.13  Existence of uniqueness theorem.

1.14  Fundamental set of solutions.

1.15 Summary

1.16 Glossary

1.17 References

1.18 Suggested Reading

1.19 Terminal questions

1.20  Answers

1.1 INTRODUCTION:-

In the previous class you have already studied about basics of differential
equations. The concept of differential equations has a long history, with
roots dating back to the 17th century. Many mathematicians contributed to
the development of differential equations, including Isaac Newton,
Gottfried Leibniz, Leonhard Euler, Joseph-Louis Lagrange, and Pierre-
Simon Laplace. In particular, Newton and Leibniz are credited with the
development of calculus, which provided the mathematical framework for
differential equations. Newton also used differential equations to describe
the motion of objects under the influence of gravity, which is now known
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as Newton's law of motion. However, it is difficult to attribute the
invention of differential equations to a single person, as the concept has
evolved over time with the contributions of many mathematicians.

A differential equation is an equation that involves an unknown function
and one or more of its derivatives. It is used to describe the relationship
between a function and their rates of change. There are two main types of
differential equations: ordinary differential equations (ODESs) and partial
differential equations (PDEs). An ODE involves derivatives of a single
variable, while a PDE involves derivatives of multiple variables.
Differential equations are used in many areas of science and engineering,
including physics, biology, economics, and finance. They are particularly
useful for modeling dynamic systems, such as the motion of objects or the
behavior of populations over time. Solving a differential equation involves
finding a function that satisfies the equation. This can be done analytically
or numerically, depending on the complexity of the equation and the
desired level of accuracy. Analytical solutions involve finding a closed-
form expression for the function, while numerical solutions involve
approximating the function using numerical methods.

1.2 OBJECTIVES:-

After studying this unit, you will be able to

e To analyze and predict the behavior of these systems over time.

e To provide solutions to problems that cannot be solved using other
mathematical techniques.

e To understand the definition of differential equation.

1.3 DIFFERENTIAL EQUATION:-

An Equation involving derivatives of differentials of one or more
dependent variables with respect to one or more independent variables is
called Differential Equations.

For Example:
d
% = (x + sinx) . (1)
d*x d?x  /dx\®
-4 ) — pt
dct Tae t (dt) ¢ - (2)

Department of mathematics
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y= ﬁj—z + é . (3)
dx
k(d?y/dx?) = {1 + (dy/dx)?}3/? (4
0%v/0t? = k(03v/0x3)? ..(5)
and
0%u/0x?* + 0%u/0x?* + 9%u/ox*> =0 .. (6)

1.4 ORDINARY DIFFERENTIAL EQUATION:-

A differential Equation (Art.1.3) given in (1), (2), (3) and (4) involve only
one independent variable is called an Ordinary Differential Equations

1.5 PARTIAL DIFFERENTIAL EQUATION:-

The equation (Art.1.3) given in (5) and (6) involve partial derivatives with
respect to more than one independent variable is called a Partial
Differential Equation.

1.6 ORDER OF A DIFFERENTIAL EQUATION:-

The order of a differential equation is order of highest derivative
differential equation.

In Art.(1.1) shown that the equation (2) is of 4™ order, equation (1) and
(3) are of 1% order, equations (4) and (6) are of the second order and
equation (5) is of the third order.

1.7 DEGREE OF A DIFFERENTIAL EQUATION:-

The Degree of a differential equation is power of the height order
derivative term in the differential equation.

In Art.(1.1) given the equation (1), (2) and (6) are of first degree. Making
equation (3) free from fractions, we describey dy/dx = V/x(dy/dx)? +
k, which is of 2" degree.

1.8 LINEAR AND NON-LINEAR DIFFERENTIAL
EQUATION:-

A differential equation is said to be Linear if

Department of mathematics
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(1 Every dependent variable and every derivative in involved
occurs in the first degree only.
(1) No products of dependent variable and /or derivatives occur.
A differential equation which is not a linear is called the non-linear
differential equation.
For Example:

@y 2l o0 0 sl
1-5+3--+9y = 0.is linear.

3 4
2. % + (%) + 6y = 3. is non-linear because in 2" term is not of degree
one.

1.9 SOLUTION OF DIFFERENTIAL EQUATION
AND FAMILY OF CURVES:-

Any relation between the dependent and independent variables, which
when substituted in differential equation, reduces it to an identity is known
as Solution of differential equation or integral of differential equation.
A solution of differential equation does not include the derivatives of the
dependent variable with respect to the independent variable or variables.

FAMILY OF CURVES: An n-parameter family of curves is a set of
relations of the form

{(x,y): f(x,v,¢q,¢p, ..., c) = 0},
Where f is real value function of x,vy,c,¢,,...,c,, and ¢;(i = 1,2, ...n)
range over an interval of real values.
For Example: 1. Let x2 + y2? = ¢ is one parameter family if ¢ takes all
non-negative real values.
2. again we take the set of circles, obtained by (x — ¢;)? + (x — ¢;)? = ¢
is three parameter family if ¢, take all real values and c; takes non-
negative real values.

1.10 COMPLETE PRIMITIVE (GENERAL
SOLUTION), PARTICULAR SOLUTION AND

SINGULAR SOLUTIONS:-
Definitions
Suppose F(x, 9,91, V2, 0, Yn) =0 ..(1)

be an nth order differential equation.
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Q) A solution of equation (1) containing n independent arbitrary
constants is called a general solution.

(1) A solution of equation (1) obtained by giving particular values
to the arbitrary constants in general solution is known as
particular solution or integral solution.

(i) A solution of equation (1) which cannot be described from
any general solution of (1) by any n independent arbitrary
constants is called singular solution.

For Example:
Suppose y =ce* +cye* ..(2)
is the general solution of y" —=3y'"+2y=0 ..(3)

Where c; and c, are independent arbitrary constants. Some particular
solution of (3) are obtained by y = e* + 2e*, y =-e* —2e”*.

SOLVED EXAMPLES
EXAMPLEL:Ify = (A/x) + B, then show that (d?y/dx?) + (2/x) X

(dy/dx) = 0.
SOLUTION: Given that
(d?y/dx?) + (2/x) x (dy/dx) =0 .. (D
y=(A/x)+B - (2)
Now differentiating equation (2) with respect to x,
dy/dx = —A/x? .. (3)

Again differentiating (3) with respect to x, d?y/dx? = (24/x3)

Putting the value of dy/dx and d?y/dx? in (1), we get
(2A/x®) + 2/x)x —A/x*=0 or 0=0

Hence eq. (2) is the solution of (1).

EXAMPLE 2: Find the differential equation of the family of curvesy =
e™*, where m is arbitrary constant.

SOLUTION: Now given that the family of curves

y =e™ ..(1)
Differentiating (1) w.r.t. x, we have
dy/dx = me™ ..(2)
From (1) and (2) dy/dx = my
= m=(1/y) x (dy/dx) ...(3)
my = dy/dx
my = me™
logy = mx
So
m = 28Y ()
X

Department of mathematics
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Eliminating m from (3) and (4)

(1/y) x (dy/dx) = (1/x) X logy.
EXAMPLE 3: Find the differential equation satisfied by family of
circlesx? + y? = a2, a being an arbitrary constant.
SOLUTION: Let us consider the equation of any circle passing through
the origin and whose centre is on the x-axis is given by

x?+y?+ 2gx = 0, where g being arbitrary constant. . (1)
Differentiating (1) with respect to x, we have
2x+2y3—z+2g= 0 ..(2)
From(1) 2gx = —(x% +y?)
2 = (x?+y%)

9= X
Now substituting the value of 2g in equation (2), we obtain

dy (x*+y?)

2x +2y———"==0.
Xty dx X

d
2xyd—2:+x2 —y%2=0.

EXAMPLE 4. Find the differential equation of the family of the
curvesy = e*(Acosx + Bsinx), where A and B are arbitrary constant.
SOLUTION: Let
y = e*(Acosx + Bsinx) .. (1)
Differentiating (1) y’ = e*(—Asinx + Bcosx) + e*(Acosx + Bsinx)
y' = e*(—Asinx + Bcosx) +y, from (1) - (2)

Again Differentiating (2)

y" = —e*(Acosx + Bsinx) + e*(—Asinx + Bcosx) +y' ...(3)
Now From (2), we have

e*(—Asinx + Bcosx) =y’ —y. .. (4)

Hence eliminating the value of A and B from (1), (3) and (4), we have

" _

y'=-y+y —-y+y or y'—=2y'+2y=0

1.11IWRONKSKIAN:-

Definition: The Wronkskian of n functions y, (x),y,(x), ....y,(x), is
denoted by W(x) or W(yy,y,,....¥,)(x) and is defined to be the
determinant

Department of mathematics
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V1 Y2, = n
WO ys e y)@ =W =| ¥ Yo o dm
Dy, Ly,

1.12 LINEARLY DEPENDENT AND
INDEPENDENT SET OF SOLUTIONS:-

Definition: the n function y, (x), y,(x), .... y,(x) are linearly dependent if
3 constants ¢, c,, ... c,(not all zero), such that

C1y1 + Cyp + oo +cnyn =0 - (1)
If, however, identity (1) impliesthatc; = ¢, = - =¢, =0,
Then y,, y,, ... y,, are said to be linearly independent.

1.13EXISTANCE AND UNIQUENESS THEOREM:-

Consider the second order differential equation of the form

ao()y" +a;(x)y" + a(x)y =r(x) (D
Where ay(x),a,(x),a,(x) and r(x) are continuous functions on an
interval I and ay(x) # 0 for eachx € I. Let ¢, and ¢, be arbitrary real
numbers and x, € I.Then 3 a unique solution of (1) satisfying y(x,) = ¢,

and y'(x,) = ¢,. This solution y(x) is described over the interval I.
Notel: The above theorem is an existence theorem because it says that the
initial value problem does have a solution. It is also a uniqueness theorem,
because it says that there is only one solution. Clearly, this theorem also
applies to an associated homogeneous equation

ao(x)y" +a;(x)y" + a,(x)y =0
Note2: In this unit, we shall assume without proof, the above basic
theorem for initial value problems associated with linear differential
equations.
Note3: The conditions of existence and uniqueness theorem cannot be
further relaxed. For example, if a,(x) = 0 ¥ x € I, then the solution of (1)

may not be unique or may not be exist at all.

Note4: Existence and unigueness theorem can be extended to an nth order
linear differential equation.

THEOREM I: State the existence and uniqueness theorem for nth order
differential equation

Department of mathematics
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L)) = y™ +p, (0)y@ V() ... oo, +p, (1) y(x) = 0,x €1,
which is a linear homogeneous equation.
SOLUTION: Statement of the existence and uniqueness theorem
foL(y)(x) = y™ + p,(X)y@ DV (x) oo +p, ()y(x) = 0,x €1 ...(1)
Suppose py,p, ...pn, be obtained and continuous on an interval I which
contains a point x,.Let ay, a; ...a,_; be n constants. then 3 a unique
solution ¢ on Iof (1) satisfying the conditions.
d(x0) = ag,  @'(xo) = ay,... , ¢V (xo) = apy
Let ¢,(x),..... ¢, (x) are n solution of L(y)(x) =0 given in (1) and
suppose that ¢y, ¢, ... ¢, are n arbitrary constants. Since L(¢,) = L(¢,) =
------ = L(¢,) = 0, and L is linear operator, we get
L(cipy + catpp + oo + cndn) = e L(dy) + oo e + cpL(¢pn) =0

~ n solutions ¢y, -+ -+ - , ¢, are linearly independent and c,, ¢, ...c,, are
constants, then

C1P1 + Capy + oo +c,pp,=0x€l=>c,=¢c,=-¢,=0.
THEOREM I1: Show that there are three linearly independent solutions
of the third order equation y'"" + p; (x)y" + p,(x)y’ + p3(x)y =0,x € I
where p,,p, and p; are functions, defined and continuous on an
interval 1.
SOLUTION: Lety"" + p,(x)y" + po(x)y’ + p3(x)y=0,x € ..(1)
Using theorem | we conclude that 3 solutions ¢, (x), ¢, (x) and ¢5(x) of

(1) such that for x, € I.

¢1(x) =0, ¢’1(xo) =0 1(xe) =0
$2(xo) = 0, ¢>’2(xo) =1 2 (x) =0 - (2)
$3(xp) =0, @' (xo) =1 Y(xo) =0
and we proceed to prove that ¢, ¢, and ¢ are linearly independent. Let
c191(x) + 2, (x) + c3¢3(x) = 0,x €1 ..(3)
For some constants c;, ¢, and c3. At x = x,,, from (3), we get
c191(xo) + 202 (x0) + c3p3(x0) = 0,x € ] .. (4)
Now differentiating (3) w.r.t. x and replacing x by x, yields
Cld)ll (xo) + C2¢,2 (xo) + C3¢,3(x0) = O,X € I (5)
Now again differentiating (3)twice w.r.t. x and replacing x by x, yields
c19"1(x0) + 20" 2(x0) + c30"3(x0) = 0,x €I ..(6)

Using (2) in (4), (5) and (6) , we obtain
€ =¢C,=¢c3=0.
Hence ¢4, ¢, and ¢ are linearly independent.
THEOREM 111: Let ¢ be any solution of y"" + p,(x)y" + p,(x)y" +
p3(x)y =0,x € I. Here p;,p, and p; are the functions defined and
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continuous on an interval I. Further, let ¢,,¢, and ¢5 be there linearly
independent solutions of the given equation. Prove that constants c,c,
and c5 exist such that
¢ =c1¢1 + 29, +c3¢3,x EL

SOLUTION: Let y"" + p;(x)y" + p,(x)y" + ps(x)y=0,x € ..(1)
Using the existence and uniqueness theorem states in theorem I, at x =
X, € I, 3 constants a,, a, and a; such that

$(x9) = a;, ¢'(xp) =a, and ¢"(xp) = a3
The solutions ¢4, ¢, and ¢ are given by theorem Il. Now we define a
function ¥ on I such that ¥ (x) = a;¢,(x) + ayp,(x) + azps(x),x € I.
Clearly (1) and
Y(xo) = ay, P'(xe) =a, and YP"(xp) = a3
Since that two solutions ¢ and ¥ of (1) have the same initial conditions.
Hence by the existence and uniqueness theorem, it follows that ¢(x) =
Y(x)forx el.
THEOREM 1IV: If y,;(x) and y,(x) are any two solutions of
ao(x)y" (x) + a;(x)y'(x) + a; (x)y(x) = 0, then the linear combination
c1y1 (x) + ¢, v, (x), where ¢, and ¢, are constants, is also a solution of the
given equation.
SOLUTION: Suppose

ao(x)y" (x) + a; (x)y'(x) + a,(x)y(x) =0 (1)
~ y;(x) and y, (x)are the solution of (1), we get
ao(X)y," (x) + a, ()y1" (x) + a(x)y,(x) = 0 . (2)
ao(X)y," (x) + a; (x)y,' (x) + a;(x)y,(x) = 0 .. (3)
Let
u(x) = 1y, (x) + cy,(x) .. (4)

Hence differentiating (4) twice, w.r.t.x, we obtain

u'® = ¢y’ (x) + ¢y’ (x)and u'® = cy”,(x) + ¢y",(x) ...(5)
From (4) and (5)

= ag()u” (%) + a; 0w’ (x) + a,(ulx) = ao(x)[cry”, (x) +
Czy”z(x)] + a1 (D) [ery'1(0) + 2y (0) 1 + az (x) [e1y: () +

2y, (x)]

= c1fao()y," () + a; ()1 (%) + az () y1 ()] + cxlae(x)y," (x) +

a; (X)y," (x)az (x)y, (x)] ..(6)
Putting the value of (2) and(3) in (6)

=¢;.0+¢,.0
Thus

ao ()u” (x) + a; ()u'(x) + a,(Ju(x) = 0
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Prove thatu(x), i.e., c;y, (x) + ¢y, (x) is also solution of (1).
THEOREM V: Two solutions y;(x) and y,(x) of the equation,
acx)y" +a,(x)y’ +a,(x)y =0,a,(x) # 0,x € [a,b] are linearly
dependent if and only if their Wronskian is identically zero.
SOLUTION:
Necessary Condition: Let y,(x) and y,(x) be linearly independent, two
constants ¢; and c,, not both zero, such that

c1y1(x) + ¢y, (x) =0V x €

[a, b] (D
1y 1(x) + ¢y, (x) =0Vx €
[a, b] (2

Since ¢; and c, cannot be zero simultaneously, the equation (1) and (2)

possess non-zero solutions for which the condition is

y1(x) y2(x)

y'1(x) y'2(x)
W (x) = 0on (a, b)(Wronskian is identically zero)

Sufficient Condition: Let us consider Wronskian is identically zero on

(a, b)and let

W(x) = — 0V xelab]

|y vy ()| _
W(x) = y'll(x) y'zz(x) =0onla,b] ..(3)
Supposex = x, € [a, b].
Hence from the equation (3), we obtain
y1(x) yo(x) _
Y1) 2@l = ° -

Since the equation (4) for the existence of two constants k; and k,, both
not zero i.e.,

k1y1(xo) + kpy,(x9) = 0 ..(5)
kiy'1(xo) + kays(xg) =0 .. (6)
And consider y(x) = kiy1 (x) + kyy,(x) - (7)

now y(x) being a linear combination of y,(x) and y,(x) is also given
equation.(refer theorem 1V)
Differentiating equation (7), we get
y'(x) =kyy' (x) + kpy', (x) .. (8)
Again (7) = y(xo) = k1y1(x0) + k2y2(x0) =0 ...(9) from (5)
= y(x0) = k1y1(x0) + kpy,(x0) =0 ... (10)from(6)
Hence y(x) = 0 on [a, b]. And by (7)
kiy,(x) + kpy,(x) = 0,V x € [a, b]
Where k; and k, are constants, both not zero.
Hence, be def., y; (x) and y, (x) are linearly independent.
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THEOREM VI: ABEL’S FORMULA
Let the function p, and p, in
L)) =y"® +p,(0)y'® + py(x) =0,x € ...(1)
be defined and continuous on an intervall. Let ¢;any ¢, be two linearly
independent solutions of (1) existing on I containing a point x,. then

W (g1, ¢2)(x) = exp (‘f pl(x)dx> W (1, 2)(x0) .. (2)
Proof: Given 0
Y@ + p ()Y’ ® +py(x) =0,x €1
now W(h1, ¢2) = ¢11 ¢’2 =19, —¢'1¢,...(3)
¢1 ¢
From(3)

W' (p1, ¢2) = ¢'19", + 19", — (@102 + ¢'10"2)
W'(d1, P2) = p1¢"2 — 9”192 o (4)
Hence ¢, and ¢, satisfying (1), we have
¢"'1 + 0191 + D201 = 0= @1 = —pid's — 2Py
and
¢"1 + 1@, + D22 = 0= 9", = —p1d';, — P20
Putting the value of ¢''; and ¢"', in (4), we get
W' (¢, $2) = d1(—p19'1 — P2P1) — P2(—p1d"2 — D202)
or
W'(d1, 92) = —p1(P19", — ¢'192) =
—p1W (¢, @) from(3)
Hence, W (¢4, ¢,) satisfied a first order linear homogeneous equation
W' +p,W=0x€l
aw aw

or —=—-p W or W= —pdx or logW —

s0 W (¢, $2)() = c exp (— [ ps (¥)dx) ...(5)
where ¢ is constant .
Putting x = x, in (5), we have
c = W(d1, $2)(x0)

Hence we get the required result.

SOLVED EXAMPLES
EXAMPLEL: Prove that the functiony = cx? +x + 3 is a solution,
though not unique, of the initial value problem x?y” — 2xy’' +2y =6
with y(0) = 3,y'® = 1 on (—co, ).
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SOLUTION: Suppose x?%y" —2xy'+2y =6 .. (1)
and y(x) =cx?*+x+3 . (2)
Now differentiating (2), we have

y'=2cx +1 and y" =2c ..(3)
From (1)

LHS.= x%y" — 2xy' + 2y = x2(2¢) — 2x(2cx + 1) + 2(cx? + x + 3),
using (2) and (3)
= 6=R.H.S. of (1)

From (2) and (3)

y(0)=(cx0)+0+3=3
and

y'©® = 2c)x(0)+1=1.
Comparing (1) with

ao(x)y" +a;(x)y" + a;(x)y = r(x)

here
ao(x) = x?, a;(x) = —2x, a,(x) =2 and r(x) =6 whichare
continuous on (—oo, ).
Since ay(x) =x2=0 for x =0 € (—m,), therefore, the solution
y(x) = cx? + x + 3 is not unique. Hence we see that y = cx? + x + 3 is
a solution for any real value of c.

EXAMPLE2: Find the unique solution of y” =1 satisfying y(0) =1
and y'(0) = 2.

SOLUTION: The given equation y'" = % =1 .. (1)
Integrating (1)

y’=3—z=x+c1 ..(2)
Again integrating (2)
y=x2/2+4+cx+c, .(3)

Putting x = 0 in equation(2) and (3) and using y(0) =1 and y'(0) = 2,
then we have
c;=2andc, = 1.
Hence from (3) becomes y = x?/2 + 2x + 1 . (4)
Comparing (1) with

ao()y" + a;(x)y" + a;(x)y = r(x)
We get
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as(x) =1, a;(x) =0, a,(x)=0 and
r(x)=1

Since these all are continuous in (—oo,0) and Since a,(x) # 0 for each
x € (—o0,00).Hence by existence and uniqueness theorem, equation (4) is
unique.

EXAMPLE3: To show that solutions ¢,(x) = e?*, ¢,(x) = xe?* and
¢s(x) = x%e?* are linearly independent solutions of y"" — 6y" + 12y’ —
8y =0o0naninterval 0 < x < 1.

SOLUTION: Suppose

W(¢1» b2, ¢3) (x)

er erx X2 er
= d(e?*)/dx d(xe?*)/dx d(x?e?*)/dx
d?(e?*)/dx d?(xe®*)/dx d?(x?e?*)/dx
Or
W(¢1;¢2»¢3)(9€)
er erx xZer
= 2e2* (1 + 2x)e?* (2x + 2x?)e?* (1)
4e2¥ (4 + 4x)e?* (2 + 8x + 4x?)e?*

~ it is not very easy to evaluate R.H.S. of (1). We chose 0 € [0,1]. Then,

from (1),

1 00
2 10
4 4 2

W(‘I—"l: ¢2: ¢3)(0) = =2

By Abel’s formula, we have

W (1, 2, P3) (x) = e~ PrEX0) = W (hy, ¢y, 3) (%)
Here p; = —6 and x, = 0. Hence, (3) reduces to W (¢4, ¢,, p3)(x) =
2e%%, using (2)

1.14 FUNDAMENTAL SET OF SOLUTIONS:-

Definition: Any set y;, v, ... ... , v, Of n linearly independent

solutions of the homogeneous linear nth order differential equation

(@™y/dx™) +p () (d" 1y /dx"h) + p () (d" 2y /dx"72) + -
+pn(x)y(x) =0, x€l

is said to be a fundamental set of solutions on the interval 1.

SOLVED EXAMPLES
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EXAMPLEL: Prove that the solutions e*,e*,e?* of (d3y/dx3) —
2(d?y/dx?) — (dy/dx) + 2y = 0 are linearly independent and hence or
otherwise solve the given equation.

SOLUTION: The given equation (d3y/dx3) — 2(d?y/dx?) —

(dy/dx)+2y=0 Or y" —=2y"—y"+2y=0 . (1)
Consider

y,=e* y,=e™* and y; =e* .. (2)
y'1=e¢e* y'i=e* and y'"' =e* ..(3)

" =2y =y 42y, = e —2e* —e* 4+ 2e* =0, from (2) and (3)
Hence

Yi Y2 Y3 eX e~X e2x
W(x) = y’1 ylz y’3 = le¥ —eX e2%
AT AP A eX e™* 4e%
1 1 1 1 0 0
=(e* e e™M)[1 -1 2[=e*|1 2 1
1 1 4 1 0 3
€, » (-G
(3 = C3 — C1] = —6e™

Finally y,, y, and y; are linearly independent.

EXAMPLEZ2: Show that sin2x and cos2x form a set of fundamental
solutions of y” + 4y =0 and hence find the general solution of this
equation.

SOLUTION: Let y"'+4y =0 . (1)
and y1(x) = sin2x, y,(x) = cos2x ..(2)
Now y'1(x) = 2cos2x, y,(x) = —4sin2x ..(3)

y"(x) + 4y(x) = —4sin2x + 4sin2x = 0, from (2) and (3)
Hence we can prove that y, (x) = sin2x and y, (x) = cos2x is the
solution of (1). So the Wronskian W (x) of y, (x) and y,(x) is obtained by
y1(x)  y,(x) _ sin2x cos2x |
y', () ¥y ,(x) | 12cos2x — 2sin2x
= —2(sin?2x + cos?2x) = =2 # 0.
Finally W (x) # 0, sin2x and cos2x are linearly independent solution of

(1).

W(x) =

SELF CHECK QUESTIONS

Choose the Correct Option:
(SCQ-1)The differential equation of family of circles of radius r whose
centre lie on the x-axis, is

(@) y(dy/dx) + y* = r?

(b) y{(dy/dx) + 1} =72
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() y*{(dy/dx) + 1} = r?
(d) y*{(dy/dx)? + 1} = r?

(SCQ-2) Linear combinations of solutions of an ordinary differential
equation are solutions if the differential equation is

(a) Linear non-homogeneous

(b) Linear homogeneous

(c) Non-linear homogeneous

(d) Non-linear non-homogeneous
(SCQ -3)which of the following pair of the functions is not a linear
independent solutions of y"" + 9y = 0?

@ sin3x, sin3x — cos3x

(b) sin3x + cos3x,3sinx — 4sin3x
(c) sin3x, sin3x cos3x

(d) sin3x + cos3x,4cos3x — 3cosx

(SCQ-4) Let y=¢(x) and y =(x) be solutions of y” — 2xy’ +
(sinx?)y = 0, such that¢p(0) =1,¢'® =1 and (0) = 1,3'(0) = 2.
The value of Wromhian W (¢, y)at x = 1 is

@ 0
(b) 1
© e
@ e’

(SCQ-5) For which of the following functions y;(x) and y,(x),
continuous functions p(x) and q(x) can be determined on [—1, 1] such
that y;(x) and y,(x) give two linearly independent solutions of y" +
p()y' +q(x)y =0,x € [-1,1].
@  y;(x) = xsinx, y,(x) = cosx
(b)  y1(x) =xe*, y,(x) = sinx
© yx)=e"Ly,(x) = et
(d) None of these
(SCQ-6) Let y,(x) and y, (x) defined on [0,1] be twice continuously
differentiable functions satisfying y"'® + y'® + y(x) = 0. Let W (x) be
Wronskian of y, and y, and satisfyiW (1/2) = 0. Then
(@ W(x) =0 forx e [0,1]
(b) W(x) > 0 forx € [0,1/2]
(c) W(x)<0forxe[1/2,1]
(d) None of these
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(SCQ-7) Order and degree, respectively of the differential equation of

the family of curves y? = 2c(x + /c) are:
@ 11
(b) 1,2
(c) 1,3
(d) None of these
(SCQ-8)The order of the differential equation y""”" — 3(y""")? + 4y" —
59" +6y =0Iis
@ 3
(b) 5
(c) 4
(d) None of these

1.15 SUMMARY

In this unit we have studied the differential equation which contains at
least one derivative of an unknown function, order of a differential
equation is the highest derivative present in the differential equation Order
of Differential Equation. Definition, Degree of a Differential Equation,
Linear and non- linear differential Equation, Solution of differential
Equation and Family of curve, Complete Primitive (General Solution).
Particular Solution and Singular Solutions, The Wronskian, Linearly
dependent and independent set of functions, Existence of uniqueness
theorem, Fundamental set of solutions.

1.16 GLOSSARY::-

Differential Equation: A mathematical equation that relates a function or
a set of functions to their derivatives. It explains the rate of change of a
quantity.

Ordinary Differential Equation (ODE): A differential equation
involving a one independent variable and its derivatives. It models various
dynamic systems like motion, growth, and decay.

Partial Differential Equation (PDE): A differential equation involving
one or more independent variables and their partial derivatives. It is used
to explain phenomena in fields like physics, engineering, and fluid
dynamics.
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1.19 TERMINAL QUESTIONS:-

(TQ-1)Find the differential equation of the family of the curves y =
Ae3* + Be>*; for different values of 4 and B.

(TQ-2)Show that Ax? + By? = 1 is the solution of x[y(d?y/dx?) +
(dy/dx)?] = y(dy/dx).

(TQ-3)Show that y = x + xlogx — 1 is the unique solution of xy’ —
1 = 0 satisfying y(1) = 0 and y'(1) = 2.

(TQ-4) Define linearly dependent and independent set of functions.
(TQ-5) Show that the linearly independent solutions of y"' — 2y’ + 2y =
0 are e*sinx and e*cosx.

(TQ-6) Prove that the functions 1, x, x? are linearly independent. Hence
form the differential equation whose solutions are 1, x, x2
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1.20 ANSWERS:-

SELF CHECK ANSWERS (SCQ’S)

(SCQ-1) d (SCQ-2) b (SCQ-3) ¢
(SCQ-4) ¢ (SCQ-5) ¢ (SCQ-6) a
(SCQ-7) ¢ (SCQ-8) ¢

TERMINAL ANSWERS (TO’S)
(TQ-1) y"—8y"+15y =0
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UNIT 2: - DEGREE & EXACTNESS OF THE
DIFFERENTIAL EQUATION AND PRINCIPLE
OF DUALITY

CONTENTS:

2.1
2.2
2.3
2.4
2.5

2.6

2.7

2.8

2.9

2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19

Introduction
Objectives
Differential Equation of First Order and First Degree.
Variables separable.
Homogeneous Equations.
2.5.1 Equation Reducible to Homogeneous form.
Pfaffian Differential Equation.
Exact Differential Equation.
Integrating factor.
Linear Differential equation.
Equations reducible to linear form.
Bernoulli’s Equation
Differential Equations of first order but not of the first degree.
Principle of duality
Summary
Glossary
References
Suggested Reading
Terminal questions
Answers

2.1 INTRODUCTION:-

In this previous unit, you have already studied

About the differential equations and its type.

About the general solutions of various differential equations with suitable
examples.

About the existence & unigqueness theorem with examples.
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In this unit we will discuss about the degree of a differential equation tells us
the highest order of the derivative involved, while exactness is a property
specific to first-degree ODEs that allows for straightforward integration.

2.2 OBJCETIVES:-

After studying this unit you will be able to

e Student will be able to solve first order first degree differential equations
utilizing the standard techniques.

e Determine the first order and first degree depend on the specific context in
which they are being used, and they are often used in different types of
problems and situations.

e Student will be able to solve standard form of first order.

e Define a Pfaffian differential equation.

2.3 DIFFERENTIAL EQUATION OF FIRST ORDER
AND FIRST DEGREE:-

The differential equation of first degree and first order can always be defined as,
namely

dy
a_f(xIY)

or

M(x,y)dx + N(x,y)dy = 0.
where M and N are the functions of x and y or are constants.
Since this equation being first order, its general solution will contain only one
arbitrary constant. We now talk about the various methods to solve such
equations.

2.4 VARIABLES SEPERABLE:-

If in an equation, it is possible to get all the functions of x and dx to one side
and all the functions of y and dy to the other, then the variables are said to be
Separable.

Working Rule:
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Stepl: Suppose ¥ L) () ..(1)

dx
where f; (x) is the function of only x andf; () is the function of only y.

Step2: from (1), we get

-
faoy — hi(dx - (2)
Step3: Integrating both sides of equation (2) , we obtain
f% = [fi(x)dx +c .3

Where c is arbitrary constant.
Notel. Remember to add an arbitrary constant c on one side (only).If arbitrary
constant c is not added, then the solution derives will not be general solution.
Note2. The solution of differential equation must be expressed in the form as
simple as possible.
Note3. Remember that

I. logx + logy = logxy

ii. logx —logy = logi

iii. nlogx = logx™

iv. tan"lx + tan~!y = tan™? M]
(1-xy)

B VRNt S | (x—Y)]

V. tan™' x —tan""y = tan"" |-

SOLVED EXAMPLES
EXAMPLEL. Solve (1 + x?)dy = (1 + y?)dx
SOLUTION: The given equation (1 + x?)dy = (1 + y?)dx
Now separating variables
dy dx

= - (1
1+y2) (1+x?) @
Integrating both sides in (1)
dy dx B B B
:>f(1+y2):f(1+x2) = tanly=tan"'x+tan"lc
= where c is constant.
= tan"ly —tan"lx =tan"lc
> tan 12 —tan~l¢ Using {tan‘1 x —tan"ly =tan?! M]}
(1+7%) Y (1+x7)
y—x
= =c
1+yx
EXAMPLE2. Solve 3—3: =sin(x +y) + cos(x + y) .. (1)

SOLUTION. Suppose x + y = u.
Then differentiating both side
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dy du
1+4—=—
dx dx
dy du )
dx  dx
Substituting these value in equation (1)
du .
= — — 1 = sinu + cosu
dx
= du _ 4 y .
(1 + cosu) + sinu x, seperating variables
du i
= C b
2 U U U
2cos > + 2sin > COS
1 S U
5sect >
= = du = dx.
1+ tani

Integrating both sides, we get
1
= log(l + tan§u> =x+c ..(2)

Putting the value of u in equation (2)

1
> log<1+tan§(x+y)>=x+c

EXAMPLES3. Solve % — eX+Y 4 x2e¥
SOLUTION. Given % — eX+Y 4 x2¢Y

= L — X e + x2e¥

dx

dy 2
= - =eYV(e*

=€ (e* + x2)
Separating variables

d_y — X 2
= = (e* + x?)dx
Integrating both sides
= fz—i,/=f(ex+x2)dx
= fe™¥dy = [(e* + x*)dx
= C=e*++c

-1 3
3

= e* + x? + e 4+ ¢=0 is required solution.

EXAMPLE4.Solve the following differential equations:

a. sec*xtany dx + sec?ytanxdy = 0
dy sinx+xcosx

bh. ==———
dx y(2logy +1)
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e y=x(G)=a(y +3)
d. (x2—yx?)dy+ (y?> +xy?)dx =0

v
e. dx—xy+x+y+1

SOLUTION.
a. Given sec?xtany dx + sec’ytanxdy = 0
= sec?ytanxdy = — sec?xtany dx
Separating variables
= sec’y dv = — secx d
tany tanx

Integrating both sides

2 2
= f%d = — f%dx
= logtany = —logtanx + ¢, [c; =logc]
Finally
= logtany + logtanx = ¢; = logc
= logtany tanx = logc
= tany tanx = ¢

d sinx+xcosx
b. Let = = Z2TX0%
dx (2ylogy+1)

= (sinx + xcosx)dx = (2ylogy + 1)dy
= [(sinx + xcosx)dx = [(2ylogy + 1)dy . (1)
Now
= [(xcosx)dx = x sinx + cosx
Also
= [(ylogy)dy = (logy) x (y*/2) = [{(1/y) x (y*/2)} dy
= = (logy)(y*/2) — (y*/4)
Putting the value of [(xcosx)dx and [(ylogy)dy in (1)
= —cosx + xsinx + cosx = 2 {(y?z) logy — y2/4} +v%/2+¢c
> xsinx = y? logy + ¢

d a
C. Lety—x(ﬁ)=a(y2+£)
d
=  xy-x*Z=y
=  —x?Z=y-xy
= —x2%=y(1—x)
=

29y _ _
L=y -1
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= f‘i—yzf(l—x)dxzf(i—i)dx

= logy=logx+i+c
d. Given (x? —yx?)dy + (y?> + xy?)dx =0
= xX(1-y)dy+y*(1+x)dx=0

1-y 1+x
= 7dy+?dx =0

or
1 1 1 1
Gr=3) v+ (G+y)ay=0
Integrating both sides

- (G- (Yo

1 1

= —;—logy—;+logx-c
x (1,1

= lOg;—(;+;)—C

dy

e. szy+x+y+1

= L=+ Dy+1)

f(lci—yy)=f(x+1)dx

2
= log(1+y)=x?+x+c

2
= x?+x—log(1+y)+c=0

2.5 HOMOGENEOUS EQUATIONS:-

A differential equation of first order and first degree is said to be
homogeneous if

ay  _(y
o= )
Working rule:
Suppose
day (¥
—=f (;) (D)
Let % =u e, y=ux ..(2)

Now differentiating (2) w.r.t.x,
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Z—Z =u+ xi—z ..(3)
Putting the value of (2) and (3) in (1)
u+x§—z=f(u) or xZ—z=f(u)—u
Separating variable x and u, we get
dx  du
x fw-u
So
dx du
f x f fw) —u
l _du
ogx +c _f(u)—u

Where c is an arbitrary constant and after integrating, replace u by y/x.

SOLVED EXAMPLES

EXAMPLEL. Solve (x? — y?)dx + 2xydy = 0
SOLUTION: The given equation can be defined as

= (x2 —y?3)dx + 2xydy =0
= (x? — y?)dx = —2xydy
d_y _ (xZ_yZ)
= i .. (1)
= Putting y = ux and Z—i’ =u+ xZ—Z in (1), we have
du _ (x2-(ux)?) _ _ (x2-u2x?) _ (1-u?)
= u+x dx 2xy - 2ux2 2u
dx 2u

Separating variables

2u 1
- rury P4 = T X
= integrating, we have  log(1 + u?) = —logx + logc
= log(1 + u?) = logi
= (1+u?) ==
= 1+ y—j =<
X X

EXAMPLE2. Solvex?ydx — (x3 + y3)dy = 0.
SOLUTION: The given equation

> x%ydx — (x3 + y3)dy = 0.

= x2ydx = (x3 + y3)dy
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v _ _xy i - v _ du
= = ) Putting y = ux and — = u + x —
du x2ux x3u u
= u+ XE T o(x3+udx3) T x3(1+ud) | (1+ud)
= e vy o x®™ o™ separating variables
dx — (1+ud) ax = (s 0 SePArAtling
3
= @du=—ldu = (%+l)du=—ldu
u X u u X
-3
= Integrating, we have —uT + logu = —logx + logc
1
= —§+logu——logx+logc
1
= logu +logc + logx =33
1 1
= loguxc = w2 loguxc = e
= Putting the value of u = %
3
= loggxc = = logyc = ;? is required solution.

1
3(2)
ay _ = [z 2
EXAMPLES. Solve X———y=yx’+y
SOLUTION: The given equation is xZ—i’ —y=,/x2+y?

2 2
— ay _ yHyxTHy* (D
dx X

= puty = ux, then Z—z=u+x3—z

2 2,2 2
= u+xd_u=ux+\/x +usx = u+xd_u=ux+x\/1+u

dx x dx x
au _ 2 du _ 1

S X T Virut = s X
= integrating, we get
= sinh™' u = logx + logc = log(u +Vu? + 1) = logcx

sinh™ x = log(x + VxZ + 1)

= (U+vui+l)=cx = <%+ /z—§+1>=cx

+ 2+ 2 . . -
= VYT —ex = y+./y2+x2% = cx? is required solution.

X

EXAMPLEA4. Solve xdy — ydx = \/x? + y?
SOLUTION: The given equation is xdy — ydx = /x? + y?dx

= xdy = (y +/x% + y?)dx

ay _ (0+F7) _y 2172
= = =_+{1+ /0%
vy _ . _ dy du
= take -=u, e, y=ux, —=u + xX—
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So that
du _ N 2 dx _ _du
= utx_—=u+ 1+u > T
= Integrating, logx +logc = loglu + V1 +u?| =
xc=u+v1+u?
2

= putting the value u = = xc=2+ [1+ZL

x x x2

=  x%c=y+./x%+ y?isrequired result.

2.5.1 EQUATION REDUCIBLE TO HOMOGENEOUS FORM:-

The differential equation of the form

d ax+by+c a b
2o YL where — # —
dx a1 x+b1y+cq aq b1

Can be reduced to homogeneous form by taking variables X and Y such that
x=X+h y=Y+k ..(1)
Where h and k are constants, then dx = dX,dy = dY

. . d +by+
Now given equation becomes, 2 BT

dx aix+b,y+cq
av _ a(X+h)+b(Y+Kk)+c aX+bY+(ah+bk+c) (2)
ax - al(X+h)+b1(Y+k)+cl - a1X+b1Y+(a1x+b1y+cl) "

Solving by cross multiplication

h _ k _ 1
bci—bqcC - ca;—cia - aby—a.b
bci—b -
= h — 1 1C ) k — cai—cia
abl—alb abl—alb
. d aX+bY
Now equation (2) becomes = =
dx a1X+b1Y

Which is homogeneous equation and can be solve y = ux . In solution putting
X=x—-—h ,Y =1y —k,then we get the required solution.

SOLVED EXAMPLES

_y—x+1

EXAMPLEL. Solve &
dx y+x—5

SOLUTION: The given equation
dy y—x+1
dx y+x-—5

- (1)

H — ib=tla=1bh=1L22
ere a = ) = ,al— , 01 = ,al bl

Nowweputx =X+ h,y =Y +k, thendx = dX,dy = dY
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Form(1)
dY Y+k—-X—-h+1 (-X+Y)+(-h+k+1)

R = ..(2
dX Y+k+X+h-5 X+Y)+((h+k-5) @)
Choose k and k so that
—h+k+1=0
h+k—5=0} - (3)
solving equation (3), we obtain h = 3,k = 2
day —-X+Y
from(2) Fraieey .. (4)
Putput Y = uX, then & =y + x &
ax ax
From (4) w4 x B o KUK
ax X+uX 1+u
= d_u — —-1+u _
ax 1+u
du  —-1+u-u-u?
= Xd_X - 1+u
du 1+u?
= Xd_X - 1+u
Separating variables [ 11:; du=—| %dX
. 1 2u
Integrating f1+u2 du + Ef ——du=—logX +c
= tan~tu + %log(l +u?) =—logX +c¢
i Y -1Y 1 Y2\ o _
= Putting u = 3 tan™" -+ 2log(l + XZ) =—logX+c
1Y 1 X2+y?2
= tan 1}+Elog( = )=—logX+c
= tan™?! % + % [log(X? +Y?) —logX?] = —logX + ¢
= tan‘1§+ % [log(X? +Y?) —2logX] =logX + ¢
= tan‘lg + % [log(X?2 +Y?)] = ¢
X=x—h=x-3,Y=y—k=y—-3
= tan‘li—:z + % [log((x — 3)? + (y — 2)?)] = c is required solution.
EXAMPLE2. Solve (x — y)dy = (x + y + 1)dx
SOLUTION: The given equation Z—i’ = xx%y;rl (1)
a b
= [Here a—1,b—1,a1—1,b1——1,a—1¢b—1]
Put x=X+h,y=Y+k,then dx =dX,dy =dY
dY _ X+h+Y+k+1 _ (X+Y)+(h+k+1)
From (1) dX  X+h-Y-k  (X+Y)—(h—k) (2)
choose h and k such that
= (h+k+1)=0, (h—-k)=0
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Since h = —% =k
Putting the value of k and k in (2)

Ay _ (X+Y)+0 _ (X+Y)
dx ~ (X+Y)-0  (X+Y)

is required solution.

2.6 PFAFFIAN DIFFERENTIAL EQUATION:-

The Pfaffian differential equation is a type of first-order partial differential
equation. It is an expression of the form:

n
Zfi(xl,xz,x3 e, Xp)dx; =0
i=1

where f; is a function of n variables x;, x,, x5 ....., xX,.

This equation is called Pfaffian because it can be expressed as the exterior
derivative of a differential form, which is said to be the Pfaffian form.
M(x,y)dx + N(x,y)dy = 0 and P(x,y,z)dx + Q(x,y,z)dy + R(x,y,z)dz =
0 are examples of Pfaffian differential equations in two and three variables.

2.1 EXACT DIFFERENTIAL EQUATION:-

The equation M (x,y) + N(x,y) = 0 is said to be an exact differential equation
when 3 a function f(x,y) of two variables x and y having continuous partial

derivatives such that

d[f(x,y)] = Mdx + Ndy,
(0f /0x)dx + (0f /0y)dy = Mdx + Ndy
Remarks. The equation y2dx + 2xydy = 0 is an exact differential equation, 3
a functionxy?, such that

d(xy?) = aa_x (xy?®)dx + aa_y (xy®)dy or d(xy?) = y?dx + 2xydy

So the equation y2dx + 2xydy = 0 may be written as d(xy?) = 0. This on
integration yields xy? = 0, where ¢ as arbitrary constant. And the general
solution of xy? = c.

The exact differential equation have the following important property: An exact
differential equation can always be derived from its general solution directly by
differentiating without any subsequent multiplication, elimination, etc.
THEOREM: To determine the necessary and sufficient condition for a
differential equation of first order and first degree to be exact.

Proof:
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Statement: The necessary and sufficient condition for the differential equation
Mdx + Ndy =0 ..(1)

to be exact OM/dx = ON/dy .. (2)

Necessary condition: Let us consider the equation Mdx + Ndy = 0 be exact.

Hence by the definition, 3 a function f(x,y) of x and y, such that

= dlf(x,y)] = (0f /0x)dx + (0f /dy)dy = Mdx + Ndy
Comparing the equation, we get

> M = (0f /0x) . (4)

> N = (0f/dy) ..(5)

Now differentiating equation (4) and (5) with respect to y andx, respectively
obtaining

oM d <0f) o2 f

W_@ 7 Jdyox

ON 0 <af>_ 0% f

dx 0x\dy) o0xdy
9% 9% . . . .
Smcem— %0y Hence, if equation (1) is exact, M and N satisfy

condition(2).

Sufficient condition: Suppose that (2) holds and proof that (1) is an exact. For
the function of f(x,y), suchthat d[f(x,y)] = Mdx + Ndy

Let us consider g(x,y) = [ Mdx ..(6)

Be the partial integral of M, the integral defined by keeping y fixed. We first
show that (N — dg/dy) is a function of y only, so

0 _ON d%g _ON d%g 9%2g _ 9%g
5 (N - a'g/ay) T ox dx dy T ox dy 0x dx oy o dy dx
_oN_ 0 (9g) _oN _omM .
T ox Ay (ax) T oax oy’ using (6)
= 0, using(2)
Now we take
flx,y)=gl,y)+ [{N—-(ag/oy)}dy ..(7)
From (9)

df =dg+(N—-32)dy = (52 ax +g—§dy) + Ndy - 22 dy
= (0g/d x)dx + Ndy = Mdx + Ndy, using (6)
Hence if equation (2) is satisfied, (1) is an exact equation.
WORKING RULE: To solve the given equationMdx + Ndy = 0, find out M
and N. Then first ascertain with the help of dM /dx = dN /0y, whether then the
equation is an exact or not. If the equation is exact then
i. Integrate M w.r.t. x treating y as constant.
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ii. Integrate with respect toy only those terms of N which do not
contain x.

iii. Equates the sum of these two integrals [i and ii] to an arbitrary
constant and we express the required solution. If the given equation
Mdx + Ndy = 0 is an exact, then

J Mdx + [Ndx = c
treating y as constant taking only those term in N
which do not contain x

SOLVED EXAMPLES
EXAMPLEL: Solve (ax + hy + g)dx + (hx + by + f)dy = 0
SOLUTION: Let comparing the equation with Mdx + Ndy = 0, we obtain

= Z—I: = h,‘;—: =h so dM/dx = dN/dy the given equation is exact.
Hence
= [ Mdx +
[ Ndx =c
treating y as constant taking only those term in N
which do not contain x
=  [(ax+hy+g)dx + [(hx+by+f)dy = 0

= %ax2+hxy+gx+%bx2+fy=c

=  ax?+4+2hxy+2gx+bx®+2fy+c=0
where ¢ is constant and replaced —2¢ = c.

EXAMPLE2: Solve xdx + ydy + "iﬁ;ﬁf" =

SOLUTION: The given differential equation can be defined as

y x
= — =
[x x2+y2] dx + [y + x2+y2] dy 0
y x

= = X — — = —_—

Here, M = x iyl N=y+ e
Then
- oM y?-x? & ON _ y2-x?

dy  (x2+y?)? dy  (x%+y?)?
So dM /dx = 0N /dy hence the given equation is exact. Therefore

= [ Mdx +
[ Ndx =c
treating y as constant taking only those term in N
which do not contain x
= x—z—y.ltan‘1£+y—2=c.
2 y y 2
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= x—Z—Ztan‘1£+y2=Zc=k.
2 y

EXAMPLES: Solve (1 + e*/¥)dx + e*/Y(1 — x/y)dy = 0
SOLUTION: Comparing the given equation can be written as

= (1+e*¥)dx +e*/Y(1 - x/y)dy =0
= M=1+e*"7, N =e*Y(1—x/y)
M _ o)V (_ 5 /y2 ON _ x/Y(_ 5 /y2
= 5y = ¢ (=x/y%) & o= e(=x/y%)
So its solution is dM /dx = dN /dy. Hence
= [ Mdx +
[ Ndx =c
treating y as constant taking only those term in N
which do not contain x
= J(A+e*Y)dx=c or x+ye¥=c.

EXAMPLES: Solve (x2 — 4xy — 2y?)dx + (y? — 4xy — 2x*)dy = 0
SOLUTION: The given equation can be written as

= (x? — 4xy — 2y?)dx + (y? — 4xy — 2x%)dy = 0
= M= (x?—4xy — 2y?), N = (y? — 4xy — 2x?)
Z—’:=—4x—4y & ‘;—’;’=—4y—4x
Sothat dM/dx = dN/dy.Hence
= [ Mdx +
[ Ndx =c
treating y as constant taking only those term in N
which do not contain x
= [(x? —4xy — 2y¥)dx + [ y?dy = ¢,
= x3/3 — 4y x (x%2/2) = 2y?x + y3/3 =¢/3, o le; =¢/3]
= x3 +y3 —6xy(x +y) = c, ¢ being an arbitrary constant.

2.8 INTEGRATING FACTOR:-

The equationMdx + Ndy = 0, is not exact can sometimes be made exact by
multiplying by some suitable function of x and y. Such a function is said to be
an Integrating Factor.

Theorem: The differential equation Mdx + Ndy = 0 possess an infinite
number of integrating factor.
Proof: Let the given equation Mdx + Ndy =0 . (1)
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Suppose u(x, y)be an L.F. of (1), then by definition\
u(Mdx + Ndy) = 0
Must be an exact differential equation and 3 a function V (x, y), such that

dV = u(Mdx + Ndy)
where V' =constant is a solution of (1)
Since f (V) be any function of V. So
= fNAV = uf (V)(Mdx + Ndy)
Since the expression on L.H.S. of (3) is an exact differential equation, it follows
that the expression on R.H.S. of (3) must also be an exact differential.
In this section, the following list of exact differential equation is

(). d(2) =2 Gy (2)= st~y
(i) d (%) = =24z (v) d(2)=2erie
(v) d (y_) = M vi) d (;_) = Zyxdyy;mdx

(vii) d[logCxy)] = % Wiii)  d(xy) = xdy + ydx
o0 ) =St ) <
(xi) d[log(%)] == yyd’“ (i) d [log(%)] = 242
(xiii) d[3log(x? +y?)| = 2Ee _ 1) sty

i Fdx—e*d - o dy+yd
() d(3) =25 () d(sin™ xy) = 222

Rule I: The integrating factor of given equation Mdx + Ndy = 0 can be
explore by inspection as explained below.

SOLVED EXAMPLES
EXAMPLEL. Solve y(2xy + e*)dx = e*dy.
SOLUTION: Given equation  y(2xy + e*)dx = e*dy

= 2xy?dx + ye*dx = e*dy

= 2xdx+wzo or 2xdx+d(£)=0
y y

= Now integrating, x2 + 67 =c or x24e* =cy

EXAMPLE2. Solve (x3 + xy? + a?y)dx + (y® + yx? — a?x)dy = 0.
SOLUTION: Given equation  (x3 + xy? + a?y)dx + (y3 + yx? —
a’x)dy =0

= x(x?+yHdx+y(x?+ y>)dy + a*(ydx — xdy) =0

2 (ydx—xdy) -0
(x2+y?)

= xdx+ydy+a or xdx+ydy+a?tan 1==0

x
y
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2 2
= By integrating, =+2%+a?tan"'==% or x?+y?+altan'Z=c
2 2 y 2 y

Rule 11: If the given equation Mdx + Ndy = 0 is homogeneous and Mx +
Ny =+ 0, then show that the integrating factor is 1/(Mx + Ny).
Proof: Let the given equationMdx + Ndy = 0, we get

= o nay =200 (24 2)« s (2-2)
- mmmeEen)eEmRe-) o

= Since Mdx + Ndy = 0 isahomogeneous, M and N must be same degree
in variables x and y and hence

. T C
Now putting the value of (2) in (1)

= G GG -
= %{log(xy) + f(elos*/7))d (logi)} = %{log(xy) +

g (logZ)d (logZ)} [~ f(e'o6®/”) = glog(x/y)]

= d[(1/2) xlog(xy) +(1/2) x [ glog(x/y) dlog(x/y)]

= displaying that the 1/(Mx + Ny) is an integrating factor for a given
equation Mdx + Ndy = 0.

SOLVED EXAMPLES

EXAMPLE: Solve (x?y — 2xy?)dx — (x3 — 3x2y)dy = 0

SOLUTION: The given equation (x?y — 2xy?)dx — (x3 — 3x%y)dy = 0

= The given equation is homogeneous differential equation and comparing
Mdx + Ndy = 0, M = (x%y — 2xy?), N = (x3 — 3x2y)

= Mx+ Ny = x(x?y — 2xy?) — y(x3 — 3x2%y) = x?y2 # 0,

leyz'

= Then the integrating factor, 1/(Mx + Ny) =

on multiplying factor by

nyZ’

= (y/2-2/x)dx — (x/y? —3/y)dy =0,
=  [{y/2-2/x)dx}+ [(3/y)dy=0 or x/y—2logx+

3logy =logc
= logy? —logx? —logc =—x/y or log(y?/cx?) = —x/y
= y2 = cx%e X/, where c is an arbitrary constant.
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Rule I11: If the given equation Mdx + Ndy = 0 is of the form f,(xy)ydx +
f2(xy)xdy = 0, then prove that 1/(Mx + Ny) is an integrating factor of
Mdx + Ndy = 0 provided (Mx — Ny) # 0.

Proof: Suppose Mdx + Ndy =0 .. (1)
is of the form f(xy)ydx + f,(xy)xdy = 0 ..(2)
Comparing both equations
M N
= = =H
yilkxy)  xfa(xy)
= M=uyfilxy) or N=puxf(xy) - (3)
= Now
1 ax _ ax _dy
= de+Ndy—2{(Mx+Ny)(x+y)+(Mx Ny)(x y)}
Mdx+Ndy _ 1 (Mx+Ny) dx | dy dx dy
Mx-Ny 2 {(Mx—Ny) ( x y ) + ( x oy )}
_ 1 (filxy)+f2(xy) x
= (L2 G log xy) + d (logZ)} . from (3
_1 x A +HHly)
= = {f(xy)d(logxy) +d (logy)}, where  Gor)—F o) fxy)
= = %{f(engy)d(logxy) +d (logi)} = %{g(logxy)d(logxy) +
d (log3)} [ f(e'80) = glog(xy)]
= d[(1/2) x log(x/y) + (1/2) x [ glog(xy) d log(xy)]

= Hence prove that Mx — Ny is an integrating factor of Mdx + Ndy = 0.

SOLVED EXAMPLES

EXAMPLE. Solve (xysinxy + cosxy)ydx + (xysinxy — cosxy)xdy = 0
SOLUTION: Suppose

(xysinxy + cosxy)ydx + (xysinxy — cosxy)xdy =0 ...(1)
The equation (1) Comparing Mdx + Ndy = 0, we get,
M = (xysinxy + cosxy)y and N = (xysinxy — cosxy)x
The equation (1) is the form  f; (xy)ydx + f,(xy)xdy = 0
Again,

Mx — Ny = xy(xysinxy + cosxy) — xy(xysinxy — cosxy)

Mx — Ny = 2xycosxy # 0.
Since the integrating factor of (1)

=1/(Mx + Ny) = 1/(2xycosxy)

On multiplying (1) by 1/(2xycosxy), we obtain
= [(1/2) x (ytanxy + 1/x)dx + (1/2) X (xtanxy — 1/y)dy] ..(2)
From (2)
= [(1/2) x (ytanxy + 1/x)dx + [(— 1/2y)dy = (1/2)logc
= (1/2) x (logsecxy + logx)dx — (1/2) xlogy = (1/2)logc
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= (logsecxy +logx/y) =logc or (y/x)secxy = c.

Rule IV: If % (Z—’Z — Z—Z) is a function x alone f(x) , then e/ f/®dx s an

integrating factor of Mdx + Ndy = 0.

Proof: The given equation Mdx + Ndy =0 . (1)
1(0M 9N\ _ _ (M _on

and 5(5 —a) = f(x) sothat Nf(x) = (ay ax) ..(2)

Multiplying both sides of equation (1) by e/ F®)4x e have
M;dx + N;dy = 0,

where
=> M, =Mel/®dx gnd N, = Nel f0dx . (3)
From (3) oMy _ M o[ f(x)dx .. (4)

ay ay
and % = Z—:eff(x)dx + Nel F®ax f(x) = el F()ax {Z—: + Nf(x)}

= el f@AxX (9N /9x + M /0y — ON/dx),  from(2)

So that f’a_’il = f’a_ﬂjeff(x)dx
=  Now from (5) and (6), oM, /dy = ON,/dx

Hence M,dx + N,dy = 0 must be exact and e/ /®)4x js integrating factor.

SOLVED EXAMPLES
EXAMPLE. Solve (x% + y? + x)dx + xydy = 0
SOLUTION. Let (x2+y2+x)dx+xydy =0 .. (1)
Now the equation (1) comparing with Mdx + Ndy = 0, we have
M= (x?+y?+x), N =xy
= 0M/dy=2y, dN/dox=y.
S OM/dy + dN/dy.
Then we obtain
1 (a_M _OoN
N \ 0y 0x
Since the integration factor is

1 1 . . .
) = E(Zy -1)= > which is a function of x.

eJ/x)ax _ plogx _ 5
multiplying (1) by x, we get
(x3 + xy? + x?)dx + x?ydy = 0 is an exact, so
[+ xy? +x¥)dx = (1/6)xc or (1/4) xx*+ (1/2) x

2y2 +(1/3) x x3 = c/6.
3x* + 6x%y? + 4x3 = ¢, where c is an arbitrary constant.

SV I S I A

4y
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1 /oM aN\ . . .
Rule V: If = (E — E) is a function y alone f(y), then e/ f®4y isan

integrating factor of Mdx + Ndy = 0.
Proof: Proceed exactly as for Rule 1V.

SOLVED EXAMPLES

EXAMPLE. Solve

xy*e¥ + 2xy3 + y)dx + (x?y*e¥ —x?y? —3x)dy =0 .. (1)
SOLUTION. From (1) compare with Mdx + Ndy = 0, we have
=> M= (2xy*eY + 2xy3 +y), N = (x?y*eY —x?y?2 —3x) ..(2)
Here
= dM/dy = 8xy3eY + 2xy*eY + 6xy? + 1, ON/dx = 2xy*e?y — x?y? —
3x.
ON _ oM _ _ 4,y 2 - _2 45y 2 L
= Ty 4(2xy*e? + 2xy* + 1) = y(2xy e’ +2xy*+y) = "
1 (0N oM 4
= wG-5)=-3

= Since the integrating factor of equation (1) is
=el ~4/ydy = g=4logy = (1/y*4).
= Multiplying (1) by 1/y*, we get
= {2xe” + (2x/y) + (1/y*)}dx + {x?e” — (x*/y?) — 3(x/y*)}dy = 0
= [{2xe¥ + 2x/y)+ (1/y®)}dx =c or x%e¥+ (x%/y) + (x/y3) =c.
Rule VI: If the given equation Mdx + Ndy = 0, is of the form
x*yP (mydx + nxdy) = 0, then its integrating factor is xkm-1-¢ykn-1-8
where k have any value.
Proof. By assumption, the given equation can be defined as

= x*yP (mydx + nxdy) = 0 .. (1)
= Multiplying (1) byxkm-1-aykn=1=-8 ‘e get

xkm=1=aykn=1(mydx + nxdy) = 0
= kmxMlykndx + kny*ixkmdy =0 or d(xk™m,y*) =0

=  so that x*¥m~1-@ykn-1-Bjntegrating factor of given equation

x*yP (mydx + nxdy) = 0.

SOLVED EXAMPLES

EXAMPLE. Solve (y? + 2x2y)dx + (2x3 — xy)dy = 0 .. (1)
SOLUTION. The given equation (1) in standard form

= x*yP (mydx + nxdy) + x*y# (m'ydx + n'xdy) = 0 ...(2)
= we have
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from(4)and (5), k—1=2k"—3 and —k—2=2k'—1

k—2k'=-2 and k+2k'=-1= k=-3/2 and k'=1/4
Putting the value of k in (4) or k" in (5), then the integrating factor of (3) or (1)
is x~5/2y=1/2_ Multiplying (1) by x~5/2y~1/2 we obtain

N (x‘5/2y3/2 n Zx_l/zyl/z)dx + (x1/2y—1/2 _ x—3/2y1/2)dy =0
x~3/2y3/2  px1/291/2 _2C
~3/2) (1/2) 3

y(ydx — xdy) + x*(2Qydx + 2xdy) = 0 ..(3)
= From (2) and (3), we get
=a=0, =1, m=1,n=-1,a" =2, f'=0m=2,n"=2
= Since, the integrating factor for first term on L.H.S. of (3) is
= xkly~k-1-1" e, xk—1y=k=2 (4
= The second term on L.H.S.of (3) is
= 22k’—1—2y2k’—1 i.e. 22k’—3y2k'—1 ..(5)
=
=

or 6x1/2y1/2 _ x—3/2y3/2 =C.

2.9 LINEAR DIFFERENTIAL EQUATION:-

A differential equation is called linear if it can be obtained in the form

dy _
Tx + Py =Q - (1)

where P and Q are constants and are the function of x is called Linear
differential equation of first order with y as dependent variable. So to solve the

equation, multiply both sides by e/ ?9%, then
dy
JPdx ZZ [Pdxp,, — 0l Pdx
e Ix +e Py = Qe

d
Or E{yedex}: Qedex
Integrating both sides
yel Pdx =erdexdx+c
Which is the required solution of differential equation.
Working Rule:
1. The given equation in the form Z—z + Py =Q and Z—Z + Px = Q as may
be.

2. Find integrating factor e/ P4 or e/ P4y
3. The solution of Differential equation either
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y.(IL.F.) = f {Q. (1. F)}dx + ¢

Or
x.(I.F.) = [{Q.(I.F)}dy + c as may be.

SOLVED EXAMPLES
EXAMPLEL SolveZX + 2xy = e ™",
SOLUTION: The given equation

d

% + 2xy = e ..(1)

where y is dependent variable

= P=2x andQ=e ¥ then [ Pdx = [ 2xdx = 2.2x% = x2.

= Therefore I.F.= e/Pdx = g**,

Hence

= y.(I.F.) = [{Q.(I.F)}dx + ¢

= y.e*’ = [(e*".e*)dx +c

= yeX’ = [dx+c or ye* =x+c.

EXAMPLE2. SolveZ> (x + 2y°) = .

SOLUTION. Let L(x+2y) =y (D
where x is dependent.

= Thus, we have o , o ——=x=2y

from (2)

JPdy =—[(1/y)dy = —logy so IF.of (2)=e~l08Y =§
Hence x/y = [ 2y%.(1/y)dx + ¢

=

=

=
— 42 i i

= x/y = y* + ¢, where c is an arbitrary constant.

2.10 EQUATION REDUCIBLE TO THE LINEAR
FORM:-

An differential equation of the form

PN _
f (y)a +Pf(y) =0Q .. (1)
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where P and Q are constants. Putting f(y) = v so that f'(y)(dy/dx) =
dv/dx, (1) becomes

dv/dx + Pv =Q ..(2)
Which is linear in v and x and its solution can be defined by Linear differential
equation. Thus we get,
ILF=elPdx and  vp.elPdx = [QelPdxdx 4 ¢
Finally, replace v by f(v) to solution in terms of x and y alone.

2.11 BERNOULLI’S EQUATION:-

Particular Case of Linear differential equation:-

An equation of the form z—i’ +Py=Qy" . (1)

Where P and Q are constants or function of x and n is constant except 0 and 1,
is known as Bernoulli’s Equation.

From (1) y‘”Z—i’ + Pyl™ =(Q ..(2)
Suppose ylt =y ..(3)
: iati w,-ndy v -3 _
Differentiating (3) w.r.t. x T i o vl

1 dv
FEm (4)

Putting the value of (3) and(4) in (1)

1 dv dv
oo TPv=10 or S tPA-nmr=0010-n)

Which is linear in v and x. Its . F. = e PA-madx = o(1-n) [Pdx
Hence v.e(-mJPax = [ ¢(-m[Paxgy 4 ¢ ¢ being arbitrary constant.
ylneU-m[Pdx — [ e(A-m)[Paxgy 4 ¢, from(3)

SOLVED EXAMPLES
EXAMPLE. Solve (dy/dx) + x sin2y = x3cos?y.
SOLUTION: Given equation (dy/dx) + x sin2y = x3cos?y (1)
Now dividing by cos?y in equation (1)
sec?y(dy/dx) + 2x tany = x3 ...(2)
Putting tany = v so that sec?y(dy/dx) = dv/dx.

Hence dv/dx + 2xv = x3, which is linear in v and x and its solution
el2xdx — px*

= v.e* = [ x3. eXdx+c, c being an arbitrary constant.
= v.e®” = (1/2) x [t.etdt + ¢, Nowx2 = t and 2xdx = dt
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= =(1/2)x[txet— [(Ixet)dt]+c=(1/2) X (tet —et) + ¢
= tany e¥’ = (%)xexz(x2—1)+c asv=tany & t=x?

= tany = (1/2) x (x2 — 1) + ce™*", dividing by e*”

2.12 DIFFERENTIAL EQUATION OF FIRST ORDER
BUT NOT A FIRST DEGREE:-

A differential equation of first order but not a first degree is defined as

Pop™ + Pip™ 4 e +P,_ip+p,=0 .. (1)
where Z—z = p and Py, P, P, ... B, are the function of x &y.

Differential equation of first order but not a first degree can be solved by four
method given below.
Method I : Equation Solvable for p
Suppose
Pop™ + Pip™ 4 e +P,_ip+p,=0 .. (1)
be given differential equation o first order but not a first degreen > 1.
From (1) solvable for p, it can be put in the form
[p— A - L] [P = (y)] =0 ..(2)

From (2)
p=dy/dx=fi(x,y), p=dy/dx=f,(x,y) .......p = dy/dx = f(x,y)
Suppose the n components equations are
Fi(x,y,¢1) =0, F,(x,y,¢,) =0, ......... E,(x,y,¢,) =0
Which ¢y, ¢y, ... ... c,, are arbitrary constants of integration.
If we replace cq, ¢y, ... ... ¢, = ¢, then

Fi(x,y,¢) =0, F,(x,y,¢) =0,........ E,(x,y,¢c) =

Fi(x,y,¢), F,(x,y,¢), e cu ... E,(x,y,¢) =0

SOLVED EXAMPLES
EXAMPLEL: Solve p?—7p+12=0
SOLUTION: Let p?—7p+12=0 . (1)
= p’—4p-3p+12=0> p-3)p—-4)=0
= Itscomponents are p = 3,4

= Solving the equation p = 3i.e, dy/dx = 3, we have

y=3x+c
= also p=4i.e, dy/dx =4, isy=4x+c
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So the solution of differential equationare y = 3x + ¢, y = 4x +c.
The single solutionare (y —3x —c)(y —4x—c¢) = 0.

EXAMPLEZ2: Solve p? + 2pycotx = y?2.

SOLUTION: The given equation is p? + 2pycotx = y? (1)
Solving for p, we have

= p= Z—z — _zyCOt"iV“;’zwtz”“yz = —y cotx + ycosecx
= y(—cotx + cosecx)
= 2—3: = y(—cotx + cosecx) ..(D)
= Z—z = —y(cotx + cosecx) ..(2)
= from (1), we get
= C;—y = (—cotx + cosecx)dx = fﬂ;—y = [(—cotx + cosecx)dx
= logy —logc = —logsinx + log tan%x
ot
X _ anEx _ 5
= log(c) - log( sinx > - log 2sinx/2 cosx/2
- = og{ oo
- 08 20052% ~ %811 + cosx
1 c
= y/c " 1+cosx = y= 1+cosx - (3)
= similarly, from (2), we get
= U;—y = —(cotx + cosecx)dx = fa;—y = — [(cotx + cosecx)dx
= logy —logc = — (logsinx + log tan%x)
sinZ
= log (%) = - log{(sinx) (tanéx)} = —log ZSingcosg. (Co—f_c)
X
— _ P2
= log{Zsm 2}
> log (%) = —log(1 — cosx) = —log(1 — cosx)™! = log (1_Closx)
1 c
= y/c " 1-cosx = y= 1-cosx - (4)
From (3) and (4) the combined solution is
c c
= (y B 1+COSX) (y - 1—COSX) - 0

Method Il : Equation Solvable fory
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If the given differential equation is solvable for y, then we can express y
explicitly in terms of x and p. Thus an equation solvable for y can put in the

form y =f(x,p) ..(1)

Differentiating (1) w.r.t. x and obtaining p forj—i’, we have

p = ¢(x,p,dp/dx) ..(2)
Which is an differential equation assuming two variables x and p. Let its
solution be
= Y(x,p,c) = 0, cbeing an arbitrary constant. ..(3)
Eliminating p between (1) and (3), the solution of (1) is
gx,y,c)=0 . (4)
Eliminating p between (1) and (3) is not possible, then we have

= x = fi(p,c) y = fa(p.c)
where p being parameter.

Special Case:
e Equation that do not contain x
in this case the equation has in the formf (y,p) = 0. If it is solvable for p, it will
obtain p=¢W) ie.,dy/dx = ¢(y)
If it is solvable fory, it will obtainy = ¥ (p), which can be solved by the method
just explained.
e Lagrange ‘s Equation
The equation of the form
y =xF(p) + f(p) .. (1) iscalled
Lagrange’s equation.
Differentiating (1) w.r.t.x, we get
p=F(p)+xF'(p)(dp/dx)+ f'(p)(dp/dx)

d ) d F'(0)+f1(p)
> P F@=LHF@ @] o L= OUw
= dx Fr(p) _ fr(p)

dp p-F(p) p-F(p)

Which is linear equation in x and p and can be resolved by usual method in the
form
x = ¢(p,c) - (2)

Since eliminate p between (1) and (2) to obtain the required solution.
If p cannot be eliminated, then

y=¢{,)F(p)+ f(p) -« (3)
Hence the required solution in parametric form, p being parameter.
e Clairaut form
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An equation of the form y = px + f(p) is called Clairaut equation.

To prove that the general solution of Clairaut’s equation y = px + f(p) is
y = cx + f(c) which is obtained by replacing p by ¢, where c is an
arbitrary constant.

Proof. The given equation y =px+ f(p) .. (1)

Differentiating (1) w.r.t. x and assuming p for dy/dx, we get
p=p+x(dp/dx) + f'(p)(dp/dx) or [x+ f'(p)](dp/dx) =0 ..(2)
The factor x + f'(p) which does not involve dp/dx, from (2) given as
dp/dx =0 sothat p=c¢, cbeingconstant.
Hence substituting the value of p in (1)

y =cx + f(c).
Method III: Equations Reducible to Clairaut’s form by transformation
Form I: To solve y? = (py/x)x* + f(py/x), putx* = u and y? = v.
Nowx?=u andy?=v = 2xdx =du and 2ydy =dv

2yd d d
X =2 or P=p, where P=
2xdx du x du

Hence the given differential equation to appropriate v = Pu + f(P)

This is in Clairaut’s form and so

v=cu+ f(c) or y? =cx?+ f(c),

¢ being an arbitrary constant.

Form 11: To solve equation of the form e?”(a — bp) = f(pe®~2*), we use
the transformation e** =u and e’ =v.

EXAMPLE: Solve e3*(p — 1) + p3e?’ =0

SOLUTION: Given e3*(p—1)+p3e?? =0 .. (1)
From (1)
= 1-p=p’e?™™ or  e’(1—p)=(pe”)>

Now formlla = 1,b = 1.
Substituting e* =u and eY = v sothate*dx = udu and eYdy = dv, we

obtain
eYdy dv
eXdu  du
Which is in Clairaut’s form. So
= v=uc+c® or eY =ce* +c3,

P d
oo Zp=P or p=2* where P==,
u v du

where ¢ being constant.

Form I11: Sometimes the substitution y* = v will transform the given
equation to Clairaut’s form.

EXAMPLE: Solve y = 2px + y?p3.

SOLUTION: given y = 2px + y?p3 . (1)
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Multiplying equation (1) both sides byy, we have
= y=2px+y’® or y=x@2py)+(1/8)(2yp)® ..(2)
=  Substituting y? = v so that
2y(dy/dx) = dv/dx or 2yp=P

where P = dv/dx
= From (2), v = xP + P3/8, Which is in Clairaut’s form..
So replacing p = c in (1)
= v=xc+c3/8 or y=cx+c3/8

SOLVED EXAMPLES
EXAMPLEL. Solvey + px = x*p2.
SOLUTION: The given equation y + px = x*p?,

where p = dy/dx .. (1)

= y = x*p? — px ..(2)
Differentiating (2) w.rt. x p = 4x3p? + 2x*p(dp/dx) — [p + x(dp/dx)]
= 2p — 4x3p? + (dp/dx)(x — 2x*p) = 0

or
2p(1 — 2x3p?) + x(dp/dx)(1 — 2x3p) = 0
(1 —2x3p?)[2p + x(dp/dx)] = 0 ..(3)

=
= Now from (3)
= 2p+x(dp/dx)=0 or 1/pdp +2(1/x)dx =0

= Now we integrating, logp + 2logx =logc or px?=c or
p=c/x?

Substituting the value of p in (1), then

=  y+x(c/x?) =x*(c?/x*) or xy +c¢ = c%x

EXAMPLE2. Solve y = ptanp + logcosp.

SOLUTION: Given  y = ptanp + logcosp - (1)
Differentiating (1) w.r.t. x and assuming p for dy/dx, we obtain

= p = [tanp + p sec?p + {1/cosp}(—sinp)](dp/dx)

=  p=psec’p(dp/dx) or dx = sec?pdp . (2)
= Integrating, (2), X =tanp+c ..(3)

¢ being an arbitrary constant. Hence (1) and (3) form the solution in parametric
form, p being the parameter.

Method IV: Equation Solvable for x

If the given differential equation f(x,y,p) = 0 is solvable for x. Then it can be
written in the form

= f.p) =0 - (1)
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Now differentiating (1) with respect to y and writing 1/p for dy/dx, we have

1_ av
— D - d) (y' p; dy) b (2)
Which is the equation assuming y and p. Let us suppose its solution
= Y(x,p,c) =0 ..(3)

where ¢ being arbitrary constant.

Substituting p between (1) and (3), we get the desired solution of (1) in the form
= Y(x,y,¢)=0 .. (4)
Now we solve equation (1) and (3) to explore x and y in term of p and c in the
form

= x = fi(p,c), y = f2(p,c) ..(5)
Which obtain us the solution of (1) in the form of parametric equations, p being
parameter.

SOLVED EXAMPLES
EXAMPLE. Solve y = 2px + y?p3.

SOLUTION: Given  y = 2px + y?p3 .. (1)
Solving, 2px =y — y?p3 > x =vy(1/2p) — y?*p?/2 .. (2)
Differentiating (2) w.r.t.y and writing 1/p for dy/dx, we explained
= ~=(1/2p) ~ y/2p*dp/dy — 2yp*/2 — y*/2 x 2p X dp/dy
L 24 (2 2\ P _
= 2p+yp +(2p2+py)dy_0
1 1 dp
= p(g+py)+y(g+py);=0
1 dp
- G+ w)(p+yg) =0
d 1
= p+y£=0 or 21'7+py=0
= p+ yZ—f} = 0 will obtain the solution of (2) . From p + yZ—Z =0,
we get Z—z = —5 Integrating, logp = —logy + logc or
logpy = logc
= py=c or p=c/y
Putting the value of p in equation (1), we obtain
= y=2(c/y)x+y*(c/y)® or y=2cx/y+c*/yis

required solution.

2.13 PRINCIPLE OD DUALITY:-

The principle of duality in differential equations refers to the fact that certain
differential equations can be transformed into a dual form by interchanging
certain variables or operators. In other words, the dual form of a differential
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equation is obtained by making a particular transformation that switches the
roles of certain variables or operators in the original equation.

Formally, let us consider a linear differential equation of the form:
Lly] = f(x)

where L is a linear differential operator, y is the dependent variable, and f(x) is
a given function. The principle of duality states that if we apply a certain
transformation to the differential equation, such as interchanging certain
variables or operators, we can obtain a dual equation of the form:

L+[z] = g(x)
where L * is the dual operator, z is the dual variable, and g(x) is a new function
related to £ (x) by the transformation.
The principle of duality has many applications in mathematics and physics,
particularly in the study of partial differential equations and their solutions. Dual
equations often provide a simpler or more intuitive way to understand the
properties of a system, and can also lead to new insights or techniques for
solving differential equations.
The principle of duality has numerous applications in mathematics and
physics. Here are some examples:

1. Electromagnetism: In electromagnetism, the principle of duality is used
to relate electric and magnetic fields. Specifically, the electric and
magnetic fields are related by a duality transformation that interchanges
the electric and magnetic field vectors. This transformation is useful in
understanding the symmetries of Maxwell's equations and in solving
certain problems in electromagnetism.

2. Laplace transform: The Laplace transform is a mathematical tool used to
solve differential equations. The principle of duality can be applied to the
Laplace transform by interchanging the roles of time and frequency. This
leads to a dual transform, known as the Fourier transform, which is
useful in signal processing and other applications.

3. Partial differential equations: The principle of duality can be used to
transform certain partial differential equations into dual equations, which
can provide a simpler way to understand the properties of the system
being studied. For example, the heat equation can be transformed into
the wave equation by a duality transformation that interchanges the roles
of time and space variables.

4. Quantum mechanics: In quantum mechanics, the principle of duality is
used to relate particles and waves. Specifically, the wave-particle duality
principle states that particles can exhibit wave-like behavior and waves
can exhibit particle-like behavior. This principle is essential to the
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understanding of the behavior of quantum systems, such as atoms and
subatomic particles.
Overall, the principle of duality is a powerful tool for understanding the
symmetries and properties of mathematical and physical systems, and has many
applications in diverse areas of science and engineering.

2.14 SUMMARY::-

The first-order, first-degree differential equations are linear and can be solved
using a variety of methods, including separation of variables, integrating factors,
and homogeneous equations. The first-order differential equation that is not a
first-degree differential equation can be more challenging to solve than a simple
first-degree equation, and may require the use of specific techniques to obtain a
solution.

2.15 GLOSSARY::-

e Exact Differential Equation.

e Integrating factor.

e Linear Differential equation.

e Equations reducible to linear form

e Bernoulli’s Equation (particular case)
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2.18 TERMINAL QUESTION:-

(TQ-1) Solve the following differential equations:

(1+x)ydx+ (1 —y)xdy = 0.
(1-x)(1-y) =xy(1+y)dy.
dy _ x(2log x+1)

dx .siny+ycosy

dy/dx = e* + x%e™?.

x + y(dy/dx) = 2y.

(ds/dx) + x? = x%e?s.

y —x(dy/dx) = x + y(dy/dx).
@ v

dx X

d X
222 =X_1,
dx y

d
2 =24 tan.
dx X X

(x—y)dy =(x+y+ 1)dx
dy _ x-y+3

dx  2x-2y+5

dy _ x+y+7

dx  2x+2y+3

(dy/dx) + (1/x)y = x™

(dy/dx)+y=e™

p? + 2pycptx = y?

p?—5p+6=0

y=px+a/p

y =px + logp

SELF CHECK QUESTIONS

Choose the Correct Option:

1. The solution of differential equation p?> — 8p + 15 =0 is
(@ p=5p=3 (b) =5x—c)y—3x—c)=0
) (+5x)(y+3x+c)=0 (d) None

S @meoa o T

X

— = - —

3

» - 27T o >

2. Solution of the equation y2logy = xyp + p? is
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(@) logy = cx + x? (b) logy = cx? +e*

© +5x)(y+3x+c)=0 (d) None

3. Solution of the equation y = px + logp Is
@y=e*+c () y=cx+logc
(c) y=logcx dx=eY+c

4. The differential equation Mdx + Ndy = 0, where M and N are the

functions of x and y is exact if

o o o w-
() M+N=0 d)M=N
2.19 ANSWERS:-
TERMINAL ANSWERS

(@ xy=ce¥™*,

(b)  log{x(1—y)%} =%x2 —%xz -2y +c,

() ysiny=x%logx+c

(d) ey=ex+§x3+c,

) (&3 —1) =c,e®*°) where ¢, = €35

®  logly—x)=c+x/(y—x),

(9) %log(x2 +y?%) + tan"1(y/x) = logc,

(h) cx = eX/V (i) c—2y)(x+y)?=c,

a) sin(y/x) = cx

(k) 2tan {2y +1)/(2x+ 1)} =log {cz (x2 +y*+x+y+ %)},
Q) x—2y+loglx —y+2)=c,

(m) @/3)x+y)—(11/9)logBx+3y+10)=x+c
(n) xy=x"?/(n+2)+c

©  yer=x+e ®) (o) -mm) =0

@ G-2x-cy—-3x—c)=0
(n y=cx+a/x, (s) y=cx+logc

SELF CHECK ANSWERS
1. (b), 2. @), 3.(b), 4 (a)
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BLOCKII
GENERAL THEORY OF LINEAR
DIFFERENTIAL EQUATION
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UNIT 3:- LINEAR DIFFERENTIAL
EQUATIONS

CONTENT:

3.1
3.2
3.3

3.4

3.5

Introduction

Objectives

Basic Concepts

3.3.1 Independent and dependent variables

3.3.2 Derivatives

3.3.3 Differential equations

3.3.4 Classification of differential equations
3.34.1 Ordinary differential equation
3.34.2 Partial differential equation

3.3.5 Classification of ordinary differential equation
3351 Simple ordinary differential equation
3.35.2 System of ordinary differential equations

3.3.6 Classification of partial differential equation
3.3.6.1 Simple partial differential equation
3.3.6.2 System of partial differential equations

3.3.7 Order and degree of a differential equation

Linear and Non-Linear Differential Equation

3.4.1 First order first degree linear differential equation

3.4.2 Solution of first order first degree linear differential

equation

3.4.3 Equation reducible to linear form

General Theory of Linear Differential Equation of Higher

Order

3.5.1 Classification of linear differential equation

3.5.2 Solution of linear differential equation with constant
Coefficient

3.5.3 Complementary function of homogenous linear
differential equation

3.5.4 Working rule for finding complete solution of the
given homogenous linear differential equation

3.5.5 Inverse operator

3.5.6 Some important results

3.5.7 Rules for finding the particular integral of non-
homogenous linear differential equation with constant
coefficients

3.5.8 Working rule to solve the non-homogenous linear
differential equation with constant coefficients

3.5.9 Linear differential equations with variable coefficients
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3.6 Picard’s Method of Successive Approximation for First
Order First Degree Initial Value Problem

3.7  Lipschitz Condition
3.7.1 Sufficient condition for Lipschitz condition

3.8  Existence and Uniqueness Theorem

3.9  Summary

3.10 Glossary

3.11 References

3.12 Suggested Reading

3.13 Terminal questions

3.14  Answers

3.1 INTRODUCTION:-

The course is devoted to the solution of the linear differential
equations of higher order with constant or variable coefficients. In this
course, learners also learn method of successive approximations, the
existence and uniqueness of initial value problem and their solution. The
course matter has many applications in several fields. This course
develops the problem-solving skills of learners.

3.2 OBJECTIVES:-

On completion of the course, learners will be able to-

e ldentify the type of a given differential equation and select and
apply the appropriate analytical technique for finding the solution.

e Learner will be able to solve first order first degree differential
equations utilizing the standard techniques.

e Determine the complete solution of a differential equation with
constant coefficients.

e Solve linear differential equations of higher order with variable
coefficients.

e Understand method of successive approximations, the existence
and uniqueness of IVPs and their solution.

3.3 BASIC CONCEPTS:-

Linear differential equations are a fundamental concept in
mathematics and physics. A linear differential equation is an equation that
involves a function and its derivatives, where the highest power of the
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function and its derivatives is one. The basic concept of linear differential
equations are given below

3.3.1 INDEPENDENT AND DEPENDENT VARIABLES:-

The variable whose value is assigned is called independent variables. In
another words, the variables whose domain is known is called independent
variables and the variable whose value is obtained corresponding to the
assigned value is called dependent variable.

If f be a function defined from Ato B,i.e.,f:A—> BthenVx €A 3! y €
B such that f(x) = y.Here, the variable x is called independent variable
and the variable y is called dependent variable.

REMARK: Independent variable causes a change in dependent variable
but it is not possible that dependent variable could cause a change in
independent variable.

3.3.2 DERIVATIVES:-

The rate of change of one variable with respect to another variable is
called derivative.

Consider a function y = f(x) then the derivative of y at a point P(x, y) is
the slope of tangent to the curve y = f(x) at a point P(x,y) and it is

denoted by 3—3: and called total derivative or ordinary derivative.

If z=z(x,y) then at any point P(x,y,z) on the surface, the slope of
tangent in x —direction is denoted by Z—i and it is called partial derivative
of z with respect to x and the slope of tangent in y —direction is denoted
by g—; and it is called partial derivative of z with respect to y.

3.3.3 DIFFERENTIAL EQUATIONS:-

An equation which expressed the relationship between dependent
variables, independent variables and derivatives of dependent variable
with respect to independent variable is called differential equation.

334  CLASSIFICATION OF  DIFFERENTIAL
EQUATIONS:-

3.3.4.1 ORDINARY DIFFERENTIAL EQUATION (O.D.E.):-
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A differential equation which involves derivatives of one or more than one
dependent variables with respect to single independent variable, i.e.,
differential equation involves only ordinary derivatives, is called ordinary
differential equation.

3.3.4.2 PARTIAL DIFFERENTIAL EQUATION (P.D. E.):-

A differential equation which involves derivatives of one or more than one
dependent variables with respect to more than one independent variable,
i.e., differential equation involves partial derivatives, is called partial
differential equation.

3.3.5 CLASSIFICATION OF ORDINARY DIFFERENTIAL
EQUATION:-

3.3.5.1 SIMPLE ORDINARY DIFFERENTIAL EQUATION:-

An ordinary differential equation which contains only one dependent
variable.

EXAMPLEL1: The differential equation % + Z—z = tan x contains only
one dependent variable.

3.3.5.2 SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS:-

An ordinary differential equation which contains more than one dependent
variable.

EXAMPLEZ2: The differential equationsd—z+xd—y =sinx and Z+
dx dx dx

d - .
ﬁ = cos x contains two dependent variables.

3.3.6 CLASSIFICATION OF PARTIAL DIFFERENTIAL
EQUATION:-

Partial Differential Equations (PDESs) can be classified based on various
criteria. Here are some common ways to classify them:

3.3.6.1 SIMPLE PARTIAL DIFFERENTIAL EQUATION:-

A partial differential equation which contains only one dependent variable.

EXAMPLEZ1: The differential equation oz + 2—; = 0 contains only one

0x2
dependent variable.
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3.3.6.2 SYSTEM OF PARTIAL DIFFERENTIAL EQUATIONS:-

A partial differential equation which contains more than one dependent
variable.

0w 0%z | 0*w
— n —
272 =0and a2 T o =

EXAMPLEZ2: The differential equations% +
0 contains two dependent variables.

dx2

Differential Equations

l |

Independent Variable =1 Independent Variable >1
Ordinary Differential Equation Partial Differential Equation
Dependent Variable =1 Dependent Variable =1
Simple ODE Simple PDE
Dependent Variable >1 Dependent Variable >1
System of ODE System of PDE

Fig.1: Classifications of Differential Equations

3.3.7 ORDER AND DEGREE OF A DIFFERENTIAL
EQUATION:-

The highest order derivative occurs in a differential equation is called the
order of the differential equation.

The highest power of the highest order derivative occurring in the
differential equation is called degree of the differential equation, after
making it free from radicals, fractions and transcendental functions as per
the derivatives are concerned.

In another words, the highest exponent of the highest order
derivative in differential equation is called degree of differential
equation provided all the derivatives are in natural power.

REMARK- The order of the differential equation is always defined but
the degree of differential equation may or may not define.

EXAMPLEIL: The differential equation v = cosZ—Z is of first order but
degree does not exist.

EXAMPLEZ2: The differential equation eV’ — y" 4+ xy = 0 is of order
three but degree does not exist.

3

3 2/
EXAMPLE3: The differential equation (ZT)Q) g (337’;) * =0 is of
order three and degree nine.
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SELF CHECK QUESTIONS-1
(SCQ-1)Find the order and degree of the following differential
equations:-

() () y=ser

i. (32732’)3 +7 (%)4 = 5sinx

Y AT
. —=+a’y=0

' AR G G _
iv. () -32+73+4% —logx =0

dx
d 2
V. 1+(a) = 4X
2/
; ay\?] P _ @y
VI [1 + (dx) ] T ax?
2
vii. Lo [Z_
dx? dx

3.4 LINEAR AND NON-LINEAR DIFFERENTIAL

EQUATION:-

A differential equation of n-th order is denoted as f (x,y,y’,y", ...,y™) =
0 is said to be linear if:
I All the derivatives and dependent variables are of degree one
only, and
ii. There does not exist any term containing product of two
derivatives or product of derivative and/or dependent variables.
A differential equation which is not linear is called a non-linear
differential equation.

2
EXAMPLEL: The differential equation xZ% + x% +y=sinxis a
linear differential equation of second order.

SELF CHECK QUESTIONS-2

(SCQ-1)Which of the following differential equations is linear?

. dy _
I. (y+x)dx+y—0 2
i ay — 24 &Yy
. 3=+ (x+dy=x"+_3
iii. 22 = cos(2t
) ke cos(2ty)
iv.  y® +xy" + cos(x) = e¥
(SCQ-2) Let f(x,y,y",y",..,y™) =0 be differential equation of
order n. Then choose the incorrect statement.
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. If degf=1= f(x,y,y,y",..,y") =0 is linear differential
equation.
. If flx,y,y,y", ....,y") =0 is linear differential equation =
degf = 1.
. If  degf>1= f(x,y,y,y",..,y") =0 is  non-linear
differential equation.
iv. If f(x,y,y",y",..,y™) = 0 is non-linear differential equation =
degf > 1.
(SCQ-3)If y(x) = x|x| is solution of n-thorder differential equation
defined V x € R, then possible value of n is?

341 FIRST ORDER FIRST DEGREE LINEAR
DIFFERENTIAL EQUATION:-

A linear differential equation of first order first degree is of the form
ao(x)z—z + a,;(x)y = f(x) where ag(x) # 0

The most general form of first order first degree linear differential
equation is

dy
-~ 4 Py =
I T Y Q
Where P and Q are constants or functions of x only.

REMARK: In general, the differential equation Z—i’+Py = Q is non-
exact.

3.4.2 SOLUTION OF FIRST ORDER FIRST DEGREE
LINEAR DIFFERENTIAL EQUATION % + Py = Q:-

The given differential equation is
dy _
2+ Py=0Q (1)

where P and Q are constants or functions of x only.
To solve such type of differential equation we multiplied both side by its
integrating factor, i. e., first we find out its integrating factor.

The differential equation Z—i’ + Py = Q can be re-written as
(Py—Q)dx+dy =0 ...(2)
Compare equation (2) with M(x, y)dx + N(x,y)dy = 0, we get
M=Py—QandN =1

oM ON
So, —=Pand—=0
dy 0x
aM _, N . . . .
= N * Therefore, the given differential equation is non-exact.
oM ON

So, if % = ¢ (x) (function of x only)
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Then integrating factor is given by

ILF. = e #(0)dx
aM_oN
Here, 2 = P—;O = P (function of x only)

S0, ILF. = e/ ¢(dx = o[ Pdx

e Pax s an integrating factor. Hence the differential equation % + Py =
Q always reducible into exact differential equation by multiplying both
side by ef P2*, We get

dy
dex_{_ }= [Pax .
e e + Py e Q

[Pd dy
= e x_d__I_Py_edex:Q_edex

x

= el Pl . dy + Py el Pd¥dx = Q - eJ PA¥dx
N d(y_edex) =Q- el Pax .y
Integrating, v - e/ P9 = [ Q - e/ P dx + ¢
Which is required solution of given differential equation.
WORKING RULE:-

Change the linear differential equation in standard form % + Py =Q

Find an integrating factor by using formula, I.F.= e/ Pdx
The required solution is obtained by using formula

y-(I.F.) = fQ-(I.F.)- dx +c
Where c is arbitrary constant.
EXAMPLE:Solve 2+ = x2if y = 1 whenx = 1.

SOLUTION:-Since the given differential equation is linear differential

equation of first order first degree. Compare the given differential

equation with standard form Z—y + Py = Q, we get

X
P= %andQ = x?

1
So, integrating factor is e/ Pdx = /@ = 4
Therefore, the general solution of the given differential equation is

y-(I.F.)=fQ-(I.F.)- dx + ¢
=>y-x=fx2-x-dx+c

:>xy=ix4+c ..(1)
wherec is an arbitrary constant.

Now, the given conditionis y = 1 whenx =1
So, from (1) ¢ = z

Hence, the required solution is xy = %x“ +%
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3.4.3 EQUATION REDUCIBLE TO LINEAR FORM:-

CASE I:

An equation of the form

fOZ+P-f3) =0 (1)

where P and @ are constants or functions of x only.

The given differential equation can be reduced to linear form by putting

f)=t
Now differentiating both sides with respect to x
' dy _dt
=5
So, from (1),
S4+Pt=Q .2)
Which is linear in t and x.
So, its solution can be obtained by using the working rule defined above.

Hence the solution is t - e/ P%* = [ Q - e/ Pa%dx + ¢
Replace t by f(y) we get solution in terms of x and y

fo)-elree = [ g elreax+c
CASE II:
An equation of the form f’(x)% +P-f(x)=Q ...(D

where P and Q are constants or functions of y only.
The given differential equation can be reduced to linear form by putting

fx)=t

Now differentiating both sides with respect to y
() 2 =9t
feoe =5
So, from (1),
dt _
E+P-t—Q ...(2
Which is linear in t and y.
Integrating factor of equation (2) is e/ P%¥. So, its solution is

t-efpdyzfQ-edeydy+c
Replace t by f(x) we get solution in terms of x and y
f(x)-efpdyzfQ-edeydy+c

SELF CHECK QUESTIONS-3

(SCQ-1)Solve the following differential equations:-
: 2 __ _tan™! ayy _
. (1+y)+(x ean y)(dx)—O

ii. x(Z—z) —y =2x%cscx
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iii. xlogx( )+y—210gx
iv. (2x—10y3)( )+y—0
v ()+0)=%
Vi. (Z—z)+ysecx=tanx
vii.  (x%2+y% 4+ 2x)dx + 2ydy =0
viii.  (2)= o=+ 0etsecy

dx

3.9 GENERAL THEORY OF LINEAR
DIFFERENTIAL EQUATION OF HIGHER
ORDER:-

We have already discussed that linear differential equation are those in
which the dependent variable and its derivatives occurs only in the first
degree and there is no term containing their product. Thus, the general
form of linear differential equation of nth order is

ao(x)—+ al(x)d =+ az(x)d bt an () + a0y =
Q(x) (1)

Where x € [a, b]

ay(x),a;(x),a,(x),...,a,(x) and Q(x)all are continuous function of

x anday(x) # 0V x € [a, b]

In terms of operator D equation (1) can be rewritten as

[ag(x)D™ + a,(x)D™* + a,(x)D" 2 + -+ a,_;(x)D + a,(x)]y =

Q(x)

Where D = j—x = L[D]y = Q(x)

Where L[D] = aq(x)D™ + a;(x)D™ ! + a,(x)D" 2 + -+ a,_;(x)D +

an (x)

3.5.1 CLASSIFICATION OF LINEAR DIFFERENTIAL
EQUATION:-

¢ HOMOGENEOUS LINEAR DIFFERENTIAL
EQUATION:-
The linear differential equation (1) is said to be homogeneous linear
differential equation of order nif Q(x) =0i.e., the n-th order
homogeneous linear differential equation can be written as
[ag(x)D™ + a; (x)D™™ ! + a,(x)D™ % + -+ + ap_1 (x)D + a, (x)]y
=0V x € [a,b]

Particular Case:
The second order homogeneous linear differential equation is
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ap(x)y" +a;(x)y" +a,(x)y =0
where a,(x) # 0,a,(x),a,(x),a,(x) all are continuous on the given
domain.
¢ NON-HOMOGENEOUS LINEAR DIFFERENTIAL
EQUATION:-
The linear differential equation (1) is said to be non-homogeneous linear
differential equation of order n if Q(x)is not identically zero in the
given domain.
e LINEAR DIFFERENTIAL EQUATION WITH
CONSTANT COEFFICIENT:-
The linear differential equation (1) said to be linear differential equation
with constant coefficient of order n if all the coefficient
ao(x),a,(x),a,(x),...,a,(x) of the given differential equation are
constant.
e LINEAR DIFFERENTIAL EQUATION WITH
VARIABLE COEFFICIENT:-
The linear differential equation (1) is said to be linear differential equation
with variable coefficient if atleast one of the coefficients of the differential
equation is not constant.

2
EXAMPLEl:Z% - 53—1’ + 3y = 0 is second order linear homogenous
differential equation with constant coefficients.
4
EXAMPLEZ:xZ% + x2(x — Z)Z—i’ +(x—=2)y=0 is second order
linear homogenous differential equation with variable coefficients.
2
EXAMPLE3:3732’ + x% + (1 —x?)y =sinx is second order linear
non-homogenous differential equation with variable coefficients.

3.52 SOLUTION OF LINEAR DIFFERENTIAL
EQUATION WITH CONSTANT COEFFICIENT:-

The linear differential equation with constant coefficient of order n is
dny dn—ly dn—Zy dy
aom+ a, ) +a, -2 + -+ an_la+ a,y = Q(x)
or,
l[agD™ + a; D" ' + a, D" % + -+ a,_1D+a,]y=0(x) ...()
where a,, # 0,a,, a4, a,, ..., a, all are constant.
The general form of (1) can be written as
[D™ + kD™t + -+ k, ]y = Q(x)
Where f(D) = D™ + k;D™ ! + --- k,, is a polynomial in D.
Thus, the operator D stands for the operations of differential and can be
treated much the same as an algebraic quantity. i.e.,f(D) can be
factorized by ordinary roots of algebra and the factors may be taken in any
order.
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3.5.3 COMPLEMENTARY FUNCTION OF
HOMOGENOUS LINEAR DIFFERENTIAL EQUATION:-

Consider a homogenous linear differential equation of order n is
dn 1 dn 2

dxn+k1dn1+k2dn2+ +k1’l 1d +kny—0 (1)

Where k4, ks, ..., k,, are constant.

In terms of operator D equation (1) can be re-written as

[D™ + kD™t + k,D™ 2 + -+ k, ]y =0 ...(2)
Its symbolic coefficient equal to zero
i.e.,D" + kD" 1 +k,D" 2+ .- +k,=0 ...(3)

is called the auxiliary equation.
Since the auxiliary equation is of degree n so, by fundamental theorem of
algebra m,, m,, ..., m,, be its n roots.
Now, we have different cases arise:
CASE I:
If all the roots of the auxiliary equation be real and distinct, then equation
(3) is equivalent to
[(D—m)(D—my)...(D—my)]y=0 ..-(4)
Since the factors in equation (4) can be taken in any order, so it will be
satisfied by the solution of (D —m,.)y = 0where 1 < r < n.
Now for (D —m,)y =0
dy
= E —m,y = 0
= C;—y =m,dx
= y=ce™*wherel <r <n.
= y = c,e™* satisfies (D —m,)y = 0.
= y = c,e™* satisfies [(D —m;)(D —m,) ...(D —m,)]y = 0.
So, y = c,.e™* where 1 < r < nis solution of equation (4).
Thus, the complete solution of equation (4) is
y =ce™* 4+ c,e™* + kcpe™* or oy =", c.e™*

CASE II:
If two roots of equation (4) are equal [i.e.,m; = m, = m(say)] then
equation (4) can be rewritten as
(D —m)*(D—m3)(D—my)..(D—m,) =0
Now, for (D—m)?y =0 ...(5)
Put(D—m)y =z
So, from equation (5) (D —m)z =0

dz
=—-mz=0
dx

dz
= — = mdx
z
=z =ce™
= (D —m)y = c,e™
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=>Z—z—my=clemx ...(6)
Equation (6) is linear differential equation of first order first degree. Its

integrating factoris e ™™*
So, the solution of equation (6) is

y: e ™ = f[clemx- e ™ ]dx+ C

= y-e ™ =cx+c
=y = (c1x +cz)e™
Therefore, with the help of case | the complete solution of equation (4) is
given by
y = (c1x + c)e™ + cze™* + .o+ cpe™n*
Particular Case:
If the given auxiliary equation has three equal roots [i.e.,m; =m, =
my = m (say)] then the complete solution is given as
y = (c1x% 4 cx + c3)e™ + c,e™* + - + ¢ e
CASE 111:
When the auxiliary equation has complex roots.
If one pair of roots of equation (4) be imaginary. i.e.,m; = a + i, m, =
a—if
Then with the help of case | the complete solution is given as
y =, e@FBX 4 ¢,e(@=iP)X 4 coeM3* 4 ... 4 ¢ @™Mn¥
=y = e™|[c,e* + c,e F*| + c;e™* + - + cpe™n*
= y = e®[c;(cos Bx + isin fx) + c,(cos Bx — isin Bx)] + c;e™s3*
+ ... 4 Cnemnx
= y = e*™|[(; cos fx + C, sin Bx] + c;e™3* + -+ + ¢, e™n*
where C; = ¢; + ¢, andC, = i(c; — ¢3)
Particular Case:
If the given auxiliary equation has two pairs of imaginary roots be equal.
i.e.,my =my, =a+ifandm; =m, =a—if
Then the complete solution is given as
y = e®™[(Cyx + C;) cosBx + (C3x + C,) sin Bx] + cge™s* + -+
+ c,e™*

CASE IV:
When the auxiliary equation has surd roots. If one pair of roots of
auxiliary equation be surds.i.e.,m; = a + /B, m, = a — Vg
Then the complete solution is given as
y = Cle(a+\/[>’)x + Cze(a—\/ﬁ)x + Cgem3x + ,,,+Cnemnx
=y = e™[c;eVF* + cie VBX] + c;e™ ¥ 4 o 4 o™

=y= e“x[cl(cosh x\/ﬁ + sinhx\/f) + cz(cosh x\/f — sinhx\/F)]

+ -+ cpe™n*
y = e""“[C1 coshx,/f + C, sinhx\/f] + c3e™3* + .o 4 ¢ e™n*

where C;, = ¢, +c,and C, = ¢4 — ¢,
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3.5.4 WORKING RULE FOR FINDING
COMPLETE SOLUTION OF THE GIVEN
HOMOGENOUS LINEAR DIFFERENTIAL
EQUATION:-

Consider the homogenous linear differential equation of order n with
constant coefficients is

ay
dxn

anly an2y dy
+k1dxn_1+k2dxn—2+"'+kn_1;+kny=0 (1)

Step |: Re-write the equation (1) in the symbolic form as

[D™ + kD" + kD% + -

Step I1: The auxiliary equation is
D"+ kD" '+ k,D" 2+ -+ k,=0

Step I11: Find the roots of auxiliary equation.

'+kn]y=0

Step I1V: Write down the complete solution with the help of the following

table.
S. Nature of roots of auxiliary Complementary Function
No. equation
1. | Ifall the roots of auxiliary equation | c,e™1* + c,e™2* + c;e™3*
are real and distinct say, + -
my, my, My, ...
2. If all the roots of auxiliary equation (c1x + cy)e™* + cze™s*
are real and two equal roots say, + -
my, m,, mg, ... Where m;, = m, =
m
3. | Ifall the roots of auxiliary equation (c1x? + cx + c3)e™*
are real and three equal roots say, + c,e™eX
my, m,, my, my ... Where m; = + -
m,=msz=m
4. | If auxiliary equation has one pair of | e%*[C, cos fx + C, sin fx]
imaginary roots say a + ifs, & — + c3e™3*
i, m, ... + -
5. If auxiliary equation have two pair | e®[(C,x + C,) cos Bx
of imaginary roots say, a + i, a + + (C3x
i, ms, ... + C,) sin Bx]
+ cge™s*
+ ee
6. | If auxiliary equation has one pair of e“x[Cl cosh x\/ﬁ

surd roots say, m;=a+

\/E,mz =q —\/E, ms, ...

+ C, sinhx\/m + c3e™s*
+ “ee
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EXAMPLEL: Solve(D3® + D + 4D +4)y =0
SOLUTION: Here the given differential equation is (D3 + D? + 4D +
4)y =0
Its corresponding auxiliary equation isD3 + D? + 4D +4 =0
i.e., D*+4)(D+1)=0

=D =-1, +2i
Hence the complete solution is

y = cre”* 4+ e%%(c,c082x + c35in2x)
= y =cie ¥ + cyc082x + c35in2x
EXAMPLE2: Solve £% + 4x = 0

SOLUTION:_Given equation in symbolic formis (D* + 4)x = 0
Therefore, Auxiliary equation is D* + 4 = 0
Or,(D* 4+ 4D2 4+ 4) —4D2 =0
= (D2 +2)2—(2D)? =0
= (D?>+2D+2)(D?-2D+2)=0
Therefore, either D2 + 2D +2=00rD?—-2D+2=0

— p =D gpg p = 2D 2(_4)

= D=-1+iandD =1+1i
Hence the required solution is x = e~t(c,cost + c,sint) + et(czcost +
c4sint)

EXAMPLE3: Solve 2 + (a + )2 + aby = 0

dx?
SOLUTION: Here the given differential equation is (D? + (a + b)D +
ab)y =0
The corresponding auxiliary equation isD? + (a + b)D + ab = 0
= D+a)D+b)=0
=D = —q, —b
Hence the required solution is y = ¢;e™%* + c,e >
EXAMPLE 4: Solve (D? —4D + 1)y =0
SOLUTION: Here the given differential equation is (D? — 4D + 1)y =
0
The corresponding auxiliary equation isD* — 4D + 1 =0
4+V(16—4)
b= 2
=D=2+3

Hence the required solution is y = 2¢,e@+V3x 4 ¢,e@-V3)x

=y = er{Clex\/3 + Cze—x\/3}
EXAMPLE 5: Solve (D3 —2D?—-4D+8)y =0
SOLUTION: Here the given differential equation is (D3 —2D? — 4D +
8)y=0
The corresponding auxiliary equation isD3 —2D? —4D +8 =0

=D?*(D-2)—-4D-2)=0
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= D -2)(D?-4)=0
= D-2)(D-2)(D+2)=0
=D =2, 2, -2
Therefore, the required solution is y = (¢; + c,x)e?* + cze™*
EXAMPLE 6:Solve (D* — 7D3 + 18D% — 20D +8)y =0
SOLUTION: Here given differential equation is (D* — 7D3 + 18D? —
20D +8)y =0
The corresponding auxiliary equation isD* — 7D3 + 18D% — 20D + 8 =
0
=D3(D-1)—-6D2(D—-1)+12D(D—-1)—-8(D—-1) =0
= (D—-1)(D3—-6D2+12D—-8) =0
= (D -1D[D*(D-2)—4D(D—-2)+4(D-2)]=0
=D -1)D-2)(D2—4D +4) =0
=>D-1D)D-2)(D-2)2=0
=D =1, 2 (Thrice)
Therefore, the required solution is y = c;e* + (c,x2% + c3x + ¢4)e?*
EXAMPLE 7:Solve (D* + 4)y =0
SOLUTION: Here the given differential equation is (D* + 4)y = 0
The corresponding auxiliary equation isD* + 4 = 0
= D*=—4
= D? =42i
= D? = 2iand—2i
(1)
or,D = +./(2i) and +V(—2i)
Let \/(20)) =a+ib
Squaring both sides, we get
2i = (a? — b?) + (2ab)i
Equating real and imaginary parts on both sides, we get
a? — b? = 0and2ab = 2orab =1
Therefore a® — (iz) = 0since b =~
a a
Ora*—1=0o0ra*=1
= a=+l1, +i
Ifa=1,wehave fromab =1, b =1
Hence \/(2i)) =1+
Similarly, we can prove that,/(—2i) =1 —i
Therefore from (1), the roots of the auxiliary equation are
+(1 +i)and+(1 — i)
i.e.,1tiand —1+i
Therefore, the required solution is
y = e*[c;cosx + c,sinx] + e *[c3cosx + ¢ sinx]
EXAMPLE 8:Solve (D*+ D? + 1)y =0
SOLUTION: Here the given differential equation is
(D*+D?+1)y=0
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The corresponding auxiliary equation is
D*+D?+1=0 ..
= D*+D?*+1)—-D?=0
= (D*+1)2-D?=0
= (D?+1+D)(D*+1-D)=0
Now D? + D + 1 = 0 gives D =%[—1i\/(1—4)]

=D =%[—1 + V3]
Similarly, D2 — D +1 = 0 gives D = - [1 + i3]
Therefore, the solution of auxiliary equation (1) is% [-1+ V3] %[1 +
iv3]

Therefore, the required solution is

_ —x)2 xV3 4 ] xV3
y=e c1c0s | —— |+ csin| ——
xV3 ~ [xV3
+ e*/? [c3cos <T> + cysin <T>l

EXAMPLE 9:Solve (D¢ — 1)y =0
SOLUTION: Here the given differential equation is (D® — 1)y = 0
The corresponding auxiliary equation isD® — 1 = 0
= (D -1)(D*+D*+1)=0
= D-1)DO+1)D?*-D+1)(D*+D+1)=0
Its roots are 1, —1, %i%i\/3 and —% + %i\/3
Therefore, the required solution is

1 1
y = cie* + ce™ + e*/? [03 cos (Ex\@) + ¢4 sin (Ex\/g)]

1 1
+ e7*/2 [05 cos (Ex\@) + ¢ sin (Ex\/§>]

SELF CHECK QUESTIONS-4

(SCQ-1)Solve the following differential equations:

i. (D3-13D+12)y=0
ii. (D2+7D+10)y=0
iii. (D®—4D2+4+5D—-2)y=0

3.5.5 INVERSE OPERATOR:-
— Q(x) is that function of x, not containing any arbitrary constant which

f(D)
when operated upon by f(D)gives Q(x). i.e., f(D) [ Q(x)] = Q(x).

S
f(D)
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Hence TID) Q (x) satisfies the equation f(D)y = Q(x) and is therefore its

particular integral.
REMARK: (D) and Tlo) are inverse operators.

3.5.6 SOME IMPORTANT RESULTS:-

. %Q(x) = [Q(x) dx
PROOF: Let=Q(x) = y

...()
Operating both sides by D

1
D.5Qx)=D"y
=>Q(X)=Dd'y

=>Q(x)=£

Integrating both side with respect to x, we get
y = [ Q(x) dx, Since equation (1) does not contain any arbitrary constant.
So, no constant of integration be added.

Hence, %Q(x) = [Q(x) dx

1

Q(x) =e™ [Q(x) - e dx

(D-a)
PROOF: Let (Dia) Q(x) =y (D)
Operating both sides by (D — a)
1
D= 550 =00y
=Qx)=D-a)y

= Q) = % —ay
Which is first order, first degree linear differential equation. Its integrating
factor is e 7%,
So, its solution is
ye~ % = [ Q(x) - e~**dx, Since equation (1) does not contain any
arbitrary constant. So, no constant of integration be added.

y = eafo(x) ce”Ydx
Hence, (D%a)Q(x) =e™ [Q(x) e *dx

357 RULES FOR FINDING THE PARTICULAR
INTEGRAL OF NON-HOMOGENOUS LINEAR
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DIFFERENTIAL  EQUATION  WITH CONSTANT
COEFFICIENTS:-

General method for finding particular integral with constant
coefficient:

Consider the non- homogenous Iinear differential equation of order n.
dn
dxn+k1dn1+k2dn2+ +k1’ly Q(x) (1)

In terms of operator D equation (1) can be rewritten as
(D™ + kD™ + kD2 + -+ k)Y = Q(x)

Therefore, particular integral is

1
D‘l’l + len_l + kan_Z + + kn
1
on (D—a;)(D-az)..(D—axy) Q(x)
Where a4, a5, as, ..., ay,be nroots of D™ + kD" + k, D" 2 + .-+ k,,

Therefor 1 —
eretore DD -ap) ey )

Q(x)

1
(D-ay)(D-az)..(D—an) [(D —aq) Q( )]

1 ealx
(D -a)(D—a3) ...(D —ay) {Q(x)e‘“lx dx}

Repeat this process for each factor in same manner, we get the required
particular integral.
Some Particular Cases:
CASE I:
Consider (D™ + k;D™" 1 + k,D" 2 + --- + k,,)y = Q(x)
When R.H.S. of equation (1) is of the form e?*
i.e.,Q(x) = e*providedf(a) # 0
Since De™ = ge®™

Dzeax — azeax
In general, D"e®* = q" e

= (D™ + kD™ + k,D"2 + - + ky )e ™
=(a" + kja® '+ ky,a" %+ -+ ke
[f(D)e“x] = [f(@)e™]

Now, operating on both S|des by — ( ;we get
f(D) [F(D)le® f(Dl) [f(@le
) eax — f(a) f(D) ax
— L _eax = e Provided f(a) # 0 ...(2)

f(D) f( o€
Particular Case:

In the above case if a is simple root of auxiliary equation.
i.e.,a isroot of the auxiliary equation f(D) = 0
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= (D — a)is factor of f(D)
= f(D) = (D —a)®(D)
Where@(a) # 0

1 1
Now, P.l. = ——e® = —1——
f(D) (D—-a) @(D)
N
- (D—-a) 9(a)

oy (D}

~ o(a) (0-a)
— ax ax —ax
== (a) [e dx

=L eex [y
—xie
?(a)

- pax __ 1 ax
Therefore T )e x5 (a)e
Or—e

ax H !
o 7 pr-oylded f (c_z) # 0
Similarly, if a is root of auxiliary equation of order two, then

; ax — 1 ex "
¢ x? i provided " (a) # 0

and so on.
CASE II:
When the R.H.S. of auxiliary equation is of the form sin(ax + b) or
cos(ax + b),provided f( —a?) # 0.
Since D sin(ax + b) = acos(ax + b)

= D?sin(ax + b) = —a?sin(ax + b)

= D3sin(ax + b) = —a? cos(ax + b)

= D*sin(ax + b) = a*sin(ax + b)

ax

ax

ax

In general,
(D?)* sin(ax + b) = (—a?)* sin(ax + b)

= f(D?) sin(ax + b) = f(—a?) sin(ax + b)

Operating both sides by

f(DZ)
f(D?)sin(ax + b) =

f(—a?) sin(ax + b)

1
f(D%) f(D?)

= sin(ax + b) = f(—a?)

1
[76D) sin(ax + b)
2) sin(ax + b) Provided f(—a?) # 0

(4)

sin(ax + b) =

f(DZ)

Particular Case:

If f(—a®) =0

By Euler’s formula

cos(ax + b) + i sin(ax + b) = el(ax+b)
Therefore

o 2) ——sin(ax + b) = Imaginary Part of — o 2) e!(@x¥+b) gince f(—a?) =0
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sin(ax + b) =Imaginary Part of of x——e!@**P) where

=
fr (Dz)

f(DZ)
DZ — 2

Therefore,

0
If f/(— a2) =0

Then f(DZ sin(ax + b) = x? = ( =

and so on.
.. 1
Similarly, o2

If f(-a®)=0 |,
f'(=a*) #0
If f'(— az) =0,

Then o5 —-cos(ax + b) = x* = ( cos(ax + b)provided f"(—a?®) #

0 and so on.
CASE I11:When Q(x) = x™

Pl = —=x™ = [f(D)] "

Now expand [f(D)]~! in ascending powers of D as far as the term in D™
or operate on x™ term by term.
Since the (m + 1)*"are higher order derivatives of x™ are zero. We need
not be considered terms beyondD™.
CASE IV: When Q(x) = e®*W when W being a function of x.
Let V be any function of x.
Since D(e**V) = e**DV + ae**V
=e”*(D+a)V

Again, D?(e®*V) = e**D?V + 2ae* DV + a?e*V

= e (D + a)?V
In general, D™ (e*V) = e®*(D + a)™V
Therefore f(D)(e®™V) = e™f(D + a)V
Operating both sides by %

sin(ax + b) = x sm(ax + b)provided f'(—a?) #

(2) f(

sin(ax + b)provided f"'(—a?) # 0

cos(ax + b)providedf(—az) #0

0 2) cos(ax + b) = xf( cos(ax + b)provided

1
]TD)f(D)(e V) = [70) [e®™*f(D + a)]V

= ™V = 0) [e™f(D + a)]V
Now putf(D +a)V=W
V= W, so that

f(D+ ) 1
e o+ o W=D (e:xw)
=M= o

CASE V: When Q(x) is any other function of x of the above form.
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1

Then Pl = ﬁ Q) = G mp o ¢
Resolving into partial fractions, we get
D —m)D —mp) D —my) °
Ay A, 4. 0
. X
) (D ml) (D mz) ( n)
" O-m0-ma). @m0 = Ay Q(x)+A2 oy Q)+

Ay (D-m Q(x)
Hence partlcular integral is given by
P.l.= Aje™* [ Q(x)e ™¥dx + Ae™* [ Q(x)e ™¥dx + -+ +
Ape™* [ Q(x)e ™ *dx

3.5.8 WORKING RULE TO SOLVE THE NON-
HOMOGENOUS LINEAR DIFFERENTIAL EQUATION
WITH CONSTANT COEFFICIENTS:-

Consider the non-homogenous linear differential equation with constant
coefficient of order n is

dxn+k1dn1+k2dn2+ + k,y=Q(x) ...(2)
Equation (1) can be rewritten in terms of operator D as

(D™ + ks D™ 4+ kD™ 2 4 -+ k) y = Q(x)
Stepl: Find the complementary function for its homogenous part(D™ +
kD" + k,D""2 + ... + k,)y = Owith the help of following table.

S. Nature of roots of auxiliary Complementary Function
No. equation
1. | Ifall the roots of auxiliary equation | c,e™* + c,e™2* + c;e™3*
are real and distinct say, + .
my, My, My, ...
2. | Ifall the roots of auxiliary equation (c1x + cy)e™ + cze™s*
are real and two equal roots say, + -
my, m,, my,.. Wherem; =m, =m
3. | Ifall the roots of auxiliary equation | (c;x? + c,x + c3)e™*
are real and three equal roots say, + c o™X + ...
my, m,, My, my ... Where m;, =
m, =m;=m
4. | Ifauxiliary equation has one pair of | e**[C; cos fx + C, sin Bx]
imaginary roots say a + if8,a — + c3e™3* + -
i, msg, ...
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5. | If auxiliary equation have two pair of | e**[(C,x + C,) cos Bx
imaginary roots say, a + i, a + + (C3x
i, ms, .. + C,) sin Bx]
+ cge™s* 4 -
6. | If auxiliary equation has one pair of e®[C, cosh x\/ﬁ
surd roots say, my = @ +/B,my = | 1 ¢, sinhx JB] + csems
(l—\/ﬁ, m3,... + -

Stepl1:Find the particular integral by using any of the above form.
Stepll1:The general solution of equation (1) is given by C.F.+P.I

SOLVED EXAMPLES
EXAMPLEL: Solve (D? — 7D + 6)y = e?*, given that y = 0 when x =
0
SOLUTION:-The given differential equation is (D? — 7D + 6)y = e?*
Its auxiliary equation is D2 — 7D + 6 = 0
=D =1, 6
Therefore,C.F.= c,e* + c,e%, where ¢, and ¢, are arbitrary constants.

Now P.J.= ————e2*
D2-7D+6 .
—__ - p2x — _Z,2x
= P.l1.= DI ...(2)

Giventhaty = 0 whenx = 0

Therefore from (1), 0 = c,e° + c,e® — %eo
Or,c, = i -

Hence from (1) the required solution is

x 1 6x 1 2x
y =cCe +(Z—C1>e —Ze
1
=y =ci(e” —e®) +7 (e —e™)

1
— y = Cl(ex _ e6x) +Z€2x(e4x _ 1)

EXAMPLE2: Solve D?(D + 1)*(D? + D + 1)%y = e*

SOLUTION:- Here the given differential equation is
D?*(D +1)*(D*+ D + 1)*y = e*

Its auxiliary equation isD?(D + 1)?(D?+ D + 1)?y =0

The roots are0, 0, —1, =1, >[-1+iV3], Z[-1 £ V3]

i.e.,0, =1, ~[—1 % iv3]twice each.

Therefore,
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C.F.= (c1x + c)e® + (c3x + cy)e™
1
+ e X/2 [(C5x + cg)cos (E\/Sx)

+ (cyx + cg)sin (%\/Sx)]

ex
D?(D+1)?(D?+D+1)?

And,P.1.=

1 1
— X — X
Pl= sz s i+ 02 ~ 36°
Therefore, required solution is
y =C.F.+P.1.,whereC.F.and P.I. are given above.
EXAMPLES3: Solve (D? — D — 2)y = sin2x
SOLUTION:- Here the given differential equation is
(D? —= D — 2)y = sin2x
Its auxiliary equation isD? — D — 2 = 0, which gives

D=%hiJ@+8ﬂ

1
$D=§[1i3]

=D =2, -1
Therefore, C.F.= c,e?* + c,e™
And,P.1.= z;sian
D<“—D-2 1
= P.I.= rﬁ)_zswﬂx
= P.l=— in2
(D+6)Sl7’l X
P.I D=8 i
= r.l.= —
D-6)D+6)
(D—-6)
= P.l.=— (DZ—_36)SU’12X
(D—-6)
= P.l.=— (ZT36)SU’12X

1
= P.1.= 0 [D(sin2x) — 6(sin2x)]

1
= P.1.= 0 [2cos2x — 6sin2x]

1
= P.1.= >0 [cos2x — 3sin2x]
Hence the required solution is
y =C.F.+P.I.

1
y=ce** +ce”* + >0 [cos2x — 3sin2x]

EXAMPLE4: Solve (D? — D — 8)y = 2sin®x
SOLUTION:- Here the given differential equation is
(D? — D — 8)y = 2sin’x
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Its auxiliary equation isD> — D —8 =0

=D =%[1J_r,/(1+32)]
=D = %[1 +./(33)]

Therefore C. F.= e*/2[c,e™V33%/2 4 (,eV33%/2)
(1)
And,P.1.= %ZSinzx
D“—-D-8

1
P.l.= ———(1— cos2
= DZ—D—8( c0S2x)
Pl=—— (%) — —— (052
= pr—p_g ¢ )T pz_p_gosH
P.I L (e ! 2
= P.l= 5 — -—
02-0-8" —22_p g%
- Lo 1 0-12)
=P.l=—=(1)- _
8 (D +12) (0 —12) 7
pi_ 1 (-12)
=Pl=—————"""—
8 (D2 — 144) °°*
b L _@-12)
=Pl=———-—F+——
8 (=22 — 144) %%
= P.I.= —é + ﬁ (—2sin2x — 12cos2x) ...(2)

Hence the required solution is

y=C.F.+P.I1.,where C.F.and P.I. are given by (1) and (2) above.
EXAMPLES: Solve (D? —4)y = x?

SOLUTION:- Here the given differential equation is

(D? — 4)y = x?
Its auxiliary equation is D? — 4 = 0
=D =42

Therefore C.F.= c,e?* + ce™?*
And, P.I.= —— x2

D2-4
P.I ! 2
= r.l.= X
1 2
—4(1—10 )1
~1 1 .\
— __nNn2 2
— P.1. 4(1 4D> X
P.I _1<1+1D2+ )2
- .= — — e
4 4 X

-1 1
— 2 1 N2(r2
= P.I. 4[x +4D (x )]
P.I _1[2+12]
- .= — —
7tz (@

P.I _1[ 2 4 1]

= P.l.=— =
4 [* 72

Therefore the required solutionis y = C.F.+P.1.
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y =ce?* + ce”? — i4 x% + %]
EXAMPLESG: Solve (D? — 4D + 4)y = x? + e* + cos2x
SOLUTION:- Here the given differential equation is
(D? — 4D + 4)y = x> + e* + cos2x
Its auxiliary equation is D2 — 4D + 4 = 0
= (D-2)?*=0
=D =2, 2

Therefore C.F.= (cix + c,)e?*
1

Now, P.I.= — (x? + e* + cos2x)
D“—4D+4
P.I L S ! 2
= P.l.=
D —22" T0=22°% T(D2—aDp +4)
P.I ! 2p L gxy ! 2
=P l=—71717-79— —
i1 1oV a2 T
(1-20)
P.I 1(1 D>_2 2+ex 1 2
=Pl=-(1-= A
2 5] * T~ 7p Cos2x
1 3 1
=>P.I.=Z(1+D+ZD2+---)x2+ex—zjcost dx

1 3 11
P.l.=—|x?+ D(x? —D?(x? ¥ —— . =sin2 ]
= 4[x + (x)+4 (x?)+e 77 Sin2x

1
= P.l.= Z{xz +2x + (3/,)} + e* — (1/g)sin2x
Therefore, the required solutionisy = C.F. +P.1.

1
=y =(x+c)e* + Z{xz +2x + (3/))} + e* = (1/g)sin2x
EXAMPLET: Solve (D? — 2D + 5)y = e*sinx
SOLUTION:- Here the given differential equation is
(D? — 2D + 5)y = e**sinx
Its auxiliary equation is D2 — 2D + 5 =0

1
=D =§[2 + V(4 —20)]
=D=1+2i
= C.F.= e*(c;c082x + c,sin2x)

And, P.I.= e?*sinx

D2-2D+5 1
= P.].= e?* .Si
T+ —20+2)+5 "™
1

= P.I.= ezxmsinx
= P.l.=e%* ]
“ Cirrs™

= P.l.= e* ———si
e ap T oS
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= P.].= e%* 1 (ZD_4)sinx
T (2D +4) (2D — 4)

1
= P.I.= ezx—_16(2D - 4)sinx

4-D21
= P.l.= e* —————— (2D — 4)si
e D)7 = 16( )sinx
1
= P.[.= —e%* (2—0) (2cosx — 4sinx)
1
= P.[.= —e%* (1—0) (cosx — 2sinx)

Therefore, the required solutionis y = C.F.+P.1.
1
= y = e*(c,c052x + ¢,5in2x) — (1—0) e?*(cosx — 2sinx)

EXAMPLES: Solve (D? — 5D + 6)y = xe**
SOLUTION:-Here the given differential equation is

(D? —5D + 6)y = xe**
Its auxiliary equation is D? — 5D + 6 = 0, which gives D = 2, 3
Therefore,C.F.= c;e?* + c,e3*

1
And,P.].= — xet*
D2-5D+6

1
D+4)?—-50D+4)+6"
1

= P.[.= e¥*

P l=e— -~
¢ D2—§D+2 x

21+ G/ + (/)07
= P.l.= %e‘”‘ [1 + {((3/2)D + (1/2)D2)}] x
= r= e (o (o)
= p.1.= 3o [x= (/)]

1
= P.I.= Ee‘“‘[x — (3/2)]
Therefore, the required solutionisy = C.F. +P.1.
1
=y =ce* + e+ Ee“[x -3/,

= P.[.= e¥*

EXAMPLEY: Solve £ — 3% 1 2y = ¢*
SOLUTION:- Here the given differential equation is
(D? —=3D +2)y =e*
Its auxiliary equation is D> —3D + 2 =0
=D =1, 2
Therefore,C.F.= c,e* + c,e?*
And,P.l.= ————e*

D%2-3D+2
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1
1
(D+1)2-3(D+1)+2
1

= P.].=e*

= P.[.=e*

D?2—-D
1

1
D(1-D)
1
= P.l.=—e*~(1- D)1

= P.l.= —e¢

1
= P.1.= —ex5(1+D+---)1

1
= P.L.=—e*=(1)

= P.I.= —e*(x)
Therefore, the required solutionisy = C.F. +P.1.
=y =ce*+ce?* —e*(x)
EXAMPLE10:(4D? — 12D + 9)y = 144e3%/?
SOLUTION:- Here the given differential equation is
(4D% — 12D + 9)y = 144¢e3*/?
Its auxiliary equation is 4D? — 12D + 9 = 0
i.e.,(2D—3)2=0
= D = 3/2 (twice)
Therefore,C.F.= (c;x + c,)e3*/?

ANd,P.l. = ———— 144¢3%/2
4D<-12D+9

= P.[.= 144¢3%/2

o+ G 12+ (o

1
— 3x/2
= P.I.= 144e¥/ 1

1
= P.[.= 36e3*/2 (§x2>

= P.[1.= 18x2%e3%/2

Therefore, the required solutionisy = C.F. +P.1.
= y = (c1x + ¢y)e3*/% + 18x2e3%/2

EXAMPLE11:Solve (D3 — D)y =e*+ e~
SOLUTION:- Here the given differential equation is

(D3 —D)y=e*+e™*
Its auxiliary equation is D3 — D = 0

= (D*+1)=0
=D =0, -1, 1

Therefore,C.F.= c,e% + c,e™ + c;e”
Or,C.F.=c; +c,e ™ + c3e*
And,P.[.= — (e*+e™)

D3-D

= P.l.=

(e*) +

(e™)

D3—-D D3—-D
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1 1
P.l.=e”* 1 - 1
= “or-or0 Pt ooV
1 1
P.l.=e”* 1 - 1
= e raprsap Pte s 3prrp W
= P.[.=¢e* 1 <1+3D+1D2)_1(1)
=€ 9D 27T 1
1 3 1 -
-xX __ _ Y
+e 20(1 2D+2D) 1)

= P.l.= ex%(l) + e‘x%(l)
= P.I.= 1e"x +le‘xx
2 2
= P.l.= %x(ex +e™)
Therefore, the required solutionisy = C.F. +P.1.

1
=y =c +ce*+cze* +§x(ex +e™)

SELEF CHECK QUESTIONS-5

(SCQ-1)Solve the following differential equations:

i. (D?2—6D+7)y=e*+e*
ii. (D?-5D+6)y=e*
. (D+a)y=e™
iv. (D% +9) = cos2x + sin2x
V. (D*-2D%+1)y = cosx
vii (D®+D?-D-—1)=sin2x
vii. (D? —4)y =e* +sin3x
viii. (D?+2D+1)y=(x—1)
iX. (D?+D-6)y=2x+x?
X. (D —-1)(D? +1)*(D* +D + 1)3y =2
Xi. (D?+ 1)y = e*cosx
Xii. (D*—2D3—3D?+4D +5)y = x%e**
Xiii. (D?+4D)y = 5xe™**
Xiv. (D —2)%y = 8(e?* + x?)
XV. (D?—4D +4)y = x%e**
xvi. (D?+D-2)y=e*

3.59 LINEAR DIFFERENTIAL EQUATIONS WITH
VARIABLE COEFFICIENTS:-
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e CAUCHY’S HOMOGENOUS LINEAR
DIFFERENTIAL EQUATION:-
A differential equation is of the form

n-— 1
2+ ayx™ ZZ 2+t a, 1x +any Q(x)
-.-(1)
Where a4, a,,...,a, are constants, Q(x) a function of x, is called
Cauchy’s homogenous linear differential equation.
To solve such types of differential equations first we convert into linear
differential equation with constant coefficients by putting x = e® or t =

logx. Then if D = <
dt

dy dy dt
dx  dt dx
:dy_dy 1
dx dt x
- dy dy
Ydx T dt

dy
or, xdx =Dy

.. dzy
Similarly, x? —==D® —31)y

4y
X @=D(D—1)(D—2)y

In general,x”% =DM -1)(D-2)..(D—(n—1))y
Put these values in equation (1), equation (1) converts into linear

differential equation with constant coefficients, which can be solved as
before.

e LEGENDRE’S LINEAR DIFFERENTIAL EQUATION:-
A differential equation is of the form
(ax+b)” >+ a,(ax + b)"" 1dn1+ Ay 1(ax+b) —tapy =

Q(x) (l)

Where a4, a,,...,a, are constants, Q(x) a function of x, is called
Legendre’s linear differential equation.

To solve such types of differential equations first we convert into linear
differential equation with constant coefficients by putting ax + b = et or

t = log(ax + b). Then if D = =

dy dy dt
dx  dt dx
dy dy a
dx dt ax +b

= +b -
(ax )d T

or, (ax + b)z—z = aDy
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Similarly, (ax + b)2 =a’D(D — 1)y
d3
(ax + b)3 y
In general, (ax + b)” = a”D(D -1D)MD-2)..(D—(n-1)y
Put these values |n equatlon (1), equation (1) converts into linear
differential equation with constant coefficients, which can be solved as
before.
EXAMPLElSMszdy+x—— y = x™
SOLUTION: Here the given dlfferential equation is (x2D? + xD —
Dy =x™
Puttingx = e or z = logx and D = d/dz in the given equation, we get
[D(D—-1)+D —1]y =e™
= (D? — 1)y = e™,which is a linear equation in y.
Therefore, the auxiliary equation is D2 — 1 =0
= D= -1, 1
Therefore C.F.= c,e? + c,e™*
Or,C.F.= cix + cox~ 1

=a*D(D —1)(D - 2)y

And,P.I.= ——e™*
D<-1 1
= P.I.= - 1xm
Therefore, the required solutionisy = C.F. +P.1.
1
=>y=clx+czx‘1+ _1xm
EXAMPLE 2:Solve x* <% zzdy+3 2 _3y=x+x.

SOLUTION:Here the glven dlfferentlal equatlon is
(x3D3 + 2x?D? +3xD —3)y = x*+x
Puttingx = eZ or z = logx and D = d/dz in the given equation, we get
[D(D—1)(D—2)+2D(D — 1)+ 3D —3]y = e?? 4 ¢*
= (D3 —D? + 3D — 3) = e?? + e#,which is a linear equation in y with
constant coefficients.
Its auxiliary equation is D3 — D? + 3D —3 =0
=D?(D-1)+3(D—-1)=0
= (D2 +3)(D-1)=0

=D=1, +iV3
Therefore C.F.= cie? + ¢, cos(zv/3), where z = logx
Or,C.F.= ¢;x + ¢, cos(V3logx) + c5 si n(v3logx)

1

— 2z z
And,P.1.= ————(e** + e?)
= P.I.= ! e? + ! e’
" D3-D2+3D-3 D3—-D?2+3D -3
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2z

—pPl=—
8_4+6-3° )
VA
1
T DT D+ E+30+ ) -3 D
_1 5 1
= P.l.=e 7+ e? 571207140 (D
:P1=lezz+ez ! @Y
7 1 1.,
4D(1+§D+ZD)

P.I L 2z 4 % L (1+1D+1D2)_1 1
= P.I.=— — -D+-
7¢ T 4D 2° Ty D

= P.].= %ezz + e? ﬁ (1),after expansion and differentiation.
= P.I =lezz + e (lz>
7 4
1 1
= P.I.= (7)952 + x (Zlogx)
Therefore, the required solutionisy = C.F. +P.1.

1
= y=cXx+c, cos(\/§logx) + c3 si n(x/i]ogx) + (;) X2
1
+x(Zlogx>
1 1
=y =cx+c cos(\/§logx) + c3 81 n(\/f;logx) + (_)xz +=xlogx

7 4
EXAMPLES3: Solve x2 2% — x2 — 3y = x2log x

SOLUTION: Here the given differential equation is (x?D? — xD —
3)y = x?logx
Puttingx = eZ or z = logx and D = d/dz in the given equation, we get
[D(D —1) — D — 3]y = ze??,which is a linear equation in y with
constant coefficients.
Its auxiliary equation is D? — 2D —3 =0

= D = -1, 3
Therefore,C.F.= c,e % + c,e%?
= C.F.= c;x7 1+ cyx3,
And,P.I. = FlD_gzezz

1

—pl=e?—
¢ DZ—%D—SZ

= P.[.= e??
" +22—20+2)-3"

—rr=er 1o (o (3]
d.= e 3 3 3 Z
—pr=_t 22[1+(2)D+ ]

.= 36’ 3 Z

= P.l.=—e% [Z + @)]
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-1 2
= P.I.= —3x2 [§+ logx]
Therefore, the required solutionisy = C.F. +P.1.
1 2
=y =cx 43— ?xz [§ + logx]

SELF CHECK QUESTIONS-6

(SCQ-1)Solve the following differential equations:
. (D% + xD + 1)y =logx
i, (2L
iii. (9c3D3 + 3x2D2 +xD + 1)y = xlogx

. 2
iv. 2%—3x2—z+4y= x?logx

+x +y—x

3.6 PICARD’S METHOD OF SUCCESSIVE
APPROXIMATION FOR FIRST ORDER FIRST
DEGREE INITIAL VALUE PROBLEM:-

Consider an initial value problem Z—i’ =flx,y), yv(xo) =y ...(1)
Integrate equation (1) over the range x, to x, we get
X X

[[av=] reyax
or, y() = yo = [ fOy)dx

or, y() = yo + [, f(xy)dx .(2)
Therefore, solution of initial value problem (1) is same as finding a
function y(x) which satisfies equation (2). Since the information
concerning the expression of y in terms of x is absent in the integral on the
right-hand side of (2). So, the exact value of y cannot be obtained.
Therefore, we determine a sequence of approximate solution of (2) as
follows.

For the first approximation, we put y = y, in the integral on the right-
hand side of (2), we get

Y1) = yo + [, f(x0)dx (3
Where y, denotes the corresponding value of y and is said to be first
approximation.

To determine second approximation, we put y = y, in the integral on the
right-hand side of (2), we get

Y2(%) = yo + [ f(xy1)dx (8
Proceeding in the similar fashion, we get a sequence of approximate
solution y, (x), y,(x), ..., ¥, (x), ... where
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V() = Yo + [ F (X, yn-1)dx ..(5)
The above method is known as Picard’s iteration method or Picard’s
method of successive approximation.

EXAMPLE: Find the third approximation of the solution of equation
dy
approximations.

SOLUTION: Given problem is Z—i’ = x2 —y,wherey = 0whenx =0
...(1)

By Picard’s method of successive approximations, we know the n th

approximation y,, of the initial value problem % = f(x,y),y(xy) =y, is

Yo = Yo+ [, fOOyn-1)dx ...(2)
Comparing equation (2) with equation (1), we get
fGoy) =x*—y,xp=0andy, =0
...(3)
Therefore from (2) y,, = y, + f;o(x2 — Yn_1)dx
...(4)
For first approximation putting n = 1 in equation (4) and using equation
(3), we get

= x2 — vy, where y = 0 when x = 0 by Picard’s method of successive

X
Y1=Yo +f (x* = yo)dx
Xo
X
X 0 1
=y =f x?dx = [—x3]
1 0 3

For second approximation putting n =2 in equation (4) and using
equation (5), we get

X
0

X
Y2 = Yo +f (x? — y)dx
X0
* 1
ﬁy2:0+f (xz——x3>dx
0 3
1 1 x
— 243 __— ,4
= Y2 [3x 12" ]0
e y2:§x3—%x4 (6)
For third approximation putting n = 3 in equation (4) and using equation
(6), we get

b
Y3 =DYo +f (x? —y,)dx
Xo
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=>y3—0+f |+ —( x3 ——x )] ax

1 X
_ = X5
[3" ¥ g0* ]0
1 1
= 3 ——x 3 ——x*+—xb

3 12 60

SELF CHECK QUESTIONS-/

(SCQ-1)Using the Picard’s method of successive approximations, find
the third approximation of the solution of the equation Z—i =x+y?
where y = 0 when x = 0.

(SCQ-2)Find the third approximation of the solution of the equation % =

Z’Z_;Zc =x%z+ x4y by Picard’s method, y = 5,z = 1 when x = 0.

3.7 LIPSCHITZ CONDITION:-

A function f(x,y) is said to satisfy Lipschitz condition in a domain D in
R? if there exists a positive integer K such that

If o, v2) — £ G y0)| < Kly, — y1| where (x,34), (x,y,) €D
The constant K is known as Lipschitz constant.

3.7.1 SUFFICIENT CONDITION FOR LIPSCHITZ
CONDITION:-

Consider a function f(x,y) is defined on a convex set D in R2. If there
exists a constant K > 0 such that

|g—§(x,y)| <K forall (x,y) €D

Then function f(x,y) satisfies Lipschitz condition on D with Lipschitz
constant K.

3.8 EXISTENCE AND UNIQUENESS THEOREM:-

e PICARD’S THEOREM FOR EXISTENCE OF
SOLUTION OF INITIAL VALUE PROBLEM:

STATEMENT: Consider the initial value problem Z—z = f(x,y)
with y(xo) = o
Let us consider a rectangular region R which is defined as |x —

x0| <a;|y_y0| <b
If

i.  f(x,y) iscontinuous in region R.
ii. f(x,y)isboundedinR.i.e.,|f(x,y)| <M V(x,y) € R, for some
positive real number M.
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Then there exists a solution of given initial value problem in
|x — x| < h where h = min {a, %}

PICARD’S THEOREM FOR EXISTENCE AND
UNIQUENESS OF SOLUTION OF INITIAL VALUE
PROBLEM:

STATEMENT: Consider the initial value problem <% = £(x, y)

with y(x,) = y,.Let us consider a rectangular region R which is
defined as |x — xo| < a,|ly — yo| < b If

f(x,y) is continuous in region R.

f(x,y) is bounded in R.i.e.,|f(x,y)| <M V(x,y) €R, for
some positive real number M.

f(x,y) satisfies Lipschitz condition in region R, then there exists
a unique solution of given initial value problem in |x — x,| < h

where h = min {a, %}

EXAMPLEZL: Test the existence and uniqueness of the solutions of the
initial value problem Z—i’ = \/_ y(1) = 0 in the suitable rectangle R.If
more than one solution exists, then find all solutions.

SOLUTION: The given initial value problem is Z—i’ = \/3_/ y(1) =0
Here f(x,y) = ﬁ,xo =1,y, =0.

Since f(x,y) is continuous and bounded in a rectangular region R which

containing point (1,0).
Hence, by Picard’s existence theorem, there exists at least one solution in

R.

Let us now test the Lipschitz condition:
For any two points (x,y,), (x, y,) € R, we have

If (x,y2) — fGoy)l = |y2 — ]
[ e
(Vyz +/»)

or, If ey2)—fey)l _ 1

[y2=y1l \/E+\/y_1

The above equation can be made as large as possible by choosing y; and
v, sufficiently small, i. e., a finite value for the Lipschitz constant K
cannot be determined.

Since \/y1 +\/y2 < 2,/y, if y = max{y,,y,}

|x/E+x/E

>—>M|fﬁ<—

So, in the nelghbourhood of y = 0, the above inequality is satisfied for
every M > 0.
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Therefore, the initial value problem does not have a unique solution.
Now we can find the solution of given initial value problem % = ﬁ
y(1) = 0, where y # 0, by using variable separable method.
] . . L dy

Thedglven differential equation is == = \/y

Y-
Or,ﬁ - dx - ...(2)
Integrating equation (1), we get

2\y=x+c

2
x+c
Or,y = (T) ...(2)
Putx = 1and y = 0, we get
c=-1

x—1

2
Hence, one solution of the given problemis y = (T)
Also y = 0 also satisfies the given initial value problem.
Hence, the solutions of the given initial value problemare y = 0 and y =
()
2
Remark: If arbitrary constant ¢ can be determined uniquely then we
cannot say the initial value problem has a unique solution.

3.9 SUMMARY:-

In this unit we have studied the linear differential equation
typically involves finding the general solution, which includes an arbitrary
constant, or initial conditions can be used to determine a particular
solution.

3.10 GLOSSARY:-

Classification of ordinary differential equation.
Equation reducible to linear form.

Picard’s Methods.

Lipschitz Conditions

3.11 REFERENCES:-

e E.L.INCE (2012) Ordinary Differential Equations.

e Willaim A.Adkins, Mark G.Davidson (2012) Ordinary Differential
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e M.D. Raisinghania,( 2021). Ordinary and Partial Differential

equation (20" Edition), S. Chand.

3.12 SUGGESTED READING:-

Department of mathematics
Uttarakhand Open University Page 89



ADVANCED DIFFERENTIAL EQUATIONS-I MAT 504

e Daniel A. Murray (2003). Introductory Course in Differential
Equations, Orient.

e A.K.Nandakumarsan, P.S.Datti &Raju K.George (2017) Ordinary
Differential Equations (Principles and Applications)

e Nita H.Sah (2010) Ordinary and Partial Differential Equations:
Theory and applications.

3.13 TERMINAL QUESTIONS:-

(TQ-1)Examine the existence and uniqueness of solution of the initial
value problem % = y1/3, y(0) = 0.

(TQ-2)Discuss the existence and uniqueness of solution of the initial
value problem % =y, y(xy) = yo.

(TQ-3)Examine the existence and uniqueness of solution of the initial
value problem z—i’ =2 y(1) = —1.

(TQ-4)Examine whether the following differential equation possesses

y(1—-2x), x>0

unique solution. Justify your answer. % = subject to
y(2x—1), x <0

the condition: y = 1 at x = 1.
(TQ-5)Discuss the existence and uniqueness of solution of the initial
value problem

Y _ 24 y2, y(0) = 0.

dx

3.14 ANSWERS:-

SELF CHECK ANSWERS-1
i order-3, degree-3, ii.order-2, degree-3, iii.Order-2,degree-1
iv. order-3,degree-2, v. order-2,degree-1, vi. order-2,degree-3
Vii. order-2,degree-2

SELF CHECK ANSWERS-2
(SCQ-1) i. Non-linear differential equation
ii. Linear differential equation
iii. Non-linear differential equation
iv. Non-linear differential equation

(SCQ-2) i Incorrect statement, ii. Correct statement,
iii. Correct statement, iv. Incorrect statement,
(SCQ-3) 2
SELF CHECK ANSWERS-3
I xetan 'y = ety +c

2

Department of mathematics
Uttarakhand Open University Page 90



ADVANCED DIFFERENTIAL EQUATIONS-I

il. y = 2xlog|cosx — cotx| + c,

.  y=logx +c(logx)™1,

Iv.  xy?-2y5=c,

V. y(secx + tanx) = secx + tanx — xtanx,

vVi.  logix2+y®) +x=c,

Vil.  siny(1+4+x)=(1+x)%*-2(1+x)e*+e*+c,
1

VIII. cosecy = — +c.

SELF CHECK ANSWERS-4
i y=ce+ce?V3 +ce V3 i clem? + g e,
iii. y = (¢q + %) + c;e?*

SELF CHECK ANSWERS-5

X

X -

i. y=e3*(c, cosh\/fx+czsinh\/§x)+e?+el—4
4x

ii. y = cre? + ce3 + e?

. —ax emx

1. y =€ + ra 1 1

iv. Y = ¢1€083x + ¢,5in3x + Ecost + Esian

V. y = (c1 + cpx)e* + (¢35 + cyx)xe™ + %cosx

Vi. y =ce*+ (c; +czx)e™ + ﬁ E cos2x — sin2x

PR

vii.  y=ce? + e - % — Sl?:x

viil. y=(c;+cx)e™*+x—3

iX. y = cre? + ce”3 — ﬁ [36x2% + 84x + 26]

X. y = cie* + (¢ + c3x)cosx + (cy + csx)sinx +

(ce + cyx)cosx + (cg + cox)sinx + (c19 + cp1x +

V3 . 3
xzclz)cos7x + (c13 + Crax + x2cy5)sin P

. . 1 . .
Xi. ¥ =cicosx + cpsinx + - e*sinx
. _ _ 1
Xii. y=ce*+cyxe* +cze™* + e + Exzezx
_ 5
Xiii. y=c +ce™ — L xe 2x

Xiv. vy =(c; +cx)e** +4x%e?* +4x + 8
4
XV. vy =(c; +cx)e** + %ezx

. 1
Xvi.  y=ce*+ce* +Zxe”

SELF CHECK ANSWERS-6

MAT 504

]
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. y = cicoslogx + cysinlogx + logx
i. y = ¢ycoslogx + c,sinlogx +§

.  y=(c; +clogx)x? + ﬁ(logx)3
6

SELF CHECK ANSWERS-7

. x2 x3 x4
I y1(x)=7+c1; Yz(x)=?+xc1+cz;3’3(x)=:+

1
3XC1 +cx + 3

- 3 *
i. %:Zl(x)=%+x5+c1,y1(x)=f—2+§x6+c1x+cz
TERMINAL ANSWERS
N SO, SUTIE. SRV SOE. ST liir. ol
(TQ-l)yl—x,y2—2+5;Y3—2 zo+275+40

4

4
(TQ)y1=1+x%y, =1+x>+5,y; = 1+x2 + =+

%6
6
x4

3
(TQ-3)y; =2+ x + x2,y, =2+x+x2+%+?
3 4 5 6
V3= 2+x+xP T+
2 3
(TQ-Hy1=1+x+—, y,=1+x+x>+
3 4
ya=1l+x+x’+=+—
(TQ-5) y1 = 3(e* —1),y, =9(e* — 1) — 6x,
y; = —18x — 6x2% + 21e* — 21,
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UNIT-4: VARIATION OF PARAMETERS

CONTENT:
4.1  Introduction
4.2  Objectives
4.3  Wronskian of homogenous linear differential equation of
order n
4.4  Abel’s Formula
4.4.1 Observations (Using Abel’s Formula)
4.4.2 Results and Properties
4.5  Second Order Linear Differential Equation with Variable
Coefficients
4.5.1 Solution of Second Order Linear Differential Equation
with Variable Coefficients
4.5.1.1 Method I: Reduction of Order
4.5.1.2 Method II: Change of Independent
Variable
4.5.1.3 Method Ill: Change of Dependent Variable
or
Normal form or Removal of Second Term
45.1.4 Method IV: Variation of Parameter
4.6  Variation of Parameter for Linear Differential Equation of

any Order
4.7  Summary
4.8  Glossary

4.9  References

4.10 Suggested Reading
4.11  Terminal questions
4,12  Answers

4.1 INTRODUCTION:-

The course is devoted to the solution of the linear differential
equations of second order with variable coefficients. In this course,
learners also learn Wronskian, the existence and uniqueness of initial
value problem and their solution. The course matter has many applications
in several fields. This course develops the problem-solving skills of
learners.

4.2 OBJECTIVES:-

On completion of the course, learners will be able to-
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e ldentify the type of a given differential equation and select and
apply the appropriate analytical technique for finding the solution.

e Learners will be able to solve first order first degree differential
equations utilizing the standard techniques.

e Determine the complete solution of a differential equation with
constant coefficients.

e Solve linear differential equations of higher order with variable
coefficients.

e Understand method of successive approximations, the existence
and uniqueness of IVVPs and their solution.

4.3 WRONSKIAN OF HOMOGENOUS LINEAR
DIFFERENTIAL EQUATION OF ORDER n:-

Consider the homogenous linear differential equation of order n is of the
form

ko () 22 + &y () 2 + k(1) 2

dx™" dx™—2
0,x € [a, b]

_|_ wan _|_ kn—l[x]%—i_ k?! [:_-xj}:r =

o
Where k,(x) #0Vvx € [a,b] and kD(x],kl(xj,k:(xj,...,kn((:zj all are
continuous functions of x.
Let ¥y, ¥,. .... ¥, be any n solutions of the differential equation (1), then
Wronskian of the solutions vy, ¥, ..., ¥,, is defined as

y1(x) ¥, (x) ¥, (x)
}rlf[x:] }Tgf[x:] }J_n.-[x:]
Wx) = 5 : ’ i and is
y, (1) (xj 1 (=D (yg) e v, (m-1) )

called Wronskian of # solutions.

Remark: If y;,¥,.....¥, be any n solutions of nth order homogenous
linear differential equation then Wronskian of these solutions is always
continuous and differentiable function but higher order derivative of
Wronskian may or may not exists.

Particular Case:

Wronskian of Second Order Homogenous Linear Differential
Equation:

Consider the second order homogenous linear differential equation is of
the form

ko) 2 + ki (1) 2+ Ky (x)y = 0,x € [a,5] .. (1)
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Where ky(x) # 0 Vx € [a,b] and k,(x), k,(x),k,(x) all are continuous
functions of x.

Let v;,¥, be any two solutions of the differential equation (2), then
Wronskian of the solutions v, v, is defined as

yi(x) ¥ (x)
Wi(x) =

vy () ¥, (x)
= W(x) =y, (x).3, " (x) — y2(x). 3, " (x)

4.4 ABEL’S FORMULA:-

Consider the second order homogenous linear differential equation is of
the form

ko) 52 + ke (1) Z + Ky (x)y = 0,x € [a,B] (D)
Where ky(x) # 0 Vx € [a,b] and ky(x), k,(x),k,(x) all are continuous
functions of x.

Let ;. ¥, be any two solutions of the differential equation (1), then we
have

o () 22 + by (1) 22 + ke (x)y, = 0 .(2)

andky(x) 22 + ey (x) 222 4 ky (x)y, = 0 .3)

Multiply equation (2) by v, and equation (3) by ¥; and subtract we get
d’y d’y, dy,  dy,

ko () [}a e P l + ky (x) [}f: - —}ag] =

= ko(x) (W' (x)) + ky (x)(-W(x)) =0
= k()W () + ky(x)W(x) =0
Therefore W(x) is a solution of first order first degree linear differential

equation and is given by
k,(x)
W(x) = 4e” R

Where A be any arbitrary constant. The above formula is called Abel’s

Formula. In short, if ;. ¥, be any two solutions of the second order

homogenous linear differential equation
d? d
ku[xja}; + kg (%) é +ky(x)y = 0,x € [a,b]
Where ky(x) # 0 ¥x € [a,b] and ky(x),k,(x),k,(x) all are continuous
functions of x.

Then Wronskian of the solutions ¥y, v, is given by
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_ rk'l:x}dx
W(x) = de  kol®)

4.41 OBSERVATIONS (USING ABEL’S FORMULA):-

Let v;. v, be any two solutions of the second order homogenous linear
differential equation

d? d
ko) 5 + ks ()= + ks (x)y = 0,x € [a, ]
Where ky(x) # 0 Vvx € [a,b] and ky(x), Kk, (x),k,(x) all are continuous
functions of x.

Then Wronskian W (x) of the solutions v, ¥, is given by
LA
Wi(x) = Ae 'rkn'“"jdx

1. W (x) Wronskian of vy, v,, is either identically
zero or never zero. i.e. ifW (x,) = 0 for some x, € [a, b] then
W(x) =0 vx € [a, b]land if W(x,) = 0 for some x, € [a, b]
then W(x) # 0 vx € [a, b]

2. If W(x,)=0 for some =x,€][ab] then
Wi(x) = 0vx € [a,b]

3. If W(x,)<0 for some x,€][ab] then
Wi(x) <=0Vx € [a,b]

4, v, and v, are linearly dependent on [a, b] if and

only if W(x) Wronskian of w;,¥, is identically zero on
[a, b] i.e.W(x)=0Vx € [a,b]

5. v, and ¥, are linearly independent on [a, b] if and
only if W(x) Wronskian of w¥;,¥.is never zero on
[a,b] i.e.W(x)# 0Vx € [a,b]

6. v, and v, are linearly dependent on [a, b] if and
only if there exist x, € [a, b] such that W(x,) = 0
7. v, and ¥, are linearly independent on [a, b] if and

only if there exist x, € [a, b] such that W (x,) = 0
4.4.2 RESULTS AND PROPERTIES:-

Let ¥4, ¥, be any two solutions of the second order homogenous linear
differential equation

X

d-y dy
kD(x]d—dz + kl(x]£”+ k,(x)y=0,x € [a,b]
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Where ky(x) # 0 Vx € [a,b] and k,(x), k,(x),k,(x) all are continuous
functions of x.

Then Wronskian W (x) of the solutions v, ¥, is given by

yi(x) ¥ (x)

W(x) = =y, (). 3, " (x) — wy(x). ;" (x)

v (%) ¥ (x)
1. If 2, be a common zero of y; and ¥, then y,; and
v, are linearly dependent.
Proof: Since x, be common zero of v; and ¥, theny; (x,) = ¥, (x,) =0
yi(xp)  ¥2(xp) 0 0

So, W(x,) = =0

vi (%) 32 () ¥i (%) a2 (xg)

= y;andy, are linearly dependent.
Remark: If ¥; and v, are linearly independent then they never have
common zero.
1. If x; be common point of extrema of ¥; and ¥
then ¥; and ¥, are linearly dependent.
Proof: Since x, be common point of extrema of ¥, and
vy.theny, ' (x) = ¥, (xg) = 0

yi(xg)  ¥2(xp) Vi (%) ¥a(xp)

So, W(x,) =

}’1f(x|}:] }sz(xl}:] 0 0
= y;andy, are linearly dependent.
Remark: If v; and v, are linearly independent then they never have

common point of extrema.

1. If Xp be repeated zZero of
yyte.yy(xy) =y '(x,)=0then ¥, and ¥, are linearly
dependent.

Proof: Since x, be repeated zero of v;, theny, (x,) = ¥, (x,) = 0
yi(xp)  ¥a2(xp) 0 ¥a(xp)

So, W(x,) = = =0
¥y (xg) 2" (xg) 0 ¥,'(xg)

= y,andy; are linearly dependent.

Remark: If either ¥, or ¥, has repeated zero then ¥, and ¥, are linearly
dependent. So, therefore ¥; and v, are linearly independent, then neither
¥;hor ¥, have repeated zero.
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SOLVED EXAMPLES
EXAMPLEL1: Consider the differential equation

. .
:x—i—i-[sinx]:—i-l- 2y=0. Let y; and ¥, be two linear independent

solution on (—oo,00). If y,(0) =0, y,(0) = 1 then ¥, (0) may takes the
value —
o1
ii. 0
. w2
iv.  Allofthem
¥i ¥z
SOLUTION:W (y,,3,) = |, % .7
= LT

— r__ r
=¥V ¥

+ 17

Since ¥, and ¥, be two linear independent solution on (—oo, o).
Therefore W(yy,¥,) # 0V x € (—oo,00).

=y, ¥, — ¥,y # 0V x € (—oo,m)

Since y;(0) =0, v,(0) =1

= W(y,¥,)(0)#0

= ¥, (0)y,'(0) — ¥, (0)y,"(0) # 0

= —y, (0)#0

= y,'(0) may takes value 1 org

EXAMPLEZ2: Let ¥, and v, be two solutions of differential equation
1

2y4ly dy - - (0) = =t
(1—x ]E—Exa-l- (secx)y = 0y,(0) =1, y,'(0) =0, W(J 7
then ¥,'(0)is
.
ii.

A TR R N ey

\2
X

SOLUTION: Here, W(x) = ce /=% = gelosl1-=") =

Therefore, W(i) =

-
s

1__
L]
1 4
:w(_):_
2 3
1
SlnceW(;)—3
1 4¢
5 — = —
3 3
1
= =—
3
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1 1

41-0%) 4
Since W(Fl,yz){ﬂj = y,(0)y;'(0) — »,"(0)y,(0)

1 ¥
=:-E=1-}r2 (0)—0- y,(0)

Therefore W(0) =

, 1
=y, (0)= 1
EXAMPLES3: Let v, and ¥, be two linear independent solutions of

F.
:x“:+(s'1nx]}r=ﬂ where 0=<x=1. Let

g(x) =W (yy,y,)(x). Then
i. g'(x)=0vxe][0,1]
ii. g'(x)<o0ovxe[01]
iii. g vanishes at only one point of [0,1]
iv. g’ vanishes at all point of [0,1]

SOLUTION: Here, W(x) = ce Zdx = c

Therefore g(x) = ¢

= g'(x) =0V x€[01]

EXAMPLEA4: Consider the differential equation

&y _ 2x :—i + (sin x*)y = 0.Let®, ,@, be two solutions of the given

dx?
differential equation such that

@, (0)=1, @,(0)=1, 0,(0) =1, ©5(0) = 2.ThenW (x = 1) is
. 2

differential  equation

. e
ii.
ii.  2e
iv. 2e?
SOLUTION: Since, W(x) = ce
So, W(x) = ce_f%dx
= Wi(x) = ce*’
= w(o)=rc
Also, wW(0)=0,(0)-0,"(0)—0,(0)-0,(0)=2—-1=1
= =1
Therefore W(x) = e
Hence, W(x=1) =e

@q (X7
—=,
U
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EXAMPLES: Let ¥, and ¥, be two distinct solutions of equation
aD[xjg + al[x:]g—l- a,(x)y =0 and suppose that v,(x) # 0¥ x € .

Then prove that ;— is monotonic function.

SOLUTION: Since < (%) = 222 ez’  “owos vavs)
dx \¥g

}"51 }":;l.2
:}i(}’_l) _ Wiy,
dx 3 }’22

Since denominator is always positive. Now we have following
possibilities:
= If numerator is 0 = ;— is constant function.

z
e, W(y,y,) =0= ;’%is monotonic function.

z

d L "
=If numerator > 0 = — {i’—] is positive.

z
fe., W(y,y,)<0Vxel = ::’%is strictly  monotonic  increasing
z

function.
= If numerator < 0 = (2=} is negative.

]

i.e., W(y,y,)=>0Vxel= ::’%Strictly monotonic decreasing function.
z

Therefore, in all the cases ;’— iS monotonic function.

SELF CHECK QUESTIONS

(SCQ-1)Consider the functionsf(x) = x|xland g(x) = x* Then
i.  {f,g}is a linearly independent pair of functions on (—co,0)
ii.  {f.gl}is a linearly independent pair of functions on (0, 0)
iii.  {f.gl}is a linearly dependent pair of functions on R
iv.  {f,glisa linearly independent pair of functions on R
(SCQ-2)Consider the two functionsf(x) = x|x|sin xand g(x) = xsinx.
Then, {f. g} is
I.  Linearly independent on (—22,0)
I.  Linearly independent on (0,0)
lii.  Linearly dependent on R
Iv. Linearly independent on R
(SCQ-3)Consider f(x) = |x|e**and g(x) = xe®*. Then, the pair {f, g} is
i.  Linearly independent on R
ii.  Linearly dependent on (&, £) forsome 0 < £ < 1
iii.  Linearly independent on (0,00)
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iv.  Linearly independent on (—co,0)
(SCQ-4)Let ¥;(x) and ¥,(x)defined on [0,1] be twice continuously

d®y(x) + da;':} + y(x) = 0. Let W(x) be

dx®

differentiable functions satisfying
1

-
r

the Wronskian of ¥; and ¥, and satisfy W(
i. W(x)=0forx € [0,1]
ii. W) #oforx e [0,2]u[5,1]
iii. Wi(x) > Oforx [3 1]
[0

] = 0. Then

iv. Wix)<0forxe ﬂ,—]

(SCQ-B)Let 22— g(x)y = 0,0 <x < 0,5(0) = 1,2 (0) =1 where

z
g(x)a positive monotonically increasing continuous function is. Then
i. y(x) — ooasx — o
dy

ii. = — ooasxy — o0
dx

iii.  ¥(x)has finitely many zeros in [0, )
iv. All

(SCQ-6) Consider the differential equation
LY _ oy Z—Z + (sin x*)y = 0.Let®, ,@, be two solutions of the given

dx?
differential equation such that
@, (0)=1, 0,(0)=1, ¢,(0) =1, 8,(0) = 2.ThenW (x = 1) is
2e7t
i. 2e”?
i. 2e*
iii. 2e7*
iv. e
(SCQ-7) Let ¥, and ¥, be two solutions of differential equation

e g5 . 1 1
(1 —x‘]% — 2xj—i+ (secx)y = 0.y,(0) =1, y,"(0) =0, W(E] =3

then ¥,'(0)is
I.

Iv.

AN TN R N
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45 SECOND ORDERS LINEAR DIFFERENTIAL
EQUATION WITH VARIABLE COEFFICIENTS:-

An equation of the form ku[xjg + kltxj%+ k,(x)y = f(x) where
ko(x) #0...(1)

is called linear differential equation of second order with variable
coefficients.

The standard form of equation (1) is

2+ P@E + QY = R()

xz

NOTE:% + P(x) Z—i +Q(x)yv =0 be the corresponding homogenous

£2 4 P@E +Q)y = R().

4.5.1 SOLUTION OF SECOND ORDER LINEAR
DIFFERENTIAL EQUATION WITH VARIABLE
COEFFICIENTS:-

linear differential equation of

4.5.1.1 METHOD I: REDUCTION OF ORDER:-

Consider the linear differential equation of second order with variable
coefficients is

"2+ P()Z +Q(x)y = R(x) (D)
Let z(x) be the non-zero solution of corresponding homogenous equation
L+ P@Z+Q@y=0 @)

Let v = v(x) - z(x) be the general solution of (1). So from (1), we have

dzz_i_zdvdz_i_ d*v —|—F[j( dz+ dv)+ () (v2) = R
Vo3 Txde T dxl v tig Q(x)(vz) = R(x)

d2v+d”(zdz+p(j)+ P Z 4 ow:z) =k
=:-zdx2 ol )z |+ vl o x) - Q(x)z | = R(x)
=z :xz + :—: (Zj—i +P [x]z) = R(x)asz(x) be solution of equation (2).

Put% = t in above equation, we get

z% + t(E%-FP(x]z) = R(x)

Or,:—;+r(1ﬁ+fﬂ(x])=% ..(3)

which is linear differential equation of first order.
To solve equation (3) we get the value of t.
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Now put £ = == and integrating we find the value of v.
So the general solution of equation (1) is ¥ = v(x) - z(x).

Limitation: This method is applicable only when a non- zero solution
of corresponding homogenous equation is given.
EXAMPLE: Find the solution of the differential

equation:if + 16y = sec4x by using reduction of order method.
SOLUTION: Here the given differential equation is
:x‘: + 16y = secdx ...(2)

linear differential equation of second order with variable coefficients. Its
..
corresponding homogenous part is : = +16y = 0.

xz

So, the auxiliary equation is D* + 16 = 0
= D =44
Therefore, Complementary Function is y, = ¢,cos4x + c,sindx
Let us take one non-zero solution. (say z(x) = cos4x)
Therefore, by using method of reduction of order its general solution is of
the form
y=vz ...(2)

Now we have == + (ng + p) t=2

dx E F4
In the given differential equation Q) we have
P(x)=0, Q(x) =16, R(x) = secdx

-
&

Therefore t' + ( = p}t = 2

=

dt . (—Bsindlx 4 l]) secdx
—_— — —_— =

dx cosdx cosdx

dt 8sindx secdx
= — — t=

dx cosdx cosdx
— £ _ Standx t = sec?4x ...(3)

dx

. . . _ s s —elogsecax .

Now, integrating factor is e ™/ ®**™**dx = e s = cos“4x

Therefore, solution is:
t-costdx = fsec: 4x - costdx - dx + €y
=t costdx =x+c,
=t = (x+ ¢, )sec’4x ..(4)
Since, & =1¢
dx

v 5
== (x + ¢, )sec”4x
= v = f[x + ¢,)sec?4xdx + c,
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= = j xsectdx + clfseczdtx dx + ¢,

tandx tandx tandx
= v =X —

+c
4 4 14
tandx + 1 1 4 +
— 10T COSTX L
4 16 8 2

Therefore, the general solution of equation (1) isy = vz

+

= v =(x+c)

tandx 1
=y =|(x+¢) 2 + Elog cosdx + ¢, | cosdx

sindx 1
2 + Ecﬂs-ﬂrx *log cos4x + ¢, - cos4x

+ ¢, cos4x] + [x

=y =(x+¢)

sindx

[ 3in4-x+ 1 P 4]
= Vv =|c —cosdx - logcosdx
¥ 1 P 16 g

4.5.1.2 METHOD II: CHANGE OF INDEPENDENT VARIABLE:-

Consider the linear differential equation of second order with variable
coefficients is

23+ P2 + @)y = R(x) ()

We want to change the independent variable by some transformation
z=f(x)

dy _ dy d=
SO’ dx dz dx

andy = £ (2) = £ (2. 22)

dxz_a dax E dz dx
dz}r_ d(d}r dz)
T dx? dx\dz dx

_ &y _dzdy ﬁi(d_}’)
dx? dx?dz dxdx\dz
Oy _dedy & d (e
dx? dx?dz dxdz\d:z
&y _dizdy (Ef@
dx? dx?dz \dx/ dz?
So from equation (1)

(:TE%JF (%)2 g) +P(x) (g %) +Q(x)y = R(x)

dx

2

dz 2 dZz dz" d
~ (@) & (o 52 e -r
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d:
—
dz

b

diz dz
= TP d_y+q(xj R(x)

Z ~2¥ T N
(55 B A ) B )

Ba

We choose z so that Qﬂg‘i = constant = z = f(x)

o _ o SR E
Limitation: This method is applicable if W is constant.
EXAMPLEL: Solve the differential equation
cosx Zx": +simc% — 2cos?xy = 2cos®x by using method of change of

independent variable.
SOLUTION: Here the given differential equation is

dz}r dy

3 =

cosx —— + sinx — — 2cos°xy = 2cos5°x
dx* dx
d*y dy 2 4

Or, oz T tanx——— 2cosxy = 2c0s"x ...(2)
e o

linear differential equation of second order with variable coefficients.
Compare equation (1) with 24 P(x) j—; + Q(x)v = R(x), we get

dx?
P(x) = tanx, Q(x) = —2cos’x, R(x) = 2cos*x

By using method of change of independent variable, equation (1) reduces
to

d%z dz

dy =P | gy Q R
z+ Lu-zzu“ _+|12'5}F: u-zg. (2)
= = 1= & &)
Where z is given by {i}z = constant
—2cos’x
———— = —2 (say)

(%)
dx

dzy? .
= |—) =cos°x

dx
= z = sinx
d¥z _ds
. TP —ginx4tanx-
In this case,““{;};u - stm:m:;:;cm — 0(constant)
|

Therefore, from equation (2)

Ty r 2
Zﬁ+ﬂ-i—i—2y=2cos‘x ...(3)
=222y =201-2?) (4)
The corresponding auxiliary equation is D* — 2 = 0

— D =+V2
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Therefore, complementary function is v, = c,e¥% + c,e ™%

1
(p2-2) (2- 222}

Now, the particular integral is ¥, =

=y, = 2 e’ — 2 z2
P (p*-2) (D?—2)

2

=y, =—-1+ 4

(-5
= ¥Vp = —1+(1+D?2+"-)z2

=y, =-1+z"+1

= Vp = z2

Therefore, general solution is y =y, + ¥,

=y = cle""rzz + cze_""rzz + z2

=y = Cle'\.'FEBinx + EZE—V’EB'LH:: + Sinzx

EXAMPLE2: The general solution of differential equation

a2y 2x dy 4 .
2 T 7. =z ¥ T 0is-
dx 14x? dx (14x%)

i.  y=cycos(2tan"t x) + ¢,sin (2cot™ x)
ii. ¥ =¢,cos(2tan"'x) + ¢,sin (2tan™ ' x)
iii. ¥ =c,cos(2cot™ x) + ¢,s5in (2cot™ x)
iv.  All of the above
SOLUTION: Here the given differential equation is

a2y 2x dy 4
z T g mz Y 0 (l)
dx 14x? dx (14x2)

]

=2+ P(0)Z +Q(x)y = R(x), we get

x

Compare equation (1) with
2x

P(x) =1+ Q(x) T ar o

Therefore, by using method of change of independent variable equation

(1) reduces to

R(x)=0

diz d=
d’y |z tPa|dy, @ R

= z . + = z }F = 2
S O I S G I
Where z is given byiz = constant

(&)

4
:’{szﬁ(d_z)

dx

7 = 4 (say)

- (&) - (=)
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dz 1
s — =
dx 1+ x?
— z =tan lx
d®z _dz - ¥
—=+tP— It
Now, dxl, & = r'“xzjiz“;_” L = 0(constant)
(&) &
..
Therefore Zz‘: +4y =0
The corresponding auxiliary equation is D* + 4 = 0
— D? =—4
= D = +2i

Therefore, general solution is y = ¢,co0s2z + ¢,sin2z
= y =c, cos(2tan" x) + ¢, sin(2tan"? x)
T
= V=0 cos(2tan" 1 x) + £, 5in (2 (E —cot™? x])
= y =c¢, cos(2tan"' x) + ¢, sin(m — 2 cot ™ x)
= y =c, cos(2tan" x) + ¢, sin (Zcot 1 x)
Similarly,y = ¢,cos (2 (25 —cot™?t x)) + ¢,sin (2cot ™ x)
= y = ¢ycos(m — 2 cot ' x) + ¢,sin (2cot™ x)
= y = ¢ycos (2cot™' x) + ¢,sin (2cot™ x)

EXAMPLES3: The particular integral of x i% — :—i + 4x3y =x° is-

(=]

M|H¢_|HH¥IE<N|5-]

v.
SOLUTION: Here the given differential equation is

d*y dy
xﬁ—£+ 4x3y = x°
Z ..
Or,rj }—§+4x2}r=x4

dx?
1)
Compare equation (1) with

]

=2+ P(0)Z +Q(x)y = R(x), we get

x

P(x) = —%, Q(x) = 4x2, R(x)=x*

Therefore, by using method of change of independent variable equation
(1) reduces to
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@’y %"P% ri.!r' y=_F 2)
[%5 {mJ &)
Where z | = constant
[Q
2
=== 4 (say)
(%)
dz
= a =X
# o
Now, & lop

T gy 171
dzy 2 2
(&
Therefore, from equation (2), we have
dy
dzz
Hence the particular integral is y, =

1+_]

=V, = 4x

45.1.3 METHOD I1l: CHANGE OF DEPENDENT VARIABLE
OR NORMAL FORM OR REMOVAL OF SECOND TERM:-

+ 4y = x°

2
S
D44

Consider the linear differential equation of second order with variable
coefficients is

)= +Q(x)y = R(x) ()
Let v = v - z be the general solution of (1). So from (1)

d’z dvdz dw dz  dv
(d—+zaa+zd—)+P{xj(va+za)+@(x](192] R()

+2(2Z 1 p()z)+ 1:1( S+ PEE+0@z) =R(@)...)

We choose z so that coefficient of = d— is zero.
b

e
dx®

== =

- 2% 4 p()z=0
i.e., T x)z=

PG,

i 2
Plx]
——dx
— T =g I =z

Therefore from (2)
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d? d?z

Z£+v(d 2+P{x}—+@(x]z)=R{x]

:*@H L PWE+ Q)2 _R(®
dx? z z

which is the required normal form.

Since &= = — 2,
dx 2

d’z 1(P{]dz+ d.P)

de? 2\ ax T

d*z 1 P(x) dP
:?E ——( (x] ( 2 Z)"‘ZE)

dzz 1 2 Eip
ST (5 =+
SO ((P{x]) —EE z+P(—i—z)+Q-z v=§

dzv 1 2 1dP 1 2 R
=gt (@) -3 3 P@) o) =

d*v 1dP 1 2 R
=gt (035 3@ )v =7
Limitation: This method is applicable if @ —%j—g——(P{xj) is either
constant o
equation is x E+@{x]y=R{x],then general solution is
y=v-z

Where z= e'f%d” and ¥ is given by solving the differential equation

(-2 -2(P@))v =

EXAMPLE Solve the differential equation
a = d"'" Y+ (x*— 8)y = x"e /3 by using normal form.
SOLUTION Here the given d|fferent|al equation is

g d""++Z:ac —B]y—x e/ Q)

+ Q(x)y = R(x), we get

P(x) = 2x, Q(x) =x%*-—8, R{x] = x2e “ /2

@ (P'e) _
4

Therefore, by usmg normal form, let ¥ = v -z be the general solution of

(1).

Therefore, @ — ?—8—1—x*= —9 (constant)
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. _[E
Where z is given byz = e~ /z%*
sz = g Jxdx
— zll'
—z=eg ‘I

Alsor is given by solving the differential equation

dtz . .de .
v 2P bztelxlz) _ Rix)
dx* E =

d2v 9 .
= —— 9 =x°

dx;
The corresponding auxiliary equation is D“—9 =10
=D =43
Therefore auxiliary equation is v, = c;e® + c,e™*

. . . _ 1 2
Now, particular integral is v, = i
1 3

= v, = —————x°

T oo(1-%)

1(1+D )

9

-1 +2)

= v, = x4+ =
9 9

x2 2

_ _ 3x —3x _ £ _ =
Therefore, v = v, + v, = c,e™ +ce el

z -~ R F i
Hence the general solution is y = (clea"" + e - — i) e iz

45.14 METHOD 1IVv: METHOD OF VARIATION OF
PARAMETER:-

Consider the linear differential equation of second order with variable
coefficients is

)2 +Q(x)y = R(x) (1)
Let the solution of corresponding homogenous differential equation be
Yo = €1u(x) + €3v(x)
Let the particular integral of equation (1) be
¥, = A(x)ulx) + B(x)v(x) .-(2)

Nowdiﬁ A +—u+5‘ +—v
We choose A and B so that—u —|— z:: =0 ...(3)
Therefore —f— =¥+ Ey
dx ri.x
£l z k]
AISO g® _:,,; Ed: db dv ri_:
dx dx de
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Since y,, is always a solution of (1). So, from equation (1) we have

d?y, dy,
dxf+P{x}§+P{x]}rp=R{x}
dAdu+;e1d2u+dﬁ':hj+95='d2v+P(,a1cm+95='dv)+ (Au+ Bv) =R
T dxdr  Cdz? drdx | dz? dx | Bgy) TQMAuT BY) =
d u du dtw du dddu , dB dv __
::-ﬁl(dxz+PE+@u)+B(§+P;+@vj+gg+aa—ﬂ.(4)

Since u and v are solutions of corresponding homogeneous differential
equation.

diu du _ d%w du .
Therefore, M—E+P3+Qu =0 andﬁ"'PE"' Qu=20

So, from equation (4), we get
d4 du dB dv
EE dx dx - (5)

Solving (3) and (5),
dA dB

Eu-'-a‘l?:ﬂ
dﬁldu_l_dﬁ‘dv_
dxdx dxdx
dAd/dx dB/dx -1
= ‘L‘JR = —‘I.LR = dv dau
U— — —V
dx dx
Therefore:—“lz R ,:—Bz—a-—a-—lf‘g —
TounTa Y YmmY
— _ [R — [uR
Therefore A = — [ ~dx, B = [~ dx
il e
Where W = =& %,

dx dx
duf(dx dvf{dx
Put 4, B in equation (2)

R uR
=y, = —J-de ~u(x) +J-de - v(x)
Then the general solution of equation (1) is ¥y = v, + ¥,
vR uR
=y = cqulx) + c,v(x) = —J- ﬁdx ~u(x) + J- Fdx - v(x)

Limitation: This method is applicable if ¥, is known.
EXAMPLEL1: Solve by method by variation of parameters

dg‘y
— +n’y = secnx

dx?
SOLUTION: Here the given differential equation is
$+n2}r=sem ...(2)

Its complementary function isy, = ¢ cosnx + ¢, sinnx
Let y, = Acosnx + Bsinnx be particular solution of equation (1).
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dy; dd dB . .
Therefore, —E: = ——cosnx + —, Sinnx — ndsinnx + nBcosnx
k4 k4 &4

We choose 4 and E such that

da dB . _

—, cosnx + —— sinnx = ...(2)
d

= f = —ndsinnx + nBcosnx
d*y, dA dB

_ . 2 2
= = —pn—sinnx + n—cosnx — n° dcosnx — n*Bsinnx
el dx dx

Substituting these values in (1), we get
dA dB

—n—=sinnx +n—cosnxy — nAdcosnx — n“Bsinnx + n°“Acosnx

dx dx

4+ n“FBrosnx = secnx

dd . dB 1
= ——sinnx + — cosnx = —secnx ...(3)
dx dx n

Solving these two equations (2) and (3), we have
dB 1 dA 1

— ==and —= —tannx

dx n dx mn

—F=>and4 = %iogcam
mn k)
Therefore, ¥, = ;—z cosnxlogcosnx + Esinnx

Hence general solution is y =y, + ¥,

x
¥ = cycosnx + ¢y sinnx + — cosnxlogcosnx + — sinnx
T n

EXAMPLE2: SolveL, = xe*logx, x> 0. Given that xe”®, e*are
solutions of L, = 0.

SOLUTION: Since xe®, eare solutions of L, =0. Therefore
complementary function of given differential equation is

¥, = cyxe” + ¢ e

Here u(x) = xe®, v(x) = &*

Let y, =A(x)u(x)+ B(x)v(x) be particular integral of given
differential equation, where A and B be functions of x given by
A4=— _f%dx, B = ft:—jdx and W is Wronskian of xe* and ¥ is given

by

_ ‘ xe® e
xe® +e¥ e~
= W = xe™ — xe¥ — %
=W =—e*

Therefore A = — f% dx

e*.xe*. logx
= A=—| ————dx
—e X
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=:-ﬁ1=jx-logx-dx

x? 1 x?
= A=logx—— | - —dx
2 x 2
P *
= A =—logx ——
2 99T
— [uE
AIso,B—de,x

x.e* -xe¥-logx
=B =- > dx
EJ(:

=:-B=—jx2-logx-dx

x? 1 x3
logx-—— | ——dx
3 x 3

B ogx s
=B =——Ilogx+—
3 29Ty

=B =—

Therefore, general solution isy = y, +,

=y =cyxe +ce¥ + ilﬂ x—i xe® + x—aia x—x—a e*
y 1 2 5 o P 3 g 9

EXAMPLES: Solve ::“: + 4y = tan2x by using variation of parameter
method.
SOLUTION: Here the given differential equation is

:x": + 4y = tanZx ...(1)

]

=2+ P(0)Z +Q(x)y = R(x), we get

x

Compare equation (1) with
P=0,0Q=4R =tan2x

d"“y
X +4y=0

The corresponding homogenous part of equation (1) is -

So, auxiliary equation is D* + 4 = 0
= D? = 4i?
= D =42i
Therefore complementary function isy, = ¢,c052x + c,5in2x
Here, u(x) = cos2x,v(x) = sin2x
du

25in2 v 2cos2
= — = —2sin2x,— = 2cos2x
dx

dx

Therefore W = ‘ COS2X sin2x

—25in2x 2cos2x
gsinlx.tanlx

Now, 4 = — [——

—1 [1—cos’2x
= 4d=—] —
2 COS2X

| =2
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-1
= A= — j (sec2x — cos2x)dx

-1 1
= A= —2 log(sec2x + tan2x) + Zsmzx
And, B(.‘}Cj — J.-coﬂ.xr.‘rr:?ﬂ.x dx

—cos52x
4

= B(x) =

Therefore,

v, = [_—1 log(sec2x + tan2x) + isian] cos2x + (

Hence the general solution of equation (1) is ¥ =y, + ¥,

—coslx

} sinx

—C052x

1
=y =c,c052x + ¢, sinx + [—4 log(sec2x + tan2x) + ;sian cos2x + ( )sian

4.6VARIATION OF PARAMETER FOR LINEAR
DIFFERENTIAL EQUATION OF ANY ORDER:-

Consider L, = R(x) be a linear differential equation of order n.

Let v, =cyvy + ¥, +-+c,v, be complementary function of the

given differential equation which is given. Then its particular integral is
defined as

n wy, (x)
¥p = k=1..r — R(x)dx.

w(x)

Where W{x) is the Wronskian of ¥, ¥5, s ¥

¥1(x) ¥a(x) S 1 €
W@ W@ 3

i.e., Wix) = : : : :
D) D) e e ey (D ()

and w, (x)where k = 1, 2, ..., nis the determinant given by replacing the k-
-':I-
0
0
the column of W(x) by] -
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4.7 SUMMARY:-

In this unit we have studied the wronskian of homogeneous linear
differential equation of order N, Abel’s Formula, second order differential
equation with variable coefficients, variation of parameter for linear
differential equation of any order.

4.8 GLOSSARY :-

e Observation(Abel Formula)
e Normal form

4.9 REFERENCES:-

e H.S.Bear (2013) Differential Equations: A Consice Course.
e Micheal E. Taylor (2021) Introduction to Differential Equations:
Second Edition.

4.10 SUGGESTED READING:-

e Bernd S.W. Schroder (2009) A workbook for differential
equations.

e Michael E. Taylor (2021) Introduction to Differential equations:
Second Addition

e A K.Sharma (2010)Text of Differential Equations.

4.11 TERMINAL QUESTIONS:-
(TQ-1)Solve the following equations by the method of variation of

parameter:
. dtar
I d—::-l-}’ = cosecx
22
.. dtar dv
. 2224y =2xe"
dx* dx -
dtar dv -
i, 242 14y =6xe™
dx* dx -
. g% g x
V. —S-27+y=—, x>0

r:.!:}' r:.!}' — 2
V. — —4— 4 4y = 15/xe*
dx® dx + - v

4.12 ANSWERS:-
SELF CHECJK ANSWERS

(SCQ-1)- iii,(SCQ-2)-iii, (SCQ-3)-i, (SCQ-4)-i, (SCQ-5)-iv
(SCQ-6)-iv, (SCQ-7)-iv

TERMINAL ANSWERS (TQ’S)
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i v = A cosx + Bsinx — xcosx — sinxIn|sinx]|

Ae* + Bxe* + ixaex

i y =
iii v =Ae*™ + Bxe™ +x3

iv v = Ae* + xe*(B + Inx)

v v =Ae*® + Bxe™ + 4&2"‘%

&
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UNIT 5:- ORDINARY, REGULAR AND
SINGULAR POINTS

CONTENTS:-

5.1 Introduction

5.2 Objectives

5.3 Ordinary Points

5.4 Regular Singular Points

5.5 Autonomous System

5.6 Critical Point

5.7 Physical Significance of Stability

5.8 Definitions

5.9 Geometrical Interpretation of Stability
5.10 Stability for Linear System with Constant Coefficients
5.11 Linear Plane Autonomous System
5.12 Perturbed System

5.13 Method of Lypunov for Non-Linear Systems
5.14 Discussion

5.15 Limit Cycle

5.16 Exercise

5.17 Objective Questions

5.18 Self Check Questions

5.19 Summary

5.20 Glossary

5.21 References

5.22 Suggested Reading

5.23 Terminal Questions

5.24  Answers

5.1 INTRODUCTION:-

In this unit we study of differential equations, the concepts of
ordinary points, singular points, and regular singular points play a
significant role. These terms are used to classify points in the domain of a
differential equation based on their behavior and properties.

5.2 OBJECTIVES:-

After studying this unit you will be able to understanding the
nature of ordinary points, singular points, and regular singular points helps
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mathematicians and scientists analyze and solve differential equations in
different contexts. By classifying points in the domain based on their
behavior, it becomes possible to develop appropriate methods and
techniques for finding solutions and studying the properties of these
equations.

5.3 ORDINARY POINTS:-

Since the process for non-homogeneous equations is so similar, we only
take into account homogeneous equations. We focus on the second-order
linear example to keep things simple. The aim is to solve them locally

around X = X,

Definition: Consider the homogeneous second order linear ordinary
differential equation (ODE)

P(X)y +Q(X)y +R(x)y=0.

If around x =X, the function Q(x)/P(x) and R(x)/P(x) are analytic,
then X, is an ordinary point. Otherwise it is called a singular point. At an
ordinary point, we can rewrite the ODE as

Y+ p()y +q(¥y =0, p(x) =%,q(x) =%.

To find a series solution, it suffices to plug the general form

(z a,(x— xo)“] into the ODE and solve for the coefficients{a,}. These
n=0

coefficients will satisfy some recurrence relation, which relate a, to a,

for m<n.
Example: Consider the first-order ODE
y —y=0

We already know the solution y=ce” to this, but instead let’s find a
series solution around x =0. By uniqueness, the series we get must be
equal to y =ce* around x =0, for some c¢. We have
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S n-1 S n _

n n — V.
E a_nx E ax' =0
n=0 n=0

Hence the coefficient of x"is zero, for each n. Rewrite the first sum so
that we can more easily extract this coefficient

> a,(n+D)x"-> ax"=0
n=0 n=0

It follows that

a,,(n+Y)-a, =0, n=012,..

This is a recurrence relation for the coefficient {a,}. For example, the first
few coefficient are
a, &, a, @,

1 Y 2 a3 3w

In general, we can use the recurrence relation to write all the coefficient in
terms of a,

_ 8

ak—kl

There are no constraints on what a, is; it plays the role of the constant c.
The series solution is

— © aO n __ X
y= ano Fx =a,e”", as expected.

There is a deep relationship between ODEs and recurrence relations. A
second order constant coefficient ODE will produce a recurrence

involving a,,, (coming from y') and a,,, (coming from y) and a,

(from y). In general, an n-th order constant coefficient ODE produces an
n-th order recurrence. Then we are free to choose the first n coefficients

ay,d,,a,,..,a,; these act as initial conditions and are analogous to the

constants forming the general solution. An easy way to get the i-th
solution in a fundamental system of solutions is to set a, =1 and all other

a =0.
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5.4 REGULAR SINGULAR PONTS

Series solutions that revolve around regular points perform better than
those that revolve around irregular points. Series solutions might not exist
at the singular points of ODEs because such points may have non-analytic
solutions. This might happen with very harmless ODEs. However, we may
still apply the series techniques from the preceding section, appropriately
modified, to a class of mild singularities.

Definition:  Suppose the ODE P(x)y +Q(x)y +R(X)y=0 has a
singular point X = x,. This means that Q(x)/P(x) and R(x)/P(x) are not
analytic at x = x,. However if both

i Q) oy im Ry y2
im0 (XM 2 - %) ()

exist, then we say X =X, is a regular singular point and we can still find
series solutions. Otherwise it is an irregular singular point.

Equation (1) means that the function Q(x)/P(x) has a pole of order at
most one at X =X,, and R(x)/P(x) has pole of order at most two. For

e.g., a rational function having a pole of order at most n at X = X, means it
is of the form

9(x)
(X - Xo)n

For some function g(x) which is well-defined, i.e., has no pole at X = X,.
(Equivalently, it means that in a series expansion around X = X,, we must

include terms of negative order up to (x =x,)™".)
Example 1: Find the regular-singular points of the differential equation
(1-x*)y —2xy +a(a+1)y =0, where « is a real constant.

Solution: Since,

(x=DQ(x)  2x (x=1)?R(x) ~ (x=D[a(a+1)]
PxX) 1+x'  P(X) 14 x '
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Furthermore, the following limits are finite,

jim DR _y oy =DRE) _ g

x—1 P(X) x—1 P ( X)

We conclude that x, =1 is a regular singular point.

5.5 AUTONOMOUS SYSTEMS:-

If F (t, X) is a continuous function, satisfying Lipschitz condition in some
domain D of (n+1)-dimensional (t,X) space ,then the initial value problem,

S=F (tX)  with X(to)=Xo

has a unique solution in D. This unique solution depends continuously on
the initial values to and Xo. It means, if we perturb the initial value Xo by
an infinitesimal amount or by a small amount, the solution X(t) is
changed also by a small amount in a very small interval about to. Here a
question arises-

“whether a small change in the initial data leads to a small change in
the solution for large values of t.”?

Study of solution of above problem is known as ‘stability theory’. This
theory has been applied successfully in various areas and ‘automatic
controls’, is one of them. Historically, stability theory is related to non-
linear differential equations. To get exact (or explicit) solution of such
differential equations is very difficult. So we focus on qualitative behavior
of solutions, without actually solving the equations.
In this chapter, we shall study only time independent systems. So their
general form will be

X = FXX) ..(L.1)
Here dot(.) represents differentiation with respect to time. Such a system
defines a time independent vector field in a region of n- space. A good
example of it, is steady fluid flow in three dimensional space. Here F(X)
represents the velocity of the fluid at the point X. The solution X (t,c)
describes a streamline of a moving fluid particle.
We shall focus on a special case viz. where F vanishes at some value c. In
such situation, the function X(t)=c is the solution of equation (1.1) and the
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streamline becomes a point at ¢ where the velocity F vanishes. This point
is called stagnation point.

5.6 CRITICAL POINT:-

A point ¢ in x™, at which F(c)=0 is called an equilibrium point or
critical point of an autonomous system X =F(X).

Let us restrict ourselves to the two dimensional system
dx dy
—=f(xy) & ===g(xy) --(1.2)

We observe that every solution x=x(t) , y=y(t) of the system (1.2) defines
a curve in the x-y plane. This curve is called orbit or trajectory of the
system and the x-y plane is called phase plane of the system. We shall
define stability of the equilibrium point after this mathematical
discussion—>

Let us consider the motion of a simple pendulum consisting of a
concentrated mass m, suspended by a weightless rod of length I. Let s be
the arc length subtended by angle 6. Then
S=1g

mg sin B mg cos B

mg

Fig.1

The tangential component of the gravitation force is (-mgsing).So by

Newton’s second law of motion, the equation of motion is
m(d?s/dt?) =-mgsiné
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= (d218) /dt?) = -gsiné
= (d%g/dt?) = - %sinﬂ
Let g/l=k.
So, (d%8 /dt?) + ksiné =0. ...(1.3)
From the knowledge of mechanics, we know that © =8
> @ =f
So, we have @ + ksinéd = 0.
Hence, we have an autonomous system
f=w,
w= -ksing.
Since dw/dt =(dw/d8)(d8/dt) = o(dw/df).
So, the above equation becomes
o(dw/d8)+ ksiné = 0.
odw +ksinfdf =0.
On integration ,we get
©? = 2kcosé + h ..(1.4)
Maximum value of RHS is h+ 2K, which must always be non negative as
0?=0.
So, h= -2k.
These curves on phase plane are shown as below:

From the figure, it is evident that there are infinite many critical points at
®=0 and f=nr;n=0,1%1,12,....

Fig.2
The pendulum will be in stable equilibrium if n is even. It means, in such
cases, the pendulum will be in a vertically downward position.Pendulum
will be in unstable equilibrium when n is odd (i.e. when the pendulum is
in a vertically upward position) From equation (1.4) we observe that for |h|
< 2k ; curves are closed, surrounding the points ©=0 and & =2nm. For h>
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2k, curves are open curve (figure 2). when h=2k, curves have transition
i.e. when w? = 4kcos?(8/2).

5.7 PHYSICAL SIGNIFICANCE OF STABILITY:-

If ®®> < 4kcos?(8/2), The pendulum oscillates about its equilibrium
position (& =2nm).If the initial velocity is such that w? > 4kcos?(6/2), then

the pendulum always turns in the same direction, about the point of
suspension. After the study of this discussion, we are in a situation to
define stability in a formal way ->

5.8 DEFINITONS:-

Definitions: Let ¢ be a critical point for the system X =F(X).

The point ¢, is said to be >
(i) stable : If for given € == 0 ,there exists a & = 0 such that whenever

|| X(0) —c|| <& ; ||X(t) —c||<E, ¥t =0;
(if) Asymptotically stable, if there exist a & = 0 such that whenever
1 X(0) —cl| <&, lim, . [1X(£) — c || =0:
(ii)Strictly stable, if it is stable and asymptotically stable,
(iv) unstable, if it is NOT stable.

5.9 GEOMETRICAL INTERPRETATION OF
STABILITY:-

Let us discuss the geometric meaning of stability. Let Rs be a spherical
region of radius 6 and Re¢ be a spherical region of radius €.
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The equilibrium point ¢ will be called stable if each trajectory in Rs, at
time t = 0, remains inside Rc for all t > 0. The equilibrium point c is
asymptotically stable if every trajectory which is sufficiently near c at
t = 0 approaches ¢ as t—>oo. The equilibrium point ¢ is unstable if every
trajectory in Rs at t=0, escapes from the region Re. It should be noted that
asymptotic stability does NOT imply strict stability. Actually we can
construct an asymptotically stable autonomous system which is unstable.

5.10 STABILITY FOR LINEAR SYSTEM WITH
CONSTANT COEFFICIENTS:-

Let us consider a linear autonomous system with Constant Coefficients

X =AX . (2.0)
Here A is a nonsingular real n X nn matrix. Also we suppose that origin is a
Critical point for this system.

Theorem 1: Suppose X =AX is a linear autonomous system with 7 X n

real non-singular constant coefficient matrix A. Also we suppose critical
points at the origin of R". Then the critical point is >

(i) Strictly stable, if real parts of Eigen values of A are negative.

(i)Stable if A has at least one pair of purely imaginary eigenvalues of
multiplicity one;

(iii) Unstable otherwise.

Proof:

As we know, fundamental solutions of linear systems can be expressed in
terms of the eigenvalues. Also fundamental solutions are of the form Pt
e cosft , Qte™sinfBt. Here P and & Q are constant vectors while & , 8

are real and imaginary parts of eigenvalues of A respectively. Also K is a
non-negative integer, which depends on the multiplicity of the
eigenvalues.
(i) As the origin is the critical point, so we have

| Ptke**cosft | < |P|tke™*
Since Kk is finite while e is negative and P depends on the initial condition
in such a way that |P| < §. So we have | Pte**cosft | < € whenever |P| < &

In a similar manner, we can prove that
| Qtke**sinfit | < e whenever |Q |<3.

This proves the stability.
Now, for the asymptotic stability, We observe that if , & <O0.

lim, . | Ptke®cosfit | =0, by L’ hospital rule.
Similarly, lim, _, _ | Qtke*sinft |=0
Hence, the origin is strictly stable, provided e <O0.
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(i1) Suppose eigenbalues of A be *if. it means a = 0. So, fundamental
solution will be Pcosft and Qsinfit. Whenever |P| < & and |Q| < & ,we
observe that |Pcosfft| < & and |Qsinfit| < 4.

Here, one thing is interesting. Since cosft and sinfSit do not tend to zero
as t-> o.So0, the origin is stable, but not asymptotically. Other pairs of

pure imaginary eigenvalues of multiplicity one can be treated in a similar
way.

(iii) If @ = 0, then both |Pt‘e®*cosBt| and |QtXe**sinSt| are unbounded.
Which means origin is unstable.

EXAMPLE: Discuss the stability of damped harmonic motion given by
X+ 2k +2x=0.

Solution: Let us take x =y

So, given equation becomes y +2y +2x = 0.

Orx=y & v=-2y-2X ...(2.2)
The characteristic equation is given by

—K 1 -0

-2 —2—-KI"

Or k*+2k+2=0
Or (k+1)?+1=0
= k=-1+i
According to above theorem, the origin is strictly stable.
The solution of equation (2.2) is:
X = e *(acost + bsint),
X +Yy = e *(—asint + bcost).
The trajectories associated with equation (2.2) can be obtained by
introducing polar coordinates.
So, the system (2.2) takes the form
X = rcosf = ce'cos(t-a) , c=(a®+b?)?
X +y = rsind = celsin(t-a) ; & = tan(b/a)
by eliminating ‘t” we get
r = ce B+a

This describes a family of spirals.

5.11 LINEAR PLANE AUTONOMOUS SYSTEM:-

In this section, we shall discuss the linear autonomous system

X = AX (3.2
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where A= [':' ;

equation for the system is
|A—kI|=0
a—k b
= ‘ € d— k‘ =0
k2—(a+d)k+(ad—bc)=0 ...(3.2)
Suppose we introduce p = a+d,
g=ad-—hc
The equation (3.2) becomes k? — pk + ¢ = 0. If k; and k are roots of above
equation, then,
ki=3 [p+ +/p?— 4qlandk.= [p — /p?— 44] ... (33)
Obviously, stability of this linear system of equations depends upon the
discriminant A= p* —4gq >
(1) If A=0and g = 0, then ki and k. have same sign and both are
+ve or —ve according as p>0 or p< 0. If A >0and <0, then k1, k>
have different signs.
(2) If A =0, then kiand k> are equal and positive or negative according
as p>0 or p<0.
(3) If A <0, then k1 and k> are complex numbers where the real part
is +ve ,zero or —ve according as p>0, p=0, p<O0.
If we discuss these situations with the help of theorem (2.1), we
conclude that origin for the system is—>
(1) Strictly stable ,if
A=0,g=0andp < 0,
A=0, p<0,
A<0, p<0,
(2) Stable if
A< 0,p=10,
(3) Unstable if
A=0,g<0andp =0,
A=0, p=>0,
A<0, p=>0,
To discuss the behavior of the trajectories near a critical point, we apply a
linear transformation
Y = BX with |B|# 0 ...(34)
We choose this transformation in such a way that the essential behavior
near the critical point remains unchanged.

(1)Real and distinct root:
If we apply the transformation with B given by
B :(c k1-— cx}
c k2—al’
The system (3.1) transforms into the system

] IS a non-singular constant matrix. The characteristic
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i=kix, y=kay ..(3.5)

Where (for simplicity) x and y are used again as the new coordinates.
The new solutions are

X(t) = Cre®t, y(t) = coe*¥ : ...(3.6)

where ¢; and c» are arbitrary real constants.

If we eliminate ‘t’ from above equations, we get
y = cxk2/kl ...(3.7)

Where c is an arbitrary constant.

If ki and k2 have same sign, then equation (3.7) represents parabolic
curves tangent at the origin as shown in figure. This critical point is called
a ‘proper node’ for the system. When ki and k> are negative, the origin is
stable and is called stable node. It is also asymptotically stable.

— =
7/ — S |
4 Ll
N /
\;\\\ /ﬁ =
—e— - ——
~ \\ =
/sl

Fig.4

When kiand k2 are positive, the origin is unstable and is called unstable
node. If ki and k2 have opposite signs, equation (3.7) represents hyperbolic
curves as shown in fig 4-1(b). In this case, the origin is called a saddle
point and is unstable.

(2) Real And Equal Roots: In this case, A= (a-d)2 + 4 bc=0, and
hence, ki= k2 = (a+d)/2 =k (say)
The first simpler case arises when b=0 or ¢=0 and a=d. Then the system
(3.1) becomes

i=kx and y=ky.
On solving these equations, we obtain
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x =ciek'and y =coeX
where ¢ and ¢z are arbitrary constants.
If we eliminate ‘t’from above equations, we obtain
y= (Ca/C1)X
It means trajectories are straight lines.
If k<O, the origin is asymptotically stable and is a proper node. If k>0, it is
unstable.
Now, we discuss a more general situation i.e. we consider other
possibilities which are more complicated. In general case, we may choose
c—d
1

B=| ¥ b=0
-0

(]

Now, the equation system (3.1) is transformed into
x=hkxy=x+ky

If we solve these equations, we obtain

x = cieand y= (cat +cz ) ekt

These trajectories are shown in figure (3-1d)

The critical point is an improper node. It is asymptotically stable if k<0
and unstable if k>0.

Complex conjugate roots:
Let ki =a +iff and k, = & — iff where § = 0.
In this situation, we choose
C o —
B=(o 5 )
Now, the equation system (3.1) is transformed as
X =ax— [y
and y = ffx +ay ...(3.8)
(a) if @ = 0, then system (3.8) becomes
x= fyvand v = fx
General solution of the above equation system is
X= C1C08f3t + ¢, sinfit
y= cysinfit — c,cosfit
where c1and c; are arbitrary constants. On squaring and adding above
equations we get
X2+ y?=ci +c]
now, trajectories are circles , as shown by figure(3-1(e)) the critical point

is a centre which is obviously stable. However, it is NOT asymptotically
stable.

(b) If @ + 0, the solution of the system (3.8) is given by
X = e (cicosft + ¢, sinfit)
y =e* (¢, sinfit — c,cosfit)

On squaring and adding, we get
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X2 + y2 :[Ci + 622)2 e:rxr
so, the trajectories are the family of a spirals. The critical point is a focal

point, shown by figure 3-1(f). It is asymptotically stable
< 0 and unstable if o = 0.

5.12 PERTURBED SYSTEM:-

Suppose we consider an autonomous non-linear system

= f(x,y)and y = g(x,¥) c(4)
With f(0,0) =g(0,0) =0, so that origin is a critical point.
Let fand g be real analytic functions of x and y. So, by expanding f(x,y)
and g(xy) with the help of Taylor’s theorem , we get

f(x,y) = f(0,0) + £(0,0)X + £5(0,0)y +f(0,0)% + Fy(0,0)xy +f(0,0) 2 +
........ and g(xy) = 9(0,0) + gx(0,0)x + 9y(0,0)y +fgx(0,0)7- + Gxy(0,0)xy

+0yy(0,0) }? + ...

Let us denote fx(0,0) ,fy(0,0), g«x(0,0) and gy(0,0) by ab,c and d
respectively and remaining higher order terms by fi(x,y) and gi(x,y), we
get
i=ax+by+ fi(xy) And ¥y =cx +dy + g,(x.¥) ...(4.2)
We should note that f(0,0) = g(0,0) = 0.
Also we assume that ad-bc # 0
Both the functions f1 and g are called perturbations and they satisfy
fi=0(r), g=0(r) ,r =/x%+y2
This condition ensures that f; and g1 = 0, faster than the linear terms in
equation (4.2). Hence, it would seem that the nature of critical point of the
non-linear system (4.2) is similar to that of the associated linear system.
x=ax+ byand v = cx +dy ...(4.3)

In general the nature o the critical point of the non-linear system will be
same as that of the associated linear system.
However, there are some exceptional cases—>
when the roots of (4.3) are purely imaginary, the origin is the centre of the
linear system, whereas it may be centre of spiral point of non-linear
system. When the roots real and equal and b=c=0 and a=d, then origin is a
node of the linear system, whereas it may be centre of spiral point of non-
linear system.
All the discussion can be summarized as =
“If the critical point (0,0) of the associated linear system is strictly stable,
then critical point of the non-linear system

i=ax+ by+ fi(x,y) and y =cx + dy + g,(x,v)
is also strictly stable provided that f; =0(r) and g1 =0(r) .”
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5.13 METHOD OF LYPUNOV FOR NON-LINEAR
SYSTEM:-

Lyapunov was a leading Russian Mathematician, who investigated the
stability of non-linear autonomous systems of differential equation without
actually determining the solutions. The basis of this concept method is the
concept that the potential energy of a Conservative dynamical system has
a relative minimum at a stable equilibrium point.

Suppose V(x) be a potential function. Let us consider a trajectory, on
which V(x(t)) decreases to zero, then any trajectory of the system which
crosses the surface V(x(t)) = Constant, surrounding the origin remains in
that region. This confirms that origin is stable and indeed asymptotically
stable.

Let us define the function V(x) formally->

Definition:
Let V(x) be a real-valued function of class ¢! in some open region Q about
the origin. The function V(x) is said to be positive definite if >

(HV(x) >0 forall x+ 0 in 12
(i) V(x) =0 if and only if x=0

Definition: If the function V(X) is positive definite and satisfies
V() = V()= VV(X). X = VV(X). F(X) <0; in Q,

. 8 a
where ¥V is the vector operator V = (E'a_}- )

then V is called a Lyapunov function for the autonomous non-linear
system X = F(X)

Theorem 1. If there exists a Lyapunov function V (X) in Q, then the
origin is stable.

Proof: Suppose 5 be a sphere of radius €, with contre at the origin in Q.
Since V is continuous on the compact set 5, it assumes its minimum
value m on 5.. Since, V is positive definite, so it assumes a positive
minimum on 5. Since V(0)= 0 and is continuous at the origin, there exists
§d <€ such that V(X)<m for |X| <d&. Suppose this sphere be 5;
Let X(t, Xo) be a trajectory of the system initially at Xo in 5;.
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Then V(Xo) <m. By hypothesis V=0 for X in Q. Thus
V(X(t) = V(X(0)) <m. But V(X(t)) = mon 55. We conclude that X(t)
must remain in 55 for all t>0.Hence the origin is stable.

Theorem 2: If V is a Lyapunov function such that -VV(X).F(X) is
positive definite in Q, then the origin is asymptotically stable.

Proof: As the origin is stable by the previous theorem, V(X) decreases
along a trajectory of the system to Vo as t tends to infinity. Now, we shall
prove that Vo=0. but us assume that Vo>0. Then there exists & <<€Lt such

that V(X) < Vo for all X in 5. Now, let -V assumes a minimum value m in
the region & < |X| <&.

Since -\V>0, we have V= —m for all t= 0.

Thus, V(X(t.X0)) ~ V(Xo) = J; 2edt < —mt.

Consequently, as t->ca, V(X (t, Xo) tends to negative infinity.

But, this contradicts the assumption that Vis positive definite in Q. And
equals Vo when t->oo. Hence Vo must vanish.

=> the origin is asymptotically stable.

Theorem3: Let V be a real valued function of class C* in Q with V(0) = 0,
and let V(Xo) >0 for all X in |X|< &. fVV(X).F(X) is positive definite in
Q. then the origin is unstable
Proof: Let Xo be the initial point in of the trajectory of the system. By
hypothesis VV(0) = 0 and V(Xo)>0 for all X in 55. Since V>0, V is
increasing, and thus along the trajectory we have
V=mz=0

where m is the positive minimum value of V.
in the region 0< |X|= &.

t av

thus, V(X(t,Xo)) - V(Xo) = J, 3, dt = mt.

Consequently, as t >oo, V(X(t, Xo) approaches infinity.
=> origin is unstable.

5.14 DISCUSSION:-

If we can construct Lyapunov functions, we can determine by the
application of preceding theorems the stability or instability of critical
points for autonomous systems. Actually there is NO general method of
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constructing Lyapunov function. There are very few exceptions
of methods applicable to certain classes of systems.

Example 1:Let us consider the system

x=—y+xy

v =x—x°
which has a critical point at the origin. Suppose the Lyapunov function be
V= Y%(x? +y?) . Then,

V =X (-y+xy) +y(x-x%) =0,

As V is positive definite and ¥ = 0, the Lyapunov function V exists.
Hence with the help of Theorem 5.1, the origin is stable.

Example 2. Consider the system
x=y
¥ =—x —y —x°, having a critical point at the
origin.
Solution: Suppose V= §(2x2+2y2 +x*). Then
V=y(xx)+H(-x-y-x3)y=-y*
As V is positive definite and V < 0(y=0 is NOT a trajectory of the

system), the Lyapunov function V exists. Also with the help of Theorem
5.2, we conclude that the origin is asymptotically stable.

5.15 LIMIT CYCLE:-

Already we have observed that an autonomous system sometimes
possesses periodic solutions whose trajectories are represented by closed
curves inthe phase plane. Autonomous system, viz. negatively damped
non-linear oscillator, admit solutions which generally tend to a limiting
finite periodic solution. Such limiting closed curve in the phase plane is
called a limit cycle. A limit cycle is a closed curve. No other solution
which  is a closed curve exists in its neighborhood.
It is an isolated, closed curve.

Every neighboring trajectory spirals and tends to limit cycle from the
inside or from the outside as t>+w ort — —oo.

If all the neighboring trajectories approach a limit cycle, as t->
+oo or t — —oo. then the limit cycle is said to be stable.

Note:

It should be noted that limit cycles arise physically only in non-linear,
non-conservative systems. Now we illustrate a well known example and
discuss limit cycle.
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Example 1-> Let us consider the system
x(1— x?— }rzj

1~I|le+}FL
y(1—x? —y?
]:r=—x+‘( )

= =
VET YT (D)
Let x = rcosé and y = rsing. Then, we get

=y +o(1—r
x=y+-(1-77)

y .
yv=—x+=(1—7r°)
r ...(2)
As we know
1d
2dt
= 20
yx t+xy= —r o
Putting these in equation (2) and solving, we obtain
F=1—1°
6= —1
From the second equation, we get
f = —t + a, where a is an arbitrary constant.
First equation can be solved by using the method of separation of
variables.

ce? —1
r=| —— |cost

ce’t +1
Where c is an arbitrary constant.
Suppose £(0) = 0,

This impliesa=0and hence 8 = —t.
Hence, the solution of system may be written as

ce® —1
x=| —— |cost
cest +1
ce® — 1Y
v=—| —— |sint
: ce’t +1
If ¢ =0, then the solution will given by x? + y>=1.

If ¢ > 0, then trajectories are spirals inside the circle x> + y>=1,
approaching the circle as t> oo

If ¢ < 0, then trajectories approach the circle spirally from outside as t>oo.
In this way conclude that this circle is a limit cycle of the system (1)

Note- In the above example, we showed how a limit cycle was
determined. Generally it is very difficult (sometimes almost impossible) to

-
=

XX +yy =

.(3)
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find a limit cycle of a system.
Now in the next theorem, we shall discuss of closed trajectories of the
system.

= flx,y) &V =g(xy) cn(4)

Theorem1: Suppose f(x,y) and g(x,y) have continuous first partial
derivatives in a simply connected domain D in R2. If fx + gy has the same
sign in D, then the system given by equation (4) has no closed trajectory in
D

Proof :Suppose C be a closed curve in D. Then using the concept of
Green's theorem, we get

sy - genan = [[ (5 +gy) axty .0
Suppose CC: is represented parametrically bRy x= X(t), y=y(t). then
J. Geaydy — g(xy)dx) = [[ (F — gt
Where T is the period of C. If we uls;e equation 6.4, we have
| Gy —gunan = [ (ra-gndt =o.

SZ, by using equation (6.5) ,we gef

ﬂR (f. + g,)dxdy =0.

Above result is true only if fx + gy changes sign. But, this is a
contradiction. Hence, C is not a closed trajectory in D.

5.16 EXERCISES:-

1. Describe the nature of the critical point of each system and sketch
the trajectories
(@) x =x,
v =2x + 2y.
(b) £ = -x +2y,
y=X-YV.
(c) == 2x - 8y,
V=X-2y.
(d) x=-x,
¥ =%y
(€) £= -x+y,
¥ =2X
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(f) i = -3x+2y,
¥ =-2X
2. Determine the asymptotic behavior of the solution of each system

near the critical point. Sketch the trajectories of the associated
linear system.

(@) x=2sin x +,
v=sin x-3y.

(b) &= -x- X% + Xy,
=y +xy-y?

(c) x=x+eV-1,
v=-y-eV+1.
3. The equation of motion of a mass-spring system with damping is
given by
mi+cx+ kx=0,
where m, ¢ and k are positive constants. By changing this equation
into a system, discuss the nature and stability of the critical point.

4. Determine the type of the critical point (0,0) depending on a real
parameter p of the nonlinear system

X=-2X-y+ X

¥ = Axtuy - Y7,

where g #2.

5. Prove that if x(t), y(t), t1 <t <ty, is a solution of i = f(x,y), ¥ =

g(x,y), then x(t+ c), y(t + c) for any real constant c is also a
solution. This property does not hold in general for non
autonomous systems. Illustrate with the example = X, ¥= tx.

6. Using the Lyapunov function V(x,y) = %(x2 + y?), determine the

stability of the critical point (0,0) for each system.
@ x= -x-”;—ECosy,
¥ =-yy?
(b) &= -y-xsin?x,
F=X-ysin’x.
(c) &=x- y2,
y=y+Xxy.

7. Consider the system
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x=y- xf(x,y),
.-!:F =-X- yf(X,y),
where f(x,y) is analytic at the origin and f(0,0)=0. Describe the
relation between f(x,y) and the type of stability.

5.17 OBJECTIVE QUESTIONS:-

Q1 Ifa continuous function satisfies ... condition in some domain D,

then the initial value problem sz(t,X) with x(to))=Xo has a

unique solution in D-

I Lipschitz

ii. Riemann

iii. Lagrange

iv. Gauss
Q2 “whether a small change in the initial data leads to a small change
in the solution for large values of't.”? Study of solution of above problem
IS known as

i. Initial value problem

ii. Existence theory

iii. Stability theory

iv. None of these.
Q3 Anpointcinx™, at which F(c)=0 is called a ...of an autonomous

system X =F(X). Initial value problem

I. Null point

ii. Critical point

iii. Extraordinary point
iv. None of these.

Q4 If we define a system X =F(X) , then it is
I. Always time dependent
ii. Always time independent
iii. Occasionally time dependent
iv. None of these.
Q5 Ifacontinuous function satisfies Lipschitz condition in some domain

D, then the initial value problem sz(t,X) with X(to)=Xo has

... solution in D-
i. At least two
ii. Infinite
iii. Unique
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iv. Nothing can be said
Q6  Let c be a critical point for the system X =F(X). If there exist a
& = 0 such that whenever || X(0) —c|| <& , lim, _, . ||X () — ¢ || =0,
then the point is called-
I Asymptotically stable
ii. Asymptotically unstable
iii. Stable
iv. None of these.
Q7 Let ¢ be a critical point for the system X =F(X), then the point ¢, is
said to be ... If for given € = 0 ,there existsa § = 0
such that whenever || X(0) —c|| <& ; ||X(t) — c||<E, ¥t = 0;
I. Asymptotically stable
ii. Asymptotically unstable
iii. Stable
iv. None of these.
Q8 Let c be a critical point for the system X =F(X), then the point c, is

said to be... if it is stable and asymptotically stable,
I. Strictly unstable

ii. Strictly stable
iil. Unstable
iv. None of these

Q9 Suppose X =AX is a linear autonomous system with n X n real non-

singular constant coefficient matrix A. Also we suppose critical points at
the origin of R". Then the critical point is ... if real parts of eigen values of
A are negative.

I. Strictly stable

ii. Unstable

iii. Stable but not strictly

iv. None of these

Q10 Suppose X =AX is a linear autonomous system with n X = real non-

singular constant coefficient matrix A. Also we suppose critical points at
the origin of R". Then the critical point is ...if A has at least one pair of
purely imaginary eigenvalues of multiplicity one

I. Stable but not strictly

ii. Stable

iii. Unstable

iv. None of these.
Q11 Let V(X) be a real-valued function of class c* in some open region Q
about the origin. The function V(x) is said to be ...if V(x) > 0 for all x
# 0in 2 and V(x) =0 if and only if x=0
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I Neither positive definite nor negative definite
ii. Negative definite

iii. Positive definite

Iv. None of these.

Q12 If there exists a Lyapunov function V(x) in Q, then the origin is-
I Unstable but not strictly

ii. Stable

iii. Always unstable

iv. None of these.
Q13 IfV is a Lyapunov function such that -VV(X). F(X) is positive

definite in Q, then the origin is -

I. asymptotically stable

ii. always unstable

iii. always stable

iv. None of these.
Q14 LetV be areal valued function of class C* in Q with V(0) =0, and
let V(Xo) >0 for all X in [X|< &. If VW(X).F(X) is positive definite in Q.
then the origin is -

I. asymptotically stable

ii. occasionally unstable

iii. unstable

iv. None of these
Q15 Alimitcycleisa -

I. closed curve

ii. never a closed curve

iii. may be a closed curve

iv. None of these.

5.18 SELF CHECK QUESTIONS:-

EXAMPLE 1. Let us consider the system
x=—v+xy

v =x—x°

which has a critical point at the origin.
SOLUTION: Suppose the Lyapunov function be
V= %(x2 +y?)

Then, V = x(-y+xy) +y(x-x?) = 0,
As V is positive definite and ¥ = 0, the Lyapunov function V exists.
Hence with the help of Theorem 6.9.1, the origin is stable.
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EXAMPLE 2 . Discuss the stability of damped harmonic motion given
by & + 2% +2x = 0.

SOLUTION: Let ustake x =y

So, given equation becomes y +2y +2x = 0.

Or t=y & y=-2y-2x ...l (2.2)

The characteristic equation is given by
—K 1

2 —2-xl
Or k2+2k+2=0
Or (k+1)+1=0
= k=-1+4;&

According to above theorem , the origin is strictly stable.The solution of
equation (2.2) is:
X = e *(acost + bsint),
X +y = e *(—asint + becost).

The trajectories associated with equation (2.2) can be obtained by
introducing polar coordinates. So, the system (2.2) takes the form

X = rcos@ = ce'cos(t-a) , c=(a%+ b?)?

X +y = rsiné = ce'sin(t-a) ; @ = tan(b/a)

by eliminating ‘t’ we get
r = Ce_':g'fﬂ}

Which describes a family of spirals.
Example 3: Using the Lyapunov function V(x,y) = %(x2 +y?), determine
the stability of the critical point (0,0) for each system.
@ x= -x-”;—ECosy
¥ =-yy?
(b) &= -y-xsin?x,
F=X-ysin?x.
(c) T=x- V2,
Y=y +Xy.
Example 4: Find the regular-singular points of the differential equation

(x+2)°(x-1)y +3x(x-1)y +2y=0.
Solution: Since,

(x=DQ() _ 3(x-1) (x-1)*R(x) _ 2(x-1)
P(xX)  (x+2?%  PX = (2+x?
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Furthermore, the following limits are finite,

jim DR _ g oy XZDTRO) _

x—1 P ( X) x—1 P(X)

We conclude that x, =—1 is a regular singular point.

5.19 SUMMARY::-

In this unit, we understood the process of generalization of
dynamical systems. , If we perturb the initial value Xo by an infinitesimal
amount or by a small amount, the solution X(t) is changed also by a small
amount in a very small interval about to. Here a question arises-
“whether a small change in the initial data leads to a small change in
the solution for large values of t.”?

Study of solution of above problem is known as ‘stability theory’. This
theory has been applied successfully in various areas and ‘automatic
controls’, is one of them. Autonomous system, viz. negatively damped
non-linear oscillator, admit solutions which generally tend to a limiting
finite periodic solution. Such limiting closed curve in the phase plane is
called a limit cycle.

5.20 GLOSSARY:-

CRITICAL POINT:
A point ¢ inx™ , at which F(c)=0 is called an equilibrium point or critical
point of an autonomous system X =F(X).

Limit Cycle: Autonomous system, viz. negatively damped non-linear
oscillator, admit solutions which generally tend to a limiting finite
periodic solution. Such limiting closed curve in the phase plane is called a
limit cycle.

Lyapunov : A Lyapunov was a leading Russian Mathematician, who
investigated the stability of non-linear autonomous systems of differential
equation without actually determining the solutions. The basis of this
concept method is the concept that the potential energy of a Conservative
dynamical system has a relative minimum at a stable equilibrium point.

5.21 REFERENCES:-
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5.22 SUGGESTED READING:-

e NPTEL videos.
e Schaum series.
e Advanced mathematical Methods for Scientists and Engineers

5.23 TERMINAL QUESTIONS:-

(TQ-1) Prove that a limit cycle is a closed curve.
(TQ-2) Discuss the various types of critical points.
(TQ-3) Discuss the importance of Lyapunov constant.

5.24 ANSWERS:-

OBJECTIVE ANSWERS

la 2c 3b 4b 5¢c 6a 7c 8b 9a 10b 11c 12b 13a 14c
15a
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UNIT6:- SECOND ORDER DIFFERENTIAL
EQUATIONS

CONTENT:-
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6.2 Objectives

6.3 Linearly Independent Functions

6.4 Qualitative Properties of Solutions
6.5 Sturm Separation Theorems

6.6  Second Order Differential Equations
6.7 A Review of Power Series
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6.9  Regular Singular Points
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6.11 Picard Theorem
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6.15 Objective Questions
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6.18 Glossary

6.19 References

6.20 Suggested Reading

6.21 Terminal Questions

6.22 Answers

6.1 INTRODUCTION:-

In this unit, we will study the second-order differential equation of a
mathematical equation which involves the second derivative of an
unknown function. It is widely used in various fields of science and
engineering to describe physical phenomena and model dynamic systems.
Second-order differential equations are of great importance because they
capture more complex behaviors and dynamics than first-order equations.

6.2 OBJECTIVES:-

After studying this unit you will be able to mathematicians and scientists
can gain a deeper understanding of the behavior and properties of second-
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order differential equations, enabling them to solve complex problems and
make accurate predictions in diverse fields of study.

6.3 LINEARLY INDEPENDENT FUNCTIONS:-

Suppose two functions f(x) and g(x) are defined on interval [a, b]. If one
of the functions, say f(x), be a constant multiple of other (here g(x)), then
both are said to be linearly dependent functions on [a, b].

If neither of them is a constant multiple of other then both are said to be
linearly independent. Here we should note that if f(x) is identically zero
then f(x) and g(x) are linearly dependent, for each and every g(x), because

f(x) = 0.9(x).
THEOREM-
Let yi(x) and y2(x) be two linearly independent solutions of the
homogenous equation.
y"+ Py +Qx)y =0 (1)
on the interval [a,b]. Then
c1y1(X) +Cay2(X) ...(2)
is the general solution of the equation (1) on [a, b], in the sense that every
solution of equation (1) over the interval [a, b] can be obtained from (2) by
a suitable choice of the arbitrary constants c1 and c..
PROOF-
Suppose y(x) is the solution of equation (1) on [a, b]. We already know
that solution of equation (1) on [a, b] is completely determined by its value
and the value of its derivative at a single point.
If y1(X) and y2(x) be the solution of equation (1) then ciyi(x) +Cay2(X) is
also a solution of (1) Where c; and ¢; € R.
As c1y1(x) +c2y2(x) and y(x) are both solution of equation (1) on [a, b], it
is sufficient to prove that for some point xo € [a, b], we can find c1and c2
so that
C1y1(Xo) +C2y2(X0) = Y(Xo)
C1y'1(Xo) +C2y'2(Xo) = y'(xo).
This system of equations is solvable for c1 and c; if
VilX ValX
;r'llt[xg ;F::([x[::.j:] =¥ (x)¥", (xp) — ¥2(xg)¥' (%) #0
It means that we have to discuss Wronskian, given as
W(y1, Y2 ) =¥1(32)" = ¥ (1)’
Now, we prove a Lemma which simplifies the problem of the Showing
that the location of the point xo is of no consequence.

LEMMA 1:
If y1(X) and y2(x) are two solutions of (1) on [a, b], then the Wronskian of
v, (x) and y,(x) either identical to zero or never zero on [a, b].
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PROOF:
Here it is given that W =W(y1, ¥2) =¥1(32)" = ¥ ()
Wiy, y2) =y1(37) "+ ¥, 02) ' = ¥5,(r)" = ».00)"
Wiy1, ¥2) = ¥ (32)"— ¥2 ()’
Also yi1and y> are both solutions of (1), we have
yi"+Py1"+Qy1=0 (D)
y2" + Py2'+ Qy2=0 ...(2)
If we multiply (1) by y2 and (2) by y: and then subtracting, we get
y1y2" -y2 y1"' + P(y1y2' - yoyi') =0.

= W+PW =0
dW

dx
dW

= +PW=0

=

On integrating, we get W =C e~/ P2 ..3)
From calculus we know that exponential function is never zero .
So W is zero only if C=0.

= W is either identically zero or never zero in [a, b].
Now, more than half work is done. To prove the theorem, now we have to
show that the Wronskian of two linearly independent solutions of (1) is
not identically zero.

LEMMA 2:

If y1(x) and y2(x) are two solutions of equation (1) on [a, b], then y1(x) and

y2(X) are linearly independent on [a, b] if and only if Wronskian
W=W(y1,y2) =¥ (¥2)" — ¥ (1)

is identically zero.

PROOF:

Suppose y1(x) and y2(x) be linearly dependent.

If either function is identically zero on [a, b] , then W(y1, y2) is obviously
zero. If none of them is identically zero, then each one is a constant
multiple of other (due to linear dependence).

Let y1 = cy. for some constant c. So y1’ =cy>’

Now very easily it can be shown, W(y1, y2) =¥, (¥:)'— v, (¥,)' =0.
Conversely, suppose the Wronskian be identically zero.

If y1 (or y») is identically zero in [a, b]. Then obviously y; and y, are
linearly dependent.

Now, suppose Y1 is not identically zero in on [a,b].

Then by continuity, there exist a sub-interval [c, d] on [a, b] where yi1 is
not vanishing at every point.

So, we can write

Department of Mathematics
Uttarakhand Open University Page 145



ADVANCED DIFFERENTIAL EQUATIONS-I MAT 504

['V':Yl .-Y::' M ':J"'-z:'-_ Vo ':J"'-'_:'. — O
¥2 ¥2 B

> (2)=0

On integration, ( % ) = constant on [c,d] and they have equal deviation

also.
Hence, y2(X) = c.y1(X).
= vy and y» are linearly independent.

Note - From above theorem, we have two tests to determine linear
dependence of y1 and y» —

A) If it is convenient, show y1(x)/y2(x) = constant.

B) Otherwise, show that W(y1,y2) = 0.

EXAMPLE: Prove that y = c1Sinx + Czcosx is general solution of y"’ +y =
0 on any interval. Also obtain the particular solution for which y(0) = 2
and Y'(0) =3.
SOLUTION: We observe that y1(X) =sinx and y»(x) = cosx satisfy y”’ + y
= 0. So y1(x) and y2(x) are the solution of given differential equation.

Now, we find W(y1,y2) on [a, b].

FInx CO5X
Wlynyz) = cosx —sinxl -1#0.
Also P(x) =0 and Q(x) = 1 are naturally continuous on [a, b].
= Yy = C1SinX + Czcosx is the general solution of y’ +y =0, on [a, b].
We can extend [a, b] to R as it does not affects the continuity of p(x) and
Q(X). So the general solution is valid for every x.
For particular solution, c1sin0 + c2cos0 = 2 and ¢1¢c0s0 — c2sin0 =3.
For particular solution, ¢ =3, ¢, =2
So, y = 3sinx +2cosx is the general solution with given conditions.

6.4 QUALITATIVE PROPERTIES OF SOLUTONS:-

Sometimes it is really very difficult to get the solution of

y"+P(X)y +Q(X)y=0 (1)

in terms of known elementary functions. In such situations, we try to
understand essential characteristic of the solution of (1) by direct analysis
of equation itself, in the absence of formal expressions.
To make our work easy (there is no loss of generality), let us discuss

y'+y=0 ...(2)
we have already discussed its general solution thoroughly.
Suppose we don't know all this.
Let's start from the scratch. Our purpose is to observe how their
properties can be determined by (2) and initial conditions they satisfy.
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Suppose y= s(x) be the solution of (2) with initial conditions s(0) = 0, and
s'(0) = 1.

—c(x) —5(x)

Fig.1

If we draw the curve, we observe that the graph of s(x) by letting x
increase from zero, the initial conditions inform us to start the curve from
the origin & let it rise with slope beginning at 1
Since s"(x) = -s(x). So above x-axis, s"(x) < O and increase in
magnitude. We know that s"(x) is the rate of change of s'(x) i.e. slope ;
which decrease at an increasing rate as the curve lifts. Suppose it reaches
at zero at, say x= m. After that curve falls towards x-axis & the curve cuts
X-axis at a point, say x= 7. As s"(X) depends only on s(x) , we observe that
graph between x = 0 and x = &t is symmetric about x = m = /2 and s'(r) =
-1. A similar argument can be made for the next portion and so on
indefinitely.
Now, we introduce y = c¢(x) as the solution of (2) , determined by the
initial condition ¢(0) = 1 and c'(0) = 0. With the same reasoning, as
discussed earlier we shall show that

s'(X) = ¢(x) and c'(x) = -s'(X) ... (3
PROOF:
From (2), we observe that

y"+y =0

Or(y)'+y =0.

Implies that derivative of solution of (2) is again a solution. It also implies
s(x) and c(x) are both solutions of equation (2). From previously
discussed theorem, it is sufficient to prove that both have the same
derivative and same value at x = 0. This is obvious as s'(0) = - s'(x) , ¢(0) =
1 and s"(0) = - s(x)= 0, c'(0) = 0. The second formula in (3) is a natural
consequence of the first.

for ¢'(x) = s"(X) = -s(x) .

Claim:
We now use (3) to prove that
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s(x)2+c(x)2=1 ...(4)
On differentiating, with respect to x, we get
25(x).c(X) - 2¢(x) s(x) is the derivative of LHS of (4),
Which is zero also.
=> 5(X)? + ¢(x)? = constant
But s(0)2 + c(0)2=1
=> constant = 1
Hence , s(x)? + c(x)? = 1.
Claim : s(x) and c(x) are linearly independent.
WIs(x), c(x) ] =s(x)c'(X) - c(x).S'(x) = -s(x)? - c(x)?> = -1 £ 0.
So, s(x) and c(x) are linearly independent.
Note - From above discussion, we concluded two major things:
1) We have squeezed almost every significant property of sinx and cosx
from (2) by the method of differential equation alone (without using
trigonometry).
2) Mainly we used convexity arguments (which involves sign and
magnitude of the second derivative)
Generalization of above discussion is called Sturm separation theorem.

6.5 STURM SERARATION THEOREM:-

If y1(X) and y2(x) are two linearly independent solutions of y" + P(x)y' +
Q(X)y = 0, then the zeros of these functions are distinct and occur
alternatively , in the sense that yi(x) vanishes exactly once between two
successive zeroes of y2(x), and conversely.

PROOF : Since y: and y- are linearly independent. So, W (y1, y2) # 0.
Since it is continuous, so must have constant sign.
Now we show that y: and y» have a common zero.
Otherwise, W(y1, y2) = 0, which is not possible.
So we now assume that x1 and x. are successive zeroes of y. and we shall
prove that y:1 vanishes between these two points.
Obviously, in this situation W(y1, y2) = ya(X)y'2(x) - 0

= both factors y1(x) and y'2(x) # 0.
Also y'2(x1) and y'2(X2) must have opposite sign, because if y is increasing
at x1, it must be decreasing at x, and vice -versa.
As the wronskian has constant sign, yi(x1) and yz(x2) must also have
opposite signs.
But yi1(x) is continuous.

= y1(X) must be zero at some point between X1 and Xa.
Now we show that yi(x) can’t be zero more than once between x1 and Xz.
For if, it vanish more than once between x; and Xz, then the same
argument shows that y» must vanish between these zeroes of y. But this is
a contradiction to the initial assumption that x1 and X are successive
zeroes of y».
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EXAMPLE - Reduce y"+ P(x)y'+ Q(x)y =0 ...(1)
into u"+ q(x)u=20 ...(2)
by suitable choice of dependent variable.
SOLUTION - Generally form (1) is termed as ‘standard form’ while (2)
is known as ‘normal form’.
Let us put y(x) = u(x)v(x) in (1),
y' =uv+u'v

and y'=uv"+2u’v' +u''v
From (1) ,
vu'+ 2v+ Pv)u’' + (v'+Pv+ Qv)ju = 0 ...(3)
If we make coefficient of u’ as zero, t}len
2WHPy=0ory=e ) % (@)
Putting this in equation (3) and after some manipulation, we get (2) with
q(x) = Q(X) «(1/4)P(x?) — (1/2)P'(x) ...(5)

From(4), we observe that v= 0, for any point, so the above transformation
of (1) into (2) has no effect whatever on the zeroes of solution.

NOTE >
Now we shall observe that if g(x) in (2) is negative function, then the
solutions of this equation don’t oscillate.

THEOREM - If q(x) < 0, and if u(x) is non-trivial solution of u+ q(x)u
= 0, then u(x) has at most one zero.

PROOF: Here we assume that u(x) is not identically zero i.e. u(x) is non-
trivial. Let xo be a zero of u(x) i.e. u(Xo) = 0. So u’'(xo) = 0.

Let us assume u'(xo) > 0.
= u(X) is positive over some interval to the right of Xo.
Given that q(x) < 0. So u”(x) = -q(X)u(x) is positive function on the same
interval.
= u'(x) is an increasing function.
= u(x) can’t have zero to the right of xo.
In the similar way we can prove that u(x) has no root to the left of xo.
A similar argument hold when u'(x) < 0.
Hence u(x) has either no zeroes at all or only one.

THEOREM: Let u(x) be a non-trivial solution of u”+q(x)u = 0, where
q(x) >0, forall x> 0. If

[[alx)dx = = ..(6)
Then u(x) has infinitely many zeroes on the +ve x-axis.

PROOF: We prove the result by the method of contradiction.
Let us assume that u(x) = 0, at most finite number of times for 0 < x < a0,
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So that a point Xo > 1 exist, with property that u(x) = 0 for all x = 0. As

u(x) can be replaced by —u(x), if necessary, so without loss of generality ,
we can assume that u(x) > 0, for every X = Xo.

Claim: u'(x) will be negative somewhere to right of xo, so that there will
be one or more zero after Xo.

Let v(x) = '”Ifi;} for some x = 0. A simple calculation shows v/(x) = q(x)

u

+ V(x)?
= on integrating from Xo to X, X > Xo,
V() —V(x0) = [* q(x)dx + [* v(x)?dx

From (6), we conclude that v(x) is positive if x is large enough.
= u(x) and u'(x) have opposite signs if x is very large.
= u'(x) is —Ve.
= u(x) has one more root.
So the proof is complete.

6.6 SECOND ORDER DIFFERENTIAL
EQUATIONS:-

Ordinary and singular point -
All of us know that the general homogeneous second order differential
equation is of the form

y" +P(X)y' +Q(x) =0 (1)
Sometimes it is not possible to solve a above equation in terms of familiar
elementary functions. On some other occasion viz when P(x) and Q(X) are
constant and in a few other cases, it is possible to solve equation (1)
explicitly.
These types of equations have a huge significance in pure and applied
mathematics. But in general, power series solutions are only choices as
solutions.
The main concept behind the solution of equation (1) is that the behavior
of its solution near the point xo depends on the behavior of its coefficient
functions P(x) and Q(X) near xo. Here we restrict ourselves to the case
when P(x) and Q(x) are “well behaved” in the sense of being analytic at
Xo. It means each P(x) and Q(x) has a power series expansion valid in
some neighborhood of Xo.
In such cases Xo is called *ordinary point' of equation (1). Consequently
every solution of equation (1) is also analytic at this point. It means, we
can say that the analyticity of P(x) and Q(X) at a certain point say xo imply
that solutions of equation (1) are also analytic at there.
Now we can define 'singular point'. A point which is not ordinary point
is called singular point.
Before proving the claims in the above paragraph let us discuss some
elementary concepts, which will be use frequently here.

Department of Mathematics
Uttarakhand Open University Page 150



ADVANCED DIFFERENTIAL EQUATIONS-I MAT 504

6.7 AREVIEW OF POWER SERIES:-

When we study ‘elementary analysis’, we generally encounter with some
specific functions known as ‘elementary functions’. There are two types
of 'elementary functions' viz-

Algebraic functions - Such functions y = f(x) satisfy an equation of the
form

Pr(X)yY" + Pna(X)y™ + oo + P1(X)y + Po(x) =0
where each Pi(x) is a polynomial. The functions may be polynomial or
rational functions.

Transcendental/Non-algebraic Functions- All non algebraic functions
viz trigonometric, inverse trigonometric, exponential and logarithmic
functions with all possible combinations viz adding, subtracting,
multiplying and dividing or forming a ‘function of a functions' are
transcendental functions.

If you move ahead that is beyond elementary functions, there are higher
‘transcendental functions' which are generally called 'special functions'.
Some important special functions are Gamma and Beta Function,
Reimann- zeta function, elliptical functions and some other used
especially in 'Mathematical Physics'.

In 18th and 19th centuries various mathematician's developed the field of
special functions viz Eular, Gauss, Abel, Jacobi, Weirstrass, Reimann,
Hermite, Poincare etc. But with time the taste of mathematical community
changed to broader class of functions i.e. class of continuous functions,
class of integrable functions etc.

So instead of studying biography (that is a particular type of special
function), we preferred sociology (i.e. a class of particular type of
functions). For balance treatment of analysis we need both of them.
Special functions have a huge variety on their origin, nature and
applications. However one large group with considerable degree of unity
consists of those which arise as solutions of second order linear
differential equations.

DISCUSSION-  Now we try to understand (in general way), how
these functions arise?

Let us take y'+y' =0 ...(2)
Then from the knowledge of elementary calculus,
y = sinx and y = COSX

Satisfy equation (1). So their linear combination will also be a solution.
Now we discuss the equation,
Xy"+y +xy=0 ...(2)
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Here situation is very typical. We can't solve this equation in terms of
elementary functions.

We know that we can solve second order linear equations with constant
coefficients by change of independent variable in terms of elementary
functions.

But other second order linear differential equations can't be solved in this
way.

In this chapter we solve these equations in terms of power series & define
special functions >

POWER SERIES -
An infinite series of the form

2E paxt T agtaXx+axe ... ..(3)
is called a power series in Xx.
If we generalize above series, we may write
2r=0@,(x —xg)" =a0+a(x — xp)t alx — x)° + ... ...(4)
as a generalized power series in (X-Xo).
By the translation of coordinates, equation(4) can be reduced to
equation(3).
The series (3) is said to converge at a point x, if lim,_  25-,a, x"
exists and in this case the sum of series is the value of this limit.
Obviously this power series is convergent at x = 0. If we discuss the
convergence of power series, we observe three pattern which can be
illustrated by these examples >

o _amlx™ = 14+x+2x2+303 ..(5)
o o(x™/ml) = L4+x+xH20 + X330+ . . (6)
22 ax™ = l+x+xe+xe .. (7

Equation (5) converges only for x = 0. If x # 0, it diverges.
Equation (6) converges for each x € R.
Equation (7) converges if |x| < 1 and diverges if |x| > 1.
Power series of type (5) have no much practical uses; while of type (6) are
easiest to handle.
Generally, majority power series of type (7), with a “radius of
convergence” defined as =2
‘Each power series in x has a radius of convergence, R where 0 = R = o,
with the property that the series converges if |x| < R and diverge if [x| > R.’
We observe that R always exists. If R is finite and non-zero, then we can
determine ‘radius of convergence’ (-R, R) s.t. power series converges
within the interval while diverges outside the interval. At the end points of
interval of convergence, a power series may or may not converge.
Let us suppose Zm—ga,x™ converges for [x| <R, R > 0.
We denote its sum by f(x). So

f(X) = Zi-pa,x" = ap+aXx+axe+.... ...(8)
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Then for |x| <R, f(x) is continuous and derivatives of all order exists. Also
the series can be differentiated term by term as :
f(x) = Xa_gna,x™ = a; + 28X + 3asx® + ...
fr(x) =Zi-gn(n— La,x™=2a, + 3.2ax +...
and so on.
Each of these resulting series is convergent for |x| < R.
These successive differentiated series produce the following basic formula

an = 2 ..(9)
Also we know that the series (8) can be integrated term by term, provided
the limits of integration lie inside the interval (-R, R).
Suppose we have another power series in X, which converges to function
g(x) for |x| <R, i.e.
g(X) =ZE_gb,x™ =bo + bax + box®+ ... ...(10)
then we can define
f(x) =+ g(x) =Zi_q(a, th,) x"=atbo+ (@ b)x+.............
i.e. term by term addition/ subtraction is possible. Also f(x) & g(x) can be
multiplied as these are polynomials.
ie. f(X)g(X) = 2s=pcnXx", Where cn = agbn + atbna + ...... anbo.
Explicitly, f(x)g(x) = (a0 + a1x + a2x® + ... )(bo + bax + box? +........ )
f(X)g(X) = aobo + (aoh1 + a1bo)x + (achz + aiby + aghs + azbo)x® + ......
(aobn + albn-l N anbo)X” + ...
If both series converge to the same function i.e. f(x) = g(x) for |x| <R,
then equation (9) reflects that ao = bo, a1 =ba,......
Suppose f(x) is a continuous function with derivates of all order for |x| <
Rand R >0.
Is it possible to represent f(x) by a power series?
If we use equation (9) to an, the naturally we’1l hope

f(x) :Zizu%xnz f{0) + f’(O)X+%x2+ ,,,,,, ..(11)

will hold for |x| < R.
Generally above equation is true, but unfortunately there are some counter
examples to disprove it (we shall study this in real analysis).
If a function is analytic at xo, then definitely we can obtain its power series
expansion.
A function f(x) with the property that power series expansion of the form

f(X) = Zi=p @n(x — x)" ..(12)

is valid for some Xo is said to be analytic at Xo.
This is one of the advantages (there are many more) of complex analysis
over real analysis.

NOTE -

Though according to syllabus, we have to discuss differential
equations of second order. But before jumping there, it would be
better to discuss series solution of first order differential equations.
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First order differential equations can also be solved with the help of
elementary functions.

Let’s discuss y =y ...(D)
Let us consider that this equation has a power series solution.
y=ao+aX+axX+............ +anX" + ... .(2)

which converges for [x| <R, R > 0.
It means we assume that equation (1) has a solution, which is analytic at

the origin.
So, equation (2) can be differentiated term by term for |x| < R.
= y' =art+ 28X + 383X + ............ +nt+Danax"+ ... ...(3)
As y' =Y, so the series (2) and (3) must have the same coefficients.
= a1=ao, 2a2 = ai, 383 = az,......... (nt+1)an+1 = an,.....
= ar=ap, a2=ai2, as=ap/2.3, ....... , an =ao/n!, ......
Soy=ao(1+Xx+x2! +x33!+ ....x"n!+..) ...(4)
Here, a0 € R.

This example suggests a useful method for obtaining the power series
expansion of a given function.

Note — Now we return to the study of second order linear differential
equations :
First of all we discuss some illustrations -

EXAMPLE : Let usdiscuss y"+y=0 ..(1)
We know that general homogenous second order differential equation is of
the form
y"+Px)y' +Q(x)y =0 (2)
here P(x) =0, Q(x) =1
As these are analytic at all points, so we can think of a solution as

y=ao+taX+axXit ... +anX" + ... ...(3)
y = art 2aX + 3aXP + ...l +ntDans X"+ ... ...(4)
y" = 2ax+ 3.2asX + 3.4ax% +...... +H(n+H1)(n+2)ans2X" + ... ...(5)

Putting equation (3) & (5) in equation (1) and adding term by term, we get

(2a2+ ag) + (2.3as +a))X + (3.4as + X2+ ...ioiiiiiinn.l
[(n+1)(n+2)an+2 +an]X" + ....=0.

Equating to zero, the coefficients of successive power of X, we get

2a; + a0 =0, 2.3a3 + a1 =0, 3.4as + a> =0, (n+1)(n+2)an+2 + an =0,.....

On solving
a2 = -aol2, az=-a1/2.3, a1 =a0/2.3.4, as=ai1/2.3.4.5, .....
So from (3),
y=ao( 1- X221 + x44! +..... )+ ai(Xx = X331+ x°/51- ...)) ... (6)
So, yi(X) =(1- X321 + X441 +.....)
And ya(X) = (X — X331 + x3/5! - ... )

With the help of ratio test, it can easily shown that both series are
convergent for every x € R.
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So their addition is justified. Also from calculus
y1(X) = cosx and yo2(x) = sinx
= y = aoC0SX +aiSinx : ao,a1 € R.
NOTE —
The problem was simple. So we easily got two familiar elementary
functions to make its solution very easy. But in general, we are unable to
get a familiar elementary function. Let’s see >

6.8 LEGENDRE’S EQUATIONS:-

Let us discuss the series solution of Legendre’s equation

(1 -X)y"—2xy+p(pthy=0 Y
Here p is a constant. Obviously the coefficient functions
PX) == and Q(x) =222 (8)

are analytic at the origin.
= Origin is an ordinary point & so we can think about a solution

y=23_sa,(x)" ...(0)
y =2a=o(n+ 1)a,, ()"
and  y"=XI_p(n+ 1)(n+ 2)a,.,(x)" (1)

Replacing n+1 by n in equation (i), we get
y =Xna,x™ " orxy =Lna,x"
2xy' = Z(—2n)a,x" ....(iii)

Now replacing n+2 by n in equation (ii), we get
y'=X(n—1)na,x"?

xy" = Z—(n—1)na,x" ...(iv)
And p(p+l)y=Zp(p + L)a,x" (V)
From equation (7), the sum of these series is required to be zero, so the
coefficient of X" must be zero for each n.

= (n+1)(n+2)an-2 — (n-1)nan -2nan + p(p+1)an = 0.

On solving we get,
_ =lp=n)(pint1)

Ryt 2 (nt1)n+2) n (9)

RECURSION FORMULA: enables us to express an in terms of ap and a1
according as n is even or odd

_ —plp+1)
%2 = 12 o

_ —(p—1(p+2)
3 2.3 1

_—(-2)(p+3)  plp-2)(p+1)(p+3)
% = 3.4 %2 = 41 %o
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(p—D(p—-3)(p+2)(p+4)
s 5! 1

-w@—ﬂ@—@@+ﬂ@+ﬂ@+®a
6!
—@—U@—Q@—$@+®@+@@+Qa

7! 1

g = o

a--l;r=

.....and so on.
Putting all these iny = 2 a,x™, we obtain

(p+1) - (p—2)(p+1)(p+3 (p—2) (p—4) (p+1) (p+3) (p+5
y=ao[l-p?:lﬂx‘+pp }m‘r}p ) 4 _ple-2p }zlﬂw JB+E) 6 o
....... ] ’ . D)o D (os2)

+ [ X _ (p—1)p+2 xg + lp—1lip—3)p+2 L'P+4}x5 _

3! 5!
(p—1)p—3(p—-5)(p+2) (p+2)(pt4) x7
7!

t o ] ...(10)
This is the formal solution of equation (10) with ao, a1 € R

Both bracket series are called Legendre’s functions.

Note — Whatever we have learnt from the examples, can be generalized
as following theorem, which can tell us about the nature of solutions near
ordinary points.

THEOREM: Let xo be an ordinary point of the differential equation
y"+ PX)Y + Q(x)y=0 ...(11)

with ao and a; as arbitrary constants.

Then there exists a unique function y(x) which is analytic at xo, is the

solution of equation (11) in a certain neighborhood of this point and

satisfy the initial condition y1(xo) = a0 and y'(x0) = a1

Furthermore, if the power series expansion of P(x) and Q(x) are valid on

interval

[X- Xo | < R, R > 0; then the power series expansion of this solution is also

on the same interval.

PROOQOF: There is no loss of generality, if we restrict ourselves at Xxo = 0.

With this slight simplification, the hypothesis of theorem is that P(x) and

Q(x) are analytic at xo and therefore has a power series expansion.

P(X) = Z5—gPnx™ = po+ piX + p2x? +... ...(12)

Q(X) = Z5=08nx™ = Qo+ uX + OX* +... ...(13)

which converge on [X| <R, R > 0.

Keeping in view the specified initial conditions, we try to find out the

solution of equation for

for (11) in the form a power series.

Y= 25 ,a,x" = ap+ aiX + axx? +... ...(14)
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with radius of convergence at least R.

Now y' = Z3-g(n+ 1)@, x™ = ag+ 2aX + 3asx’ +... ...(15)
And
y' =2 _sn+ 1) (n+ 2)a,,,x™ = 2a+ 2.3ax + 3.4ax2 +... ... (16)

As we now know the rule of multiplication of power series, so
POY = Cr=oPax ) Zizo(n+ 1)ay,x" ]

= X0l L= Pn-r(k + 1)ay.,]x" ...(17)
QXY = (Zr=0@nx ™) Lnz0dnx ")
= 2= (Xh=0 D19 x"™) ...(18)

If we substitute all these in equation (11) and add series term by term, we
obtain

m=ol(M+ )M+ 2)apsp + ZiogPuog(k + 1)y + Xiog Gnp @ ]X"
=0
Hence we the following recursion formula for an :
(N+1)(n+2)ansz = - L=l Prse(k + D@sy + @iy ] ... (19)
If we put n=0,1,2,3,....in equation (19), we get
28, = -(poar + Qoo ),
2.3a3 = -(p1a1 +2poaz + Q1o + Gods ),
3.4as =-( pea1 + 2 p1az +3 poas + Qa0 + Q181 + goaz ) and so on.
Thus we have determined ay, as, aa, ...... in terms of ap and a.
So the resulting series (14), which formally satisfy (11) and the given
initial conditions, is uniquely determined by these requirements.
As we discussed some examples, we observed very simple ‘two term
recursion formulae ‘for the coefficients of the unknown series solutions.
These are very simple expressions which makes very easy to determine
the general term & precise information about their radii of convergence.
But if we observe equation (19), it is clear that it may not be possible in
general. In many cases, the best we can do to find the radii of convergence
of the series expansion of P(x) and Q(X) & to conclude from the theorem
that the radius of convergence for the solution must be at least as large as
the smaller of these numbers.
Thus for Legendre’s equation, it is clear from (8) and the familiar
expansion

L1+ JR=1

1-z*
That R = 1, for both P(x) and Q(X).
= Any solution of the formy X a,,x™ must be valid at least on the |x|
<1.
EXAMPLE1: Find the general solution of (1+x?)y”+ 2xy’- 2y = 0, in
terms of power series in X. Can you express this solution by means of
elementary functions?
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SOLUTION: y =ao(1+ x2-1/3 (x*) + 1/5(x®) + .....) + a1X
=ap(1+xtan™x) +aix
EXAMPLEZ2: Now discuss the solution of y” + xy’ + y=0......(1)
Obtain the general solution y = X a,.x™ in the form of y = aoy1(0) +
a1y2(x), where y1(Xx) and y2(X) are power series.
(1) By ratio test, determine that y1(x) and y2(x) converges for every x
eR.

z

(2) Prove that y1(x) is the series expansion of e
SOLUTION (1): yas(x) =1-% +% .=

Z 24 246

&

X x
yz(x)—x-?+35- ......

EXAMPLES: Verify that the equation y” + y’ — xy = 0 has three term
recursion formula. Also find its series solution y1(x) and y2(X) such that —
SOLUTION: y1(0) = 1, ,(0) = 0.

y2(0) =0, %, (0) =1

—(n+lap,, —an_,
(n+1)(n+2)

an+2 =

5
14

..
2.3.4 2345 ’

=1

y1(X)=1+§j-

x‘ dx

y2(X) =X - 2 t23V 232 Z3es

6.9 REGULAR SINGULAR POINTS:-

As we already know that a point Xxo is a singular point of differential
equation

y" +Px)y' + Q(x)y =0 (1)

If one or other (or both) of the coefficient functions P(x) and Q(x) fails to
be analytic at Xo.
Now in such situations, if we want to study the solution of equation (1)
near Xo, methods and theorems discussed in previous section are not
applicable.
There are many physical situations, where we come across such
singularities; and we need appropriate method to study the behavior of
solution near Xo. So such singularities demand particular attention. As a
simple example, x = 0 is a singular point of
y'+ (2/x)y' + (-2/x?)y = 0.
It can be easily verified that y» =x and y, =x are independent solutions
provided x > 0.

= y = C1X +C2X? is the general solution for x > 0.
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= If we want to discuss the behavior of solution near x = 0, it is
possible by taking
c2 =0; otherwise very little information can be obtained near the singular
point Xo.
To overcome (up to great extent) this difficulty, let us define:

Regular Singular Point 2>
A singular point xo of equation (1) is said to a regular point if the function

if (X —Xo)P(X) — (X — X0)?Q(X) are analytic. Roughly speaking, it means the
singularity in P(x) cannot be worse than (1/x-xo) and that in Q(x) cannot
be worse than (1/x-xo)> otherwise Xo will be called ‘irregular point’.e.g. :
Legendre’s Equation is:

(1-x3)y" -2xy’ + p(p+1)y = 0

Zx , , plE+1)

= y” - (1_xz)y + 1—x2 y= 0
Obviously x =1 and x = -1 are singular points.
Now for x =1,

_ lx—1d2x _ 2=
(X — 1)P(X) - ':x—l}l:.x+1} - (x+1)
2 _(x—1)%p(p-1) _ —(x—1p(p+1)
(X - 1) Q(X) - —(x%—1) - [x#+1)

Since (x — 1)P(x) and (x — 1)Q(x) are analytic at x = 1.

= x = 1is a regular singular point.

Similarly x = - 1 is a regular singular point.

6.10 BESSEL’S EQUATION OF ORDER ‘p’:-

Let us take Bessel’s equation of order p, where p is a non-negative
constant.
X’y +xy' + (x*p°)y =0

= y"H(1/x)y'+ [(x* —p°)Ix]y = 0
Obviously x = 0 is a singular point.
Now , XP(X) = x.1/x and x?Q(X) = x? — p?
Clearly xP(x) and x>Q(X) are analytic.
So x = 0 is a regular singular point.

SOLVED EXAMPLE

QUESTION 1: For each of the following differential equation, locate and
classify its singular point on the x-axis =

(i) x3(x-1)y"- 2(x-1)y'+ 3xy = 0

(i)  X*(x2-1)%y" - x(x-1)y+2y =0
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(i)  X%y"+ (2-x)y'=0

(iv)  (Bx+ xy” - (x+1)y+2y=0.
SOLUTION:

(1 x =0 s irregular, x = 1 is regular

(i)  x=0,1areregular;x=-1isirregular.

(iii)  x=01is irregular.

(iv)  x=0,-1/3 are regulars.

QUESTION2: Discuss the nature of the point x = 0, for each of the
following equation -
(1 y'" + (sinx)y =0
(i)  xy”"+(sinx)y=0
(iii)  X%y" +(sinx)y =0
(iv)  x3y"+ (sinx)y =0
(v) xty""+ (sinx)y = 0.
SOLUTION:
() ordinary point
(i) ordinary point
(iii)  regular singular point
(iv)  regular singular point
(v) iregular singular point.

6.11 PICARD’S THEOREM:-

Let f(x,y) and df/dy be continuous functions of x and yon a closed

rectangle R with sides parallel to x-axis. If Xo,yo be an interior point of R,
then there exist a number h > 0 with the property that the initial value
problem

y'= f{x,y), y(xo0) = Yo .. (1)
has one and only solution y =y(x) on the interval [x —Xo | =< h.
Proof- Proof of the theorem is very long and intricate. So we will do it in
various steps as >
Step 1 — We already know that every solution of (1) is also a continuous
solution of the integral solution.

YO =yo+ [ flt.y()]de - (2)

and vice versa.
This helps us to conclude that (1) has a unique solution on an interval
[X —xo|= h, if and only if (2) has unique continuous solution in the same

interval.
Now these sequence of functions yn is defined as

Yo(X) = Yo
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Vi) =yo+ [7 fle e (D]de ..(3)
) =yo+ [ fltys (D]dt ..(4)
V() = Yo+ [ Ity (£)]dt

which converges to the solution of equation (2). Also we observe that
yn(X) is n partial sum of series of the functions
Yo+ Zi=1 () — 31 (] = yo + [y1() - Yo(x) T+ ... [yn(X) — Yn-
x)]+......
= Convergence of the sequence (3) is equivalent to the convergence
of of this series.
To prove it, let ustake h >0 s.t. [Xx—Xo | = h.

Claim: Now we show that on this interval, following statements are true.
Q) The series (4) converges to a function y(x),
(i)  y(x) is a continuous solution of (2)
(iii)  y(x) is the only continuous solution of (2).
Now we prove these one by one >
Q) As again is in the statement, f(x,y) and @f/dy are continuous
functions on the rectangle R. As R includes its boundaries so it
is closed and bounded.
=  f(x,y) and df/dy are also bounded on R.
= there exist constant M & k such that
[f(x,y)| =M ... (5)

Tyl <k ()

For every (x,y) € R.

Suppose (x,y1) and (x,y2) be distinct points in R with same x-coordinates.

We can use mean value theorem such that
| Flxp, I= Flaag ) 8 f *
A = 1 Lf(x.
[¥a—22 lﬂy( y)|

or  Ifey) = flay)l =lof0yln = %l ()
For somey: < y»
Using equation (6), we can write

[f(xy1) — f(x.y2)l = Kly1 -yz| ... (8)
For any points (x,y1) and (X,y2) € R.
Using Archimedean property, we can choose h > 0 s.t.

Kh<1 ...(9)

Observe that the rectangle R’ defined by |x —Xo |< h and |y — yo| =< mh is

contained in R.
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Now, we restrict ourselves on |[X —Xo |= h.
To prove (1), it is sufficient to prove that the series
IYo(X)] + [y1(X) — Yo(X)| +ly2(X) — ya(x)| + ...... lyn(X) = Yn1(x)| ...(10)
Converges.
For that purpose first we estimate the terms |yn(X) — Yn-1(X)|.
We essentially observe that each of the function yn(x) has a graph, which
lies in rectangle R’ and consequently in R.This is obvious for yo(X) = Yyo.
= Points [ t,yo(t)] are in R".
From (5), we have f[t,yo(t)] = M and

ly1(X) — Yo | = | _r;‘n FIt. vo (£)dt]| <= Mh

Which proves the statement for y:1(X).
= Points [ t,yi(t)] are in R".
So, fltys(®)] = Mand lya(x) ~yo|=| [* Flt,y,(£)de] | < Mh.

Similarly, lys(x) —yo | =1 [” f[t, ¥, (t)dt]| < Mh, and so on.

We know that continuous function on closed interval have maximum
and minimum value. Here y1(x) is continuous. Let us define
a = max|y(x) — Yo |
= |yi(X) - yo |= a.
= Also the points [t, y1(t)] and [t, yo(t)] lie in R’
So, from (8), we have
[fTt.y2 ()] - fityo+ (O] = Klys(t) —y2(t)] = ka;
and we have
Y2(x) Y100l = | [ [Tt 32 (D] = FIt. v (D1de]] | < kah =a(kh).
In the similar way,
| ya(X) — y2(X)| = | fj‘n[f [t.y, (D] — Flt. ¥, (D)1dt]] | = k*ah =a(kh)?,

If we continue in this way, we obtain
| Yo(X) — Yna(X)| = a(kh)™, n=123...........
Hence each term of series (10) is less than or equal to the corresponding
term of the series of the constants.
lyo| + a + a(kh) + a(kh)?+ .......... +a(kh)™ + ..
From (9), kh< 1
= This is a G.P. with common ratio less than 1. Hence it is
convergent.
= By comparison test, (10) is also convergent.
= (4) converges to a sum, say y(X).
Hence yn(x) = y(X)
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Since the graph of each yn(X) less in R’, then obviously y(x) will
follow this tradition.

(i) Now we show that y(x) is continuous.

From (i), we observe that convergence of yn(X) to y(x) is uniform i.e.
by choosing sufficient large n, we can make yn(x) as close as we please
to y(x) forch every x in the interval .

= If € = 0isgiven, 3 no € N such that if n= no, we have

| y(Xo0) - Yn(X) | <t , for every x in the interval.
Hence each yn(X) is continuous sequence & sequence is uniformly
convergent. Hence the limit function y(x) is also continuous.
Now we show that y(x) is actually the solution of equation (2).
i.e. we have to show that

YO —yo- [ fley(8)]dt =0 (1)
we already know that
yo() = Yo - [ Flt )]y, (D] dt =0 -..(12)

if we subtract left side of equation (12) from the left side of (11) , we get
YO —yo- [ It y(e)]dt = y(x) - ya(x) -
J; It 01y, (O — fIt y(8)]dt

S0 we obtain
| Y(X) — Yo - ffﬂ flt.y(B)]de | =] y(x) - yn(x) -

Jo Flt Oy, (0 — fIt y(8)]dt |

As the graph of y(x) lies in R’.
= Graph of y(x) lies in R. So from (8),
= [V - Yo- [ Flty(®)]de | = |y(x) - ya(x)] + kh.max]yn1(x) -

y(X)l ..-(13)
Now uniform convergence of yn(x) implies that RHS of (13) can
be made as small as we please by taking large n.

= LHS of (13) must be zero.

= y(x) is the solution of (2).

(iii) Uniqueness of the solution :
Suppose Y(x) is another solution of equation (2), on the interval |X — Xo
| = h. We will prove that y(x) = Y(x) on this interval. For that, it is

necessary to know that graph of Y(x) lies in R’ and consequently in R.
Let us establish this.
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Suppose the graph Y(x) leaves R’. Then the properties of this function
(i.e. continuity and he fact Y(xo) = (Yo).
Imply that there exist an x1 such that [x1 — Xo| <k, [Y(X1) — Yo| < Mh,
and [Y(X) — yo| < Mhif |[x — Xo| < [X1 — Xo]

SO|Y':-*1:'_-‘!"D| —_ MO >M__:M
|, — &gl [, —axg) O !

Now by using mean value theorem, there exist a number x* with xo < x* <
X1 such that

Wad=2l = (y(xx) | = |fx*, Y(x9)] |€ M

[y — gl
Because the point [x*, Y (x*)] € R’. But this is contradiction.
So the graph of Y(x) lies in R’.
Now we prove the uniqueness part.
Since y(x) and Y(x) both are solution of (2).
YO) -yl =1 [ (Fle¥(0)] - flt.y(8)]) |= kh.max| Y(x) - y(X)|
As graph y(x) and Y(x) lies in R’, so we used equation (8).
max|Y(x) — y(X)] = kh.max]Y(x)—y(x)| .
= max|Y(x) —y(x)| =0, otherwise 1 = kh, contradicts !
= Y(X) = y(X)
i.e. solution of (2) is unique.

NOTE-

Department of Mathematics
Uttarakhand Open University Page 164



ADVANCED DIFFERENTIAL EQUATIONS-I MAT 504

This theorem is called local existence and uniqueness theorem, because
it guarantees the existence of a unique solution in some interval [x — Xo| =

h, where h may be very small.

6.12 METHOD OF SUCCESSIVE
APPROXIMATION:-

Some simple types of differential equations can be solved explicitly in
terms of elementary functions. Some other can be solved with the help of
power series.

However many differential equations falls outside these categories.

Now we discuss another method say successive approximation to solve
initial value problems.

Let us take y' = f(x,y) , y(X0) = Yo ..(1)

Here f(x,y) is an arbitrary function which is continuous in some
neighborhood of (Xo,Y0).

74
(

Fig.3

Geometrically speaking, we are devise a method for constructing a
function y = f(x), whose graph passes through the point (Xo,Yyo) & also
satisfy y’ = f(X,y) in some neighborhood of xo.

The key to this method lies in replacing the VP (1) by the equivalent

integral equation.
YO =yo+ [ It y(e)]dt -(2)

Since the known function occurs under the integral sign, so it is called
integral equation.
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Suppose y(x) be the solution of equation (1).
= y(x) is continuous and RHS of y'(x) = f[x,y(x)] is a continuous
function of x.
Now we can integrate from Xo to X & by using y(Xo) = Yo, we get the result
(2). Since upper limit is also x, so to avoid confusion, dummy suffix x can
be replace by t and we get exactly (2).
Thus any solution of (1) is continuous solution of (2).
Conversely suppose y(x) be continuous solution of (2).
Integral will vanish when x = xo and so y(Xo) = yo.If we differentiate (2)
we get
y'(x) =[x, y(x)1.
= (1) and (2) are equivalent in the sense that the solutions of (1) (if
any exist) are precisely the continuous solution of (2).
Now we try to solve (2) by a process of integration. We start with a rough
approximation to a solution and prove it in every next step by applying a
repeatable process.
Let us start with yo(X) = Yo.
Actually it is a horizontal straight line through the point (Xo,Yo).
We put in RHS of (2) to obtain possibly a better approximation y1(X) as

Y1) = yo + [ flt, yo]dt

To make it further a better approximation y»(x), we do

Ya(x) = Yo + [ flt,yy(8)]dt

After n steps, we get

Ya(x) = Yo + [ flt, ¥,y (D)]dt ()

This method is known as Picard’s method of successive approximation.
EXAMPLE: Discuss the solution of initial value problem

y'=-y, y(0)=1 (1)
if we use ordinary calculus, we have
dy _
dax B y
=2 [2 = [dx
¥
= logey=x+c¢ -..(d)

givenx=0andy=1
= logey=0+c

= ¢=0.

So, logey =xory=¢ ...(i1)
We again solve this IVP by successive approximations.

Let yo(x) = 1 and yn(X) = 1 + [ y,_, (£)dt ...(iii)
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Soyi(x) =1+ [ dt =1 +x

Vo) =1+ [F(1+)dt = 1 +x+5

Similarly ys(x) = 1 +x+§ +Z

And in general

T

() =1 +x+Z + T4 4D
We observe that when n—+ =, RHS = &%
This is the solution.
EXAMPLE: Solve the initial value problems by Picard’s method :
(i y=x+y, y0)=1
(i) y=y%, y0)=1
(i)  y'=2x(1+y), y(0)=0.
SOLUTION: (i) ya(x) =1 +x +=

V) =1 +x+Z +Z
y3(X) =1 +x+; +;+;
and
Finally y(X) = 2e*—x - 1.

SOLUTION: (i) yi(x) =1 +x
ya(X) =1 +x+x° +"‘3—E
ya(X) =1 +x+x2 +x3+ (2/3)x* + (1/5)x° + (1/4)x® +(1/63)x’
SOLUTION: (iii) y1(x) =x?
Va(x) = X+ 5
ya(X) = X2 + £ + ’;—E and so on.

y(x) =e* - 1
Note — Now one may have doubt whether solution of an initial value
problem by approximation method always exist? For that reason we
already have proved Picard’s Theorem. This theorem emphasizes on
existence of unique solution of given IVP. That’s why this theorem is

called ‘existence and uniqueness theorem’. There are some other versions
of this theorem, you can explore them now.

6.13 EIGENVALUES, EIGENFUNCTIONS & THE
VIBRATING STRING:-
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Let us assume a non-trivial solution y(x) of the equation

y'+4dy =0 ..(1)
satisfying two boundary conditions
y(0) = 0 and y(m) = 0. ..(2)

Erstwhile we solve the initial value problems. Actually we try to solve
second order differential equations with conditions at a single point Xo.
But now we are discussing boundary value problems.i.e. a second order
differential equation with two different conditions at two different points.
This types of problems are more difficult and deep (in both theory and
applications) than initial value problems.
If X =0, in equation (1), y(X) =CciX + C2
If A <0, then by theorem discussed initial part of this chapter, only the
trivial solution of (1) can satisfy.
If X > 0, then solution of equation (1) is
y(X) = c1sinVAx + cacosvAx.
Using y(0) = 0, we get y(X) = cisinv/ Ax ..(3)
For y(r) =0, ¥/A. = nm, n is a positive integer.
So,A=n%ie.,A=14916,.......
These values of , A are called ‘eigenvalues’ of the problem.
Corresponding solutions of sinx, sin2x, sin3x, ...... ...(4)
Are called respective ‘eigenfunction’.
Obviously eigenvalues are unique while eigenfunctions are not. Before
going ahead, we remember two points >

Q) Eigenvalues from an increasing sequence of natural numbers,

diverging to infinity.
(i) n"eigen function i.e. sin(nx), becomes zero at end point of
[0, ] & has exactly (n-1) zeroes inside the interval.

We use this concept thoroughly in various physical phenomena
viz vibrating strings, harmonic oscillator, heat equations etc.

NOTE : Observing huge size of this unit, we are giving only statement of
following theorem.

6.14 FORIER CONVERGENCE THEOREM:-

The Fourier series for f(x) converges to f(x) at all values of x where f(x) is
continuous.
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If f(x) has a discontinuity at x = a, then Fourier series converges to %[f(a*)

+ f(a)]. It means at the point of discontinuity, the value of function is
redefined as the average of its two one sided limits there,

f(a) = 2[f(a") + f(a)]
Then the Fourier series represents the function everywhere.

6.15 OBJECTIVE QUESTIONS:-

Q1 If f(x) is identically zero and g(x) is non-zero over a common
domain, then f(x) and g(x) are -

I. Always linearly dependent

ii. Always linearly independent

iii. Never linearly dependent

Iv. Nothing can be said.

Q2 If yi(x) and y2(x) are two linearly independent solutions of the
homogenous equation y” + P(x)y’ +Q(x)y = 0, on [a,b], then for any
constants ¢1 and ¢z, the term c1y1(X)+c2y2(X)

I. Can’t be a solution

ii. Will always be a solution

iii. May be a solution for finitely many values only

iv. Nothing can be said.

Q3 If yi(x) and y2(x) are two solutions of y” + P(x)y’ +Q(x)y =0, on

[a,b], then the Wronskian of y1(x) and y2(x) is

I. Always zero

ii. Never zero

iii. Identical to zero or never zero on [a,b]

iv. Nothing can be said.

Q4 yi(x) and y2(x) are two linearly independent solutions of y" + P(x)y’
+Q(X)y =0, on [a,b], if and only if the Wronskian W(y1, Y2)-
I. Never zero
ii. Zero only once
iii. always zero
iv. Nothing can be said.
Q5 Ifyi(x) and y2(x) are two linearly independent solutions of y” +
P(x)y' +Q(x)y =0, then zeros of these function
I. Are always distinct
ii. Are always identical
iii. Have at least one common value

Department of Mathematics
Uttarakhand Open University Page 169



ADVANCED DIFFERENTIAL EQUATIONS-I MAT 504

Iv. Nothing can be said.
Q6 If yi(x) and y2(x) are two linearly independent solutions of y” +
P(x)y’ +Q(x)y =0, then zeros of these function
I Occur at same points
ii. Occur alternatively
iii. Are all zero
Iv. Nothing can be said.

Q7 If yi(x) and y2(x) are two linearly independent solutions of y" +
P(X)y' + Q(x)y = 0, then the zeros of these functions are distinct and
occur alternatively. This theorem is called

I. Gauss Separation Theorem
ii. Leibnitz Separation Theorem
iii. Euler Separation Theorem
iv. Sturm Separation Theorem
Q8 If we reduce y"+ P(x)y'+ Q(x)y =0, into u"+ q(x)u = 0, by suitable
choice of dependent variable, then reduced form is called
I. Normal form

ii. Echelon form
iil. General form
iv. None of these.

Q9 Ifqg(x) <0, and if u(x) is non-trivial solution of u"+ q(x)u = 0, then
u(x) has
I. at least one zero
ii. exactly one zero
iii. at most one zero
iv. Nothing can be said.

Q10 Let u(x) be a non-trivial solution of u"+q(x)u = 0, where q(x) > 0,
forall x> 0. If [ q(x)dx = oo, thenu(x) has
I. infinitely many zeroes on the -ve x-axis
ii. infinitely many zeroes on the +ve x-axis
iii. finitely many zeroes on the +ve x-axis
iv. Nothing can be said.

6.16 SELF CHECK QUESTIONS:-

EXAMPLE 1: Prove that y = c1Sinx + C2cosx is general solution of y” +y
= 0 on any interval. Also obtain the particular solution for which y(0) = 2
and Y'(0) =3.
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SOLUTION : We observe that Y1(x) =sinx and Y2(X) = cosx satisfy y" +
y = 0. So Y1(x) and Y2(x) are the solution of given differential equation.
Now, we find W(y1,y2) on [a, b].

Finx CO5X
WlyLy2) = cosx —sinxl -1#0.
Also P(x) =0 and Q(x) = 1 are naturally continuous on [a, b].
= Y = c1SinxX + c2cosX is the general solution of y” + y =0, on [a, b].
We can extend [a, b] to R as it does not affects the continuity of p(x) and
Q(x). So the general solution is valid for every x.
For particular solution, c1sin0 + c2c0s0 = 2 and c1c0s0 — ¢2sin0 =3.
For particular solution, ¢ =3, ¢, =2
So, y = 3sinx +2cosx is the general solution with given conditions.

EXAMPLE 2: Letusdiscussy”+y=0 ..(1)
We know that general homogenous second order differential equation is of
the form

y' +PX)y +Q(X)y =0

here Px)=0,Q(x)=1 ...(2)
As these are analytic at all points, so we can think of a solution as
y=ao+aiX+axe+............ +anX" + ... ...(3)
=y = ar+ 2aX + 3@+ ............ +(nt+DanaX" + ... ... (4)

= y" = 2ap+ 3.2a3X + 3.4ax +...... +(n+1)(n+2)ans2X" +.. (5)
Putting equation (3) & (5) in equation (1) and adding term by term, we get
(2az+ ao) + (2.3as +a1)X + (3.4as + @)X2 + ..oiiiiiininn..

[(n+1)(n+2)an+2 +an]x" + ....=0.
Equating to zero, the coefficients of successive power of X, we get
2a; + a0 =0, 2.3a3 + a1 =0, 3.4a; + a> =0, (n+1)(n+2)an+2 + an =0,.....

On solving
az = -ao/2, az=-a1/2.3, a1 =a0/2.3.4, as=ai1/2.3.4.5, .....
So from (3),
y=ao( 1- X321 + x¥4! +..... )+ ai(x = x3/31 + x°/5!1- ...)  ...(6)
So, ya(X) =(1- X320 + x44) +.....)
And ya(X) = (X — X331 + x3/5! - ... )

With the help of ratio test, it can easily shown that both series are
convergent for every X € R. So their addition is justified. Also from
calculus
y1(X) = cosx and y2(X) = sinx
= y = apC0SX +aiSinX : ap,a1 € R.

6.17 SUMMARY::-

Sometimes it is really very difficult to solve a differential equation
explicitly. Then we discuss QUALITATIVE MEHODS to understand the
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nature of solutions. Whatever we have done in this unit is actually this
qualitative discussion.

6.18 GLOSSARY:-

e Ordinary point

e Singular point

e Elementary Function
e Regular Singular point
e Eigenvalues

e Eigenfunction

6.19 REFERENCES:-

e William E. Boyce and Richard C. DiPrima (2009) 9" edition
Elementary Differential Equations and Boundary Value Problems
by William.

e William F. Trench, Trinity University (2013) Elementary
Differential Equations with Boundary Value Problems.

e Erwin Kreyszig (2010) Advanced Engineering Mathematics.

6.20 SUGGESTED READING:-

e Wolfgang Walter (2012) Ordinary Differential Equations.
e Dennis G.Zill (2012) A First Course in Differential Equations:
With Modeling Applications.

6.21 TERMINAL QUESTIONS:-

Example 1: Discuss the linear independence of two functions.
Example 2 : What are transcendental functions ?

Example 3 : What are algebraic functions ?

Example 4 : Discuss the importance of singular points.

6.22 ANSWERS:-
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OBJECTIVE ANSWERS

1-i ,2-ii, 3-iii, 4- iii, 5- I,6- ii, 7- iv,8- i, 9- iii, 10- ii
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BLOCKIII
INTEGRAL CURVES AND DAMPED LINEAR
OSCILLATOR
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UNIT 7: - TRAJECTORIES
CONTENTS:

7.1  Introduction

7.2  Objectives

7.3  Trajectories

7.4 Self Orthogonal family of curves

7.5  Orthogonal trajectories in Cartesian Coordinates
7.6 Orthogonal trajectories in Polar Coordinates
7.7 Oblique trajectories in Cartesian Coordinates
7.8  Summary

7.9  Glossary

7.10 References

7.11 Suggested Reading

7.12  Terminal questions

7.13  Answers

7.1 INTRODUCTION:-

In this previous unit, you have already studied

e About the Variation of parameter.
e About the Second Order differential equations with suitable
examples.
e About the Linear differential equation with examples.
In this unit, we discuss about the trajectories, orthogonal trajectories in
Cartesian coordinates, Orthogonal of trajectories in polar coordinates,
Oblique trajectories in Cartesian coordinates.

7.2 OBJECTIVES:-

After studying this unit you will be able to

e Understanding the trajectories.
e Understanding the orthogonal trajectories in Cartesian
coordinates.
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e Analyzing the use of trajectories in this context is important for
studying these systems.

7.3 TRAJECTORIES:-

Definition:

Trajectory: A curve which cuts every number of a given family of curves
in accordance with some given law is known as a Trajectory of the family
of curves.

Orthogonal Trajectory: If a curve cuts every member of given family of
curves at right angles, it is called an Orthogonal Trajectories of the family
of the curve.

Obligue Trajectory: If a curve cuts every member of given family of
curves at constant anglesa (#+ 90°), it is called an Oblique Trajectories of
the family of the curve.

7.4 SELF ORTHOGONAL FAMILY OF CURVES:-

Definition: If each member of a given family of curves intersects all
other members orthogonally, then the given family of curves is said to be
self orthogonal.

From self orthogonal family of the curves, if the differential equation of
the family of the curves is identical with the differential equation of
orthogonal trajectories, then the family of curves must be self orthogonal.

7.5 ORTHOGONAL TRAJECTORIES IN
CARTESIAN COORDINATES:-

Let the equation of the given family of the curves be

flx,y,¢)=0 ..(1)

Where c is parameter
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Differentiating (1)w.r.t.x and eliminating c, between (1) and given curves
(1), we have
F(x,y,dy/dx) =0 ..(2)

O A member of family
of curves

Trajectory

Fig.1
Let 1 be the angle between the tangents PT to the member PQ and x —
axis at any point p(x, y), then we have
dy

tany = x ..(3)

Let (X, Y) be the current coordinates of any point of trajectories. At any
point of intersection P of (2) with PQ’, let Y’ be the angle which the
tangent PT' to the trajectories makes with x — axis.

raml) = dy @
any’ = ax
Hence from (3) and (4), we get
tanyptany’ = —1 or Z—z Z—; =-1
dy dY
o ax !
dy 1 dX

dx  dY/dX  dYy
Now the point of intersection of (2) with trajectory, we obtain
x =X, y=Y
Eliminating x, y and dy/dx from above equations, we have

F(X,Y,dX/dY) =0
Hence, which is the differential equation of required family of trajectories.
Now
F(x,y,dy/dx) =0
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F(x,y,—dx/dy) =0
Showing that it can be obtained by replacing dr/d6 by (—dx/dy).

SOLVED EXAMPLES
EXAMPLEL: Find the orthogonal trajectories of family of curvesy =
ax?, a being parameter.
SOLUTION: Given family of curves is

y = ax? . (D
where a being parameter. Differentiating w.r.t.x, we obtain
dy/dx = 2ax ..(2)

From (1), a=y/x?
Putting the value of a in (2), we get

dy/dx = 2x y/x?

dy/dx = 2y/x
Replacing dy/dx by — dx/dy, the differential equation of orthogonal
trajectories is
—dx/dy = 2y/x or xdx+ydy=0

Integrating, x%/2 +y? =b? or x2/2b% +vy%/b* =1
Which is required the orthogonal trajectories, b being parameter.

EXAMPLEZ2: Find the orthogonal trajectories of parabolas whose
equation isy? = 4ax.
SOLUTION: The equation of parabolas is

y? = 4ax (1D
Differentiating (1) Zy% =4a = yZ—i = 2a
From (1), a=y?/4x
Putting the value of a in above equation

dy

y dx
Replacing dy/dx by — dx/dy, the differential equation of orthogonal
trajectories is

dy
292 /4x = = =v/2
y/x=>dx y/2x

Z—;i = —y/2x = ydy = —2xdx
Integrating above equation
yZ
2
EXAMPLES: Find the orthogonal trajectories of the system of curves

(dy/dx)? = a/x.

=—x?+c=> y?=-2x*+¢
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SOLUTION: The given curve is
(dy/dx)* = a/x . (D
Where a is constant. Replacing dy/dx by — dx/dy, the differential
equation of orthogonal trajectories is given as below
—(dx/dy)? = a/x or dy = +x'/?a'/%dx

Integrating above equation

y+c=1/a'’?x2/3 x x3/?

3vVa(y + ¢) = +2x3/2

Squaring both sides

9a(y + ¢)? = 4x3
Which is required orthogonal trajectories, ¢ being parameter.

7.6 ORTHOGONAL TRAJECTORIES IN POLAR
COORDINATES:-

Let the equation of the given family of the curves be

f(r,0,c)=0 .. (1)
Where c is parameter.
Differentiating (1)w.r.t.x and eliminating c, between (1) and given curves
(1), we have
F(r,0,dr/d6) =0 .. (2)

O’ Trajectory O A member of family

7

4 ; of curves
X (r)
G\
r T
0
S0 X
Fig.2

Let ¢ be the angle between the tangents PT to the member PQ and x —
axis at any point p(r, 8), then we have

tang = Z—Z . (3)
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Let (R, ©) be the current coordinates of any point of trajectories. At any
point of intersection P of (2) with PQ’, let ¢’ be the angle which the
tangent PT’ to the trajectories makes with x — axis.

, do
tang’ = Rd_R ..(4)
Hence from (3) and (4), we get
¢’ — ¢ =90° somuch ¢ =90°+ ¢
tang’ = tan(90° + ¢ ) =
—cot¢p or tangtang’ = -1
Putting the value of (3) and (4) in above equation

(rﬁ)(R@)zl or ﬂ=—1’R§

ar dR daeo
Now the point of intersection of (2) with trajectory, we obtain
r= R) 0 = @

Eliminating r, 8 and dr/d6 from above equations, we have
F(R,©,—R?*d©/dR) = 0
Hence, which is the differential equation of required family of trajectories.
Now
F(r,0,dr/d6) =0
F(r,8,—r%d8/dr) =0
Showing that it can be obtained by replacing dr/d@ by —r2d6/dr.

SOLVED EXAMPLES
EXAMPLEL: Find the orthogonal trajectories of cardioidsr =
a(l + cos0).
SOLUTION: The given curveis r = a(l + cos8)
Take both sides logarithm

logr = loga + log(1 + cos6)
Differentiating both sides w.r.t 8

1dr sin@

rde (1 + cosbB)
Replacing dr/d6 by —r? d@/dr, the differential equation of orthogonal
trajectories is

1( 5 dH) _ sin@

T dr) (1 + cosH)
2sin8/2cos /2

= / / =—tanf/2

" (1+2c0s260/2—-1)
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— tan 62 1dr _ cot 0
rdr—an O'r"rdH—CO2
Now integrating factor f% dr = fcotg de
0
logr = 2logsin (E) +logc

0
logr = log sin? (E) + logc

0
r = csin® (—)

2
r= c(l_zﬂ = b(1 — cos0) taking b = c/2
EXAMPLE2: Find the orthogonal trajectories of the series logarithmic
spiralsr = a®.
SOLUTION: The given curve is
r=a® =2 logr =0loga .. (1)

Differentiating both sides w.r.t.6

ﬂzaelogazrlogazrloﬂ from(1)

do 0

Replacing dr/d6 by —r? d6/dr, the differential equation of orthogonal
trajectories is

1
—réf—=1r—"> —0d0 =;logrdr

Integrating both sides

1
J;logrdr=J—0d0+cz

(logr)? 62 c?
L
(logr)? 92 2
2 22

(logr)? = c? — 6?2

logr =+/c? — 62

c2—-92

Which is required equation.
EXAMPLES3: Find the orthogonal trajectories of r"cosnf = a? is
r’tsinnf = c".
SOLUTION: Given rm™cosnf = a™, where a is a parameter.
Since taking both sides logarithm

nlogr + logcosnd = nloga
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Differentiating both sides w.r..t. 6

ndr . 9=0 (1)dr . =0
~ 70 annf = or =) 38 annf =

Replacing dr/d6 by —r? d@/dr, the differential equation of orthogonal
trajectories is
1 do
(—) (=r?)— —tannf = 0
T dr
1
(;) dr + cotnfdf =0

Now integrating factor
1
logr + Elog sinn@ = logc
Where ¢ being constant.
nlogr + logsinnf = nlogc
r'tsinnf = c"
Which is the required equation of orthogonal trajectories.

7.7 OBLIQUE TRAJECTORIES IN CARTESIAN
COORDINATES:-

Let the equation of the given family of the curv

flx,y,¢)=0 ..(1)
Where c is parameter.
Differentiating (1)w.r.t.x and eliminating c, between (1) and given curves
(1), we have

F(x,y,dy/dx) =0 ..(2)

A Q A member of
family of curves

Trajectory

Fig.3
Let 1 be the angle between the tangents PT to the member PQ and x —
axis at any point P(x,y), then we have

Department of Mathematics
Uttarakhand Open University Page 182



ADVANCED DIFFERENTIAL EQUATIONS-I MAT 504

tany = Z—i - (3)

Let (X,Y) be the current coordinates of any point of trajectories. At any
point of intersection P of (2) with PQ’, let Y’ be the angle which the

tangent PT’ to the trajectories makes with x — axis.

Cody
tany =% .. (4)

Suppose PT and PT' intersect at angle «, then we get
(dy/dx)-(dY /dX)

1+(dy/dx)(dY/dX)

dy _ (dy/dx)+(dy/dX)

dx  1—-(dy/dx)(dY/dX)

Now from (2) with trajectory, we get

x =X, y=Y

Eliminating x, y and dy/dx from above equations, we have

tana =

so that

dy/dx) +t
Flxvy, (dy/dx) + tana
1 — (dy/dx) tana
Hence, which is the differential equation of required family of trajectories.
Now
F(x,y,dy/dx) =0
(dy/dx)+tana \ _
F (X, Y 1—(dy/dx) tana) -
(dy/dx)+tana ]

Showing that it can be obtained by replacing dy/dx by [1—(dy/dx) —

i.e., (p+tana)/(1— ptana)wherep = dy/dx.

EXAMPLE: Find the family of the curves whose tangents form the angle
of % with the hyperbola xy = c.
SOLUTION: Let the given curve

Xy =c ..(1)
where ¢ is parameter
Differentiating (1),
y+x(dy/dx)=0 or y+px=0, wherep =dy/dx

R p+tan(§) . p__|_1 . . R R
Replacing p by —1_(2) ; (n) A the differential equation of desired

Py
family of curves is
p+1 _y+x dy (/x)+1

1_px=0 or p y—x or a_—(y/x)—l

y+
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. d
Suppose% =v, i.e, y=vx  sothat é =v + (dv/dx)
. d +1 d 2_2p—1
From above equations v + — = — or w_ _v-w
dx v-1 dx v—1

e (e e L

Integrating, 2logx = —log(v? — 2v — 1) + logc,

¢ being an arbitrary constant.

log x% + log(v? — 2v — 1) = logc or x> @W-2v-1)=c
Putting the value of% = v in above equation

x? ((%)2—23;'—1> =c

x2—2xy—y*=c
SELF CHECK QUESTIONS

1. Find the orthogonal trajectories of the family of parabolas y? =
4ax.
2. Find the orthogonal trajectories of the system of the curve
2
@) =%
3. Which among the following is true for the curve r™ = a sinn6
a. Given family of a curve is self orthogonal.
b. Orthogonal trajectories is r™ = kcosn6. Where k is constant.
c. Orthogonal trajectories is r™ = kcosecnf. Where k is
constant.

d. Orthogonal trajectories is r™ = ksinnf. Where k is constant.
4. What is oblique trajectories?

7.8 SUMMARY::-

In this unit we studied the trajectories of the family of the curve,
orthogonal trajectories and oblique trajectories with example.

7.9 GLOSSARY:-

e Trajectory: The path followed by an object as it moves through
space, often influenced by forces such as gravity, friction, or other
interactions.
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e Cartesian Coordinates
e Oblique trajectories
e Polar Coordinates

7.10 REFERENCES:-

Daniel A. Murray (2003). Introductory Course in Differential
Equations, Orient.

B. Rai, D. P. Choudhury & H. I. Freedman (2013). A Course in
Ordinary Differential Equations (2nd edition). Narosa.

7.11 SUGGESTED READING:-

N.P.Bali (2006). Goldan Differential Equations.
M.D. Raisinghania,( 2021). Ordinary and Partial Differential equation
(20" Edition), S. Chand.

7.12 TERMINAL QUESTIONS:-

(TQ-1) Find the orthogonal trajectories of the family of curvesy = ax?, a
being a parameter.

(TQ-2) Find the orthogonal trajectories of the family of curves3xy =
x3 — a3, a being a parameter.

(TQ-3) Find the orthogonal trajectories of x? + y? = 2ax.

(TQ-4) Find the orthogonal trajectories of the family of curves:

a 2 42 _ 1 2being the parameter

Coaz o w2+ gthep '
x2 yZ _ .

b. pri = 1, A being the parameter.

(TQ-5) Find the orthogonal trajectories of the family of parabolas y? =
4a(x + a), where a being a parameter.

(TQ-6) Find the orthogonal trajectories of the family of cardioids r =
a(1l — cos0), where a being a parameter.

(TQ-7) Find the orthogonal trajectories of the family of cardioids r =
a(1 + cosB), where a being a parameter.

(TQ-8) Find the orthogonal trajectories of r = a(1 + cosn®).

(TQ-9) Find the orthogonal trajectories of r"*sinnf = a™.
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(TQ-10) Find the orthogonal trajectories of the family of parabolas r =

(1+cos@) where a being a parameter.

(TQ-11) Find the orthogonal trajectories of the family of curves:
i y =ax™.
ii. y = ax3.
iii. y = 4ax.
iv. x?+y? =a’
V.

7.13 ANSWERS:-

SELF CHECK ANSWERS
1.2x2+y%2 =k,
2.9a(y + ¢)? = 4x3,
3.b,
4. A curve which intersects the curves of the given family at a constant
angle «a is called an oblique trajectory of the given family.

TERMINAL ANSWERS
T +X =1

202 ' b2
(TQ-2)x? =y —(1/2) + ce™®
(TQ-3) x* +y* = cy
(TQ-4)
a.x?+y%—2a%logx =c
b. x* + y% — 2a’logx = ¢
2
(TQ-5)y = 2x Z—z +y (Z—z)
(TQ-6) r = b(1 + cosB)
(TQ-7)r = b(1 — cosh)
(TQ-8) r™ = b(1 — cosnh)
(TQ-9) r"*cosnf = c"
2c
(TQ-lO) r= (1—cos0)
(TQ-11)
i. x2+ny?=c
ii. x2+3y?=c
iii.  2x%+y?=c?
iv. y=cx
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UNIT 8:- INTEGRAL CURVES AND
DAMPED OSCILLATION

CONTENTS:

8.1 Introduction

8.2  Objectives

8.3  Integral Curves

8.4  ODE (in Local Charts): Existence, Uniqueness and
Smoothness

8.5  Damped Oscillation

8.6  Damped Harmonic Oscillation

8.7  Logarithmic Decrement

8.8  Power Dissipation in DHO

8.9  Quality Factor

8.10 Summary

8.11 Glossary

8.12 References

8.13  Suggested Reading

8.14  Terminal questions

8.15 Answers

8.1 INTRODUCTION:-

In this previous class, you have already studied

e About Trajectories.

e About orthogonal trajectories in Cartesian coordinates.

e About Orthogonal of trajectories in polar coordinates.

e About Oblique trajectories in Cartesian coordinates.
In this unit, we will study the integral curves and damped oscillation and
concepts that are closely related in the study of differential equations
particularly in the context of damped harmonic oscillators. Understanding
the behavior of integral curves and damped oscillation is essential for
analyzing and modeling various physical systems.
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8.2 OBJECTIVES:-

After studying this unit you will be able to
e Understanding the Integral Curves and ODE in Local Chart with
theorems.
e To visualize and understand the behavior of solutions to the ODE.
e To discuss about damped Oscillation.
e To analyze and understand the behavior of the system undergoing
damped oscillation.

8.3 INTEGRAL CURVES:-

An integral Curve is a parametric curve that represents a specific solution
to the ordinary differential equation represented by the vector field.
Geometrically, they are curves so that the given vector field is the tangent
vector to the curves everywhere.

Here is an example of vector fields with many integral curves drawn:

4

Above conception of integral curves can be generalized to smooth
manifolds easily. Recall that a smooth curve in a smooth manifold M is
smooth map

y:l->M
where [ is an interval in R.¥ ael, the tangent vector of y at the point y(a)
is given below
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7@ = L @ = v, (%)

Where % is the standard coordinate tangent vector of K.

Definition: Let X € I'°(TM) be a smooth vector field on M. A smooth
curve y: I - M is called an integral curve of X if forany ¢t € I,
() = Xy

EXAMPLES:
Lemma 1.2. If y: I — M is an integral curve of a vector field X, then

1. Letl,={-= €1} then

Yaila > M, Ya(t) =y(t+a)
is an integral curve of X.
Solution: Suppose the vector field X = % on IR, then the integral curves

of X are the straight lines parallel ti x* — axis, parameterized given as
below

V(t) = (Cl + t, C2, ey Cn)'
Now we note that v the smooth function f on R, we get

d d dy of
dY(E>f=E(f0Y)=V Tt Il

Note: The curve

7(@) = (¢, + 2t,¢5,..,¢)
Has the same picture as y, it is not an integral curve of X, but an integral

curve of 2X, since ¥ = 2 %.
a_ [t
2. Let]® = {at € I}, (a #0) then

yaI1¢-M, vt =y(at)
is an integral curve of X* = aX.

Solution: Suppose X = x% — y;—x onR?. Then if y(t) = (x(t),y(t)) is
an integral curve of X, ¥ f € C*(R?), then we get

’ 0 1 0 d d i)
X O+ L=V =X f =x©O L -y
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Which is equivalent to this system is
x'(t) = —y@), y'(@) = x()

Since the solution of the system is given by

x(t) = acost — bsint, y(t) = asint + bcost
These are circles centre at the origin in the plane parameterized by the
angle.

8.4 ODE (LOCAL CHARTS): EXISTENCE,
UNIQUENESS AND SMOOTHNESS:-

To study further properties of integral curves, we need to convert the
equation y(t) = X, in to ODEs on function defined on Euclidian

region. The following nice local formula for a vector field, whose proof is
left as an exercise:

Lemmal.3. Let X be a smooth vector field on M. Then in Local chart
(p,U,V) we have X =Y X(x)a;, where x:U—> R is the it*
coordinate function defined by ¢.

Proof: Suppose y:1 — M be an integral curve of X.Since y(t) = X, ata
given point y(t), assume y(t) € U and (¢, U, V)0 is coordinate chart.

By using the Local Chart map ¢, one can convert the point y(t) € U to

o(y(®) = (xl()/(t)), ...,x"(y(t))) € R"

If we denote y' = xloy:I —» R, then convert the equation defining
integral curves into equations on these one-variable functions y¥s.
According to previous lemma, we obtain

1O = ar. () = . ar () 699 = Y (op) @,
=2.0) s,
So that y(t) = X, (s becor;]es

DOV ®=) X (r®)a =) X og (y'(®), . y"(©)d; V ¢

i i i
€ I

Now we convert the following system of ODEs on the one-variable

functions (y¢)’s.

(yi)’(t) = ZXi op 1y, ..y™), vtel, V1I<i<n
i
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Hence this is a system of first order ODEs on the (one-variable) functions
y' = x'oy:R = R. conversely, any solution of a system of ODEs defines
an integral curve of the vector field X inside the open set U.

8.5 DAMMPED OSCILLATION:-

The oscillation which takes place in the presence of dissipative force are
known as damped oscillation.

Here amplitude of oscillation decreases w.r.t.time
e Dampingforcealwaysactsinaoppositedirectiontothatofmotionandisvelo
citydependence.
e Forsmallvelocitythedampingforceisdirectlyproportionaltothevelocity
Mathematically
F; xv
Fy=—bv (1)

8.6 DAMMPED HARMONIC OSCILLATION:-

Suppose a body of mass m oscillating under a spring force of constantk.
Let x be a displacement of a body from equilibrium position at any instant

and instantaneous velocity is Z—’z.The force acting on a body at this instant
are:

I A restoring force proportional to displacement, but acting in
the opposite direction, which can be written as
—kx
Where k is constant.
ii. A frictional (Damping) force proportional to the velocity, but
opposite to the direction of motion, which can be written as

dx
—b E
where b is a positive constant.
So the net force acting on a body is
dx
F=—-kx—»b It

But by Newton’s Law F = m(d?x/dt?), where m is mass of the body
and d?x/dt? is the instantaneous acceleration, then we get
d?x dx

mﬁz —kx—bE

Department of Mathematics
Uttarakhand Open University Page 191



ADVANCED DIFFERENTIAL EQUATIONS-I MAT 504

d?x dx
mﬁ +kx+b E =0
Substituting % = 2r and % = w?, we have

ax v T o0 L)
mdtz w"X Tdt—

Hence this is the homogeneous linear differential equation of second
order.

Now let x=Ce™

where C and « are arbitrary constants.

Differentiating w.r.t. to t, we obtain

dx _ Caett
Pl ae
And
d?x
ﬁ = Ca?e?

. d?x d . .
Putting the value ofd—;,d—f and x in above equation, we have

Ca?e® + 2rCae® + wte® =0
Ce* (a? 4 2ra+w?) =0
a’+2ra+w? =0
a=r+ri—w?
The general solution of (1) for r # w is
X = Cle{‘”m}t + Cze{‘r‘ r2-w?t ..(2)
Where C, and C, are arbitrary constants depends on the initial position and
velocity of oscillator. Depending on the values of » and w, three types of
motion are possible. Such as
Under Damping (r? < w?)
Over Damping(r? > w?)
Critical Damping (r? = w?)

l. Under Damped r? < w?:
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underdumped
I
NG
critically damped
overdamped ;
time
5 >
Fig.3.
So r’—w? = —ve
Hence Vri—w? = J—(0? —12) = i’

Where w' = Vw? —r?
Hence the solution becomes

x = Cle{—r+iwr}t + Cze{—r—iwl}t

x = e—rt[Cle{iwr}t + Cze{—iwr}t]

x =e " [C,(cosw't + isinw't) + C,(cosw't — isinw't)]
x=e [(C; + C)cosw't + i(C; — Cy)isinw't]

Substituting €, + C, = a singand i(C; — C,) = acos¢p, where a and ¢
are arbitrary constants, then we have
“"ta sing cosw't + iacosp sinw't]

x=e "tsin(w't + ¢) = e "tsin (\/wz —rit+ d)) ..(3)
Equation (3) represents damped harmonic oscillation with amplitude
ae~ " which decreases exponentially with time and the time period of

X =e€

—.w_zz’irz which is greater than that in absence of damping.

Example: Motion of simple pendulum.

vibrationis T =

. Over Damped r2 > w?:
In this case Vr2—w? is real and less than r. Therefore from (2), both

{—r £ Vr2—w?} are negative. Its means that the displacement of x of the
particle continuously decreases with time and when once displaced returns
to its equilibrium position quite slowy without performing any oscillation.
This motion is called over damped or a periodic motion and it shown by
figure 3.
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I1l.  Critical Damped 1? = w?:
If we substituting 2 = w? in equation (2), then this solution does not
satisfy equation (1).
Hence

Jr—wl=h

x = Cle{—r+h}t + Cze{—r—h}t

= et (CeMt + el

=e " (C,(1+ht+-)+C,(1—ht+-))
= e " [(C; + C,) + ht(C — C,)]
=e " [D + Et]

Where D = (C; + C,) and E = h(C — C,)
Above Fig.3. is clear that in case the particle tends to the position of
equilibrium much rapidly than when 72 > w?(Case Il). Hence the motion
is called critically damped motion.

8.7 LOGARITHMIC DECREMENT:-

This measures the rate at which the amplitude dies away. Let

x =ae "cosw't
Sox =agatt=0and a,,a,,as ... bethe amplitudes at time t =
T,2T,3T ... where T is period oscillation, then we get

a, = ape™"T
a, = age %"
as = age 3T
Now
Qp a1 a4y
_—_—_—...e‘rT:e/’l

a, B az B as B
Where A(= rT = bT /2m) is Logarithmic decrement. Hence
Qo a, az
A= logea—1 = logea—2 = 1ogea—3 = .
Hence it is clear that the Logarithmic decrement is the logarithm of the

ratio of two amplitudes of oscillation which are separated by one period.

8.8 POWER DISSIPATION IN DHO:-
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Whenever a system is set into oscillations, it is subject to frictional
(damping) forces arising from air resistance or from within the system
itself. These forces oppose the motion of the system. The work done
against these forces is dissipated out of the system as heat. Therefore the
mechanical energy of the system continuously decreases with time, and
the amplitude of oscillation gradually decays to zero. Suppose obtain an
expression for this power dissipation from the oscillator.
Now the damped harmonic oscillator is given by

x =ae "tcosw't .. (1)
Where a and ¢ are arbitrary constants, r is damping constant and w' =
Vw? —r? is the angular frequency of the (damped) oscillator. w is the
angular frequency of undamped oscillator, k being the force-constant.
Hence

dx

u=-_o== e Tt [—rsin(w't + ¢) + w'cos(w't + ¢)]

Now the damping is very small so that r < w, then the term —rsin(w't +
¢) in the equation for u can be neglected and we can write
u=ae "w cos(w't+¢) ..(2)

Now the total energy can be written as
E = kinetic energy + potential energy

1 1
O Sl T
> mu‘ + > kx
Putting the values of x and u from (1) and (2) , we have
1 1
E = Emaze‘zrta)’ cos?(w't + ¢) + Ekaze‘zatw' sin?(w't + ¢)
Again, since r < w, then we have
a)’2=a)2—1"2=a)2=E
m
1 k 1 _
E = Emaze‘zrt (E) cos?(w't + ¢) + Ekaze‘zrt sin?(w't + ¢)
1
= zkaze‘zrt(cosz(w’t + ¢) + sin?(w't + ¢))
1
E= Ekaze‘zrt

This is that the energy of the oscillator decreases with time. The rate at
which the energy is lost is the power dissipation P.

dE 1
_ - __ 2,-2rt(__
P 7t 2ka e (-2r)
1
= Ekaze‘z”(Zr)
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From above equation becomes

P =2rE ..(3)
Relaxation Time: The relaxation time is the time taken for the total
mechanical energy to decay to 1/e of its original value. If the energy is E,
att = 0, then

E ! ka?
0= a
Since E = Eje™?"
Now if T be the relaxation time, thenatt = t,and E = Eef" we get
& — Eoe—ZTt
e—l — e—Zrt
—1=-2rt
1
te 2r
Putting the value E and t in (3), we have
P =2rE
p==
T
E = Eje™t/m

The dissipated energy appears as heat in the following oscillating system.

8.9 QUALITY FACTOR:-

The quality factor Q of an oscillating system is a measure of damping, or
the rate of energy decay, of the system. It is defined as 2w times the ratio
of the energy stored in the system to the energy lost per period.

energy stored in system

=2
¢ & energy loss per period

Mean Life-time: The mean life time of damped oscillator is the time
taken for the amplitude of oscillation to decay to 1/e of the initial value.
Relation between Quality Factor and Relaxation Time:

The quality factor is

energy stored in system
Q =2m

energy loss per period

If E is total energy of oscillator and P is the rate of energy decay, then
E
=2 —
¢=2mpr
Where T is the period. Now if T be the relaxation time, then
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E

P==

T

So that
27T

E
= 2 =
C=mGE T T
But 2?” = w, the angular frequency of oscillator, therefore

Q = wrt
Which is required solution.

SOLVED EXAMPLES
EXAMPLEL: The differential equation of oscillating system is
d?x dx 5
FTE] + ZT'E +wx=0
If w > r, then find the time in which
i Amplitude becomes 1/e of its initial value.
ii. Energy becomes 1/e of its initial value.
iii. Energy becomes 1/e* of its initial value.
SOLUTION: The given equation with condition w > r, is the equation of
Harmonic oscillator is
x = ae "sin(w't + @)
Where a and ¢ are arbitrary constants and w’ =./(w? —r?)and
amplitude is ae ™.
I Suppose a, be the amplitude at t = 0 and a,/e att. Then we
obtain

ao =a
and

—rt rt

Qg
e

_ _ 1
Now elze”:>—1=—rt:>t=;sec.

ae "t =qpe”

ii. The energy of damped oscillation is given by
E = Eje %"t
When the energy falls to E,/e, we obtain
fo =Ee ¥t osel=e? s 1==2rtt= lsec.
e 2r
iii. When the energy falls to E,/e*, we obtain

Eo

=F e—2rt
0
et

2
e t=e M 5 4= "2rt=>t= ;sec.
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EXAMPLE2: The quality factor Q of a tuning fork is 5 x 10*. Find the
value of time-interval after which its energy becomes 1/10 of its initial
value.
SOLUTION: The quality factor of a damped oscillator is given below
Q =wrt
Where w is angular frequency and t is relaxation time. Then
Q

T=—
w

Here Q = 5 x 10* and w = 2mn = 600 1/ sec.
5 x 10%

T =
600m

Sec.

Now, the energy of damped is
E = Epe 2"t = Ejet/" [+ T=1/2r]
Let the time-interval ¢t' which the energy becomes1/10 of its initial value.

Now substituting EE =2 andt’ = ¢ inthe last expression, we obtain
0

10
11
1010 ¢
10 =et'/7

tl
log, 10 = p

—tr/t

t' =tlog, 10
5x 10*

~ 600 x 3.14
EXAMPLES: A body of mass 0.2kg is hung from a spring of constant

80 N/m. The body is subjected to a resistive force given by bv, where v
is the velocity in m/s. Calculate the value of the undamped frequency and
the value of t if the damped frequency is \/3_/2 of the undamped
frequency.

SOLUTION: The undamped frequency of mass m suspended by a spring
of force-constant k is given below

X 2.3 = 61sec.

1k
n_Zn m
Here m = 0.2kg and k = 80N /m
_1 (80 _10_ . o,
"Conlo2T T T

The damped frequency n' isn’ = %\/wz —7r?
Where w = \/k/mand r = b/2m.
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, 1 [k X
= o dm
Butn' = ?n
1 |k _ 5, _ 310
2w\ m - 2 T
X _r2=300 [+ £ =2 = 400]
m m 0.2
400—-71r2=300=r =10
Therefore, the relaxation time is
1
T= 50" 0.05sec.

EXAMPLEA4: Q is a sonometer wire is 2 x 103. On plucking, it executes
240 vibrations per second. Calculate time in which the amplitude
decreases to 1/e? of the initial value.

SOLUTION: The quality factor is

Q =wt
Here Q =2x 103 and w = 2nn = 2 X 3.14 X 240571
Q 2 %103
T T Zx314x2a0 1478
Now
If a, be initial amplitude and j—g the amplitude after time [ then, we get
g =aqge
e‘2=e‘”:>2=rt:>t=§=4t [t=1/2r]
=4x1.327=52s
SELF CHECK QUESTIONS

1. Due to damping, the period of an oscillator slightly increases.
(True/False)

2. The relation between quality factor Q@ and relaxation time t of an
oscillator is g = wt. (True/False)

8.10 SUMMARY::-
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In this unit we studied the Integral Curves, ODE (in Local Charts):
Existence, Uniqueness and Smoothness and Damped Oscillation with
suitable example.

8.11 GLOSSARY:-

e Integral Curve: A curve in a vector field that represents the path
traced by a particle moving according to the field's vector values at
each point.

e Damped Oscillation: A type of oscillatory motion in which the
amplitude of the oscillation gradually decreases over time due to the
presence of damping forces or resistances.

e Oscillation: A repetitive and periodic motion around an equilibrium
position.

e Quality Factor (Q): A measure of the sharpness of resonance in a
damped system, calculated as the ratio of the natural frequency to the
damping rate.

e Underdamped, Overdamped, and Critically Damped: Different
classifications of damped systems based on the value of the damping
ratio with respect to certain thresholds.

8.12 REFERENCES:-

e George F. Simmons(2017) 2" edition Differential Equations with
Applications and Historical Notes

e Morris Tenenbaum and Harry Pollard (1985) Ordinary Differential
Equations.

8.13 SUGGESTED READING:-

e John R. Taylor (2004) Classical Mechanics.
e Shepely L.Ross (2007) 3" edition Differential Equation.

8.14 TERMINAL QUESTIONS:-

(TQ-1)Find the equation of motion for damped harmonic oscillator and
discuss the cases of under, over and critical Damping’s.

Department of Mathematics
Uttarakhand Open University Page 200



ADVANCED DIFFERENTIAL EQUATIONS-I MAT 504

(TQ-2)Discuss logarithmic decrement for a damped harmonic oscillator.
(TQ-3)A particle is oscillating under a damping force. Show that the
power dissipation is P = E/t, where E is the average energy and t the
relaxation time. What happens to the dissipated energy?
(TQ-4) Define quality factor, mean life-time and relaxation time for a
damped harmonic oscillator.
(TQ-5) Obtain a relation between quality factor and relaxation time.
(TQ-6) Explain the effect of damping on oscillatory motion.
(TQ-7) If the relaxation time of a damped harmonic oscillator is 50
second, find the time in which

i. The amplitude falls to 1/e the initial value.

ii. Energy of the system falls to 1/e times the initial value.

iii. Energy falls to 1/e* of the initial value.
(TQ-8)The oscillations of a tuning fork of frequency 200 cps die away to
1/e times their amplitude in | second. Show that the reduction in
frequency due to air damping is exceedingly small.
(TQ-9)A damped vibrating system starting from rest has an initial
amplitude of 20 cm which reduces to 2cm after 100 complete oscillations,
each of period 2.3 second. Find the logarithmic decrement of a system.

8.15 ANSWERS:-

SELF CHECK ANSWERS

1. True
2. True

TERMINAL ANSWERS

(TQ-7) i. 100sec. ii. 50 sec. iii. 200 sec.
(TQ-9)  0.023
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UNIT 9:- FUNDAMENTAL EXISTENCE
THEOREM

CONTENTS:

9.1 Introduction

9.2  Objectives

9.3  Fundamental Existence theorem

9.4  Almost linear system

9.5 Stable and unstable critical point

9.6  Stability properties of the critical point
9.7  Liapunov’s function

9.8  Theorems on stability and unstability by Liapunov’s function
9.9 Summary

9.10 Glossary

9.11 References

9.12 Suggested Reading

9.13 Terminal questions

9.14 Answers

9.1 INTRODUCTION:-

In the previous units you should have already studied

An Autonomous system:- A system of two first order differential
equations of the form

L= fooy), 2= gxy) (1)
is said to be autonomous, when the independent variable t does not appear
explicitly.
That system (1) gives the slope of a path passing through a point P(x, y)
as

dy _ g(xy)
ax — fxy) ~(2)
— d_x — f(x'Y)-
If f(x,y) =0 but g(x,y) # Oat P, we can take ™ g—(x'y)lnstead of (2)

and conclude from Z—; = 0 that the tangent at P is vertical.
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Phase Plane:- If f (x,y) and g (x,y) be continuously differentiable
functions in some region R in the xy- plane, then xy - plane is called the
phase plane of (1)

Critical Point:- A critical point of the system (1) is a point (x,,y,) at
which both f (x,y) and g(x,y) are zero.The nature of the critical point
(0,0) i.e., node, saddle points, spiral, centre of the system (1) is determined
by the nature of the eigenvalues.

9.2 OBJECTIVES:-

After studying this unit you will be able to

e Describe the Fundamental Existence Theorem.

e Understand and explain the concept of stability.

e Investigate the stability of the trivial solution x = 0,y = 0 of an
autonomous system.

e Understand the Liapunov function.

9.3 FUNDAMENTAL EXISTENCE THEOREM:-

For the first order differential equation

y=fGy) .. 1)
y(x0) = ¥o
Consider the rectangular region T defined by |x — xy| < cand|y — y,| <
d in this region, centre is the point (x,, y,).Let the function f and i—; is

continuous at each point in T.Then there exists an interval,|x — x,| < h
and a function ¢(x)that has the following properties:

(@) vy = ¢(x) is asolution of equation(1) in the interval|x — x| < h

(b) @(x)satisfies the inequality |¢#(x) —yol <d in the interval

|x —xol < h

(©) #(xo) =0

(d) ¢(x)is unique in the interval |x — xo| < h
PROOF: We shall prove this theorem by the method of successive
approximations. Let us define a sequence of functions
Vo (), v, (x),y,(x), ... vy, (x), ... as follows:

o) = yoy1(x) = yo + [ F(t,30(D)dt,
() = yo + [ ftym(©)de, ...()
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V() = yo + [ f(tyn-1(®©)dt
We shall divide the proof into next three sections. Since f is continuous in
the rectangle T. It follows that f must be bounded in T. Let M > 0 be a
number such that |f(x,y)| < M for every point in T. We now take h to

be the smaller of the two numbers ¢ and %, and define the rectangle R to

be the set of points (x, y) for which|x — x,| < h,|ly — yo| < d.
LEMMA 1:1f |[x — x,| < h then

|yn(x) —yol <d forn=1, 2,3,.........
The proof of this lemma will be accomplished by induction on n.
If |x — xo| < h, Then

20 = yol = |[2 F(t.y0(®)dt| ... by (2)

X
[(a
Xo
< M|x — x,|

< Mh

<d
This proves the desired result for n=1. Now suppose that it is true for k
ie., for |x—xol <h |ly,(x)—y,| <d, it follows that the point

(x,y, (x)) isin R so that |£(x, y, (x))| < M . Thus

<M

X
s = ol = || Fe )t
X
< M|x —OxOI
< Mh
<d
Which shows that (x, y,,1(x)) lies in R. Thus we can say if|x — x| < h,
then the point(x,y,(x)),n =1,2,3 ......... . are in R which is a slightly

different way of saying Lemmal. The Lipschitz condition may now be
used to deduce the following lemma.

LEMMA 2:If |x — x| < h then
|f(x' yn(x)) - f(x' Yn—l(x))| < Kl}’n(x) - :Vn—l(x)l

We are now in a position to give an inductive proof of still another lemma.
LEMMA 3:If |x — x,| < hthen

MK L x—xo|® _ MK" 1pn

|y (%) = Y1 (0| < — s——forn=123.. ..(3
We have already verified (3) for n =1 in Lemma 1 where we have
shown that
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ly1(x) = yol < M|x — x|
Assuming that

Kn—le_xoln—l

Yn-1(0) = Ynoa (] < =25 - (4)

We now show that

MK™ Y x — xo|™
|y () = Y1 ()] < ——

We will prove this for the case x, < x < x,+ h .
f;o[f(t» Yu-1(0) — f(¢, yn_z(x))]dt| using (2)
< [ s ®) = £ty @)] et

Using Lemma 2 we conclude that

lyn () = yn—1 ()| =

X

() = yuos ()] < K f Y1 (8) = yn_a (O)11de]

X0

MK" 1 .x _ n-1 )
= (n-1)/ fx0|x xo' dtusmg (4)
MKn—l n
Or [y (x) =Yg ()| < =Y, |x — xo] .(5)

For the case x, — h < x < x,, the same type of argument will yield the
same result which completes the proof of the Lemma.
To utilize the results of Lemma 3 we now compare the two infinite series

n—1,n
Y2 v () — ypoi(x)]andY_, —MK(n) /h

The second of these series is an absolutely convergent series. Moreover,
by Lemma 3 the second series dominates the first series. Hence by the
Weierstrass’s M test the series

=1 (%) = ¥4 (x)] .. (6)
Converges absolutely and uniformly on the interval|x — x,|<h. If we
consider the k" partial sum of the series (4)

k
D ) = s (0]

= [y1(0) = ¥ ()] + [y2(x) —y1 ()] ... ...

+ [y () = Y1 (0],
We see that Y% _; [y, (x) — Y1 ()] = v (x) .
That is the statement that the series (6) converges absolutely and
uniformly is equivalent to the statement that the sequence y, (x) converges
uniformly on the interval |x — x| < h .
If we now definef (x) = Tllerolo Vi ()
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And recall from the definition of the sequence y, (x) that each y, (x) is

continuous on|x — x,|<h, it follows (since the convergence is uniform)

that @(x) is also continuous and @(x) = limy,(x) =y, +
n—o0

lim [ £(t, yp-1(D))de
Because of the continuity of f and the uniform convergence of the
sequencey,(x), we may interchange the order of the two limiting
processes to show that @(x) is a solution of the integral equation.

0() = yu + [ f(6,0(0)dt (7)
It follows immediately upon differentiation of equation (7) that @(x)is a
solution of the differential equation y = f(x,y) on the interval|x — x,| <
h. Furthermore, it is clear from equation (7) ¢(x,) = v,.
Finally, since it have shown in Lemma 1 that |y, (x) — y,| < dfor each n
and for |x — x| < h, it follows that the same inequality must hold for
O(x) = 111i_r)£10yn(x) that is if ,|x — x| < h then |g(x) — y,| < d.

This completes the proof of parts (a), (b) and (c) of the existence theorem.

9.4 ALMOST LINEAR SYSTEM:-

Consider the non —linear system of the form% =a;x + by + fi(x,y)

%z ax + by + f(x,y) (1)
The system (1) can be written in matrix form as
a®_( bl) X <f1(x» Y)>
dt (y) a (az b, (y) - f2(x,y) +(2)

wherea, by a, b, are constants.

By dropping the non linear termsf; (x, y)andf, (x, y), the related linear
system is

dx
P a,x + by
a
d_lt/ = ayx + byy (3)
For system (2) let us assume that
a; by
(@) a, b, * 0

then the related linear system (3) has (0,0) as a critical point.
(b) f1(x,y)andf, (x, y) are continuous and have continuous partial
derivatives for all (x,y).
. fl(x:J/) _
© (x,yl)lir(lo,O)sz+y2 =0
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. f2(0y)

(x,yl)lirgo,O) Nz 0 ...(4)
Then (0,0) is said to be simple critical point of the system (2) and system
(2) is called almost linear system.

9.5 STABLE AND UNSTABLE CRITICAL POINT:-

DEFINITION1-(Stable and Unstable): If X(¢) = (x(1),¥(1)), Xo = (x0,¥,)
and X* = (x*,y") then the critical point (x*,y*) is said to be stable
provided for given € > 0 there exists asd> 0 such that |(X(t) — X*| <
ewhenever|X, — X*| < §,v t > 0. The critical point(x*,y*)is said to be
unstable if it is not stable.

DEFINITION 2-(Asymptotically stable): The critical point (x*,y*) is
asymptotically stable if it is stable and every trajectory that begins
sufficiently close to (x*,y*) also approaches (x*,y*)as t - wi.e., for 6>
0, (x*,y") also approaches (x*,y*)ast — od.e., for 6> 0,

(X () —X"|<e

:t_}lmx(t):x *

9.6 STABILITY PROPERTIES OF CRITICAL
POINT (0, 0):-

Consider the linear autonomous system of the form

d d
d—f = a;x + by, d—jt/ = a,x + b,y ..(1)
b
we may assume that|** 71| % 0
a, b,

Clearly the system (1) has origin (0,0) as a critical point.

. . . d (X X
System (1) can be written in matrix form as —= (y) =A (y)

where the coefficient matrix A = (al bl).
a, b,

Then,eigen values of A are the roots of the characteristic equation
| A‘}LI | = OOI' 7\.2_(a1 + bz)}\, + (albz - azbl) = 0 ....(2)
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4q

Asymptotical Stable Unstable
stable

Spiral @ @ Spiral
pE—4g=10

Centre

]
Unstable

Saddle

Fig.1

Now if 2;and A,are the eigen values, then the equation (2) can be written
in the form

(A-A)(A-Ay) = A2 +pi+q=0 ..3)
wherep = —(A; + A,) = —(a; + b,) and g = A h, = (a1b, — ayby)

—pt [p—4q

Equation (3) gives A = >
ie e A = -p+yp?-4q
CyM\, 2 —2

Above the parabolap? — 4q = 0, we havep? — 4qg < 0,s0 A, and A,are
conjugate complex numbers.If bothi, andi,have non-negative real
parts,then the critical point, which is a spiral point, is unstable and if
bothA,and,have non positive real parts then the critical point, which is a
spiral point,is asymptotically stable.Again if p = 0 then bothi, andA,are
pure imaginary. In this case the critical point, which is a centre, is stable.
Below the p-axis we have g < 0 which means that 1, and A,are real,
distinct and have opposite signs. In this case the critical point, which is a
saddle point, is unstable.

In the region between p? —4q = 0 and g > 0, A,and A, are real and of
the same sign so in this case the critical point, which is a node, is
asymptotically stable. On the basis of the theory given above, a stability
criterion is given in table 1 and figurel, which at a glance shows the
nature and stability properties of the critical point(0, 0).

Tablel
Linear system Almost linear system

n,

Type Stability Type Stability
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A <A, <0 | Node Asymptotically stable | Node Asymptotically
A >2A,>0 | Node Unstable Node stable
A, >0>1, | Saddlepoint | Unstable Saddle point | Unstable
A, =21, >0 | Node Unstable Node or S, Unstable
A, =21, <0 | Node Asymptotically stable | Node or Syp Unstable
Asymptotically
stable
Al’ 12 = A i lﬂ
A>0 SpP Unstable Syp Unstable
A<0 S,p Asymptotically stable Spp Asymptotically
A=0 Centre Stable Centre or S, stable .
Indeterminate

S,p= Spiral Point

SOLVED EXAMPLES

EXAMPLEL:For the system of equations

d d

d—: =2x+y+ xyz,d—jt/ = x—2y-xy...(1)
Verify that (0, 0) is a critical point. Show that the system is almost linear
and discuss the type and stability of the critical point (0,0).

SOLUTION: For critical points we must have

dx d
— =0, @ _ 0
dt dt

This gives 2x +y + xy?=0

and x—2y-xy=0

Solving these equations we obtain x = 0 and y = 0, Thus (0,0) isa
critical point.

The given system can be written as% =2x+y+f(x,y)

dy
Priata 2y + g(x,y)

where f(x,y) = xy? andg(x,y) = —xy.
Using the polar co-ordinatesx=r cos 6 andy=rsin 9,
We get

X, r3 cos 8sin%6 ,
feey) _ = r? cos Osin?6

r r
which tends to 0 as r tends to O.
g(xy) _ _r*cos@sing

Similarly, = —rcosfsind

T r
which again tends to 0 as r tends 0.

Therefore, system (1) is almost linear.
Also, the related linear system in the neighbourhood of (0,0) is
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dx _ 2x +
ac XY
dy

L= x=2
ac F T

Its matrix form is

a(x 2 1\ (X

E(y) - (1 —2) (y) -(2)
Theeigen values of (2) are the roots of the equation

|2 -1 1 | —0
1 -2-1
>3 -5 =0=4= +V5

Therefore 4, = ++/5 and 4, = —/5
The eigen values are real, distinct and of opposite sign. Therefore the
critical point (0,0) is an unstable saddle point of the system (2).

EXAMPLE 2:For the set of non-linear differential Equations

dx dy
%X TXY =X TY ..(1)
(i) Show that the point (0,0) and (1,1) are equilibrium points of the above
system.

(ii) Show that the point (0,0) is a saddle point and (1,1) is a centre of
above system.
SOLUTION :(i) For the equilibrium points, we have
dx dy
dt—  dt
This givesx —xy=0=x(1-y) = 0=x =0,y =1
-y+xy=0=y(kx—-1) =0=y =0,x =1
Hence (0,0) and (1, 1) are the equilibrium points or critical points.
(ii) In the neighborhood of (0,0), the above given system reduces to related
linear  system

0

dx_x dy _
ac 7’ ac Y

This system can be written in matrix form as

) =0 2D6) Ne

Eigen values of (2) are the roots of the equation

1-2 0 |_
|0 —1—/1|_0
=1-1)(-1-1)=0

== 1, -1

Therefore 4,=1, A,=-1 are the eigenvalues,both are real, distinct and of
opposite sign.Therefore (0, 0) is a saddle point.
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In the neighbored of (1,1),the given system can be reduced to the new
system by putting

x =u+l, y=v+1
dx _dudy dv
dt — dt'dt  dt
Putting these values in (1), we find

du 1 B
E:(u+ )Y(=v) = —v-uv

%:u(v+1) = uv+u

The auxiliary equation of the associated linear system

du_
ac Y
dv_
dat©

Its matrix form is

u — u
% (v)= ((1) 01) (v) -(3)
The Eigen values of (3) are the roots of the equation
°74 == s1=0
= A=0 %i
Le A, =10, A, = —i
These are of the form A + iuwith 4 = 0.Thusu(t) and v(t) oscillate with
constant amplitudes as t increases in closed curve surrounding the
equilibrium point (1,1) and hence (1,1) is the centre.
EXAMPLE 3: Find the critical points of the System

& 2 set6
a7 7
dy B
- XY (1)
SOLUTION: For Critical Points, we must have
dx dy 0
dat ~  dt

This givesy?-5x + 6=0 andx—y=0
Solving these we gety?-5y + 6=0=y = 3,2
Since x=yso (3,3) and(2,2) are the critical points of the system (1).
EXAMPLE 4: Find the critical point of the system
dx
==
dy

= _ 2
it x + 2y

X
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Discuss the type and stability of the critical point and find the general
solution of the system.

SOLUTION: For critical Points we must have
dx dy
a - a
=>x=0and-x+2y =0
On solving these equations we obtain x = 0andy = 0 thus (0,0)is a
critical point.

The given system can be written in the matrix from as

d (x 1 0\/X

E(y) - (—1 2) (y)
The eigenvalues of given system are the characteristic roots of the
equation

=0

1-2 0
-1 2- Al =0
>1-21)D2-1)=0
=>1=1,2.
Since eigenvalues are real distinct and of the same sign, the critical point
is a node. Also, since 1; > 0,4, > 0,it is unstable.
To find the general solution of given system, we find the eigenvectors
corresponding to the eigenvaluesi, = 1,4, = 2.
Eigen vector corresponding to the eigenvalued, = 1 is given by

D626 DE)=()
= (_01 (1)) (;) - (8)

=>-x+y=0

= (})is one possible eigen vector.
Eigen vector corresponding to the eigen value A, = 2 is given by

% 90)-2C 9C)=0)
=2 90)= (o)

=>—-x=0

= ({)is the other possible eigenvector.
Then the general solution of given system can be written as

()=a (e +e Qe

=>x = et
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y = ciet + ce?t
wherec; andc,are arbitrary constants.

9.7 LIAPUNOV’S FUNCTION:-

Let V(x) = V(x4, %3 e o .. X)) be a function of class C in an open
region H containing the origin. Suppose ¥V (0) = 0 and that V is positive
at all other points of H. Then V has a minimum at the origin and we say

that IV is positive definite in H. Obviously the origin is a critical point of V

i.e. a point at which all the partial derivatives LA L 2 vanish.

0xy’ 0xy’ " 0xn
The origin will said to be an isolated critical point, if there is a circular
disk about the origin, such that the origin is the only critical point of V
inside the circular disk. The derivative V along trajectories of an
autonomous system is defined by the equation

. av av av ov
V= E = a—xle(x) + a—xZXZ(X) + ---aXn(x).
If V (x) is positive definite in H and if V < 0 throughout H then V(x) is

said to be a Liapunov's function for the equilibrium point at the origin of
the system z—’; = X(x).

9.8 THEOREMS ON STABILITY AND
UNSTABILITY BY LIAPUNOV’S FUNCTION:-

THEOREM 1:( Liapunov’s Stability Theorem):If for a system
of differential equation %zfi(?ﬁ,& ...xn), i=1,2,........,n there exists a

Liapunov functionV(xLx2 ...xn) of fixed sign whose total derivative‘;—‘:
with respect to time composed by virtue of above system is a function of
constant signs, of sign opposite to that of V,or identically equal to zero,
then the stationary point x; = 0, i = 1,2, ..........nof the above system
is stable.

THEOREMZ2 :(Liapunov sAsymptotic—Stability Theorem):
If for a system of differential equations %:fi(xl,xz ...xn) ,1=1,2,
........ , 1 there exists a function of fixed signV(xl'xz ...xn) (a Liapunov
function) whose total derivative‘;—‘: with respect to time composed by virtue
of above system is a function of constant signs ,of sign opposite to that of
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V' then the stationary pointx; = 0, /i = 1,2,..........nof the above
system is asymptotically stable.

THEOREMS :(Liapunov's Asymptotic—Stability Theorem):
If for a system of differential equations %:fi(%,le xn) , =1,
2,......., n there exists a function V(xl,xz xn) differentiable in the
neighbourhood of the origin of coordinates such that (0,0, ...,0) = 0. If
the total derivative‘;—‘; composed by virtue of above system is a positive
definite function and arbitrarily close to the origin of coordinates there are
points in which the function V(xlpc2 xn), takes positive values, then the
stationary pointx; = 0, i = 1,2, ..........nof the above system is
unstable.
NOTE: There is no general method for constructing Liapunov functions.
Simply a Liapunov function may be sought in the form

V(x,y) = ax? + by?

V(x,y) = ax* + by?

V(x,y) = ax* + by* (a>0,b > 0).

SOLVED EXAMPLES

EXAMPLEL: Using a Liapunov function investigate for stability, the

trivial solution x = 0,y = 0 of the system
dx d

y
—_—— 1 — 3,_=_ -3 3
ac YT e T Y

SOLUTION: We choose x2 + y? as the function V (x, y). It is

. - N . .dv  avd ovd
positive definite. The derivative of the functionV is— = 22,2
dt dx dt 0y dt

— =2x—+ 2y —
at = Far TV ar
= 2x(y —x3) + 2y(—x — 3y3)
= —2x*-6y*
= =2 (x*+ 3y*)

awv . . - . :
ThusE is negative definite function. It follows by Liapunov’s

asymptotic—stability theorem that the stationary point (0,0) of the given
system is asymptotically—stable.
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EXAMPLEZ2: Using a Liapunov function investigate for stability, the

trivial solution x = 0,y = 0 of the system
dx dy
ac =V~
SOLUTION: Let ustake x2 + y? asthe function V(x, y). Itis
positive definite. The derivative of the functionV is v _ovdx + v dy
dt dx dt dy dt
dv dx dy
E = ZXE + Zya
= 2x(y) + 2y(—x)
= 2xy-2yx
=0
It follows by Liapunov’s stability theorem that the stationary point (0,0) of
the given system is stable. It is not asymptotically—stable.

EXAMPLES: Investigate the stationary point x = 0,y = 0 of the

system
ax _ _dy -
N =Y for stability.

SOLUTION: Let us consider the functionV (x,y) = x2 — y?2.
aVv dx 6Vﬂ

.. ) . dv
The derivative of the functionV is— = —— + —
dt dx dt = 0dy dt

av - dx 5 dy
ac ~ “Far ~ Yae
= 2x(x) — 2y(-y)
= 2x2% + 2y?
av. .. - : : N -
2 2 positive definite function. Since arbitrarily close to the origin of

coordinate there are points in which V>0. It follows by Liapunov’s in
stability theorem that the stationary point (0,0) is unstable.

SELF CHECK QUESTIONS
Choose the Correct Option:

(SCQ-1)The nature and stability of the critical point (0,0) of the linear
system of

dx d .
pri —3x + 4y, d—jt/ = —2x + 3yIs
(a) Centre, stable

(b) Centre , unstable

(c) Node, unstable

(d) None of these
(SCQ-2)The type and stability of the critical point (0 ,0) of the system
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dx d
prl 3x + 5y, d—jt'= -5x -3y
(a) Node, unstable
(b) Centre, stable
(c) Centre, unstable
(d) Saddle point, stable
(SCQ -3) Forthesystemx = —x + hy, y = x—y
() The nature and stability of the critical point(0,0) if h=0 is
(a) Node, unstable
(b) Centre, stable
(c) Node, asymptotically stable
(d) None of these
(i) For the same system the nature and stability of the critical point (0,0) if
h<0 is
(a) Spiral point ,unstable
(b) Spiral point , asymptotically stable
(c) Saddle point ,unstable
(d) Node , asymptotically stable
(iii) For the same system the nature and stability of the critical point (0
,0), if 0<h <lis
(a) Node, asymptotically stable
(b) Saddle point, stable
(c) Node, unstable
(d) None of these
(SCQ-4) The type and Stability of the Critical point (0,0) of the system
x = y+x(1-—x%-y?)
y = —x +y(1l—x2%-y?)is
(a) Spiral point ,unstable
(b) Node, unstable
(c) Saddle point, unstable
(d) None of these
(SCQ-5) The type and nature of critical point (0, 0) of x = x, y = 2y
is
(a) Node, unstable
(b) Saddle point, stable
(c) Spiral point, stable
(d) None of these
(SCQ-6)The nature of critical point (0,0)of x = x+3y, y =3x+y
is
(a) Unstable
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(b) Stable
(c) None of these

(SCQ-7)The stability of the trivial solution x =0,y =0 of the

d d . . . .
systemd—’t‘ = —x, d—f = —y using x2 + y? as aLiapunov function is

(a) Unstable
(b) Asymptotically stable
(c) None of these

(SCQ-8)The stability of the trivial solution x =0,y =0 of the

d d . . . .
systemd—’tc =y, d—lt’ = —x using x2 + y2 as aLiapunov function is

(a) Stable
(b) Asymptotically stable
(c) None of these

(SCQ-9)The stability of the trivial solution x = 0,y = 0 of the system

3 dy _ y y3 . 2 2 . .
o = X— 35— using x* +y*as aLiapunov function

dx __ X X

aa YT 27
is

(a) Unstable
(b) Asymptotically stable
(c) None of these

9.9 SUMMARY:-

In this unit, first of all you are explained the fundamental existence
theorem. Then linear system and almost linear system has been explained.
After that critical points and their stability for these systems has been
discussed. That is a discussion on how the critical points are checked for
their stability by finding the Eigen values for the system has been done.
Another method for checking whether the system is stable, asymptotically
stable or instable by using Liapunov.

9.10 GLOSSARY:-

e Autonomous System
e Sable Critical and Unstable Critical points.
e Liapunov Functions.

9.11 REFERENCES:-
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9.13TERMINAL QUESTIONS:-

(TQ-1)write a note on the stability of critical points of the plane
autonomous system

= P = 6 y)
(TQ-2)Determine the type and stability of the critical point (0, 0) of the
almost linear system

= 4x + 2y + 2x? — 3y?, y = 4x — 3y + 7xy.
Also, find the general solution of the corresponding linear System.
(TQ-3)For the system of equations
X =x—y +xy,y = 3x— 2y — xy, verify that (0,0)is a critical point.
Show that the system is almost linear and discuss the type and stability of
the critical point (0,0).
(TQ-4) Define Liapunov function.

(TQ-5) Write a note on Liapunov’s theorem on stability.

(TQ-6) Investigate the trivial solution x = 0,y = 0 of the system below
for stability

X _ eyt 3’
@ — = —xy —yx
Hint'V(xy)—x + y*
(b)—— +x% = Y _x+y3

Hint:v(x,y) = x? +y
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9.14 ANSWERS:-

SELF CHECK ANSWERS
(SCQ-1) a (SCQ-2) b (SCQ-3(i)) ¢
(SCQ-3(ii)) b (SCQ-3(iii)) a (SCQ-4) a
(SCQ-5) a (SCQ-6) a (SCQ-7) b
(SCQ-8) a (SCQ-9) b
TERMINAL ANSWERS

(TQ-2) A1=-4 , A, =5are real , unequal and have opposite sign. Critical
point (0,0) is an unstable saddle point. The general solution is
x =cie " + 2c,e%t
y = —4cie™* + ¢ et
(TQ-3) Spiral Point, asymptotically stable.
(TQ-(6a)) Stable
(TQ-(6b)) Unstable
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UNIT 10:- DIFFERENTIAL EQUATION
WITH PERIODIC SOLUTION

CONTENTS:

10.1  Introduction

10.2  Objectives

10.3  Periodic solutions
10.4  Poincare- Bendixson theorem
10.5 Lienard’s theorem
10.6  Summary

10.7  Glossary

10.8 References

10.9  Suggested Reading
10.10 Terminal questions
10.11  Answers

10.1 INTRODUCTION:-

In the previous classes, you have already studied
e About an autonomous system
e About phase plane
e About critical points

10.2 OBJECTIVES:-

After studying this unit, you will be able
e Todefine and explain the periodic solution
e Tounderstand the Poincare-Bendixson theorem
e To understand the Lienard’s theorem

10.3 PERIODIC SOLUTIONS:-

Let us consider a nonlinear autonomous system
dx

%=F(x,y) ~..(1)
= =6y

where the functions F(x,y) and G(x,y) are continuous and have

continuous first order partial derivatives throughout the phase plane. So

far we have studied practically nothing about paths of (1) except in the

neighborhood of certain types of critical points. However, sometimes it
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looks more interesting to know the global properties of paths in
comparison to local properties. The properties that describe their
behaviour over large regions of the phase plane are known as the global
properties of paths.They are in general very difficult to establish.

Now, the problem is to determine whether (1) has closed paths. This
problem has very close connection with the issue of whether (1)has
periodic solutions. A solution x(t) and y(t) of (1) is said to be periodic if
neither function is constant, if both are defined for all t, and if there exists
a number T > 0 such that x(t + T) = x(t) and y(t + T) = y(t) for all t.
The smallest T with this property is called the period of the solution.
Evidently each periodic solution of (1) defines a closed path that is
traversed once as t increases from t, to t, + t for any t,. Conversely, if
C = [x(t),y(t)] is a closed path of (1), then x(t),y(t) is a periodic
solution. So the problem of searching for periodic solutions of (1) reduces
to a problem of searching for closed paths. A nonlinear system can
perfectly have a closed path that is isolated, in the sense that no other
closed paths are near to it.

SOLVED EXAMPLE
EXAMPLE 1: Show that the system

d
d—: =—-y+x(1—-x%-y?...(1)

d
d—jt] =x+y(1—-x2-y%)..(2)
has a periodic solution.

SOLUTION: Using the polar coordinates r and 8 asx = rcos@, y =
rsin 6, we have

x2+y?=1r? ... 3)
— -1(Y
6 = tan (x) e (4)
Differentiating (3) and (4), we get
dx dy _ ﬂ
x(f—t+yg—t—rdé‘9 ... (5)
&_ 2%
X TV =T ... (6)
On multiplying (1) by x and (2) by y and adding we get
r%zrz(l—rz) o (7))
On multiplying (1) by y and (2) by x and subtracting we get
220 = 2 ... (8)

dt
The given system has a single critical point atr = 0. For finding the paths

let us consider r > 0.
From (7) and (8) we have

%=r(1—r2) ... (9)
S=1 .. (10)
t

Integrating (9)

Department of Mathematics
Uttarakhand Open University Page 221



ADVANCED DIFFERENTIAL EQUATIONS-I MAT 504

fﬁ#dt

f E * 2(11— N 2(11+ r)] dr = J dt

Zrzc
l—ZT — e_Zt
r<c
= r?2(1+ce?) =1
1
= r = %l-i-ce_zt (11)
Integrating (10) we get
The corresponding general solution of given system is
cos(t + tg)
X = ——
V14 ce 2t
3 sin(t + t,)
Y= V1 + ce 2t

Analyzing (11) and (12) geometrically, we find that if ¢ = 0, then r = 1
and @ = t + t, which trace out the closed circular path x? + y2 = 1 in the
counter-clockwise direction. If ¢ < 0 it is clear that r > 1 and thatr — 1as
t — oo, y

7
N

\&Qy/ =

Fig.1

Also if ¢ >0 we see thatr <1, and again r - 1 as t » o. These
observations show that there exists a single closed path (r = 1)which all
other paths approach spirally from the outside or inside as t — . This
proves that the given system has a closed path(periodic solution).

Note: In the given system a closed path is shown by actually finding such
a path. Now here is a test based theorem that can make possible to
conclude that certain regions of the phase plane do or do not contain
closed paths.

THEOREM: A closed path of the system

Department of Mathematics
Uttarakhand Open University Page 222



ADVANCED DIFFERENTIAL EQUATIONS-I MAT 504

dx _r
i (x,y)
%= G(x,y) . (1)

necessarily surrounds at least one critical point of this system.

PROOF: Let C be a closed curve in the phase plane, and assume that C
does not pass through any critical point of the system (1). If P = (x,y)is a
point on C, then

V(x,y) = F(x,y)i+ G(x,y)jis a nonzero vector and therefore has a

definite direction given by the angle 6.
A

v

v

Fig.2
If P moves once around C in the counter-clockwise direction, the angle 6
changes by an amountAf8 = 2mn, where n is positive integer, zero or a
negative integer .This integer n is called the index of C. If Cshrinks
continuously to a smaller simple closed curve C, without passing over any
critical point then its index varies continuously and since the index is an
integer, it cannot change.
(a) If Cisa path of (1), show that its index is 1.
(b) If C is a path of (1) that contains no critical points, show that a
small C, has index 0, and from this inference theorem 1 is
complete.

d G}
THEOREM: If £+ % is always positive or always negative in a
certain region of the phase plane, then the system

x—F( )
callt_ v
y

—=G ,

R (x,y)

can not have closed paths in that region.
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PROOF: Let us assume that the region contains a closed path C =
[x(t), y(t)] with interior R. Then Green’s theorem and our hypothesis give

oF 3G
[(Fdy — G dx) —ff(a+£)dxdy¢0.
However, along C we have dx = F dt and dy = Gdt, so
T
f(de—cdx) =f (FG — GF) dt = 0
0

This contradiction shows that our initial assumption is false, so the region
under consideration can not contain any closed path.

10.4 POINCARE-BENDIXSON THEOREM:

Let R be a bounded region of the phase plane together with its boundary
and assume that R does not contain any critical points of the system

dx_F( )
ccilt I
y

— = G(x,
It (x,y)

If C = [x(¢t),y(t)] isa path of (1) that lies in R for some t, and remains in
R for all t > t,, then C is either itself a closed path or it spirals toward a

closed path as t — o. Thus in either case the system (1) has a closed path
inR.
ILLUSTRATION WITH THE HELP OF AN EXAMPLE:-
Because a closed path like C, must surround a critical point P and R must
exclude all critical points.

dx

The system =y +x(1—x2—y?)

d dt

y
—=x+y(1l—x*—-y?
i y(1—x*—y*)

provides a simple application of these ideas. It is clear that (2) has a
critical point at (0,0), and also that the region R between the circles r = %
and r = 2 contains no critical points.Taking x = rcos8, y = rsin@, we
find that % =7r(1 —1r?) for r > 0. This shows that % > 0on the inner

circle and % < 0 on the outer circle, so the vector  V(x,y) = F(x,y)i +
G (x,y)j points into R at all boundary points.
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Fig.3

Thus any path through a boundary point will enter R and remain in R as
t — oo, and by the Poincare- Bendixson theorem we know that R contains
a closed path C, and we have already seen that the circle r =1 is the

closed path.

When we speak about the existence of closed paths for equations of the
form% + f(x)% + g(x) = 0,...(1)which is called Lienard’s equation
,we of course mean a closed path of the equivalent system % = y,% =
—g(x) = f()y;

A more practical criterion has been developed for the system of the form
(1) in the form of the Lienard’s theorem which is as follows:-

10.5 LIENARD’S THEOREM:-

Let the function f(x) and g(x)satisfy the following conditions:

(1) Both are continuous and have continuous derivatives for all x;

(if) g(x) is an odd function such that g(x) > 0 for (x) > 0, and f(x) is
an even function

(iii) The odd function F(x) = foxf(x) dx has exactly one positive zero at
x =a,and F(x) » o as x — oo.

Then equation (1) has a unique closed path surrounding the origin i the
phase plane, and this path is approached spirally by every other path as

t — oo.
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SOLVED EXAMPLE
EXAMPLE:-Show that the differential equation
Y P L
a2 ac T
has a periodic solution,u is assumed to be a positive constant.
SOLUTION:- Here f(x) = u(x?—1)
gx) =x
Obviously condition (1) and (2) are satisfied. Now since

F(x) = fxf(x) dx = jxﬂ(xZ ~ 1) dx
0 0

3
X
F(x) = ﬂT — ux
= éux(xz -3),
We see that F(x) has a single positive zero at x = /3
is a negative for 0 < x <+/3
is positive for x > /3
F (x)tends to =0 as x — oo.
And F'(x) = u(x? — 1) is positive for x > 1, so F(x) is certainly non-
decreasing (in-fact increasing) for x > /3. Since all the conditions of the

2
theorem are true, we can conclude that equation % + u(x?-1) % +x =

0 has a unique closed path (periodic solution) that is approached spirally
(asymptotically) by every other path(nontrivial solution).

SELF CHECK QUESTIONS
(SCQ-1) Explain the periodic solutions.
(SCQ-2) Write the statements of Poincare-Bendixson theorem and
Lienard theorem.
(SCQ-3) Transform the system
d—x=4x+4y—x(x2+y2)
i dt

—=—4x+4y - y(x? + y?) into polar co-ordinate form.

10.6 SUMMARY:-

In this unit, you have learnt about the periodic solutions. Poincare
Bendixson’s theorem and Lienard’s theorem are also explained in this
unit. Now you are able to check whether the given system has a periodic
solution or not with the help of Poincare Bendixson’s theorem and
Lienard’s theorem.
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10.7 GLOSSARY:-

Period solution
Path

Bounded region
Critical point

10.8 REFERENCES:-

e Vladimir I. Arnold (1992) Ordinary Differential Equation.

e Dominic Jordan and Peter Smith(2007)Nonlinear Ordinary
Differential Equations: An Introduction for Scientists and
Engineers .

10.9 SUGGESTED READING:-

e Gerald Teschl (2012) Ordinary Differential Equations and
Dynamical Systems.

e M.D.Raisinghania(2021)Ordinary and Partial Differential equation
(20" Edition), S. Chand.

e Lawrence Perko (2001) Differential Equation and Dynamical
System.

10.10 TERMINAL QUESTIONS:-

(TQ-1)In each of the following questions, determine whether or not
given differential equation has a periodic solution

(@22 2+ D) Z 425 =
H|nt Use Pomcare Bendlxson theorem.

(b)

d2x+dx+(dx>5 3% =
_ dt? dt  \dt e
Hint: Use Poincare-Bendixson theorem.

(©)

Hint: Use Lienard’s theorem.
(TQ-2) Show that the differential equation
d2
d 2
has a periodic solution,u is assumed to be a positive constant.

+ u(x? —1)—+x—0
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10.11 ANSWERS:-

SELF CHECK ANSWERS
(SCQ-3) T =r(1 1), T = 4.

TERMINAL ANSWERS
(TQ-1(a)) No periodic solution
(TQ-1(b)) No periodic solution
(TQ-1(c)) A periodic solution
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UNIT 11:- METHOD OF BOGOLIUBOV
AND KRYLOV

CONTENTS:

11.1  Introduction

11.2  Objectives

11.3  First approximation of Krylov and Bogoliubov
11.4 Summary

115  Glossary

11.6  References

11.7  Suggested Reading

11.8  Terminal questions

11.9  Answers

11.1 INTRODUCTION:-

In the previous classes, you should have studied and learnt
e Tosolve the linear differential equation with constant coefficients.
e The methods of finding integration and differentiation.
e About the periodic functions.
In this unit, a method of treating weakly nonlinear differential equations of
the form
d2

y dy
—4y= F< ,—) 0<e<<1
w2 YT U ¢

originally developed by Krylov and Bogoliobov is being discussed. In
13.3 we will show how to determine the solution to first order of
approximation using the method of Krylov and Bogoliobov.

11.2 OBJECTIVES:-

After studying this unit, you will be able to
e Find the solution of a non linear equation by Bogoliubov and
Krylovmethod.
e Understand the Bogoliubov and Krylov method.
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11.3 FIRST APPROXIMATION OF KRYLOV AND
BOGOLIOBOV:-

Let us consider a nonlinear differential equation having the form

Dty =eF(yY) o<e<<l ()
If € =0, then equation (1) reduces to the linear equation
2
Liy=0 2
Auxiliary equation(D? + 1) = 0 gives the roots
D = +i,
so the solution of equation (2) may be written as
y = acos(t+ ¢) (3)

whereaandd are constants.
The derivative of the solution given by equation (3) is

;i_ty= —asin(t + ¢) ..(4)
If € # 0, but is sufficiently small, one can assume that the nonlinear
equation (1) also has a solution of the form of equation (3) with derivative
of the form of equation (4), provided that aand¢ are functions of t rather
than being constants.
That is, we assume a solution of equation (1) of the form

y = a(t)cos[t + ¢(D)] ...(5)
where aandd¢ are functions of t to be determined such that the derivative
of the solution (5) is of the form

Y~ _a(® sinft + d(O)] ..(6)

dt
Differentiating this assumed solution (5), we obtain

dy = Ecos[t + ()] — asin[t + ¢ (V)] (1 + d_d))

dt dt dt

j—ty = %cos[t + ¢ ()] —asin[t+ d(t)] — ai—fsin[t + )] ...(7)

In order for % to have the form given by equation (6), we must require
<= cos[t+ ()] —aesinft + p(B)] = 0 (8)

Differentiating the assumed derivative, equation(6), we obtain
2
C:l—tf = —%sin(t +¢) —acos(t+¢) — a%cos (t+9¢)...(9)
Substituting the assumed solution, its derivative and the second derivative

from equation (5), (6), and (9) in to the differential equation (1), we obtain
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da d¢
—Esm(t + ¢) —acos(t+¢) — aacos(t +¢) +acos(t+ ¢)

= €F [acos(t+ ¢), — asin(t+ ¢)] ...(10)
Or

%sin(t +¢) + a%cos(t + ¢) = —eF[acos(t + ¢), —asin(t + ¢)] ...(11)
If we let yw(t) denotet + ¢(t), then equation (8) and (11) may be written

da _ o 40 _
n cosy(t) —a 3 Sin y(t) =0 ...(12a)
%sin y(t) + a%cos y(t) = —€F (acosy, —asiny)....(12h)
Solving equations (12a) and (12b)for %and % , we obtain the following
equations
da

o —cF [a(t)cosy(t), —a(t)siny (t)]siny (t).... (13a)

% =— [ﬁ] Fla(t)cosy(t), —a(t)siny (t)]cosy(t)....(13b)

These are the exact equations for the functions a and¢ when the solution
for y and its derivative take the forms given by equations (5) and (6).
These equations are coupled first order nonlinear differential equation.
Since F sin and F cos iare the periodic functions ofwwith period 2m, so
the Fourier expansion of both of these functions is possible. Therefore,
Fsiny = Ky(a) + Ym—1[Kpn(a)cos(my) + Ly (a)sin(my)], .... (14a)
Fcosy = Py(a) + YXm=1[Pn(a) cos(my) + Q,(a) sin(my)],.... (14b)
Where Ko(a) = ifoansin\ydw,....(ISa)

K,@) = ifoansinwcos my dy ,.... (15b)
Lm(d) =% fozn F sin y sin my dyy, .... (15¢)
P, (a) =if02nFcosx|/d\|/, ... (15d)

P,@@) = %foancosw cosmy dy ,.... (15¢)

Qun(a) = ifoancoswsin my dy ,.... (151

Thus equations (13a) and(13b) can be written as

d w ,

d—i = —eKy(a) — e Xm=1[Kp (@ cos(my) + Ly, (a)sin(my)],....(16a)

d € € . .

L = — () P@ — () ZacalP(@)cos(my) + Qu(@)sin(my)].....(16b)
The first approximation of Krylov and Bogoliubov consists of neglecting
all the terms on the right side of equations (16a) and (16b)except for the

first; that is
da

€ 2n . .
== —eKg(a@) = — (2_7:) fo F (a cosy, —asiny)siny dy, ... (17a)
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d € € 2n .
d—f =— (;) Py(a) = — (E) Jy F (acosy,—asiny)cosy dy,....(17b)

These two equations can be written as

%: €A;(a),.... (18a)
@ — €B1 (a)‘ (18b)

dt
The general procedure consists of solving equation (18a) for a and

substituting this result into equation (18b) and solving for ¢.
Case I:Let F be a function only of y, i.e.

F(v,.2) =F (), ... (19)

For this case, the equation for a(t) is
da

= (zin) fozn Fi(a cosy)siny dy, ... (20)

The integrand is an odd function of iy and thus the integral is zero i.e.,

da
E_O'

Consequentlya (t) = A,.... (21)
where Ais a constant, and ¢(t) is given by the expression

() = QA +9,,.... (22)
where ¢, is a constant andQ(A) = — (ﬁ) fozn F; (Acosy) cosy dy, ....
(23)
Thus, for the case where F depends only on y,the first order approximation
will have the form

y = Acos{[1+ eQ(A)]t+¢,}....(24)
This case corresponds to a conservative oscillator. The effect of the non
linearity is seen in the fact that the frequency of the oscillation, w = 1 +
€Q(A), depends on the amplitude A of the motion.

Case Il Let F depends only on% i.e.

dy\ _ ﬂ
Fy.3) = F2 (3). ...(25)
For this case, the equation for ¢(t) is
d € 2n .
d—dt) =— (ﬁ) Jy F2(—asiny)cosy dy. ....(26)

If F,(v) is an even function of v, then this case reduces to that of the
previous situation given above. If F,(v) is an odd function of v, then

P=0= 1) = ¢, ... 27)
% =— (i) fozn F,(—asiny)siny dy = €A;(a)....(28)
Thus in the first approximation, where the function F is a function of %’
only, the solution is
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y = a(t) cos(t + <|>0 ) ....(29)
The oscillation has a variable amplitude and a frequencyw = 1.

SOLVED EXAMPLES

EXAMPLEL: Using Bogoliubov and Krylov method solve the
differential equation

4’y
dt?
. : - o d?y dy
SOLUTION: Comparing equation (1) with o ty=¢F (y, E)’
we see that F = —y? (i.e., F depends only ony)

Using the results of case I, we obtain

% = 0 = a(t) = A = constant..... (2)

The equation for ¢ (t) is
d € 2n
d—qt) = - (ZR—A) Jo — (A%cos®y)cosydy.... (3)

Using the relation cos3y = i(3cos‘|’ + cos3y)in(3) and solving we get

where A and ¢, are constants . Consequently, the solution of Equation
(1), using the first approximation of Krylov and Bogoliubov is
y = Acos(t + ¢0).... %)
Thus the first approximation gives exactly the same solution as the linear
equation obtained by letting € = 0.The amplitude is constant and the
frequency is 1 that is w = 1.
EXAMPLE 2: Using the method by Krylov and Bogoliubov, solve the
conservative differential equation

d2

+y+ey?=0...(1)

y 3 _
F +y+ey®=0
SOLUTION: The conservative differential equation
d?y 3 _
e Tyt = 0....(1)
hasF = —y3.

For this case, we have % =0
= a(t) = A = constant.... (2)
and¢(t)is determined by the differential equation

d _

€
Freal (Zn—A)f —( A3cos3y)cosy dy
0

2T
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2n
€A3 4
=——| cos*ydy
21A
T 0
B €A3 (37[)
- 2nA\ 4
d 3eA?
2= o 3)
Solving for ¢(t) ,we obtain
3cA?
o = (22)t+ ¢, . (d)

wheredis a constant. Therefore, to the first approximation, the solution
of equation (1) is
3eA?
y=A cos{[l + ( €8 )]t + 0ot 5

EXAMPLE 3:Using the method by Krylov and Bogoliubov, solve the
differential equation

SOLUTION:The differential equation
L e(ﬂ)2 =0....(1)

dt? dt
— ()
has F = ( dt) :
In the first approximation we have
d¢
— =0
dt

or¢(t) = ¢, = constant, and
d 2n
a €
=— (2—) f (—aZsin? y) sin y dy
T
0

a—
e? r2m
= %fonsm3\|1 dy . (2)

Substituting the result sin3y = i(S siny — sin3y)into equation (2) and

integrating, we obtain

da
==0 ... (3)

or a(t) = A = constant. Consequently, the first approximation of Krylov
—Bogoliubov gives the following solution for equation (1)

y = Acos(t+ (I)O)
This is exactly the same result as obtained in example 1.
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2
NOTE: When the functionF is equal to either y2or (%’) or a linear

combination of them, then the solution in the first approximation is the
same as in the linearcase(i.e.,e = 0). This means that the effect of the
non-linearity show up only in the higher—order approximations to the
solution.

EXAMPLE 4:Using the method by Krylov and Bogoliubov, solve the
differential equation

d*y dy
— 2e—=0e>0
TE; + vy + 2¢€ It €
SOLUTION: The differential equation
4’y dy _
e Tyt 2€ i 0 ..(1)
_ _2dy
hasF = l
In the first approximation we have
d¢o _
= 0..(2)
or¢ = ¢, = constantand
da

€ 2 . .
= = (;T) Js "(2a siny)siny dy.... (3)
Since,sin?y = %(1 — cos2y) ....(4)
Substituting equation (4) into equation (3) and integrating gives

da
a = —ea.... (5)

=a(t) = Ae ... (6)

whereA is an arbitrary constant.

Thus the first approximation of Krylov and Bogoliubovyields the
following solution to equation (1)

y = Ae~®cos(t + ¢,).

EXAMPLE 5: Using the method by Krylov and Bogoliubov, solve the
differential equation

d?y dy
— —=0e >0
TS +y+e m €

SOLUTION: The differential equation

4’y dy _

re) +y+ €3 = 0.....(1)

- _ Y
hasF = e

In the first approximation we have
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d¢ _

2= 0.2

or¢ = ¢, = constant and

d € 2 ) .

T =—(5) ;" @siny)siny dy o (3)

Since,sin?y = %(1 — cos2y) ... (4)

Substituting equation (4) into equation (3) and integrating gives
da €a

-z

da €a

== ——....(5

2

The solution to equation (5) is
et

a(t) =Ae z.... (6)

where A is an arbitrary constant.

Thus the first approximation of Krylov and Bogoliubovyields the
following solution to equation (1)

et
y = Ae_?cos(t + ¢0)....(7)
This may be compared with the exact solution of equation (1) which is

—€t 2 2
y = Ae z cos l(l — %)2 t+ (,bol.
Thus the Krylov-Bogoliubov technique gives the correct frequency to
terms of ordere?.
SELF CHECK QUESTIONS
(SCQ-1) Using the method by Krylov and Bogoliubov, solve the
differential equation

d?y

dy|dy
dt?

— =0
dtl dt

+y+ €

11.4 SUMMARY:-

In this unit, you have studied that the first approximation of Krylov and
Bogoliubovto the oscillatory solution of
2
(;Tz+y=6F(y,%), O<e<k1
isy(t) = a(t)cos {t + ¢(t)}
where a(t) and ¢(t) are solutions to the following system of first order
differential equations
da

ke (Zin) foan (a cosy, —asiny)siny dy .
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11.5 GLOSSARY:-

e First approximation of Krylov and Bogoliubov

11.6 REFERENCES:-

1. Introduction to Non- linear Mechanics , N. Krylov and Bogoliubov,
Princeton Univ. Press, Princeton NJ.1943.

2. Non- linear Differential Equations , R.A . Struble ,Mc-grawhill ,New-
York,1962.

3. An Introduction to Non-linear Oscillations, Ronald E. Mickens |,
Cambridge Univ. Press. 1981.

11.7 SUGGEDTED READING:-

1. Introduction to Non- linear Mechanics, N. Krylov and Bogoliubov,
Princeton Univ. Press, Princeton NJ.1943.

2. Non- linear Differential Equations, R. A. Struble ,Mcgrawhill,New-
York,1962.

3. An Introduction to Non-linear Oscillations, Ronald E. Mickens,
Cambridge Univ. Press. 1981.

11.8 TERMINAL QUESTIONS:-
(TQ-1) Explain Krylov and Bogoliubov method for finding the solution

of a differential equation of the form% +y =¢€F (y, %’)when

0] F depends only on 'y

(i) F depends only on %.
(TQ-2) Using the method by Krylov and Bogoliubov, solve the
differential equation

% ty+ 6% =0 >0
11.9 ANSWERS

SELF CHECK ANSWERS
(SCQ-1) ¢ = ¢y al) = e

Department of mathematics
Uttarakhand Open University Page 237



ADVANCED DIFFERENTIAL EQUATIONS-I

_ Qg cos(t + d)o)
YEIF (4eay/3m)t
TERMINAL ANSWERS

(TQ'Z) o= d)o Ja(t) = Ae~t/2
y = Ae”Y2cos(t + ¢0)

MAT 504
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BLOCK IV
SPECIAL FUNCTIONS
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UNIT 12:- Chebyshev Polynomials and
Legendre Polynomials

CONTENTS:

12.1  Introduction

12.2  Objectives

12.3  Chebyshev Polynomials

12.4  Orthogonal Properties

12.5 Recurrence Relation

12.6. Generating Function for Chebyshev Polynomials
12.7. Legendre’s Equation and Its Solution

12.8.  Generating Function for Legendre Polynomials
12.9.  Orthogonal Properties Of Legendre Polynomials
12.10 Recurrence Relations for Legendre Polynomials
12.11 Beltrami’s Result

12.12 Christoffel’s Summation Formula

12.13 Rodrigue’s Formula

12.14 Laplace’s Definite Integrals ForP, (x)

12.15 Recurrence Relations ForQ,(x)

12.16 Cristoffel’s Second Summation Formula

12.17 A Relation Connecting P,(x) And Q,(x)

12.18 Summary

12.19 Glossary

12.20  References

12.21  Suggested Reading

12.22  Terminal Questions

12.1 INTRODUCTION:-

Legendre's polynomials are used to represent a wide range of
physical phenomena, such as the wave function of the hydrogen atom, the
spherical harmonics, and the Legendre functions of the second kind, which
are used in the solution of Laplace's equation in spherical coordinates. The
Legendre polynomials also appear in the solution of boundary value
problems for linear differential equations, and in numerical analysis as a
basis for approximating functions on the interval [-1, 1].

Chebyshev polynomials are used in a variety of applications, such as
signal processing, data compression, and numerical analysis. They are
particularly important in the field of approximation theory, where they are
used as a basis for approximating functions on the interval [-1, 1] or [0, 1].
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Chebyshev polynomials also have applications in the study of orthogonal
polynomials, where they are used to construct other families of orthogonal
polynomials.

12.2 OBJECTIVES:-

After studying this unit you will be able to

e To discuss about Chebyshev polynomial, Legendre’s polynomials
and its equation and generating function.
e To study the recurrence formulae of Chebyshev polynomial and
Legendre’s polynomials.
e To study the important properties for this polynomials.
e To study the orthogonal properties of Chebyshev polynomial and
Legendre’s polynomials.
The main objectives of Legendre's polynomials and Chebyshev
polynomials are provide to the numerous applications in mathematics,
physics, and engineering. They are used to represent a wide range of
physical phenomena and to solve a variety of mathematical problems.

12.3 CHEBYSHEV POLYNOMIALS:-

The Chebyshev polynomials of first and second kind are described by

T, (x) = cos(ncos™x)

U, (x) = sin(ncos™x)
Where T, (x) and U, (x) are first and second kind, n is a non-negative
integer.

Theorem: T,,(x) and U,,(x) are independent solutions of Chebyshev
equation.
(1 —x2)(d?y/dx?) —x(dy/dx) + n?y =0
Proof: The Chebyshev equation is
(1—-x3)(d?*y/dx?) — x(dy/dx) + n*’y =0 .. (1)
By the definition of Chebyshev polynomials, we get
y = T,(x) = cos(ncos™1x)

dy d d —1

2 = 20 = -cos(ncos™x) = —sin(ncos™ ). =517
n
. -1, -
= sin(ncos™'x). (1= x2)i2

Again
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A2y  d2 d(d
prvh WTn(x) = a(aTn(x))

= g (sintncos™0). —rz)
=n —(sin(ncos™ x A=)
1
=n|-3 (1 — x2)73/2(=2x).sin(ncos 1x)
n
+(1- xz)l/zcos(ncos‘lx).m]

d? nx n?
? —T,(x) = msin(ncos‘lx) B cos(ncos™1x)

Using above equations, we obtain
2

(1- xz)d—Tn(x) — xdiTn(x) +n2T,(x) =0

nx
(1- 2)3/2
sin(ncos~ x)

2)1/2 + ncos(ncos 1x)=0

Showing that T, (x) is a solution of (1).
Similarly, to show that U,,(x) is a solution of (1): Proceed as above

To show that T,,(x) and U,(x) are independent solution of (1): we
given by the definition
T, (x) = cos(ncos™x) and U, (x) = sin(ncos™1x)

T,(1) = cos(ncos™1) = cos(n x 0) = 1
and U,(1) = sin(ncos™1) = sin(nx0) =0
Finally U, (x) cannot intimated as a constant multiple of T,,(x). This is
prove that T, (x) and U, (x) are independent solution of (1)

12.4 ORTHOGONAL PROPERTIES:-
To show that

L LCoC P

e n/2,r=n=0

n, r=n=0
{O, m#n

{0, r#En

i IR de =

e /2, r=n#0

n, r=n=0

Proof: We given, by the definition
i T.(x) = cos(mcos™'x) & T,(x) = cos(ncos™tx) ..(1)

~ Putting x = cos6, dx = —sinfd#6 in (1)
T,(cos8) = cos(mcos~1cosO) & T, (x)
= cos(ncos~1cosB)
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T, (cosB) = cos(m8) & T,,(x) = cos(nB)

Let
LT (0T, (x) 0 cosmOcosn6 , ™
m = L T(—sm@)d@ = fo cosmOcosnO do
=> If r # nso that (r — n) # 0, then
1 (" 1 ("
= Ejo 2cosrfBcosnd df = Efo [cos(r + n)O + cos(r —n)B] dO
1 cos(r+n)8 cos(r —n)o" 3
B EI r+n T r—n 0 =0
= Ifr =n # 0, then

T T 1+ cos2rf
I = j cosrBcosnf do —f cos?*r0 deo =f —d#f
0 0

2
[ strO] T
~2 0 2
= Ifr =n =0, then cosm@ = cosnf =1
s s
I = f cosrfcosnfdf = | (1)(1)do =[0]§ =n
0 0
. 0, r#En
G e g [n/z,r n20
n, r=n=0
Proof: U,(x) = sin(rcos™'x) & U,(x) =
sin(ncos™1x) .. (D
~ Putting x = cos6, dx = —sinfd#6 in (1)
U, (cos@) = sin(rcos~1cos8) & U, (x) = sin(ncos™1cos0)

U, (cosB) = sin(rH) & U, (x) = sin(nh)

Let
LU, (x)U, (x 0 sinr@sinnd m
de =f ———(—sinB)do =f sinrf@sinnd d6
-1 V1 —x?2 - sinf 0
= If r # nso that (r — n) # 0, then

T

1" 1
] = Ef 2sinrf@sinnd do = Ef [cos(r —n)O + cos(r + n)0] db
0 0

1 Isin(r —n)0 cos(r+ n)Hr
2 r—n r+n
= Ifr =n # 0, then
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T ] T ™1 — cos2ro
I =f sinr@sinn6 do =f sin®r6 do =f _—
0 0

0 2
1 [0 sianH]" m
) 2r 1, 2
= Ifr =n =0, then sinrf = sinnf = 1

T s
I = j sinr@sinnd d@ = f (0)(0)de =0
0 0

12.5 RECURRENCE RELATION:-

i Tpy1(x) = 2xT,(x) + T (x) =0

ii. (1 —x3)T",(x) = —nxT,,(x) + nT,_; (x)
iii. Uppr1(x) = 2xU,(x) + U,_1(x) =0

iv. (1 —-x?)U",(x) = —nxU, (x) + nU,_; (x)

Proof : We given, by the definition of Chebyshev polynomials
i.
T, (x) = cos(ncos1x) (D
So .~ Putting x = cos6, dx = —sinf8d6 in (1)

T, (x) = cos(ncos™1cosh) = cosnb
Tpi1(x) = cos(n + 1)0, Ty,_1(x) = cos(n—1)
We prove that T, 1(x) — 2xT,(x) + T,,_1(x) = 0
Now we take L.H.S

> Tpi1(x) — 2xT,(x) + Tp_1(x) = cos(n + 1)6 —
2xcosnB + cos(n — 1)8

= = [cos(n+ 1)0 + cos(n — 1)8] — 2cosOcosnb

= = [cos(n+ 1)0 + cos(n — 1)8] — 2cosOcosnb

= = 2c050cosnO — 2cosOcosnb = 0

ii. 1—x3)T",(x) = —nxT,(x) + nT,,_;(x) ..(2)
Proof: differentiating (1)

-n
T',(x) = —sin(ncos™1x).
1—x?
= —sin(ncos~tcosB) "
V1= cos20
_ nsinn6
~ sinf

Putting the value of T',(x),T,(x), T,_,(x) and Putting x = cos#,
dx = —sinfd6 in (2)
(1 —x3)T",(x) = —nxT,,(x) + nT,_,(x)
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nsinné
(1 — cos?0) — = —ncosBcosnd + ncos(n — 1)6
sinf
] nsinn6
sin%0 ey —ncosOcosnd + ncos(n —1)6
nsin@sinnd = —ncosOcosnb + ncos(n — 1)6 ..(3)

Now we take R.H.S of above equation(3)
= —ncosOcosnd + ncos(nf — 9)
= —ncosOcosnb + ncos(n — 1)6
= —ncosfcosnf + ncosnbcosf + nsinnbsind
= nsinnfsind
LHS=RHS
iii. Upi1(x) —2xU,(x)+ U,_4(x) =0

Proof: U, (x) = sin(ncos™1x) . (D
~ Putting x = cos6@, dx = —sinfd#6 in (1)
U, (x) = sin(ncos™1cosH)
U, (x) = sin(nh)

We prove that U,.,(x) — 2xU,,(x) + U,_1(x) =0
Similarly we take L.H.S.

= Upp1(x) = 2xU,(x) + U,_1(x) = sin(n+ 1)0 —
2cosOsin(ncos™'cosB) + sin(n — 1)0
= = [sin(n + 1)0 + sin(n — 1)0] — 2cosOBsinnf
= = 2sinnfcosf — 2cosfsinnb
= = 2co0s0sinnB — 2cosBsinnf =0
iv. 1-x)U",(x) = —nxU,(x) + nU,_,(x) .. (2)
Proof: differentiating (2)
-n
U',,(x) = cos(ncos™1x).
1— x2
= cos(ncos‘lcose)._—n
V1 — cos?6
_ ncosno
B sinf

Putting the value of U’ (x), U, (x), U,_,(x) and Putting x = cos#,
dx = —sinfd6 in (2)
(1= x)U" (%) = —nxUp (x) + nlUp_1(x)

e 5 ncosnf _ ) ) B
(1 — cos?0) <ind ncosO@sinnf + nsin(n — 1)6
) ncosnf ) )
—sin?0 g - —ncos@sinnd + nsin(n — 1)0
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—nsinfcosnd = —ncosfsinnb + nsin(n — 1)0 ..(3)
Again we take R.H.S of above equation(3)

= —ncos@sinnf + nsin(nd — )
= —ncosOsinnd + nsin(n — 1)6
= —ncosfsinnb + nsinnBcosf — ncosnfsind
= —ncosnfsinf
LHS=RHS

Theorem 1: To prove that T, (x) = (1/2) x [{x + i(1 - xz)l/z}n +
i{x —i(1-x2)12}"]
Proof: we take

T, (x) = cos(ncos™1x)
Now we put x = cosf

(einH + e—ine)

T, (x) = cos(ncos™1cosO) = cosnf = 5

1)+ ()]

2
[(cosB + isind)™ + (cosO — isinf)"]

2
[(cosB + isin@)™ + (cosO — isinf)"]

2
: _ A2\ _ 7 227\
T (x) = [(x +i{1 - x*}) er (x — i{1 — x?})"]
Theoremll: To prove that U, (x) = —(i/2) x [{x + i(1 — x*)1/2}" —
i{x —i(1-x2)12}"]
Proof: we take

U, (x) = sin(ncos™x)
Now we put x = cosf

(einG _ e—in@)

T,(x) = sin(ncos™1cos@) = sinnh = 3

() = ()"

21
[(cosO + isin@)" — (cosO — isind)"]

T
[(cos@ + isin)" - (cosO — isinB)"]
_ 20
To(x) = =5 (G + {1 = 2P + (x - i{1 - 2"

. _ n/z _ n! _
Theorem [1lI: To prove that T,(x) =X 1)5—(23)!(11_25)!(1
xZ)an—Zs

Proof: As in theorem I, we obtain
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[+ {1 —x2PD™ + (x — if1 —x2D"]
2

n
1

A ety
n r=0

+ ) nex™ T {—i(1 - xz)1/2}1
; ‘

Since by binomial theorem, we obtain

T, (x) =

n
(a+b)" = a™ +ng, a™ b +ng,a® b2 + -+ nyb" = Z ne av b

r=0

T,(0) = ) ng a7 (1= 2272 [1 4 (-1)]

r=0
0,if ris odd
f— r el
But 1+ (1) {2, if riseven
T,(x) = Z nex™ i1 - x2)2 (D
reven,<n
Since r is even, so r = 2s, where s be an integer. r <n= 2s<n=

s<n/2
= Now if nis evenr goes 0 ton/2, if nis oddr goes0to (n —1)/2,
then

n/2,if nis even

n/2)=q(n-1
(n/2) ( 5 ),ifnisodd
Hence r = 2s from (1)
n/2
Tn(x) = Z nczsxn—ZsiZs(l _ xz)s
s=0
n/2
= Z(_l)s n (1- xZ)sxn—Zs
4 (2s)! (n — 2s)!
Ss=
TheoremlIV: To prove that U,,(x) = ) ’:1)/2(_1)s n! (1-
s=0

(2s+1)!(n-2s-1)!
x2)s+1/2xn—25—1

Proof: As in theorem Il, we obtain
Up(@) = =5 [+ {1 = 2P" + (x = {1 = "]

n

=0

T
n
- z ncrx”‘r{—i(l - xz)l/z}r]
=0
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Since by binomial theorem, we obtain

n

(a+b)" =a™+nga"'b+nga™'h* + -+ n,b" = z ne.a™"h"

r=0

. n
Up() = =5 me, a7 (1= 6372 [1 - (1))
r=0
~ _(0,if ris even
But 1+ (1) _{Z,ifris odd
T,(x) = —i Z nex™ i1 - xH2 (D)

rodd,rsn

Sincerisodd, sor = 2s+ 1, where s be an integer.r <n= 2s+1<
n= s<(n-1)/2

= Now ifnis odd r goes 0to (n—1)/2, ifnis odd r goes 0 to (n —
2)/2, then

n-1) _ dd

(n—2) _ 5 Jifniso

2 n-2)
— if nis even
Hence r = 2s + 1 from (1)
(n-1)/2
Un(x) — z nczs+1xn—2s—1i2s+1(1 _ x2)s+1/2
s=0
(n—-1)/2

= Y o "
i 2s+1)!(n—2s—-1)!

_ xZ)s+1/2xn—2s—1

1

12.6 GENERATING FUNCTION FOR
CHEBYSHEV PLOYNOMIALS:-

. 1-k? )
l. PR = TO(.X') + 2 Zn=1 Tn(.X) k™

Proof: Let forn = 0 ,putting x = cosf = (e +e~¥)/2
1-k?2 1—k2 1—k2

LHS. = 1-2kx—k2  1-2k(e0+e=i0)/2-k2 ~ 1-k(e¥0+e=i0)—k2 —
1-k2
1-k(etf+e~10)—2
1—k?
1—ke® — ke=10 — k2
1—k2 1—k?

" (1—ke®) —ke®(1—ke®) (1— ke ©)(1— ke'®)
= (1- k(1 —ke )" (1—kei®) ™
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= (1-k?) i(keie)“ i(ke“'g)b
a=0 b=0

— (1 _ k2) z z ei(a—b)@ ka+b

a=0 bz(C))O [ee] (o] (o]
— z z ei(a—b)@ ka+b + Z Z ei(a—b)e ka+b+2 (1)
a=0b=0 a=0b=0 ]
Now we taking a =0,b =0 in (1), we have =ei(0-08 =0 =1 =

To(x)

Forn > 1, we obtain k™by taking

> a+b=n(i.e.,b=n—asos=20>n—a=0=>a<nfork")
in (1) and
sa+b+2=n(i.e.,b=n—a—-2sos=>0>n—-a—-2=>20=>a<
n—2 for k™) in (1)

Hence the total coefficient of k™ in (1)

n n—-2
_ Z pila—{n-a)o _ Z pila—(n-a-2))6
a=0 b=0
n n
_ p-ind Z 2ia6 _ ,—i(n-2)0 z o2iad
a=0 a=0

= g~inb [1 + 20 | o4if 4 . ¢ (n + 1)termS]
_ e—i(n—2)6 [1 + eZie + e4i6 + - to (n + 1)te7"ms']

_(2i0 1 _(,2i0\*1

_ p-ind (e ) _ pmitn-2)8 1 (e )

1-— 6216 1-— ezle
e—in0 _ ei(n+2)6 e—i(n—2)6 _ eine

1 — g2i6 N 1 — g2i6
e—in@ _ ei(n+2)6 _ e—i(n—2)9 + ein@
- 1 — e2i6
e=in0 (1 — g2i0) 4 inb(] — 2i6 ' .
= ( ) : ( ) =e M0 4 oin® = 200500
(1 _ 6216)

= cosnf = (e + ¢~in9)/2
= 2T, (x), [T,(x) = cos(ncos tx) = cos(ncos~tcosO)
= cosné|]

.. v1-x2
i e = Zn= Una (O KT

Proof: Now we take L.H.S

V=22

T 1-—2kx—k?
Putting x = cos6
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_ Vl-cos?0 sinf
" 1—2kcosf —k?  1—k(e® +e-10) — k2
_ sin6 3 siné
T 1—k(e®+e10)—k2  1—k(e® +e-i0) — k2
sin@ sinf

" 1—ke® —ke® —k? (1 ke ©)(1— ke®®)
sin@ . NG b
=T ke @)1 _ke® ~ sm@Z(ke‘G) Z(ke 0
=0

— SinHZ(keig)a Z(ke—ze _ Z Z j(a+b gia=b)8
a=0 b=0 a=0 b=0

Forn > 1, we obtain k™by taking
> a+b=n(i.e.,b=n—asos=0>n—a=0=>a<nfork")

in (1) and
sa+b+2=n(i.e.,b=n—a—-2sos=>0>n—-a—-2=>20>a<
n—2 for k™),
Hence the total coefficient of k™ in (1)
— sinfe-in® Z o2aif
a=0
= sinfe~M9[1 + €% + e*? + .- to (n + Dterms]|
' _ (20" g6 _ ,-if ' 1 — (e2i0)**!
= sinf e~"0 ( ) = —— X e7im0 x — ( ) —
1-— 6216 2i _ele(ele —e 16)
[(ezw)““ _ 1]
= —i(n+1)6 X . - = si +1 0
e @@ — o) sin(n+ 1)

= sin{(n + 1)cos x} = U,.;(x),as x = cosO0 & O = cos 1x.

SOLVED EXAMPLES
EXAMPLEL: To show that
I T,(1) = 1,T,,(=1) = (=17, T2,(0) = (=1)", Tp41(0) =0
" Un(l) = O, Un(_l) = 0' TZn(O) = 0: T2n+1(0) = (_1)11

PROOF:
i. We given T, (x) = cos(ncos™1x) .. (1),
Then putting x = 1, we obtain
T,(1) = cos(ncos 1) = cos(n x0) = 1
Now T,,(x) = cos(ncos~1x), then again putting x = —1
T,(—1) = cos(ncos™ — 1) = cos(n x ) = (—1)"
Since again replacing xby 0 and n by 2n in (1), we get
T,,(0) = cos(2ncos™10) = cos(2n x w/2) = cosnmt = (—1)"
Since again replacing xby 0 and n by 2n + 1 in (1), we given below
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Tyn4+1(0) = cos((Zn + 1)COS_10) = cos((Zn +1) x 71/2) =0.
ii. Proceed as above yourself.
EXAMPLE2: To show that T,,,{T,,(x)} = T,,{T,,,(x)} = T, (x)
SOLUTION: We have T, (x) = cos(ncos™1x)
T {T, (x)} = Tp{cos(ncos™1x)} = cos[mcos™{cos(ncos 1x)}]
= cos[nmcos™1x]
Again T, (x) = cos(ncos™1x)
T, {T,, (x)} = n{cos(mcos™1x)} = cos[ncos H{cos(mcos™1x)}]
= cos[mncos1x]
Hence
T Ty (%)} = Tp{T1 ()} = Tppn(x)

EXAMPLE3: To show that (1 — x?)Y2{T,,(x)} = {U, 41 (x)} — xU, (x)
SOLUTION: We have T, (x) = cos(ncos™1x)
U, (x) = sin(ncos™1x)
putting x = cos® in above equation
T,(cos8) = cos(ncos™1cosf) = cosnb , U,(cosf) =
sin(ncos~'cosO ) = sinnf
(1 — cos?0)Y/?{T,(cos6)} = {U, 1 (cos8)} — cosB U, (cosH)
sinf{T, (cosB)} = {U,,,(cosB)} — cosb U, (cosO)
sinfcosnf = sin(n + 1)0 — cosBsinnb
sinfcosnf = sin(nf + 6) —
cos@sinnb .. (1D
Now we take R.H.S.
= sinnfcosO + cosnbsind — cosfsinnb
= cosnfsind = L.H.S.

12.7 LEGENDRE’S EQUATION AND ITS
SOLUTION:-

The differential equation of the form

2
(1 —xz)%—ZxZ—z+n(n+ Dy=0
Or LERY (1)
1-—x3)y"=2xy'+n(n+1)y=0

is called Legendre’s equation, where n is a positive integer. Now solve
equation (1) in series of descending power of x. Let the solution of
equation (1) is

y=X2,ax*t ay# 0 .. (2)
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[ee]

dy
o 2 ax Yk —1)

d2
T5= ) a2 e =Dl —1- 1)

1=0
Substituting the value of y‘% and % in equation (1), we obtain

[ee]

(1-x%) ) qk =Dk —1—1Dx*1"2 —-2x Y a;(k —Dxk-t-1
; : da

=0

+n(n+1) Z axkt=0
1=0

=0

or
(Z ak—Dk—-1- Daxk-1-2 — Z a,(k=D(k—1— 1)xk—l—2+2>

=0
[

— sz ak—=Dx*""1+nn+1) ) ax*t=0
1=0

=0
or

(o8] [o9]

z a,(k = D(k — 1 — 1)x*-1=2 — Z a,(k = D(k — 1 — 1)x*-

1=0 . 1=0 .
-2 z a;(k — Dx*11*1 y n(n + 1) Z axkt=0
=0 =0

or
) [

Z a,(k = Dk — 1 = 1)xk1-2 — Z a,(k = Dk — 1 — 1)kt

1=0 . 1=0 .
-2 Z a;(k —Dx*t+nn+ 1)2 ax®t=0
=0 =0

or

[ee)

Z a,(k = Dk = [ = 1)xk1-2

=0
+ 3+ 1) = 20— ) = (= D0k~ L= D et
=0

=0
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oo

orz a(k—1D(k—1—1)xk"t=2

=0
+ z{"(" + 1) =20k =D — (k= Dk —1- D}ax*!
1=0

=0
Now the coefficient of a;x*~! is
fnn+1)-2k-D—-(k-Dk-1-1)}

=n?4+n—-2k-0D—-(k-D?*+ k-1
=n?—(k-D?+n-2k-D}+ k-1
=n—k+n+k—-1}+n—-2k+2l+k—-1
=n—k+IlH{n+k—-1}+n—-k+1
=n—-k+H{n+k-1}+{n—k+1}
={n—k+IH{n—-k+1+1}

Hence the equation (2) may be written as

z a{k — Dk — [+ 1}x1-2 4 Z{n k4 D —k 41+ 1} ak!
=0 =0
=0 ..(3)
Equating to zero coefficient of x namely x! in above equation, we obtain
an—k)(n+k—-1)=0
or
k=n—-(+1) (v ay#0)
Now the next power of x is k — 1, so
m—k+1)(n+k)a; =0
For k=n and —(n+ 1), neither (n—k+ 1) nor (n+ k) in zero.
Therefore a; = 0
From (3)
{k—1+2Hk—-1+1}a; , +{fn—k+1}{n—k+1+1}a; =0
a, =
{k—1+2}{k—1+1}
(m—k+l(n—k+1+1] -2 - (4)
Substituting n = 3,5,7 .... in above equation and nothing a, = 0, we obtain
A =03 =Ag = Ay = =+ =0 to obtain a, =a, =ag: etc, we
consider two cases
Casel: When k = n then (4) becomes
fn—1+2Hn—-1+1}

T en—1+13 2
Substituting I = 2,4,6 ....in (4)
_ nn-1} _ n{n—-2}{n-3}
2= T n—p% M7 4{2n—3} 2

B n{n — 1H{n — 2H{n — 3}
T 240n—12n—33
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From (2)
Yy =apx™ 4+ a;x™ 1t + ax" " 4 - -
B . n{n — 1} - n{n—l}{n—Z}{n—S}
Y= @ T oon— 13" 24n—112n—3} *
_l ..(5)

Casell: When k = —(n + 1) then (4) becomes
{n+l—1}{n+l}

“ETmn+i+ 1 ¢

Substituting = 2,4,6 ...., we obtain
{n+1}{n + 2} {n+2}{n + 3}

2= T ny3y o BT T T on 5 2
_ fn+ 1Hn + 2Hn + 3Hn + 4}

2402n+3}2n+5; °

From (2)
Y =agx " 4 agx T2 apx T
{n+ 1Hn + 2}
— -n—-1 __ -n—-3
y =o)X 2(2n + 3}
n+t1H{n+2Hn+3Hn+4} . L ©
2.4{2n + 3}{2n + 5}
If we takea, = 135-Cn*1 then the solution (5) is denoted by B,(x) and

is called Legendre polynomial of first kind or Legendre polynomial of

degree n.If we take a, = mthen the solution (6) is denoted by

Q,,(x) and is called Legendre polynomial of second kind.
Hence the general solutions of (1) is

y = AP, (x) + BQn(x)
Where A and B are constants.
Definition: Legendre polynomial of first kind or Legendre’s
polynomial of degree n is denoted and defined by
1.35..2n+ 1) " n{n — 1}

n! SR Yo
n{n—1{n-2}{n-3}
2402n—132n—3} © l (1)

n-2

Pn(x) =

n/2

(2n—20) s
= ;(_1)l 270 (n—D!(n—20)1" l

Where
n . .
> if nis even

E] - {(n lf nis odd
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Definition: Legendre polynomial of second kind is denoted and defined

by
n! o1 {n+1}{n+2}

135.. (IZn Y 2(2n + 3}
n+1Hn+2}{n+3}{n+4} _

-3

Qn(x) =

n-5
2.4{2n + 3H{2n + 5}
Puttingn = 0,1,2,3,4 ... ... in (1), we obtain
1
Py(x) = axo =1,
1
Pl(x) = Fxl =X,
1.3 2.1 1
— 2 27 o = Z(a.2
P,(x) = T [x 12.3x ] 2(3x 1),
Py(x) = > (5x? — 3x),
1
P,(x) = §(3SX4 —30x%2 +3)
and
1
Ps(x) = 3 (63x* — 70x2 + 15x)
And so on
EXAMPLE: Express 2 — 3x + 4x?2 in terms of Legendre polynomial.
SOLUTION: = 1= Py(x),x = Py(x),(3x* = 1)/2 = P,(x)
= Now 2 — 3x + 4x2 = 2P,(x) — 3P, (x) + (4/3)[2P,(x) + 1],
by (1)
= 2Py(x) — 3Py (x) + (8/3)P,(x) +

(4/3)Py(x)

= (10/3)Py(x) — 3P, (x) + (8/3) Py (x).

12.8 GENERATING FUNCTION FOR LEGENDRE
POLYNOMIALS:-

THEOREM: To show that (1 — 2xz + z2)™Y2 =¥ _z"P,(x),|x| <
1,]z| <1

OR
To show that B, (x) is the coefficient of z™ in the expansion of (1 — 2xz +
z2)~1/2 in ascending powers of z.
Note: (1 — 2xz + z2)~1/2 is called the generating function of Legendre
polynomial P, (x).
PROOF: Since |x| < 1,]z| < 1, we obtain
= (1-2xz+2%)"Y2=[1-h(2x—2)]"/?
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1.3
> =1+= h(2x—z) +——22(2x —2)% + -

1.3.. (2 3) 2
n— n—-1 _ n—-1
24 (n_2)’ @x-2)
1.3..2n—-1) n n
242y 2 @x—2)
+ - (D
Now the coefficient of z™ in
1.3..2n-1) n n 1.35..(2n—-1) n
242 2 At = oy 2%
135..(2n—1)
= — o™ ..(2)
Again the coefficient of z™ in
13..2n-3) o
24 (n_2” @x—2)
13..2n-3) . s
=oniiza (oD’ D2
=
1.3..2n-3) nn-1) -
- _ — X 2on = 1)x (3)

And so on. Using (2), (3)....., we see the coefficient of z™ in expansion of
(1 — 2xz + z?)~/2, form (1) is obtained by

135..2n—-1) (o [ nn—-1) -2
n! 22n-1) 1)
nn-1)n-2)(n-3) _l P ()
242n—-1)2n-13) n

Thus we can say that P;(x),P,(x),........... . Will be coefficients of
z,z%, .... in the expansion of(1 — 2xz + z%)~'/2. Hence we obtain
(1—2xz+2z3)7Y2 =1+ 2P, (x) + z2P,(x) + z3P5(x) + -+ + 2" P, (x)

(1—2xz+z?)"12 = Z z"P,(x)

n=0
SOLVED EXAMPLES
EXAMPLEL:  Prove that: 1+>Py(cosd) +Py(cost) + - =

log [(1 + sin g)/sin g]

SOLUTION: From generating function, we obtain
Z ZP(x) = (1 — 2xz + 22)~ /2 (1)

n=0
Integrating (1) w.r.t. z from 0 to 1, we have
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ijAZnPn(x)dZ:fl\/(l_;ljz-l_zz) . (2)

Now replacmg x by cos6 on both sides, (2) obtaln

Z P (cos@)f ndz = f 0= Zcos02 29

dz

n+1] + sin?6

Pn (cos@) > ——1*
Z YT [log(z — cos0) + \/(z — c0s0)?2 + sin 9]0

n=0

= log{(l — cos0) + \/(1 — c0s0)? + sinze} —log(1 — cos0)

(1 — cos0) +2,/(1 — cosB)

\/(1 — cos@)\/(l i coi‘(;s)e+ \/_\/m
\/(1 — cos@)\/(l — cos0)
SO = cos6) + 2
TG =cos0)

. o1
(25ln279)+\/2 1+sin%9
= log = log—1

(ZSinZ%H) sinz0

= log

= log

.1
P,(cos8 1 1 1+sin56
= ¥ 5 Pi(cost) + 3 Py(cosO)+...= log—12

siniﬁ
1 1
or 1+ Epl(COSH) + §P2(0050)+. ..
1+ sin%@
= log—l. [+ Py(cosB) = 1]
sinie
1 —
EXAMPLEZ2: Prove thatﬁ —-=
SOLUTION: we have

Z 2P (x) = (1 = 2xz + z2)"1/2 (1)
n=0
. We take L.H.S.
=1/2)(1 —2xz+2z2)" Y2+ (1 —2xz+ z%)"Y2 - (1/2)

1 1
- —z 2P, + Z B —=, by (1) ()
Zn:O n=0 z
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But

[00]

z Z"B, = Py + zP, + z?P, + -+ z?P, + z"*'P, .,
n=0

=1+z(P,+2zPy+ - +2"Pyyr + ) (v Py=1)

= 1 + Z ZnPn+1
n=0

Using above equation in (2), we obtain

[oe]

1+ Z z"Ppiq
n=0

oo

- Z 2" (B + Poyy) = R.H.S.
n=0

EXAMPLES: Prove that
1 — 72 e )
(1 —2xz +z2)~1/2 = Z(Zn + 1)z"P,
n=0

SOLUTION: We have

Z Zz"P, = (1—-2xz+ 2?72 ..(1)
n=0
Differentiating w.r.t. z we obtain

[ee] [ee]

1
+ZZ"Pn—;= ZZ"P,H_l +1 +Zz"Pn

1
oz

[ee)

1
-3 (1—2xz+ z2)73/2(=2x + 22) = Z nz" 1P,

n=0
(o]

(1—=2xz+2z2)73%(—x+2) = Z nz" P, ..(2)
n=0
Multiplying both sides of (1) by 2z, we have
2z(1 —2xz+ z?)732(—x+2) =2 Z nz"P,
n=0

Adding (1) and (3), we get

1 2z(x — z) B = . ® .
(1 —2xz + z2)V/? + (1—2xz + z2)3/2 ~ ZZ Py + Z)an P,
n=

n=0

1—2xz+2z%+ 2z(x — z)
(1 —2xz + z2)3/2

= Z(Zn + 1)z"B,.
n=0

12.9 ORTHOGONAL PROPERTIES OF
LEGENDRE POLYNOMIALS:-

Prove that
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2 f_ll P,(x) P,(x)dx =0 ifm #n.
i f_ll[Pn(x)]z dx = 2n2+1 or f_11 P,(x)P,(x)dx =
Oifm=n
{ ifm=n

0Oifm+n
where 6mn={1 i;m=n

Where 6,,, is called Kronecker delta.

1 2
or f—l Pm(x) Pn(x)dx = (2n_+1)8mn'

(2n+1)

Proof:
i When m # n.
The Legendre equation is
a1-x?)P",—2xP',+ m(m+ 1P, =0 ..(1)
And
(1—x?)P",—2xP', +n(n+1)P, =0 e (2)

Multiplying (1) by P, and (2) by P,, and the subtracting
1 —x2)(P,P",, — P,P",) — 2x(P,P';, — PyP'})
+ [m(m+1) —nn+ 1)]P,P, =0

(1-x2) % (PP’ — BpP'y) — 2x(PP'yy — B P'y)
=m*-—m*+n-m)B, B,
% (PP —BpP )1 —x2) = (n—m)(n+m+ 1)P,P,
Integrating both sides w.r.t. x from(—1 to 1), we obtain

x=1

1
(n—m)n+m+1) f P (0) Pa®) = [(1 — x2) (PaP'me — PP )11,
-1

1
f P,(x)P,(x)=0, asm=#n ..(3)
-1
ii. When m = n, we take the form
1

f [, (O]? dx = 2/(2n + 1)
-1

From the generating function

Z Z"P, = (1 — 2xz + z?)~1/2 .. (4)
n=0

Also
z z™P, = (1 —2xz+ z?)71/?2 ..(5)

n=0
Multiplying the corresponding sides of (4) and (5), we obtain
(1-2xz+2z%)"1= z Z B, (x)B,(x)z™t"

m=0n=0
Integrating both sides of above equation w.r.t. x, we have
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f_l (1-2xz+2z*)tdx = i i {f_l P, (x)PB,(x) dx}zm+n

m=0 n=0

Use of (3), in above equation reduces to

ZU_ll[Pn(X)]delzzn - fiﬁ

3 llog(l +z?% — 2xz)l1
-1

= —i[log(l —2z)? —log(1 + 2)?]

-2z 2z

= —% [2log(1 —z) —2log(1 +2)] = —%[log(l —z) —log(1+ 2)]

B WA

fl [P ()] dxl - i 2n2+ 17"
-1 n=0

Equating coefficients of z2" from both sides, (7) gives
1
f [, (0)]2 dx = 2/(2n + 1),
-1

12.10 RECURRENCE RELATIONS FOR
LEGENDRE POLYNOMIALS:-

i. nP,=2n-1)xP,_,—(n—-1)P, ,, n=>2
or
n+ 1P, =2n+1)xP,—nP,_;,n=>1
Proof: We know that the generating function, we get

z Zz"P, = (1 — 2xz + z?)71/2 .. (1)
n=0
Differentiating both sides of (1) w.r.t.z, we obtain

o

1
) (1—2xz+2z%2)73/2(=2x +22) = Z nz" 1P,

n=0
co

(1-2xz+22)732(x —2) = Z nz" 1P,
n=0

Multiplying both sides by 1 — 2xz + z2, (2) gives
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(1= 2xz + 22)"V2(x — 2) = (1 — 2x7 + 22) z nzm1p,
n=0

(x —2) z z"P, = (1 — 2xz + z?) Z nz" 1B, by (1)
n=0 n=0

(x i z"P, —z i z"P, (x))

n=0 n=0

= (Z nz" 1P, — 2x Z nz"B, + Z nz”+1Pn>

n=0 n=0 n=0

Equating coefficients of z™ from both sides, we obtain
xB,— P, =+ 1P, —2xnP,+ (n—1)P,_,

(Tl + 1)Pn+1 = (27’1 + 1)xpn —nP,_4 (3)
b = n+1 P4 n p
R L R SR L

Replacing n by n — 1 in (3), we obtain
nP, = 2n—-1)xP,_, — (n—1)P,_,

ii. nP, =xP',—P',_4
Proof: From the generating function
oo

z Z"P, = (1 — 2xz + z?)71/2 (D
n=0
Differentiating both sides of (1) w.r.t. z, we have

[ee)

1
) (1—2xz+2z%)732(=2x +22) = Z nz" 1P,

n=0
(o]

(1—=2xz+22)73%(—x+2) = Z nz" 1P,
n=0

Again , differentiating both sides of (1) w.r.t. x, we get

(1—2xz+22)73/2%(2) = Z z" P,
n=0 o
z(1—=2xz+2%)732(—x+2) = (—x + 2) Z z" P,

n=0
oo

z nz" P, = (—x + z) Z z" P, by (2)
n=0

n=0

z nz" 1P, = (—x z Z"P', + 2z Z z" P'n)

n=0 n=0 n=0
Equating coefficient of z™ on both sides, we obtain
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nPn =xP'n—P'n_1
i. @n+1P,=P,—P, ,

Proof: From recurrence relation (i), we obtain
2n+ 1D)xB, = (n+ 1)Pyyq + P,
Differentiating w.r.t. x, we get
@2n+1DxP',+(2n+ DB, =+ 1P, +nP',_,
or
@n+1)(nP, +xP'_1)+(2n+ 1B, =M+ 1P, —nP',_4
[+ from recurrence(ii), xP',, = nP, + P',,_1]
Cn+ 1P n+1)=mMn+1DP 1 — (n+ 1P,
2n+ 1P, =Py —P'yy (D)
Replacing n by n — 1 in (1), we obtain
2n—-1P,_;=P,—P,_,
dpn(x) _ dPn—Z(x)

I I +Cn+1P,_;(x) ...(2)
The equation (1) and (2) are the required form of the results.
iv. (n+1)P,=P,.,—xP', or P,—xP, =
nPn—l

Proof: From recurrence relation (ii) and (iii), we obtain
nP, =xP', —P'y 4
2n+ DB, =Py — Py
Subtracting above equations, we have
2n+1)P,—nP,=P'py1 =Py —xP' + Py
2nB,+ P, —nP, =P, —Pp_i—xP,+P,_,
(n+1)P,=P',.1—xP',
V. (1—-x?)P, =n(P,_; — xB,) or (1-x?»P',
=nxP, —nP,_;
Proof: From recurrence relation (ii) and (iv), we obtain
nP, =xP', — P',_4
(n+ 1P, = Py —xP'y
Replacing n by n — 1 in above equation, nP,_, = P',, —

xP',_4 (1)
Multiplying both sides by , xnP,,_; = x?P’, —
xP'y_4 - (2)

Subtracting (2) from (1), we get
n(P,_, —xP,)=1-x*)P', or (1-x*P',=nxP,—nP,_,

Vi. 1-x»)P,=mn+1)xP,—P,.q1)
Proof: From recurrence relation (ii) and (v), we obtain
2n+1xP, = (n+ 1P,y +nP,_; = [(n+ 1) + n] xB,
=M+ DPpyy + 1Py
And (1—-x?P', =nP,_; — nxP,
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Now from above equation
(1 - xz)P’n = (Tl + 1)(xpn — Pn+1)

12.11 BELTRAMI’S RESULT:-

Prove that
2n+ 1) - 1P, =n(n+ 1) Py — Ppo1)

Proof:
(x?2 - 1P, =n(P,_, — xP,) .. (1)
(x?2 =P, =+ 1)(P,_; —xB,) .. (2)
Multiplying (1) n by n + 1 and (2) by n and adding, we obtain
m+1DA-xH)P+n(1—x?)B, = (n(n+ 1)P,_; —n(n+ 1)P,)
Cn+ 1A - x*)P; =nn+ 1)(Py_y — Pry1)
2n+ 1)(x? - 1)B, = n(n + 1)(P,,., — P,_,) is required solution.

12.12 CHRISTOFFEL’S SUMMATION

FORMULA -
P;ove that

D @+ DPLO) PO = 2 [Prs (P10 = Pr()Pmia 0]
k=0

Deduce that

' @kt DR = T [Praa ()~ B ()]
k=0 Y

Proof: From recurrence relation I, we get
A 2k + DxP(x) = (k+ VP (x) + kP (x)  ...(1)
n
2k + DyP(y) = (k + DPys(0) + kP1(y) .. (2)
Multiplying (1) by P, (y) and (2) by P, (x) and then subtracting, we have
2k + 1D (x — y) P (x) P (y)
= (k + D [Prs1 ()P (y) — Prs1 (V) P ()]
= k[Pg—1(x)Pe(y) = P () P (3]
Replacing k by 0, ..........2,3, ... .....m — 1, m successfully in (3) and
adding equation, we obtain
m

(=) ) @+ D PP
k=0

= (m + 1)[Pm+1(x)Pm(Y) - Pm—l(y)Pm(x)]

m
m+1
Z(Zk + D P (OP(y) = — y (P12 (O)PL(Y) = Py (%) P ()]
k=0
To show that
P,=2n—-1P, 1 —2n—1)P,_ 3+ (2n—9)P,_5+ - the

last terms of the series being 3P, or P, according as n is even or odd.
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o)
P',(x) = 2n—4r—1)P,_;,_1(x),
rz=0 2r-1

Where
1 (n—1)/2,if nis even
[— (n— 1)] = { PR
2 (n—2)/2,if nis odd
Proof: Replacing n by n — 1 in recurrence relation 111, we obtain
B,=02n—-1P,_,+P,_, . (1)
Casel: Letn be even, Replacingnbyn,n—2,n-4,..4,2
successively in (1) and usingP, = 1 and P, = 0, we have
P,=0Qn—-1)P,_1+P,_,
Py =0@2n—5)P,_3+P 4
P,n—l =(2n- 9)Pn—s + P’n—6

P'y,=7P;+ P,
P', =3P, + P/,
Adding these and simplifying, we have
Po=02n—1)P,_1+(2n —5)Py_g+ -+ +3P, ..(2)
Casell: Let nis odd. Replacingnbyn,n—-2,n—-4,..5,3
successively in (1) and usingP4(x) = x,and P, = 1 so thatP, = 1 =
P}, we have
Ph=0C2n—1P,_1+Pp,
P y=0@n—=5)P, 3+P 4
Pri=0@n—9)P, s +Py

P,4 == 9P3 + P,3
P’2:5P2+P’1:5P2+P0
Adding these and simplifying, we have
P'n=(Zn—l)Pn_1+(2n—5)Pn_3+ """"" +5P1+P0 ...(4)
Comparing (2) and (3), we get
[2--2)]

Pa = ) @n—dr— 1Py g @)
r=0

12.13 RODRIGUE’S FORMULA:-

To show that
1 d*
PO = e

Proof: By the definition of Legendre polynomials, we obtain

[n/2]

(2n — 2r)1x™2"
— _1\r
Fa(x) = Z)( 1 2t (n—1)! (n — 2r)! - (1)
n=
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no.. .
Where [n/2] = {(nz—’;)f e
S if nisodd
Now, binomial theorem, we have
n n
(xz _ 1)n — Z nCr(xZ)n—r(_l)r — Z nCern—Zr (_1)1"
r=0 r=0 o
Z%n!din (x?=1)" = onn |Zn OnCr(_ )r e
But ;C—me =0ifm<mn; ﬁxm = (mrf!n)lxm "ifm>n
:x”ann r=0,if2n—2r <ni.e. r>—

Making use of above equation, we see that we must replace

n_,by Y% if nisevenand by X V% if nis odd. Hence
n/2
1 4" 1 d"
i O~ D = g ) e (1 g
1 n/2 (;:o 5 )'
n—2r)!
— —1)T 2n-2r-n
Z”n!Z)nCT( ) (2n—2r—n)!x
r=
& 1 G-
n! n—2r
— —1\r —
_Z)( 1) rl(n —r)!2nn! (n—2r)' B (20)
r=

12.14 LAPLACE’S DEFINITE INTEGRALS
FOR P, (x):-

(I) Laplace’s first integral P,,(x). when is +ve integer, then

P,(x) = %J:T [x +(x2 - 1)cos¢]n do

Proof: We Know that
f when a? > b%. ..(1)
0

a + bcos¢ \/—
leta=1—2zx and b=2zVvx?-1
a’ —bz—(l—zx)2 z22(x?*—1)=1-2zx + z*
Usmg these values of a, b and a? — b?,in (1)

m(1l—2zx +z?)71/2 = f [1 —zx + z/(x2 — 1)c05<;1')]_1 d¢
0

[ee)

nz z"P,(x) = fn(l —zt)Yde if t=x+(x%2—1)cos¢p

n=0
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=Ln(1+2t+zzt2+ ......... )dd):j:i(ﬂ)ndd)

o)
[

= Z z" | t'do
0

n=0

0]

Z ”P(x)—z f [x+ (x2 —1)cos¢] dg ..(2)

n=0

From (2),[Equating coefﬁClent of z™]
P,(x) = +/(x2 -1 "d
P, (x) fo [x (x )COS¢] ¢
P(x) =2 |x+
J(x% — 1)cos¢>]n dp ..(3)

Deductions: Prove that
i. P,(cosf) = %f:[cose + isinfcos¢p]"d¢

i. P(x)= ifon [x +./(x2 - 1)c059]n de

Solution:
i. Suppose x = cos@,then we obtain
J&x2=1) = Jcos20 — 1 = J{(=1)(1 — cos26)} = \/{i%sin26}
= isin6
From (3), we obtain

T

1
P,(cosB) = Ef [cosO + isinBcosp|™d¢p
0
ii. Letn=1 in(3)

Py (x) = %j:r [x +/(x2 - 1)c059]n d¢

(IT) Laplace’s second integral P,,(x). when is +ve integer, then
T

P = L _do
/o [x +./(x% — 1)cos¢]

Proof: From integral calulus,we obtain
V3
d
f ¢ Where a’?>b? ..(1)
0

at bcos¢ [(a?
Suppose a= 1 —zx and b= zx/x2
a’? —b? = (1—Zx)2—22(x —1) =1-—2zx+ 2z
Usmg these values of a, b and a? — b?,in (1)
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n(1 - 2zx +z3)"Y2 = [T [1 —zx + 7,/ (x?% — 1)cos<l>]_1 d¢
-1/2
H(-2ete ) = e

V(x? - 1)cos<;t)}]_1 dp ..(2)

Let t=x+

J (x%2 —1)cos¢ ..(3)

We know that (1—2zx +2z?)71/2 =

0 Z" B, (x) ..(4)

Replacing z by 1/z in (4), we have

-1/2 ®
(1 —2x%+%) = ZzinPn(x) ..(5)
n=0

Now using (3) and (5), we get
%) -1
s

RO n(—1+zt)_1 as = | o8 1—2%) dg

z
f th Zt Zz”“ t"+1

n=0
P (x) =

- (6)

n 0 Zn+1

n OZn+1 fo [ + ,—(xz 1)COS¢]

Equating the coefficients of 1/z™** from SldeS (6) obtain

np(x)—f[
P(x) = = f[

n+1
x++/(x% - 1)cos¢>]
Deductions: Replacing n by - (n + 1) in (7), we get
s

_1 d¢
P () = ”j; [x + \/(xz——l)cos¢]_n

_ Hﬂ [ + 7 = Dcoso|" do = P(x)
P (x) = P—(n+1)(x)
SOLVED EXAMPLES

EXAMPLEL: Prove thatP',,,; + P', = Py + 3P, + -+ (2n + 1)B,.
or

D @+ DG = Py () + Po)

n+1
x+ (x2 - 1)cos¢>]

. (7)

Thus
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SOLUTION: From recurrence relation 111, we obtain

2n+1)B, =P —Phq (1)

Replacing n by 1,2, ...n — 1, n successively in (1), we have
3p, =P, - P,
5P, =P'; —P';

7P3=P’4_P’2

2n-1)P,_, =P, —P,,
and 2n+1)B, =P — P4
Adding these terms
3P, + 5P, + 7P + «+- - + (2n+ 1B,
=—Py—P+P,+P . ...(2)

Since

P, =1and P, = x,we have P’y = 0and P'; = 0 = P,.

From (2), we obtain

3P, + 5P, + 7P; + -+ -+ +2n+1)BP,=—-0—Py+P',+P 1
or
3P, + 5P, + 7P; + -+ - +@2n+1)P, =P, +P

or

D @+ DRG) = P + Py ()
r=0

EXAMPLE2: Prove that
i c+ [ B,dx = (Pyyy — Ppo1)/(2n+ 1)
i. [ Pydx=(Ppy—Po)(@n+1)
Proof: From recurrence relation 111, we obtain

! ! 1
2n+1)B, =P .1 —P',_; Or P”:2n+1

i Now integrating above equation
f B,dx+c¢ =Py —Pr1)/@2n+1)

ii. Integrating both sides of (1) w.r.t.x between limits x to 1, we

d
a (Pn+1 - Pn—l) (1)

get
flp 5 = gy Paes () = Ao OO
X 2n 41 "t n-1\4 Iy
T on+1 [Prs1(1) = Proy (1) = Py (%) + Py ()]
[Pn—l(x) - Pn+1(X)]/(2n + 1), as Pn+1(1) —
Pn—l(l) =1

EXAMPLES: Using Rodrigue’s formula, find values of
P (x), P1(x), P, (x) and P5(x).
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SOLUTION: Rodrigue’s formula is given by

dn
— 2 _ n
P,(x) = T 'd —(x?—1) ..(1)
Putting n = 0 in (1), Py(x) = 20 5 (x -1)0=1
Puttingn = 1in (1), P,(x) = 21 T (x -1 = —2x =x

Putting n = 2 |n (1)

a2 2144 2 _q4y2|_14 2 _
Pz(x) - 22 2'dx2 ( 1) 8 dx [dx (X 1) ] T 8dx [Z(X

1).2x] _EE(X —X) =5(3x -1)
Putting n = 3in (1) we get

P3(X)_223|F( xt=1)% = 418;_22[11%( 2_1)3]
1 d2 )
= ag ez P& %2 [d_x(x - 17|
_%di[(x —1)? +x.2(x* - 1). 2x] %d—(5x —6x* +1)
%d—(ZOx —12x)——(5x —3x)

EXAMPLE4: Prove that
. [ P dx=2ifn=0.
i. [ R@dx=0ifn>1.
SOLUTION:
i Whenn = 0,B,(x) = Py(x) =1
f_ll P,(x)dx = f_ll dx =2
ii. Using Rodrigue’s formula, we obtain

1 1
f B,(x)dx = T n'f D™ (x? — 1)"dx, where D™ = d"/dx™
-1 R |
1 1
= S DG = DML = o D - P

1
= on [Dn_l(x - 1)n(x + 1)” +n— 1C1Dn_1(x — ]_)nD(x + 1)n +
+ D" e - DR+ DY
[Dn(uv) =D"u.v+ nCID"_lu_Dv 4ot u Dnv]

__! [nIx—Dx+D"+-+nl(x—-Dx+ D", =0
2™ n!

[ D™(ax + b)™ = a" (ax + b)™" "]

m!
(m —n)!

12.15 RECURRENCE RELATIONS FORQ,,(x):-

We have already defined that
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0. — nl x_(n+1) + (Tl + 1)(71 + Z)x—(n+3) F ceinn
"T135. (2nt+ D 2(2n +3)
_ 2" (n!)? -1 (n+ D+ 1)x—(n+3) T e
2n + 1)! 2(2n +3)
Ny !
_ 2"n! x~ @+ D1 4 M (n+2+1) 4 ... ...
2n+ 1)! 2(2n+3)
N, !
_ 2"n! 1~ M+ Dy MX (n+2+1) 4 ... ...
2n+ 1)! 2(2n+3)
2nn| [e's) (n + 27‘)' x—(‘l’l+21"+1)
T @n+DI&24..2r@n+3)@n+5) . 2+ 2r + 1)
r:
2mip] 0 (n + ZT)' x—(n+2r+1)
=~ Qn

“@2n+ 1) 4271 (2n +3)(2n+5) .. @n+2r +1)
r=
Differentiating w.r.t. x, we have
2"l (n + 2r + 1)1 x~@+2r+2)
o= (1
Qn= "Gt D , 2771 (Zn+ 3)(2n + 5) . @n + 2r + 1) )
r=

Substituting n — 1 for n in (3), we obtain

, 2nlnl O (n + 2r)!x~(+2r+1)

Qna () == (2n—1)! Z) 2rr!2n+1)2n+3) ..(2n+2r — 1)

r=
) 2n.2"nl (n+ 2r)!x~(r+2r+)
Qn-a () = — 2n—1)!2n 4277 2n+1)(2n+3)..2n+2r-1)
r=

: 2" nl (n + 27)l g~ (¥2r+ D)

Q n—1(x) ==

2n! i 2 r'2n+1)2n+3)..2n+2r-1)
Again, Substituting n — 1 for n in (3), we obtain
Q’n+1(x) -
2" (n + 1)! (n+ 21 + 2)1 x~(+27+3)
T T (2n+3)! Z 271 (2n+5) .. 2n+ 2r + D(2n + 2r + 3)
Q,n+1(x)

r=0

_ 2m+inl (2n + 2)! o (4 2r + 2)lx~(+2743)
T @n+3)@n+2)@n+ DEY!IL 2T (20 +5) . (2n+ 2r +3)
r=

o)

) 2™ n! (n+ 21 + 2)! x~(+2r+3)
Q n+1(x) = Z

~(2n)! L1271 (2n+ D)(2n +3) ... 2n + 27 + 3)

I an+1 - ,n—l = (Zn + 1)Qn
Proof: Given

Qn—Qn1=02n+10Q,= Q" =0Q 1 +2n+1)Q,
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We take R.H.S
Q,n—l + (21’1 + 1)Qn
2" nl (n + 2r)! x~(n+2r+1)
-~ 2n! 4271 2n+ D(@2n+3)..2n+2r — 1)
r=
2"l n+ 2r)! x-(n+2r+1)
+(2n+1) ( )

(2n + 1)! - 2"r!(2n+3)(2n+5) ..2n+ 2r + 1)

2" n! [ (n + 2r)! x~(n+2r+1)
- 2n! Z) 27! 2n+3)2n+5)..2n+ 2r + 1)
r:

oo

(n + 2r)! x~(n+2r+1)
B Z) 21l 2n+ 1D)2n+3)...2n+ 2r — 1)
r:

2" 1! [ (n + 2r)! x~(n+2r+1)
~ 2nl Z) 271 2n+1)@2n+3)...2n+2r + 1)
r=

x{2n+3)..2n+2r + 1)}

r'Cn+1)2n+3)..2n+2r+1)

(n + 2r)! x~(n+2r+1)
0+ ).
+ 271 (r =11 2n+ D2+ 3) .. 2n+2r +1)
r=

2" n! [ —2r(n + 2r)! x~(n+2r+1)
- 2n! er
r=0

2™ n!
- 2n!

2n il [ (n — 25 + 2)1 x~(n+25+3)
- 2n! Z) 25()!2n+1D2n+3)..2n+ 2s + 3)
S=
[puttingr = s+ 1sothats =r — 1]
=Q'ny1(*) =L.H.S

1. Qi1+ n+1)Q' -, =2n+1)xQ',
Proof: Given

Q, ., tTn+1Q, _,=2n+1)Q",

= an+1 = (Zn + 1)an - (n + 1)an—1
We take R.H.S

2n+1DQ', —(n+1Q',_,
2"l (n + 2r + 1)1 x~(+27+2)

=-(@2n+1) (2n+ DILi2r!(2n+3)2n+5) .. 2n+2r +1)

VAS
-+ D)

I o (n + 2r)! x~(n+2r+1)
Z 2'r'2n+1)2n+3)..2n+2r—-1)

r=0
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2 i (n + 2r + DIx~ 2+ (20 + 1)
22 (n+1)02n+3)..C2n+2r+1)

r=0
2 o (n+ 2 x~2r D (0 + 1) (2n + 2r + 1)
2n! L 2'r'(2n+1)(2n+3)..2n+2r + 1)
2"l w (n + 2r) x~(n+2r+1)

T 2n)! L2 2n+ DEn+3) .. 2nt2r + 1)
x[2n+1D)@2n+2r+1)—-(+1)2n+ 2r +1)]
n.2"n! (n + 2r)! x~(+2r+D)
T o [{; 210 — DI@n+ D2n+3) .. @n +2r + 1)} 0
n.2"n! (o (n + 2s + 2)1 x~(n+2r+3)
-~ T 2! {; 25s!2n+1)(2n+3) ...(2n + 2s + 3)}
[puttingr = s+ 1so thats =r — 1]

= nQ’n+1

1. @n+1)xQ,=m+1)Q,,1 +nQ,,_; or xQ,, =
2 Quit + o Quoy 07 (+ 1)@y — (2n+ 1xQ, +

2n+1 2n+1
nQn—l =0
Proof: We have nQ,,_; — 2n + 1)xQ,
21 (n — 1! (n+ 2r — 1)1 x~(n+20)

(2n—1)! ~ 2'r'(2n+3)(2n+5)..2n+2r—-1)

(n 4+ 2r)! x~(F2r+D)

2™"n!
—(2n+1
@n+ Dx o 277 2+ (@0 +5) . @n+2r + 1
r=
[putting the values of Q,_,and Q,]
_2mt(m)!.2n (n+2r — D!x~ ™2 (2n + 2r + 1)

(2n + 1)! . 27r'(2n+3)2n+5)..2n+2r—-1)2n+2r+ 1)
r=

2"2n+ 1) nl v (n + 2r)! x~(+27)
(2n + 1)! 4 2'r'(2n+3)(2n+5)..2n+2r+ 1)
r=

_2r(m)! Z (n+ 2r — 1)1 x~(n+21)
- (2n+ D! ] 2rr1(2n+3)(2n+5)..2n+2r+1)
r=

x{n@2n+2r+1)—-0Cn+1)(n+2r)}

Department f Mathematics
Uttarakhand Open University
Page 272



ADVANCED DIFFERENTIAL EQUATIONS-I MAT 504

_2"(n)! (n+2r — DIx~ ™2 (=2r)(n + 1)
C2n+1)! Li27r! 2n+3)2n+5)..2n+2r + 1)
x{n@2n+2r+1)—2n+1)(n+ 2r)}
_2M(n+1)! (n+ 2r — D1 x~(+20)
T n+ 1) ;Zr‘l(r - 1D)'2n+3)2n+5)..2n+2r+1)
= —(‘n
) 2" (n + 2r — 1)1 x=(+20)
(Zn + 1)! Z 271 (r—-1)!2n+3)2n+5)..2n+2r+ 1)
+0
= —(n
2”(n)' (n + 2s + 1)1 x~(n+25+2)
(Zn + 1)! Z 25(s)'2n+3)2n+5)..2n+2s+ 3)/(
takingr =s+1
= —(n

2" (n)! (2n + 2) > (n+ 25 + 1)1 x~(+2s5+2)
(2n + 2)! Z 25(s)(2n+3)(2n+5)...(2n+ 2s + 3)

zn(n +1)! (n+ 2s + 1) x~(+2s+2)
=—nt Z 25

(2 + 3)! (s)'(2n+5)..2n+ 25+ 3)
- _(n‘l' 1)Qn+1

V. 2n + 1)(1 - xz)Q’n = n(n + 1)(Qn—1 - Q,n+1)
Proof: Let Q,, is a solution of Legendre’s equation, given as below

d d
a[(l —xz)d—ﬂ +nn+1)y=0
;—x [(1-x2)Q" | = —nn+
D, . (1)

Integrating both sides of (1) between the limits(oo to x), we have
X

[ -0, )7 = =nu+ 1 | [0, ax

or
(1-29Q, () = —n(n +1) f [0,] dx
[ (Q’n)xzoo =0 and (sz’n)xzoo = 0]

But by recurrence relation I, we have
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Q’n—l - Q’n+1 = (27’1 +
D0, . (2)

Integrating both sides of (3) between the limits(co to x), we have

(s — Qo] = f (2n + 1)Qndx

or
Qn1(x) — Qn_1(x) = f;(Zn +
1)Q,dx .(3)

[ (Q,n+1>x=oo =0= (Qn—l)x=oo]
Hence
Qni1(x) — Q1 (x)
2n+1

(1-x»Q",(x) =-nn+1)
or
(2n+ 1)1 -x*)Q',(x) = —n(n + 1)[Qp1(x) — Qp_1(x)]

12.16 CRISTOFFEL’S SECOND SUMMATION
FORMULA:-

Results. (y —x) Y ,2r+ 1P, (x)Q,(y) =1—(n+
1) [Pn+1(x)Qn(y) - Pn(x)Qn+1(y)]

Proof: From recurrence formulas for P, (x) and Q,,(x), we obtain
2n+ D)xB,(x) = (n+ 1)P,11(x) + nP,_;(x) .. (1)
Cn+ 1y, ) = n+ 1)Qn41(¥) + nQp_1(y) . (2)

Multiplying (2) by Q,,(y) and (3) by B, (x) and subtracting, we obtain

(Zn + 1)(X - :V)Pn(x)Qn(Y) + n{Pn—l(x)Qn(Y) - Qn—l(Y)Pn(x)}
=+ D{Prs1(0)0n () — Q1 (0B ()}

Taking n = 1,2,3 ... ...n in above equation and adding, we have
(v =) Xi=12r + DA () Q- (y) + {Q1(x)Po(¥) — Qo (0 Py (x)} =
—(n + D{Pp+1(0)Q(¥) — Q1 (W) B (x)}

Since

Q:(¥) =y,0,(y) = 1,P,(x) = x,Py(x) = 1
Hence

(-2 ) @r+ DP,(00,()
r=1

=1- (n + 1)[Pn+1(x)Qn(y) - Pn(x)Qn+1(y)]
The above equation gives the required results

12.17 ARELATION CONNECTING P, (%)
ANDQ,, (x):-

Prove that
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= > @m+ 1 Pp(0Qn®)
m=0
And hence deduce that
1p (x)
o= [ = Zax ¢>1)
-1
. __1
Proof: Let f(x) = -
f(x) ! 1(1 x)_l -1<1+x+x2+ +xm+ >
X)=———=— _— = —_ o e R e
y(d—-x/y) vy y Y y y ym
=y l4xy P4ty 34 xmy ™ 4 (D)
= Ay + xA, + AZXZ 4 oeeeenn (2)
Let

fm=ZBPm

123..m 4 mDm+2) o
Then we know that B, = —— ame 1)[ m s Amez T ]

From (1) and (2), we obtain

Ag=y Y, A =y72% ... A,=y ™MD |

—(m+3)

JomeD) 4 (m+1)(m+2)
(Zm — 1) 22m+3)

_ =@m+Den®
1
EraIC AR LECLACIS
Now multiplying (3) by P,,(x) and integrating w.r.t. x in the interval
(—1,1), we have

f_llp’" (x)'y i

xdx = f_le(x) Z(2m+ 1) Qm ()P, (x) | dx

= Qn) [ [BACOL (2m + D

1
f P,(x)P,(x)dx=0m#n
-1

= Qn(y).(2m+ 1.
f ()5 —dx = Qu(»)

This is known as Neumann s integral forQ,(y).

2m+1
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SOLVED EXAMPLES

Examplel: Prove that
i. (x2—1)(QuP'n—BQ',)=c
i, L= fr =
’ Pn x (x2-1)PF
iii. From ii deduce that
1 1
a. Qy(x) = Elogf:—l.
1 x+1

b. Q,(x) = Slog— —1.

2

Solution:
i. Legendre’s equation is

(1—-x2)y" —=2xy'+n(n+1)y=0 .. (1)
Since

1-x®)P," —2xP,'+n(n+ 1P, =0 ..(2)
and 1-x30Q," —2xQ, +n(n+1)Q,, =0 ..(3)
Multiplying (2) by Q,, and (3) by P, and then subtracting, we obtain

(1 - xz)(Pn”Qn - Qn”Pn) - Zx(Pn,Qn - inpn) =0

or
d 1A 1A 1A 1A
(1 - xz)a(Pn Qn — Qn Pn) - Zx(Pn Qn — Qn Pn) =0
or
d ! 1A
a{(l_xz)(Pn Qn_Qn Pn)}=0 (4)
Integrating W.r.t.zx, (4) gives (1 —x3)(,/Q,—-0Q,/'P) =—c
x*-1)(P,'Q,—0Q,'P,) =c ..(5)
ii. Fromi,we onbtaﬁl e
, , c c 1\7*
B, Qn —0Qn Pn:xz_lzx_f(1;x7>
, , C C
Pn Qn_Qn Pn :xz—l :F(1+F+F+'“> (6)
We know that
0, = n! -t D) (n+1)(n+2)x_(n+3)+m
1.35..(2n+ 1) 2.2n+ 3)
and
_135.. 2n+1) " nn-—1) o
n = n! Ty an—Dn® Tt

Using above equation, L.H.S. of (6)
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_ n! x—(n+1)+(n+1)(n+2)x—(n+3)+...
1.35..2n+ 1) 2.(2n+ 3)
y 135..Qn+1)[ ~ nn-1) N
nl T2 n-D"
~ 1.35..(2n+1) . nn—1) S
n! | 2.2n—-1)
y n! - (n4D) n+1Mn+2) (43
1.35...2n+1)| 2.2n+3)
Since the coefficient of 1/x2 in L.H.S. of (6)
n! 1.35..2n+1)
T135..(2n+ 1) n! "
n! 1.35..(2n+1)
- (—n—-1)
1.35..2n+ 1)’ n!
_n 4 n+1 _2n+1_
2n+1 2n+1 2n+1
Hence from (5), we obtain
(xlz - 1)(Pn,Qn - Qn,Pn) =1 or '(xz - 1)(inpn
Pn Qn) =, 1 ,
(Pn Qn_Qn Pn)z_ 1 or i(&)
P? (x2 —1)P? dx \ P,
1
(2 -1)P?
Integrating both sides W.r.t.x from(oo to x), we have
B =-[ -| eoom
(x2 — 1)P2 . (x2=1)P?
Qn(x)  lim Qn(x) f°° dx
P,(x) x-0 P(x) . (x2=1)P?
Now,
dn
i Qn(x) anQn(x)
1 =
S TIORES S
[By L’ Hospital Rule]
n! _1\n —(2n+1)
. 135 .(Zn+ 1) {((-D"(n+ 1D +2)...2nx + -} _,
T xoo 1.3.5.. (2n+1) -
n!
Hence

Q.(x) f
P,(x)  J, (x2-1)P%

- (7)
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iii. Deductions from (ii)
a. Replacing n by 0 in (7), we obtain

0 _
P J, (Z-DPI®
o dx Qo(x) =
. @ (Po(x) = 1)
x— 117 1. x—1 1. x+1
=§[logx+1 x =—§logx+1=§logx_1

lim 1 (x—1> lim 1 (1—1/x)
» lim log = lim log =
+1

X—00 X X— 00 1+ 1/X
b. Replacing n by 1 in (7) we obtain
Q.(x) f
Pi(x) (x2 — 1)P (%)
“  dx
Q,(x) = xf oI (Py(x) = x)
@ 1 x—1 117
=] [l =iy o],
x—1 1
B _x[zlog +1 +}]

& (_1)‘1' o8 (75 17%) =]
B AV A S C Uy A

X x—1 X x+1
- _Elog(x + 1) -1l= Elog(x - 1) -1
EXAMPLE2: Prove that Q,(x) = 2 P,(x) log==x — 2 x
SOLUTION: From recurrence relation Il for Q,(x), we have
M+ 1DQp-1 = 2n+ DxQy —nQp_; ...(1)
Replacing n by 1 in (1), we obtain
20, = 3xQ, — Qo

x+1 x+1
—3x[210g —1]——og( — )

1
_3x —11 x+1 3
— T g %y

= P,(x) 1ogi—: - 3x

i =221

Q00 == Pz(x)logx-l_i —%x
SELF CHECK QUESTIONS

1. Prove that x* = (8/35)P,(x) + (4/7)P,(x) + (1/5)Py(x).
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2. Show that f_ll x* Pg(x)dx = 0.

12.18 SUMMARY::-

In this unit we studied the Chebyshev polynomials, Legendre
equation and its solution as Legendre function of first and second kind.
We have also studied the recurrence relation, generating function,
orthogonal properties of Chebyshev polynomials and Legendre
polynomials, Rodrigues formulae and other important formulas for these
functions.

12.19 GLOSSARY:-

Orthogonal properties
Recurrence Relation
Laplace’s definite integrals
Christoffel’s expansion

12.20 REFERENCES:-

e Daniel A. Murray (2003). Introductory Course in Differential
Equations, Orient.

e M.D. Raisinghania,(2021). Ordinary and Partial Differential
equation (20" Edition), S. Chand.

e G F Simmons (1991) Differential Equations with Historical Notes.

12.21 SUGGESTED READING:-

e B. Rai, D. P. Choudhury & H. I. Freedman (2013). A Course in
Ordinary Differential Equations (2nd edition). Narosa.
e Erwin Kreyszig (2010) Advanced Engineering Mathematics.

12.22 TERMINAL QUESTIONS:-

(TQ-1) Prove that % - i = Yeo(By + Ppyy) 2™
(TQ-2) Prove that P,(1) = 1and B,(—1) = (—1)"

(TQ-3) Prove that 2n + 1)(x? — 1)P', = n(n + 1) (P41 — P,—1) and
deduce that

v ) _ 2n(n+1)
f_ 6= D Py COP (e = R
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(TQ-4) show that P,(x) = %f; [x +/(x2 — 1)6059] d6 wheren is a
positive integer.
_ T o5 _ 2n(n+1)
(TQ-5) show that [~ x?Ppy1Ppqdx = DGty
(TQ-6) Show that f_+11 XP,P,_dx = —2—

4n2-1"

(TQ-7) Show that n[P,Q,—1 — Q,Pn_1] = 1.
TQ-8) Show that P, (x) == [ L
(TQ-5) W=k i Deosg ] 0

dn+1 _o\n |

(TQ-9) Show that:— [0, ()] = 7305
(TQ-10) Prove that

I. n(QnPn—l - Pn—lQn) =(n- 1)(Qn—1pn—2 - Pn—lQn—Z) and

deduce that

ii. n(QnPn—l - Pn—lQn) =—1or B,Qn-1—QnPpn1=1/n
(TQ-11) Using Rodrigue’s formula, prove that P',,,; — P’y =
(2n+ DB,
(TQ-12) If x > 1, show that P, (x) < P41 (x)
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UNIT 13:- Bessel Functions and Hermite

Polynomials

CONTENTS:

13.1  Introduction

13.2  Objectives

13.3  Bessel’s Differential Equation

13.4  Solution of Bessel’s Equation

13.5  General Solution of Bessel’s Equation
13.6  Recurrence Formula For J,,(x)

13.7  Generating Function for Bessel’s Equation
13.8  Orthogonality Property for Bessel’s Equation
13.9 Bessel Integrals

13.10 Bessel Series

13.11 Hermite’s equation and its Solution H,, (x)
13.12  Generating Function for H,, (x)

13.13  Orthogonality Property for H,,(x)

13.14  Recurrence Relation for H, (x)

13.15  Rodrigues Formula for H,,(x)

13.16  Summary

13.17  Glossary

13.18  References

13.19  Suggested Reading

13.20  Terminal questions

19.21  Answers

13.1 INTRODUCTION:-

Bessel's equation arises in many areas of physics and engineering,
such as the theory of vibrations of circular membranes, the study of
electric and magnetic fields in cylindrical coordinates, and the analysis of
wave propagation in cylindrical or spherical geometries. It has important
applications in acoustics, optics, signal processing, and quantum
mechanics.

In this unit, we discuss about the Bessel function through the generating
function, recurrence formulae, orthogonal property and Integral of
representation of Bessel Function.

13.2 OBJECTIVES:-

After studying this unit you will be able to
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e To discuss about Bessel functions and its equation and generating
function.

e To study the recurrence formulae of Bessel functions.

e To study the important properties for this function.

e The main objective of Hermite polynomials is to provide a set of
orthogonal polynomials, which means that they satisfy a particular
inner product property.

e To provide the Hermite polynomials also have a generating
function that allows them to be expressed in terms of other
mathematical functions.

13.3 BESSEL’S DEFERENTIAL EQUATION:-

The differential equation

d?y 1dy n?
W+;g+<1—;>y=0 ..(1)

is called the Bessel Differential equation, where n is positive constant.

13.4 SOLUTION OF BESSEL’S EQUATION:-

Let the solution (1) be

y = Z a,x™"r ..(2)
r=0
Then
dy - . d%y
il (m + r)x™*" 12}@

r=0
(o]

= Z a,(m+r)(m+r—1)xmr2
r=0

2
Putting the value of Z—i’ and % in equation (1), we obtain

o 9] [o9]

1
x? Z a,(m+r)((m+r—1)x™72 4 ;Z a, (m+ r)xmtr-1
r

r=0 =0

+ (x? —nz)z a, x™" =0
r=0
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oo

z a,(m+r)(m+r—1)x™" + z a, (m+ r)x™"
r=0

r=0

+ (x? — nz)Zar XM =0

Z a,(m+r)(m+r—1)x™" + Z a, (m+ r)x™" + Z a, xMtrt2

r=0
(o]
E m+r — 0
. :

Z a x™"{(m+r)m+r—1)+(m+r) —n?}+ Z a, xMH2 =
r=0

r=0
(o8]

Zarxm+r{m2+mr+n2+rm—m—n+m+r—n2}

r=0
[o9)
+ a xm+r+2 =0
E r
r=0
(o8] [o2]

Z a, xm+r{(m + T‘)Z _ nZ} + Z a, xm+r+2 =0
r=0

r=0
(o)

z a, x™""{(m+r+n)(m+r—-n)}+ Z a, xMtr+2 =
r=0 =0
Hence equating to zero the coefficients of lowest power of x, we obtain
(m+n)(im—n)ay=0m=n,—nas a; #0 ..(3)
Also equating to zero coefficient of x™*1, we have
(m+r+n)(m+r—n)a; =0
But
(m+r+n)(m+r —n) # 0 by equation (3), so we have a; =0
Similarly equating to zero the coefficients of x™*" we get
m+r+n)m+r—-—n)a,+a,_, =0>a,_,

a‘)"
= — .. (4
m+r+n)(m+r—n) @)
Putting r = 3,5,7, ..... in (4) it follows that a; = as = a, =+ =0

Casel: If m = 4+n
Also putting r = 2,4,6, .....in (4), we obtain
Qo

=— >
2 m+2+n)(m+2-—n) G4
m+2+n)(m+2—-n)(m+4+n)(m+4—n)
Putting these value in (2), asa; = as = a, = --- = 0, we have
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)
y = z arxm+r = aoxm + alxm+2 + a4xm+4 T TR TRIP P

r=0

1

xZ

T (m+2+n)m+2-n)
X
+(m+2+n)(m+2—n)(m+4+n)(m+4—n)

m

Yy = AgX

2

Replacing m by n and - n, we have

y = apx™" l1 — %t x? l ..(5)

2.2 +2n) 24 G2 nt )

2 xZ

— -n — [
Y= QX Il 2.Z—2n) T 24 (A—2n)(—2n+ 2) l - (6)
The particular solution of (1) obtained from (5) above by taking arbitrary

constant a, = m is known as Bessel function of first kind of

order n. It is denoted byJ,, (x).

B x" . x? x?
1) = D [ i+ 182+ nmiD l

1
Jn(2) = ;(_1)r r'Tln+r+1) (g)

2r+n

Similarly

2r—-n

= 1 X
— _ r —_
Jn(x) = Z)( Va0 @
r=
It is known as Bessel function of second kind of order n. It is denoted
byJ _n ().

13.5 GENERAL SOLUTION OF BESSEL’S
EQUATION:-

The general solution of Bessel’s equation (1) is

y = AJn(x) + B]_n(x).
Where A and B are arbitrary constant.

13.6 RECURRENCE FORMULA FOR J,,(x) :-

Prove that

L a0} = 21 () or ' =0y — .
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Proof. We know that

= 1 X
Jn = ;(_1)r1‘! n+r+1) (E)

Differentiating with respect to x, we get

ro_ N (—D)"(n+2r) 1 ,x\2rtn-1
]n_;ﬂl“(n+r+1)'§'(§)

> (_1)7” XN 2T+n—1+1
X/ =”Z}r!f‘(n+r+ D (E)
r:

- (=" (2r) 1 2r+n-1
+er(r_ 1)'F(n-|7:r+ D2 (f)

, - (=1)" 2r+n
Jn = n;r!f‘(n+r+ 0 (g)

> (_1)7' 2r+n—1
+x;(r—1)!f‘(n+r+ D) (g)

o)

(_1)S+1 Xy 25+n+1
=n]”(x)-I_X;S!F(n+r+2)'(E) p ls=r—1l

o (—1)° X
=n]n(x)—x;5!r(n+r+ 2)’ (E)

x],n =nJ, -
x]n+1 (1)
. xXJ'n =1+ X1
Proof.

2r+n

2s+n+1

= (-D"(n+2r) 1 /x\2rtn-1
B r'F(n+r+1)§(§)

(—1)r(2n+2r— n) 1 ,x\2r+n-1
r'Tln+r+1) E()

r=0

, S (D) (n+7) a2l
Jn ZZr!F(n+r+1)'(§)

2 (_1)T 1 x 2r+n-1
) 156)
riTn+r+1)" 2 x \2

r=0

r=0

()" (n+71) a2zl pxo (1T 1 x2rn
- =0r!F(n+r+1)'(§) B Zr'[‘(n+r+1) 2 (_)
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(D)"(n+71r)  x\2rtn-1
=0r!F(n +r+ 1)'(5)

= Jpa () = = 2 (@)

x],n= _n]n+x]n—1 (2)
1. 2];1=]n—1_]n+1
Proof. Adding (1) & (2), we obtain
Zx],n = n]n - x]n+1 + _n]n + x]n—l

Zx]’n = x[]n—l _]n+1]
V. zn]n = x(]n—l _]n+1)
Proof. Subtracting (1) & (2), we get

0= n]n - x]n+1 + n]n - x]n—l
0= Zn]n - x]n+1 - x]n—l
20, = XJpi1 + X na

- g]n(x)

V. i (x_n]n) = =X"ns1
Proof. Multiplying (1) by x—"-1
x_n],n = nx_n_ljn - x_n]n+1

x_n],n - nx_n_ljn = _x_n]n+1
d -n -n
a(x Tn) = =X " ni1
VI. % (X" ) = X" po1
Proof. Multiplying (2) by x~"~1
xn],n = _nxn_ljn +x" 1

xn]’3 + nxn_ljn = xn]n—l
a(xn]n) = xn]n—l

SOLVED EXAMPLES

EXAMPLEL: Show that J; ,(x) = \/g.sinx
SOLUTION: We know that

xz x4‘ \
Jn () = 2”F(n+1)[ —2(2n+2)+24(2n+2)(2n+4)_...............]

Substituting n = - and using F = £ we obtain

]1/2(76)—\/7[ —;C— 4_l
_ 2x X
g
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2x
= |[—[sinx]
s

EXAMPLE2: Show that ], (x) is even and odd function for even n and
for odd n respectively
SOLUTION: The definition of Bessel function

1
Jn(2) = Z(_ )rr' Tn+r+1)\2 (x)

Replacing x by - x, we obtam

2r+n

Jn(=%) = Z(_ )rr' I'(n -|1- r+ 1)( g)zrm = (1))

If niseven J,(— x) J.(x), therefore J,, (x)is even.
If nisodd J,(—x) = —J,(x), therefore J,, (x)is odd.

EXAMPLES: Prove that =~ [x/,, (x)/1 ()] = x[J2 () — J241 ()]
SOLUTION: we know that == [x/,, (x)/41 ()] = x[J2 (x) -

Jia1(0)] - (1)
Now we take L.H.S of (1)
d
a [x]n(x)]n+1(x)]

= x]n(x)]’n+1(x) + x],n(x)]n+1(x)
+ a1 () .. (2)
From recurrence relation I and 11, we get
x]’n(x) = n]n(x) - x]n+1(x)
x)'n(x) = —nf(x) —
XJp-1(x) ..(3)
Substituting n as (n + 1) in (3), we have
x] ni1 () = —=(n + Dxfpq () + 2], (x)
Putting the value of xJ',,(x) and xJ',,;; (x)from in (3), we obtain
= Jn(O)[=( + Dxfp1 () + xJ5, ()] + Jr1 O[5, () — x40 (x)]
+ Jn ()41 (x)
= x[J7 (x) —]1%+1(x)] =R.H.S

13.7 GENERATING FUNCTION FOR BESSEL’S
EQUATION:-

Theorem: Show that when n is a positive integer J,,(x) is the coefficient
of z™ in the expansion of exp {E (z — é)} in ascending and descending
power of z.

Proof: We given, exp {E (z - i)} — exp (xzz) exp ( zxz)
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2

[ Qe O 0 O ]

2 =2 (_1)n -n
x 1—(;)2_1+(§) ZZ—|++(§)HTZ

x\t1 (_1)n+1 ~ )

The coefficient of z™ in product (1) is derived by multiplying the
coefficient of z™,z™*1,z"*2, .. in the 1% bracket with the coefficient of
7% 271 272 .. inthe 2" bracket

= = (2)”%;2(;)"“ (n-|1-1)! + (E)Mii!g;z)! -
= =0 ((1:3; (g) = Xrso (n(;:i)! (E) = (), ln+

=Tn+r+1)]
Similarly the coefficient of z=™ in the expansion (1) is

x\" 1 Xy 2 1 X\ NH4 1
=D [(E) n (E) Dl (E) 21(n + 2)!
= (—D"p(x)
Finally, the term of z is
x?  x*
=l-ptogm = =)

Thus the equation (1) gives,

exp (2= )} =100 + (22 ) GO+ (22 4 5) ) + -
Since J_,(x) = (=1)"],(x), therefore

o fle-D)= 3 e

SOLVED EXAMPLES

EXAMPLEL:Show that
l. cos(xsina) = J, + 2cos2a.J, + 4cosda.], +
1. sin(xsina) = 2sina.J; + 2sin3a. ], +
.  cos(xcosa) = J, —2cos2a.], + 4cosda.], —
IV.  sin(xcosa) = 2cos2a. ]1 — 2cos3a.J; + 2cos5a.Js —

V. cosx = Jo— 2], +4J, —- —]o(x) +225-1(-1) ]2n(x)
VI.  sinx =2, —2J3+2Js — = 23, (= 1)1 (%)
Proof: We have,
1
exp {§<Z B E>} =Jo+t -z D +(@*-2z)+ ..(D

Suppose z = e'* so that z" = e™® and z™™ = e~™%, then from (1), we
obtain
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exp g (z — %)} =Jo+ (e —e )], + (¥ + e 2], + - .. (2)
Hence cosna = (e™* + e~f) /2 and sinna = (e™* — e~in®) /2,
we obtain
eXisin@ — 1 4 2i sina.J; + 2cos2a.], + 2isin3a.J;3 + -
cos(xsina) + isin(xsina)
= (Jo + 2cos2a. ], + )
+ 2i (sina.J; + 2isin3a.J3 + ---) ...(3)
Part I: Separating the real parts in equation (3), we get

cos(xsina) = (J, + 2cos2a. ], + 2cosda.[, + --+) (i)
Part I1: Separating the imaginary parts in equation (3), we get
sin(xsina) = (sina.J; + 2isin3a. J; + 2 sin5a.Js + --+) (i)

Part I11: Putting a by /2 — ¢ in (i), we obtain
cos(xcosa) = J,—2cos2a.], + 4cosda.]J, — -
Part IV: Putting « by /2 — ¢ in (ii), we obtain
sin(xcosa) = 2cos2a.J; — 2cos3a.J; + 2cos5a.Js — -+
Part V &VI: Putting a by 0 in (i) and (ii), we obtain

cosx = Jo— 2, +4f, — - =Jo(x) + 2 Z(—l)"]Zn(x)
n=1

sinx =2J; —2J3+ 2] — =2 Z(_l)n]2n+1(x)
n=1

EXAMPLE?2: Prove that xsinx = 2(22],, — 42], + 62J¢ — )
SOLUTION: we have,

cos(xsina) = (Jy + 2cos2a. ], + 2cosda.J, + ) . (D)

Differentiating (i) w. r.t. a, we get

—sin(xsina).xcosa = (0 — 2.2J, sin2a.—2.4], sinda.+ )
Again differentiating (i) w. r.t. a, we have

—cos(xsina). (xcosa)? + sin(xsina). (xsina)

= (—2.2%J, cos2a.—2.4%], cosda.+ ) ... (ii)
Separating a by /2 in (ii)
xsinx = 2(2%], — 4%], + 6%Jg — -++)

13.8 ORTHOGONALITY PROPERTY FOR
BESSEL’S EQUATION:-

If 4; and 4; are roots of the equation J,,(4a) = 0, then
0, ifi+j

. . = 2
J, w3200 G {“ B, ifi=j

2
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Proof:
Casel
Suppose i # j i.e., suppose A; and A; are different roots of J,,(1a) = 0
- Jo(Q;a) =0 and ]n(l a)=0 . (D
Let u(x) = J,(A4ix) and v(x) = ]n(/l x) ..(2)
Then u and v are Bessel functions satisfying the modified Bessel equation
x%y" +xy' + (AZ 2—n2)y=0 .. (3)
x2u" + xu' + (%% —n?)u=0 (4
x2v" + xv' + (4% —nz)v—O ..(5)

Multiplying (4) by v and (5) by u and then subtracting, we obtain
x2(vu” —w') + x(vu' —w') + x%(A? - A]?)uv =0=x(vu" —
w') + (vu' —uwv') = x(AJZ - 2w

X (vu' —uv') + (wvu' —uwv') = x(g}? — Alz)uv

d
X [x(vu’ — uv)] = x(22 — 22 )uv
Integrating the above equation w.r.t. x from 0 to a, (Ajz -

%) foa xuv dx = [x(vu' — uv')]§
Using (2), the equation gives

(22 - 22) f xJn (A3 ] (Ax) dx
0]
= [ () 2 Ai) = Ju Q)] (A2)}]
= a{ln({a)]'n(Ma) = Jn(Ai@))'»(2a)} = 0
Since A; # A; the above equation obtain

a
f x]n(/ll-x)]n(/ljx) dx=0 if i+#]j ... (6)
0
Casell
Suppose i = j i.e., multiplying (4) by 2u’, we obtain
202w + 2x(w)? + 2(A%x2 —n?)un’ = 0
d
P [x2(u)? — n?u? + 4, °x?u?] — 22, %xu? =
d
22;°xu? = P [x2(u)? — n?u? + 1;°x%u?]
Integrating the above equation w.r.t. x from 0 to a, we obtain
a
Zﬂizf xutdx = [x2(w)? —n?u? + Aizxzuz]z
0

Using J,,(0) = 0 the above equation, we have
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22;° fax],%(/lix)zdx
=20 (0))" = 22 (1 (A))” + 2222 (A2))°
2/1i2j xJ2(A;x)%dx = a? [(]’n(lix))z] (7
0

at x=a

a
0
From recurrence relation | , we get

d
dx Un()] = g]n(x) — Jns1 ()
Replacing x by A;x in above equation, we get
d[]n(/lix)] _n
d(ALX) - (ALX)]n(ALX) _]n+1(/1iX)

1 dUn(ALx)] _ n
A_i. dx = (ALX)]n(ALX) _]n+1(Aix)

, = ) — .
]n(/lix) - (Aix)]n(llx) ]n+1(ﬂ-lx)

n

[{/’n(/lix)}z]atx=a = l{(ﬂ.x)]n(llx) _]n+1(ﬂ~ix)} l

= {0 = AJn+1 (L)} = 27 )71 (W)
Using in equation (7), we have

at x=a

a 2
f i dx =52 () ..(8)
0

Combining equation (6) and (8), we can write

a a2

| s (a@)ax = 5 s s,
0

0,i #j

Where 8;; = (kroniker delta) = {1 .y

13.9 BESSEL INTEGRALS:-

Show that

l. J,(x) = %fon cos(na — xsina)da, where n is a positive
integer.
1. J.(x) = %foﬂ cos(na — xsina)da, where n is any integer.
. j,(x) = %fon cos(xsina)da = %fon cos(xcosa)da.
2 4 _1\T 42T
IV.  Deduce that Jo(x) = 1~ + 2~ = 2, ((213—:)2
SOLUTION:
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Partl: we shall use the following results:

T
n , , _ _
f cosma cosna da = L sinma sinna da =m/2 whenm =0 e
0 =0when m+n

cos(xsina) = J, + 2J,cos2a + 2],cosda + - .. (2)
And
sin(xsina) = 2J;sina + 2J3sin3a + 2Jssin5a + -+ ... (3)

Now multiplying both sides of (2) by cosna, then integrating w.r.t.a, the
limit (0 to 7) and using (1), we obtain

fon cos(xsina)cosnada = 0,if nis odd } @)
=1J,, if niseven
Now again multiplying both sides of (3) by sinna, then integrating
w.r.t.a, the limit (0 to ) and using (1), we have

fon sin(xsina)sinna da = 1, if nis odd} (5)
= 0,if nis even

Let us consider n be odd so adding above odd functions in equation (4)

and (5), we get

T
f [cos(xsina)cosnada + sin(xsina)sinnal da = nj,
0

fon cos(na — xsinna) da = nJ, orJ,(x) = %f: cos(na —

xsina) da ...(6)

Similarly, Let us consider n be even so adding above even functions in
equation (4) and (5), we get (6). Thus (6) holds for each positive integer
(even as well as odd).

Partll: Let n be any integer, then the part I, if n is positive integer, we
obtain

Jo(x) = %f: cos(na — xsina) da (7

Let n be negative integer, then = —m , where m is positive integer. To
prove that the result for negative integer, we prove that

Jom(x) = %f: cos(—ma — xsina) da ..(8)
Let « = m — B so thatda = —dg3, then we have the R.H.S.of (8)
1 0
=— | cost-m(x - §) - sintx - ) (-ap)

= %anos[(mﬁ — xsinf) — mn] (dB)

= %fn[cos(mﬁ — xsinfB)cosmm + sin(mp — xsinfB)sinmmn| df
0

= L["(=1)"cos(mp — xsinf) df [ sinmm =

0& cosmm = (—1)™]
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= %(—1)’" f: cos(mp — xsinB) dp [using (7) as
m as + integer]
= J_n(x)=L.H.S. of (8)
Partlll: Now integrating (2) w.r.t. a between the limit (0 to ) , then
f: coskada =0 (9

If k is positive integer, we get

T s
j cos(xsina)da =]0(x)f da+0+0+-=J,(x).m
0 ) Jo
Jox) = —f cos(xsina)da
L)
Substituting & by ~— a in (2), we obtain

cos(xcosa) = Jo —2cos2a.]J, + 4cosda.], — - ..(10)
Again integrating (10) w.r.t. & and using (9), we have

fon cos(xcosa)da = J,(x).m —0—0.. or Jo(x) =

1 p,m
;fo cos(xcosa)da

PartlV: From (10), Jo(x) =~ [ (1 _x’cos’a | xcosta ) da

2! 4!
T on _ 135..(2n-1)
But fo cosada = 2:46...(2n)
2 2 .
Using this equation, J,(x) = % [x — ’;—| : %n + % : ?n — ] =
. (_1)1"x27"
r=0 (o112

13.10 BESSEL SERIES:-

If f(x) is described in region 0 < x < a and has an expansion of the form

o)

F6) = cu (i) (D)

=1

Where the A; are the roots of the equation
]n(Aix) =0 .. (2)

Then

Ci =
2 [y xf () Jn(Aix)dx

0 G -(3)
Proof: Multiplying both sides xJ,,(2;x), we have
xf(x)]n(/ljx) =

X1 Cix]n(/lix)]n(/ljx) . (4)

Integrating both sides of (4),w.r.t. x from 0 to a, we obtain
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f xf(x)]n(/ljx)dx=ci2f xJn (A3, (4x)dx ... (5)
0 =0 70
From the orthogonal property of Bessel functions, we get
0, ifi#]j
xJn (Aix)Jn(2x )dx = . (6)
jo ( ) ]n+1(/1 a), ifi=j
Using (6), (5) reduce to

a 2
j xf ()] (Ax)dx = ¢ a?jrzlﬂ(/lia)
0

Replacing j by i in above equation, we obtain
2

6 S 0u) = | 2O

2[5 xf () Jn(ix)dx
T ()

SOLVED EXAMPLES
Examplel: Prove that J,,(x) = (—=2)"x" d(iz)n]" (x)
Proof: Putting the values of J,(x) in series R.H.S., we obtain

Jodr (o e
R.H.S.= (—2x) [d( 2)n <Zr' r(r+ 1) )]
n )T
= (=2x) ﬁ( r= °rr(r1+1) (2" )

S

. 2 (_1)T X\ —+2r
=D ;r! r—=m+1) (E)

= (=D (x) =Jn(x)
: o _ _ 1
Example2: Prove that [~ e=%*/o(tx)dx = NpravE
Proof: Let we take L.H.S.and using series representation for the Bessel
function and changing the order of integration and summation, we given

below

o ® r(t 2r o0
Izj; e‘“‘"]o(tx)dx=z:ﬂf0 x%e % dx

(rH)?
_ i (—1)" (%)zr rr+ 1)

(T!)Z asr+i

r=

using the def.of gamma function

r=0
Now
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13.11 HERMITE EQUATION AND ITS SOLUTION
Hn(x):'

The Hermite’s equation is the form

d?y dy

— | —-2x—+2 = .. (1

<dx ) xd +2ny =0 (D

where n is a constant. Now solve equation (1) in series by using Frobenius
method.

Let

y = ZAlxk“, A #0 ..(2)
=0

2
Now differentiating (2), then we substituting the value of y, % and Z—z in
(1), we obtain

ZAl(k + Dk + L= Dk 2 — 254, (k + Dx*+=1 + ZnZAlxk“

=0

ZA(k+l)(k+l k2 _ {ZA(k+l)xk+l ZAlnx l

=0
ZA e+ Dk + [ — 1)xk+t- Z—ZZA k+l-n)xk=0 ..(3)

Slnce the equation is identity. We equate to zero the coefficient of smallest
power of x, namely x*=2, in equation (3) and we get
Agk(k—1)=0 or k(k—1)=0 as A, #0 ..(4)
So the roots of indicial equation (4) and k = 0,1. They are distinct and
differ by an integer.
So again equating to zero the next smallest power of x is k — 1 in (3), we
obtain

Aj(k+1k=0 ..(5)
whenk = 0, (5) shows that A,is indeterminate. Hence A, and A, can be
taken as constants,
equating to zero the coefficient of x**!=2, (3) gives

Department of Mathematics
Uttarakhand Open University Page 295



ADVANCED DIFFERENTIAL EQUATIONS-I MAT 504

Atk +D(k+1-1)—-24,,(k+1—-2—-n)=0

_ 2(k+l-2-n)
L= (k+l)(k+l—1)A .. (6)
Putting k = 0 in (6), we obtain

_2(1-2-n)
A = 1= A, . (7)
Putting [ = 2,4,6, ...21 in (7) we get
_2n . 2n (=D 2Ln
Ay =—ocho=—rAg=——— A
A = 2(2-n) ( 1)%2.2(2—-n) 2n (—1)2. 22.n(n— Z)A
£ 4.3 2 4 3 2' 2! 0

( 1)” 2” (n—l)(n—Z) (n—21+1)

2L+ 1)! Ao
Putting [ = 3,5, ...21 + 1 in (7) we get

Ay =

A= (—1)1_2; (n— 1)A1

(-1D%2% (n— 1)(n—3)
5' A

A5 =

( 1)" 2" (n—1)(n—3) (n—2l+1)
AZZ+1 (Zl + 1)| 1
Substituting the above value in (2) with = 0, we obtain
22 n(n 2)x4 =2)Lm)(n-2)..(n-2141) 21+

27’). 2

y =4 [1 - + ot (20+1)!
2(n— —
“.]+A1[ _Z(n 1)x3 +2 (n-1)(n 3)x5+_“+
3! 5!
(-2)L(n-1)(n-3)..(n-21+1) 2l
(21+1)! + ] - (8)
y =AU+ AV ..(9)

Since U and V are not constant, U and V form a fundamental set (linearly
Independent) of (1). Hence (8) and (9) is most general solution of (1) with
A, and A, as two arbitrary constant.
Remarks. In practice we require the solution of equation (1) such that

I. It is finite for all value of x and

ii. As x - o, exp.(1/2x*)y(x) » 0

The solution (8) does not satisfy the condition asx —
o, exp.(1/2x%)y(x) —» 0.However, if the series terminate then this
condition will be satisfied. Replacing [ by [ + 2 in (7)

_ 2(l-n)
Avez = (+1)(1+2) L

..(10)
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If 1 is a positive integer, then for [ =n,A;,, =0 i.e., the series
terminates.We shall now define the series of (1) in descending powers of x
by considering n to be non-negative integer.
For [ = 0 equation(2), we obtain

Yy = Apx™ + Ay ox™ 2 + Ap_gx™t +

......... ..(11)
From (10), we get A =
2(1+1) (1+2)
T Apyz .. (12)
Puttingl=n—-2,n—4,....... in (12), we have
(nM)(n-2) (mM)(n-1)(n-2)(n-3)
Ap == Ap Ay s = — eV A, and soon

Putting these value in (11)

(M) (n—2) (mMn—-1)Mn-2)(n-3)
— n_>7> @‘,n-2_ n-4 4 .........
Y= Ix 22 " 22.2.4 S
(-Din(n—-1)..(n=21+1) el
2024 .. 21 e
G (=Dlnm =1, (n= 20+ 1)
_ -1)'n(n-1)..(n— 2l
- Z 20.2.4 .. 21 ¥ as (n/2]
=0
n
> if nis even
-1
(nz ) if nisodd
Taking A,, = 2", then the Hermite polynomial of order n is defined by
[n/2]

Y= () Y (1) s (20
=0

where H,(x) is called the Hermite polynomial of order n.

13.12 GENERATING FUNCTION FOR H,(x):-

2 tn
Theorem: Prove that e>**™*" = £, — H, (x).

Proof: i axt—t? _ _oxt .—t2 _ voo @D qe  (=tA)"
roof: we given e = e et = By S i =

o) o) (Zx)l(_l)m
leo Zm—OT +2m
Letl+2m=nsol=n—-—2m

Hence the coefficient of t™ is defined by
2-21
(_1)l &
I'(n—20)!
Which gives all value ofl for which equation (2) is the coefficient of t™.
If niseven, [ < n/2 shows that [ varies from 0 to n/2.
Again n isodd, [ < n/2 shows that [ varies from 0 to (n — 1) /2.

So the total coefficient of t™ in expansion of e2t*~t* is obtained by
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C 0™2 H,(x)
;(_1)ll!(n—21)!= n!

13.13 ORTHOGONALITY PROPERTIES FOR
H,(x):-

Theorem: Prove that [*_e™*" H,,(x)Hp (%) dx = 2"n! VT Sy
or

*© ) 0, ifm+n
f e~ H.,(x)H,, (x) dx = { o

Or
Prove that the Hermite polynomials are orthogonal over (—oo, o) with

respect to the weight function e=*".
Proof: Using the generating function of Hermite polynomials we obtain

ifm=n

t" 2tx—t2 2 2
?LO=OHn(x)E = e and Z OHm(x)__ s
oo o Ha(OHmX) 0 n _ _2tx—t2+2sx—s>
02 n'm! t's"=e

Multiplying both sides by e™*” and then integrating both sides w.r.t. x
from [—o0, 0], we obtain

o)

n o)
ZZ [ f % Hy () Hyy (x)dxlt = | emtreanet gy

n=0m=0

_ f e~ X 242x(t+s)—(t+5)? % e(t+s)2—(t2+52) dx

— p2ts f_°°oo e X+ gy = p2ts f_°°oo e‘yzdy putting [x — (t +5) =
y so that dx = dy]
= e?\/m, as ffoooe‘yzdy =

- ﬁi (fo!)n = i 2N g (D)

n!

= n=0
Hence the power of t and s are always equal in each term of R.H.S.of (1).
So when m # n, then we obtain

1 [ee]
Wf e‘xZHn(x)Hm(x)dx =0

1 oo
n'm'f e H,(x)Hp, (x)dx = 0, whenm #n ...(2)

Again equating coefficient t™s™ on both sides in (1), we obtain

1 *° 2 2 2Tl '\/E
n!n! e (H”(x)) dx = n!

— 00
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fooe‘xz(Hn(x))zdx =nl2" 1 - (3)
Let P {(1) i]{z j Z . (4)

From (3) and (4), we have
j e * (Hn(x))zdx =n!2" Vi 8y

13.14 RECURRENCE RELATION FOR H,(x):-

I H',(x) =2nH,_;(x)(n=1); H'¢(x) =0

. Hpy(x) =2nH,(x) — 2xH,_1(x)(n = 1); Hy(x) =
2xHy(x)

1. H',(x) = 2nH,(x) — Hy1(x)

IV. H",(x)—-2nH'",(x)+2nH,.,(x) =

Proof:
Part I: We have

ZH (x)—— 2tx-t? (D)

leferentlatlng both sides w.r.t. x, we obtain

tn
Z H’n(x)— = pte2tnt’ = 21:2 H () —

iH’n(x)% = 2§:H’ (2
=0 n=0

The equating coefficient of t™ from both sides for n = 0, (2) obtain
Hy(x)=0
Again equating coefficient of t™ from both sides for n > 1, (2) obtain
H,n(x) _ H,n—l(x)

Thus,

nl  (n—1)!
So
H', (x) = 2nH,_,(x) ..(3)
[~n!l=m-1)!]

Part 11: We know that
T Ha(0) 5 = €257 . (4)
Differentiating both sides w.r.t. t, we have

tTL
(2x - 202 = 3 Hy () —
n=0 '
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0-1 n—1

QWJQZH@) mm+§ﬁc@

Tl—l

qu@)—nsz an( 5

- 0! H, (x) =1 andn! = n(n - 1]
The equating coeff|C|ent of t™ from both sides for n = 0, above equation
gives
2xH,(x) = H;(x)
Again equating coefficient of t™ from both sides for n > 1, above
equation obtain
Hn(x) _ > Hn—l(x) _ Hn+1(x)
n! n—1) n!

Multiplying both sides of above equation by n!and nothing n! =
n(n — 1)! then we have

2xHy, (x) — 2nHy_1(x) = Hp 41 (x) ..(5)
Part 111: From equation (3) and (5)

H', (x) = 2nH,_;(x)
2xH,(x) — 2nH,,_,(x) = H,,,(x), adding both equations
H,n(x) + Hn+1(x) = Zan—l(x) + szn(x) -

2x

2nH,_4(x)
H’n(x) = Zan—l(x) —Hypq (x)
Part IV: The H, (x) is a solution of Hermite’s differential equation
y' =2xy'+2ny =0
H",(x) —2xH',(x) + 2nH,(x) =0

13.15 RODRIGUES FORMULA FOR H,(x):-

To prove that H,,(x) = (—1)"e* x? 4 —e —x’
SOLUTION: Usmg the generating functlon we get
Zﬂayuzmﬂ (1)

Expanding RH S by Taylor S theorem (1) obtain

Yt a5
6t" t=o !
2tx—t o™ x%2—(x—t)>?

Hn("):[me | =I5 ]

t=0

x2 a" —(x-1)? x2 n o™ —(x—t)2
e* |—e =e* [(—-1) FTEk
t=0

atn t=0
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g aL;;nf(x—t)—( 1) at"ffjfft)
e |gme” ]”:(_1)3 ame

SOLVED EXAMPLES
EXAMPLEL: Prove that H,, (0) = (-1)" &2 1, 1 (0) = 0.
SOLUTION: Using generating function, we obtam

H, (x) g2tx=t? .. (D)
Z

Replacing x by 0in (1) we get

e

From (2) equatlng coefficient of tZ”_on both 5|des we have

M & _ n(Zn)l
n)! n! or HZn(O) ( 1)

Since R.H.S.of above equation does not contain odd powers of ' equating
coefficients of £2™*1 on both sides in above equation define

H2n+1(0) _

Cn+ 1!

So
H2n+1(0) =0.

EXAMPLE2: Prove thatH'',(x) = 4n(n — 1)H,,_,(x)
SOLUTION: From recurrence relation, we obtain

H',(x) = 2nH,,_,(x)
Differentiating w.r.t. x, we obtain

H", (x) =2nH',_;(x)

2n x 2(n— 1)H,,_,(x)

H',(x) =4n(n— 1)H,_,(x)

EXAMPLES: ) e H,(y)dy = H,_1(0) — e H,,_; (%)
SOLUTION: Using Rodrigue’s formula in the left hand side of above
equatlon

d
feyH(y)dy f( D" —— (ey)dy—(l)"[dnl(‘y)l

0

= _[e—y Hn—l(}’)]o
= Hn—l (O) - e_szn—l(x)
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SELF CHECK QUESTION

(SCQ-1) Prove that 55, 22O — (1 —2xr)~ Ry (£, +
1 4t2 '
27 (1—2xt)2)

(SCQ-2) Prove that [ e™"H,, (y)dy = H,_1(0) — e ™* Hp,_; ()

13.16 SUMMARY:-

In this unit we studied the Hermite differential equation and
Hermite polynomials and we also explained the recurrence relation,
generating function, Rodrigue formula and orthogonality property for
Hermite polynomials.

13.17 GLOSSARY:-

Bessel Series.

Bessel integrals.

Hermite polynomial.

Hermite differential equation.

13.18 REFERENCES:-

e G. N. Watson (2020) A Treatise on the theory of Bessel’s
Function.

e Carlo Viola (2016) An introduction to Special Function.

13.19 SUGGESTED READING:-

e M.D. Raisinghania,(2018). Ordinary and Partial Differential
equation (18™ Edition), S. Chand.

e M.D. Raisinghania,(2021). Ordinary and Partial Differential
equation (20" Edition), S. Chand.

e Math World (Wolfram): URL link
(https://mathworld.wolfram.com/BesselFunction.html) and
Hermite polynomials: URL link
(https://mathworld.wolfram.com/HermitePolynomial.html) on the
Math World website.
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e Wikipedia: URL link
(https://en.wikipedia.org/wiki/Bessel_function) and Hermite
polynomials (https://en.wikipedia.org/wiki/Hermite_polynomials)

13.20 TERMINAL QUESTIONS:-

(TQ-1) Prove that

i J-1/2(x) = {/(2/mx) cosx.
ii. Ji/2(x) = /(2/mx) sinx.
i, [1200]" + [ ®)] = 2/mx.

. In(x) _ 1
(TQ-2) Prove that 2‘5% Py
1 ujo(xu) sinx
(TQ-3) Prove that [, (1_‘;2)1 Fdu=——
(TQ-4) (a) Prove that x™J,(x) is a solution of

a’y _ ay _
x5+ Zn)xdx-l-xy—Oz
(b) Prove that x™J_,, (x) is a solution of

d? d

xﬁzj+(1+2n)xé+xy= 0.
(TQ-5) Prove that

Jy tUn(OFdt = 2x2U2 0 = Jog (a0},
(TQ-6)  Showthat = (2 +/2,) =2 (2 -222,,)
(TQ-7) Show that  Jp4q () = x [} J (xy)y™* dy.
(TQ-8) Show that  xsinx = 2(22], — 4%], + 6%Jg — == --+)
(TQ-9) Show that J,,(—x) = (—=1)"/,,(x).

(TQ-10) Expand the function f(x) = 1,0 < x < a) in series of
Yivq cifo(A;x), where A; are the roots of the equation
Jo(4a) = 0. ,
(TQ-11) Prove that H,,(x) = 2" {exp (— %%)} x"

(TQ-12) Prove that P, (x) = # J; e~ t2Hy (xt)dt
(TQ-13) Prove that Z,";;OH”*;—W = exp(2xt — t?)H,(x — t)
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UNIT 14:- LAGUERRE POLYNOMIALS

CONTENTS:

14.1  Introduction

14.2  Objectives

14.3  Laguerre Equations.
14.4  Generating function
145 Rodrigue’s Formula
14.6  Orthogonality Properties
14.7  Laguerre Series Expansions
14.8  Recurrence Relation
149  Summary

14.10 Glossary

14.11 References

14.12  Suggested Reading
14.13  Terminal questions
14.14  Answers

14.1 INTRODUCTION:-

Laguerre polynomials are a family of orthogonal polynomials
named after the French mathematician Edmond Laguerre. They are
described as solutions to the Laguerre differential equation, which arises
in various physical and mathematical problems, including quantum
mechanics, statistical mechanics, and probability theory.

14.2 OBJECTIVES:-

After studying this unit you will be able to

e Understanding the properties of Laguerre polynomials.

e Understanding how to solve this equation using Laguerre
polynomials.

e Analyzing the use of Laguerre polynomials in this context is
important for studying these systems.

14.3 LAGUERRE EQUATIONS.:-

Laguerre’s equation of order n is

d*y dy
= x@+(1—x)<a)+ny=0 .. (1)
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where n is a positive integer. We get the equation (1) which is finite for all
values of x and which tends to infinity no faster than e*/2as x — oo.
Suppose
y =2 _o Cpxktm, Co#0 - (2)
Differentiating (2) with respect to x and substituting the values of

dy d%y .
y,— ﬁ in equation (1)

x Z Cpy(k +m)(k + m — 1)xktm-2

m=0

+(1—-x) Z Cm(k +m)x* ™1 4 n Z Cp x¥t™m =10
m=0 m=0
Or

Z Cor(k +m)(k + m — D)xktm-1 4 Z C,,(k + m)xktm-1

m=0 m=0
[ee]

— Z Con(k + m)x*t™ 4+ 1 Z Cop x*tMm=1 =0
m=0 m=0
Or

Z Cok +m)x** ™1 (k+m—-1+1)— Z Crpx®*™(k + m —n)

m=0 m=0

=0

Zc (k + m)2xk+m-1 Zmek+m(k+m—n)—0 (3

Now We have indicial equation, the coefficient of smallest power of x, in
equation (3) and describe

Cok?=0, Vk:2=0 (~Cy#0) .. (4)
From equation (4), next equating coefficient ofx*+™=1, we get
Cpn(k+m)2—Cp_i(k+m—-1—-m)=0 or

k+m-1-
Cm = #Cm 1 (5)

Since the two independent solution in this case are y,—, and (ak) . But
(g—z)kzo assumes a term of log x, so we infinite when x = 0.
putting k = 0 in equation (5) and (2), we get
C, = ’(*;%)’Zcm_l .. (6)
y = z Cppx™ = Cy + C1x + Cox?% + -+ .. (7)

m=0

Substituting m = 1,2,3, ... ... in (6), we get
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— (-1) 1- (n-1)
€, = _TZLCO = an? nCy , C; = 2_2nC1 = ?2)2
(n-1)
(—DnCo = (-1)* =75+ Co
2—n (n—-2) 2n(n—l)
R 6 R TR
—( 1)3n(n - 1D(n-2)
T (312 o
Since
Cr = (—1)2—”("‘11;'5’;“”1) C, forr<n.
Also, Cn+1 = Cppz = Gz = = 0.
Putting the values of C;, C; Cg -+« -+ -+ in equation (7)

I n +n(n—1)
Rt RN CTIEMNE
nn—1)-- n—-r+1)

+ (_1)T xT 4 e ee
GE
= Cy Z(—l)r n(n-1) (T')gn -r+1) X"
r=0
- C, Z(_l)rn(n — 1) n—r+ 1(7),"(;12— rin—-r—1)-- 3'2'1xr
Hencer,=0

= C, — — —
T (n—7r)()
Taking C, = 1, we express the corresponding solution as the Laguerre
polynomial and it is denoted by L, (x).

n!
L,(x) = ;(—1) mx

Laguerre polynomial of order (or degree) n is denoted and defined by

n!
L,(x) = ;(—1) mx

14.4 GENERATING FUNCTION:-

THEOREM I: show that the generating function for Laguerre

polynomials isZ2EXAZ _ g0 g (yem,

Proof: Now, we take L.H.S.

exp{-xt/(1-)} _ 1 \o (—_xt)r
1-t 1t “T=0\1—¢

1 _ x _ v x7
S8 expx=e’ =27l

=
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=y CD (1 — )0+ = g0 EDT iy TEOL
m o =Y rist
{By blnomlal theorem}

zz(_ )r< Tt ) TS

r=0s=0
Suppose r be fixed, then the coefficient of t™ can be given by setting r +

s=nie,s=n-—r.
Hence the coefficient of t™ is obtained by

_ 17 n! r ;
reo(—=1) e r)(r')zx i.e., L,(x).

14.5 RODRIGUE’S FORMULA .-

Expression (Rodrigue’s Formula)for the Laguerre polynomial
Show that Ln( )— —'F( e‘x)
Proof: By Leibnitz theorem, we get

(uv)
D™"(uv) = d"
(uv) e
=D"u.v+ne D" 'u.Dv 4 oo +ne D" Tu.D"v + -
+ uD™v
i.e. D™(uv) = ¥F-one, D" "u.D"v
4 (x"e™) = % 2r=oNc, D" Tx".D"e7¥, from (1)

n! dxm

= ;}zo% X ncrﬁx“‘(“‘”. (—=1D7"e™™, as D"x™ =

(m_n)'xm‘” and D"e®™ = q"e?
n n
e* n! n! —1)"n!

& n! r'(n—r)'r' (r')z(n )

If we use the definition of Laguerre polynomlal of (or degree)n , we
obtain

m!

n

L,(x) = e* P —(x"e™) .. (1)

We know that the given equation
ex n
Ln(X) —|F(x e‘x) (2)

Putting n = 0,1,2,3 .....in equation (2)

0
> L) = S5 (%) =1, L) = S5 (xle™) =
e¥(e™*—xe™¥)=1—-x=> L,(x)= ;ﬁ(xze‘x) =
%;—x{:—x (xze‘x)} = ;d—(er T —x%e™™) = ; “[2e7% + 2x(—e %) —

{2xe™ + x%(—e™)}] = 5 (2 — 4x + x?),
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5 L0 = S (e = S {L (e = S L (3xte -

3! dx3 3! dx2 ldx 3! dx3
3,-xy ¢ d[d 2 _ 3y, =4 2, 2)p—X _
x’e™) = 3! dx [dx {ng x*)e x}] T 3ldx [(6x = 3x%)e™
(3x%2 —x¥e*] = =L [(6x — 6x% + x3)e~*] =

3! dx
(6 —18x + 9x? — x3) /3!

x g4 x 43 X a3
= L,(x)= X d ap-xy = &L ;—x(x4e‘x)] =L I a3ex _

24! dx* 4! dx3 , 4! dx3
4 - _ ex d d 3 4 — _ e" d 2 3 —
rre] = S [ —xe )| = S 51020 - ax?)e
3 . 4y,—x]_¢€ dfad 2 _ a3 A A _
(4x3 —x®)e ] = T [dx (12x% — 8x3 + x )ex ] =T [(24x
24x2 + 4x3)e~* — (12x2 — 8x3 + xe *] = &L [(24x — 36x2 +

4! dx
12x% = x")e ] = £ [(24 — 72x + 3622 — x*)e ™™ — (24x — 3622 +
12x3 — x*)e~*] %(249( —96x + 72x2 — 16x3 + x*)

Similarly

= Lo(x) = Elo (—x5 + 25x* — 200x3 + 600x2 — 600x + 120)

= Ly() == {(=0)" +n2 (=" + -+ n(n)(—x) + )
In table 1 we express the first few polynomials L, (x) and as shown as
graph

Lo(x) = L
— 1
L,(x) 5 (2—4x+x?)
_ 1
L3(x) 5(6— 18x + 9x2% — x3)
- T
L4 (x) o7 (24x = 96x +72x* — 16x° + x*)
- 1 '
Ls(x) 5 (—x° +25x* — 200x° + 600x? — 600x + 120)
= 1
L () m{(—x)” +n?(=x0)" ! + -+ n(n)(=x) + n!}
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14.6 ORTHOGONALITY PROPERTIES.-

Laguerre polynomial is a kind of orthogonal polynomials whose inner
product is zero. Let the differential equation satisfied by Laguerre

polynomials of degree n and k.

dZ

(1—x)( >+nL =0

dZL
k+(1—x)( >+nLk—0

X dx?

.. (1)
..(2)

Multiplying (1) by e L, (x) and (2) by e™*L,, (x) and subtract.
d dL, dL,,
_ —-X —n Kk _ —-X —
" [xe {Lk(x) L0 }] + (= K)e L (X)L, (x) = 0

Integrating this expression x — 0 toco
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= xe ™ [xe‘x {Lk(x)dﬁ —L,(x) %}]: +(n-—

dx
k) f, e * L)L, (x) dx = 0
= (n—k) [, e *L(x)Ly(x) = 0
If n # k, then
= fooo e L, (x)L,(x)dx = 0 (3

This is the by Laguerre polynomials of different degree (n and k) are
orthogonal to the interval (0, o) with e ™.

To define the orthogonality relation for n = k. Now we using the
generating function, we get

apHOD) g0 L) and  CREUOD) g (e
we take the product of two sides
—2xt/(1-t . .
= 2 BYOD) 5 1, (O T LG
Multiplying both sides by e ™ and integrates from 0 to oo
o _izt
(1—11:)2 fO e 1+t dx =
w0 Zreo e [ e ¥ Ly, (X)L (x)dx .. (4)
= Forn = k, the above equation reduce to

o ot fooo fooo e *L2 (x)dx

—ax
Now we use the formula [ e~**dx = — eT putting the value in equation
(4)
1 1-t\ -1=t1%° 1 1

= [(1—t)2 =) (ﬁ) ¢ ]0 = Goa e fore<
<<< 1, then we get

= 1_1t2:1+t2+t4+...............: %Ozotzn

= S D fooo e L5 (x)dx
On comparingt?™v n, we get

= fooo e L3 (x)dx =1 -+ (5)

From (3) and (5) may now combined to obtain the orthogonality relation
for Laguerre polynomials as
N [ e Ly ()L () dx = 8y = {0' if n#k

l,ifn=k

14.7 LAGUERRE SERIES EXPENSION:-

THEOREM. If f(x) is polynomials of degree m, prove that f(x) may be
expressed in form

f() = T oL (x), where €, = [ e~ L, (x) f(x)dx

Proof: Let f(x) be a polynomial of degree m, we get
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= f() = apx™+ ap x™ 1+ +ayx + ag (1)
= Again, \

L) = kppx™ 4+ k1 x™ 14+ o+ kyx + kg - (2)
=  Let f(x) — (ay/kym) Ly, (x). Two cases arise
Case (i) Let f(x) — (apm/kp)Lym(x) =0
sothat f(x) = (a;,/km)Lym(x), Which is required result.
Case (ii) suppose f(x) = (am/km)Lm(x) = gm-1,9m-1(x) being a
polynomial of degree m — 1. Taking C,,, = a,,,/ k,,, then we get

= f(x) = CmLm(x) + gm—l(x) - (3)
Taking g,,—,(x) in place of f(x), we obtain
= gm—l(x) = Cm—le—l(x) + gm—z(x) .. (4)

Putting the value of (4) in (3)

= f(x) = CmLm(x) + Cm—le—l(x) + gm—z(x) - (5)

= f) = CpLlpy(x) + Cppeq L1 (x) + -+ + C1 L1 (x) + CoLo(x) =
™ CrLy (x) - (6)

=3 Cols(x) YTy CrL.(x) = XM, CsLs(x), equation (6)obtain

= f(X) = Z;TL:O CsLs(x) (7)
Multiplying both sides of equation (7) by e *L,.(x) and integrating w.r.t.
x then

= [ e L) f(0)dx = I, C{f, e Ly (X)L (x)dx} ...(8)
S it [Ce L (oL (x)dx = {(1’ i;; -
From equations (8) and (9) obtain

= Cr = [ fFOIL, (x)dx ..(10)
which is required solution.

..9)

14.8 RECURRENCE RELATION:-

We will show that some important recurrence relations as given below

l. n+ 1)L, (x)=C2n+1—-x)L,(x) —nL,_,(x)
. xL',(x) =nL,(x) —nL,_,(x)
. L) ==Xr23 L (x)

Proof: Recurrence Relation I:  Now we using the generating function
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i L,(x)t™

n=0
_exp{—xt/(1-0)}
B —t
Differentiating both sides with respect to (1), we have

Z L,(x).nt™1
n=0

_ 1 { xt} 1 y { xt}
TP T 1= U1 ¢
X

% (1 — 02

t)2 ZL ()t — ft)ziLn(x)tn
n=0

I\/Iultlplylng both sides by (1 —t)?
(1-1)? Z L,(x).nt™1

n=0
_ ZO L GO — xzo Ly (Ot — ;antn“ ()

Solving equation (2), we get

(1 +¢2 - 2¢) Z L, (x). nt"1
n=0

- Z L, (Ot — x Z L, (X)t™ — Z L, (x)tm+
n=0 n=0 n=0

(Z L,(x).nt™ 1+ Z L, (x).nt""1%2
n=0 oon=0
-2 z Ln(x).nt”‘“l)
7&?0 (o] (00]
- Z L, ()" — x Z L, ()t — Z L, (x) e+
n=0 n=0 n=0

(1)

(Z L,(x).nt" 1+ z L,(x).nt"*1 — ZZ L, (). nt”)
ZL ()™ —XZL (o)t — ZL (x) e+t
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. We equating the coefficient of t™ from both sides, we obtain
(n+ Dlpy1(x) = 2nLy(x) + (n — DLy, (x)
= Ln(x) - Ln—l(x) - an(x)
(M + DLy (x) — 2nL, (x) + nly_ 1 (x) — Lyy—1 (x)
= Lp(x) — Lp_1(x) — xLy, (x)
(n+ 1)Lpy:(x)
= Ln(x) - Ln—l(x) - an(x) + ann(x) - Tan_1(x)

+ Ln—l(x)
M+ DLy (0) = Ly(x)2n—x + 1) — nly_;(x)
Hence nm+1)L, . (x)=Cn+1-x)(n+1L,(x) —n(n +

1)L,,_,(x) is required solution.
Recurrence Relation Il: xL',,(x) = nL,(x) — nL,_,(x)
Proof: Again we using the generating function

Z L, (x)t"

n=0
_ exp{—xt/(1 - t)}
- 1—t
Differentiating w. r.t.x, we obtain

ZLI”(x)tn e i 0 " eXP {_ 1)ir t} % {1_—tt}

o)

(1)

! n — _t N n
L', (x)th = a-o ;Ln(x)t ) from(1)

w 1- t)nZ(;Lc’:(x)t“ - —t;L,;(x)t"
(; L', (o)t — t; L'n(x)t") = —nZ;)Ln(x)t"+1

Z L' (x)e — Z L ()t = — Z L, (x)¢n+
n=0 n=0 n=0

We equating the coefficient of t™ from both sides, we give
L,n(x) - L,n—l(x) = —Lp_1(x)
L’n—l(x) = Ln—l(x) + L,n(x)
Replacingn byn + 1
L,n+1(x) = L,n(x) - Ln(x)
From recurrence relation |
n+ 1)L, (x)=L,(x)2n—x+1) —nL,_;(x) ..(2)
Again differentiating w.r.t. x, we obtain
(m+ DL () =L (x)2n—x+1) = L (x) —nl'p_1(x) ...(3)
Putting the values of L',_; and L',,,; in (3)
(n+ DL () — Ly (x)]
=L 0)@2n—x+1) = Ly(x) = n[Ly1(x) + L' (x)]

n=0
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L)+ 1) - Ly,(x)(n+1)
= 2nL", (x) — xL' (x) + L'y (x) — L (x) — nLy_4 (x)
+nL',(x)
L,(x)n+1-2n+x—-1+n]=L,(x)[n+1—-1] —nL,_;(x)
xL,n(x) =nlL, (x) — nLn—l(x)

Recurrence Relation I1l: L', (x) = = X3 L. (x)
Proof: The generating function of Laguerre polynomials is
expi—xt/(1—t -
P/ N o (1)

Differentiating w. r.t.x, we have

Z L (O)en =

]Z L GOt = —t(1— £) Z LGt , using (8)

Lexp |-

1-t

—t Z Z L,.(x)t", by binomial expension
=07r=0

i L, (Oth == —ti i L.(x)t™* . (2)
n=0

s=07r=0
It is clearly that t™ on L.H.S. of equation (2) is L,,(x) and now we obtain
t™ on RH.S. of (2). We substituting r+s+1=n=>s=n—r—
1& s>0=>n—-r—-1=0=r <n-—1, which obtain all value of r are
1,2,3, o0 ee e n—1and V r, —L,.(x)is coefficient of t™.
Hence the total coefficient of t™ on R.H.S. of (2) is given below

- Z Ly (x)
Thus, the equating the coefficients of £ from both sides of (2), we obtain
Vn() == ) L)
SOLVED EXAMPLES

EXAMPLEL. Show that (i) L,,(0) = 1 (i) L,(0) =n!
SOLUTION: We know that

Z L, ()t =

Substituting x = O in (1), by binomial theorem

e=tx/(1-1) (D)

Z t"L,(0) =1 —-t)t=1+t+t2+-,

n=0
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(00}

Zt“L (0) = . (2)

Equating the coefﬁment t™on b h sides, we have L,(0) = 1.
(i) L,(0) = n!
SOLUTION: We know that, the generating function is

Ms

had n
z t Ln(x) = 1 e_Xt/(l_t) (3)
. n! 1-t

n=
Substituting x = 0 in equation (3), o t"L, () =(1-"1=1+
t+t2 4+

Equating the coefficient t™ on both sides, we have “n+(0) =1,

or L,(0) =n!

EXAMPLE2. Show that xL",(x) + (1 —x)L',, + L,(x) = 0 and hence
deduce thatL',, = —n.
SOLUTON: Now we use the Laguerre’s equation

x(x?y/dx?)+ (1 —x)dy/dx + ny =0,
Putting x = 0 in above equation
L',(0)+nL,(0) or L,(0)=-n, as L,(0) =1.
EXAMPLE3. Expand x3+x%2—3x+2 in series of Laguerre
polynomials.
SOLUTION: We know that the Laguerre polynomials are
(2 —4x + x?)

Lo(x) =1,L;(x) =1—x,L,(x) = >

and L;(x)

1
=g(6—18x+9x2—x3)

Now
x3=6-—18x+ 9x2% — 6L;(x) .. (1)
x? =4x — 2+ 2L,(x) .. (2)
x=1-L;(x) and Lo(x) =1 ..(3)
Now

x3+x?2—-3x+2=6—18x+9x% — 6L3(x) + x> —3x + 2, by (1)
=8—21x+ 10x? —6L3(x) =8 —21x + 10[4x — 2 + 2L,(x)] —
66L3(x), by (2)

= —12 + 19x + 20L,(x) — 6L3(x) = —12 + 19[1 — L, (x)] +
20L,(x) — 6L3(x), by (3)

=7 —19L,(x) + 20L,(x) — 6L;(x) = —7Ly(x) — 19L,(x) +
20L,(x) — 6L3(x), by (3)

SELF CHECK QUESTIONS

(SCQ-1) Ly, is a Laguerre polynomial of degree........

(SCQ-2) Associated Laguerre differential equation is .......
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(SCQ-3) Express 10 — 23x + 10x2 — x3 in terms of Laguerre
polynomials.

14.9 SUMMARY :-

In this unit, first of all we are explained the definitions of Laguerre
Equations and discussed about the Generating function for Laguerre
polynomials, Rodrigue’s Formula, Orthogonality Properties Laguerre
Series Expansions, Recurrence Relation (Formulae). Finally, the Laguerre
polynomials are an important tool in the study of differential equations
and their solutions.

14.10 GLOSSARY:-

e Series Expansion
e Laguerre equation

14.11 REFERENCES:-
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e Refaat EI Attar (2006) Special Function and Orthogonal
Polynomials.

14.12 SUGGESTED READING:-

e M.D. Raisinghania, (2018). Ordinary and Partial Differential
equation (18™ Edition), S. Chand.

e Carlo Viola (2016) An introduction to Special Function.

e MathWorld(Wolfram):https://mathworld.wolfram.com/Laguerre
Polynomial.html

e Wikipedia: https://en.wikipedia.org/wiki/Laguerre_polynomials

e Digital Library of Mathematical Functions:
https://dImf.nist.gov/3

14.13 TERMINAL QUESTIONS:-

(TQ-1) If L,(x) to be the coefficient of t™ in the expansion of

—tanb
[P0 (tan@)L,, (tand)do = &,y

L ex (x—t) rove that
1-t p 1-t P 0 cos26

tn

(TQ-2) If Yoo —Ln (x) = i exp {I—f’;} prove that
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I L,n(x) = n[L’n—l(x) - Ln—l(x)]

ii. xL',(x) =nL,(x) —n?L,_,(x)
(TQ-3) Prove that[” e~**L, (t)dt = (1/s) x (1 — 1/s)™.

[°s) O,l k<n

(TQ-4) Prove thatf0 e VxkL,(x)dx = {(_1),17];, ifk=n
(TQ-6) State and prove that generating function for Laguerre polynomial.
(TQ-7) Prove that the recurrence relations of the following

l. (n+ DLy (x)=2n+1—-x)L,(x) —nL,_,(x)

1. xL',(x) =nL,(x) —nL,_,(x)

m.  L,(x)=-YrztL,(x)

14.14 ANSWERS:-

SELF CHECK ANSWERS

(SCQ-1) n+k
(SCQ-2) xy"+(1—x+k)y'+ny=0
(SCQ-3) Lo(x) + Ly(x) + 2L,(x) + 6L3(x)
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