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COURSE INFORMATION

The present self learning material “Advanced Real Analysis” has been designed for
M.Sc. (First Semester) learners of Uttarkhand Open University, Haldwani. This self-
study material was created to increase learners access to excellent learning materials..
There are 14 units in this course. Real Number System and Countable Set is the focus of
the first unit. Sequences, Series and properties and Limit and Continuity is covered in
Unit 2 and Unit 3. Derivatives and the mean Value Theorem are the main topics of Unit
5. The aim of Unit 5 and Unit 6 are to analyze Riemann Integral briefly and introduce
Riemann-Stieltjes Integral. Unit 7 explained Improper integral. Units 8 and 9 each
provided an explanation of Pointwise Convergence and Uniform Convergence. Lebesgue
integral is the topic of unit 10. The concepts of completeness, continuous function, and
compactness are presented in Units 11, 12, and 13 together with the concept of the metric
space. Discussion of fixed Point theorems in the last unit. This subject matter is also
employed in competitive exams. Simple, succinct, and clear explanations of the
fundamental ideas and theories have been provided. The right amount of relevant
examples and exercises have also been added to help learners to understand the material.
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BLOCK I: REAL NUMBER SYSTEM
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UNIT 1: INTRODUCTION OF REAL
NUMBER SYSTEM AND
COUNTABLE SET

CONTENTS

1.1  Introduction

1.2 Objectives

1.3  Ordered Set

1.4  Finite Countable and Uncountable Sets
1.5  Summary

1.6  Glossary

1.7  References

1.8 Suggested Readings

1.9  Terminal Questions

1.10 Answers

1.1 INTRODUCTION

The Mathematical analysis concepts mostly related to the real numbers, so
first we will discussed about real numbers system. Several methods are
used to introduce real number. From which in one method the set of
positive integers are used to build large of numbers of system i.e. positive
rational number (p/q, p,q € Z*). Then set of rational number was used to
construct irrational number for eg. v/2. Then the system of rational number
and irrational number both defined real numbers system.

For convenience we will recall about some concepts and terminology. Let
A be a Set (collection of well defined objects). The notation a € A means
that the object a is in the set A while a € A means that the object a is not
in the set A. If set A has a subset of A, then we write A; € A. A set is said
to be empty set if no element is present in set A and can be denoted by the
notation @. The set of real number, rational number and integers can be
denoted by the notation R, Q and Z respectively.

In this unit we will study about the real number system and countable set.

Department of Mathematics
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Georg Cantor, in full Georg Ferdinand
Ludwig Philipp Cantor, (born March 3, 1845,
St. Petersburg, Russia—died January 6, 1918,
Halle, Germany), German mathematician who
founded set theory and introduced the
mathematically = meaningful concept of
transfinite numbers, indefinitely large but
distinct from one another.

In a series of 10 papers from 1869 to 1873,
Cantor dealt first with the theory of numbers;
this article reflected his own fascination with
the subject, his studies of Gauss, and the
influence of Kronecker.

In 1873 Cantor demonstrated that the rational
numbers, though infinite, are countable (or
denumerable) because they may be placed in | Fig 1. Georg Cantor

a one-to-one correspondence with the natural | Reference(https://www.b
numbers (i.e., the integers, as 1, 2, 3,...). He | ritannica.com/biography/
showed that the set (or aggregate) of real | Georg-Ferdinand-
numbers (composed of irrational and rational | Ludwig-Philipp-Cantor )
numbers) was infinite and uncountable.

1.2 OBJECTIVES

After reading this unit learners will be able to
1. construct the basic concept of real numbers and its properties
2. comprehend the basic concept of countable and uncountable
3. study about cardinality of infinite set
4. analyze cantor set.

1.3 ORDERED SETS

Let A be a set. An order on A is a relation, denoted by <, with the
following properties
i. If a;and a, € A then one and only one of the statements a; <
a,, a; = a, and a; > a, is true.
ii. Ifaj,a,a3€Aifa; <a,anda, < as, thena, < as.

Department of Mathematics
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NOTE: the statement "a; < a," may be read as “a,is less than a,”. The
notation a, < a," may be read as “a,is less than equal to a,”.

Ordered Set : An ordered set is a set 4 in which an order is defined.
For example: R is an ordered set if we defined order " < " on R.

Upper bound: Consider A be an ordered set and X € A. If there exists a
c € A such that x; < c for every x; € X then X is bonded above and c is
an upper bound of X.

Lower Bound: Consider A be an ordered set and X < A. If there exists a
c € A such that x; > ¢ for every x; € X then X is bonded below and c is
a lower bound of X.

Least upper bound (Supremum): Consider A be an ordered set, X € A
and X is bounded above. Let there exists 9 € A with the following
properties:

Q) I is an upper bound of X.

(i) If w <9, then ¥ is not an upper bound of X.

Then 9 is called the least upper bound (Supremum) of X. It can be written
as v = sup X.

Greatest lower bound (Infimum): Consider A be an ordered set, X € A
and X is bounded below. Let there exists u € A with the following
properties:

Q) u is a lower bound of X.

(i) If u < p, then w is not a lower bound of X.

Then ¥ is called the least upper bound (Infimum) of X. It can be written as
U = infX.

Least Upper bound Property: An ordered set A is said to have the least
upper bound property if X € A, X is not empty and X is bounded above.

Theorem 1.1 Let A is an ordered set with the least upper bound
property and A;(# @) S A which is bounded below. Let L be the set
of all lower bounds of 4;. Then u = sup L exists in A and u = inf A;.

Proof. As we see that A, is bounded below, it implies that L is not empty.
Since L consists exactly those a; in A which satisfy the inequality

Department of Mathematics
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a; < a, for every a in A;, we know that every a in A, is an upper bound
of L. Hence L is bounded above.

As it is given that A satisfy least upper bound property. Thus there exists u
such that u = sup L.

If w < pu, then w is not an upper bound of L, which implies w & A;.
Hence u < a foreveryain B. Thus u € L.

If 9 > p then 9 & L, because u is an upper bound of L. It implies that u is
a lower bound of A;, but 9 is not if 9 > u. Hence u = inf 4;.

Fields: A field is a set F with two operations, called addition and
multiplication, which satisfy the following axioms:

(F1) Axiom for addition

(F11) Closed under addition: If x; and x, in F, then x; + x, in F.

(F12) Commutative under addition: x; + x, = x, + x; forall x;,x, € F
(F13) Associative under addition: (x; + x,) + x3 = x; + (x, + x3) for all
X1,X2 X3 EF

(F14) Additive identity: There exists 0 such that 0 + x; = x; for every
x, EF.

(F15) Additive inverse: For every x; in F there exists (-x;) such that
X1+ (—x) = 0.

(F2) Axiom for multiplication

(F21) Closed under multiplication: If x; and x, in F, then x;x, in F.
(F22) Commutative under multiplication: x;x, = x,x, forall x;,x, € F
(F23) Associative under multiplication: (x;x2)x3 = x1(x,x3) for all
X1,X2%x3 EF

(F24) Multiplicative identity: There exists 1 such that 1.x; = x; for every
x, €EF.

(F25) Multiplicative inverse: For every x, in F there exists (xi) such that
1

X1 (xil) =1.

(F3) Distributive Law: x4 (x, + x3) = x1x, + x1x3 forall x;,x, x3 € F

Ordered Field: An ordered field is a field F which is also an ordered set
such that

Q) X1+ %, <xq+x30fx1,%,%3 €EF and x, < x3

(i) X1%5 > 0if x,x, € Fand x,x, >0
For ex. Q is an ordered field.

Department of Mathematics
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Real field:

Theorem 1.2. There exists an ordered field R which has the least-
upper-bound property. Moreover, R contains Q as a subfield.

The proof of given theorem is long and laborious.

Theorem 1.3. If xq,x, € Rand x; > 0, then there exists a positive
integer n such that nx; > x,.

If x4,x; € Rand x; < x5,then there exists a q € Rsuch that
X1 <p < Xsy.

Proof. (i) Let X be the set of all nx;, where n € Z*. Let nx; < x,, for
alln € Z*. It implies that y could be an upper bound of X.

But X has a least upper bound in R. Let u = sup X.

Because x; > 0 implies u — x; < mx; for some positive integer m.

But then u < (m + 1)x € X, which cannot be possible because u is an
upper bound of X. Thus our assumption is wrong. Thus nx; > x,.

(i) Now x; < x, impliesx, —x; > 0and 1 € R.

Now from (i), we conclude that there exists a positive integer n such that
n(x, —xy) > 1.

Again using (i) , to obtain integers n; and n, such that n, > nxy,
n, > -—nx; .

Then —n, < nx; < n;. Hence there is an integer m (with -n, < m <n,
)suchthatm — 1 < nx; < m.

If we combine these inequalities, we obtain nx; <m <1+ nx < ny.

Since n > 0, it follows that x; < % <x, Ifp= % we obtain x; < p <

X2,

The Completeness Axiom: Every nonempty set that is bounded above has a
supremum.

The Archimedean Property: The property of the real numbers described in
the next theorem is called the Archimedean property. Intuitively, it states
that it is possible to exceed any positive number, no matter how large, by
adding an arbitrary positive number, no matter how small, to itself
sufficiently many.

Ex. 1.1 The rational number system is not complete.
Proof. We have to prove that a set of rational numbers may be bounded

above (by rationals), but not have a rational upper bound less than any
other rational upper bound.

Department of Mathematics
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To see this, let S = {r|r is rational and r? < 2}

If r € S, thenr < 2.

if «> 0 there is a rational number ' such that V2 —a <r' < 2,
which implies that sup S = V2. However, /2 is irrational; i.e. cannot be
written as the ratio of integers. Therefore, if g, is any rational upper bound
of S, then V2 < g,. There is a rational number g, such that V2 < ¢, <
q.- Since g, is also a rational upper bound of S, this shows that S has no
rational

The Extended real number system

The extended real number system consists of the real field R and two
symbols, +o0 and —oo. we preserve the original order in R and define
+00 < a < —oo foreverya € R

CHECK YOUR PROGRESS

(CQ 1) The real number system is not complete. (T/F)
(CQ 2) The rational number system is not complete. (T/F)
(CQ 3) 3is upper bound of interval (1,3). (T/F)

11 1) .
(CQ 4) Lower bound of set {1,5,5, ...... ;} is

1.4 FINITE COUNTABLE AND UNCOUNTABLE
SETS

Let two sets X and Y and let with each element x of X there is associated,
in some manner, an element of Y, which we denote by f(x). Then f is
said to be a function from X to Y. The set X is called the domain of f and
the elements f(x) are called the values of f. The set of all values of f is
said to be range of f.

Consider X and Y be two sets and let f be a mapping of X into Y, If
A c X, f(A) is defined to be the set of all elements f(a), for a € A. Here
f(A) be the image of A under f. In this notation f(X) is the range of f. It
is clear that f(X) c Y. If f(X) =Y, then f maps X onto Y.

If AcY,f 1(A) denotes the set of all ¢ € X such that f(c) € A. Here
fY(E) the inverse image of A under f. If y € Y, f~1(y) is the set of all
c € X such that f(c) = y. If for each y € X, f~1(y) conisists of at most
one element of X, then f is said to be injective (one-one) mapping of X

Department of Mathematics
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into Y. or we can say, f is injective if f(a) # f(b) whenever a # b,a,b €
X
Let X and Y are two sets. Then X and Y are equivalent (X~Y) if it satisfy
following properties:

)} Reflexive: X~X

i) Symmetric: If X~Y, then Y~X

iii) Transitive: If X~Y and Y~Z then X~Z
For any positive integer n, let A, be the set whose elements are the
integers 1,2, ....,n; let A be the set consisting of all positive integers. For
any set X, we say:

Q) X is finite if X~A,, for some n.

(i) X isinfinite if X is not finite

(ili)) X is countable if X~A

(iv) X isuncountable if X is neither finite nor countable.

(V) X is at most countable if X is finite or countable.

NOTE:

(i) Contable sets are also called enumerable or denumerable.

(i) For two finte sets X and Y, X~Y if and only if X and Y contain the
same number of elements.

Theorem 1.4. Let Z be the set of all integers then Z is countable.

Proof. Consider the following arrangements of the sets Z and A:
Z:0,1,-1,2,-2,3,-3,.......

A:1,2345,6,7,.........

Let f be function from A to Z:

n

>
/) — nT_l ; n = odd
Here we can see that explicit formula for a function which setup a one-one
correspondence.
By a sequence, we mean a function f defined on the set A of all positive
integers. If f(n) = x,, for n € A, then it is used to denote the sequence f
by the symbol {x,,}.
The values of f, that is, the elements x,,, are called terms of the sequence.
If Bisasetand if x, € BVn € A, then {x,,} is said to be sequence in B.

n = even

Department of Mathematics
Uttarakhand Open University 8



Advanced Real Analysis MAT502

Theorem 1.5. Every natural number can be expressed in the form
m = 2%b, where a is a nonnegative integer and b is an odd natural
number.

Proof. We will prove this theorem using mathematical induction.

For the base case n = 1,n = 20 - 1. Now let k € N, and suppose that
every natural number less than k can be written in the desired form. If k is
odd, we just write k = 2%.

If k is even, then there is an integer [ such that k = 21, and k is positive
implies [ is positive.

Since | < k, the inductive hypothesis implies that there exist a
nonnegative integer p and an odd natural number g such that [ = 2P gq,
and then k = 21 = 2P*1q, which satisfies the conclusion.

Ex 1.2. ThesetN x N is countably infinite.

Proof. Let a function g: N x N — N be defined by g(m,n) =
2m-1 (2n — 1).

To show that g is injective, suppose (mq,n;), (m,,n,) are elements of
N x Nsuchthat g(my,n;) = gh(m,,n,), which is to say

2l (2ng — 1) =271 (2n, — 1) o (1)
We will first prove by contradiction that m, = m,.

Suppose not; then one is larger, and we may assume without loss of
generality that m, > m;.

Multiplying both sides of (1) by 21=™1 | we obtain

2 — 1 = 2271 (20, — 1) oo )
The fact that m, > m, implies that the right-hand side is even, while the
left-hand side is odd; this is a contradiction, so we can conclude that
m; = m,.

Then simple algebra shows that n, = n, as well, so (my,n,) =
(ma, ny).

To prove surjectivity, let x € N be arbitrary. Previous theorem shows that
we can write x = 2%b for some nonnegative integer a and some odd
natural number b.

The fact that q is odd means that a = 2j + 1 for some integer j, and the
factthat b = 1 meansj > 0.

Therefore, (a + 1,j + 1) €N x N, and
gla+1,j+1)=2@D102G+1)-1)=22j+1) =

2% b = x. Thus we have shown that g is bijective,soN x N = N

Department of Mathematics
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Theorem 1.6. Every infinite subset of a countable set B is countable.
Proof. Suppose X c B and X is infinite. Arrange the elements x of B in a
sequence {x,} of distinct elements. Construct a sequence {n;} as follows:
Let m, be the smallest positive integer such that x,,, € X.

Now choose my, my, ... ... .....,my_; such that m, be the smallest integer
greater than n,_, such that x,, € X.

Putting f (k) = x,,,, we obtain a 1-1 correspondence between X and A.
The union of set X,, is defined to by the set S such that x € S if and only if
x € X,, foratleastone § € B. It can be writtenas S = Ugsep X5

The intersection of set X,, is defined to by the set P such that x € P if and
only if x € X,, forevery § € B. It can be written as Ngep Xs -

Theorem Let { X,,}, n=1,2,3,...... be a sequence of countable sets and
S = U;-1X,. Then S is countable.

Proof. Let every set X,, be arranged in a sequence {a,,,},m = 1,2,3, .....
and consider the infinite array

aM 15
a azs
a a ass
2%} Aus OQus
a sz Q53 A5y Oss

In which the elements of X,, form the n‘* row. The array contain all
elements of S. As indicated by the arrows, these elements can be arranged
in a sequence as following:

11,21, A12, 31, A22, A13, Aa1, A32, A23, A14, A51, As2, A33, A42, A15, -

If any two of the sets X,, have elements in common, these will appear
more than once in above sequence.

Hence there is a subset Y of the set of all positive integer such that S~Y,
which shows that S is at most countable.  (because Every infinite subset
of a countable set B is countable)

Because X; < S and X, is infinite, S is infinite and thus countable.

NOTE: Suppose X is at most countable and for every § € X, X,,is at most
countable then T = Ugsex X, IS at most countable.

Theorem 1.7. Let X be a countable set, and let X,, be the set of all n-
tuples (x4,...,x,) Where x;, € X(k = 1, 2, ..., n) and the elements
x1,...,Xy Need not be distinct. Then X,, is countable.

Department of Mathematics
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Proof. That X, is countable is evident, since X; = X. Suppose X,,_; is
countable (n = 2,3,4,...). The elements of X, are of the form
B,a) (B € Xp_q, @ € X) . For ever fixed B, the set of pairs (8, a) is
equivalent to X, and thus countable.

Thus X, is the union of a countable set of countable sets; thus, X,, is
countable, and the proof follows by induction on n.

Corollary. The set of all rational numbers is countable.

Proof. We apply the previous theorem with n = 2, noting that every
rational number can be written as s, where p and g # 0 are integers. Since

the set of pairs (B, @) is countable, the set of quotients Z, and Thus the set

of rational numbers, is countable.

Ex 1.3. The set E of positive even integers is countably infinite.
Proof. Let f: N = E be f(n) = 2n. We can easily see that f is bijection.

Theorem 1.8. (Cantor's Theorem) If X is any set, then there is no
surjection of X onto the set P(X) of all subset of X.

Proof. Let g be map from set X to P(X) and it is surjective.

Now if x € X then g(x) € P(X) which implies that g(x) is subset of X.
Therefore, either x belong to g(x) or it does not belong to g(x).
LetthesetY ={x € X |x & g(x)}.

Since Y is a subset of X, if g is surjection then Y = g(y) for some y € X.
Now eithery e Yory ¢ Y.

If y € Y, thenasabove Y = g(y), then there must have y € g(y), but it
contradict the definition of Y.

Similarly, if y € Y then y € g(y) which impliesthaty € Y, a
contradiction.

Therefore, g cannot be a surjection.

NOTE: Cantor’s Theorem implies that there is an unending progression of
larger and larger sets. In particular, it implies that the collection P(X) of
all subsets of natural numbers N is uncountable.

Department of Mathematics
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Ex14LetA B,C,Dbesets.If4 ~ Cand B ~ D,thenAX B ~ C X
D.

Proof. By definition of equipotent, we know there exist bijections f: A —
C and g : B — D. It is natural to define a function h: AXB = C XD
by h(a,b) = (f(b),g(c)). Clearlyitis 1-1 and onto.

Theorem. (G.Cantor, 1874). The set {x € R|0 < x < 1} is
uncountable.

Proof. Let a bijection f : N — (0, 1] exists.

Listing the f(n) by their nonterminating decimal expansions, we build a
bi-infinite array:

f(1) = 0.a11a120130140;5. .

f(2) = 0.a31022053a;4a;5.-

f(3) = 0.a31a3,a330340a35. -

f(4) = 0.a410420430440ys. ..

f(5) = 0.as5105,a53a54a55 -..

Given the array we can explicitly exhibit a real number x € (0,1] that it
can’t possibly include. Namely, let x be the number with nonterminating
decimal expansion:

x = 0.d,d,d;d,d-... where the d,, are defined using the diagonal entries
of the array, modified as follows:

d, = ap, + 1ifa,, € {0,1,...,8}; dn = 8ifa,, = 9.5

Here d,, # 0 for all n, so this nonterminating decimal expansion of the
allowed kind, and defines a real number in (0, 1].

We claim that for all n € N f(n) # x, contradicting the fact that f is
onto.

To see this, observe that the n" digits in the decimal expansion of x is d,,,
and in the expansion of f(n) is d,,; these are different (from the
construction above). This concludes the proof.

Cardinality of a Set: Georg Cantor (Germany, 1845-1918) helped to
establish the theory of sets as a fundamental topic in modern mathematics.
He provided a new way of thinking about the “size” of a set, which allows
us to describe infinite sets with more nuance than just saying that they are

Department of Mathematics
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infinite. Instead of counting the number of elements in a set to determine
its size, Cantor suggested the following definition:

Two sets A and B have the same cardinality if there is a one-to-one
mapping between their elements; if such a mapping exists, we write
|A] = |B.

The symbol X, (aleph-null) is standard for the cardinal number of
N (sets of this cardinality are called denumerable).

The Continuum Hypothesis: Every uncountable subset of R is of the
same cardinality as R.

The cardinality of the set of all real numbers, denoted by ¢ and called
the cardinality of the continuum, is strictly greater than the cardinality of
the set of all natural numbers (denoted by Xo).

Cantor set: We will define the Cantor set on the real line. We start with
the unit interval [0,1], which we denote by I.

We remove the open interval of length 1/3 from the center of I, and we
1 2

denote the remaining set by I, I; = [0,5] U [5, 1].

We continue the process of remoying from the center of each newly
created subinterval, the open interval whose length is one-third of the
subinterval to define inductively the k" set I,

I, is a union of 2" subintervals of length 3% and {I,;} is a monotone
decreasing sequence of compact sets.

The limit of this sequence I = Ny=, I, # @ is called the Cantor set.

Since the Cantor set is a limit of nested non-empty compact sets, it is

compact.
Ex. 1.5 The Cantor Set is uncountable.

Sol. To show that the Cantor set is uncountable,we assign to each element
of the Cantor set a "label” consisting of a sequence of 15 and 2° that
identifies its location in the set.

Fix an element y in the Cantor set.

Then certainly y is in C;. If y is in the left half of C;,then the first digit in
the "label” of y is 1; otherwise it is 2.

Likewise y € C, By the first part of this argumeht, it is either in the left
half, C,,,0f C, or the right half, C,,, of C, (when the first digit of the label
is 2).

Department of Mathematics
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Whichever of these is correct,that half will consist of two intervals of
length 372 .

If y is in the leftmost of these two intervals then the second digit of the
"label™ of y is 1. Otherwise the second digit is 2.

Continuing in this fashion, we may assign to x an infinite sequence of I's
and 2's.

Conversely,if a, b, c, ... is asequence of I's and 2's, then we may locate a
unique corresponding element z of the Cantor set.

If the first digit is a 1 then z is in the left half of C;; otherwise z is in the
right half of C;,

Likewise the second digit locates z within C, and so forth. Thus we have
a one-to-one correspondence between the Cantor set and the collection of
all infinite sequences of ones and twos.

In fact, we are thinking of the point assigned to the sequence
C1,Cy,Cs, e e oo OF I's and 2's as the limit of the points assigned to
C1,C5,Cqy e e e e
Thus we are using the fact that C is closed. However, the set of ail infinite
sequences of ones and twos is uncountable. Thus the Cantor set is
uncountable.

CHECK YOUR PROGRESS
(CQ 5) Set of irrational number is countable. (T/F)
(CQ 6) Infinite set always uncountable. (T/F)
(CQNZXTZis .
(CQ 8) Cantor set is

1.5 SUMMARY

In this unit we discussed Sets, Algebra of Sets and Countable and
Uncountable sets by proving some important theorems and giving
illustrative examples.

1.6 GLOSSARY

1. Set- a well defined collection of elements
2. Countable set-set having one-one onto mapping with set of Natural
Number
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3. Cantor set-set of points lying on a single line segment that has number
of unintutive properties.

4. Lower bound-lowest possible value

5. Upper bound-largest possible value
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1.9 TERMINAL QUESTION

Long Answer Questions
(TQ 1) Suppose A and B are countable sets.
(a) Every subset of A is countable.
(b) A U B is countable.
(c) A x B is countable.
(TQ 2) Prove that a nonempty set T; is finite iff there is a bijection from
T; onto finite set T,.
(TQ 3) Prove that the collection F(N) of all finite subsets of N is
countable.
(TQ4) State and Prove Cantour’s theorem
(TQ5) Issetof rational number Q is complete ordered set. Justify.
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Fill in the blanks

(TQ 6) The unit interval [0,1] is
(TQ7) IfI, = [0, %] forneN.Then Ny_ 1 =

(TQ 8) The set of all irrational number is
(TQ 9) The union of two disjoint countably infinite set is

1.10 ANSWERS

(CQ1) F cQ)T CQ3T

(CQ4) 0 (CQ5)F (CQ6)F

(CQ 7) countable (CQ 8) uncountable

(TQ 6) not countable (TQ7) {0} (TQ 8) uncountable

(TQ9) Countable
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UNIT 2: SEQUENCES, SERIES AND
PROPERTIES
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2.8  Summary
2.9  Glossary

2.10 References

2.11 Suggested Readings
2.12 Terminal Questions
2.13 Answers

2.1 INTRODUCTION

Now the foundation of the real number system R has been laid in previous
unit, now we will study about the convergence of sequence.

First we will try to introduced the meaning of sequence nad convergence
of sequence in real numbers and disussed some basic but useful results
about convergent sequences i.e Nonotonic convergence theorem,
Bolzanno weiesrstrass theorem and Cauchy Criterion for convergence of
sequences.

A brief introduction to infinite series and some results in infinite series
will be studied in this unit.
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French mathematician, philosopher,
and author Jean Le Rond
d'Alembert was born in Paris on
November 17, 1717, and he passed
away there on October 29, 1783. He
first rose to prominence as a
mathematician and scientist before
establishing a solid name as a
contributor to and editor of the
renowned Encyclopédie.

In a message to the Académie des
Sciences in July 1739, he made his
first contribution to mathematics by
pointing out the mistakes he had
found in Charles-René Reynaud's
Analyse démontrée, which was first
published in 1708.

He also developed the ratio test, a
method for figuring out whether a
series converges.In contemporary
theoretical physics, the D'Alembert
operator, which was initially
introduced in D'Alembert’s study of
vibrating strings, is crucial.

Fig 1. Jean Le Rond d'Alembert
(Source:https://www.britannica.com
/biography/Jean-Le-Rond-
dAlembert)

2.2 OBJECTIVES

After reading this unit learners will be able to
1. recognized the basic concept of sequences
2. construct the basic concept of limit supremum and limit infremum
3. analyze about infinite series and rearrangenet of terms in series
4. learned some important theorem like bozanno weierstrass theorem

with proof.

2.3 SEQUENCES

Sequence: A sequence of real numbers (or sequence in R) is a function
defined on the set N of natural numbers and whose range is contained in

the set R of real numbers.
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If X:N — R is a sequence, we will usually denote the value of X at n by
the symbol x,, rather than using the function notation X (n). The values x,,
are also called the terms or the elements of the sequence. We will denote
this sequence by the notations X, {y,}, {v,: n € N}.

Of course, we will often use other letters, such as X = {x;},Z = {z;} and
so on to denote sequences.

We purposely use parentheses to emphasize that the ordering induced by
the natural order N is a matter of importance. Thus, we distinguish
notationally between the sequence {y,:n € N} whose infinitely many
terms have an ordering and the set of values {x,:n € N} in the range of
the sequence which are not ordered. For example, the sequence X =
{(—1)™:n € N} has infinitely many terms that alternate between -1 and 1,
whereas the set of values {(—1)™:n € N} is equal to the set {—1,1}, which
has only two elements.

Sequences are often defined by giving a formula for the nt"* term x,,.
Frequently, it is convenient to list the terms of a sequence in order,
stopping when the rule of formation seems evident. For example, we may
define the sequence of reciprocals of the even numbers by writing

Xz{%:nEN}.

Examples:

(@) If a € R, the sequence 4 = {aq,q, ... ... } all of whose terms equal a, is
called the constant sequence a.

(b) The Fibonacci sequence F = {f,,} is given by the inductive definition

L=1LL=1 fur1= facrt /o (n22)

Range

The range set consisting of all distinct elements of a sequence, without
repetition and without regard to all position of a term.

Example: The Range of sequence {y,}, where y,, = 1 + (—=1)™ is {0,2}.

Bounds of a sequence

Bounded above sequence: A sequence {y,} is said to be bounded above
if there exists « € Rsuchthaty, < a foralln €N.

Bounded below sequence: A sequence {y,} is said to be bounded below
if there exists « € Rsuchthaty, > a foralln €N
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Bounded below sequence: A sequence {y,} is bounded if there exists a
X € Rsuchthat |y,| < Xforalln € N.

2.4 LIMIT OF A SEQUENCE

Converge to a point: A sequence X = {x,} in Ris said to converge to
x € R and ‘x’ is said to be a limit of {x_n}, if for every €> 0 there exists
a natural number K (&) such that for all n > K(¢), the terms x,, satisfy
lx, — x| < &.

Convergent sequence: A sequence is said to be convergent if it has a
limit.

Divergent sequence: A sequence is said to be divergent if it has no limit.

Theorem 2.1. (Uniqueness of Limits) A sequence in R can have at
most one limit.

Proof. Suppose that a and b are both limits of {x,,}.
For each € > 0 there exists K, such that

|, — al <§f0ral|n2KO ................................................ (D

and there exists K, such that
%n = bl < forall m = Kg. .oooooiiiii )

Now we consider K such that K = sup {K,, K3}

Therefore for any n > K, we apply the triangle inequality to get

la —b| =|a—x, +x,—b| <|x, —al+|x, —b|

Using (1) and (2), we get

la —b| < g + 2 =¢

because € > 0 is an arbitrary positive number, Hence |[a —b| =0=>a =
b.

Theorem 2.2. Let X = {x,,} be a sequence of real numbers and let

x € R. The following statements are equivalent

Q) X converges to a.

(i) For every & > 0, there exists a natural number K such that for
all n > K, the terms x,, satisfy |x,, — a| < &.

(ili))  For every & > 0, there exists a natural number K such that for
alln > K, the terms x,, satisfya—e<x, <a+¢.
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(iv)  For every & —neighborhood V.(x) of a, there exists a natural
number K such that for all n > K, the terms x, belong
toV.(x).

Proof. The equivalence of (i) and (ii) is just the definition.

The equivalence of (ii), (iii) and (iv) follows from the following
implications:

lv—al<eiff —e<v—x<ceiffa—e<a<a+ceiffveV(x).

Ex. 2.1. Prove that lim,,_, ., {%} = 0.

Proof. If € > 0 is given then i > 0.

Now applying Archimedean Property, we get

There is a natural number K = K (&) such that% < e&.
Then, if n > K, then

foo]=2<e

1
Hence sequence {;} converges to 0.

Ex. 2.2. Prove that lim,,_,, {tl"—j} =4,

Proof. If € > 0 is given then we will prove

s =4l <
......................................................................... (1)
an+5-4n—-4| 1 1

| n+1 | T htl on”

Now if the inequality% < ¢ is satisfied, then the inequality (1) holds.

Thus if %< g, then for any n > K, we also have %< € and hence (1)
holds.

Therefore the sequence lim,,_, {%} =4

Ex. 2.3. The sequence {(—1)™ } is divergent.

Proof: Let y be the limit of given sequence, then for ¢ = % € satisfies

the definition.

Suppose there exists € such that for an evenn > e.
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We get ;> |y, —y| = |1 —y|and

1

5> e =yl = =1-yl

But2 = [1-y—-(-1-y)< [1-yl+[-1-y]
< 1/2+4+1/2 = 1, and that is a contradiction.

Therefore, {(—1)" } is divergent.

CHECK YOUR PROGRESS

N\, .
(CQ 1) The sequence {(5) } is divergent. (T/F)
(CQ2) limyp {2} = 3. (T/F)
(CQ 3) A sequence in R can have at most one limit. (T/F)

(CQ 4) limy ., sin - =

log x

(CQ 5) limx_)oo T =

2.5 MONOTONE SEQUENCES AND
SUBSEQUENCES

Monotone increasing: A sequence {y,} is said to be monotone increasing
ify, < yp.,foralln € N.

150 -
100 - *
L 2
L 2
50 A *
. L 2
¢
0 '_’_’ 0 T T 1
0 Fig. 5 10 15

Monotone decreasing: A sequence {y,} is monotone decreasing if
Yn = Y41 foralln € N.
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15 -
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If a sequence is either monotone increasing or monotone decreasing, we
can simply say the sequence is monotone.

Example:

1. y, = {n? n > 1}, is monotone increasing

2. Y, = {% n= 1} IS monotone decreasing,

3. the constant sequence y, = {1} is both monotone increasing and

monotone decreasing,
{(=1)™ } is not monotone.

&

Theorem 2.3 A monotone sequence {y,} is bounded if and only if it is
convergent. Also
Q) if {y,} is monotone increasing and bounded, then
lim, ., y, =sup {y,: n € N}
(i) If {y,} is monotone decreasing and bounded, then
lim, .y, =inf {y,: n € N}.
(iii)
Proof. Suppose a monotone increasing sequence {y,}.
Let the sequence is bounded =the set {y,, : n € N} is bounded.
Suppose y =sup {y,: n € N}.
Let k > 0 be an arbitrary. As y be the supremum, then there exists
m € N suchthaty,, > y—k.
As {y,} is monotone increasing, then by mathematical induction
we get y,, >y, foralln > m.
o =Yl =y= £ y—ym < k.
Therefore, the sequence converges to y.
Hence, bounded monotone increasing sequence converges.
For the other direction, we have already proved that a convergent
sequence is bounded.
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Tail of a sequence
Let {y,} be a sequence then A —tail (where A € N), or just the tail, of {y,,}, is

defined as the sequence starting at A + 1. It can be written as{y,, 12 }n=1
1 1 1 1

For example, the 3-tail of {%} is TR

NOTE: The O-tail of a sequence is the sequence itself. The the limit and
convergence of a sequence depends only on its tail.

Subsequences
Consider {y,} be a sequence and {n,} be a strictly increasing sequence of
natural numbers, i.e., n, < n,+ 1 foralliorwecansayn, < n, <

ns < ---). The sequence {y"k}:=1 is called a subsequence of {y,}.

Example: {%} is a subsequence of {%}

Theorem 2.4. Every subsequence of convergent sequence is also
convergent and convergent to the same limit as the sequence.

Proof. Consider {y,} be a convergent sequence, and {z,} is any
subsequence of {y,,}.
Now we will prove lim,,_,, ¥, = Ilim Zy.

Let lim,, o ¥, = y. Now by the definition of convergence, for every
€ > 0 there exists M € N such that

|y, —y| < ¢ forall n > M.

Now if n > M then z,, = y,, forsomem > n > N.

It implies that |z, — y| = |y — ¥| < &.

Hence |z, —y| < e forall n > M.

Therefore, lim,,_,o, y, = ]‘11_{?0 Zn =Y.

CHECK YOUR PROGRESS
(€Q6) ¥ = {H?% n 2 1}, is monotone increasing. (T/F)

(CQ7) y, = {n?;n > 1} is monotone decreasing. (T/F)

(CQ 8) Every subsequence of convergent sequence need not be
convergent. (T/F)

(CQ 9) A monotone sequence {y,,} is bounded iff it is
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2.6 LIMIT AND INEQUALITIES

Theorem 2.5. (Squeeze lemma). If {x,,}, {y,}, and {z,,} be sequences
such that x,, < y, < z, foralln € N. Let {x,,} and {z,} converge
and lim,_, x, = ’l(imzn. Then {y,} converges and lim,_. X, =
lim,_ .y, = ll(imzn.

Proof. Suppose lim,,_,, x, = Ilim zy = L.

Let € > 0 and there exists N; such that |x,, — [| < e foralln > Ny, and
there exists N, such that |z, — | < eforalln > Nj,

Now IetN = max {Nll Nz}

Asn > N;andn > Ny, henceforall n > N

lx, —l|<e=>—-—te<x,—l<e>l—-e<x,<l+eand

Similarly,1 —e <z, <l +=.

Now, x, < yp < zp=2l—e<x, <y < z, <l +=

Hence, |y, — | < eforalln > N.
Therefore, lim,,_,o, x, = lim,,, ¥, = limz,
k—oo

Ex. 2.4. Find lim

1
n—oo
1

Proof. The given equation is {ﬁ}

Now as vVn > 1 for all n € N, we have

OS%S%forallneN

We already know that limnﬂ,% = 0.
Therefore, using squeeze lemma with constant sequence {0} and the

sequence {%} we get

lim,,_, % =0
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CHECK YOUR PROGRESS

(CQ 10) lim,_ x2e%" = 1. (T/F)
[ax+b]

(CQ 11) limy_, — =a (T/F)
(CQ 12) lim,,_,, nzsin% =

2.6.1 ALGEBRIC OPERATION IN LIMITS

Theorem 2.6. Consider {y,,} and {z,,} be convergent sequences.Then

Q) Sequence {x,} such that x, =y,+z, converges and
lim,_ ., x, =lim,_,y, +lim,_, z,

(i) sequence {x,} such that x, =1y, —2z, converges and
lim,,_ . x, =lim,_ .y, —lim,_. z,

(iii)  sequence {x,} such that x,, = y, z,, converges and lim,,_,, x,, =
lim,_ . y,.lim,_. z,

(iv)  sequence {x,} converges if x, =z—" such that z, # 0 and

n

. limy, 00 Yn
N=>0 "N img e Zn

Proof. (i) Let {y,} and {z,} be convergent sequences and {x,} is a
sequence such that x,, = y,, + z,,.

Letlim,, oV, = l; and lim,, o 2z, = L, and L = [} + [,

Let € > 0 and there exist N; such that

|y — L] <§,for AllM = Ny (1)
Similarly

there exist N, such that

|z, — L] <§,f0r AllN = Ny (i1)

Now we choose N such that N = {N, N, }.
Therefore, foralln > N
|xn - ll = |(yn + Zn) - (ll + lz)| = I(yn - ll) + (Zn - lz)|
< yn — Ul + 12y — L]
Using (i) and (ii), we get
e =l <>+><e
Hence we conclude that
|x, — | < ¢ foralln = N orwe can say that x,, converges to [.
e, lim,, o x, = im0 ¥, + limy, o, 7,
(ii) Similarly, {x,} is a sequence such thatx, = y,, —z,, andl =1, + [,
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Lete >0 andforalln > N
|xn =1 = |(Yn - Zn) - (ll - lz)| = |(yn - ll) + (lz - Zn)l
< |Yn - lll + ”2 - an < IYn - lll + IZn - lz|
Using (i) and (ii), we get
lx, — 1] <§+§<e
Hence we conclude that
|x, — | < ¢ foralln > N orwe can say that x,, converges to [.
1e. limy, o x, = limy,_ o ¥y — lim, L 2,
(iii) Let {x,,} is a sequence such that x,, = y,,z,,, and [ = L1,
Now we take € > 0 and choose N such that K = max {|l,], |12|,§, 1}.
Now there exist N; such that

1y, — L4 <3iK,fora11nzN1 ........................................ (iif)
Similarly, there exist N, such that
|z, — I,] < 3iK,for QLN Ny, (iv)

Let N = {N;,N,}and foralln = N
|t = U = |ynzn — Ll = — L + 1) (2, — L + 1) = L1
= |-l — L)+ n -1+
Li(zn = 1) + Ll — L]
= — WL+ Lz — L) + O — )z — 1)
< | = WL+ [y = )+ | — 1) (20 — )]
<O = WG]+ L1z = ]+ [ — W2, — L)
Using (iii) and (iv), we get
tn =1 <o lll + bl 5+ 5|5
<—K+K_—+—K
<-+-+-<e
Therefore, |x, —l| < g for all n = N or we can say that x,, converges to
l.
i.e. limy, o x, = lim,_ o v, lim,_, 2,

(iv) First, we prove that if {z,,} is convergent sequence, lim,, o z, = I, #

0 and z, # O then forall n € N, limn%oi = li
n 2

Lete > 0andasl, # 0 = min {glylz,%}

Now we choose N such that

. £ |L5]
|z, — ;] < min {E IIZIZ,TZ} .................................................. (V)
Now
|12| = |l2 —Zn +Zn| < |l2 _an + |Zn|
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1A |Zn| 1A 2 1
> |l <=+ |z =2 Ll == <l == <l|zp|l = —>—
2 2 2 2]~ |znl
Now, foralln > N
A1) _le-zal _ 2 L2z
zn |znllL2] 2] |lz2]
Using (v) in above equation , we get
1 2
1 1 lale 221 £
—— <= <e
zn [L2] 2]

Therefore, lim,,_, o, 1 =1
Zn 12
Hence using property (iii), we get
sequence {x,} converges, if x, = JZ’—" such that z,, # 0 and lim,,_,, x, =

limy 0 Y

limy, 00 Zn

NOTE:
If ¢ € R and {x,} is a convergent sequence, then lim,_.(cy,) =

clim,, 0 Y

Theorem 2.7. (the Bolzano-Weierstrass Theorem) Every bounded
sequence of real numbershas a convergent subsequence.

Proof. Consider a a bounded sequence of real numbers {y,,}.

Let « > 0 such that |y,| < a for all n. Now we define S, =
closure {yjlj > n} forneN. Then S, € [—a,a] and S,, is closed.
(because closure of a set is closed)

Thus { S,,} is a descending sequence of nonempty closed bounded subsets
of R.

Therefore Ny~ S, #= @ (Nested Set Theorem)
Let € Ny, S, . Foreach k € N, y is a point of closure of { y;| i = 8 }.
Therefore, for infinitely many i > n, y; belongs to (y —%,y + %).

Now we inductively choose a strictly increasing sequence of natural
numbers {nz} such that

|y - )’n,;| < % for all g.
The subsequence y,, 5 converges to y. (By Archimedean Property of R)
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2.6.2 CONVERGENCE TESTS

Cauchy sequence: A sequence of real numbers {y,,} is said to be Cauchy if for
each & > 0, there is an index N for which if n, m > N, then |y, — ym| <e.

Cauchy Convergence Criterion for Real Seqguences

Theorem 2.8. A sequence of real numbers converges iff it is Cauchy.

Proof. Let sequence {y, } converges to y.

Now consider € > 0. Because {y,} converges to y, we can choose a N € N
such that

Iyn—y|<§ forall n>=N ............... (1)

Now foralln,m € Nand n,m > N

v =Vl =10 =)+ =y ) <y, = Y] + 1y, = ¥l
Using (1), we get

|yn—ym|<§ +§<E Vam=N ... )
Therefore, {y,,} is a Cauchy sequence.
Converse

Consider {y,} be a Cauchy sequence. Now first we try to prove that it is
bounded.

For e = 1, we may choose N such that

|yn—ym| <1 forallnm=N ..o, 3)

Now forall n = N

Wl = (v, = ¥y) FVpl S v, = val + vyl <1+ 1y,

Let a = 1+ max{|a,|, |az], ... ... ... la,|}

Thus, |y,| < a for all n.

Hence, {y,} is bounded sequence.

Now Bolzano-Weierstrass Theorem state that every bounded sequence of
real numbers has a convergent subsequence

Therefore there exists a subsequence {y, } converges to y.

It implies that we can choose a natural number N such that

|ynk—y|<§ If N =N o 4)

As we know {y, } is Cauchy sequence. Let € > 0 and we can choose a
natural number N such that

Iyn—ym|<§ fFnm=N (5)

Therefore, foralln > N

v = Y1 = | = Ynie) + O = V) < |90 = el + [ =y <5+

S <e

2

Hence, {y,} is convergent sequence.
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Convergence test

Theorem 2.9. Consider a sequence {y,} and suppose {z,} is a
converegent sequence such that

lim,_ .z, =0and y € R such that |y, —y| <z, forallneN.,
Then {y,} covergesto y. i.e.lim,, .y, =y

Proof. Itis given that |y, — y| < z, for all n € N.

Therefore z,, > 0 for all n.

Let € > 0 and we choose N such that

Zp =z, — 0| <eforalln=N

Hence |y, —y| <z, <¢€ foralln>=N

Therefore {y,,} coverges to y.

Theorem 2.10.Let y > 0 and
Q) Ify <1, thenlim,_,y*=0
(i) If y > 1, then sequence {y™} is unbounded.

Proof. (i) It is given that y > 0 implies y™ > 0 for allnin N.

Let y < 1, Using induction we get y™**1 < y" for alln.

Which implies {y™}is decreasing function = {y™} is bounded below=
{y™} is convergent.

Let [ =lim,_,y™ Then 1-tail {y"*'} is also converges to L. i.e.
lim,, y"*t =1

Now yn+1 — yn.y

Taking limit of both sides we get

limy, e Y™ = limy, e Y.y = lim,e ¥
Therefore [ = yl
=21l-yl=0=21l(1-y)=0=>1l=00r1l—y=0
=1 =0 (becausey # 1)

Thus we proved that lim,,_,., y* = 0

(i) Let y > 1and a > 0 be an arbitrary.

n+l _ : n
=y limy ey

n
Now% < 1, then sequence {(i) } converges to 0.
1 n\\* 1
Therefore — = (—) < = for some large value of n
y y a

=>y™ > a, therefore a is not an upper bound for {y"}.
Therefore {y™} is unbounded (as a is arbitrary)
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Theorem 2.11. (Ratio test for sequences) Let {y,} be a sequence such
[Yn+1l

[Ynl
Q) Ify <1, thenlim,_ .y, =0
(i) If y > 1, then sequence {y,} is unbounded.
(iii)

Proof. Let y < 1. As% > 0 Vvn theny > 0.

n

thaty, # 0 vnand y = lim,,_,, —— exists. If

[Yn+1l

. [ynl

Now a —y > 0 and there exists an N € N such that for all n > N, we
have

[Ynal

vl Y

Hence 2tz _ y<a-— y:>|yn“|<a vn =N

[ynl |yl

Nowforn >N (n>=N+1)

lyn+1l 1yn+2] [YN4sl |yl
v = lynl. el Dmarl Tymaa] e

<lyyla.a.a......a =|yyla®™M = (lyyla=™)a™

{a™} converges to 0 (If 0 <y < 1,thenlim,_.,y" = 0)
= |ynyla™a™ converges to zero.
Therefore M-tail of {y, } converges to 0 = {y;,,} converges to 0.
Now let y > 1 and we choose « such that1 < a <L. As y—a > 0, there

Assume a suchthat y < a < 1 and itis given that y = lim,,_,

<a-y.

exists an N € N such that |3|/;_+1I | <y—a foralln = N.
Tl
Hence —(y — a) < 'yl’”l' y<y—a =—(y—a)< 'y""ll'
1'1 Yn
= n+1l |3"n+1| S a
[nl
Again for n > N, we can write
vl = lynl lyn+1l 1Ynezl [ynasl |l yn
" N lynl  lynsal [yl |yn-1l
<lyyla.a.a......a =|yyla®™" = (lyyla M)a™

= {a"}isunbounded (As a > 1)
Let {y,}is bounded = L > 0 such that |y,| <L for all n then
(Iymla™)a™ < L

S>am <

™ |La—M’ a contradiction  (As a™ is unbounded)
Ym

= {y,} is unbounded.
Therefore {y,,} cannot be converges.

Ex. 2.5. Prove that llm,,Hoo =0

2"/ (n+1)! 2"+1 nl 2
Proof. . Now T = Dl mil
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And we already know that {ﬁ} converges to 0.
Therefore lim,,_, zZ

n

Limit superior and limit inferior

Limit superior: Let {y,} be a sequence of real numbers. The limit
superior of {y, }, denoted by lim sup{y, } and defined by

lim sup{y,} = lim,, o, [sup{ yx | k = n}]

Limit inferior: Let {y,,} be a sequence of real numbers. The limit inferior
of {y,}, denoted by lim sup{y_n } and defined by
liminf {y,} = lim,,_,,[inf { y; | k = n}]

Ex.2.6. Find Limit superior, limit inferior of sequence {y,, = 1/n|n €
N}.

Sol. Giveny, = 1/n foralln € N

If n=1, then we get highest value i.e. supy, =1 therefore
limsup{y,} =1

Now if n gets largear then % gets smaller or we can say when we increased

the value of n y-n approaching to 0. Hence lim inf {y, } = 0.

Ex.2.7. Find Limit superior, limit inferior of sequence
{yn=n[neN}

Sol. Giveny,, =n foralln € N

LetY,, = inf {y,,, Vny1, -+ - ..} = naNd

Y_Tl = lnf {yn; yn+1 ) sen nen was } = 00
Therefore
liminf {y,} = oo and lim sup {y,,} = o

CHECK YOUR PROGRESS

(CQ 13) Limit superior {y,, = 2n |n € N}is 2. (T/F)
(CQ14) Lety >0and If y <1, thenlim,_ ., y"™ = 0. (T/F)
(CQ15) limy oo + sin-=
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2.7 SERIES

The sum of the terms of a sequence is said to be a series. Thus if
Y1, Y2, V3, ---IS @ sequence then the sum y; + y, + y3 + --- of all the terms
is called an infinite series and is expressed by .2, ¥, Or X y,.

Evidently we cannot just add up all the infinite number of terms of the
series in ordinary way and in fact it is not obvious that this kind of sum
has any meaning. Therefore we start by associating with the given series, a
sequence {S,}, where S,, denotes the sum of the first n terms of the series.
Hence S, =y, +y, + .+, vn

and this sequence {S,} is said to be the sequence of partial sums of the
series.

The partial sums

S1=Y1, S2=y1+Yy2 S3=y1+y,+y3+--.. andsoon.

The series is convergent if the sequence {S,} of partial sums converges
and lim S, is called the sum of the series.

If {S,,} does not tend to a limit then the sum of the infinite series does not
exist or we can say that the series does not converges.

An infinite series is converge, diverge or oscillate according as its
sequence of partial sums {S,,} converges, diverges and oscillates.

Necessary condition of convergences of an infinite series

Theorem A Necessary condition of convergences of an infinite series
Y ypislim, .y, =0.

Proof. Let S,, =y, + y, + -+ ... ... +y,,, S0 that {S,} is the sequence of
partial sums.

It is given that series is converges

Thus, the sequence {S,,} is also converges.

Letlim, ., S, =t.Nowy, =S, —S,_.1, n>1

Therefore, lim y,, = lim (S, — $;-1) = limS,, — limS,,_, =t -t =0

Thus lim,,_,e y,, = 0.

NOTE:
A series cannot converges if nt" term does not tends to zero.
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Cauchy’s General Principle of Convergence for Series

Theorem 2.12. A necessary and sufficient condition for the
convergence of an infinite series ), y,, is that the sequence of its partial
sums {S,} is convergent

Or
An infinite series ), y, converges iff for every £ > 0 there exists a
positive integer M such that |y, + y, + Y3 + - ... + y,| < € whenever
m=>n=>M
Proof. Let S, =YW =y1+y,+ys+-..+y, and S, =Xy, =
yi+ Y, + Y3+t y, be the nt* and m™ partial sum of series
respectively, where m > n.
S =Sul =11+ y2+yzs+ -+ yn) — 1 +y2 +ys + -+ yi)l
= |Ym+1 T Ymz + -+ 2l -
Let e > 0 and for every ¢ the series Y. y,, converges iff the sequence of
partial sums {S_n} converges
S|IS, =Syl <e VYm=nforsomeMEN
S|Ymi1+ Ymaz + -+l <e Vm=nforsomeM € N.

Ex. 2.8. Prove that Z% does not converge.

Proof. Let the given series be converges.

Therefore, for any given € > 0, there exists a positive integer m such that
1 1

—_ . +—<e Vn=>mandp = 1.
n+1 n+2

Ifn=mandp—m,weget

SR SR SR ST S

n+1 ' n+2 n+p_m+1 m+2 mtm
=-———-+————'+ +'——

m+1 m+2
>m.—>—>£
2m 2

- 1 1 1 ..
i.e.—+—+ -+ — > g, a contradiction.
n+1 n+2 n+p

Therefore 2% does not converge

NOTE:

We can see that lim,,_, (i) = 0 but Z% does not converge.
If Yy, =y then ) cy, = cy independent of n.

Ex. 2.9. If yn > 0 and ), y,, is convergent with the sum S, then prove

2 . ..
that ———< ﬁ when n is sufficiently large. Also prove that
3’1+3’2+ “+¥n
Yn
2y—1+y2+ ——is convergent.
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Proof. It is given that }; y,, is convergent with the sum S.
Hence for e >0 Im e Z*

IS, — S| <eVn=m whereS,, =y, +y, + -+,
ore<§,—S<e=aS5—-e¢<5,<S+&vVn=m

Fore=§s>o

S—285<8<S+:8522<5, <22 2>=>= vnxm

n

2
or —>—Vn>m:> In y—",Van.
s 7 s, s Sn

Now,Vn=>m,p=>1
Yn+1 Yn+2 +3’n+3 +W+J’n+p

Sn+1 Sn+2 Sn+3 Sn+p

2
< E(yn+1 + Yni2 tYna3z +o0 yn+p )

y
= Yntl g Intz | Ynis o, 4 SEEP o2 (Sn -S),vn=mp=1.
Sn+1 Sn+z Sn+s Sn+p

As Y.y, is convergent, then given & > 0, there exists a positive integer
my, such that
Sn+p — Sn < Vn>m1

Therefore,
2
Yn+1 Yn+2 +Yn+3 +. +Yn+p <=

€S< g,V n = max(m;,m),p=>1

Sn+1 Sn+z Sn+s Sn+p

Therefore by Cauchy’s General Principle of convergence, ), — I ___js
Yityz++yn

convergent.

Positive term Series

Let )y, be an infinite series of positive term series of positive terms
(yn = 0)and {S,} be the sequence of its partial sums such that
Sh=y1+y, +-+y, =0, vn

=585, = Sh1=Y=20=285,=2S5,_4, Vn>1

Therefore the sequence {S,,} of partial sums of a series of positive terms is
a monotonic increasing sequence.

Hence {S,,} can either converge or diverge to +oco.

Theorem 2.13. A positive term series converges if and only if the
sequence of its partial sums is bounded above.

Proof. Let )y, and {S,} be positive term series and a sequence of its
partial sums respectively.
= {S,} be a monotonic increasing sequence.
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As we know that monotonic increasing sequence converges iff it is
bounded above.
Hence {S,} converges if and only if the sequence of its partial sums is
bounded above.

Necessary Conditions for convergence of positive term series

Theorem 2.14. (Pringsheim’s theorem) If a series )y, of positive
monotonic  decreasing terms converges then 1y, -0 and also
lim,_,, ny, = 0.

Proof. Let )y, be the convergent series of positive monotonic
decreasing terms.
By the definition of convergent series, for any & > 0, there exists a
positive integer M such that
&

[Vme1 + Ymez + 0+ Ymap| <5, Ym2Mp=1
Letm+p=n>2M
and m = E] i.e.m = greatest integer not greater than ;n
Hence

&
Ym+1 tYmez Tt yn < 2
But Y. y,, is positive monotonic decreasing.
i.e.
Ym+1 > Ymt2 2" 2 Vn = Ymi1 Tt Vmaz + -t Yn >
YntVnt it

(n—-m)times
= Vm+1 T Ymez Tt Y > (n - m)yn
Therefore (n — m)yn < Yms1 + Ymsz + -+ Yn <>

n & n
(n—z) Yn <3 becausem = [E]
:>§<§:» ny, < ¢

Hence lim,,,, ny,, = 0

NOTE:
lim,,,ny, =0 is only necessary not sufficient condition.If
lim,,_,, ny, # 0 then the series Y. y,, is obviously divergent..

Example Z% diverges because lim,_ ., ny, =1+ 0 and positive
monotonic decreasing terms.
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Theorem 2.15. Let ), % be positive term series then it is convergent iff
p>1
Proof. Let S, = — + — :
root. Let 5, —1—p+2—p+"'+n—p
Case 1. Whenp > 1

Now

1

= (1)
ol e L )

2p 3P 2p 2P 2p 2p-1

1 1 1 1 1 1 1 1 4 1 1 \2
vtetetr<stetete<m=pa=(m) 0
11 1 11 1 8 1 1\3
Lyly p Lol yl o8 1. (Zp_l) (@)

8 times

1 1 1 1 1 1

e towr T ey <@ Taw T o
2™ times
1 \P~1

- (21’—1) -(n)
Adding (1), (2),.....,(n), we get

1 1 1 (LY ! 1\
ﬁ+ﬁ+.'.+—(2n+1—1)p =Sty < +(§) +"'+<2p—1>

CHECK YOUR PROGRESS
(CQ1e6) Zzip is convergent iff p < 1. (T/F)
(CQ17) X, 2?7 is convergent iff p < 1. (T/F)
(CQ 18) A positive term series converges if and only if the sequence of its

partial sums is bounded above. (T/F)

K +2k .
(CQ19) x, = ’,;‘:1% , then series

2.8 SUMMARY

In this Unit we discussed about sequence and series and proved some
important test for convergence with illustrative examples.

2.9 GLOSSARY

1. Set- a well defined collection of elements
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2. Sequence-a function whose domain is set of natural number and range
is set of real number
3. Series-sum of the term of sequences
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2.12 TERMINAL QUESTION

Long Answer Questions

(TQ 1) State and Prove Bolzanno-Weierstrass theorem.

(TQ 2) Prove that a Cauchy sequence of real numbers is bounded.

(TQ 3) Prove that a monotonic sequence of real numbers is properly
divergent iff it is bounded

(TQ 4) Prove that the series Y. y,, converges then lim (y,,) = 0

(TQ5) Prove that Z% is diverges.
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Fill in the blanks

(TQ 6) If YXx,and Xy, is convergent then X(x,+y,) Is

(TQ7) L—is_ .
(TQ 8) A sequence {yn = %} is
(TQ9) Asequence {y, = (—1)"}is

2.13 ANSWERS

(CQLHF CQYT (CQ3)F

(CQ4H0 (CQ5)0 (CQe)T

(CQ7NF (CQ8)F (CQ 9) Convergent
(CQ10) F (CQINT (CQ12)0
(CQW)F CQIHT (CQ15)0

(CQ16) F CQINT (CQ18) T

(CQ 19) convergent
(TQ 6) convergent (TQ 7) divergent (TQ8) Cauchy sequence
(TQ 9) not a Cauchy sequence
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UNIT 3: LIMIT AND CONTINUITY
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3.1 INTRODUCTION

In previous unit we discussed about sequence and series. In this unit we
will discussed about limit and continuity.

The rudimentary notion of a limiting process emerged in the 1680s as
Isaac Newton(1642-1727) and Gottfried Leibniz (1646-1716) struggled
with the creation of the calculus. Though each person’s work was initially
unknown to the other and their creative insights were quite different, both
realized the need to formulate a notion of function and the idea of
quantities being ‘‘close to’’ one another. Newton used the word ‘‘fluent”’
to denote a relationship between variables, and in his major work Principia
in 1687 he discussed limits ‘‘to which they approach nearer than by any
given difference, but never go beyond, nor in effect attain to, till the
quantities are diminished in infinitum.”” Leibniz introduced the term
“function’’ to indicate a quantity that depended on a variable, and he
invented ‘‘infinitesimally small’” numbers as a way of handling the
concept of a limit. The term ‘‘function” soon became standard
terminology, and Leibniz also introduced the term “‘calculus’’ for this new
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method of calculation. In 1748, Leonhard Euler (1707-1783) published
his two-volume treatise Introduction in Analys in Infinitorum, in which he
discussed power series, the exponential and logarithmic functions, the
trigonometric functions, and many related topics. This was followed by
Institutiones Calculi Differentialis in 1755 and the three-volume
Institutiones Calculi Integralis in 1768-1770. These works remained the
standard textbooks on calculus for many years. But the concept of limit
was very intuitive and its looseness led to a number of problems. Verbal
descriptions of the limit concept were proposed by other mathematicians
of the era, but none was adequate to provide the basis forrigorous proofs.
In 1821, Augustin-Louis Cauchy (1789-1857) published his lectures on
analysis in his Cours d’Analyse, which set the standard for mathematical
exposition for many years. He was concerned with rigor and in many ways
raised the level of precision in mathematical discourse. He formulated
definitions and presented arguments with greater care than his
predecessors, but the concept of limit still remained elusive. In an early
chapter he gave the following definition: If the successive values
attributed to the same variable approach indefinitely a fixed value, such
that they finally differ from it by as little as one wishes, this latter is called
the limit of all the others. The final steps in formulating a precise
definition of limit were taken by Karl Weierstrass (1815-1897). He
insisted on precise language and rigorous proofs, and his definition of
limit is the one we use today.

We now begin the study of the most important class of functions that
arises in real analysis: the class of continuous functions. The term
“‘continuous’’ has been used since the time of Newton to refer to the
motion of bodies or to describe an unbroken curve, but it was not made
precise until the nineteenth century. Work of Bernhard Bolzano in 1817
and Augustin-Louis Cauchy in 1821 identified continuity as a very
significant property of functions and proposed definitions, but since the
concept is tied to that of limit, it was the careful work of Karl Weierstrass
in the 1870s that brought proper understanding to the idea of continuity.
We will first define the notions of continuity at a point and continuity on a
set, and then show that various combinations of continuous functions give
rise to continuous functions.
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3.2 OBJECTIVES

After reading this unit learners will be able to
1. recognized the basic concept of limit
2. construct the basic concept of continuity
3. learned some important theorems.

3.3 FUNCTIONS

First we will try to recall some basic definition which will be used in this
unit and which also discussed in graduate level.

Cartesian Product: Let A and B are two nonempty sets, then the
Cartesian product A X B of Aand B is defined as the set of all ordered
pairs (a,b) witha € Aand b € B. i.e.

AXB ={(a,b):a € Aand b € B.

Function: Consider A and B be sets. Then a function from A to B is a set
f of ordered pairs in A X B such that for each a € A there exists a unique
b € B with (a,b) € f.

The notation f : A — B is often used to indicate that f is a function from
A into B.

Domain of a function: The first elements of set A of a function f is called
the domain of f and it is denoted by D( f).

Range of a function: The set of all second elements in f is called the
range of f and denoted by R( f).

NOTE:
In geometrical terms we can say every vertical line x =a with a € A
intersects the graph of f exactly once.
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R(f

v

A=D(f)
Fig 3.1.Function

Inverse function: If f: A — B is a bijection of A onto B, then f' =
{(b,a) € B x A:(a,b) € f}is afunction on B into A. Then function f'is
known as the inverse function of f, and is denoted by f~. The function
f~Yis also called the inverse of f.

Composite function: If f: A > B and g: B— C, and if R(f) S
d(g) = b, then the composite function gof (x) is the function from A into
C defined by gof(x) = g(f(x)) vx € A.

CHECK YOUR PROGRESS
(CQ 1) Arelation f: R* — R such that f(x) = +/x is a function. (T/F)
(CQ 2) The first elements of set A of a function f is called the range of f.
(T/F)
(CQ 3) Every Cartesian Product is a function (T/F).
(CQ 4) Range of function f: R* — R such that f(x) = x? is

3.4 LIMIT

Now we will introduce the important notion of the limit of a function. The
intuitive idea of the function f having a limit L at the point c is that the
values f (x) are close to L when x is close to (but different from) c. But it
is necessary to have a technical way of working with the idea of ‘‘close
to”’ and this is accomplished in the § — & definition given below.

In order for the idea of the limit of a function f at a point ¢ to be
meaningful, it is necessary that f be defined at points near c. It need not be
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defined at the point c, but it should be defined at enough points close to ¢
to make the study interesting. This is the reason for the following
definition.

Cluster point: Consider a set A € R then a point ¢ € R is a cluster point
of A if for every d > 0 there exists at least one point x € A; x = ¢ such
that |x — c| < 4.

Theorem 3.1. A point ¢ € R is a cluster point of a subset A of R if and
only if there exists a sequence {a,} in A such that lim,a, =c
anda,, # c foralln € N.

Proof. Let ¢ is a cluster point of A, then for any m € N then
neighbourhood V; ,,, (¢) contains atleast one point a,, in A distinct from c.
Converse

Let {a,} be a sequence in A\{c} with lim(a,) = c, then for any § > 0
there exists M such that if n > M, then a,, € Vs(c).

Hence the 6§ —neighborhood Vs (c) of ¢ contains the points a,,, forn > M,
which belongs to 4 and are distinct from c.

Limit
Let A € R, and let c be a cluster point of A. For a functionf : A - R, a
real number [ is said to be a limit of f at c if, given any € > 0, there
existsad > 0 such that

ifx € Aand0 < |x—c| < d,then|f(x) — 1| <e.

{L

vg(z)L'—. __________________

v

]
¢
Fig 3.2. The limitof fatcis 1

Theorem 3.2. If f: A — R and if c is a cluster point of A4, then f can
have only one limit at c.
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Proof. Let [ and I’ be the limits of function f.

For any & > 0, there exists §; G) >0 such that if x€ A and 0 <
lx —cl < & (%), then

|f(x) = 1] <. and

there exists &, G) > 0suchthatifx € Aand 0 < |x —c| < &, G) then
F) -1l <=

Let § = inf{8, (5), 5, (5)}. Thenifx € Aand 0 < |x —c| < 6.

The Triangle Inequality implies that
L=Ul=l+(=f)+f)=U]|<Il-fGI+If(x) =1l
<“+-<e

Because € > 0 is arbitrary, Therefore [ —1I' =0=>1=[".

Ex.3.1. Prove that lim,_,c =c

Proof. Let f(x) =c forallx eR.

Now we will try to prove that lim,_,, f(x) = c.
Lete >0and § = 1.

Thenif 0 < |x — a| < 1, we have
lf(x)—cl=|c—c|=0<e.

As e > 0 is arbitrary, by definition of limit we get

lim,_, f(x)=c.
Ex.3.2. Prove that lim,_, x*> = b?

Proof. Let f(x) = x? forallx € R.

Now we will try to prove that lim,_,, f (x) = b2

Now we try to prove that |f(x) — b?| = |x? — b?| less than a preassigned
€ > 0 by taking x sufficiently close to b.

Now

x?—b% = (x—b)(x + b).

If | x — b| <1, then

|x| < |b| +1

Hence |x + b| < |x|+ |b| < |b| + 1+ |b| < 2|b| + 1

Thus, if |x —b| < 1 then
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|x2 — b?| < |x — b||x + b| < (2|b] + 1)|x —
Let |x — b| < —
2|c|+1

Thenif 0 < |x — b| < §(¢),
Now if |x — b| < 1, then equation (1) is valid.

&

and we choose §(¢) = inf {1 £ }

7 2)c|+1

If |x—b|< 21 then |x? — b?| < (2|b| + 1)|x — b| < (2]b] +
&
1)'2|c|+1

As we have choice to choose &(e) > 0 for an arbitrary choice of € > 0.
We deduce that lim,._,, x? = b?

Ex.3.3. Prove that lim,_, =3 if b> 0

Proof. Let f(x) = i forall x >0 and assume b > 0

1

;.

Therefore we will try to prove that the difference |f(x) - %| = E - %| less

Now we will try to prove that lim,,_,, f(x) =

than a preassigned € > 0 by taking x sufficiently close to b > 0.
Now

1 1 1 1
|;—;|— |a(b—x)| —alx—bl for x > 0.
Now if |x —b| <sbthen —-bh <x—b<-b=-b<x<b=-b?<
2 1
bx > — > —.
b2 bx
Therefore
2

0<—<—= for|x—b| <=b
bx b 2

Hence, for these values of x we have
1 2
) = 3| < S0 =Bl oo (1)
In order to make this last term less than ¢ it suffices to take |x — b| <
%bzs. Consequently, if we choose §(&) = inf{% b,%bzs},
Thenif 0 < |x — b| < §(¢),
Now if |x — b| < %b, then equation (1) is valid.
Therefore, since |x — b| < %bze, that
1 1 1
oo -] =f-3l<e
Since we have a way of choosing §(¢) > 0 for an arbitrary choice of
& > 0, we conclude that
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lim,_, === if b>0.

Theorem 3.3. (Sequential Criterion): Let f: X - R and let ¢ be a
cluster point of X. Then the following are equivalent.

(l) limx—>b f =1

(i) For every sequence {y,} in X that converges to b such that {y,,} for
all n € N, the sequence { f(y,)} converges to L.

Proof. Letlim,_, f =1

Let {y,} be a sequence in Xsuch that lim, y, =b andy, #
b  foralln.

Now we will try to prove that the sequence { f(y,,)} converges to I.
Consider € > 0 be given. Then by the definition of limit of function, there
exists 6 > O suchthatify € Xand 0 < |y — ¢| < & then

lfy) -1l <e.

By the definition of convergent sequence, for the given § there exists a
natural number K (&) such that if n > K(6) then |y, — b| < &.

But for each such y, we have |f(y,) — | < &

Therefore, we get

lfOm) —1ll <e ifn >K(6).

Hence the sequence { f (y,)} converges to [.

It implies (i)=(ii)

Let be the sequence { f(y,,)} not converges to L., then there exists an
¢’ —neighborhood Vs such that there exists atleast one number ys in
X N Vg(b) with ys # b such that f(ys) # V. (L).

Therefore for every n € N, the (%) —neigbourhood of b contains number
v, such that

0<ly.—bl<~ andy,€X

such that |f(y,) — 1| <& forall n €N.

Therefore, we conclude that the sequence {y,} in X — {b} converges to b
but the sequence { f (y,,)} not converges to [.

Therefore we have shown that if (i) is not true, then (ii) is not true. We
conclude that (ii) implies (i).
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e !

Fig3.3. f(x) = sin-

Ex.3.4. Prove that lim,_ sini does not exist in R.

Sol. Let f(x) = sini forallx +#0
Now we try to prove that f does not have a limit at 0.

1 1
Let {a,} and {b,} be two sequences such that a, = Py and y, = 2T
foralle N .
Now

lim, a, = limnﬁ =0 andand lim, b, = limnﬁlﬂ =0 but
2

lim,,f (@) =lim, f (=) = sin(2n) = 0

lim,f(b,) =lim, f (%) = sin (27m + g) = cos(2nn) =1 are

21m+5
different.

. .1 .
Therefore, lim,._,, sin - does not exist in R.

Ex.3.5. Let the signum function sgn be defined by
1, forx>0
sgn(x) =50, forx=20
-1, forx<0
Prove that sgn(x) does not have limit at 0.
Proof. Let {a,} be a sequence such that a,, = % forn € N.

Now lim,, a,, = (_Tll) = 0.

However since sgn(a,) = (—1)" forn € N
And we know that {(—1)"} is divergent.
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Therefore {sgn(a,)} does not converge.
Therefore lim,, sgn(x) does not exist.

Fig 3.3. f(x) = sgn(x)

CHECK YOUR PROGRESS
(CQ 5) Signum function does not have limit at 0.(T/F)
(CQ 6) lim,_ologx =1 (T/F)
(CQ7) lim[x] =

3.5 IMPORTANT LIMIT THEOREMS AND
EXTENSION OF LIMIT CONCEPTS

Bounded function: Let X € R and f: X - R, and consider b € R be the
cluster point of X. Then f is said to be bounded on a neighborhood of b if
there exists a §-neighborhood Vs(b) of and a constant K > 0 such that
lf(x)] <M forall x € X nVs(b).

Theorem 3.4. If X € Rand f: X — R has a limit pointat b € R, then f
is bounded on some neighborhood of b.

Proof. Let [ be the limit point of f at b.

Then for € = 1, there exists § > 0 such that

If(x) =l <1if 0<|x—b|<$§

Now |f(x) — Il = [f ()| — ] .

e [f -l <lfGx) -1l <1.

Hence, if x € X N Vs(b) and x # b, then

lfCOl =l < Tor|fC)l <1+l

Ifb & X,wetake K =1+ |!l| and

Department of Mathematics
Uttarakhand Open University 49




Advanced Real Analysis MAT502

If b € X, we take K = sup{|f(b)|, 1+ ||}

Hence if € X N V5(b), then |f(x)| < K.

Therefore f is bounded on neighborhood Vg(b) of b.

LetX € Rand f,g: X —» Rthen

(i) sum f4+g:X - R is given by (f + g)(x) = f(x) + g(x), for all
x€eX

(ii) difference f — g: X —» R is given by (f — g)(x) = f(x) — g(x), for
all x e X

(iii) Product fg: X — Riis given by (fg)(x) = f(x)g(x), forall x € X

(iv) h(x) # 0 for x € X, the quotient L be the function given by L (x) =
h h

0]
e forall x € X.

Theorem 3.4. Let XS R and f,g: X = R and let b € R be a cluster
pointof Xand e R.

(@) Iflim,_, f =l and lim,_, g = 1,, then

() lim_p,f+g=1+1 (i) lim_,f—g=1-1

(iii) lim,, fg = L1,

(b) If h: X - R and h(x) # 0 for all x € X, if lim,_, h = I3 # 0, then
. f_lu

llm,c_ﬂ,;l =1

Proof. (a) It is given that lim,._,, f = [, and lim,_,;, g = [,, Hence for any
€ > 0 there exists a positive numbers §; and &, such that

If (x) — L] <§ when 0<|x—b|<é8 and |g(x)—1,] <§ when
0<|x—b|<9,

Let 5 = min(51, 62), then

|f(x)—zl|<§wheno<|x—b|<5 .............................. (1) and

19() = Ll <-wWhen 0 < |x =bl < 8., )

Now,when 0 < |x —b| < &

IF+ ) — UL+ =1f0) -1 +9gx) — Ll
< |fG) =4l +1g(x) — L
<-+-=c¢

Therefore

I(Ff+9)x)— (L + L) <ewhen0<|x—b| <6

Thus, lim,_, f+g =L+,

(i) When0 < |x —b| < &

If =@ - UL —L) =1f()—L+g(x) -1l
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<|fG) — Ll + 1l — g
=If) — Ll +lg@) —LI<i+i=¢
(From (1) and (2))
I(f —g)(x)— (L =) <ewhen0 < |x—b| <6
Thus, limy_, f—g =1 —1,
(i) |(F9) () — (L) = 1f () g(x) — L]
=f(x)gx) — fOlL + fF(), — L]
=1f)g(x) — L) + L(F&x) = 1)|
< fOIIgG) = LI +1LIIFG) = L] ....3)
As we know that lim,_, f =1; . Hence for any ¢ =1 there exists a
positive number &', such that
|f(x) — 1] < 1whenO0 < |x —b| <&';.
Now
lF OO =1fC) =l + L] < [f(x0) = Ll + 4]
<14+, whenO0<|x—b| <& .cceviiiiiiiiiin... 4)
lim,_,;, g = [, , there exists a positive number &', such that

&

lg(x) — L] < —Z—When 0 < |x —b| < 8ge veveveeeeeaeaaeaaeii, (5)

1+ |
Again lim,_,, f = l;, there exists a positive number 6’5 such that

If(x)—11|<ﬁwhen0<|x—b|<6’3 .................. (6)
2

Let 6’ = min{d;,d;,85}. Then from (3), (4), (5) and (6), when 0 <
|x —b] <&

&

(F () — (L) < L+ L) —2— + || &< e.

1+|14] 221
Hence lim,_,;, fg = L 1,.

(b) lim,_,, h = I3 # 0 therefore for € = '21' > ( there exists 63 > 0 such

that

|h(x) — 3] <
Now

ll3] = [l3 = h(x) + h(X)| < |l — h(X)| + |R(0)| = [h(x) = I3] + [A(X)]
or

Is] sl _ sl
or |1s] <+ R = 1RG0 > 15| =2 = Boor =<2

It implies that there exists a deleted neighbourhood of b on which h(x)
does not vanish.
Now, when 0 < |x — b| < 83

g

— when 0 < |x — b| < &5

1 2
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N VACORCY

|()() [ B T N

L3(f (x)=11)+11 (I3—h(x)) |

— |f(x)l3—lll3+1113—h(x)l1 —
h(x)l3

h(x)l3
1 _ 1] _
Slh(x)llf(x) Ll + s Th() = |
< FG) = bl + R RGO = s = 1@ — Ll +
% 1763 RN N . @)

Let € > 0 be given.
It is given that lim,_, f =, and lim,_, h =[5, hence there exists
positive numbers &; and &, such that

F() = L] < Sells], when 0 < |x = bl < &) ..oooooooiiiiinl (8)
|h() — L] < Le 'll;'lz, When 0 < [X — Bl < Speeeeeeeoe . )
1

Let " = min {83, 5, 6;} Then from (7), (8) and (9), we get

2 2l 1 s e e _

G )(x) < g llal s g8 =55 = e when
0<|x— b| < 6"
Therefore |(£) (x) —l—l b| < &"
Hence lim,._,, f-h

Rl
Ex.3.6. Find lim,_, -2
Proof. It is given that limx_,O yatx—z
li Va+x—-2 Va+x—2 Va+x+2 li 4+x-4
HMx—0 = Moo ez . M0 g T

l

. X 1
llmx_>0 m = 7
One-Sided Limits: In certain situations when a function f might not have
a limit at a point c, still a limit does exist when the function is limited to an
interval on one side of the cluster point b.

For example, the signum function has no limit at b = 0. However, if we
restrict the signum function to the interval (0, o), the function has a limit
of 1 at b = 0. Likewise, if we establish the signum function to the interval
(—0,0),, the function has a limit of —1at b = 0. These are simple
illustrations of the right- and left-hand limits at b = 0.

Right hand limit: Let X € R and f:X - R andif b € R is a cluster
point of the set X N (b,o) ={x € X:x > b} then [ € R is said to be
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right-hand limit of f at b if given any € > 0 there exists a § > 0 such
that forall x € Xwith0 < x —b < §,then |f(x) -] < e.
It can be written as lim,_,,+ f = L.

Left hand Limit: LetX CRand f: X - R andif b € R is a cluster point
of the set X N (oo,—b) = {x € X:x < b} then L € R is said to be right-
hand limit of f at b if given any € > 0 there exists a § > 0 such that for
allx € Xwith0 < b—x < §,then |f(x) — 1] <e.

It can be written as lim,_,,- f = L.

Infinite Limits: (i) Let X € Rand f:X - R and if b € R is a cluster
point of the set X then f tends to oo asx — b, If for every u € R there
exists § > 0 such that for all x € X with 0 < |x — b| < 6, then f(x) >
U

It can be written as lim,._,;, f = co.

(i) Let X < Rand f: X - R and if b € R is a cluster point of the set X
then f tends to—oo asx — b, If for every 9 € R there exists § > 0 such
that for all x € X with 0 < |x — b| < §, then f(x) <9

It can be written as lim,._,;, f = —oo.

. 1
For example lim,_,q - = 0.

Fig3.4. f(x) =

CHECK YOUR PROGRESS

(CQ 8 If XS R and f:X - R has a limit point at b € R, then f is
bounded on some neighborhood of b. (T/F)

(CQ 9) When left hand limit=right hand limit then limit does not exist.
(T/F)

(CQ10) f(x) = [x], then limitat x = 1
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3.6 CONTINUOUS FUNCTION

One of the fundamental ideas in mathematical analysis is the idea of
continuity. We shall define what it means to say that a function is
continuous at a point or on a set.

Continuous at a point: Let C R, f: X > R and c € R .f issaid to be
continuous at point c if given any number € > 0, there exists § > 0 such
that if x is any point of X satisfies

|x —b| < §then |[f(x) — f(b)| < e.

Discontinuous at a point: If f fails to be continuous at b, then we say that
f is discontinuous at b.

ﬂk

wodproy .
SERENATE >
0 IICI
S S
Vsb)

Fig 3.5. f(x) continuous at b

Sequential Criterion for Continuity: Let € R, f:X >R and b€ R . f
is said to be continuous at point b if and only if for every sequence {x,} in
X that converges to b the sequence {f (x,,)} converges to f (b).
Discontinuity Criterion: Let € R, f: X > R and b € R. f issaid to be
discontinuous at point b if there exists atleast a sequence {x,} in X that
converges to b but the sequence {f (x,,)} does not converges to f (b).
ContinuousonsetY: Let XC R, f:X >R and Y € X .Then f is said
to be continuous on the set Y if f is continuous at every point of Y.
Example:

2 ) f(x) = x is continuous on R.

3 fx) = i is continuouson X = {x € R:x >0
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Ex. 3.7. Dirichlet Function (This function was introduced in 1829 by
P. G. L. Dirichlet)
Let f(x) defined by

1 if xisrational
f(x) = {0 if xisirrational
Then prove that f is discontinuous at any point of R.
Proof. Let a be a rational number and {x,,} be a sequence of irrational
numbers such that given sequence converges to a.
Now f(x,) = 0 for all n € N. Therefore lim,, f(x,) = 0 but f(a) = 1.
Hence f is not continuous at the rational number a.
Let b be a irrational number and {y,} be a sequence of rational numbers
such that given sequence converges to b.
Now f(x,) = 0 for all n € N. Therefore lim,, f(y,,) = 1 but f(c) = 0.
Hence f is not continuous at the irrational number b.
Because every real number is either rational or irrational, we conclude that
f is not
continuous at any point in R.

rofes

11
43

Fig 3.6.Diritclet function
(Source: https://math.fel.cvut.cz/mt/txtb/4/txe3bads.htm)

CHECK YOUR PROGRESS
sinl/x, x =0
1, x+0

1, x = rational number
0, x = irrational number

is a continuous function. (T/F)

Q1Y) f() = |

(©Q 12 f()={
function. (T/F)

iSs not continuous
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3.7 SOME IMPORTANT THEOREMS

Theorem 35. Let € R, f,g:X—> R Let be X and fandg are
continuous at b. Then f + g, f — g and f g are continuous at b.

Proof. If b € X is not a cluster point of X, then the conclusion is
inevitable.

Therefore, let b is a cluster point of X.

It is given that f and g are continuous at b.

Therefore lim,_,;, f(x) = f(b) and lim,_,;, g(x) = g(b)

From Theorem (f + g)(b) = f(b) + g(b) = lim,_,(f + g).

Therefore f + g is continuous at b.

Similarly f — g and fg is continuous at b.

Theorem 35 Let € R, fi:X—> R, h(x) #0 forall x € Xand
be X. Let be X and fandh are continuous at b. Then %is
continuous at b.

Proof. It is given that b € X which impliesh(b) # 0.
h is continuous at b. Therefore lim,._,, h(x) = h(b)

f _ Lb) _limyp fO0) . f
Hence - (b) = ) = Ty hGo = Maob
f

Hence - is continuous at c.

Theorem 3.6. Let € R, f,g,h:X >R, h(x) # 0 for all x € X and
beR.

(i) If fandg are continuous at bthen f+g,f — gand fg are
continuous on X

(i) If f and h are continuous at b. Then {—l is continuous on X.
Example: sine and cosine function is continuous on R.

Composition of Continuous Functions

Theorem 3.7. Let X,Y S Rand f:X - Rand h:Y - R be functions
such that f(X) €Y. If f is continuous at a point b€ X and g is
continuous at a = f(b) € Y then the composition gof: X >R is
continuous at b.
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Proof. Let W be an € —neighborhood of g(a). Because g is continuous at
a, there exists a § —neighborhood V of a = f(b) such thatify € Y n V
then g(y) e W.

As f is continuous at b, there exists a a-neighborhood U of b such that if
x €XNU,thenf(x)€eV.

X Y
Fig. 3.7. Composition of function f and g

Now

fX)cY=ifxeXnU,thenf(x) € Y n V sothat
gof (x) = g(f(x)) e W.

Since W is an arbitrary e-neighborhood of g(a).
Therefore gof is continuous at b.

If £ and g are continuous at every point of X and Y respectively then using
above theorem we get following results.

Theorem 3.8. Let X,Y € R and f: X - Rand h:Y — R be functions
such that f(X) c Y. If f is continuous on X and g is continuous on Y
then the composition g o f : X — R is continuous on X.

CHECK YOUR PROGRESS
(CQ 13) If fand g are continuous at bthen f+g,f — gand f g are
continuous on X. (T/F)
(CQ 14) sin x + cos x is continuous over R. (T/F)
(CQ 15) If f is continuous at a point b € X and g is continuous at
a = f(b) €Y then the compositiongo f : X - Ris at b.
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3.8 CONTINUOUS FUNCTIONS ON INTERVALS

Function bounded on Set: A function f: X — R is said to be bounded on
X if there exists a constant K > 0O suchthat |f(x)| < K forallx € X.
In other words, a function is bounded on a set if its range is a bounded set
in R.

Function unbounded on Set: A function f:X - R is said to be
unbounded on X if given any K > 0, there exists a point @ € X such that

If (@] > K

Boundedness Theorem

Theorem 3.9. Let I =[a,b] be a closed bounded interval and let
f: I - Rbecontinuouson I. Then f is bounded on I.

Proof. Let f is not bounded on I.

So, for any m € N there exists a number x,, € I such that |f(x,)| > m.
As I is bounded, the sequence {x,,} is bounded.

Hence, By Bolzano-Weierstrass Theorem,

there exists a subsequence {xmr} of X that converges to a number x.

Since I is closed and the elements of {x,, } belongtoI.i.e. a < x, <b
Hence < x < b = x € I. (because If {x,} is a convergent sequence and
a<x,<bforallneN thena <lim, x,, < b)

f is continuous at x = f(x,, ) converges to f(x).

As we know that a convergent sequence of real numbers is bounded.
Therefore convergent sequence f (x,, ) should be be bounded, which is a
contradiction .

As |f(xmr)|>nr2r forr eN

Therefore our assumption is wrong.

Hence f is bounded on I.

Absolute maximum: Let XS R and let f: X - R. then f has an
absolute maximum on X if there exists a point a € X such that f(a) >
f(x) forall € X. aisan absolute maximum point for f on X.

Absolute minimum: Let X € R and let f: X - R. then f has an
absolute minimum on X if there exists a point b € X such that f(b) <
f(x) forall € X.b isan absolute minimum point for f on X.
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NOTE: A continuous function on a set X need not have an absolute
. . - 1
maximum or an absolute minimum point. For example, f(x) == has

neither an absolute maximum nor an absolute minimum point.

Maximum-Minimum Theorem

Theorem 3.10. Consider I = [a, b] be a closed bounded interval and
f: I - R be continuous on I. Then f has an absolute maximum and
an absolute minimum point on 1.

Proof. Consider the nonempty set f(I) = {f(x) = x € I} of values off on
I = [a, b].

Therefore f (1) is a bounded subset of R. (By Bounded theorem)

Leta = sup f(I) and b = inf f(I).

Now we will try to prove that there exist points a and g in I such that
a=f(a)andb = f(B)

Because a = sup f(I) then forn € N

Thena — % is not an upper bound of the set f(I).

Hence foralln € N, there exits an x,, € I such that a —% <f(xp) <a.
As itis given that I = [a, b] is a bounded set and x,, € I forall n € N,
Therefore the sequence {x,}is also bounded. (By The Bolzano-
Weierstrass Theorem)

{x,} is a bounded sequence = there exists a convergent subsequence
{xn,, } converges to a.

i.e. limy,_ o Xp,, = a.

Because x,,, € I foralln,, e N=a € I.

Now a €I and f: I - R is a continuous function, then f is continuous
at a.

Therefore limy,_,e Xp,, = a = limy_ f(x,,) = f(a) (By Sequential
Criterion for Continuity)

Now a—%<f(xn) <a. forallneN =>a—%<f(xnm) <a forall
meE N.

. . 1 .
Since lim,,,,, 1 — —=a and lim,,,_,, a = a.

m

Then by the Squeeze Theorem we get

limy 00 f (Xp,,) = a. Therefore there exists a € I such that f(a) =a
(absolute maximum)

Therefore a = f(a) = f(x).

Because b = inf f(I) thenforn € N
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Then b + % is not a lower bound of the set f£(1).

Hence foralln € N, there exitsan y,, € I suchthat b < f(x,) < b + %
As itis given that I = [a, b] is a bounded set and x,, € [ foralln € N,
Therefore the sequence {y,}is also bounded. (By The Bolzano-
Weierstrass Theorem)

{y,,} is a bounded sequence = there exists a convergent subsequence
{yn,} converges to b.

i.e. limy_e Y, = b.

Because y,, €I foralln, € N=b € I.

Now b €I and f: I = R is a continuous function, then f is continuous
at a.

Therefore limy_ e Y, =b = limy_o f(xn,) = f(b) (By Sequential
Criterion for Continuity)

Now b < f(xy) <b+=~ forall n€N =b < f(x,) <b+= for all
meE N.

Since limy o 1+ - = b and limy, o, b = b.
k

Then by the Squeeze Theorem we get

limy, 0 f (X, ) = b. Therefore there exists g €1 such that f(f) =b
(absolute minimum)

Therefore b = f(B) < f(x).

CHECK YOUR PROGRESS

(CQ 16) Let I = [a, b] be a closed bounded interval and let f : I - R be
continuous on I. Then f need not be bounded on I.(T/F)

(CQ 17) A function is bounded on a set if its range is a bounded set in R.
(T/F)

(CQ 18) A function f:[0,1] — [0,1] such that f(x) = x? then f is

3.9 UNIFORM CONTINUITY

Uniform continuity: Let X be a nonempty subset of R. A function
f:X — R is said to be uniformly continuous on Xif for any € > 0, there
exists § > 0 such thatif x,y € X and |x — y| < §, then

Ife) —fI<e
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6 6
Fig. 3.8. Uniform continuity

Example:
f(x) = % is not uniformly continuous on (0,1).
f(x) = x? is uniformly continuous on (—1,1).

Theorem 3.12. A function which is uniformly continuous on an
interval I is also continuous on interval I.

Proof. Let f be a uniformly continuous on given interval I.
Hence for a given € > 0, there exists § > 0 such that
|f(x1) — f(x3)] < € whenever |x; —x3| <&

where x;, x, € I any point.

Let x € I, assume x; = x, then we see that

given € > 0, there exists § > 0 such that

|f(x) — f(x2)| < € whenever |x — x,| <.

Therefore the function is continuous at every point x, € I.
Hence the function is continuous on interval 1.

Theorem 3.13. Let f be a continuous function defined on closed
interval [a, b]. Then f is also uniformly continuous on [a, b].

Proof. It is given that function f is continuous on [a, b].

In contrary, let f be not uniformly continuous on [a, b].

Hence there exists an € > 0 such thatany § > 0

|f(x) = f(y)| = € whenever |x —y| < 6

where x,y € [a. b].

Particularly for each positive integer n, we have x,,y, € R in [a, b] such
that
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|f (xn) — fO)| = € whenever |x, —y,| < 1/n.......ccooooin (D
Now {x,}and{y,} be sequences on a closed interval [a,b] and are

bounded .

Hence {x,}and{y,} have at least one limit point say [, and [,
respectively.

As we know that closed interval is closed set.

=l,,1; € [a, b].

Also [, is a limit point of {x,,}

=there exists a convergent subsequence {x,, } of {x,} such that

Xp, — 13 whenm — oo

Likewise there exists a convergent subsequence {y, } of {3} such that
Yn,, = l; whenm — o

From condition (1), we get

|f (xn,,) = f(¥n,,)| = € whenever |x, — y,| < i < i .............. )
From above condition we conclude that

limyy, 00 X, = liMy o0 Y

Hence ly =Ly, 3)

From  condition (1), we conclude that if  sequences
{f (xn,. )} and{ f(3,,) } converges then the limit they converege are
distinct.

i.e.. {x, }and{y, }convergestol, but {f(x, )}and{f(y,, ) }do not
converges to same limit.

Hence f is not continuous, a contradiction.

Thus £ is uniformly continuous on [a, b].

CHECK YOUR PROGRESS
(CQ 19) f(x) = x? is uniformly continuous on interval [0,1]. (T/F)
(CQ 20) f(x) = x is not uniformly continuous on R. (T/F)

3.10 SUMMARY

In this unit we introduced the important notion of the limit of a function
and discussed & — & definiotion of limits. We also established the
fundamental properties that make continuous functions so important. For
instance, we will prove that a continuous function on a closed bounded
interval must attain a maximum and a minimum value as various examples
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illustrate, and thus they distinguish continuous functions as a very special
class of functions.

3.11 GLOSSARY

1. Set- a well defined collection of elements

2. Sequence-a function whose domain is set of natural number and range
is set of real number

3. Series-sum of the term of sequences

Limit- numerical values get closer and closer to a given value

5. Continuity- a function that varies with no abrupt breaks or jumps

&
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3.13 TERMINAL QUESTION

Long Answer Questions

(TQ 1) Prove that lim,_,, xiz does not exist using € — & definition.

(TQ 2) Show by example that if [ # 0 then f may not have a limit at b.
(TQ 3) Find functions f and g defined on (0,1)such that
limy,_,e, f(x) =and lim,_, g(x) = candlim,_.(f(x) —gx)) =

o0,
(TQ 5) Let f and g be defined on (a,) and suppose
lim,_ f(x) =land lim,_, g(x) = co. Prove that lim,_,., fog(x) = L.

Fill in the blanks
(TQ6) lim,_qx sin% is

(TQ7) f(x) = % has absolute maximum.

(TQ8) lim,_, L33
(TQ9) Asequence {y, = (—1)"}is

3.14 ANSWERS

(CQLF (CQ2F (CQ3)F

(CQ4) R* (CQ5T (CQ6)F

(CQ 7)does notexist (CQ8)T (CQ9)F

(CQ 10) does not exist (CQ 11) F CQ1T
(CQ13T CQHT (CQ 15) continuous
(CQ16)F cQinT (CQ 18) bounded
CQ1YT (CQ10)F

(TQ6) 0 (TQ 7) divergent (TQ8) 0
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UNIT 4: DERIVATIVE AND MEAN VALUE
THEOREM
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4.1 INTRODUCTION

In previous unit we discussed about limit and continuity. In this unit we
will discussed about differentiability and mean value theorem.

Before the seventeenth century, a curve was typically thought of as a
collection of points that satisfied some kind of geometric requirement, and
tangent lines were created using geometric operations. With the
development of analytic geometry in the 1630s by Rene Descartes (1596-
1650) and Pierre de Fermat (1601-1665), this perspective underwent a
significant shift. In this new environment, algebraic expressions rather
than geometric criteria were used to define new classes of curves and to
recast geometry issues. In this new setting, the derivative concept
developed. The problem of finding tangent lines and the seemingly
unrelated. Fermat was the first to recognise a problem of finding
maximum or minimum values connection by in the 1630s. And the
relation between tangent lines to curves and Isaac Newton discovered in
the late 1660s the connection between tangent lines to curves and the
velocity of a moving particle. Once certain vocabulary and notational
modifications are made, any contemporary student of differential calculus
will be familiar with Newton's theory of "fluxions,” which was founded on
an intuitive notion of limit.

But the crucial finding was that areas under curves could be determined by
reversing the differentiation process. This discovery was achieved
independently by Gottfried Leibniz and Newton in the 1680s. This
innovative method, which made it simple to address previously
challenging area problems.

We will develop the theory of differentiation in this Unit. The following
unit will cover integration theory, including the fundamental theorem
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connecting differentiation and integration. As a result we will discuss its
mathematical characteristics.

4.2 OBJECTIVES

After reading this unit learners will be able to
1. recognized the basic concept of derivative
2. analyze about Mean value theorem
3. learned some important theorems.

4.3 DERIVATIVE

We begin with the definition of the derivative of a function.

Derivative: Let I € R be an interval, f: (x,y) > Rand b € I. Thenl €
R is said to be derivative of f at b if for any given £ > 0 there exists §(¢)
such that if x € I then

%—l <& whenever 0 < |x — b| < 6.
We can also say that f is differentiable at b, and we write f'(¢)

Or
The derivative of f at b is given byf'(c) = lim_,
this limit exists.

We now show that continuity of f at a point b is a necessary (but not
sufficient) condition for the existence of the derivative at b.

F)—f(b)

x—

provided

Theorem 4.1. If f: I - R has a derivative at b € I, then f is
continuous at b.

Proof. We have
£ = Fb) = (L2 (x - b) Forallx € I;x #b
Because f'(b) exists, Therefore
lim, (FCO) = £B)) = lim ((F22L2) (x - b)) =
iy (24) e )
=f'(b).0=0
Therefore, lim,,, (f(x) = f(b))=0= }cii?,f(x) - )lci_r)l’ll)f(b) >
limf(x) = f(b)

Hence f is continuous at b.

NOTE: The continuity of f: I - R at a point does not promise the
existence of the derivative at that point.
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Theorem 4.2. Let I € R be an Interval and f, g: X — R be functions
that are differentiable at b € R Then
Q) If a € R, then the function af is differentiable at b and
(af)'(b) = af'(b)
(i) The function f+g is differentiable at b and
(f +9)'(b) =f'(b) + g'(b)
(i) The function f and g is differentiable at b and
(f9)'(b) = f'(b)g(b) + f(b)g'(b)
(iv) If g(b) # 0, then the function f and g is differentiable at
b and

( ) (b) = f'(B)g(b)- f(b)g (b)

(9b))"

Proof. (i) Let h; = af, thenfor x € I and x # b, we have
M- ®) _ @H@-@H®) _  fE-Fb)

x—b x—b x—b
Since f is differentiable at b implies ' (b) exists. Therefore
hq(x)—h4(b) fOO-f) _ .. f)-f(b) f(b)
limysp =y = lima=—== = alim === = af'(c)

Hence (af)'(b) = af’'(b)

(if) Let h, = f + g, then for x € I and x # b, we have
ha(X)=ha(b) _ (F+g))=(F+g)B) _ f)+g)—fb)—gb) _ fx)=fb)+g(x)-g(b)
x—b - x—b - x—b - x—b
_ fX)-r®) n g(x)—g(b)

x—b x—b
Since f and g are differentiable at b implies f'(b) and g'(b) exists.
Therefore
. ha(x)—hy(b) . fO)-fB) | . (x)-g(b) ’ '
lim, ., 2L = lim S lim S = £1(8) +9'0)

Hence (f + g)'(b) = f'(b) + g'(b)

(iii) Let h; = fg, then for x € I and x # b, we have
hs(x) —hs(b) _ (F@) () — (Fg)B) _ fFG)g(x) — f(B)g(b)

— xX—>b x—>b
_f)gx) — f(b)g(x) + f(b)g(x) — f(b)g(b)
xX—>b
_90)F®) f(b);t};(b)(g(x) g(b) _ g(x) f(x;};(b) + £(b) g(xi_i(b) .
It is given that f and g is differentiable at b and
g is differentiable at b= g is continuous i.e. lim,,,g(x) =
g(b)  (by previous theorem)
Therefore

h3(x)—h3(b) .
% = llmx_)b {g(x

. fx)—f(b) (x)-g(b)
lim,._ YR+ r )
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. fF(x)—f(b) . (x)-g(b)
= hmx—>b g(X) xxT + 11rnx—>b f(b) % =

. . -f(b . —g(b ,
lim,.p g(0) lim L2 4 £ () tim,, L9222 = £/(b)g(b) +

fb)g'(b)
Hence (fg)'(b) = f'(b)g(b) + f(b)g'(b)

(iv) Let h, = 5, since g is differentiable at b = since g is continuous at b.

It is given that g(b) # 0, therefore there exists an interval I; < I with
b € I, such that

gx) #0 forallx € I.

Now for x € I, x # b, we get

Iy Ly [ _1®)

ha()—ha(B) _ g "¢\’ _ g0 g __ f(x)gb)—f(b)g(x)
x—b - x—b - x-b g(b)g(b)(x—b)

_ f)gb)-fb)gx) _ fx)gb)-f(b)gb)+f(b)g(b)—f(b)g(x)

g)g(b)(x-b) 9(b)g(b)(x—b)
F@)=f1)gB)-fb)(g)—-g®)) _
g(x)g(b)(x—b)

g(x)g(b) x—b
Therefore
. ha(x)=hya(b) _ ;. 1 f(x)— f(b) g(X) g(b)
: f(x) f() gx)—gb)
,lcf?, gx)g(b) Llcl—lle,( x— b ) gb) = f(b). h ( -b )]
= - [ (D)g(b) - Fb)g ®)]
Hence
( ) (b) = f'(b)gb)-f(b)g' (b)
(9®)°
NOTE:
> If i, f2, ..., fn are functions on an interval Ito R that are
differentiable at b € I, then:
(@) The function f; + f, + -+ .... +f,, is differentiable at b and

(it fot it f)' D) = () + fL(b) + - ...+ (D)
(b) The function f; f5, ... .... fy, is differentiable at b, and

(fi fz oo v f)'(B) = L (D) fo(B) . (D) + f1(D)f2 (D) ... (D) +
=+ f1(D) f(D) ... fu (D)

> |f f1,= f2 = e .= fn = f then (fn)l(b) — f,(b)(f(b))n—l n
FOE®) A OE®)" = n(f®)" f®)
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Theorem on the differentiation of composite functions

The theorem on the differentiation of composite functions known as the
““Chain Rule.”” It provides a formula for finding the derivative of a
composite function gof in terms of the derivatives of g and f.

Caratheodory’s Theorem

Theorem 4.3. Let f be defined on an interval I containing the point b.
Then f is differentiable at b if and only if there exists a function h on I
that is continuous at b and satisfies

fx)—f(b) =h(x)(x—b) forxel.

Here h(b) = f'(b)

Proof. It is given that f is differentiable at b.
It implies that f'(b) exists, hence we define h(x) by

f(x)—f(b)
h(x)={ o forx #b,x €l
f'(b) forx=c

Now we can easily see that lim,_,, h(x) = ling% = f'(b) = h(b).
X— -
Therefore, h is continuous at b.

f(x)—f(b) =h(x)(x—b) forx€el........ (D

Converse

Now if x = b then both side of equation (1) equal to 0.

If x # b, then multiplied (x — b) in h(x), we get

(x—=b)h(x) = f(x)—f(b)forx #b,x €I

Hence h(x) satisfies equation (1).

Now if we divide equation (1) by (x — b) # 0, then the continuity of h
implies that

h(b) = lim,_, h(x) = 11%% exists.
X— -
Therefore f is differentiable at b and f'(b) = h(b).

Example

Let we defined a function f(x) = x2 for x € R.

For c € R, Now

f@x) = f(b) = x* —b* = (x + b)(x — b)

Let h(x) = x + b and we can see that f(x) — f(b) = h(x)(x — b)
Hence it satisfies the Caratheodory’s Theorem

Therefore f is differentiable at b € Rand f'(b) = h(b) = 2b

Chain Rule

Theorem 4.4. Let I; and I, be intervals in R, let g: I; - R and
f: I, = R be functions such that f(I,;) €11, and let b € I,. If f is
differentiable at b and if g is differentiable at f(b), then the
composite function gof is differentiable at b and
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(gof)' (B) = g’ (f(B)).f'(B) cevvveeeeeraaaunnn 1)

Proof. It is given that f'(b) exists.

So, by Caratheodory’s Theorem

There exists a function h on I, such that h is continuous at b and
f(x)—f(b) =h(x)(x—>b) forx€l,,

Where h(b) = f'(b).

Also because g’(f (b)) exists, there is a function h defined on I; such that
h is continuous at @« = f(b) and

9() —g(a) =h(y)(y —a) fory €L, whereh(d) = g'(d)
Substitution of y = f(x) and d = f(b) then

9(f@) = g(f®) = h(f@)(f ) = f(®)) = [(hof (). h()](x =
b)for all x € I, such that f(x) € L.

Since the function (hof). h is continuous at b and

its value at b is g’(f(b)).f’(b), Caratheodory’s Theorem gives (1).

Example:

If f: I > Risdifferentiable on I and (y) = y? for y € R.
Since g'(y) = 2y.

By chain rule (gof)'(x) = g’(f(x)).f’(x) forx el
(f3)'(x) =2f(O)f"(x) forx €1

Inverse Functions
We will now relate the derivative of a function to the derivative of its
inverse function, when this inverse function exists

Theorem 4.5. Let I be an interval in R and let f: I; —» R be strictly
monotone and continuous on I. Let I, = f(I;) and let g: I, —» R be
the strictly monotone and continuous

function inverse to f. If f is differentiable at b € I; and f'(b) # 0,

. . o) = L — 1
then g is differentiable at @ = f(b) and g'(a) = o fle@)

Proof. It is given that b € R, and f is differentiable at b € I;. From
Caratheodory’s Theorem there exists a function h on I; with properties
that h is continuous at b

f(x) = f(b) = h(x)(x —b) forx €I, and h(b) = f'(b).

Since h(b) + 0 by hypothesis, there exists a neighborhood V = (b —
6,b+ §)suchthat h(x) # 0 forallx eV nI.

If U=f{nI), then the inverse function g satisfies f(g(y)) =
y forally € U, sothat

y—a=f(g)-f)=hlg) (90 - g(@).

Since the function h(g(y)) # 0 for y € U.

We can divide to get

g - g(a) = h(g;(y)) vy — a).
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As the function i IS continuous at «, By Catheodary theorem we get
1 1
h(g(a)) h) — f'(b)

g' () exists and g (a) =

CHECK YOUR PROGRESS
(CQ 1) State and prove Caratheodory’s Theorem
(CQ 2) Define derivative of a function.

4.4 MEAN VALUE THEOREM

The Mean Value Theorem, which relates the values of a function to values
of its derivative, is one of the most useful results in real analysis

We begin by looking at the relationship between the relative extrema of a
function and the values of its derivative.

Relative Maximum: The function f : I - R is said to have a relative
maximum at b € [ if there exists a neighborhood V = Vg(b) of b such that
fx) < f(b), forallxinV n I.

Relative Minimum: The function f: I - R is said to have a relative
minimum at b € I if there exists a neighborhood V' = V' & (b) of b such
that f(x) = f(b), forall x inV' n I.

Relative Extremum: f has a relative extremum at b € [ if it has either a
relative maximum or a relative minimum at b.

Interior Extremum Theorem

Theorem 4.6. Let b be an interior point of the interval I at which
f: I - Rhas a relative extremum. If the derivative of f at b exists,
then f'(b) = 0.

Proof. If £ (b) > 0, Then there exists a neighborhood V < I of b such

that

M>0forerx¢b

If x €V,x > b, then we get
fO) = f(b) = (x - b).L2LB >

But this contradicts the hypotheS|s that f has a relative maximum at b.
Hence we cannot have £ (b) > 0.

Similarly we cannot have f* (b) < 0.

Therefore, £ (b) = 0.
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Rolle’s Theorem

Theorem 4.7. Consider that f is continuous on a closed interval
I = [a,b] and the derivative f'(0) exists at every point of the open
interval (a,b), and f(a) = f(b) = 0.Then there exists at least one
point ¢ in (a, b) such that f'(c) =0

Proof. If f(x) =0 for all x in I or vanishes identically on I, then any ¢
in (a, b) will satisfy the result of the theorem.

Let f does not vanish identically or f # 0.

Now replacing f by (—f) and Consider f assumes some positive values.
So by the Maximum Minimum Theorem,

The function f attains the value sup{f(x): x € I} > 0 at some point c in I.
Since f(a) = f(b) = 0. the point ¢ must lie in (a, b).

Hence f'(c) exists.

Since f has a relative maximum at c.

By the Interior Extremum Theorem, we get

flle)=0

Geometrical Representation of Rolle’s theorem
f(c)

AY xX=c

v

0 a c b
Fig.4.1. Rolle’s theorem

In the given graph, the curve y = f(x) is continuous between x = a
and x = b and at every point, within the interval, it is possible to draw a
tangent and ordinates corresponding to the abscissa and are equal then
there exists at least one tangent to the curve which is parallel to the x-axis.
Algebraically, this theorem tells us that if f (x) is representing a
polynomial function in x and the two roots of the equation f(x) = 0 are
x =a and x = b, then there exists at least one root of the equation
f'(x) = 0 lying between these values. The converse of Rolle’s theorem
is not true and it is also possible that there exists more than one value of x,
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for which the theorem holds good but there is a definite chance of the
existence of one such value.

NOTE:

> Rolle’s theorem does not hold good if

Q) f (x) is discontinuous in the closed interval [a, b].
(i) f(x) does not exists at some point in (a, b).

(i)  f(a) #f(b).

Example: Rolle’s Theorem can be used for the location of roots of a
function.

NOTE:

For, if a function g can be identified as the derivative of a function f, then
between any two roots of f there is at least one root of g. For example, let
g(x) =cosx then gis known to be the derivative of f(x) = sinx.
Hence, between any two roots of sin x there is at least one root of cos x .
On the other hand g'(x) = —sinx = —f(x) .

Another application of Rolle’s Theorem informed us that between any two
roots of cos there is at least one root of sin.Therefore, we conclude that
the roots of sin and cos interlace each other.

Mean Value Theorem

Theorem 4.7. Suppose that f is continuous on a closed interval
I = [a, b]and f has a derivative in the open interval (a, b). Then there
exists atleast one point c in (a, b) such that

f(b) = f(a) = f'(c)(b —a)

Proof. Assume the function @ defined on I such that

o) = f() - f(@) -T2 (x — a)

We can easily see that The COIldlthl’lS of Rolle’s Theorem are satisfied by
@ since @ is continuous on [a, b], differentiable on (a, b), and ®(a) =
@ (b).

Therefore, there exists a point b in (a, b) such that

Therefore f'(c) = f(b) f(a) = f)—f(a)=f'(c)(b—a)
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Geometrical Interpretation

AY
B
A
C A
f(d f(b)
5 4 - > X

Fig.4.2. Lagrange theorem

The geometric view of the Mean Value Theorem is that there is some
point on the curve y = f(x) at which the tangent line is parallel to the line
segment through the points (a, f (a)) and (b, f (b)). Thus it is easy to
remember the statement of the Mean Value Theorem by drawing
appropriate diagrams. While this should not be discouraged, it tends to
suggest that its importance is geometrical in nature, which is quite
misleading. In fact the Mean Value Theorem is a wolf in sheep’s clothing
and is the Fundamental Theorem of Differential Calculus. The Mean
Value Theorem permits one to draw conclusions about the nature of a
function f from information about its derivative f . The following results
are obtained in this manner.

Theorem 4.8. Suppose that fis continuous on the closed interval
I = [a, b] that f is differentiable on the open interval (a, b), and that
f'(x) =0 for x € (a,b). Then fis constant on I.

Proof. Letx e land x > a

Then by mean value theorem to f on the closed interval [a, x].
There exists a point ¢( depending on x) between a and x such that
f&)—f(a) =f'()(x—a).

Because f'(c) = 0 (given)

Hence we conclude that

fG)—f(@)=0.

Therfore f(x) = f(a) forany x €1
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f is constant on I.

Theorem 4.9. Let f : I - R be differentiable on the interval I. Then
(i) fisincreasingon I'ifand only if f'(x) > 0 forallx € 1.
(ii) f is decreasing on I if and only if f'(x) < 0 for all x € I.

Proof. (i) Suppose that f'(x) = 0 for all x € I.

If x; and x, in [ satisfy x; < x5,

then by Mean Value Theorem to f on the closed interval I, = [x4, x;] tO
obtain a point c in

(x4, x2) such that

f(x2) = f(x) = (D) (X2 = X1) ereeeneariiieeiiieiiiea (1)

Since f'(b) = 0 and x, — x; > 0, using this values in equation (1) we
get

flx) —f(x) 2 0= f(xy) = f(xq)

Hence, f(x1) < f(x;) where x,and x,are arbitrary points.
Therefore, f is increasing on 1.

Converse

We suppose that f is differentiable and increasing on 1.

Thus, for any point x # b in |, we have % > 0.
H ’ T fx)-f(b)
ence, f'(b) = lim,_,, — = 0.
(if) Suppose that f'(x) <0 forallx € I.
If x; and x, in [ satisfy x; < x5,
then by Mean Value Theorem to f on the closed interval I, = [xq,x,] to
obtain a point c in
(%1, x5) such that
f(x2) = f(x1) = (D)X = X1) ceeeneneeneiieeieieeeeeae (1)
Since f'(b) <0 and x, — x; > 0, using this values in equation (1) we
get
fO) = flx) 0= flxz) < fxq)
Hence, f(x;) = f(x,) where x,and x,are arbitrary points.
Therefore, f is decreasing on .
Converse
We suppose that f is differentiable and decreasing on I.

Thus, for any point x # b in |, we have M <0.

x—b
Hence, f'(b) = lim,._,, % <0.

Strictly Increasing: A function f is said to be strictly increasing on an
interval I if for any points x;and x, in | such that x; < x,, we have

(1) <f(x2) -
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Strictly decreasing: A function f is said to be strictly increasing on an
interval I if for any points x;and x, in | such that x; < x,, we have

f(x1) <f(x2).

The Intermediate VValue Property of Derivatives

Lemma Let I € R be an interval, let f: I - R, let b eI and let
f has a derivative at b. Then:

(i) If f'(b) > 0, then there is a number 6, > 0 such that f(x) > f(b)
forx e Isuchthatb < x < b + 4§,

(i) If f'(b) < 0, then there is a number §; > 0 such that f(x) <
f(b) for x € I suchthatb — 8, < x < b.

Proof. (i) let f has a derivative at b.
, fO)=fB) _ 2 ;
Therefore lim,._,, — = f'(b) > 0 (Given)
Therefore that there exists a number &; > 0 such that if x € I and
0 < |x — b| < &, then
f(x;:i(b) >0
Ifxelandx > b= x—b>0,then

f(x)_f(b)=(x—b)%>0

Hence,ifx e land b < x < b+ §;,then f(x) > f (b)

(i) If f'(b) > 0, then there is a number &, > 0 such that f(x) > f(b)
forx e Isuchthath <x <b + 6,

(il) lim,y 2L = £1(b) < 0 (Given)

Therefore that there exists a number §, > 0 such that if x € I and
0 < |x — b| < 8, then

f(xi:l;(b) <0

Ifxelandx > b= x—b>0,then

fO) — ) = (x — )LD < g

Hence,ifx e land b — 6, < x < b, then f(x) < f (b)

Darboux’s Theorem
Theorem 4.10. If f is differentiable on I = [a, b] and if k is a number
between f'(a) and f'(b), then there is at least one point ¢ in (a, b)
such that f'(c) = k.

Proof. Let f'(a) < a < f'(b).

Now we define gon I by g(x) = ax — f(x) for x € I.

As g is continuous, therefore it attains a maximum value on I.
Now g'(a) =a—f'(a) >0

Therefore from previous lemma we conclude that
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the maximum of g does not occur at x = a.
Similarly, maximum does not occur at x = b.
Hence, g attains its maximum at some c in (a, b).
Then from Interior Extremum Theorem, we have
0=yg'(c)=a—f'(c)

Hence f'(c) = a.

Cauchy Mean Value Theorem

Theorem 4.11. Let f and g be continuous on [a, b] and differentiable
on (a,b), and assume that g(x) # 0 for all x in (a, b). Then there
exists c in (a, b) such that

f)-fl@ _ f'©

gb)-gl@  g'@©

Proof. Since g'(x) # 0 for all x in (a, b), therefore
Using Rolle’s Theorem we get
g(a) # g(b).
For x in [a, b], now new define
fb)—f(a)
P() = o (9 —9(@) = (f() - f (@)
Then h is continuous on [a, b], differentiable on (a,b), and @(a) =
o) =0.
Therefore, According to Rolle’s Theorem
there exists a point ¢ in (a b) such that
o _f®)-fla)
As we know g (c) # 0, we obtain required result that is
f'@© _ f®)-f@
g'e)  gb)-g(a

Geometrical Interpretation

y=g(t)}

B
~(t) = w'lll}.rl(llg

Fia. 4.3. Cauchv Mean Value theorem
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According to the Cauchy's mean value theorem, there is a point C =
(f (m), g(m)) on the curve y where the tangent is parallel to the chord
joining the points A = (f (a),g(a)) and B = (f (b), g(b)) of the curve

Taylor’s Theorem

A very useful technique in the analysis of real functions is the
approximation of functions by polynomials. In this section we will prove a
fundamental theorem in this area that goes back to Brook Taylor (1685—
1731), although the remainder term was not provided until much later by
Joseph-Louis Lagrange (1736-1813). Taylor’s Theorem is a powerful
result that has many applications. We will illustrate the versatility of
Taylor’s Theorem by briefly discussing some of its applications to
numerical estimation, inequalities, extreme values of a function, and
convex functions.

Theorem 4.12. Letn € N and I =[a,b] and let f: I - R be such
that f and its derivatives f',f",........, f™ are continuous on I and
that f™*1 exists on (a, b). If xo € I, then for any x in I there exists a
point ¢ between x and x, such that

f(x) = f(x0) + f'(x0)(x — x0) +%(x—x0)z + "'+%(X—

(x0)
xo)" + LG8 ()

Proof. Consider x, and x be given and let I; denote the closed interval
with endpoints x, and x.
Now we define the function F on I; by

F(t) =

F0) = f@© - = 0f'© - L @) . - EL o) -
SO M (£) fOr £ € Iy (1)

Now by differentiate equation (1) w.r.t to t, we get

F'(t) =

~[©O + 10 = (= OO+ = 0" O =S5O =+
C P 0® - o0 + 250 oy 2 e

(n-2)! (n-1)! 1)!
Therefore
F'(t) = _M (n+1) 2
(t) f (B) e )
—t n+1
Now we deflne H on I; such that H(t) = F(t) — (x — ) F(x,) for
0
t € I, then
_ X=X n+1 _ _
H(xo) = Fxo) = (322) F(xg) = F(xo) = F(x0) = 0 and
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H(x) =F(x) — (x_x )n+1F(x0) =F(x)=0 (by putting t = x in

X—Xg
equation (1))

Now H(x,) = H(x) = 0, by Rolle’s theorem there exists a between x and
Xo suchthat H'(a) = 0

' ’ (n+1) -t \" ’ /
H'(®) = F'(©) + 5 (55) Flxo) = H'(@) = F'(@) + (n +
(x—a)"
D) Gy (o)
Now H'(@) = 0= F'(a) + (n+ Do Fxg) = 0= (n+
—A0
(x—a)™ o
DWF(XO) = —F'(a)

_ 1 (x_xo)n+1
= F(0) =~ 005 e

Using equation (2) we get

_ 1 (x—2x0)"*1 _(x_a)n (n+1) )_f(n"'l)((x) _ n+1
F(xO)_ (n+1) (x—-a)n ( n! f (a) - (n+1)! (x xO)

which implies the stated result.

F'(a)

Convex Functions: Let I = R be an interval. A function f: I - R is
said to be convex on [ if for any t satisfying 0 < t < 1 and any points
x,y in I, then

f(A-x+ty) <A -0f ) +tf )

Geometrical Representation

If x <y, then as t ranges from 0 to 1, the point (1 — t)x + ty traverses
the interval from x to y. Hence if f is convex on I and if x,y € I then the
chord joining any two points (x, f(x)) and (y, f(y)) on the graph of f
lies above the graph of f.

A =0)fC) +tf(

A-9f)+t0)

I
!
v Ar

Fig. 4.4 .Convex Function

NOTE:
> A convex function need not be differentiable at every point, as the
example f(x) = |x|,x € R.
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> if I is an open interval and if f : I — R is convex on I, then the left and
right derivatives of f exist at every point of I.
> We can also conclude that a convex function on an open interval is

necessarily continuous.

Theorem 4.13. Let I be an open interval and let f: I - R have a second
derivative on I. Then f is a convex function on I if and only if f""(x) =0
forallx €l

Proof. f have a second derivative on I .
Hence second derivative of f is given by

f"(c) = limhqo% forallc€l ..., (D
Now f have a derivative on c € |

Hence f'(c) = limhﬁo% ............................................ )
Similarly f have a derivativeonc + k € ]

Therefore f'(c) = limhﬁow ............................... 3)
Subtract equation (2) from (3), we get

frlc+h) = £/() = limy_,g LD iy, LD -

lim FO)—f(c+k)—(f()—-f(c))

h—0 x—h
Therefore
f"(c) = limy_,, fleth)=2f(c)+f(c=h) foreachc €l .................. (2)

h2
Now c € I, let h be such that ¢ + hand ¢ — h belong to I.
Then ¢ can be written as

c= %((c +h)+ (c— h))and since f is convex on I, we have

FO=f(e+m+ic-n)<ifec+m+ife-n

=22f(c) < f(c+h)+ f(c—h)
Therefore, we have f(c + h) — 2f(c) + f(c—h) = 0.
Because h? > 0 forall h # 0, we observe that

e )2/ ©/(€=h) 1y 6t he nonnegative. Hence, we obtain £ (c)

limh_)o

h2
foranyc € 1.
Converse
Let x; and x, be any two points of I, assume 0 < t < 1 and
D € e ) i e 5 (1)

Now Applying Taylor’s Theorem to f at x,, we get a point a; between x,
and x; such that

Q) = f(xo) + f (o) ey — x0) +5 £ (@) (1 — x0)?

a point a, between x, and x, such that

£ ) = £ (o) + f(x0) oz = x0) + 2 ' (e2) (o2 = %o)?

Hence, we obtain
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A-0f(x) +tf(xx) =(1—1) (f(xo) + £ (x0) (%1 — x0) +
%f”(a1)(x1 — Xo)° ) +t (f(xo) + f(x0)(xz — x0) + %f”(az)(xz -
xo)z)

= (1= Df (xo) + (1 = Of (o) (1 — %) + =2 (@) (1 — x0)* +
tf (o) + tf " (x0) Gz — x0) + 2 £ (@2) (xz — %0)?

= (1= Of (o) + (1= f (o) (1 — x0) + =2 (@) (1 — x0)? +
tf (o) + £ (x0) Gz — x0) + 2 £ (@2) (xz — %0)?

= f o) + (o) (1 = )y + tay — x0) + =2 7 (@) (g — x0)% +
~f"(a2) (az — %o)?

From equation (1), we get

(1= 6)f () + () = f(x0) + f (o) (o — x0) + =2 (@) (s =
%0)2 + = £ (e2) (o2 — x0)?

Therefore

A=0)f(x) +tf(xx) =

fa) + 0L (o — )2 L () O — x0)?

Let R = 222 £ (@) (ry = %0)? + 5 £ (@2) (xz = x0)?

=1 —6)f(x) +tf(x2) = f(x0) + R

If f""(x) = 0 for every x € I, then term

R =" () (s — 20)* + 5 £ (a2) (x; = %0)? 2 0

Hence (1 — t)f (x1) + tf (x2) = f(x0) = f((1 = )x; + tx3)

Or f((1 =ty + txy) < (1 = 0)f (xxy) + tf (x2)
Therefore, f is a convex function on I.

(1

CHECK YOUR PROGRESS

(CQ3) f(x) = sinx is a convex function. (T/F)
(CQ4) f(x) = x + 1is strictly increasing function (T/F)
(CQ5) fx) = xiz is strictly decreasing function (T/F)

4.5 SUMMARY

The first section is devoted to a presentation of the basic results
concerning the differentiation of functions. In next sections we discussed
the fundamental Mean Value Theorem and some of its applications.
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4.6 GLOSSARY

Set- a well defined collection of elements

Sequence-a function whose domain is set of natural number and range is
set of real number

Discontinuity-lack of continuity

Derivative- the rate of change of a function with respect to a variable
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4.9 TERMINAL QUESTION

Long Answer Questions

(TQ 1) State and Prove Rolle’s Theorem
(TQ 2) State and Prove Mean Value Theorem
(TQ 3) Use the definition to find the derivative of f(x) = x3 forx € R
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(TQ 4) Stae and prove Darbaux’s theorem.
(TQ5) Provethatif f: R — R isan even function and has a derivative
at every point, then the derivative f' is an odd function

Fill in the blanks

(TQ6) f(x) = |x| + |x + 1] is not differentiable at
(TQ 7) Let b be an interior point of the interval I at which f : I - R has
a relative extremum. If the derivative of fat b exists, then

(TQ 8) If f(x) =|x| on =[-1,1] , then f has an interior minimum at

4.10 ANSWERS

(CQ3)F Q4T (CQ4)F

(TQ6) Oand -1. (TQ7) f'(b) =0 (TQ8) x =0
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BLOCK II: RIEMANN INTEGRAL
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UNIT 5: RIEMANN INTEGRAL
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5.14 Terminal Questions
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5.1 INTRODUCTION

During a century and a half of development and refinement of techniques,
calculus consisted of these paired operations and their applications,
primarily to physical problems. In this chapter we will discussed about
Riemann integral and some mean value theorems.

In the 1850s, Bernhard Riemann adopted a new and different viewpoint.
He separated the concept of integration from its companion,
differentiation, and examined the motivating summation and limit process
of finding areas by itself. He broadened the scope by considering all
functions on an interval for which this process of ‘integration’’ could be
defined: the class of ‘‘integrable’’ functions. The Fundamental Theorem
of Calculus became a result that held only for a restricted set of integrable
functions. The viewpoint of Riemann led others to invent other integration
theories, the most significant being Lebesgue’s theory of integration. But
there have been some advances made in more recent times that extend
even the Lebesgue theory to a considerable extent.

In previous unit we discussed about derivative and mean value theorem. In
this unit we discussed about Riemann integral by using some examples
and theorems.
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German mathematician Georg
Friedrich Bernhard Riemann (17
September 182620 July 1866) had a
substantial impact on analysis, number
theory, and differential geometry. He
is well known for his work on the
Fourier series and the Riemann
integral, the first accurate statement of
the integral in real analysis.

His development of Riemann surfaces,
which pioneered a natural, geometric

Fig. 5.1. Bernhard Riemann
(Source:

approach to complex analysis, is https://www.sapaviva.com/georg

perhaps his most notable contribution || -bérnhard-riemann-2/
to the field.

5.2 OBJECTIVES

In this Unit, we will
1. analyze about Riemann Integral
2. construct mean value theorem of calculus

5.3 RIEMANN INTEGRAL

Now we will discuss the definition of Riemann integral of a function f on
an interval [a, b].
We first define some basic terms that will be frequently used.

Partition of I: If I =[a,b] is a closed bounded interval in R, then a
partition of I is a finite, ordered set P = (xg, X, ..., Xn_1, X, ) Of points in [
such that

a=x) < x1 <+ < Xp_q <x,=0>b.

The points of P are used to divide I = [a,b] into non-overlapping
subintervals

I = [x0,x1], I = [x1, %3], oo, Iy = [Xp_1, %]

Fig. 5.2. Partition of I = [a, b]

Let f be a bounded real function on [a, b]. Obviously f is bounded on each
sub-interval corresponding to each partition P. Let M; and m; be the
supremum and infimum respectively of f in Ax;. Then
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Upper Darboux Sums: U(P,f) = M Axq{ + MyAx, + -+ + M, Ax, =
=1 M; Ax; is called Upper Darboux Sums of f corresponding to the

partition P.

Lower Darboux Sums: L(P,f) = m;Axq + myAx, + -+ myAx,, =

Yi=ym;Ax; is called Lower Darboux Sums of f corresponding to the

partition P.

NOTE: Let M and m are the bounds of f in [a, b]. Then
m<m; < M; <M= mAx; <miAx; < M;Ax; < MAx;
=Y mAx; < Yy miAx; < YiLy MiAx; < ¥isq MAx;
SmYis Ax; < YinymiAx < Y MiAx; < M YT, Ax
>m(a—b) <L(P,f) <UP,f) <M(a—D>)

Upper Integral: The infimum of the set of upper sums is called Upper
Integral.

ie. fa_bf dx = infU = inf {U(P, f): P is a partition of [a, b]}

Lower Integral: The supremum of the set of lower sums is called Lower
Integral.

ie. f_baf dx = sup L = sup {L(P, f): P is a partition of [a, b]}

Darboux’s condition of integrability: When Upper integral and lower
integral are equal then f is said to be Riemann Integral over [ a, b].

[ fdx=["fdx=["fdx

Another definition of Riemann Integrable: A function f : [a,b] » R
is said to be Riemann integrable on [a, b] if there exists a number L € R
such that for every ¢ > 0 there exists § > 0 such that if P’ is any tagged
partition of [a, b] with ||P’|| > 0, then |S(f,P") — L| < ¢

The set of all Riemann integrable functions on [a, b] will be denoted by
R[a,b].

Ex. 5.1. Show that a constant function a is integrable and f: dx =
a(b — a).

Proof. Let P be any partiion of the interval [a,b], then
L(P,f) = alx; + alx, + -+ alx,

=a (Ax; + Axy + -+ Axy) = a(b—a)

Similarly U(P, f) = alAx; + aAx, + -+ alx, = a(b — a)
Therefore

f_ba adx = supL(P,f) = a(b—a) and

[° adx = infU(P,f) = a(b - a)
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:>f_ba adx = f_ba adx = a(b — a)
Therefore, the constant function is R-integrable and ff adx = a(b — a).

Ex.5.2. Prove that function f defines as
(x) = { 0, when x is rational

fx) = 1, when x is irrational

is not integrable on any interval.

Proof. Let P be any partiion of the interval [a,b], then

L(P,f) =X, m; Ax; = 0Ax; + 0Ax, + -+ + 0Ax,, =0

Similarly U(P, f) = X1 M; Ax; = 1Ax; + 1Ax, + -+ 1Ax, = b —a
Therefore

f_ba adx = supL(P,f) =0 and

f_baadx =infUP,f)=b—a

:>f_ba adx # f_ba adx

Therefore, the given function is not R-integrable on any interval.

Ex. 5.3. Show that function f(x) = x3 is integrable on any interval
[0, b].

Proof. Let P be any partiion of the interval [0, b] obtained by dividing
b 2b 3b  nb

interval into n —equal parts. i.e. P = [— = 0,;,7, — = b]

C nl)k) and Upper bounds of

Let lower bounds of function in Ax; = (

function in Ax; = (l:)

Therefore
L(P, f) = ?:1 ml Axl == mlel + mzAxZ + + mnAxn
b 3 b (20\3 b b(n-1)\3 b 3, 53
=024 () 24 (B) 24t (BED) 25 425 4
w+ (n—=1)7
_ b*(n-1)2n? _ b_4 1\2
o - 4n* T4 (1 )
Similarly
U(P,f) = ?:1 Mi Axl Mlel + Mzsz + -+ M Axn

b\3 b 2b\3 b 2b\3 b pn\3 b
=) 2t () 2+ () et (3) pemmni ey
-+ n?]
_ b*nPm+n)? _ bt 2
- 4n* (1+ )
Therefore
b b*
J_yadx = sup L(P, f) = - and
J° adx = infu(p, f) =2
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:>f_bo adx = f_bo adx = 11—4

Therefore, the given function is R-integrable and fob adx = 11—4.

5.4 INEQUALITIES FOR INTEGRALS

We already prove that
m(b—a)Sf;fdeM(b—a)wheana ....................... )
If b < a,sothata > b and

m(a —b) SfbafdeM(a—b)

=>-m(a—b) < - [, fdx < —-M(a—b)
:m(b—a)sf:fdeM(b—a) whenb<a.................. (I1)

Deduction 1: If f is bounded and integrable on [a, b], then there exists a
number k lying between bounds of f such that fbaf dx =k(b—a)

Deduction 2: If f is continuous and integrable on [a, b], then there exists
a number c lying between a and b such that fbaf dx = f(c)(b—a)

Deduction 3: If fis bounded and integrable on [a,b], and @ >0 is a
number such that |f(x)| < a for all x € [a, b], then |fbaf dx| <alb-
al.

Proof. Let M and m be the upper bounds and lower bounds of f(x)
respectively.

Let @ > 0 is a number such that |f(x)| < a forall x € [a, b]

Henceforb > a,—a < f(x) <«

S—a<m<fx)SM<a

> —a(b-a)smb-a)< [ f(x) <MOb-a) < al-a)
= |f:f(x)| <ab—a)

If a > b, we have

|2 f@)| < a(a - b)

Therefore |f:f(x)| < alb—al.

The result is trivial for a = b.

Deduction 4: If f is bounded and integrable on [a, b] and f(x) = 0 for all
x € [a, b], then f;fdx >0 whenb >a and f:fdx <0 whenb <a
Proof. Because f(x) =0 for all x € [a,b], then the lower bound of

f(x)i,em=0
From Inequality (1) and (1) , we get
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f;’fdxzo when b > a andfffdxso when b < a

Deduction 5 : If f and g are bounded and integrable on [a, b], such that
f(x) = g(x)., forall x € [a, b].then

fabfdxzf:gdx whenb > a andf:fdxsf:fdx when b < a

Proof. Itis giventhat f > g then f — g > 0 forall x € [a, b].
Using deduction 4, we have

f:(f—g)deO ifb=>a
>[fdx > [ gdx ifb>a
Similarly

f;fdx < f:gdx ifb<a

CHECK YOUR PROGRESS
(CQ 1) fis bounded and integrable on [a,b] and f(x) =0 for all

x € [a, b], then f(ffdx >0 whenb =a and f:fdx <0 whenb < a.
(T/F)

(CQ 2) f(x) = x3 + 1 is not integrable on interval [a, b]. (T/F)

(CQI) U(P, f) = M1Axy + MyAx, + -+ + M, Ax,, = Yi-; M; Ax;. (T/F)
(CQ 4) If f is integrable then :

5.5 REFINEMENT OF PARTITIONS AND
TAGGED PARTITIONS

Norm: The norm (or mesh) of P to be the number

u(P) = max {x; — xg, X3 — X1, e, Xy — Xp_1}

OR

the norm of a partition is merely the length of the largest subinterval into
which the partition divides [a, b].

Refinement: A partition P* is said to be a refinement of P if P* 2 P i.e.
every point of P is a point of P*.

Or we can say that P* refines P or P* is finer than P.

If P, and P, are two partitions, then P* = P, U P,.

Theorem 5.1. Suppose that f: [a,b] — R is bounded and P and P*
be partitions of [a, b] and refinement of P respectively. Then

()  L(P,f) < L(P',f)

(i) UwPLf) < UPS)
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Proof. Let P be partition of [a, b] and P* contains just one more point 'a’
than P.
Leta € Ax;i.exi_q < a < x;.
It is given that the function f is bounded over the interval [a, b].
= It is bounded in every subinterval Ax;.
Let B;, B, and m; be the infimum of f in the interval [x;_,, a], [a, x;] and
[x;_1,x;] respectively.
Obviously m; < f; and m; < f5,.
Hence
L(P*,f)—L(P,f) = miAxy + myAx, + -+ (@ — x;_1) +
B1(x; — @) + mjpAxjpq + - + muAx, — (MmyAxy + myAx, + -+ +
m;Ax, + m,Axy)

= pr(a —x;—1) + B (x; — @) — my(x; — x;-1)

= pra = Pixi—1 + Bax; — Paax —myx; +myx;4

= fra — P1xi-1 —mua + my a + Box; — fra —
mix; + mix;_4

=a(fy—my) —xi1(By —my) —m; (x; —a) +

= (@ —x-1)(Br —m) + (B —my) (x; — @)
xp>a>xq and By, B =m; =(a—x-1), (x;—a), (B —m;)and
(B, — m;) are positive.
Therefore, L(P*,f) — L(P,f) =0
If P* contains p points more than P, we repeat the above reasoning p
times and conclude that
L(P*,f) = L(P,f)
Similarly, we can prove that U(P*, f) < U(P,f)

B2 (x; — a)

Corollary If a refinement P* of P contains k points more than P and
|f(x)| < K, for all x € [a, b], then

() L(P,f) < L(P,f) <L(P,f)+ 2kKn
(iyup,f)=UP",f)=U(P,f) —2kKu

Proof. . Let P be partition of [a,b] and P* contains just one more point
‘a’ than P.

Leta € Ax;i.exi_q < a < x;.

It is given that the function f is bounded over the interval [a, b].

= It is bounded in every subinterval Ax;.

Let B,, B, and m; be the infimum of f in the interval [x;_,, ], [@, x;] and
[x;_1,x;] respectively.

Obviously m; < B, and m; < f3,.

Hence

L(P*, f) — L(P, f) = myAx; + myAx, + -+ By(@ — x;-1) +

B1(x; — a) + mjp1Axipq + - + muAx, — (myAxy + myAx, + -+
m;Ax,, + m,Ax,)

= prla —x;_1) + Po(x; — a) — my(x; — x;_1)
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= f1a — Bixi—1 + Box; — Bra —myx; + myx;_y

= f1a — Bixi—1 —mua + my a + Box; — P — myx; + myx;_4q
=a(fy—m) —xi1 (B —my) —m; (x; —a) + fo(x; — @)
=(@—x-)(Br—m) + (B —my) (x; — @)

It us given that |f(x)| < K for all x € [a, b], therefore

—-K<m;<p; <K = K=>-m; and K== 2K=>p,—m; or

ZK 2 ﬁl - ml‘ 2 0

Similarly

2K > B, —m; =0

Therefore

L(P*,f)—L(P,f) <2K(a—x;_1) + 2K (x; —a) = 2K(a — x;_1 +

x; —a) = 2K (x; — x;_1)

Therefore

L(P*, ) — L(P, f) < 2KAx;

Let u be the norm of P, hence

L(P*, ) — L(P, f) < 2Kp

Let each additional point is introduced one by one, by repeating the
above reasoning k times, we get

L(P*,f) = L(P,f) < 2Kku =L(P*,f) < L(P,f) + 2Kku

Also, L(P,f) < L(P*,f)

Hence L(P,f) < L(P,f) + 2Kku

Similarly, we can prove that U(P, f) = U(P*,f) = U(P,f) — 2kKu

Darboux Theorem
Theorem 5.2. If f is bounded function on [a, b] then to every £ > 0,
there corresponds § > 0 such that

OHUPH<[ "fdx+ e

(i) LP.f) > [" fdx— e
For every partition P of [a, b] with norm u(P) < 6.

Proof. It is given that f is bounded on [a, b]. Hence there exists « > 0
such that

f(x) <a forallx€|a,b]

Now

fa_bf dx = infU = inf {U(P, f): P is a partition of [a, b]}

Hence for every € > 0 there exists a partition P’ = {x,, x1, X3, ..., X} Of
[a, b] such that

UL <[ f X +28 i (1)

Also partition P’ contains k — 1 points other than a and b.
Let § be a positive number such that

20k = 1)@8 = 28 oo, ).
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Let P be any partition such that P = {x,, x4, %3, ...,x,} With norm
u(P) < 6.
Assume P* be a refinement of P and P such that P* = P U P’
P* be a refinement of P= P* have p — 1 more point than P and also
f)<a
Therefore
UP,f)=U(Pf)=UP,f)—2(p — 1ad (Using previous corollary)
=>UP,f)—2(p—1Dad <U(Pf)
<U(P',f)
< ["fdx+2e (Usingeq (1))
Therefore
UP,f)< [ fdx+ie+2(p—1Das
Using equation (2), we get
UPP,f) < fa_bfdx+%£+%e < fa_bfdx+£

Similarly we can prove that L(P, f) > f_baf dx — €

NOTE

» Tags: If a point t; has been selected from each subinterval I; =
[xi_1,x;] for i =1,2,..,n, then the points are called tags of the
subintervals I;.

» Tagged Partition of I: A set of ordered P = {([x;_1,x;],t;));i =
1,2, ...,n} of subintervals and corresponding tags is called a tagged
partition of I.

5.6 CONDITION OF INTEGRABILITY AND
SOME PROPERTIES OF INTEGRABLE
FUNCTIONS

We already discussed that the bounded function is integrable if upper and
lower integral are equal. Now we try to study the necessary and sufficient
condition for integrability of a function.

FIRST FORM

Theorem 5.3. The necessary and sufficient condition for integrability
of a bounded function f is for every £ > 0 there exists § > 0 such that
for every partition P of [a, b]with norm u(P) < é and U(P,f) —
L(P,f)<e&

Proof. Necessary condition

Let f be a bounded function and integrable over interval [a, b],
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b -b b
Hence [ fdx = [ f dx = [ fdx
Let € > 0 be any positive number.
By Darbaux’s Theorem there exists a positive number § such that foe
every partition P with norm u(P) < 6

U, <[ fdx+2e e (1)
LP,F)> [P fdx =3 i, 2)
= —L(P,f) <= [7 fdX+5 Eoirirrrsrimicirern (3)

By adding inequality (1) and (3), we get
UP,f)—L(P,f) < fa_bfdx+%£—f_bafdx+% e=¢
Hence for every partition P of [a, b]with norm u(P) < &

UPP,f)—L(P,f)<e
Sufficient Condition
Assume for every partition P of [a, b]with norm u(P) < & and

UP, f) = L(P, f) < €t 4)
for any partition P of [a, b], we have

UP, )2 [ Fdx=[ " fdx S U, [ (5)
L) < 7 fdx o= [ fdx < —L(P, )i (6)

Adding inequality (5) and (6), we get
[ fdx—[° fdx <UP,f) - LP,f)
Using inequality (4), we get

[[Pfdx—[° fdx<e

Because ¢ is any arbitrary positive number and also we know that a non
negative number is less than every positive number.

Therefore it should be equal to 0.

ie. [“fdx— [ fdx<e=0
Therefore fa_bf dx = f_baf dx which implies that f is integrable over
interval [a, b].

SECOND FORM

Theorem 5.4. A bounded function f is integrable on [a, b] iff for
every & > 0 there exists a partition P of [a, b] such that U(P, f) —
L(P,f)<e&

Proof. Necessary condition

Let f be a bounded function and integrable over interval [a, b],

Hence [° fdx = [ "fdx=[ fdx
Let € > 0 be any positive number.
As we know that the
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f_baf dx =supremum of lower sums and fa_bf dx = infimum of upper
sums

Hence there exists a partition P’ and P’ such that

UP',f) < fa_bf dx + %8

S UP,F) < J, Fdx+28 i (1)

LP",f)> [0 fdx—=e
=L f)> [/ fdx—3e

1

b n
= [ fdx <L(P )5 E ()
Assume P be the commom refinement of partitions P’ and P" i.e.
P=P uUP”
Therefore
UP,f) SUP',f) <[] fdx+3e (usinginequality (1))
= U(P,f) <L(P",f) +§ £ +§ e=L(P",f) +¢
Therefore U(P, f) — L(P, f) < € for a partition P.
Sufficient Condition
Assume & < 0 be any positive number. Consider P be a partitions such
that

UP, f) = L(P, f) < €uvveeeeeeeee e, 3)
Now for any partition P of [a, b], we have

U, )2 [ fdx =[] fdx S UP, [ (4)

L) < [2 fdx o= [ fdx < —L(P,f)eiesssesinci (5)

Adding inequality (4) and (5), we get
[ fdx—[" fdx<UP,f)-LP,f)
Using inequality (4), we get

[P fdx—[" fdx<e

Because ¢ is any arbitrary positive number and also we know that a non
negative number is less than every positive number.

Therefore it should be equal to 0.

ie. [["fdc— [ fdx<e=0
Therefore fa_bf dx = f_baf dx which implies that f is integrable over
interval [a, b].

Integrability of the sum and difference of Integrable functions

Theorem 5.5. Let f4 and f, are two bounded and integrable function
on [a,b] then f = f; + f, is also integrable on [a, b] and f:f dx =

[y fdx+ [ fo dx
Proof. Let f; and f, are two bounded = f = f; + f, is bounded on [a, b].
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Let P be any partition P of [a, b] such that P = {a = x,, x1, X3, ..., Xy, =
b}.
Let M; and m; are the upper and lower bound of f; respectively and M;’
and m;" are the upper and lower bound of f, respectively in Ax;.
Assume M; and m; are the upper and lower bound of f respectively in
Axi.
Therefore
m{+m{'SmLSMlSMl'+
M o (1)
Multiplying inequality (1) by Ax;, we get
(m; + m{"HAx; < miAx; < M;Ax; < (Mj + M;")Ax;
Adding all these inequalities for i = 1,2,3, ..., n, we get

i=1(mi + m)Ax; < Yoy midx; < Yoy MiAx; < Y7 (M; + M;)Ax;
UP, ) SURP ) FUPL2) oo, )
L(PJfl) + L(P»fz) = L(P,f)
—L(P,f) S —(L(P, f1) FLP,£2)) oo, (3)
Let € > 0 be any positive number.
It is given that f; and f, are integrable. Hence for any partition P there
exists § > 0 such that the norm u(P) < &, we have

UP,£) = L(P, f1) < 5 &.cioiiiiiiicccel (4)

UP,f2) = L(P, f2) < 3&iviiiiiiiice (5)
From (2),(3),(4) and (5), we get
= UP,f) = LP, ) + UP, ) — L(P,f,) <3 +5¢
Therefore
UPP,f)—L(P,f)<e.
Hence the function £ is integrable.
f1 and £, are integrable and € > 0 is any positive number.
Using Darboux’s theorem, there exists § > 0 such that for all partitions P
whose norm u(P) < &, we have

UPA) <[, frdx+5e oo, (6)
And
UP,L) <[ fodx+3e i, (7)

Using inequality (2), we get
[2fdx <UP,f) <UP, f) + UP, f)
Using inequalities (6) and (7), we get
b b b b b
[fde<[ fidc+e+ [ frdx+-e=[ fide+[ fydx+e
As we know ¢ is arbitrary, therefore
b b b
Jfdx< [ fidx+ [ fodx oo (8)
Now replacing f; and f, with (—f;) and (—£,) respectively, we get
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(= dx < [[(—f) dx + [ (—f,) dx

e [ fde> [T fidx+ [ fodXe i 9)
From inequality (8) and (9), we get

[ fdx=[]fidx+ ][] f,dx

Theorem 5.6. Let f, and f, are two bounded and integrable function
on [a,b] then f = f{ — f, is also integrable on [a, b] and f:f dx =

[P frdx—[7f, dx

Proof. Let f; and f, are two bounded = f = f; + (—f3) is bounded on
[a, b].

Let P be any partition P of [a, b] such that P = {a = xg, X1, X2, ..., Xp =
b}.

Let M; and m; are the upper and lower bound of f; respectively and M;’
and m;" are the upper and lower bound of f, respectively in Ax;.

= —M;’ and —m;" are the upper and lower bound of (—f,) respectively in
Axi.

Assume M; and m; are the upper and lower bound of f respectively in
Axi.

Therefore

m;+(—m{)<m; <M; <M+ (— M)

= m{—M{SmlSMlSMl"—
T e (1)

Multiplying inequality (1) by Ax;, we get
(m; — M;")Ax; < mAx; < M;Ax; < (M — m;")Ax;
Adding all these inequalities for i = 1,2,3, ..., n, we get

iz1(mi — M))Ax; < Y7y miAx; < Y- MiAx; < ¥T-1(M; — m;')Ax;
UP,f)SURP, ) —=L(P,fo) oo, 2)
L(P,f1) —U(P,f;) < L(P,f)
~L(P,f) SUP£) = LP, f1) oo, (3)

Let € > 0 be any positive number.
It is given that f; and f, are integrable. Hence for any partition P there
exists § > 0 such that the norm u(P) < &, we have

UP,f) = L(P, f1) < 5 &.ciiiiiiiiiicicccl ()

UCP, f2) = L(P, f2) < 3 & (5)

From (2),(3),(4) and (5), we get

UP,f)—L(P,f) <U(P,f1) = L(P,f) + U(P,f,) — L(P, f1)
=UP.£) = L(P,f) + UP, ) = L(P, fo) <z +5¢

Therefore

U, f)—L(P,f) <e.
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Hence the function f is integrable.

f1 and f, are integrable and € > 0 is any positive number.

Using Darboux’s theorem, there exists § > 0 such that for all partitions P
whose norm u(P) < &, we have

UPA) <[, frdx+5e i, (6)
And

L(P, f) > f:fz dx + %8

= —-L(P,f) < — f: fodx + %s ............... (7)

Using inequality (2), we get

[ fdx <UP,F) < UP.f) — L(P, f)

Using inequalities (6) and (7), we get
[fde<[fidc+ie—[ frdx+ie=[ fidx—[ fdx+e
As we know ¢ is arbitrary, therefore

b b b
Jofdxs [ fidx—[ fodx ..o (8)
Now replacing f; and f, with (—f;) and (—f,) respectively, we get

[P=fdx < [D(~f) dx — [ (~f,) dx

e [ fde> [T fidx— [ fodXee i 9)
From inequality (8) and (9), we get

[ fdx =[] frdx =[] fp dx.

Oscillation: The oscillation of a bounded function f on an interval [a, b] is
the supremum of the set {|f (x;) — f(x2)|: x4, x, € [a, b]} of numbers.

Let M and m be the upper and lower bounds of f on [a, b] respectively.
>m < f(x;) <Mandm < f(x,) <M forall x;,x, € [a, b]

= f(x) — )| <M —m forall x;, X, € [@,b]eeccecceecreceecrerrenrn, (1)
= M —m isanupper bound of {f(x;) — f(x,), forall x;,x, € [a, b]}
Let € > 0 be any positive number, because M is supremum of f.
Therefore there exists y € [a, b] such that

FO)>M =28 i )
Similarly there exists z € [a, b] such that
f(z)>m+ %s ................................................ 3)

From inequalities (2) and (3), we conclude that there exist x,y € [a, b]
such that

fO)=f@>M—Ze-—m—2e=M-m—¢
OrlfW)—f@I>M-—-m—¢e....cooooiiiiiiiii. 4)
From inequalities (1) and (4), we conclude that

M —m is an upper bound and also number less than M —m cannot be
upper bound of given set.

Hence M —m = sup{ |f(y) — f(2)|: v,z € [a,b]}.ceccveverernnn. (A)
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Theorem 5.7. If f and g are two bounded and integrable functions on
[a, b] then the product fg is also bounded and integrable on [a, b].
Proof. It is given that f and g are two bounded therefore there exists a
such tha
|f(x)] < a and |g(x)| < a forall x € [a, b]
= fg)l = IfIlg)| < a.a < a?
It implies that fg is bounded on [a, b].
Let P = {a = xg, X1, X, ..., X, = b} be any partition of [a, b].
Let M; and m; are the upper and lower bound of f respectively and M;’
and m;" are the upper and lower bound of g respectively in Ax;.
Assume M; and m; are the upper and lower bound of fg respectively in
Axi.
Now for all x, x" € Ax;,
FPHE) = (fgx) = fFxN)gx) = fx)g(x)

=fxN)g(x") = fF)g(x’) + fx)gx") —
fOg(x) =g(xNFE) = fO)) + f(x)(g(x") —g(x)
It implies that
IF ) = FD@I = 19N (f ) = F()) + fF)(g(x) — g(x)]

< gD &) = fFEI+ IF I gx') — g ()]

Hence, From inequality (A), we get
M—m<aM' —m')+aM”" —m'"") ... (1)
Let € > 0 be given number and it is given that f and g integrable on
interval [a, b].
Therefore there exists a positive number § > 0 such that for any partition
P with norm u(P) < 6

UP,f)—L(P,f) < % ......................................... (2) and

U(P,g)—L(P,g) < % ......................................... (3)
Now multiply inequality (1) with Ax;, we get
M —m)Ax; < a(M' —m")Ax; + a(M" —m'")Ax;
Adding all these inequalities for i = 1,2,3, ..., n, we get

M —m)Ax; <YijaM' —m")Ax; + Y1, a(M" —m'")Ax;
= Y0 MAx; — X0 mAx; < a(Xho, M'Ax; — Xh, m'Ax) +
a(Xi=y M"Ax; — Y-y m"Ax;)

Therefore U(P,fg) — L(P,fg) < ¢
Hence we conclude that f g is integrable on [a, b].

Theorem 5.8. If f and g are two bounded and integrable functions on
[a,b] and there exists a positive number k such that |g| >
k for all x € [a, b] then the f/g is also bounded and integrable on
[a, b].
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Proof. It is given that f and g are two bounded therefore there exists a
such that

f()|<a andk <|gx)| < a :%2

= |(f/9) )| = If()I/1g)l < a.% <
It implies that fg is bounded on [a, b].
Let P = {a = xg, X1, X, ..., X, = b} be any partition of [a, b].

Let M; and m; are the upper and lower bound of f respectively and M’
and m;" are the upper and lower bound of g respectively in Ax;.

Assume M; and m; are the upper and lower bound of f/g respectively in
Axi.

Now for all x, x" € Ax;,

) e =)@l =

_ |f(x’)g(x)—f(X)g(X)+f(x)g(x)—f(X)g(x’)|
gx)gx")
_ a@(r)-re0)-reo(g(x)-90)
B g(0)g(x")
IF(x)-rel | lg(x")-gCl
= 1g(g| lg (g (x")]
Hence, From inequality (A), we get
M—-—m<a(M — m’).k—l2 +a. (M" — m”).i
Hence
M—m <ZM —m)+-Z(M" —=m") o, (1)
Let € > 0 be given number and it is given that f and g integrable on
interval [a, b].
Therefore there exists a positive number § > 0 such that for any partition
P with norm u(P) < 6

UGP,f) = L(P,f) S 2o o (2) and

UP,g) = L(P,g) S 2o oo 3)
Now multiply inequality (1) with Ax;, we get
(M —m)Ax; < ,:Z—Z (M" —m'")Ax; + % (M" —m'")Ax;
Adding all these inequalities for i = 1,2,3, ..., n, we get
Ti(M —m)Ax; < oy (M —m)Ax + Xy a(M” —m")Ax;
= Yoy MAX; — iy mAx; < - (Thoy M'Ax; — 1oy m'Ax) +
(T M"Ax; — By m Ax;)
= U(P,fg) —L(P,fg) < z(UP, /) = L(P, ) +:5(UP,9) — L(P, )

a ek? a ek?
— k? 2a k2 2a

Therefore U(P,fg) — L(P,fg) < ¢

1
x)|

| >~ forall x € [a, b]

=122

f(x)  fe
gx')  gx)

_ |f(x’)g(x)—f(x)y(x’)|
g g(x")
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Hence we conclude that f /g is integrable on [a, b].

Theorem 5.9. If f is bounded and integrable functions on [a, b] then |f]
is also bounded and integrable on [a, b] and also |f;f dx| < f:lfl dx.
Proof. It is given that f is bounded therefore there exists a such that
|f(x)| < a forall x € [a, b]
It implies that the function |f| is bounded.
Since f is integrable, for a given positive number & > 0 there exists a
partition P = {a = x,, x4, X3, ..., X, = b} of [a, b] and such that
UP,f)=L(P,f) <€ .eviviviiiiiiinnnn (1)
Let M; and m; are the upper and lower bound of f respectively and M;
and m; are the upper and lower bound of g respectively in Ax;.
Now for all x, x" € Ax;,
[1£1G0) = 1F 1] = [IF GO = IfF D] < If () = F I
SM =M S M =M (2)
Now multiply inequality (2) with Ax;, we get
(M; —mpAx; < (M; —m;)Ax;
Adding all these inequalities for i = 1,2,3, ..., n, we get
=1 (M —mpAx; < ¥1_1(M; —my)Ax;
= Yi=1 MiAx; — Yoy miAx; < Yoy My Ax; — Y1-g mAx;

=> U, |fD—-LP,IfD<UPf)—LEP.f)

Using inequality (1), we get

UP,|f) —L(P,|f]) < €.Hence |f| is integrable on [a, b].

We Know that if f and g are bounded and integrable on [a, b] such that
f = g then

[ fdx<[ gdxwhenb<a
Hence [ f dx < [ |f] dx
b b b
and — [7 f dx = [J(~f) dx < ["|f| dx

b b
= |17 f dx| < [ 11 ax
NOTE: The Converse of the above theorem is not true. For example, the

function
Flx) = { 1, when x is rational
—1, when x is irrational

Here [["fdx=b—abut [ fdx=a—b

It implies that f is not integrable.

But |[f(x)| =1 for all x, therefore f: |f] dx exists and equal to b — a.
Here we observe that f| is integrable.
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CHECK YOUR PROGRESS

(CQ5) If f and g are two bounded and integrable functions on [a, b] then
the product fg is also bounded and but not integrable on [a, b]. (T/F)

(CQ 6) The oscillation of a bounded function f on an interval [a, b] is the
supremum of the set {|f(x1) — f(x2)|: x1, x5 € [a, b]} of numbers. (T/F)
(CQ 7) Upper Darbaux sum=

(CQ 8) Lower darbaux sum=

5.7 RIEMANN SUM

Riemann Sum: Let P’ is the tagged partition then the Riemann sum of a
function f : [a, b] = R corresponding to P’ can be defined as

S(f,P") = Ximq f (@) (g — xi-4)

If the function f is positive on [a, b], then the Riemann Sum is the sum of
the areas of n rectangles whose bases are the subintervlas I; = [x;_q, x;]

and whose heights are f(t;). See Fig 5.2.
T

N

N
S

+ |mmmm e = =

X
1 X1 X3 t3 3 Xp_1

Fig 5.3. A Riemann Sum

Theorem 5.12. If f:[a, b] = R is continuous, then f is Riemann
integrable.

Proof. Let € > 0 be given.

Now f is continuous on [a, b] = It is also uniformly continuous.
Therefore there existsa & > 0 such that |f(x) — f(y)| < ﬁ whenever
|x —y| < 6.

For any large integer N we assume an equally spaced partition x;, = a +

kh, with h = bN;a and k = 0,1,..., N. We choose N so large that% < 8.
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Now function £ is continuous on any of the intervals [x,_q, xi],
Hence there must exist points cy,dy € [xx_1,xx] Where f attains its
minimum and maximum, respectively, i.e.

fler) < f(x) < f(dy) for all x € [xg_q, xi].
Let s,t:[a,b] » R are two step functions such that on each interval

[Xk—1, %)
s(x) = f(cr) and t(x) = f(dy).

Therefore, we conclude that s(x) < f(x) < t(x) for some X €
[x%c—1, k)

Since |¢c, — di| < b;,—a < § thenforany x € [x;_q, x1)

t(x) —s(x) = f(dy) — fex) < ﬁ-

This also holds for each interval [x,_,,x;,) (k=1,2,...,N)

Hence we shown that 0 < t(x) — s(x) < ﬁ forall x € [a, b]

Now compare the integrals of ¢ and s and since t < s + —
b b b
Then [ t(x)dx < |, (s(x) + ﬁ) dx = [ sdx+e

5.8 INTEGRATION AND DIFFERENTIATION

Theorem 5.13. If a function f is bounded and integrable on [a, b] then
the function F defined as F(x) = f:f(x)dx is continuous on [a, b]

and also if f is continuous at a point c of (a, b) then F is derivable at ¢
and F'(c) = f(o).

Proof. It is given that f is bounded, therefore there exists a positive
number a > 0, such that

lf(x)| < a for all x € [a, b]

If x" and x'" are two points of [a, b] such thata < x’ < x” < b, then
|[F(x'") — F(x")| = |f;, f(x)dx| <a(x"—x" (From Deduction
3)

Hence for a given € > 0,

[F(x")—F(x)|<e if|x" —x'| < 2

Therefore, F is continuous on [a, b].

Let f be continuous at a point ¢ of (a,b), therefore for any positive
number £ > 0 there exists § such that

|f(x) — f(c)| < e whenever |x —c| <6

Assumec -6 <ky <k, <t<c+9$§
Therefore
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F(ky) — F (k)
Ky — ks

1 ([l
—f(C)‘ < ‘m ) (f(x) = f(©))dx

1 2
<= r@-foldx<e
2 11 Jg,

Hence F'(¢) = f(c).
This theorem sometimes known as the First Fundamental Theorem of Integral
Calculus.

NOTE:
Continuity of f at any point of [a,b] implies derivability of F at that
point.

Fundamental Theorem of Calculus

Theorem 5.14. A function f is bounded and integrable on [a, b] and
there exists a function F such that F' = f on [a, b], then

2 fodx = F(b) - F(a)

Proof. It is given that F' = f is bounded and integrable on [a, b].
Therefore for every given € > 0 there exists a positive number § such that
for every partition P = {a = x,, x4, X3, ..., X, = b}, with norm u(P) < 6.

nF(t) Ax; — fjf(x)dx| € E (1)

For every choice of points ¢t; in Ax;.

Because we have freedom in the selection of points t; in Ax;., we choose
them in a particular way as follows:

By Lagrange Mean value theorem, we have

F(xl) - F(xi_l) = F,(ti)Axi (l = 1,2, ,n)

Hence F(x;) — F(x;_1) = f(t)Ax;

It implies that Y/~ f(t;) Ax; = Y7o (F(x;) — F(x;_1)) = F(b) — F(a).
From inequality (1), we get

[ Fx)dx = F(b) - F(a)

This theorem is also known as the Second Fundamental theorem of
Integral Calculus.

CHECK YOUR PROGRESS

(CQ9) If f:[a, b] = Ris continuous, then f is Riemann integrable. (T/F)
(CQ 10) Fundamental theorem of calculus states that
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5.9 MEAN VALUE THEOREM

First Mean Value theorem

Theorem 5.15. A function f is continuous on [a, b], then there exists a
number k in [a, b] uch that f:f dx = f(k)(b— a)

Proof. It is given that f is continuous on [a, b], therefore f is Riemann
Integrable on [a, b].
Let M and m are the upper and lower bound of f on [a, b] respectively.
As we know that
m(b—a) < [, f dx < M(b— a)
Hence there exists a real number y € [m, M] such that

b
J fdx=y(b-a)
Because f is continuous on [a, b], it attains every value between m and M.
Hence, there exists a number k € [a, b] such that f (k) = y.

Therefore, [, f dx = f(k)(b — a)

5.10 SUMMARY

In this unit, we discussed about Riemann integral and its properties. Also
we proved some important theorem related to Riemann integral.

5.11 GLOSSARY

Set- a well defined collection of elements

Continuity- curve can be drawn without picking up the pencil
Derivative- the rate of change of a function with respect to a variable
Integral- a function of which a given function is the derivative.

rwnh e
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5.14 TERMINAL QUESTION

Long Answer Questions

(TQ 1) If fis continuous and positive on [a,b] then show that f:f dx is
also positive.
(TQ 2) Prove that A function f is continuous on [a, b], then there exists a

number k in [a, b] uch that [ f dx = f(k)(b — a)

b sinnx

(TQ 3) Show that limI,, where I, = [
equal to =
(TQ 4) State and Prove the First Fundamental Theorem of Integral

Calculus.
(TQ 5) Explain Riemann Sums.

" dx,n € N exista and

Fill in the blanks
b .1 1 .
(TQ6) fa (Zx sin—— cos ;) dx is

0, when x is rational
(TR7) f(x) _{ 1, when x is irrational

then f(x) is

5.15 ANSWERS

cQnT CQ2)F CQ3T
CQAHUMP.f)=LPf) |[(CQ5F (CQe)T
(CQT7) Y M; x; (CQ8) Y m; x; (CQYT
(TQ 6) sin 1. (TQ 7) not integrable
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UNIT 6: RIEMANN-STIELTJES INTEGRAL

CONTENTS
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6.3  Riemann -stieltjes integral
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6.5 Integral as a limit of sum

6.6  Relation between Riemann integral and Riemann-stielges

integral
6.7  Summary
6.8  Glossary

6.9 References

6.10 Suggested Readings
6.11 Terminal Questions
6.12 Answers

6.1 INTRODUCTION

The learners will recall from elementary calculus that to find the area of
the region under the graph of a pose function f defined on [a, b], we
subdivide the interval [a, b] into a finite number of subintervals, say n,
the it subinterval having length Ax;, and we consider sums of the
form ¥, f(u;)Ax; where u; is some point in the i" subinterval.
Such a sum is an approximation to the area by means of rectangles.

If f is sufficiently continuous in [a, b]. The two concepts, derivative
and integral, arise in entirely different ways and it is a remarkable fact
indeed that the two are intimately connected. If we consider the
definite integral of a continuous function f as a function of its upper
limit, say we write fiilf(ui)Axl-.. Then F has a derivative
and F'(x) = f(x). This important result shows that differentiation and
integration are, in a sense, inverse operations.

In this unit we study the process of integration in some detail. Actually
we consider a more general concept than that of Riemann namely
Riemann-Stieltjes integral, which involves two functions f and h.

The symbol for such an integral f;f(x)d (h(x)) and the usual
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Riemann integral occurs as the special case in which h(x) = x.
Whenh has a continuous derivative, the definition is such that the
Stieltjes integral becomes the Riemann integral. However, the Stieltjes
integral still makes sense when h is not differentiable or even when h is
discontinuous.

Problems in physics which involve mass distributions that are partly
discrete and partly continuous can also be treated by using Stieltjes
integrals. In the mathematical theory of probability this integral is a
very useful tool that makes possible the simultaneous treatment of
continuous and discrete random variables.

In previous unit we studied about Riemann integral. In this unit we will
study Riemann -Stieltjes integral.

6.2 OBJECTIVES

In this Unit, we will discussed about

1. Basics of Riemann-stieltjes integral

2. Important theorems of Riemann-stieltjes integral

3. Relationship between Riemann-stieltjes integral and Riemann integral

6.3 RIEMANN-STIELTJES INTEGRAL

Now we will discuss the definition of Riemann- Stieltjes integral of a
function f on an interval [a, b].

Let f: [a,b] » R be bounded function and a« be a monotonically
increasing function on [a, b].

Let P = {xy,X%1, .., Xn_1,X,} SUCh that a=xy < x; < ... <

Xn—1 < x, be any Partition of [a, b] . then

Aa; = a(x;) —a(x;i—y), =123, ...,n

According to the definition of monotone function a(a) and a(b) are

finite

therefore h is bounded on [a, b],

Because h is monotonically increasing function then clearly Aa; >

0,i = 1,2,3,..,n

Let M; and m; be upper bound and lower bound of f(x) in interval

[xi-1, %]

ie. M; =sup f(x),m; =inf f(x)wherex € [x;_4,x;]) for each

P € P([a,b]).
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Now we define

UP,f,a) =X" M;Aa; and L(P, f,h) = Y11 m; Aq;

and U(P, f,a) and L(P, f,a) are called the Upper and Lower Riemann
Stieltjes sums respectively.

Also

J7” fd(h(a)) = infU(P, f,a) and [* fd(a(x)) = sup L(P, f, )
where the inf and the sup are taken over all partitions P of [a, b], are
called the Upper and Lower Riemann Stieltjes integrals of f over [a, b]
respectively.

fa_bf(x)d(a(x)) = f_baf(x)d(a(x)) then fis said to be Riemann
Stieltjes integrable integral of f with respect to @ over [a,b] and we
write f € R(a).

It is also denoted by f;f(x)d(a(x))

If we put a(x) = x then we conclude that the Riemann integral is the
special condition of the Riemann- Stietjes integral.

Theorem 6.1. Let f: [a,b] - R be a bounded function and a be a
monotonically increasing function on [a, b]. Consider P be any
Partition of [a, b]. Then U(P, f,a) and L(P, f, h)are bounded.

Proof. It is given that fis bounded, therefore there exist two real
numbers m and M such that m < f(x) < M where a <
x <b
Therefore for every partition P of [a, b] we have
m<m; < M;< M
Multiplying inequality (1) by Ah;, we get
mAa; < m; Aa; < M;Aa; < MAa;
Adding all these inequalities for i = 1,2,3, ..., n, we get

LomAa; < YL myAa; < Vi My Aa; < YL, MAa;
zm(a’(b) - a(a)) <L f,a) U, f,a) < M(a(b) — a(a))
Hence L(P, f,a) and U(P, f, a) form a bounded set.
NOTE
By the definition of lower and upper Riemann-Stietjes integrals we
conclude that from above theorem that the upper and lower integrals are
defined for every bounded function f are bounded also.

Theorem 6.2. Let P* be a refinement of the partition P of [a, b], then
L(P,f,a) < L(P",f,x)andU(P",f,a) < U(P,f,).
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Proof. Let P = {x¢,xq, ., Xn_1,Xp }SUChthata = xy < x; < ... <
Xn_1 < x, be any Partition of [a,b].and P* the refinement of P
contains only one point x" more than P such that x;_; < x* < x; where
x;_1 and x;_, are two consecutive points of P.
Let m;,m;" and m are the infimum of f(x) in [x;_;,x*], [x*,x;] and
[xi_1,x;], respectively Clearly we can see that
m; < mjandm; < m;'.
Therefore
L(P*f,a) — L(P.f, )
=mla(x") —alx-)] + m'[a(x) — alx")] — mylalx;) — alx;_1)]
=mila(x) — alxi-1)] + mi'[a(x) — a(x")] — mlalx;) — alx") +
a(x") — a(xi-1)]
= mi[a(x") — alxi-))] + mj'[a(x) — a(x)] —mlalx) — a(x")] -
m[+m; [a(x™) — a(x;-1)]
= mi[a(x") — alx;i-))] + mj'[a(x) — a(x)] —mlalx) — a(x")] -
m; [a(x™) — a(x;i_1)]
= (m; —m)(a(x*) — alx;—1)) + (m{ = m)(alx) — a(x*)) =0
Therefore L(P*, f,a) < L(P,f,a)
Let each additional point is introduced one by one, by repeating the above
reasoning k times, we get same result.
Similarly, we can prove that U(P*,f ,a) < U(P,f , ).

Theorem 6.3. If P; and P, are any two partitions of [a, b] then
L(Py,f,a) < UPy f,a)and L(Py, f,a) < U(Pq,f, Q).

Proof. Consider P, and P, be any two partitions of [a, b]. Let = P; U P,
, then P is the common refinement of P; and P,. Then

L(P,f,a) < L(P,f,a) < U(P,f,a) <

UPLFr@) .ol (1)
and
L(P,f,a) < L(P,f,a) < UP,f,a) < UPpf,Q) ceveeeerenn.. )

Comparing inequalities (1) and ((2), we get
L(Py, f,a) < UP,, f,a)and L(Py, f,a) < U(Py, f, Q).

NOTE:
/7 Feod(a)) < [7° fda)

Theorem 6.4. A function f is a Riemann Stieltjes integrable with
respect to h iff for every £ > 0 there exists a partition P such that
UP,f,a) —L(P,f,a) <e&

Department of Mathematics
Uttarakhand Open University 110



Advanced Real Analysis MAT502

Proof. Let P be any partition of [a,b] such that.
P = {xqg,%Xq, ) Xn_1,Xn }

Then L(P, f,a) < f_baf(x)d(a(x)) < fa_bf(x)d(a(x)) <U(P,f, a)

It implies that

U, f,a) < [7 FOOA(@()) v (1)
LP,f,a) 2 [° F FGA(a(0)eiiiieriin, )
= —L(P,f,a) < —f_baf(x)d(a(x)) ........................................ 3)

By adding inequality (1) and (3), we get
UPP,f,a) = L(P,f,a) < fa_bf(x)d(a(x)) - f_baf(x)d(a(x))

Now It is given that for any positive real number &
UP,f,a) —L(P,f,a) <¢

Hence [ f(x)d(a(®) - [7, f)d(a(x) < e

Because ¢ is any arbitrary positive number and also we know that a non
negative number is less than every positive number.

Therefore it should be equal to 0.i.e.

[ f@d(at) - 2, f@d(a@) =0

Hence [ °f(x)d(a(®) = [’ f()d(a(x)) which implies f is a
Riemann Stieltjes integrable with respect to a.

Converse

Let f is a Riemann Stieltjes integrable with respect to h.

Hence [ f(x)d(a(®) = [7 fF)d(a() = [} fF()d(a(x))

Let € > 0 be any positive number.

By Definition of Riemann Stieltjes integrale there exists two partitions P;
and P, such that

UL f,a) < [, fOA(@(x)) + 58 oo (1)

LPs, f,0) > 7 FOOA(@00) =3 € oovrveorerenan @)

Consider a partition P such that P = P; U P; be the common refinement of
P; and P,.

Then U(P,f, a) S U(PllfP Qf)
Using inequality (1), we get

U, f,a) < [, FOA(()) + 2 covoveiieieecee, 3)
Similarly L(P, f,a) = L(P,, f, @)
LP.f,@) > 7 f)d(a(x)) —¢
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=—L(P,f,a) < — f_baf(x)d(a(x)) +% et (4)
Adding inequality (3) and (4), we get
U(P,f,(l) - L(P,f,(l)
< fa_bf(x)d(a(x)) + %e - f_baf(x)d(a(x)) +% £
=&
Hence U(P, f,a) — L(P,f,a) < ¢

Theorem 6.5. If f € R(a) and if t; is arbitrary pointin [x;_4, x;], then
Ly fAa; — [ f()d(a(x)

<&

Proof. Itis giventhat f € R(a), therefore for any given € > 0

UP,f,a) —=L(P,f,a) < € .ovvvriiiiiiiiiiaiinnn, (1)
Let P be any partition P of [a, b] such that P = {a = xg, X1, X2, ..., Xp =
b}.

Let M; and m; are the upper and lower bound of f respectively and t; is
arbitrary point in [x;_, x;],

L(P,f,a) <Y, f(t)Aa; <U(P,f,a)

SIP @) A S U, f,@) s (2)

and L(P, f, @) < [2 f()d(a(x)) < U(P, f, @)

= L(P,f,0) < [ f(x)d(a(x))

= — [ F0)d(a(x)) € —L(P, f, @) covcrsvrirein 3)
Adding inequalities (2) and (3), we get

=1 f(t) Da; — f:f(x)d(a(x)) <U(P,f,a)—L(P,f,a) <& (from
inequality (1))
Therefore

el f(t) Aa; — f:f(x)d(a(x))| <e€

Theorem 6.6. Let f be a continuous function on [a, b] and function «
be monotonic increasing on [a,b] then f is a Riemann Stieltjes
integrable with respect to a on [a, b].

Proof. Let € > 0 be any positive number.

Now we choose > 0 such that a(b) — a(a) < %
It is given that f is continuous in theinterval [a, b] therefore it is uniformly

continuous on [a, b], So there existsa § > 0 such that
| f(x)— f(y)| < n whenever |x — y| < é forallx,y € [a,b].
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Let P be any partition of [a, b] such that. P = {x,, x4, ..., Xn—1, Xp } SUCh
that
M; =sup f(x)and m; =inff(x) (xi-1 < x <x;)
then Ax; < & forall i, therefore
From inequality (1), we get
Mi—m<n (=1..,n)
Hence
U(P,f, (l) - L(P,f, (l) = ?:1(Mi - mi)Aai
<n(a(a) - a(b))
< 77% <e

Therefore f is a Riemann Stieltjes integrable with respect to a on [a, b].

CHECK YOUR PROGRESS

(CQ 1) Let f: [a,b] » R be a bounded function and a be a
monotonically increasing functionon [a, b]. Consider P be any Partition
of [a, b]. Then U(P, f, «) and L(P, f, h) are bounded. (T/F)

(CQ 2) If feR(a) and if t; is arbitrary point in [x;_;,x;], then
L ftDAe; — [ Fd(a()| > & (TIF)

(CQ 3) If P; and P, are any two partitions of [a, b] then L(P;, f,a) <
U(P, f,a)and L(P,, f,a) < U(Py, f,a).(TIF)

6.4 SOME IMPORTANT THEOREMS

Theorem 6.7. a)lf f4, f2 € R(a) on [a, b], then f1 + f, € R(a) and

21+ f@ d(@®) = [2 f1(0) d(a@) + [F f2(0) d(a(x))

b) If fi,f€R(@) on J[abland f;(x)< fo(x)forallxce
[a, b] then

2 F100 d(a®) < [2 f2(0) d(a(x)

¢)If f € R(@) on [a, b] and k is a constant then cf € R(a) and
[2ehHx) d(a@) = c [2 fx) d(ax)

d) If feR(a) on [a,b] and if a <k < b then f € R(a) over [a, k]
and [k, b] and

[ d(a@®) + [ f) d(a@) = [) f(x) d(a(x))
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Proof. () Let f;, f, E R(@)on[a,bland f = f; + [
Clearly f = f; + f, is bounded on [a, b].
Let P be any partition P of [a, b] such that P = {a = xg, X1, X2, ..., Xp =
b}.
Let M; and m; are the upper and lower bound of f; respectively and M;’
and m;" are the upper and lower bound of f, respectively in Ax;.
Assume M; and m; are the upper and lower bound of f respectively in
Ax;.
Therefore m; <m;" and M; < M/’
Multiplying inequality (1) by A«;, we get
(m; + m{)Aa; < mjAa; < M;Aa; < (M + M{)Aq;
Adding all these inequalities for i = 1,2,3, ..., n, we get
im1(mi + miDAa; < Y- ymida; < ¥1- MiAa; < Y1-1(M; + M;")Aa;

=>L(P,f1,a) + L(P,f,a) < L(P,f,a) <U(P,f,a) <U(P, fi,a) +

U(P,fz,(l)

UP,f,a) SUP,f1,0) FUP, fo,®) coneiriiiieiiiiiiiieeieea, (2)
L(P,fl,(l) + L(Pleia) S L(P,f,(l)

—L(P,f,a) < —(L(P,f1,@) + L(P, f5,@)) ceoeeriiiiniiiiiiiiiaaann, 3)

Let € > 0 be any positive number.
Itis giventhat f;, f, € R(a). Hence there exists partitions P; and P, such
that

U(Py, fi, @) = L(Py, fi, @) < ¢ and

1
U(PZ'fzra) - L(Pz,fz,d) < Ee
Let P = P, U P, then
1
U(P, f1,0) = L(P, f1,@) <& oo, 4)

UCP, fr@) = L(P, f2, @) < S€.oiviiiiiiccici (5)
From (2),(3),(4) and (5), we get
UP,f,a) = L(P,f,a)
<UP fr,0) +UP, fo,0) = (L(P, f, @) + L(P, f, @)
=UP, fr,a) =L(P, f1,a) + U(P, fo, @) = L(P, f, @)
< %e + %e
Therefore, U(P,f,a) — L(P,f,a) < €.
Hence the function f € R(a).
Since the upper integral is the infimum of upper sums, hence there exists
partitions P; and P, such that

UP,f@) <[] fida+ie and U(P, fo,0) < [ f dar +3e
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If P be a partition such that P = P; U P,, then

U, f,a) < f;fl da + %e ............... (6)
and
U(P, fra) < f;fz da + %8 ............... (7)

Using inequality (2), we get
[} fda <UP,f,@) < U(P, f,@) + U(P, fy, @)
Using inequalities (6) and (7), we get

b b b b b
fafda<faflda+%8+faf2da+%e=faf1da+faf2da+e
As we know ¢ is arbitrary, therefore

b b b
J,fda< [ fida+ [ foda ..o (8)
Now replacing f; and f, with (—f;) and (—f,) respectively, we get

[ (=) da < [ (~foda + [ (~f,) da

e [ fda> [l frda+ [ fod i 9)

From inequality (8) and (9), we get

[, fda =[] fi da+ [ fda

(b) Similarly we can prove that [} f da = [ f, da + [, fyda

Let P be any partition of [a, b] and
fx)=fL(x)—fi(x) = 0forallx €[a,b] and a monotonically
increasing function on [a, b] then

Aa; = a(x;) —a(x;_,) = 0.

Also if m; =inff(x) where a < x;_1 < x < x; < b, then

L(P, f,a) = 0. Therefore f_baf da =supL(P,f,a) =0

Therefore f_baf da = f: fo da — f: fida = 0.

Hence f; foda = f; frda.

(c) Let f € R(a) on [a, b] and k be a constant.

If k = 0 then the proof is trivial, but if k # 0 thensay k > 0

f € R(a) then for given € > 0 there is a partition P of [a,b] i.e. P =
{a = x4, x4, x4, ..., X, = b}such that

UP,f,a) - L(P,f,a) < €/K covvvveiiiiiiiiiiiiinn, (10)

Now (kf)(x) = kf(x), therefore sup(cf)(x)=csupf(x) and
inf(cf)(x) = cinf f(x) of [a, b] which implies
UP,kf,a)=kU(P,f,a)and L(P,kf,a) = kL(P, f,a)

Therefore
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UP,kf,a) —L(P,kf,a) =kU(P,f,a) —kL(P,f,a) =
k( UP,f,a) — L(P,f, a))
From inequality (10), we get
UP,kf,a) —L(P,kf,a) <k £< £
Therefore kf € R(a)
Similarly when k < 0 then kf € R(a).
(d) It is given that f € R(a) for given & > 0 there is a partition P of [a, b]
i.e. P = {a = xy, xq, X5, ..., X, = b} such that
y UPf,) —L(P, f,a) < € oo (11)
Where U(P, f,a@) = X1-1 M;Aa;  and M; is upper bounds in Ax; and
L(P,f,a) =Y1-imAa; and m;is lower bounds in Ax;
Letx, = k,thenU(P,f,a) = Y1-1 M;Aa; + Y-, M;Ac; and
L(P,f,a) = Xi-1mida; + X1, m;Aa;.
Therefore
U(P,f,a) = L(P,f,a) = X1=1(M; — mp)Aa; + X1--(M; — m;)Aa;
From inequality (1) we get that
1=1(M; — m)Aa; + Y1, (M; — m)Aa; < €
It implies that 7, (M; — m;)Aq; < e and Y-, .(M; — m))Aaq; < €
Which implies U(P,f,a) —L(P,f,a) <€ on [a,k] and U(P,f,a) —
L(P,f,a) <& on [k,b].
Thus f € R(a) on [a, k] and [k, b]
We already prove that if t; is arbitrary point in [x;_4, x;] of [a, b]then

w1 f(t)Aa; — f;f(x)d(a(x))l <eg
Now f € R(a) on [a, b], [a, k] and [k, b], therefore for € > 0, we have

St ey &A@ — [ f(0)d(a@)| < Son [a,b].....c......... (12)
St ary FDAa; = [ Fd(a@)| <5 on [a k] ,oooo.o... (13)
Sy ooy DA = [ F)d(a(@)| <5 on [k bl....ooooooo. (14)
Therefore

[ F@d(a) = (J1 f0a(at) + [ F@d(a@))|

L f@d(a() = (f; FEd(a)) + fkbf(x)d(a(x))) ¥
Yiea qaxn f @A + X (epopy f EDAQ; — Xiq (apy f () A
(f FOOA(a()) = By oy (DA ) + B0y (o F(E)A; —
[¥FQA(al)) + Biy gy f () A — f,ff(x)d(a<x>))|

< S o f(DAG = [ FGIA(@CO)| + |S0y s £ (€A -
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[ F@d(@@)| + |8y e f A — [, F)d(a())|
From inequalities (12), (13) and (14), we gert
[ f@d(a@) - ([ Fed(a@®) + f, fad(a@))| <S+2+

€
-<¢€
3

As we know ¢ is arbitrary then letting € — 0, we get

J2 F0d(a(0) = ([ Fd(a) + [ Fd(alo))| =0
= [ f@d(a@®) = ([ f@d(a@®) + f; f@d(a@®)) =0
> [P f0d(a®) = [ Fd(a@) + [ fod(a)

Theorem 6.8. a) If f € R(a) on [a, b] then |f| € R(a) and

|f, F@ d(a)| < [If 0] d(a)
b) If f € R(a;) and f € R(«,), then f € R(a; + a5) then

2 F@ d((ar +az) () = [ f@) d(ay (0) + [, f(x) d(a; (1)
c)If f € R(@) on [a, b] and k is a constant then f € R(ka) and

b b
[ rea(tarc) =k [ e d(aw)

Proof. a) It is given that f is bounded therefore there exists k such that
|f(x)| <k forall x € [a,b]
It implies that the function |f| is bounded.
Since f € R(a) on [a,b] and a be a monotonically increasing function
on [a, b].
Then for a given positive number & > 0 there exists a partition P = {a =
Xo, X1, X2, ..., Xy = b} Of [a, b] and such that
UP,f,a) —=L(P,f,a) < € .o, (1)
Let M; and m; are the upper and lower bound of f respectively and M;
and m; are the upper and lower bound of g respectively in Ax;.
Now for all x, x" € Ax;,
[1F1C0) = IF 1| = [IF G = If W] < If () = fFO)
SM =M S M =M (2)
Now multiply inequality (2) with Aa;, we get
(M; —mpAAa; < (M; —m;)Aq;
Adding all these inequalities for i = 1,2,3, ..., n, we get
=1 (M —m)Aa; < ¥T_1(M; —my)Aa;
= Yiog MijAa; — Y1y mide; < YT M; Ae; — Y- miAa;
= U(P,Ifl,a) —L(P,Ifl,a) <U(P,f,a) — L(P,f,a)
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Using inequality (1), we get
U(P,|fl,a) — L(P,|f|,a) < e.Hence |f| € R(a) On [a, b].
We Know that if f g € R(a) on [a, b] such that f < g then
f:fdxsf:gdxwhenaSb
Hence fabf dx < f(f |f| dx

b b b
and — [ f dx = [ (=f) dx < [ If] dx

= |[7f dx| < [ If| dx

b) It is giventhat f € R(a;) and f € R(a;) then for given € > 0 there
exists partitions P;

and P, of [a, b] such that

U(Py, f,a1) — L(Py, f,aq) <§ and U(Py, f,az) — L(Py, f,a3) < g

If P = P; UP, then

UP,f,a1) = L(P, f, @) < oo (3) and

UP,f,a3) = L(P,f,05) <= oo (4)

Leta = a; + a, and M; be upper bound of f in Ax;, thereore

UPP,f,a) = Xiea Mi[ a(x) — a(xi)] = Xisi Mi[ (@ + az)(x;) —
(a1 + az)(xi-1)]

= Yici Mil oy () — a1 (x- )] + Xitq M ap(x) — a2 (x;-1)]
Therefore, U(P, f,a) = U(P,f,a;) + U(P,f,ay),

Similarly L(P, f,a) =L(P,f,a;) + L(P,f,a,),

So, UP,f,a) = L(P,f,a) = [UP,f, 1) + U(P,f,a3))] -

[L(P,f,a1) + L(P,f,a)]
From equation (3) and (4), we get

UP,f,a) — L(P,f,a) <§+§< €

Therefore, f € R(a) i.e.f € R(a; + ay)

[} f da = inf UP,f,@) = inf{ UP, f,ay) +U(P,f, @)}
>infUP,f,ay) +inf UP, f,a,)

[ fda> [ fday+ [ fday oo (5)
Similarly
f;f da =supL(P,f,a;) < f;f da; + fff day ..ccoooeon.. (6)

From inequalities (5) and (6), we get

[, fda =] fda + [, f da,
(c) Similarly we can prove (c) part.
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6.5 INTEGRAL AS A LIMIT OF SUM

Integral as a limit of sum: Let P = {xy,xq,..., x5} sSuch that
a=xy< x < ..< x,< b be any Partition of [a,b] and ¢; €
[xi_1,x;]. Assume the sum

SP,f,a) = Xiz f(t)Aa;

S(P,f,a) converges to X as u(P) - 0,i.e.lim,py,o S(P, f,a) =X if
for every € > 0 there exists § > 0 such that [S(P,f,a) — X| < ¢, for
every partition P with mesh u(P) < & and every choice of t; in Ax;.

Theorem 6.9. If limy,p)oS(P,f,a) exists then f € R(a) and

limu(p)_,o S(P,f, a) = f:fd(l

Proof. Let lim,p)_,o S(P, f, a) exists and is equal to X.

Therefore for every € > 0 there exists § > 0 for every partition P =
{x0,x1, ..., Xy} With mesh u(P) < & and every choice of t; in Ax; such
that

IS(P, f, @) — X| <§ ie. ‘f <SP, f,a)-X <§

OF =+ X <SP, f,@) <4 XKoo (1)
Assume M; and m; are the upper and lower bound of f respectively in
Ax; and let the points t; € Ax; therefore

m; < f(t;) < M;

Multiplying inequality (1) by Aa;, we get

m;Aa; < f(t)Aa; < M;Ax;

Adding all these inequalities for i = 1,2,3, ..., n, we get

Yicimiba; < YT f(t)Aa; < Yis, MiAa;

> LPP,f,a) <SP, f,a) SUP ) oo, )

From inequalities (1) and (2), we get

_78+X <L(P,f,a) <UP,f, a) <§+X

ie. _2—8+X < L(P,f, a)
—L(P,f,@) <Z=Xoooiiiiin (3)

and U(P,f,a) <=+ X oo, (4)
Adding inequalities (3) and (4), we get
UP,f,a) —L(P,f,a) <§+X+§—X <e
It implies that f € R(a) over [a, b].
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Since S((P,f,a) and f:fda lies between U(P, f,a)and L(P, f,a).
Therefore
S(P,f,a) SUPf,a) covvieiiiiiiiiiiiiien, (5) and

LP.f,a) < [ fdaie — [ fda < —L(P,f, @)oo, (6)
Adding inequalities (5) and (6), we get

S((P,f,@) = [, fda < U(P,f,a) = L(P,f,a) < ¢
It implies that limpy_o S(P, f, @) = f(ff da

Ex. 6.1. A function a increases on [a, b] and it is continuous at t
where a < t < b. Function f is defined such that

_ (1, whenx =t
f(x) = {0’ whenx =+t Then prove that f € R(a) over [a, b] and
[P fda=o.

Sol. Let P be any partition of [a,b] such that
P ={a = xy,xq,%x5,..,X, = b}and lett in Ax;.

It is given that function « increases on [a, b] and it is continuous at t.
Therefore for € > 0 we can choose & > 0 such that

Aa; = a(x;) — a(x;—1) < & whenever |x; —x;_41| <6

Let P be any partition with u(P) < &, Now

UP,f,a) =X MAa; = Aa; and L(P, f, @) = Yi=; miAa; = 0
Therefore over all the partitions P with u(P) < 6

fa_bf da =inf U(P,f,a) =0 = sup L(P,f,a) = f_baf da

which implies f € R(a) and [ f da =0

6.6 RELATION BETWEEN RIEMANN
INTEGRAL AND  RIEMANN-STIELGES
INTEGRAL

Theorem 6.10. Consider a increases monotonically and a' € R[a, b].
Let f be a bounded real function on [a, b]. Then f € R(«) if and only

if fa' € R[a,b]. Also [ fda = [ f(x)a'(x) dx

Proof. It is given that a’ € R[a, b]
Because f is bounded, there exists M > 0, such that
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If)l <M, forallx € [a,b]....ccccoeviniiiiiiiiiiiiii, (1
As f,a’ € R[a, b], therefore fa' € R[a, b]. Hence for u(P) < §;and t; €
Ax; there exists a positive number &; > 0 such that

L fEDa(t)dx; — f; fa'dx < g .................................... 2

and
for u(P) < 6, and t; € Ax; there exists a positive number &, > 0 such
that

roal(t)Ax; — ab a'dx < ﬁ .................................... (3)
Now for u(P) < 6, and t;,s; € Ax; , from inequality (3), we get
Pala(6) — @' (s)lhx; < 20— = — 4)

Let § = min (64,6,) and P be any partition of [a, b] with u(P) < 6.
According to Mean value theorem for real valued function for all ¢; €
[x;_1,x;] there are points s; € [x;_4, x;] such that

a(x) — a(xi-q) = a'(t)(x — x-1)
> Aa; = a'(s) Axg,fori = 1,...,n. . (5)
Thus

L f(t)Ae - [ fa' dx| = B, f(t)a (sp) Ax; — [ fa dx]

(Using equation (5))

= |Z7i1=1 f&Da'(s) Ax; — fffa' dx + Xioq f(&)a () Ax; —
=1 f(EDa ' (t) Axi|

=[S, Fta ' (t) A — [} fa' dx + By f(t)a(s;) Ax; —
=1 f(EDa ' (t) Axi|

= Syt (t) Ax; = f) fa' dx+ Ty £ () (@(s) =

a'(t) Ax;

= |27i1=1 fda'(t) Ax; — f: fa' dx| + X f () (a'(si) -

a'(t;)) Ax;|

= [Ty a6 dx; = J fa’ dx| + IZI, IF DI (s0) =

a'(t) Ax]

From inequalities (1), (2) and (4), we get

L f@)Aa; — f:fa’ dx| < Z + Mﬁ <e¢

Therefore for any € > 0, there exists § > 0 such that for all the partitions

with u(P) < 6,
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o f(t)0a; — [ fa' dx| <
Therefore Y, f(t;)Aa; exists and Y1, f(¢)Aa; = f: fa' dx

6.7 SUMMARY

In this Unit, we discussed about the theory of Riemann-stieltjes
integration. Some Basic theorems are also constructed.

6.8 GLOSSARY

1. Set- a well defined collection of elements
2. Derivative- the rate of change of a function with respect to a variable
3. Integral- the area under the curve of a graph of the function.
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6.12 TERMINAL QUESTION

Long Answer Questions

(TQ 1) Let f: [a,b] > R be a bounded function and a be a
monotonically increasing functionon [a, b]. Consider P be any Partition of
[a, b]. Prove that U(P, f, «) and L(P, f, h)are bounded.

(TQ 2) Explain Riemann -stieltjes integral.

(TQ 3) Prove that if P; and P, are any two partitions of [a, b] then
L(Py,f,a) < UP,, f,a)and L(P,, f,a) < U(P, f, ).

(TQ 4) Derive relation between Riemann integral and Riemann-stielges
integral.

Fill in the blanks
(TQ 5 Riemann-stielges  integral is  generalization  of

(TQ 6) The maximum of the length of the components is defined as the
of the partition

6.13 ANSWERS

CQy T (CQ2)F (CQ3T
(TQ 6) Riemann integral (TQ 7) norm
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UNIT 7: IMPROPER INTEGRAL
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7.1 INTRODUCTION

The concept of Riemann integral which discussed in previous unit requires
the range of integration is finite and the integrand remains bounded in that
domain. If either (or both) of these assumptions is not satisfied it is
necessary to attach a new interpretation to the integral.
In case the integrand f becomes infinite in the interval a < x < b, i.e. f
has points of infinite discontinuity (singular points) in [a, b] or the limits
of integration a or b (or both) become infinite, the symbol ff fdx is
called an improper (or infinite or generalised) integral. Thus dx dx
ffoi dx, [°_e* dx are examples of improper integrals.
For the sake of distinction, the integrals which are not improper are called
proper integrals.

1cos x
Thus [ —

It will be assumed throughout that the number of singular points in any
interval is finite and, therefore, when the range of integration is infinite,

dx is a proper integral.
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that all the singular points can be included in a finite interval. The restric-
tion on the number is not necessary for the existence of the improper
integral, but consideration of the discussion is beyond our limits. Further,
it is assumed once for all that in a finite interval which encloses no point
of infinite discontinuity (singular point) the integrand is hounded and
integrable.

7.2 OBJECTIVES

In this Unit, we will
e analyze about Improper Integral
e Study some theorems based on Improper Integral
e Analyze types of improper Integral

7.3 INTEGRATION OF UNBOUNDED
FUNCTIONS WITH FINITE LIMITS OF
INTEGRATION

Convergence at the left end: Let f be a functuion defined on an interval
[a, b] except some finite number of points. Let a be the only point of

infinite discontinuity of f so that the integral f:+kf(x) dx exists for
every k, 0 < k < b — a. The improper integral f:f(x) dx is defined as
the limit of [ f(x)dx whenk - 0% such that [ f(x)dx =
lim,,_, 00 f:+kf(x) dx . If this limit exists and finite then the improper

integral f:f(x) dx is said to be converge at a otherwise it is said to be
divergent.

Convergence at the right end: Let f be a functuion defined on an
interval [a, b] except some finite number of points. Let b be the only point

of infinite discontinuity of f so that the integral f:_kf(x) dx exists for
every k, 0 < k < b — a. The improper integral f; f(x) dx is defined as
the limit of [ f(x)dx whenk —0* such that [ f(x)dx =

lim,, f:_kf(x) dx . If this limit exists and finite then the improper
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integral fabf(x) dx is said to be converge at b otherwise it is said to be

divergent.
Converges at both the end points: If the end points a and b are the only
points of infinite discontinuity of £, then for any point ¢ within the interval

[a,b], the imprioper integral fabf(x) dx is can be facf(x) dx +
[ () dx . If both the integrals [ f(x) dx and] f(x) dx then the
improper integral converges otherwise it is divergent. It is also defined as
f:f(x) dx = lim,,_ g+ f:__]:f(x) dx . It the improper integral exists if the

r—-ot
limit exists.

Convergence of interior points: If an interior point ¢, a < c < b, is the
only point of infinite discontinuity of f, then

Jo fO) dx = [ fGo) dx + [ f(x) dx
The improper integral f: f(x) dx is convergent if both the integrals on

the RHS exist in accordance with the definitions given above.
Similarly if the function has a finite number of points of discontinuity,
C1,C2,C3, v, Cy Within [a,b] Where a < ¢; < c; <c3 <+ < ¢, < b the

improper integral f:f(x) dx defined as

ff fe)dx = [ f(x)dx + ffj fx)dx + -+ ff; f(x)dx is said to
be convergent if all the integrals on the R.H.S are convergent otherwise it
is divergent.

X

Ex. 7.1. Examine the Convergence of fol%

Sol. The only point of discontinuity is 0.

Therefore

1dx_1. 1
0 .X'_3 - lmk—>0 fk

1dx . 1
Hence, fO ) = llmk_>0(1 — m) = 00

X \Where0 <k < 1

x3
. . ldx . .
It implies that fo s divergent.

Ex. 7.2. Examine the Convergence of f(;Ts;%

Sol. The points of discontinuity are 0 and 7.
Therefore
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T dx . n—-r dx
[F——=limkso [, — where0<k<mand0<r<m
0 sinx roo0 ok sinx
T—r dx m—r
Now [~ " ——=[  cosecx

f”‘r cosec x (cosec x — cotx)
= X
% (cosec x — cotx)

-1 cosec? x—cosec x cotx d
= X

k (cosec x—cotx)
. fn—r d(cosec x)—d(cotx) d

k (cosec x—cotx)
_ fn—r d(cosec x—cotx)
k (cosec x—cotx)
= log|{cosec (r —r) — cot (m —r)}| — log|cosec k — cotk}
lo |cosec (m—1)—cot (m—1)}|
|cosec k—cotk|

Therefore
. -1 dx . |cosec (m—1)—cot (T—-7)}|
= = O
hm];:g fk sinx Ilcl—r}}) log |cosec k—cotk|
r—0

It implies that f:S?Txx is divergent.

7.4 CONVERGENCE TEST

Assume a be the left end of the interval and the only point of infinite
discontinuity of f in [a, b]. When the integrand keeps the same sign,
positive or negative, in a small neighbourhood of a, we may suppose that

f=0and if f <0, itcan be replaced by (— f), to test the convergence
of [ f dx.

Theorem 7.1. A necessary and sufficient condition for the
convergence of the improper integral f: fdx at a, where f >
0 in [a, b], is there exists a positive number N, independent of k such
that [7 fdx <N, 0<k<b—a.

Proof. By definition improper integral f:f dxataiffor 0<k<b-—
a, f:+kf dx - finite aslimk — 0%.
Now it is given that f > 0 in [a, b], f:+kf dx is monotone increasing as k

decreases i.e. ff+kf dx — finite as k — 0 iff it is bounded above.
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That is there exists a N > 0 independent of k such that f:+kf dx <N,
0<k<b-—a.

Comparison test |

Theorem 7.2. Let f band g be two functions such that f(x) < g(x),
for all x in [a, b], then

(i) f:f dx converge if f:g dx converges and (i) f:g dx
diverges if f:f dx diverges

Proof. Assume functions f and g such that both are bounded and
integrable in [a + k, b],

0 <k < b — a, and a is the only point of infinite discontinuity in [a, b].
Since f and g are positive and f(x) < g(x) for all x in [a, b].
Therefore,

b b
JoofAX S [ gdx (1)

(i) Let f:g dx be convergent, hence there exists a positive number N > 0
such that

f:+kgdx<N, forO<k<b-a
From inequality (1), we get

[} fdx<N, for0o<k<b-a

It implies that f:f dx converges at a
(ii) It is given that f;f dx diverges at a,
then f:+kf dx is not bounded above.
From inequality (1), we get

ff+k g dx is also not bounded above.

Therefore f: g dx diverges at a.

Comparison test 11

Theorem 7.3. Let f band g be two positive functions defined on [a, b]
f&)

such that limnﬁm% = I, where Lis positive finite number, then the

two integrals f: f dx and f: g dx converge and diverge together at a.
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Proof. It is given that [ is positive finite number i.e. Il > 0.

Let ¢ be a positive number such that [ — & > 0.
fx) _

As lim,,_,q Pk [, hence there exists a neighbourhood (a,c) and
a < ¢ < b such that
G _
760 l| <& when x € (a,c)
=>—S<M—l<8=>l—€<w<l+€
g(x) g(x)
Therefore
gl —e) <f(x)<gx)(l+¢e) when x € (a,¢).............. 1)

Now, if f: f dx converges at a then fac f dx also converges
By comparision test I, we get
J; 9(x)(1 — &) dx converges at a.

It implies that f: g(x)dx converges at a.
From inequality (1), we get
f(x) <g)(l+¢) when x € (a,c)

If f;f(x)dx diverges at a then
J; 9@ + &) dx diverges at a.
It implies that f: g(x)dx diverges at a.

Similarly we can prove that f: f(x)dx converges and diverges with

f: g(x)dx.

Theorem 7.4. The improper integral f; (x‘_i’;)n dx converges if and
onlyifn<1.
Proof. As we can see that f: (xc_iz)n dx is proper integral if n <1 and

improper for other values of n.
It is observed that the only point of infinite discontinuity is at a.
Now forn # 1,

[} =2 dx = limy g+ ———, 0<A<b-a

(x—a)™ (x—a)r’

= lim_+ ﬁ [(b—al)"—l N /1”1—1]
1 n-1
= 1—n(b_a) , ifn<1
00, ifn>1
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For n=1
fb dx b dx — i f dx
a (x—a)*»  “a x—a M0+ a+dx—a

= limy_y+[log(b —a) —logl] =

Hence the improper integral f; (xc_lz)n dx converges if and only if n < 1.

Ex. 7.3. Test the convergence off J—

1
—x4-_ V1—x2vV1+x2

Proof. Let f(x) =

We can clearly see that \/_ is bounded function on [0,1] and let M be its
upper bound.
Therefore f(x) <

Also fol

M
V1-x2

4 is convergent
J1-x2 )

Therefore by comparision test fol \/ld_% IS convergent.

Cauchy’s test

Theorem 7.5. The improper integral fbf dx converges at a iff for
every & > 0 there exists 6 > 0 such that |fa”2fdx| <& where
A4 and A, tends to 0.

Proof. As we know the improper integral f;f dx is said to exist when
lim,_, o+ ffﬂf dx exists finitely.

Let F(A) = f:Mf dx i.e. F(2)is a function of A.

According to Cauchy’s criterion for finite limits (already studied in
graduation)

F(1) — finite limit as A - 0 iff for iff for every € > 0 there exists
6 > 0 such that for all positives 1;,4, < 6§,

b b
FQ) - F)l <e=|[7, fax - [}, fdx|<e
o fax + [ fax|<e= | fax|<e
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CHECK YOUR PROGRESS
(CQ 1) Test for convergence

7.5 ABSOLUTE CONVERGENCE AND INFINITE
RANGE OF INTEGRATION

Absolute Convergence: The improper integral f:f dx is said to be

absolutely convergent if f: |f| dx is convergent.
Theorem 7.6. Every absolutely convergent integral is convergent.

Proof: Let f: |f| dx exists. Now we prove that f:f dx exists.

f; |f] dx exists, hence by Cauchy’s test for integral, for every € > 0 there
exists § > 0 such that for all positives

P
Jonz1f1 dx | B e, (1)

a
As we proved in previous unit that

[EREpdx| < FETRIAIAX )

a+/11 a+/11
Therefore, from equation (1) and (2), we get

[fepax|<e= [ f dx exists. [ f dx

a

.1
sin

Ex. 7.4. Prove that f01 p; dx, p > 0, converges absolutely for p < 1.

X
.1
Proof. Consider f(x) = &,p > 0.

xP
Here we can see that O is the only point of infinite discontinuity and f does

not keep the same sign in any neighbourhood of 0.
Now in interval [0,1]
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o1 1
sin= |sm;| 1
< =

xP xP

lf (0l =

ra
Also folj—;f dx converges iff p<1.
Hence by comparision test

i d h 1in bsolutely f
Jy || dx converges and hence [ —* dx converges absolutely for
p <1

Convergence at oo: fa°°f dx, x = a is defined as the limit of when k

tends to oo such that fa°°f dx =limy_e f:f dx. When limit exists and is

finite then the improper integral fam fdxis said to be convergent,
otherwise it is divergent.

Convergence at —oo: f_boof dx, x < b is defined as the limit of
f_bmf dx, when | tends to cosuch that f_boof dx = lim;_,_ flbf dx.

When limit exists and is finite then the improper integral f_boof dx is said
to be convergent, otherwise it is divergent.

Convergence at both ends: [ fdx, forallx [° fdx+ [ f dx,

where b is any real. If both the improper integral exists then the given
improper integral converges otherwise is divergent.

oo k
J fdx = lim J fdx
oo k— oo !

|->—00

Integrals of unbounded functions with infinite limits of integration:
When the infinite range of integration includes a finite number of points of
infinite discontinuity.

[2 fdx =[° fdx+ [ fdx+ [ fdx.

When all the integrals exists then ffooo f dx converges otherwise is
divergent.

, d
Ex. 7.5. Examine the convergence of [ ——
—0 1+x

© dx k dx

sol. [ 177z =lim koo |
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= lim (tan"'k —tan~1))

Ex. 7.6. Examine the convergence of [*

o 1+x2

Sol. fo x3e ™ dx = limy_ e fo x3e ™ dx = limy_ f (k) where
flk) = fokx3e_x2dx

Let x2 =t = 2xdx = dt

Therefore

F00 =30 eentae =3e )" eae = [0 ) et ar)
= il + et de f = [k 4 et =
“[-k2e™ — e + 1] =~[1 - (1 + kD)e™]

Hence limy.o, £ (k) = limy_o 2 [1 = (1 + k2)e '] = 2

oo a2 1
Therefore [~ x®e™"dx =, converges

7.6 SOME COMPARISION TESTS FOR
CONVERGENCE AT o

Theorem 7.7. A necessary and sufficient condition for the
convergence of the improper integral fa°° f dx at a, where f is positive
in [a, k] there exists a positive number N, independent of k such that

f;f dx < N, for every k > a.

Proof. The integral faoo f dx is said to be convergent if f;‘ f dx tends to a
finite limit as k tends to oo.

Since f is positive in [a, k], the positive function of k, fff dx is
monotone increasing as k increases and hence f:f dx — finite iff there

exists a positive number N, independent of k such that f;f dx <
N, for every k = a.
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Theorem 7.8. Let f band g be two positive functions such that
f(x) < g(x), forallxin|a,b], then

(i) J.”f dx converge if [~ g dx converges and (i) [ gdx
diverges if [ f dx diverges

Proof. Assume functions f and g such that both are bounded and
integrable in [a, k], k = a

Since f and g are positive and f(x) < g(x) for all x in [a, k].
Therefore,

JEfFde < [Fgax i (1)

(i) Let faoog dx be convergent, hence there exists a positive number N > 0
such that

f:gdx<N, fork=a

From inequality (1), we get

f:fdx<N, fork=a

It implies that f:f dx converges

(ii) It is given that faoof dx divergent then the positive function f:'f dx
is not bounded above.
From inequality (1), we get

f: g dx is also not bounded above.

Hence f:g dx diverges.

Theorem 7.9. (i) Let f band g be two positive functions defined on

[a,x] such that limn_,oo%z [, wherelis positive finite number,

then the two integrals faoofdx and faoog dx converge and diverge
together at a.
(ii) If §—> 0 and [~ g dx converges then [ f dx converges and if

5 — coand [ g dx diverges then [ f dx diverges.

Proof. It is given that [ is positive finite number i.e. [ > 0.
Let ¢ be a positive number such that [ — & > 0.
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f(x)
gx)
such that for al x > k,

As lim,,_,., —= = [, hence there exists a number k(> a), however large,

iG] l|<e = £<M—l<£zl—s<@<l+s

gx) gx) g(x)

Therefore

JGOU =) <fxX)<gU+E) v, (1)

Now, if faoo f dx converges at a then fkoo f dx also converges

From previous theorem, we get

J,.” 9(x) dx converges at co.

It implies that f; g(x)dx converges at a.

From inequality (1), we get

f(x) <gl)(l+¢e) when x >k >a

If " f (x)dx diverges at then by previous theorem [ * g(x) dx diverges
at oo,

It implies that f: g(x)dx diverges at oo,

Similarly we can prove that f: f(x)dx converges and diverges with

X g
(i) When — 0, we can find k so that —=

f(x)
g(x)
Hence, if fa g dx converges then fa f dx converges

fx)
9

>N=f(x) >Ng(x) forallx = k

<e forall x>k

When §—>oo, we can find k and N such that %>N or f(x) >
ng(x) forallx = k.

Hence, if [~ g dx diverges then [ ” f dx diverges.

Ex. 7.7. Show that the improper integral f:xﬁndx, a>0,where Kisa
positive constant, converges iff n > 1.

Proof. Now
0 K K log -, n=
Jo s = B !
1nlant  gnifr T
Therefore
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+oo, n<1
fo —dx—llmn_,oof dx_{ K 0> 1

(n-1)an-1’

K .
Hence f;” = dx converges iff n > 1.

Ex. 7.8. Test the convergence of integral
foo xtan~1x

0 (1+xH1/3

Proof: Assume

1

xtan~1x xtan~1x tan~1x 1

f(X) = (1+x4)1/3 =z =1 1 and g(X) =7
x3(1+x~H/3  x3(1-x*)3 x3

Hence

tan~1x

T I
f(x) _ x3(1-x%)3 _  tan lx
g F T (+ah/s

3
Taking lim n tends to infinity we get

fl) _ li tan"1x -1

T
= lim ————— =tan loo = -
g(x) N2 (14x—4)1/3 2

Therefore,
Jy f(x)dxand [~ g(x)dx behaves alike .

As [ g(x)dx = foo%dx (p <1) diverges, hence  [°f(x)dx =

fOO x tan™

0 mdx diverges.

Ex. 7.9. The integral [;° e~*x™ !dx is convergent iff m > 0.

Proof. Assume f(x) = e *x™1

It clearly observe that integrand f has infinite discontinuity at 0 if m < 1.
Therefore we will check convergence at 0 and oo.

Now

foooe"xxm_ldx = fole_xxm‘ldx + floo e Xx™ ldx =1, + I,

Now we will check convergence of Integral I; atO.

( ) —-X,m-1 _
Let g(x) = f(x) exnf_l =e ™",
Taking Iim|t X tends to 0, we get
JCI Y —x _
lim,_,,—= ) }Cl_rg e*=1
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fol f dx and fol g dx converge and diverge together .

folg(x)dx = folxll_m dx converges iff 1-m<1li.em>0,

Therefore folf(x)dx converges iff m>0 ie I, = fole‘xxm‘ldx
converges iff m > 0
Now we will check convergence of Integral I, at co.

(x) . e—xxm—l

— 2 f_ — p—X,m+1
Let h(x) = 1/x* such that o - a2 —ex
Taking limit x tends to oo, we get

: Lx) — 1 —X,m+1l _
lim,_,q o Jll_r){)lo e *x =0

J;” f dxand [” g dx converge and diverge together .
(o] o 1 .
J; gC)dx = [ — dx converges if.
Therefore [ f(x)dx converges ie. I, = [[” e *x™ 1dx converges for
all m.
Hence fom e *x™1dx is convergent iff m > 0.

7.1 CAUCHY’S TEST FOR CONVERGENCE AT
co AND ABSOLUTE CONVERGENCE

Cauchy’s test for convergence at co

Theorem 7.10. The improper integral fa°°fdx converges at a iff for

every € > 0 there exists Ky > 0 such that |f1f12fdx| <eg for all
K1, K, > K,

Proof. As we know the improper integral faoo f dx is said to exist when
lim; e f:f dx exists finitely.

Let F(1) = f:f dx i.e. F(A)is a function of A.

According to Cauchy’s criterion for finite limits (already studied in
graduation)

F(1) — finite limit as A —» o iff for every € > 0 there exists K, > 0
such that for all K, K, > K,

/11 12
|F(/11)—F(,12)|<e:>|fa fdx — [ fdx|<e
[ fdx +[Pfdx|<e=|f”fdx|<e.
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Ex. 7.10. Show that improper integral fomﬁ%dx is convergent.

sin x

Proof. Here we can see that llmx_>0 = 1. i.e. 0 is not point of

discontinuity.

Let fooosizxdx — flslnxd +foosmx

Now we will test the convergence of J,” =

Forany € > 0, let K3, K, be two numbers greater than 2/«.

Now
Ko si Kz K
f zsmxdx _ |_cosx _f zcosxdx
K1 X Kl Kl x2
J-Kz sinxdx __COsKq coskK, fKZ cosxd
Kl X Kl KZ K1 x2

Taking modulus on both side we get

K, sin x coskK cos K. K, cosx
|f 2 dx |: 1 2 _f 2 d |
K1 «x Ky Ko K1 x2
K, sin x coskK cosK. K cosx
= |f 2 dx | < L 2 | 2 |
Kl X 1
COS K- COS K: cosx
< 1 2 +f dx
Ky Ky
S | —zdxdx| ( because |cos x| < 1)
|K1| K|
€ €
<-+-<ge¢
2 2

Thus by Cauchy’s test [ 1°° % dx is convergent.

Thus f0°° 3

is convergent.
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Absolute Convergence: The improper integral faoof dx is said to be

absolutely convergent if [ |f] dx is convergent,
Theorem 7.11. [ f dx exists if ["|f| dx exists.

Proof: Let [ |f| dx exists. Now we prove that [~ f dx exists.

faoo |f| dx exists, hence by Cauchy’s test for integral, for every ¢ > 0
K, > 0 such that for all K, K, > K,

K.
|le2 Fldox | <& oo (1)
As we proved in previous unit that

e £ | < [eIF1d2 e (2)
Therefore, from equation (1) and (2), we get

|f,:2fdx | <e= faoof dx exists.

Ex. 7.11. Show that f1°° s’}% dx converges absolutely if p > 1.

Proof. Now
sinx| _ |sinx| 1
= = forallx > 1

Also flmxipdx converges only if p > 1.
Therefore, [, |S;¥| dx converges only if p > 1.
Hence ffosi%dx converges absolutely if p > 1.

Note: f,°

sin x

= dx not converges absolutely if p — 1.

CHECK YOUR PROGRESS
(CQ 2) Test for convergence

), mdx

x3+1
PN 113

(i) f x*le ™ dx

J AN 1S
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7.8 SOME TESTS FOR ABSOLUTE
CONVERGENCE AND CONVERGENCE AT

(0 0)

Test for Absolute convergence

Theorem 7.12. If a function ¢ is bounded on interval [a, o) and
integrable in [a, K] where K > a and fawfdx absolutely convergent

at oo, then faoo f dx is absolutely convergent at co.

Proof. It is given that ¢ is bounded on interval [a, ).
So there exists a positive A such that

fl) <Aforall xin[a, 0)...coooieiiiiii (1)

Since |f] >0 and ¢ [ f dx absolutely convergent at co,i.e. [ °|f] dx
convergent.

So there exists a real number N such that

L71fldxe < Nforall xin [@, )., 2)

By using equation (1) and equation (2), we get

Ifo )] = 1f (el < If (D llex)| < N|f]
i.e |fo(x)| < A|f| forall x in [a, o)

= [T |fe()ldx <A [ |fldx < AN forall x in [a, )

Therefore, the positive function f: |fo(x)|dx is bounded above by AN,
forK > a.

Hence faoo f dx is absolutely convergent at co.

Abel’s test

Theorem 7.13. If ¢ is bounded and monotonic in [a, ) and faoof dx

is convergent at oo, then faoo fe dx is convergent at co.

Proof: It is given that ¢ is bounded and monotonic in [a, o) and it is
integrable in [a, o).

Therefore it is integrable in [a, K) where K is a real number.

Let K; and K, be any two real number such that K;, K, = aand A is lie
between K; and K,.

Then By Second Mean value theorem, we get
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f,:z fodx = @(K;) f;‘lf dx + ¢(K;) f}\Kz fdx oo (1)

Let € > 0 be arbitrary. As ¢ is bounded in [a, o), there exists a positive
number N exists such that

forallp(x)| <N x=a

Therefore, we can say that

lp(KDI <N and  |eK)I SN o )

As faoof dx is convergent at oo, there exists a number K, exists such that
K.

| fofdx | <oz forallKy Ky = Ko ooooovooonioniceien 3)

Let the numbers K; and K, in (1) be greater than K, so that the number A
is also greater than K,,.
Hence using equation (3), we get

A K
|fK1fdx|<% and [ [ fdx | <= &)
Now taking modulus on both side of equation (1), we get

[fe? o dx | = |o(Ko) [ £ dx + @Kz [} folx |

A
>|fie? fo dx | < loWDI |fy £ dx |+ 1o | fax|
Using equations (2) and (4), we get
A
|2 Fo dx | < loWDI |fy £ dx | + 1o | fax|
<N=4+NE2<i4ice
2N 2N 2 2

By Cauchy’s test, [ fo dx is convergent at co,

Dirichlet’s test

Theorem 7.14. If ¢ is bounded and monotonic in [a, K) and tends to 0
as x - o and fff dx is bounded at for K > a, then [~ fo dx is
convergent at oo.

Proof. It is given that ¢ is bounded and monotonic in [a, ).

Hence it is integrable in [a, K) for all K in [a, o).

As f is integrable in [a, K).

Let K; and K, be any two real number such that K;, K, = aand A is lie
between K; and K.

Then By Second Mean value theorem, we get

[ fo dx = @Ky [y fdx +@(Ky) [* fdx oo (1)
As fff dx is bounded when K > a.
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Therefore there exists a number [ > 0 such that
|f:fdx | <!l forallxina,»).

Therefore
[y £ x| = |3 dx = fg 1 ax
<|fifdx|+|fy fax|<tri=20 )
Similarly
[ Fax | =20 3)

Let € > 0 be arbitrary.
As @ tends to 0 as x — oo, therefore there exists K, > 0 such that

o(Ky) < i and ¢(K,) <i where Ki, Ky > Kg.ooovvvvn.... (4)
Now taking modulus on both side of equation (1), we get

[fe? o dx | = |o(Ko) [ £ dx + @Kz [} folx |

2 A 2
>|fe? fo dx | < loWDI [f £ dx | + 1ok fax |
Using equations (2), (3) and (4), we get
2 fodx|<Z21+Z21<54+2<e

Hence, by cauchy’s test, faoo fo dx is convergent at oo.

Ex. 7.12. The integral floolo";x%dx

Proof. Let f(x) = sinx and ¢(x) = 10%.
Now |f0°° sinx dx| is bounded above and ¢ is monotonic decreasing to 0
as x — oo,

Hence, the given integral converges by diritchlet’s test.

7.9 SUMMARY

In this unit we discussed about improper integral. We also discussed about
the absolute convergence and some tests to check the convergence of
improper integral at co.
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7.10 GLOSSARY

gk~ E

Set- a well defined collection of elements

Derivative- the rate of change of a function with respect to a variable
Set- a well defined collection of elements

Derivative- the rate of change of a function with respect to a variable
Integral- continuous analog of a sum, used to calculate areas,
volumes.

Absolute convergence- converge even when you take absolute value
of each term
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7.13 TERMINAL QUESTION
Long Answer Questions
. . 2 xdx
(TQ 1) Test the convergence of the improper integral [ =i
-1 (x—1)dx

(TQ 2) Test the convergence of the improper integral [

(TQ 3) Test the convergence of the improper integral [

1 x5/3
1 x™logxdx

1 (1+x)"2

(TQ 4) Show that the integral f0"/2 sin x log sin x dx converges to the

value log2 — 1.

(TQ5) Prove Diritchlet test of improper integral.

Fill in the blanks
(TQ6) f: xlogsinx dx is

TQ7) J" 2 dx

(1+x2)?
ootan~1x

(MNJ, —F

o xlogx

(TQ8) [, 25

dx converges to

oo xpP~1 .
(TQ) f, = dx is

7.14 ANSWERS

(CQ 1) (i) div. (CQ1)(ii)conv.p >0,g>0

(CQ 2) (i) cov.

(CQ 2) (ii) conv.

(TQ1) Cto8/3 | (TQ 2) Divergent

(TQ 3) Conv. for
n>-—1

(TQ6) —Zlog2 | (TQ7) 5+

(TQ-8) = +-log 2

(TQ-8) 0 (TQ-9) converges
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BLOCK I11: UNIFORM CONVERGENCE
AND LEBEGUE INTEGRAL
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UNIT-8: POINTWISE CONVERGENCE OF
SEQUENCE OF FUNCTIONS

CONTENTS:

8.1 Introduction

8.2  Objectives

8.3  Definition of sequence of functions

8.4  Pointwise convergence of sequence of functions
8.5  Pointwise convergence and boundedness
8.6  Pointwise convergence and continuity
8.7  Solved Examples

8.8 Summary

8.9  Glossary

8.10 References

8.11 Suggested readings

8.12 Terminal Questions

8.13  Answers

8.1 INTRODUCTION

In previous chapter we learned about improper integral. In the
undergraduate level, we have learnt and studied sequences of real
numbers. For the convenient of readers, we would like to summarize the
following about the sequences of real numbers

Sequence of Numbers: A sequence of real numbers is a real-valued
function defined on a set of natural numbers. We usually denote a

sequence by {a,} where, a,(a real number) is the nth term of the
sequence. A sequence {a,} is called bounded if there exists a real number

k such that [a,| < kfor all n.

Limit of Sequence of Numbers: A sequence {a,}converges to a limit a
if for every &> Othere exists a natural number m such that |an - a| <gfor

alln>m.
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Cauchy Sequence: A sequence {a,}of real numbers is called a Cauchy
sequence if &> Othere exists a natural number k such that |a, —a,,| < & for
all n, m>k.

In this unit we apply the above mentioned and more concepts of sequences
of numbers to study the sequence of functions.

8.2 OBJECTIVES

After studying this unit, you should be able to -

o Understand the difference between the sequence of numbers and
sequence of functions.
o Understand through solved example that the properties of

boundedness, continuity, differentiability and integrations are not
preserved under the pointwise convergence of the sequence of functions.

o Prepare a background for the further study of uniform convergence
of the sequence of functions.

8.3 SEQUENCE OF FUNCTIONS

Let Ac Rbe given and suppose that for each ne N there is a function
f,:A—R i.e. for each n there is a function of real numbers, we shall

say that <fn> is a sequence of functions on Ato R. It clearly indicate that

for each x e A, there is a sequence (f, (x))of real numbers. For example

f :R—R is defined by fn(x)zg, for x=%and x=1there are two

sequences of real numbers <2i> and <1> respectively. Similarly reader
n n

can find number of sequences by choosing different values of x.

8.4 POINTWISE CONVERGENCE OF
SEQUENCE OF FUNCTIONS

For certain values of X € Athe sequence <fn(x)> may converge, and for

other values of x € Athis sequence may not converge. For each x e A for
which the sequence converges, there is a uniquely determined real number
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lim f, (x). In general, the value of this limit, when it exists, will depend on

the choice of the point x e A. Thus there arises in this way a function
whose domain consists of all numbers x e Afor which the sequence

( f,(x)) converges.

Definition: Suppose that {f } is a sequence of functions f,:A— R and
f:A—>R.Then f, —> f pointwise on Aif for every x e Athe sequence
{f,(x)} of numbers converges to a number f(x). In this case f is called
the limit on A of the sequence {f,}. When such a function f exists, we
say that the sequence {f, }converges pointwise on A.

Examplell.1: suppose that f :R—>Ris

defined by
f00="
n

. 1
Then, for x=1, le f”(x):!,'mﬁzo

Now, limf (x)=lim>=xlimZ=0for all
n—oo n%oon

n—ow n

xeR

Hence, f, — f pointwise on R, where f:R — Rsuch that f(x)=0for
all xeR.
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fig.8.1 Convergence of sequence 1/n
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Lemma 11.1: A sequence {f } of functions f,:A— R converges to a
function f : A— Rifand only if for each &>0and for each x € Athere is

a natural number m such that |fn(x) —f (x)| <gforall n>m.

Proof: Let the sequence {f,} converges to a function f:A— R. Then
the sequence of numbers {f (x)} converges to a number f(x)for all

xe A. Hence it follows from the definition of convergence of the
sequence of numbers that for each x € A and for each &£>0 there is a

natural number m such that |fn(x) —f (x)| <gforall n>m.

Let {f.} is a sequence of functions f,:A—R and f:A— R. Suppose
for each & >0and for each x e Athere is a natural number m such that
[f,(x)— f(x)| <& for all n>m. It shows that each sequence of numbers

{f.(X)} converges to a number f(x)forall x e A.
Hence, the lemma.
Note: Here, it is worth noting that m depends on both and xe A.

Lemmall.2: A sequence {f } of functions f :A—R converges
pointwise to a function f : A— Rthen f is unique.

Proof: Suppose that sequence {f } converges to a function f:A—>R.

Let us take an arbitrary number x e A Then limf_(x) —> f(x). We know

that limit of a sequence of numbers is unique. Hence f is unique.

8.5 POINTWISE CONVERGENCE AND
BOUNDEDNESS

Examplell.2: Suppose that f . :(0,1) > Ris defined by

n
f,(x)=
() nx+1
Then, since x =0 lim f_(x) =lim " _lim L :1,
n—w oo nNX4+1 now 1 x
X+ =
n
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So, f, — f pointwise where f :(0,1) > R is given by

X
We have |f, ()= nxn 1 <nfor all xe(0,1), so each f, is bounded in
+

(0,1), but their pointwise limit f is not. Thus, a sequence of bounded
functions may converge pointwise to an unbounded function.

3
f2

1

X
fig.8.2

Examplell.3: Suppose that f . :[0,1] — R is defined by

2n°x ifOSXSi
2n
) o1 1
f,(X)=42n"(1/n-x) if —<x<=
2n n
0 if1£x§1
n
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fig. 8.3

Here, we would like to show two members of the sequence so that reader
can easily understand the problem

2X ifOSXS1
2

fl(x):
0 if —<x<1
2

8x ifOSxS1
4
L1 1
f.(xX)=<8(1/2-x if —<x<=
(9 =18(1/2-%) 1 <X<5
0 ifigxsl

2

One can easily conclude that f (x)=0 for O<x <1 and for all n>1/x

and if x=0, then f,(x)=0forall n.Hence f, — 0 pointwise on [0, 1].

Here, max f, =1, max f,=2 . . .max f,=n—>o as n—o. Thus, a

pointwise convergent sequence of functions need not be bounded, even if
it converges to zero.

8.6 CONTINUITY AND POINTWISE
CONVERGENCE

Examplell.4: Suppose that f :[0,1]— Ris defined by
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f.(x)=x" If 0<x<1, then

f.(x)=x"—>0as n—>o,

if x=1then f (x)=x"=1forall n.

So f, — f pointwise where

°8s3833838s8s83
0 if0<x<1 X
f(x) = fig. 11.4
) % if x =1 ¢

Although each f, is continuous on [0, 1],

their pointwise limit f is not. Thus, a sequence of continuous functions
can converge pointwise to a discontinuous function.

Note: In present example each f,  is differentiable on [0, 1], their

pointwise limit f is not. Hence, a sequence of differential functions can
converge pointwise to a non-differential function.

8.7 SOLVED EXAMPLES

Ex. 8.1. Suppose that f. :[-2,2]— Ris defined by

2

f(x)=2-2-
n

2
for xe[=2,2] limf, (x) = lim2— 2 =2
n—o0 nN—o0 n

Hence, {f, } convergesto f :[-2,2]— R defined by
f(x)=2.

Ex. 8. 2: Suppose that f. :[-1,1] — R is defined by

nx2 n/2
fn(x):[l_ J
n+1
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2

n/2
”XJ —0 and for x=0

n+

for xe[-1,0)u(0,1] limf (x)= Iim(l—
limf_ (x) =1 therefore, {f,} convergesto f :[-1,1]— R defined by

0 ifxe[-L0)u(0,1
([0 TxeFLOuE1]
1 ifx=0
Ex. 8.3: Let A, be the set of all numbers of the formx:ape[o, 1],

where, p andq are integers with no common factors and 1< q < n Suppose
that f.. :[0,1]— Ris defined by

lifxeA,
f. () =1,
0ifxeA,

For an irrational number, x¢ A, limf, (x)=0 and for a rational number
n—o0

X there exists a natural number msuch that xe A for all n>m then

limf (x) =1. Hence, {f,} convergesto f :[0,1] — R defined by

1 if xis rational
f(x)= L
0 if xisirrational

Note: it is illustrated that each f_:[0,1]—> R is integrable, while their

limit f:[0,1]—> R is not. Thus, a sequence of integrable functions may
converge to a not integrable function.

Ex. 8.4: Suppose that f, :[0, o[ —[0, o[is defined by
f.(x)=x"e™

Here, |f, ()| =|x"e™

<e™ forall xe|0, oof. Hence limf, (x)=0 for all

Xe[O, oo[.
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Ex. 8.5. Show that the sequence {f,}, where f (x)=nx1-x?)" and the

1
sequence of integrals { I fndx} are pointwise convergent for 0<x <1but

LL@{I f dX}if limit,

8.8 SUMMARY

In this unit, we have learned about the difference between the sequences
of numbers and sequences of functions. We have learned that the
pointwise convergence is not sufficient to preserve the properties of
boundedness, continuity, integrability and differentiability. Solved
examples and similar exercises is given to understand the facts easily.

8.9 GLOSSARY

1. Sequence — a function from set of natural number to a set.

2. Boundedness — absolute value of each member of a sequence less than
or equal to a real number.

3. Continuity — No break in a curve.

4. Preserve — to keep something safe.
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8.11 SUGGESTED READINGS

1. Radulescu T. T., Redulescu V. D., and Andreescu T., Problems in Real
Analysis, Springer.

Vasishtha A. R., Real analysis, Krishna Prakashan Media (P) Ltd.
Kumar R., Real Analysis, Vardhman Publications.

Chatterjee D., Real Analysis, 2" ed. PHI.

Malic S. C., Principles of Real Analysis, 4™ ed., New Age
International Publishers.

ok~ wn

8.12 TERMINAL QUESTIONS

Q 1. Show that the sequence {f,}, where f (x)= is pointwise

1+n°x?
convergent for all real values of x .

Q 2. Show that the sequence {f,}, where f,(x)=nxe™ is pointwise
convergent for all x>0 .

Q 3. Give an example to show that a sequence of continuous function can
converge pointwise to a discontinuous function.

sinnx

Jn

convergent on for all real values of x but the sequence of differential {f,'}

Q 4. Show that the sequence {f,}, where f (x)= is pointwise

is not .

Department of Mathematics
Uttarakhand Open University 155



Advanced Real Analysis MAT502

UNIT 9: UNIFORM CONVERGENCE AND
CONTINUITY
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functions
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9.9 Uniform convergence and Differentiability

9.10 Series of functions
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9.12 Cauchy criterion for uniform convergence of series of functions

9.13 Weierstrass M-test for uniform convergence of series of
functions

9.14 Solved examples

9.15 Summary

9.16 Glossary

9.17 References

9.18 Suggested readings

9.19 Terminal Questions

9.1 INTRODUCTION

In the previous unit, we show that the properties of boundedness,
continuity, integrations and differentiations are not preserved under
pointwise convergence of the sequence of functions. So we need a more
general concept, uniform convergence to handle the above properties.
Uniform convergence preserves these properties in the sense that if each
term of uniform convergent sequence (series) of functions possesses these
properties then the limit function also possesses these properties. In this
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unit we will study the concept of uniform convergence for sequences and
series of functions.

9.2 OBJECTIVES

After studying this unit, you should be able to -

. Understand the difference between the pointwise convergence and
uniform convergence.
o Understand through theorems and solved examples that the

properties of boundedness, continuity, differentiability and integrations are
preserved under the uniform convergence of the sequence of functions
with some additional hypotheses.

o Understand the conditions for term by term Integration and
differentiation in series of functions.

9.3 SEQUENCE OF FUNCTIONS

Let Ac Rbe given and suppose that for each ne N there is a function
f,:A—>R i.e. for each n there is a function of real numbers, we shall

say that <fn> is a sequence of functions on Ato R. It clearly indicate that

for each x e A, there is a sequence <fn(x)> of real numbers. For example

f :R—R is defined by fn(x):g, for x:%and x =1there are two

2n
can find number of sequences by choosing different values of x.

sequences of real numbers <i> and <1> respectively. Similarly reader
n

9.4 UNIFORM CONVERGENCE OF SEQUENCE
OF FUNCTIONS

For certain values of x e Athe sequence <fn(x)> may converge, and for

other values of x e Athis sequence may not converge. For each x € A for
which the sequence converges, there is a uniquely determined real number
lim f_(x). In general, the value of this limit, when it exists, will depend on

the choice of the point X e A. Thus there arises in this way a function
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whose domain consists of all numbers X e Afor which the sequence
(f,(x))converges.

Definition12.1: Suppose that {f } is a sequence of functions f :A— R
and f:A—R.Then f, — f uniformly on Aif for £>0and for every

X € Athere exists a natural number m (independent on X but dependent
on ¢)suchthat |f (x)—f(x)|<eforall n>m.

Examplel2.1: suppose that f. :[0,1] — Ris defined by
f (x)= ﬁ then limf, (x)=0for all x<[0,1] i.e. the sequence {f.} is
pointwise convergent to f :[0,1]—> Rwhere, f(x)=0.
Now, forany ¢>0,
|, (x) - f(x)|:i<g
X+n

Let us take a natural number m>1/¢ , then for ¢£>0, there exists a
natural number m such that

[f,(x)— f(x)|<e& forall n>m.

Hence the sequence is uniformly convergent in [0,1].

Note: Every uniformly convergent sequence {f } is pointwise convergent

(the uniform limit function is same as the pointwise limit function) but
converse is not true.

Examplel2.2 :- suppose that f, :[0,1] — Ris defined by

f.(x)=x" then we know that sequence {f,} is pointwise convergent to
g:[0,1]—> R where, g(x)=0,if x€[0,1) and g(x)=1,if x =1,

Now, let £=1/3, for a natural number n, x=(1/2)'" €[0])then
£, ()~ £ (x) :‘((1/2)”")” —o‘ _1/2>¢it follows that {f}is not

uniformly convergent.
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9.5 CAUCHY CRITERION FOR UNIFORM
CONVERGENCE

Theorem12.1: A sequence {f } of functions f :A—>R converges
uniformly to a function f : A— Rif and only if for every ¢ >0and for all
X € Athere exists a natural number N such that |fn(x)— fm(x)| < gfor all
nm=N.

Proof: Let the sequence {f.} converges uniformly to a function
f:A—R. Then for each xe A and for each £>0 there is a natural
number Nsuch that |f (x)—f(x)|<e/2for all k=N. Let xeA,
nm>N. Then
[, ()= £,00[<[f )= ()| +[f,x) - f(X)|<el2+el2=¢.

Suppose that for every £ >0and for all x € Athere exists a natural number
N such that |f,(x)— f,(x)|<&for all n,m=N. Let x e Athen condition
shows that {f,(x)}is a Cauchy sequence of real numbers and therefore,
{f.(x)} is convergent for all xe A. Thus the sequence {f }is converges
pointwise to a function f : A— R. For a fixed m>N, xe A and n—>

we have !im|fn(x)— f ()] =|f(X)—f, ()| <&. Thus |f,(x) - f(X)|< & for

all n>Nand for all xe A. Hence {f } converges uniformly.

Theorem12.2: A sequence {f } of functions f :A—>R converges

pointwise to a function f:A— Rand let M, =Sup|f,(x)-f(x). Then
XeA

f, — f uniformlyon A ifand only if M, > 0as n— .

Proof: Suppose that sequence {f,} converges uniformly to a function
f:A—> R, so that for every &>0Qthere exists an integer m such that
[f,(x)—f(x)|<efor all n>mand for all xeA this implies that

M, =Sup|f,(x)- f(x)<e,forall n>m.Thus M, »>0as n > .
xeA
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Let M, > 0as n— oo, so that for every &> 0there exists an integer m

such that M, <gfor all n>m i.e. Sup|f,(x)- f(x)<eforall n>m or
xeA

[f,(x)— f(x)| <& for all n>m, for all xeA. Hence, f, — f uniformly

onA.

Examplel2.3: Suppose that f, :(0,1) — Ris defined by

X
f =
() nx* +1
So, f, — f pointwise where f :[0,1]— Ris given by
f(x)=0
1
M. =Sup|f (x)-f(x)=S =——
! XBEJ ()= 1 (x) Xﬁi'f] nx2+1 2+/n
M, —>0as n—oo.
Hence {f, } converges uniformly on [O, 1].
9.6 UNIFORM CONVERGENCE AND

BOUNDEDNESS

Theorem12.3: A sequence {f.} of bounded functions f :A—>R
converges uniformly to a function f : A— R then f : A— R is bounded.

Proof: Since f,:A— R converges uniformly to a function f:A—R
then for any & > Othere exists an integer m such that |fn(x)— f(x)| < ¢ for
all n>mand for all xeAor |f(x)<|f,(X)|+&for a natural number
n>mand for allxe A. Since f,(x)is bounded therefore, there exists
M >Osuch that |f,(x)|<M for all xe Atherefore |f(x)|<M +&for all
xe A.Hence f:A— Risbounded.

Remarkl: the converse of the theorem is not true i.e. sequences of
bounded functions exist which have a bounded limit but are not uniformly
convergent.
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Examplel2.4: suppose that f, :[0,1] — Ris defined by
nx

f.(x)=
() 1+n°x®
f(x)=Ilimf (x)=0forall xe[0,1].

nx

1+n?x?

Now, M, = sup|f,(x)- f(x)= sup =1/2

x€[0,1] x€[0,1]

M does not tend to 0 as N — oo therefore the sequence is not uniform

Here, f (x)= 1rr]1—)§x2is bounded for all n and the limit function f(x)=0
+

is bounded but the sequence {f,}is not uniformly convergent.

9.7 UNIFORM CONVERGENCE AND
CONTINUITY

Theorem12.4: A sequence {f,} of continuous functions f,:A—R
converges uniformly to a function f:A—R then f:A—>R is

continuous.
Proof: Let f :A—Ris continuous at x=a. Since f :A—>R

converges uniformly to a function f:A— Rthen for any &>0there
exists an integer m such that
|f,(x)— f(x)|<e/3forall n>mand forall xe A

For a particular n>mand x=a
£, (a)— f (a) <£/3
Since f,(x)is continuous at x =a therefore,
|f,(x)— f, ()| < e/3whenever, [x-a|]< &
Now, for [x—a| < &
£ = F(@)| <[ F ()= T, (|| £, (9 = T, @) +|, () — T ()

=g3+d3+d3=¢
Hence f :A— R is continuous.

Remarkl: the converse of the theorem is not true i.e. sequences of
continuous functions exist which have a continuous limit but are not
uniformly convergent.
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Examplel2.5: suppose that f, :[0,1] — Ris defined by
f.(x)= nxe ™
f(x)=Ilimf (x)=0forall xe[0,1].

Now, M, = sup|fn(x)— f(x] = sup nxe™ =/n/2e
x€[0,1] xe[0,1]
M, — 0 as N — oo therefore the sequence is not uniform
Here, f, (X)= nxe ™ is continuous for all n and the limit function

f (x) = 01is continuous but the sequence {f,}is not uniformly convergent.

9.8 UNIFORM CONVERGENCE AND
INTEGRABILITY

Theorem12.5: A sequence {f,} of integrable functions f, :[a,b] >R
converges uniformly to a function f :[a,b] — R then f is integrable on
[a,b].

Proof: Since the sequence {f }is uniformly convergent then for any
£ > 0there exists an integer m such that

| f,(x)— f(x)| < &/3(b—a)forall n>mand for all xe[a,b]

For a particular n=m

1, 00— f(x)|<e/3

1)

For this fixed m , since f_is integrable, therefore one can choose a
partition P of [a, b], such that

U, f,)-L(P, f,)<el3

From (1)

f.(X)—¢l3b-a)< f(X)<f (X)+&/3(b-a)

U(P, f)<U(P,f, )+e/3

L(P, f)>L(P, f,)-&/3

Therefore, U(P, f)—L(P, f)<U(P, f)-L(P, f, )+2s/3<s.

Hence f isintegrable on [a,b].

n—o

Note: In the present case Iimj f, dt:Jf dt.
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9.9 UNIFORM CONVERGENCE AND
DIFFERENTIABILITY

Theorem12.6: A sequence {f } of differentiable functions f, :[a,b] > R
converges at least at one point c e[a, b]. If the sequence of differentials
{f.} converges uniformly then the given sequence {f,} converges
uniformly to a function f :[a,b] > R.
Proof: Since {f,(c)}is convergent then there exists a natural number N,
such that

|f.(c)- f.(c)<e/2 forall n,m=>N,
Again Since {f,}is uniformly convergent then there exists a natural number
N, such that
f/(x)- f(x)<el2(b—a) forall n,m=>N,and forall x<[a,b].

n

We know that (f, - f, ) is a differential function on [a,b], therefore by
Lagrange’s mean value theorem for any two points X,y €[a, b], we get for
x<z<y,forall nnm>N,

[{F00= T (=T (y) = fu(W)f =[x ¥I[T(2)- f(2) <[x-yle/2(0-a) <&/2
Now, for n,m=> N =max{N, N,}, we have

|£,(x)— ., (X <[{F, (x)— f, ()} 1f,(c)- f(c)f+|f.(c)- f.(c)<e/2+el2=¢

Hence the sequence {f}is uniformly convergent on [a, b].
Note: Here one can easily find that '(x)=F(x)=lim f/(x).

9.10 SERIES OF FUNCTIONS

We know that the sum of an infinite series of real numbers as the limit of
the sequence of partial sums. Similarly, the series of functions can be
defined, as follows
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Definition: Let A< R be a non-empty set. A series of functions A— Riis
asum

Dt =+t

n=1

Where, {f,}is a sequence of functions A—R. Each function f,,

n=1 2, 3...,iscalled a term of the series Z f,.
n=1

The partial sums of series Z f, are defined by

n=1

n
s,=> f,n=1,23,...
i=1
The series of functions Z f, is pointwise (Uniform) convergent if the
n=1
sequence of partial sums {s,} is pointwise (Uniform) convergent. If {s, }

converges pointwise (uniform) to a function f:A—> R, we say Z f,
n=1

converges pointwise (uniform) to the function f : A—R.

9.11 DIVERGENCE TEST FOR SERIES OF
FUNCTIONS

Let Ac R be a non-empty set, and let Z f, be a series of functions

n=1

A—R. If {f }does not converge pointwise (Uniform) to the zero

function, then Z f, is not pointwise (uniform) convergent.
n=1

9.12 CAUCHY CRITERION FOR UNIFORM
CONVERGENCE OF SERIES OF FUNCTIONS

Theorem 12.7: A series of functions Z f, converges uniformly to a

n=1
function f:A— Rif and only if for every £>0and for all x e Athere
exists a natural number N such that
[Fra 0+ f () + fr () +...+ f (X)| < eforall nm>N.
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Proof: Let the series z f, converges uniformly to a function f:A—R.

n=1
Then the sequence of partial sums {s,}converges uniformly to the
function f: A— R. Therefore by Cauchy criterion for uniform converge

of sequence, for every &£ >0and for all x € Athere exists a natural number
N such that

s, (X)=s,(X)|<&forall nm=N.

2hh=2
i=1 i=1
without loss of generality, assume that n>m.

Hence |f,, () + f.,(X)+. ..+ f (X)|<e forall nm>N

Or <&

Suppose |fm+l(x)+ f.(X)+. . .+ fn(x)|<g forall nm>N, xe Aforall

implies
S, = fal<eor s, (X)—s, (Y| <eforall nm=N, xeA.
i=1 i=1l

The sequence of partial sums {sn}. Hence the series Z f, converges
n=1

uniformly.

9.13. WEIERSTRASS’M-TEST

Theorem 12.8: Let Ac R be a non-empty set, and let Z f, be a series

n=1
of functions . suppose that for each natural number n there exists a

convergent series ZM , of positive number such that |fn(x)| <M, for all
n=1

n and for all x € A then the series Z f, is uniformly convergent.

n=1

Proof: Since ZMn is convergent, therefore for any & > Qthere exists a
n=1
natural number N such that [M ., (X)+M_,,(X)+. . .+ M (x)| <& for all

n,m>N, Xe Ahence forall xe Aand forall n,m> N, we have
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|fm+1(x)+ fm+2(x)+' ot fn (X)|£|fm+l(x)|+|fm+2(x)|+' T +|fn (X)|
<M, +M_ ,+ ... +M,

<&

m+1

Hence Z f. is uniformly convergent.

n=1
, asinnx
Example 12.6: Let us consider a series Y = — for all real x.
n=1
sinnx| _ 1
—|<— foralln.
n n

S
We know that » - is convergent
n

n=1

= sinnx, .
Hencez >— Is uniformly convergent.
= n
=1

Note: Weierstrass’s M-test is applicable to the series which are absolutely
convergent. When this is not the case, we can use Abel’s test and
Dirichlet’s test

The next three theorems show that uniform convergence series of
functions preserve the continuity and the series subjected to the
appropriate hypotheses can be integrated and differentiated term by term.
The proof of these theorems are similar to the proof of corresponding
theorems for sequences of functions.

Theorem 12.9: If a series Z f, of continuous terms f :A—R, is
n=1

uniformly convergent to a functionf:A—R then f:A—>R is
continuous.

Theorem 12.10: If a series Y f, of integrable terms f :A—R, is

n=1
uniformly convergent to a functionf:A—R then f:A—>R is

integrable and ij' f, dt =J'f dt.

n=1 a

Theorem 12.11: A series z f, of differentiable functions f, :[a,b] >R

n=1

converges at least at one point ce[a,b]. If the series of differentials
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> f. converges uniformly then the given series » f, converges
n=1 n=1
uniformly to a function f :[a,b] - Rand f'(x)=F(x)=>f/(x).

n=1

9.14 SOLVED EXAMPLES

EXAMPLE 1: Suppose that f..:R — Ris defined by
f(x)= sinnx

n
Then f_. — 0 pointwise on R.

1
S_y

n

sinnx
n

Now, |f,(x) =

Therefore |f,(x)- 0| <eforall xeRif n>1/¢ .

Hence, f, (x)= SInnX

is uniformly convergence.

EXAMPLE 2: Suppose that f,. :[0,1/2] > R is defined by
f.(xX)=x", converges pointwise to the limit 0.
< ¢ forall nand for all x €[0,1/2]

Now, for £>1, |f,(x)-0]=|x"

logl/e

X"l<gfor all n> and for all
log2

And for O<e<1, |f (x)-0=

x €[0,1/2].

Hence f, (x)=x" is uniformly convergent in [0,1/2]

Note: f (x)=x" is not uniformly convergent in [0,1] since for O<g<1
1,00 -0/=

which is not possible for x=1.

EXAMPLE 3: Suppose that f, :[0, o[ — [0, oo is defined by
f (x)=x"e™

f(x):!im f,(xX)=0 forall xe|0, of.

X" <&

Now, M, = sup |f (x)-0/=|x"e™|=¢™"

xe[0, oof

M, — 0 as n— o therefore the sequence is uniformly convergent.

Department of Mathematics
Uttarakhand Open University 167



Advanced Real Analysis MAT502

: & (-
EXAMPLE 4: Let us consider a series Z()—X% for all real X.
= nP(L+x7")

Carx

m Sn_pfor all n.

00

o0 1 .
We know that ZM n =2, Isconvergent for p>1
=] o N

0 (_1)n X2n

is uniformly convergent for p >1.
2P 11 X7 y g P

n

Hence

EXAMPLE 5: Let us consider a series
2X 4x*  8x°

2 + 4 + 8
1+x° 1+x° 1+X

n,2n-1
f,(x)=2

+... forall [x]<1/2,

CLx®
2nX2n—l ] 1 1
|f,(x)= oo | <2 T = foralin,

0

We know that iMn =y L
n=1

T 1S convergent.

n=1

) 2n X2n—1

Hence E
2
~1+x"

is uniformly convergent.

9.15 SUMMARY

In this unit, we have learned about the uniform convergence of sequences
and series of functions. Uniform convergence is a more general concept
than pointwise convergence. Uniform convergence preserves the
properties of continuity, differentiability and integrability. Solved
examples on each property are given and similar exercises left to the
reader for detail understanding of the concepts.

Department of Mathematics
Uttarakhand Open University 168



Advanced Real Analysis MAT502

9.16 GLOSSARY

Series— sum of infinite terms of numbers or functions.
Partial sum — sum of n terms of a series.

Finite Interval — initial and end values are finite numbers.
Differentials — derivative of functions.

Howbdhde
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9.19 TERMINAL QUESTIONS

Q 1. Test the following sequences for uniform convergence.
i sinnx

i. X"} on [0, 1] i, T

on [0, 27]

Department of Mathematics
Uttarakhand Open University 169



Advanced Real Analysis MAT502

Q 2. Show that the sequence {f,}, where f (x)=tan™nx is uniformly
convergent in any interval [a,b], a>0.

Q 3. Show that the sequence {f }, where fn(x):ﬁ is uniformly

convergent in any interval [0,b]b <.

Q 4. Show that the sequence {f }, where f (x)=e™ is uniformly

n

convergent in any interval [a, b]where a and b are positive numbers.
2

Q 5. Show that the sequence {f }, where f, (x)= is not

1+ nx?

uniformly convergent on [0,1].

Q 6. Show that the series X

is uniformly convergent for all real
oo 1+ nx

2

X.

Q 7. Show that the series (1-x) +x(1—x)* +x*(1—x)* +... is not
uniformly convergent on [0,1]

Q 8. Test the following series for uniform convergence.

© H 2 2 0 4
& sin(x? +n2x . X
. Zg for all real numbers. i, —
= n(n+1) m (L+x7)
on [0,1].
e O . = cosnx
iii. Y a"cosnx, 0<a<1for all real numbers iv. .
n=1 n=1 n

for all real numbers, p>1

R X N
Q 9. Show that the series Z ——_7 Is uniformly convergent over any
= n°+n'x

finite interval [a, b], for p>1, >0 .

Q 10. Show that the sequence {f,}, where fn(x):1+x is uniformly

nx?
convergent to a function f on [0,1]and that the equation
f'(x)=lim f/(x) is true if x=0and false if x=0.
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Q 11. Show that the  sequence  {f .},  where

n*x 0<x<1/n
f,(x)=1-n°x+2n  1/n<x<2/n is not uniformly convergent on [0,1]
0 2In<x<1
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UNIT 10: LEBEGUE INTEGRAL
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10.12 Terminal Questions
10.13 Answers

10.1 INTRODUCTION

In previous unit we studied Uniform convergence. In this unit we will

study lebesgue integral.

We begin by reminding ourselves that two sets of real numbers are said to
be equivalent if a bijective mapping exists between them. The idea of
"cardinality” of sets of real numbers, which actually counts the number of
elements in sets, is created as a result. Any two open intervals (a,b) and
(c,d) are equivalent, as is widely known. Do they appear the same when
plotted on the expanded real line, though? The answer is "NO" because

the interval's length is a very noticeable property when we draw intervals.
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Now we define [(I) as the length of a bounded interval | (open, closed, or

half open) with end points a and b where a < b.

The length of an unbounded interval I, or we can say that an interval
whose left end point is —ooor the right end point is+oo, is defined as

infinity and is usually expressed as [(I) = co.

Is it conceivable to apply the concept of "length” of intervals to arbitrary
sets of real numbers, which is the obvious question that now arises? How
long should an open set or a closed set be? Be aware that it is quite
reasonable to define the length of an open set as the sum of the lengths of
the intervals that make up the open set. While it is simple to define the
length of a bounded closed set F as b — a — [(K) where F c (a,b) and
0 =(ab)—F.

However, the class of open sets and bounded closed sets is too narrow for
our needs, so we'd need to know the sizes of more complicated sets. For
instance, how big should the set of irrational integers in (5, 8) be? But
more crucially, when is it possible to determine the "length™ of any given
set of real numbers? One of the most logical ways to respond to these
kinds of issues is through the theory of Lebesgue measure, which

addresses these challenges.

However, the class of open sets and bounded closed sets is too narrow for
our needs, so we'd need to know the sizes of more complicated sets. For
instance, how big should the set of irrational integers in (2, 4) be? But
more crucially, when is it possible to determine the "length” of any given
set of real numbers? One of the most logical ways to respond to these
kinds of issues is through the theory of Lebesgue measure, which
addresses these challenges. In this chapter we will discussed about

lebesgue integral.
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10.2 OBJECTIVES

In this Unit, we will

1. analyze about lebesgue measure
2. Studied some basic definition of lebesue integration

3. construct important theorems based on lebesgue measure

10.3 LEBESGUE OUTER MEASURE

As we know that a countable number of open intervals can cover any set X
of real numbers. This number can be viewed as a approximate measure of
the set X because the length of an open interval is a positive number and
the sum of the lengths of these open intervals is uniquely defined
regardless of the order of the terms. Naturally, we are interested in finding
the best possible approximation, which gives rise to the idea of Lebesgue

outer measure, which is defined below.

Lebegue outer measure: Let X be any subset of R, then the Lebesgue

outer measure of X is defined by

m*(X) = lﬂf{ an(ln): {In}neN}

where {I,,}is a countable collection of open intervals such that X <

Un=1 In.

NOTE: Let X be any subset of Rand m*(X) be Lebegue outer measure.
Then

0 < m"(X) < oforany X c R.

(i) m*(X) = 0if X is an empty set.
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Theorem 10.1. Let X be any subset of R and m*(X) be Lebegue outer
measure. Then

()Y € Rsuchthat X c Y impliesm*(X) < m*(Y)

(i) Ifx € Rwehavem* (4 + x) = m*(4)

(iii) The Lebesgue outer measure of an interval is equal to its length.

Proof: (i) As we know that any cover of Y by open intervals is also a

cover of X.
Therefore m*(X) < m*(Y)
(ii) Let e > 0 be given.

we may try to find a countable collection of open intervals {I,,},ey Such
that A < U,I, Inand }, l(I) < m*"(X) + e.

Obviously A + x < U,l(, + x)

Therefore, m*(A + x) < Y, l(I, +x) = X, l(I,) < m*"(X) + e.
As e > 0 is arbitrary hence it follows that

M XA X) < M) e, (1)

NowX = (X + x) — x

S>m'(X) S mM X+ X)oiiii 2)

From inequality (1) and (2), we get

m'(X) = m"(X + x)

(vi) LetI = [a,b]be a closed bounded interval. Now we will prove that
m*(l) = b — a.
Lete>0be givensuchthat I = [a,b] € (a — &b + ¢€)

By definition of outer measure, we get
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m(I)<b—-—-ec—(a+e)<b—-a+2¢
€ is arbitrary, therefore

Now we prove that p = (I)>b —a.

Let {I,,},.en any countable collection of open intervals.

As we know that [a, b] is compact.

Therefore Every open cover of [a, b] has a finite subcover.

Also the sum of the lengths of intervals from a sub-collection of {I,,},en
can not exceed [(I,,) and so it is sufficient to prove ., I(I,) = b — a for
a finite collection {I,,} of open intervals covering [a, b].

Since a € [a, b], so there exists a member of {I,},en, b€ (a;, b1), such
thata; < a < bl.

If b, > bthen[a,b] c (a4, b;) and the proof is complete.

If not, then b; € [a, b]. Then there exists another member (a,, b,) (say)
witha, < b; < b,. If b, > b then the proof is finished.

If not, then we proceed as above. In this way we get members
(aq,by),(az, by), ... from {I,,},,ey SUchthata;,; < b < bj;q.

The collection {I,,} is finite, so this process must stop after finite number
of steps.

But note that if it stops after k steps then we must have a;, < b < by.
Now clearly

S l(l) = Xy (b; — ;)

= (bx — ar) + (b — ag—1) + . (by — ay)

= by — (ag — bx—1) — (Ag—1 — bg—z) = (az — by) —a; = by — a;
>b—a

Thus we have m*(I) = b — a.

Therefore m*(I) = (b — a).

Next let I be any finite interval.

Lete > 0 be given.
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Choose a closed interval K < [ such that I[(K) > I(I) — e.

Thenl(l) — e < I(K) = m*(J) < m* (1) < m*(]) =1(]) = I(D.
Again since this is true for any € > 0 hence we get [(I) = m*(]).

Finally let I be an infinite interval. For any H > 0, we can find a closed
interval g c I with [(8) > H.

Thenm*(I) = m*(B) = l(B) > H.

Since this is true forany H > 0 so we must have m*(I) = oo = I(I).

This completes the proof.

Theorem 10.2. Outer measure is countably subadditive, i.e, if {X;};-4
be any countable collection of sets, then

m*(UpZq Xg) < Xgzym"(Xy)
Proof. Let one of the X, has infinite outer measure, the inequality holds
trivially.
Assume each X, k = 1,2, 3, .....has finite outer measure.
Let € > 0. For each k € N, there is a countable collection {I;};2, of
open, bounded intervals such that

Xy SUR_; I, and Ty 1(L,) < m* (X)) + %

Now {1, } is a countable collection of open, bounded intervals that

1<k,i<oo
covers Up—; X.
It is countable (countable collection of set is also countable)

By the definition of outer measure, we get
m*(Uizy Xi) < Tiea (T84 l(lki))
<32 (22, 1(1))
< I (m' @) +57)
= Dk m (X)) + +¢
Because this true for each € > 0, italso true for € = 0. Therefore

m*(Ugq Xi) < Yoy m™(Xy)
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NOTE: if {X, }}—, be any Finite collection of sets, then
m*(Ug=q Xi) < Xk=1m" (X))

Itis called finite subadditivity property.

Theorem 10.3. If X is countable then m*(X) = 0.
Proof: Consider A be a countable set defined as A = {a,, }n=1.

Suppose € > 0.

&

For each n € N, define I,, = (a,, — ﬁ,an + ).

Now the countable collection of open intervals {I,,},—,; covers X.

Hence

&

0<sm'(X) < X2, W) = X217 = €

As € > 0 is arbitrary.
Therefore m*(X) = 0.

NOTE:

H c R is called a Gg set if it can be expressed as the intersection of a
countable number of open sets.

Similarly aset S € R is called a S, set if it can be expressed as the union

of a countable number of closed sets.

CHECK YOUR PROGRESS
(CQ 1) Define Lebegue outer measure
ANSWER
(CQ 2) Let X be any subset of Rand m*(X) be Lebegue outer measure.
Then prove that Y ¢ Rsuchthat X c Y impliesm*(X) < m*(Y)
ANSWER
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10.4 THE o —ALGEBRA OF.LEBESGUE
MEASURABLE SETS

The four benefits of outer measure are that

(1) it is defined for all sets of real numbers,

(i) an interval's outer measure is its length,

(iii) it is countably subadditive, and

(iv) it is translation invariant.

Outer measure, however, is not countably additive. Infact, it is not even
finitely additive there are disjoint sets X and Y for which m*(XUY) <
m*(X) + m*(Y).

Measurable: Let A be any set then a set X is said to be measurable if
m'(A) =m*(AnX)+m*(An X

NOTE:
If X is measurable and Y is any set disjoint from X, then
mEXUY)=m+x(XUY)NnX)+m (X UY)NX) =m"(4A) +
m*(B)
X is measurable if and only if for each set S we have m*(§) = m*(Sn
X) +mx(SnX°).
Theorem 10.4. Any countable set is measurable.
Proof Consider the set X have outer measure zero.
Assume S be any set.
As we know that
SnXcXandSnXxccs
Also
m'(SNX)<m*(X)=0and m*(SNX) <m*(S).
Therefore
m*(S) > m*(SNX) = 0+m*(SNX°)
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= m'(SNX) +m*(SnX°,

Hence X is measurable.

Theorem 10.5. The union of a finite collection of measurable sets is
measurable

Proof. Fist we will try to prove that the union of two measurable sets X,
and X, is measurable.

Assume S be any set.

As X; is measurable, so we have

m(S) =m* (SNX)+m (SNX1) oviiiii, (1)

X, is measurable, hence

mSNnX,)=m(EnX)nX) +m (SNX,)INXE) oo ()
Using equation (2) in equation (1), we get

m*(S) =m* (SN X)) +m* ((SNX:)NX,) +m*((SNX,) NX5) .(3)
As we know

ENX)NXS=SNn(X,NX)E i (4)

Using equation (4) in equation (3), we get

m*(§) =m* (SN X)) +m (SN X)) NX;) +m (SN (XN X))

We also know

ENXDUSnXinX,)=SNX,UXy)

Therefore

ENXDUSnXinX,)=SNX,UXy)

Using finite subadditivity of outer measure, we get

m (SNX)+m(SNX{NnX,)=m (SN (X, UXy))

Therefore

m*(S) =m* (SN (X, UXy))+m (SN (X N X))

Hence X; U X, is measurable.
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let {X, }x=1 be any finite collection of measurable sets. We try to justify
that the union of finite measurable set is also measurable i.e. UZ_; X; is
measurable.

For general n, by induction. This is trivial for n = 1.

Suppose it is true forn — 1 i.e. URZT X, is measurable.

Forn

Uk=1 X =UkZ1 X U Xy,

It is given that X, is measurable which implies UZ1 X, UX, is
measurable.

Therefore, Uj_; X}, is measurable.

10.5 LEBESGUE MEASURE AND COUNTABLE
ADDITIVITY

Lebesgue measure: The restriction of the set function outer measure to
the class of measurable sets is called Lebesgue measure. It is denoted by
m, so that if X is a measurable set, its Lebesgue measure, m(X), is defined
by

m(X) = m*"(X).

Theorem 10.6. Lebesgue measure is countably additive, i.e., if
{X1}r=1 is a countable disjoint collection of measurable sets, then its

union Uy-; X, also is measurable and

m(UZ1 Xi) < ) m(Xe)
k=1

Proof. {X; };-, is a countable disjoint collection of measurable sets
It implies that Uy_; X, is measurable sets. (because union of measurable

sets is measurable)
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Outermeasure is countably subadditive.

Therefore

M(Upz1 Xi) S et M(XR) oo (1)
As we know that {E} };-, is a countable disjoint then

m* ([Ug=1 Ex]) = Xg=1m"(Ey).

Therefore for each natural number n, m* ([Up=; Xi]) = Xr=1m " (Xy).
Since Uy~ X, contains U}_; X, by the monotonicity of outer measure
and the preceding equality.

m(Up=q Xi) = Y=y m* (X, ) foreachn

The left-hand side of this inequality is independent of n.

Therefore

MUK, Xi) = e (X ) oo 2
From the inequalities (1) and (2), we get

m(Uplq Xi) = D=1 m" (X )

Cantor set:

Let I = [0, 1] be the closed and bounded interval.

The first subdivide I into three intervals of equal length 1/3 and remove
the interior of the middle interval, i.e., remove the interval (1/3,2/3)

from the interval [0, 1] to obtain the closed set I;, which is the union of
two disjoint closed intervals, each of length %
1 2
ho=[og] v ]
We now repeat this on each of the two intervals in I; to obtain a closed set
I, which is the union of 22 closed intervals, each of length 312
1 21 27 8
L=log]u 53 v B vl
Again repeat this step on each of the four intervals in I, to obtain a closed

set I, which is the union of 23 closed intervals, each of length 313
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We continue this above steps countably many times to obtain the
countable collection of sets {I,, }y=1-

Now we define the Cantor set C by

C=Ny_1In

The collection {I,,};—, have the following two properties:

(i) {I,,};>=, is a descending sequence of closed sets.

(i1) For each n, I, is the disjoint union of 2" closed intervals, each of

1
length pert

Theorem 10.7. The Cantor set C is a closed, uncountable set of
measure zero.

Proof. The intersection of any collection of closed sets is closed.
Therefore C is closed.

Each closed set is measurable hence each I,, and C itself is measurable.
Now each I, is the disjoint union of 2™ intervals, each of length 3%
Using finite additivity of Lebesgue measure, we get

2 n
m) = (3) -
By the monotonicity of measure, we get

2 n

m(C) < m(ly) = (2) . for allk,m(C) = o.
Now we will prove that C is uncountable.
Assume C is countable.
Let {c,}n=1 be an enumeration of C.
Hence we have two disjoint Cantor intervals whose union is I; and does
not contain the point ¢4, let it be A4;.

Similarly one of the two disjoint Cantor intervals in I, whose union is A,

fails to contain the point c,; denote it by A,.
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Continuing in this way, we construct a countable collection of sets F;2,
which, for each n,

having the following properties:

Q) Ay isclosedand A,,; € A,

@i A, <cC,and

(i) c, €A4,.

From (i) and the Nested Set Theorem we get

The intersection Ny, I, is nonempty.

Let the point x belong to this intersection.

By property (ii), Ny, Ax SNg-, I = C and therefore the point x belongs
to C.

However, (c,}y=, is an enumeration of C. Therefore x = c,, for some
index m.

Hence c¢,, = x €Ny, A, S A,, It contradicts property (iii).

Thus € must be uncountable.

CHECK YOUR PROGRESS
(CQ 1) Define Cantor set

ANSWER

(CQ 2) Prove that measure of cantor set is 0.

ANSWER

10.6 POINTWISE AND UNIFORM
CONVERGENCE

Let {f,,} be sequence of functions with common domain X, if f a function
on X and a subset Y of X, then

a) The sequence {f,,} converges to f pointwise on Y if
lim, e fn(x) = f(x)forallx €Y
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b) The sequence {f,} converges to f pointwise a.e. on Y if {f,}
converges to f pointwise on Y~Z , where m (Z) = 0.

c) The sequence {f, }converges to f uniformly on Y if for each ¢ > 0,

there is a  positive  natural  number ngsuch  that

If —fal <eonY foralln =n,

Egoroff s Theorem

Theorem 10.8. Let X has finite measure. Let {f,} be a sequence of
measurable functions on X that converges pointwise on X to the real-
valued function f. Then for each & > 0, there is a closed set S
contained in X such that { f,, } » f uniformlyonAandm (X — A4) <
E.

Proof. First we prove that for each §; > 0 andé§, > 0, there is a
measurable subset Y of X and a positive natural number n, such that

lfn — fl < 6;0nY foralln >nyand m(X —Y) < §,.

As f is real valued function therefore for each k, the function |f — fi| is
properly defined.

f is measurable = the set {x € X| |f(x) — fi(x)| < &,} is measurable.
The intersection of acountable collection of measurable sets is measurable.
Hence

X, ={x€ X|if |f(x) — fi(x)| < 6:for all k = n is a measurable set.
Let {X,,}n= is an ascending collection of measurable sets.

{f} converges pointwiseto f on X = X =U,_, X,

Now continuity of measure implies that

m(X) = lim,,_, m(X,)

Since m (X) < oo, we choose a positive natural number n, such that
m (X,,) > m(X) — e

Let A= X, and by the excision property of measure, m (X — A) =

m (X) — m (X,,) < € Now for each n € N, let 4, be a measurable
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subset of A and ny(n) be any positive natural number such that if §; =

&

and &, = %then

2n+1
m(X — A4,) < Znil .......................... (1) and
Ifi = f1 <= onX, forallk=ng(n) ................ ©)

Consider A =Ny, 4,

By De Morgan's Identities, the countably subadditivity of measure and (1),
m(X —A) = m(UiZy (X = 4,)) S Ty m(X = Ap) <Xiismm = o
Now we try to prove that that {f,,} converges to f uniformly on X.

Also let € > 0. We choose a natural number m such that% < e

From inequality (2), we get

lfi — fl <eonA fork =ny(m)

Therefore {f,,} converges to f uniformlyon Aand m (X — A4) < g
Let aclosed set F contained in A forwhichm (4 — §) < 2

Thereforem (X — S) < eand {f} - f uniformly on S.

10.7 LEBESGUE INTEGRATION

A real-valued function f defined on [a, b] is called a step function if there
is a partition P = {x,,x4,...,x, } Of [a, b] and numbers k4, ..., k,, such
thatfor1 < i < n,

wx) =c¢if xiq < x < x;.

We know that

L(w,P) = Xy ci(x; — xi-1) = U(w, P)

From above and the definition of the upper and lower Riemann integrals,

we coclude that a step function w is Riemann integrable and

b
faw = Xic1 (X — xi-1)
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Therefore, we may reconstruct the definition of the lower and upper

Riemann integrals as follows:
faba) = sup{[, ¢ | ¢ is step function and ¢ < fonX } and

faba) = inf{[, ¢ | ¢ is step function and ¢ = f on X }

NOTE:

A step function takes only a finite number of values and each interval is
measurable.

Thus a step function is simple. Since the measure of a singleton set is zero
and the measureof an interval is its length, we infer from the linearity of
Lebesgue integration for simplefunctions defined on sets of finite measure
that the Riemann integral over a closed, boundedinterval of a step function

agrees with the Lebesgue integral.

Let f be a bounded real-valued function defined on a set of finite measure
X.

We define the lower and upper Lebesgue integral, respectively, of f
over X to be

sup{[, ¢ | ¢ simple and ¢ < f on X }

and

inf{qu) | ¢ simpleand ¢ > f on X }

As we know that f is bounded, by the monotonicity property of the
integral for simple functions, the lower and upper integrals are finite and
the upper integral is always at least as large as the lower integral.
Lebesgue integrable: A bounded function fon a domain X of finite
measure is said to be Lebesgue integrable over X provided its upper and

lower Lebesgue integrals over E are equal. The common value of the
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upper and lower integrals is called the Lebesgue integral, or simply the

integral, of f over X and is denoted by [, f.

Theorem 10.9. Let f be a bounded function defined on the closed,
bounded interval [a, b]. If f is Riemann integrable over [a, b], then it
is Lebesgue integrable over [a, b] and the two integrals are equal.

Proof Let f is Riemann integrable on interval I = [a, b],

ol

@ is a step function, ¢ < f}

-l

To prove that f is Lebesgue integrable we will try prove that

ol

@ is a step function, @ = f}

@ is a simple function,p < f}

-l

Although, Every step function is a simple function and, as we have already

@ is a simple function,p = f}

established, for a step function, the Riemann integral and the Lebesgue
integral are the equal.
Hence the first inequality = the second inequality

Therefore

ol

@ is a simple function,p < f}

-l

@ is a simple function,p = f}
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Theorem 10.10. Let fyand f, be bounded measurable functions on a
set of finite measure X. Then for any a and b then
Ji(afi+bf)=af fi+b [ fo . Alsoif f<gonXthen [ fi<
Jyfa-

Proof Let fiand f, be bounded measurable functions on a set of finite
measure X.

We Know that linear combination of measurable bounded functions is
measurable and bounded.

Therefore af; + bf, is integrable over X.

If ¢ is a simple function then and ag is also simple function

Leta > 0.

As Lebesgue integral is equal to the upper lebesgue integral, hence
fxafl = inf(pzaf fxgp =a inf[%]zf fX [%] = anf

Leta < 0.
As Lebesgue integral is equal to the upper lebesgue integral and lower

lebesgue integral, hence

fyafy = infysar Sy 0 = asupjey,, f[2] = afy f

Ifa =b = 1.

Let ¢, and ¢, be simple functions for which f; < ¢;and f, < ¢, on X.
Then ¢, + ¢, isasimple functionand f; + f, < ¢, + @,0n X.

Because fX(f+g) is equal to the upper Lebesgue integral of f; + f5
over X, therefore

[,(fi +£2) < [ (@1 +92) = [, 01 + [, 02 (linearity of integration for
simple functions)

Because ¢, and ¢, vary among simple functions such that f < ¢, and
f <,

Therefore g.L.b.([ (A + ) = [ i+ [, f
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From above inequalities we conclude that fX(f1 + f,) is a lower bound for
these same sums. Therefore,

Lt = A+ 1

Let @; and &,be simple functions for which®, < f; and @, < f, on
X.

Then @, + &, < f; + f, on X and @, + @, is simple.

Because fx(f1 + f,) is equal to the lower Lebesgue integral of f; + £,
over X,

i+ 1) 2 [[(01+P;) = [, &1 + [, P, (by the linearity of
integration for simple functions)

Because @, and &, vary among simple functions such that f < &; and
f <o,

Therefore Lu.b( [,(fi+ ) = [, i+ [, f2

From above inequalities we conclude that fX(f1 + f,) is a upper bound for
these same sums. Therefore,

A+ = A+ ] f

Therefore,

A+ = A+ ] f

This completes the proof of linearity of integration.

Letf; < f,onX.Assumef = f; — f,onX.

Therefore [, f, — [, fi = [,(f. = fi) = [ f-

The function h is nonnegative.

Hence h > 0on X, where ¢ = 0onX.

Since the integralof h equals its lower integral, fo > fX<p = 0.

Therefore, [, fi < [, fo-
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Theorem 10.11. Let f be a bounded measurable function on a set of
finite measure X. Then |[, f| < [, If|

Proof It is given that function |f| is measurable and bounded.

As we know that

—Ifl<f<Ifl onX.

Therefore, by linearity and monotonicity of integration

— LIS L F < LfL ie L fl < [ IF):

Theorem 10.12. Let {f,} be a sequence of bounded measurable
functions on a set of finite measure X. If {f,} — f uniformly on X,
then limy,o, [, fn = [, f

Proof It is given that f, is bounded measurable function on X, for all
n € Nand {f,} = f uniformly on X

Therefore f is bounded.

As f is the pointwise limit of a sequence {f,}.

Therefore f is measurable.

Let ¢ > 0 be any positive number. We Choose n, € N such that
If—fn|<$oanoralln2n0 .................................. (1)
By the linearity and monotonicity of integration for all n = n,, we get
[ f = Ll < 100 = £

< [ If - £l
Using inequality (1), we get

& &

[ f = | < Sy S s m(X) = €

Hence limy, e, [, fo = [, f
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The Bounded Convergence Theorem
Theorem 10.13. Let {f,,} be a sequence of measurable functions on a
set of finite measure X. Consider {f,} be uniformly pointwise
bounded on X, i.e., there exists a number K > 0 such that |f,| <
KonX foralln. If {f,} > f pointwise on X, then lim,_, [, fn =
I f
Proof. It is given that { £,,} uniformly pointwise bounded on X,
Hence f is measurable .
Also |f,| < KonX foralln= |f| < KonX.
Let Y be any measurable subset of X and n be any natural number, then
Lf = L= LU =) =[,(f = f) + [, (f = f)
Hence
L =Lita =L =)+ [ f = Sy ahn
S f = Sl S LG = ]+ o f L+ i a fal

< LI = fal + L I [+ [ g 1ol

< [If = ful + K.m(X — A) + K.m(X — A)
Therefore

[ f = [ fol S LJf = fal +2Km(X —A) oo (1)
Let € > 0 be any number.

As m(X) < oo and f is real-valued.

According to Egoroff's Theorem, there is a measurable subset A of X for
which {f, } = f uniformlyon Aand m (X — A) < i.

By uniform convergence, there is a n, € N for which

&

o = fI < 5o O A for alln =,

Hence, for n >n, From inequality (1) and the monotonicity of

integration, we get

&

[ifo = i | S gm0 + 2K.m(X —4) <e
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Therefore the sequence of integrals{ f I } converges to |, -

10.8 SUMMARY

In this unit we discussed about lebesgue measure and lebesgue integration.

We discussed some important proof on this unit

10.9 GLOSSARY

Set- a well defined collection of elements
Derivative- the rate of change of a function with respect to a variable

Integral- continuous analog of a sum, used to calculate areas, volumes.

L npoE

Absolute convergence- converge even when you take absolute value of

gach term.
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10.12 TERMINAL QUESTION

Long Answer Questions

(TQ 1) Define lebesgue measure

(TQ 2) Define lebesgue integration

(TQ 3) State and Prove Egoroff theorem.

(TQ 4) State and prove boundedness convergence theorem.
(TQ5) Define outer measure.

Fill in the blanks
(TQ 6) Cantor set is

(TQ 7) Cantor set has measure

10.13 ANSWERS

(TQ 6) uncountable (TQ7) 0
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BLOCK IV: METRIC SPACE
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UNIT 11: METRIC SPACES

CONTENTS

11.1 Objectives

11.2 Introduction

11.3 Metric Space

11.4 Diameter and bounded and unbounded metric
11.5 Open set

11.6 Interior, exterior, frontier and boundary of a set
11.7 Closed set

11.8 Summary

11.9 Glossary

11.10 References

11.11 Suggested Readings

11.12 Terminal Questions

11.13 Answers

11.1 INTRODUCTION

In previous unit, we studied Lebesgue integral. In this unit we analyze
about metric space and its properties.

A metric space in mathematics is a collection with a concept of distance
between its components, which are typically referred to as points. A
metric or distance function is used to calculate the distance.[1] The most
common environment for exploring many of the ideas of mathematical
analysis and geometry is in metric spaces.

There are not many criteria for the distance concept given by the metric
space axioms. Metric spaces have a lot of versatility because of their
generality. The idea is also potent enough to represent a number of
intuitive facts about what distance means. As a result, generic conclusions
regarding metric spaces can be used in a wide range of situations.

With the use of examples, we will learn the fundamentals of metric space
in this unit.
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René Maurice Fréchet was a French
mathematician who lived from 2
September 1878 to 4 June 1973. He
was the first to define metric spaces
and made significant advances to
general topology.

His remarkable 1906 PhD thesis,
"Some Points of the Functional
Calculus,” was his first significant
contribution to the field. The term
"metric space" was first used by
Fréchet, even though Hausdorff is
responsible for the nomenclature. The
degree of abstraction used by Fréchet
is comparable to that of group theory;
he proves theorems inside a carefully
selected axiomatic system that can
then be applied to a wide range of
specific instances.

Fig. 11.1. René Maurice Fréchet
(Source:https://en.wikipedia.org/
wiki/Ren%C3%A9 Maurice Fr

%C3%A9chet#/media/File:Frech

et.jpeq)

11.2 OBJECTIVES

In this Unit, we will

el A

Analyze basic definition of metric space
Illustrate same examples of metric space
Studied some theoorems based on metric space
Discussed open set , closed set, limit point etc.

11.3 METRIC SPACE

Let X + @ be a set. A metric on the set X is essentially just a rule for
calculating the distance between any two elements of X.

Metric space: Let X + @ be a set then the metric on the set X is defined
as a function d: X x X — [0,00) such that the following conditions are

satisfied

(M1) d(x,y) = 0Vx,y € X (self distance)
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(M2)d(x,y) = Oifandonlyifx = y Vx,y € X (Positivity)
(M3) d(x,y) = d(v,x);Vx,y € X (Symmetry property)
(M4) d(x,y) < d(x,z) + d(z,y);Vx,y,z € X (Triangle inequality)

XXX [O’oo)

(%, y) d(x,y)

Fig.11. 2. Metric Space

A metric space is an ordered pair (X, d) where X is a nonempty set and d
IS a metric on X.

Pseudo-metric: Let X + @ be a set then the pseudo-metric on the set X is
defined as a function d: X x X — [0,0) such that it satisfies axioms
(M1), (M3) and (M4) of metric space and the axiom

(M*2)d(x,x) =0 for all x.

Every Metric is pseudo-metric but pseudo-metric need not to be metric.
NOTE:

Metric d is also known as distance function.

For a Pseudo-metric x = y = d(x,y) = 0 but converse may not be true.

Examples
> Let X be any set and define the function d: X X X - R by
(1, x=+y
d(x’y)_{O,x=y

Then d is a metric on X and called the discrete metric.

»> The set C[0,1] consisting of all real valued continuous functions
defined on [0,1] with function d defined by d(f,g) = follf(x)—
g(x)| dx forall f,g € C[0,1].]a metric space.

Ex. 11.1. Prove that with d(x,y) = |x — y|, the absolute value of the
difference x - y, foreach x,y € R, (R, d) is a metric space.

Proof. Itis giventhatd(x,y) = |x — y|

Clearly we see that d(x, y) satisfied (M1), (M2) and (M3) conditions
Now forall x,y,z € R

dlx,y) = |x — yl
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=[x —2)+ (z — y)

< |lx —z[+ |z — yl|

= d(x,z) + d(z,y).
d(x,y) satisfied (M4) conditions.
Hence (R, d) is a metric space.

Ex 11.2. Let X be the set of all continuous functions f : [a,b] —
R.Then d(f,g) = sup{|f(x) — g(x)|: x € [a, b]} is a metric on
X.
Proof. Itisgiventhatd(x,y) = |x — y|
Clearly we can see that d(x, y) satisfied (M1) and (M3) conditions
M2)d(f,9) = 0o sup{lf(x) — g} =0 |f(x) - g =
0=sf=g
d(x,y) satisfied (M2) conditions.
(M4) d(f, 9) = sup{lf (x) — g}

= sup{lf ()| — h(x) + h(x) — g}

< sup{lf (x) — h()} + sup{lh(x) — g(x)[}

<d(f,h) +d(h,g)
Hence d(f, g) is a metric on X.

Ex.11.3. If R™ be the set of all ordered n-tuples with function d
defined by

1
dx,y) = Qi1 (x; — y)?)z forallx = (x1,X3,X3, ..., Xy), ¥y =
(Y1, Y2, ¥3, ---,¥Yn) € R™ is a metric space
Proof. It is given that d(x,y) = (X7, (x; — y,)? ).
Clearly we can see that d(x,y) satisfied (M1),(M2) and (M3)
conditions.
To prove (M4) condition we will use the Cauchy’s Schwarz inequality
that is

Siaibl < [T o T, b

There is nothing to prove if b; = 0 forall 1 <i < n.

Let b; # 0 for some i, then Y1, b? > 0.

Let x be any real number, then

Yici(a; — xb)? =2 0 =% (af — 2xa;b; + x*b}) 2 0
Sy af —2x Y ab; + x2 Y, bF >0

As x is arbitrary, so it is true for all € R . Now ¥, b? > 0. So
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X2 b —2x ¥ aibi + Y af =0
which is a quadratic equation in x and we can observe that the
discriminant is non negative if

Qe aib)? 2 Xy af X, b7

Now

(G = 207 )2 + (Sl — 30)2)

=2 (i —z)? +X(z —y)? + 28 (g — 2)? )%(Z?ﬂ(zi -

yi)?)?

> N (i —2z)? +X(z —y)? 23— 2z) Xiii(zi—yi)
(By Schwarz inequality)

=37 (= 2) + (z = ¥))" = TPy (o — yi)?
Hence

((Z?=1(xi - z;)? )% + Bz — y)? )%) > N (g — y)?

1 1 1
=g —2)? )2+ Qlini(z —y)?)z = it (g —y)? )2
=d(x,y) <d(x,z) +d(z,y) forallx,y,z € R"
(R™, d) is a metric space.

2

Ex 11.4. Let C[a, b] be the set of all continuous functions f : [a, b] —

R. Then d(f,g) = (f:(f(x) - gx)zdx)i is a metric on C[a, b].

Proof. Itis given that d(f, g) = ([, (f(x) — gx)?dx)’
Clearly we can see that d(x, y) satisfied (M1) and (M3) conditions
1

(M2) d(f,9) = 0 ([}(f(x) - g(x)?dx)* = 0 & f(x) - g(x) =
0ef=g
d(x,y) satisfied (M2) conditions.
(M4) Let ¢ be a function such that for § € [a, b]
0(B) = [L(Bf () + g(0) dx
= [; (B2F2(x) + g% () + 2Bf () g (x) ) dx
= B2 L f2(0)dx + [7 g2(x)dx + 2B [7 f(x)g(x)dx
Because @(B) =0, for all B € [a, b], hence the discriminant of the
quadratic in 8 is non positive if
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(12 FegCodx)” = J7 F2(ydx [ g*()dx
=[) F(x)g()dx >

(f;fz(x)dx f;gz(x)dx) ................................................ (D

Now
1\ 2

((f:(f(x) - h(x))zdx)E + (f;(h(x) - g(x))zdxf)
— f:(f(x) — h(X))de + f;(h(x) _ g(X))de 42 (f:(f(x) _
h(x))zdx)E (f:(h(x) — g(x))zdx)E

From inequality (1), we get

(0 = neYax) + (57060 - g ax)') = (2760 -
h() dx + [ (h(0) — g(0)) dx +2 [ (f () — h(x))dx [, (h(x) -
g(x))dx

= [2((f() = h(0))” + (A(x) — g(0)° +2(f () — h(0) (h(x) —
g(x))dx

= [2((F () — h(@) + h(x) — g(x)) dx

= [2((f ) — g(0) dx

Hence
(2(F G0 = n@) dx ) + (J2(hGo) — g(0) dx)* = (J2((FG0) =

, 4
9(®)) dx)’

ie.d(f,g) <d(f,h) +d(h g)

d a metric on C|a, b].

Ex 11.5. Let X be the set of all sequences of complex numbers. Then

function d which IS defined as
d(x,y) = Lot forallx = (x,}, y= (ya} €X is a
metric on X.

1 |xn—ynl

2™ (1+]|xpn—ynl)

Clearly we can see that d(x, y) satisfied (M1), (M2) and (M3) conditions

Proof. It is given that d(x,y) = Y01
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(M4) To prove the triangle inequality we first establish following
inequality

Let 0 < u < 6, then

u+ou<dé+déu ie u(l+6)<6(1+p

Now dividing both side by (1 + ©)(1 + &), we get

u )
e < (Lag) ~oorrrer e (1)

Now for any x = {x,,}, ¥y = {y,} and z = {z,,} € X, we have
0 < I|xp = Yul < lxp — zpl + |2n — Ynl
From inequality (1), we conclude

[xn—ynl |Xn—2n|+|Zn—ynl
1+xp=ynl = 1+|xp—2zZnl+|zn—ynl
[Xn—2zn| |Zn =yl

T 1+|xp—znl+|zn—yal 1+|xn—2zn|+|zn—ynl

Hence
[Xxn=ynl [Xn—2n| |Zn—Ynl
1+lxp=ynl = 1+|xn—2nl 1+|zp—ynl

Now multiplying zin and taking summation w.r.t n, we get

o 1 |Xn=Ynl w 1 |%n=Ynl o 1 [Xn=Ynl
Zn=17 Crrm—E Zn=15m CUTP— Zn=15m (1+lxn=yn)
=>d(x,y) <d(x,z)+d(y, 2z)
Hence d is metric on X.
(X, d) is said to be metric space. It is also known as Frechet space.

Theorem 11.1. Let (X, d) be a metric space and let x,y and z be any
points of X. Then d(x,y) = |d(x,z) — d(z,y)|
Proof. It is given that (X, d) is a metric space.
Let x,y,z € R, Using Triangle inequality in metric, we get
d(x,z) <d(x,y) +d(y,z)
=d(x,y)+d(zy) (By (M2))
Subtracting both side with d(z,y), we get
A, z) —d(z,Y) SAGY) i (1)
Again Using Triangle inequality in metric, we get
d(z,y) <d(z,x) +d(x,y)
=d(x,z) +d(x,y) (By (M2))
Subtracting both side with d(x, z), we get
d(z,y) —d(x,2) SdY) oo )
From inequality (1) and (2), we get
d(x,y) = |d(z,y) — d(x,2)|
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Some Postulates for a metric

Theorem 11.2. Let X # @. Then a mapping of d: X X X — R is metric
iff the following conditions are satisfied:

M1 d(x,y)=0iff x=yforallx,yeX

(M'2)d(x,y) < d(x,z) + d(y,z);Vx,y,z € X (Triangle inequality)
Proof. Let d be a metric space. Then it satisfied all four axioms of metric.
From (M4) condition; Vx,y,z € X, we get

d(x,y) < d(x,z) + d(zy)

From (M2) condition i.e. d(y,z) = d(z,y), we get

d(x,y) < d(x,z) + d(y,z) which is (M'2) condition

Clearly we can see that (M2)condition is as same as (M'1).

Let condition holds (M'1) and (M'2).

Assume x and y be any two points in X.

Using (M'2) conditions for x, x, and y, we get

d(x,x) < d(x,y) + d(x,y)

S d(X) S 2d(X,Y) o (1)

From (M'1), we have d(x,y) =0

Hence inequality (1) become

2d(x,y) = 0= d(x,y) = 0i.e. (M1) condition of metric space.

Clearly see that (M'1) condition is same as (M2) condition of metric
space.

Again using (M'2) conditions for x, y, and x, we get

d(x,y) < d(x,x) + d(y,x)

=>d(x,y) <0+ d(y,x) (From (M'1) condition)

Sd(X,Y) < d(Y,X) i 2

Using (M'2) conditions for y, x, and y, we get

d(y,x) < d(y,y) + d(x,y)

=>d(y,x) <0+ d(x,y) (From (M'1) condition)

Sd(Y,X) € d(X,Y) i e e 3

From inequality (2) and (3), we get

d(x,y) =d(y, x), (M3) condition of metric space.

From (M'2) condition, we get

d(x,y) < d(x,z) + d(y,z)

d(x,y) < d(x,z) + d(z x) (using equation (6))
It is (M4) condition of metric space
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11.4 DIAMETER AND BOUNDED AND
UNBOUNDED METRIC SPACE

Diameter: Let (X, d) be a metric space and let Y be a non empty subset of
X. Then the diameter of Y, denoted by & (Y) be defined as

§(Y) = sup {d(x,y):x,y € Y} i.e. diameter is the supremum of the set of
all distance between point of Y.

Distance between point and set: let Y be a non empty subset of X and
p € X then distance between point p and Y is defined as

d(p,Y) =inf {d(p,x):xinY}.

IfpeYthend(p,Y) =0

Distance between two set: let Y; and Y, be a non empty subset of X then
distance between Y; and Y, is defined as

d(Y,,Y,) =inf {d(x,y):xinY, and yinY;}

NOTE:
d(Y,,Y,) >0 andd(Yy,Y,) =2 0if andonlyif 1 NY, # @
d(Y,®) = co where @ is an empty set.

Theorem 11.3. letY; and Y, be a non empty subset of (X, d). Then
(YUY, <8(Y)) +6(Y,) +d(Y,Y,)
Proof. et Y; and Y, be a non empty subset of (X,d) and x and y be any
two points such that x,y € Y; U Y,.
Hence, Following condition arises
0] x,y €Y, =>d(xy) <6(;)
(i) x,y €Y, =>d(x,y) <5(,)
(i) x€eY,yey,
Let a € Y}, b € Y,, using triangle inequaity we get
d(x,y) <d(x,a) +d(a,y)
<d(x,a)+d(a,b)+d(b,y) (triangle inequality)
(iv), yeY,xeY,
Let a € Y,, b € Y, using triangle inequaity we get
d(x,y) <d(x,b) +d(b,y)
<d(x,b) +d(b,a) +d(a,y) (triangle inequality)
Hence
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(YUY, <é8(Y;) +6(Y,) +d(a,b)
As a and b are arbitrary, hence
(Y UYy) <6(Yp) +6(Y;) +d(Yy,Y2)

Bounded Metric spaces: Let (X,d) be a metric space. Then X is said to
be bounded if there exists K € R* such that d(x,y) < K for all x,y € X.
Bounded Metric spaces: Let (X,d) be a metric space. Then X is said to
be unbounded if it is not bounded.

Example: A discrete metric space (X,d) where d(x,y) = {t ;z;’ is
bounded because 6(X) = 1.

Theorem 11.4. Let (X, d) be a metric space and K € R*, then there
exists a metric d4 on X such that the metric space (X, d;) is bounded

with 6(X) = K.
Kd(x,y)

Proof. Let we define d, such that d,(x,y) = iy forall x,y € X.

Now we will prove that d, (x, y) is a metric space.
M1)d(x,y) =0 Vx,yeX andk >0

Kaxy) 5 0= d,(x,y) 20 Vx,y€eX

1+d(xy) —
_ Kaloy) _
(M2) d,(x,y) = 0 1+d(xy)

©d(x,y) =0ask >0 o x =y (Positivity property of metric d)
Kd(x,y)

_ Kd(yx)

- 1+d(y,x)

=dy(y,x)

_ Kd(x,y) _ Kd(x,y)+K-K
(M4) dl(x' y) - 1+d(x,y) - 1+d(x,y)

K
1+d(x,y)
From triangle inequality of metric d, we have

d(x,y) < d(x,z) +d(y,z) =

0 Kd(x,y)=0

(Symmetry property of metric d)

1 1
1+d(x,y) — 1+d(x,2)+d(y,z)

N -K
Td(y) T 1+d(x2)+d(y,2)
Adding K on both side we get

K K
=K - 1+d(x,y) s K- 1+d(x,z)+d(y,2)

Hence from equation (1), we get

K
d(6y) <K - o s
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_ KQ+d(x2)+d(y,2)-1) _ K(d(x,2)+d(y.2))
T 1+d(x2)+d(y,z) 1+d(x,z)+d(y,2)

_ Kd(xz2) kKayz)  _
T 1+d(x2)+d(v,z)  1+d(xz)+d(v,z) dl(x' Z) +di(z, y)

Therefore, dl(x, y) < dl(x, Z) + dl(Z, y)
Hence (X, d,) is a metric space.
Here we can see that

Kd(x, K
dy(x,y) = <L)

Trdiy) - 2 < K for all point x,y € X.
Hence (X, d,) is a bounded metric space.

d(x,y) +

CHECK YOUR PROGRESS
(CQ 1) Prove that d, (x, y) = )

1+d(xy)
ANSWER
(CQ 2) Prove that if d; and d, be two metric spaces then d'(x,y) =
d,(x,y) + d,(x,y)is metric space.
ANSWER

is a metric on X.

11.5 OPEN SET

Open Sphere: Let (X, d) be a metric space and let x, € X. If r be any real
number then the set x € X:d(x,x,) < r is said to be open sphere or open
ball.

Here x, is said to be centre of the open sphere and r is called the radius of
the open sphere.

Open sphere of centre x, and radius r is denoted by S(x,, 7).

Fig 11. 3. Open

Closed Sphere: Let (X, d) be a metric space and let x, € X. If r be any
real number then the set S[x,,7) = {x € X:d(x,x,) < r} is said to be
closed sphere or closed ball.
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Fig 11.4. Closed Sphere

NOTE:

» Sphere or open sphere or open ball or open cell or open disc are same.

> In the usual metric space R"™, the open sphere S(r, x,) is circular disc
|x —xol <randx, € R*andr >0

Ex 11.6. Let (X, d) bethe usual metric space such that d(x,y) =
|x — y| for [0,1] . Then find § (g 1) and S Eﬂ
Proof. S(§,1) = {x € [0,1]: |x -2 | <1

={xe[01]: -1 <x—§< 1

={x€ [0,1]:—1+§<x< 1+§

2 4
—{XE[O,l].—§<X<§

= [0,1]
13 1 3
S[ed=eoalkfr—3 | <3
3 1 _3
—{XE[O,].] —ESX—ESE
301 3 1
—{xE[O,l] —E+ESXSE+E
= {x € [0,1] —ESxS%

Theorem 11.5. Let (X, d) be a metric space and let p ¢ S(x,,r) where
Xo €EXandr > 0. Then

d(p) S(x()) r)) = d(xOP p) -r

Proof Assume x be any point of (x,,7) .

Using Triangle inequality (M4) in x, p, x, we get

d(xor p) < d(inx) + d(x' p)

Subtracting both sides d(x,, x), we get

d(x0r p) - d(Xle) < d(x0) x) + d(xl p) - d(x()l x)
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= d(xg,p) —d(xg,x) SAQGD) coviriiii (1)

Butx € S(x, 1) =2 d(x,x0) <7

2 —d(X,X0) > =T i, )

From inequality (1) and (2), we get

d(xo,p) —7 < d(x,p)

=>dxg,p)—r<dpx) BYM3)......o........ 3)

Here we can see that the point x is arbitrary, therefore inequality true for
all x € S(x,, 7).

Hence

d(xe,p) — 1 < d(p,S(xo,r)) or d(p,S(xO,r)) >d(xg,p)—r

Neighbourhood of a point in metric space: Let (X, d) be a metric space
and x, € X. A subset Y of X is said to be neighbourhood of a point
X, there exists r > 0 such that S(x,,7) S Y.

Open sets in metric space

Let (X,d) be a metric space. A subset Y of X is said to be open or
d —open in X if Y is neighbourhood of each of it points.

OR

Let (X,d) be a metric space. A subset Y of X is said to be open or
d —open in X iff for each x € Y, there exists r > 0 such that S(x,r) € Y.

- /

Fig 11.5. Open Set

Example:
[0,2] is open in X = [0,2] because d and X is open set in X.
The Cantor set C is not open set.

Ex 11.7. Every open interval is an open set in real line.
Proof. Let I be an opent interval on R and let x € .
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Assume &€ =min{x —a,b—x}. Then I, = (x —&x+¢) IS an open
sphere such that x is centre and I, < I.
Therefore I is open.

Theorem 11.6. Every open sphere is open set in metric space.
Proof. Let (X, d) be a metric space. Let S(x,,r) be an open sphere in X.
Now we will try to prove that for each point x € S(x,, ) there exists an
open sphere centred at x and contained in S(x,,7) i.e. S(x,r") c
S(xg,7) for all x € S(x,, 7).
It is given that x € S(x,, 1)
> d(x,x,) <r=r—d(x,x,) > 0.
Letr' =r —d(x,x,) > 0.
Now we show that S(x,r") € S(x,, 7).
Letx' € S(x,r"), thend(x',x) <1 i, (1)
Now using triangle inequality (M4) in x’, x, and x
d(x',xp) < d(x',x) + d(x,x)
<r'+d(x, xy) (byinequality (1))
=r—d(x,xy) + d(x,xy)
Hence d(x', xy) <ri.e.x" € S(xy, 1)
Hence S(x,r") € S(x,, 7).

Theorem 11.7. Union of arbitrary collection of open set is open in
metric space.

Proof. Let (X, d) be a metric space.

Assume {G,:A € A} be an arbitrary collection of open subsets of
X and G =U;¢, G;.

Now we prove that G is open.

Let x € G. As G is union of arbitrary collection of open set G;.

Hence x € G, for some 1 € A.

It is given that G, is open set.

there exists an open sphere centred at x and contained in G i.e.

S(x,r) € G, wherer > 0.

GLSG=>S(x,r)caG

Thus we conclude that for each x € G there exists an open sphere S(x,r)
such that S(x,r) € G.

Therefore G is an open set.
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Theorem 11.8. Let (X, d) be a metric space and let ¥ be a subset of X.
Then Y is open iff it is neighhbourhood of each of its points.

Proof. It is given that (X, d) is a metric space and Y is a subset of X.

Let Y is open and let x € Y be any point.

By the definition of open set in metric space

x € S(x,r) €Y, wherer > 0.

i.e. Y is neighbourhood of x.

As x is arbitrary , hence Y neighhbourhood of each of its points.

Converse

Let Y neighhbourhood of each of its points.

Now we will prove that Y is open.

let x; € Y be any point.

Y is neighbourhood of x = there exists an open ball S(x;, ;) such that
x; € S(x;,7;) €Y, wherer > 0.

LetS =U {S(x;, ;) : x; EY and r; > 0}

Now we will prove that S =Y.

Ifx eYthenx € S(x,7r) > x €U {S(x;,1):x; EYandr; >0} =S

Againify e S =y € S(x,r)for some x €Y.
ButS(x,r) S Y=>y€Y

From (1) and (2), we get

S=Y

We know that the union of a collection of open set is open.
Hence S is open = Y is open

Theorem 11.9. Intersection of finite number of open set is open in
metric space.

Proof. Let (X, d) be a metric space.

Assume {G;:1 <i < n} be a finite collection of open subsets of X and
H =N1ci<n G;.

Now we prove that H is open.

Let x € H. As H is intersection of finite number of open set G;.

Hence x € G; forall i = 1,2,3,..n.

It is given that each G; is open set.

Therefore there exist open spheres centred at x and contained in G; i.e.
S(x,1;) €G; foralli =1,2,...nwhere r; > 0.

Assume r = min{r;, 1, ..., 1, }
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Then S(x,r) € S(x, 1)) foralli=1,2,...n

= S(x,7) S Giforalli=12,...n

=S, 1) €Nicicn Gi==>S(x,7) € H

Thus we conclude that for each x € H there exists an open sphere S(x,r)
such that S(x,r) € H.

Therefore H is an open set.

Ex 11.8. The intersection of infinite collection of open set is not
necessary an open set.

11
Sol. Let G,, = (—;,;),for alln € N.
Then each G,, is open set as every open interval I an open set.
0 0 11
Here we can see that N,_; G, =N, (—;,5) = {0}

But {0} is not open set because there does not exist any € > 0 such that
S5(0,¢) < {0}.

Hence the intersection of infinite collection of open set is not necessary an
open set.

Theorem 11.10. A subset of a metric space is open iff it is the union of
family of open sphere.

Proof. Let (X,d) be a metric space and Y € X such that Y the union of
family of open sphere.

If the family is empty then union of empty family spheres is empty=Y is
open.

Let Y be union of non empty family F of open sphere and x be any point
of Y.

Therefore x € S(x,, r) for some S(x,,7) € F.

If x # xg, i.€. x is not centre of sphere S(x,,1).

Then there exists a sphere S(x,r") such that x is centere of given sphere.
S(x,r") € S(xg,r) Y.

Therefore for each x € Y here exists a open sphere such that x is centere
of given sphere and contained in Y.

Hence Y is open

Converse

let Y be open.

If Y is empty then it is the union of empty family spheres.

Let Y is non empty and let x be any point of Y.

Y is open = there exist an open sphere centred at x s.t. contained in Y. i.e.
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S(x,r) €Y wherer; > 0.

Therefore

Ycu{S(x,r):forallxinY} CY.

Hence Y =U {S(x,r): for all x inY}. i.e. Y the union of family of open
sphere.

Theorem 11.11. Every non empty open set on the real line is the union
of a countable collection of pairwise disjoint open intervals.
Proof. Let Y # @ be a subset of R.
It is given that Y is open = For each x € Y, there exists an open sphere
S(x,r) wherer > 0 such that S(x,r) €Y.
Let I, be the union of all open interval which contain x are contained in
Y.ie.
L, =U{li:x€l;and I; C Y}
Hence we can easily conclude that
Q) L. is open interval suchthat x e I, and I, € Y
(i) If p is another pointin I,, then I, = L,.
(iii) If p and x two distinct points of Y then either I, NI, =
QorL,Nl, 0.
Letq €, NI, theng €EI,and q € I,
Hence I, =L, and I, = I, =L, = I,
Let I be the collection of all distinct 1,, for points x € Y.
I is a disjoint collection of open intervals and Y is the union of such
collection.
Now we will prove that I is countable.
Let Y, = set of all rational numbers in Y =Y, is non empty.
Now we define a mapping f:Y, — I such that
f(z) be unique interval in I to which z belong for each z € Y,.
Clearly, Y, is countable as it is subset of set of rational number Q.
Hence I is countable.

Equivalent Metrics

Let d and d' are two metrics on the same set X. Then d and d’ are
equivalent iff every d —open set is d' —open and every d' —open is
d —open set.

Ex 11.9. Let (X, d) be a metric space and then mapping d': X x X —
R such that
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Kd(xy)

> 0 is also a metric X. Also show that d and d’ are
1+d(xy)

dxy) =

equivalent.
Proof. In previous example we already prove that d’ is metric for X.
Now we will prove that d and d’ are equivalent.

Let S(x,r) wherer >0, be d —open sphere centred at x € X and
Mr
E )
Now we will try to prove that S’ (x,r") < S(x,r).

Kd(xy) _ Kr

1+d(x,y) 1+r

= Kd(x,y) + rKd(x,y) < Kr + rKd(x,y) =2 d(x,y) <r
Therefore y € S(x, 1)

As y is arbitrary so we can say that S'(x,r") € S(x,r).

Now let S’ (x,r") where r’ > 0, be d' —open sphere centred at x € X.
Because d'(x,y) < K for every x and y in X.

Therefore 0 < r’' < K.

S'(x,r") wherer' = be d’ —open sphere centred at x € X.

Lety e S'(x,r)=>d' (x,y)<r' =

T"

Let S(x,r) wherer = be d —open sphere centred at x € X.

K-r"’
Now we will prove that S(x,r) € S'(x,r').
Nowy € S(x,r) =>d(x,y) <T..cinnen... (1)
L , _ Kd(xy) _ d'y)
Itis givend'(x,y) = T =>d(x,y) = X' (ey)
Therefore Using inequality (1), we get

a'(xy) r / / ’ 11
d ) ko Kd'(x,y) —rd'(x,y) < Kr'—r'd'(x,y) =

d(x,y)<r'

As y is arbitrary so we can say that which implies S(x,r) € S'(x,r").
Hence every d —open set is d’ —open and every d' —open is d —open
set .

Therefore, d and d' are equivalent.

11.6 INTERIOR, EXTERIOR, FRONTIER AND
BOUNDARY OF ASET

Interior point: Let (X, d) be a metric space and let Y be a subset of X. A
point x € X is called an interior point of Y if there exists an open ball with
centre x contained in 'Y, i.e.,

x € S(x,vr) €Y forsomer > 0
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Interior of Set: The set of all interior points of Y is called the interior of Y
and is denoted by Int (Y) or °.
Int (Y) = {x € Y such that € S(x,r) €Y for somer > 0}

Theorem 11.12. Let Y be a subset of a metric space (X, d). Then

(i) Int(Y) is an open subset of ¥ that contains every open subset of Y
(if) Y isopen if and only if Int(Y) =Y

Proof. . (i) Let x € Int(Y ) be arbitrary.

Then there exists an open ball S(x, r) such that S(x,r) < Y.

As we know every open sphere is open set

Hence S(x, ) is an open set

= each point of S(x,r) is the centre of some open ball contained in
S(x,r) and thus contained in Y.

Hence each point of S(x,r) is an interior point of Y, i.e., S(x,r) S
Int(Y).

Therefore, x is the centre of an open ball contained in Int (A).

As x € Int(Y) is arbitrary, Hence each x € Int(Y ) is the centre of an
open ball contained in Int(Y ).

Hence, Int(Y ) is open.

Now we will show that Int(Y ) contains every open subset G < A.

Let x € G Since G is open

=there exists an open ball S(x,r) € G S A= x € Int(Y).

Therefore, x € G = x € Int(Y).

Thus G € Int(Y).

(it) is immediate from (i).

Theorem 11.13. Let (X, d) be a metric space and Y4, Y, be subsets of
X. Then

(i) i €Y, = Int(Y)) € Int(Y,)

(i) Int (Y; N'Yy) = Int(Y;) N Int(Y,)

(i) Int(Y; U Y,) € Int(Y;) U Int(Y,)

Proof. (i) Let x € Int(Y;) then there exists an r > 0 such that S(x,r) <
Y;.

ItisgiventhatY; C Y,

=>Skx,r) €Y,

Hence x € int(Y,). Thus Int(Y;) € Int(Y;)

(if) As we know that

Y,nY,cY, and¥,nY, Y,

Department of Mathematics
Uttarakhand Open University 214



Advanced Real Analysis MAT502

From property (i) we get,

,nY, Y, = Int(Y;nY,) € Int(Y;)

Similarly

Y,NY, €Y, = Int(Y;nY,) S Int(Y,)

Hence Int(Y; NY,) € Int(Y;) N Int(Y3)

Let x € Int(Y;) N Int(Y;) = x € Int(Y;) and x € Int(Y,)
Hence, there exists p; and p, suchthat S(x,p;) € Y; and S(x,p,) € Y.
Let p = min{p;,p,}=p >0 and S(x,p) S Y, NY,.
Therefore x € Int(Y; NY,).

= Int(Y;) nInt(Y,) € Int(Y; NY,).

Hencelnt(Y;) N Int(Y,) = Int(Y; N'Y,).

(iii) As we know that

Y, cY,UY, andY, S ¥, nY,

From property (i) we get,

Y, SY,UY, = Int(Yy) € Int(Y, U Y,)
Similarly

Y,cY,uY,=Int(Y,) S Int(Y,UY,)
Hence Int(Y; UY,) € Int(Y;) U Int(Y,)

SOME IMPORTANT TERMS

Exterior points: Let (X, d) be a metric space and let Y be a subset of X. A
point x € X is called a exterior point of Y if it is an interior point of the
complement of Y i.e. Y¢.

Exterior of Set: The set of all exterior points of Y is called the exterior of
Y and is denoted by ext (Y) or Y©. i.e. ext(A4) = int(A°)

Frontier points: Let (X, d) be a metric space and let Y be a subset of X. A
point x € X is called a frontier point of Y if it is neither interior or nor
exterior point of Y.

Frontier of Set: The set of all frontier points of Y is called the frontier of
Y and is denoted by Fr (V).

Boundary point: Let (X, d) be a metric space and let Y be a subset of X.
A point x € X is called a boundary point of Y if it is frontier point of Y and
belongto Y.

Boundary of Set: The set of all boundary points of Y is called the
boundary of Y and is denoted by b (Y).
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Dense set: Let (X, d) be a metric space and let Y; and Y, be subsets of X.
Then Y; is said to be dense in Y, if Y, € 1;.

Everywhere Dense: Let (X, d) be a metric space and let Y; be a subset of
X.ThenY; is said to be dense in X or everywhere dense if ¥; = X.
Nowhere Dense: Let (X,d) be a metric space and let Y; be a subset of
X.Then Y; is said to be nowhere dense in X if interior of the closure of
Y is empty.

11.7 CLOSED SET

Limit Point: Let (X,d) be a metric space and let Y be a subset of X. A
point x € X is called a limit point (an accumulation point) if every
neighbourhood of x contains a point of Y distinct from x.

Derived Set: The set of all limit points of Y is called the derived set of Y
and denoted by D(Y).

Adherent Point: Let (X,d) be a metric space and let Y be a subset of X.
A point x € X is called an adherent point of Y if every neighbourhood of x
contains a point of Y (not necessarily distinct from x).

Adherence of Set: The set of all adherent points of Y is called the
adherence of Y. It is denoted by Adh(Y).

Isolated points: Let (X, d) be a metric space and let Y be a subset of X. A
point x € X is called a islolated point of Y if x € X but not limit point of
Y.

Theorem 11.14. Let (X, d) be a metric space and let Y be a subset of
X. A point x € X is limit point if every open sphere S(x,r), centred at
x and r > 0 contains infinitely many points of Y.

Proof. Let the sphere S(x,,r) contains only a finite number of points of Y.
Let a4, a,, ..., a, are the points distinct from x, and belong to S(x,,7) N
F.

Let § = min{d (a4, xy), d(a,, xo),--., d(a,, xo)}-

Then the ball S(x,, d) contains no point of Y distinct from x,, which
contradict the our assumption that x, is a limit point of Y.

Hence every open sphere S(x,r), centred at xandr > 0 contains
infinitely many points of Y.

Closed Sets: Let (X,d) be a metric space. A subset Y of X is said to be
closed or d-closed if the compliment of Y is open.
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OR

A subset Y of the metric space (X,d) is said to be closed if it contains
each of its limit points, i.e., D(Y) € Y.

Example:

» The set Z of integers is a closed subset of the real line.

» ThesetY = {1,%,&, }isnotclosedinRasD(Y) = {0} ¢ Y.

n,.....

» Every subset of discrete metric space is closed.

Perfect set: If closed set have no isolated points then it is called Perfect
set.

Theorem 11.15. Let Y be a subset of the metric space (X,d) and
D(Y) be the derived set of Y then D(Y) is a closed subset of (X, d).
Proof. Let Y be a subset and D(Y) be its derived set.
If D(Y) = @ = D(D(Y)) = @ hence there is nothing to prove.
If D(Y) # @ and letx € D(D(Y)) .
Consider an arbitrary open ball S(x, ) with centre x and radius r.
Using the definition of limit point, we get
there exists a point y € S(x,r) such thaty € D(Y).
If p=r—d(y,x), then S(y,p) contains infinitely many points of Y.
(From previous theorem}.
We know that each open ball is open set.
Hence S(y, p) € S(x,71)
= infinitely many points of Y lie in S(x, r).
Thus, x is a limit pointof Y, x € D(Y) .
Hence, D(Y) contains all its limit points and therefore D(Y) is closed.

Theorem 11.16. Let (X, d) be a metric space and let Y; and Y, be
subsets of X.

(i) IfY; S Y,then D(Y,) S D(Y;)

(i) D(Y; UY,) = D(Y1) UD(Y)

(i) D(Y; NY,) S D(Y,) ND(Y,)

Proof. (i) let Y; and Y, be subsets of X such thatY;, cY,.

Let x € D(Y;) then x is a limit point.

By definition of limit point

every neighbourhood of x contains a point of Y; other than x.

= every neighbourhood of x contains a point of Y, other than x. (
because Y; CY,)
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i.e.x € D(Y,) = D(Y;) SD(Yy)

(i) Aswe knowthaty, €Y, uY,and Y, CY; UY,

Using (i) property, we get

DY,) € D(Y; uY,)and D(Y,) € D(Y; UY,)

Hence

DYD)UDY,)CSED(Y; UYy) e (1)

Now we try to prove that D(Y; UY,) € D(Y;) U D(Y,)
Letx € D(Y;) U D(Y,)

=x & D(Y;) UD(Y;) (From (i))

>x &D(Y;)and x ¢ D(Y3)

= there exists neighbourhood M; and M, of x such that
inMnM,—{x}) =0andY,n(M;nM, —{x}) =0
(because M; N M, € Myand M; N M, € M,)

Hence (Y; UY,) U (M; N M, — {x}) = 0.

Therefore x is not a limit point of ¥; U Y.

(As neighbourhood of x i.e. M; N M, containing no point of (¥; U Y,)
Therefore D(Y; UY,) € D(Y,) UD(Y)......... (1).

From (1) and (2), we get

D(Y; UY,) =D(Y1) UD(Y2)

(i) Aswe know thatY; nY, cY,and Y; nY, €Y,
Using (i) property, we get

D(Y; nY,)c DY) and D(Y; nY,) € D(Y;)
Hence

DY, nY,) € D(Y,) N D(Y3)

Theorem 11.17. Let (X,d) be a metric space. Then @ and X are
closed.

Proof. As we know the empty set has no limit points, then essential
condition that a closed set

contain all its limit points is satisfied. Hence @ is closed.

Similarly X contains all points = contains all its limit points

Hence X is closed

Theorem 11.18. Let (X, d) be a metric space and Y be a subset of X.
Then Y is closed in X iff Y€ is open in X.
Proof. Assume Y is closed in X.
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Now we will prove that Y¢ is open in X.

IfY =@ =Y¢ = X, therefore Y¢isopenin X. (~ X isopen in X).
LetY # 0 =Y # Q.

Let x be any pointin Y°.

NowYisclosedinX =>D(Y)SYand x ¢ Y

= x & D(Y), hence x cannot be a limit point of Y.

Therefore there exists an r > 0 such that S(x,r) € Y°.

Hence, each point of Y is contained in an open ball contained in Y.
Thus Y€ is open.

Converse

Let Y€ is open. Now we will prove that Y is closed.

Let x € X be a limit point of X.

Assumex €Y > x € Y€

Y€ is open. Therefore, there exists r > 0 such that S(x,r) & Y*.
i.e, S(x,r)ynY =0

Hence, x cannot be a limit point of Y, which is a contradiction.
Therefore, x belongsto Y = D(Y) S Y.i.e.Y is closed.

Theorem 11.19. Let (X, d) be a metric space. Then

(i) any intersection of closed sets is closed.

(it) a finite union of closed sets is closed.

Proof. (i) Let {Y,} be a family of closed setsin X and Y =n, Y,

In previous theorem we prove that Y is closed in X iff Y is open in X.
Therefore we will try to prove that Y€ is open in X.

Y=Nn,Y,=2Y" =U,Y, (By De Morgan's law)

It is given that each Y, is closed= each Y, is open.
As we prove earlier that the arbitrary union of open set is open.
Hence, Y¢ =U, Y, is open.

Therefore Y is closed.

(i) Let {Y,,} be a family of finite closed setsin X and Y =u,, Y,

Now we will try to prove that Y is open in X.
Y=u,Y,=2Y°=n,Y, (By De Morgan's law)

It is given that each Y,, is closed= each Y, is open.
As we prove earlier that the finite intersection of open set is open.
Hence, Y¢ =n,, Y, is open.

Therefore Y is closed.
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NOTE: An arbitrary union of closed sets need not be closed.
Let 5_(0,1 — %) ,n > 2 be a closed subset of the complex plane,

but U, 5(0,1 - %) = 5(0,1) is not closed.

As each point z satisfying |z| = 1 is a limit point of $(0,1) but is not
contained in S(0, 1).

Closure of set: Let Y be a subset of a metric space (X,d). The set
Y U D(Y) is called the closure of Y and is denoted by Y.

Theorem 11.20. The closure Y of Y € X, where (X,d) is a metric
space, is closed.

Proof. As we know that

Y=YuD()

SD(Y) = D(Y UD(Y))cerrrreereeennernieeennsnenen (1)

In earlier we already prove that D(Y U D(Y)) = D(Y) u D(D(Y))

Hence D(Y U D(Y)) = D(Y) u D(D(Y))

cDY)uD(¥)= DY)cY (because D(D(Y)) € D(Y))
Therefore

D(Hcy

Hence, closure Y of Y is closed.

NOTE:

Ify, cY,then¥, € Y,

11.8 SUMMARY

In this unit we discussed about metric space with illustrative examples.
We proved some important theorems on this unit.

11.9 GLOSSARY

1. Set- a well defined collection of elements
2. metric- a notion of distance between its elements
3. pseudometric- distance between two distinct points can be zero
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11.12 TERMINAL QUESTION

Long Answer Questions

(TQ 1) Define Metric soace.
(TQ 2) Define Open and Closed set

(TQ 3) Prove that the closure Y of Y € X, where (X,d) is a metric
space, is closed.

(TQ4) Let X be the set of all continuous functions f : [a,b] — R.Then
prove that d(f,g) = sup{|f(x) — g(x)|: x € [a, b]}isametricon X.
(TQ5) Define Fronterior set.
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.Fill in the blanks

(TQ 6) Euclid space is

(TQ 7) Empty set and X is

MATS502

11.13 ANSWERS

(TQ 6) metric space

(TQ 7)

closed set

Open and
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UNIT 12: COMPLETENESS

CONTENTS

12.1 Introduction

12.2 Obijectives

12.3 Bases

12.4 Subspaces and product of two metric space
12,5 Completeness

12.6 Baire’s category theorem
12.7 Summary

12.8 Glossary

12.9 References

12.10 Suggested Readings
12.11 Terminal Questions
12.12 Answers

12.1 INTRODUCTION

It makes intuitive sense that if there are no "points missing™ from a space
(either inside or at the boundary), it is complete. For instance, even though
one can create a Cauchy sequence of rational numbers that converges to it,
the set of rational numbers is not complete since, for instance, V2 is
"missing” from it (see further instances below).

As will be discussed below, it is always possible to "fill all the holes,"
resulting in the completion of a particular space.

In earlier chapter we analyzed Metric space. In this chapter we will
studied complete metric space.
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Felix Hausdorff (November 8,
1868 — January 26, 1942), a
German mathematician  better
known by his pen name Paul
Mongré, is regarded as one of the
pioneers of modern topology. He
also made significant
contributions to set theory,
descriptive set theory, measure
theory, and functional analysis.

A theory of topological and
metric spaces was developed by
Hausdorff through his work in
topology. Fig. 12.1. Felix Hausdorff

(Source:https://en.wikipedia.org/
wiki/Felix_Hausdorff#/media/File
:Hausdorff_1913-1921.jpg)

12.2 OBJECTIVES

In this Unit, we will

analyze about bases

Understand about subspaces and product metric space
Prove some theorems based on bases and completeness
Illustrate completeness using some examples.

Howobde

12.3 BASES

Base: Let (X, d) be a metric space and x € X. Let {Gy}rea be a family of
open sets, each containing x.

Local base: The family {Gy },c4 is said to be a local base at x if for every
nonempty open set G containing x, there exists a set G; in the family
{Gk}kEA such that x € G; €G.
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Example:
In the metric space R? with the Euclidean metric,
let G, = S(x,k)where x = (x,x;)and k > 0,k € R.

The family {G, : k > 0and k € R} is a family of balls and is a local
base at x.

Theorem 12.1. In any metric space, there is a countable base at each
point.

Proof. Let (X, d) be a metric space and x € X.

The family of open balls centred at x and having rational radii,
i.e. {S(x,r):r € Q*} is acountable base at x.

If G isanopensetand x € G,

Hence, there exists an ¢ > 0 (e depending on &) such thatx €
S(x,e) € G.

Let r be a positive rational number less than €.
Thenx € S(x,r) S S(x,e) <€ G.

Base for the open sets: A family {G, };e4 Of nonempty open sets is called
a base for the open sets of (X, d) if every open subset of X is a union of a
subfamily of the family {G; }xea--

NOTE:

If G is an arbitrary nonempty open set and x € G, then there exists a set
G; in the family such that x € G; < G.

Theorem 12.2.. The collection {S(x,¢): x € X, € > 0} of all open balls
in X is a base for the open sets of X.

Proof. Let G be a nonempty open subset of X and let x € G.

Therefore there exists a positive e(x) suchthat x € S(x,e) € G.
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Hence {S(x,&):x € X, € > 0} of all open balls in X is a base for the
open sets of X.

Second Countable: A metric space is said to be second countable if it has
a countable base for its open sets.

Example:

Let (R, d) be the real line with the usual metric. The collection {(x,y) :
x,y rational} of all open intervals with rational endpoints form a
countable base for the open sets of R.

Open cover of set: Let (X, d) be a metric space and G be a collection of
open sets in X.If for each x € X there is a member G; S G such that
X € Gy, then G is called an open cover of X.

Subcover of set: A subcollection of G which is itself an open cover of X
is called a subcover (or subcovering).

Example:

Let X be the discrete metric space consisting of the five elements
v,W,X,Y,Z.

The union of the family of subsets {{v}, {v,w},{x,¥},{v,y,2}} is X and
all subsets are open. Therefore the family is an open cover. The family
{{w, x},{x,y},{v,y, z}} is a proper subcover

Everywhere dense: A subset Y of a metric space (X,d) is said to be
everywhere dense or simply dense if ¥ = X, i.e., if every point of X is
either a point or a limit point of x, or given any point x of X, there exists a
sequence of points of Y that converges to x.

Example: The set of rationals Q is a dense subset of R (usual metric) and
so is the set of irrationals.

Seperable: The metric space X is said to be separable if there exists a
countable, everywhere dense set in X.
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In other words, X is said to be separable if there exists in X a sequence
{x1, %3, x3,...} such that for every x € X, some sequence in the range of
{x1,x5,x3,...} converges to x

Theorem 12.3. Let (X,d) be a metric space and Y € X. If X is
separable, then ¥ with the induced metric is separable.

Proof. Let A= {x;: i =1,2,...} be acountable dense subset of X.
If A is contained in 'Y, then no need to prove.

Let we establish a countable dense subset of Y whose points are arbitrarily
close to those of X. For n,m €, let S, ,, = S(xn,%) and choose y, ., €

Snm N Y whenever this set is nonempty. We show that the countable set
{Ynm:n,m € N*}of YisdenseinY.

For this purpose, lety e Yande > 0.

Let m be so large thati <-andfindx, € § (y, i)

Theny €S,,, NY and

d(y, Yom) < d@, %) + d(xp, Yum) < % +% < §+ g =€
Hence, y,, m € S(y, €).

Because y € Y and ¢ are arbitrary, the theorem is proved.

12.4 SUBSPACES AND PRODUCT OF TWO
METRIC SPACE

Subspace: Let (X, d) is a metric space and X; is a nonempty subset of X.
The restriction d’ of d : X; — X; is a metric for Y, as it clearly satisfies
the all the axioms of metric space so (X;,d’ ) is a metric space. i.e. metric
space is called a subspace of X or of (X, d) and the restriction d’ is known
as the metric induced by d on Y.
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Hereditary Property: A property of a metric space is said to be
hereditary iff every subspace of that space has that property

Theorem 12.4. Let (X, d) be a metric space and (Y, d") be a subspace.
A subset A* of Y is d*-open iff there exists a d —open subset A of X
suchthatA*=AnNY.

Proof. Let d*-open sphere in Y with centre y, and radius r denoted by
§*Wor) ={y €Y:d"(y,y0) <7}
We can see that

S* (o, ) =Y N S(y,, ) Where S(y,, ) is d-open sphere in X with centre
Y, and radius r.

Let A* be any d*-open of Y.
Then to each y € B*, there exists a d*-open sphere S*(y,, r(y)) € A*.

Now
A" =U {S*(yo,r(y)):y € A*}
=u{Y NnS(yo,r()):y € A"}

Using distributive law, we get

A =Y n(U{S(rer(®):y €A}
=YNA where A=U{S(y,,7(y)):y € A"}
We can see that A is d —open set as it is union of d —open spheres.
Converse
Let A* = ANY where A is d —open set.
Let y be any point of A*.
AsA*=ANY,hencey € A.

It is given that A is open set.
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Hence there exists an open sphere S(y,r(y)) < A.
=5*(y,r») =Y nS(y,r()) SYnA= A"

Hence we see that for each y € A*, there exists d* —open sphere centred
at y and contained in A",

Therefore A* of Y is d*-open.

Product of two metric space:

Theorem 12.5. Let (X4,dq) and (X5, d,) be two metric spaces. For
any pair of points x = (x4, x2)and y = (y4,y2) in X; X X, defined by

d(x,y) = \/d%(xl,yl) + d%(x3,y,). Then d is a metric for X; x X,.

Proof. Itis given that if x = (xq,x,),y = (y1,72) € X; XX,

d(x,y) = \/d%(xp%) + d% (x2,¥2)
Easily we can see that d(x,y) = 0 forall x,y € X; X X,.

Hence (M1) condition is satisfied

d(x,y) = 0 & Jdi(x;,y1) + 3 (x5, ) = 0
© di(x,y1) +d5(x2,52) = 0

& d?(xq,y,) = 0and d3(x,,y,) =0

©x; =yand x, =y,

Sx=y

Therefore (M2) condition is satisfied

d(x,y) = \/d%(xp}ﬁ) + d3(x3,¥2)

= \/d%(J’bxﬂ + d% (¥2,x2)

=d(y,x)
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Therefore (M3) condition is satisfied

Let z € X; X X, such that z = (zy, z,)

d(x,y) = \/d%(xp)ﬁ) + d3(x2,¥2)

Using triangle inequality of metric d, and d,, we get

d(x,y) < \/(d1(x1»z1) + (21’3’1))2 + (dz(xz'zz) + (22'3’2))2

< Jd?(x1,21) + d2(x,, 2,) + \/d2(z1, 71) + d2(25, )
(Using Minkowski’s inequality)
Therefore
d(x,y) < d(x,z)+d(zYy), satisfied (M4) condition.

Thus d is a metric for X; X X,.

CHECK YOUR PROGRESS

(CQ 1) Define Subspace and bases

(CQ 2) Let (X, d) be a metric space and (Y, d") be a subspace. Prove that
a subset A* of Y is d*-open iff there exists a d —open subset A of X such
that A" =ANY.

12.5 COMPLETENESS

Sequence: Let (X,d) be a metric space. A sequence of points in X is a
function f from N into N. It is denoted by {x,,}.

Limit of a sequence: Let d be a metric on a set X and {x,,} be a sequence
in the set X. An element x € X is said to be a limit of {x,,} if, for every
e > 0, there exists m € N such that d(x,,x) < &whenevern >m.

We also say that {x,,} converges to x, and write it in symbols as x,, = x.
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If there is no such x, we say that the sequence diverges.

A sequence is said to be convergent if it converges to some limit point,
and otherwise divergent.

Example: Let X = Rwith d(x,y) = |x — y|for all x,y € R.

Let {x,} be a sequence of real numbers. It convergesto x € R in (X,d)
iff lim,, o d(x,, x) = lim, |x, — x| = 0.

Theorem 12.6. If Ais a subset of the metric space (X,d), then
d(A) = d(A).

Proof. If x,y € A, then there exist sequences {x,} and {x,,} in A such that
d(x,x,) < gand d(y,y,) < %for n >m, where ¢ > 0 is arbitrary.

Now for n > m, we have
d(x,y) < d(x,x) + d(xn, ¥n) + AV y)
< o4 dlryn) + 2
< e+ d(4)
Sd(A) < d(A) i (1)
As e > 0 isarbitrary.
Hence d(A) = d(A)....ccvevieininin... (2)
From inequalities (1) and (2), we get
d(A) = d(4)

Theorem 12.7. Let (X,d) be a metric space and if x is a limit point of
subset Y of X, then there exists a sequence {x,}, contains all distincts
point of ¥ from x, converges to x,.

Proof. It is given that x is a limit point of subset Y of X

Hence every sphere with centre x must contain atleast a point of Y distinct
from x.
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Assume any point x; # x € Y and r; such that r; = min {1, d(x, x;).}

Now the sphere S(x, ;) contains a point x, # x € S(x,17).
Again let r, = min {%, d(x, x3).}

Similarly the sphere S(x,r,) contains a point x3 # x € S(x,r,) and let

r3 = min {%, d(x,x3)}
Continue above process indefinitely.

Hence we construct a sequence of {x,}, distinct point from x such that if
Ty = {%,S(x, xn)}, the sphere S(x, x,,) the point x,,,; # x €Y.

Thus d(x, x,) < 1p_1 < ﬁ
It implies that S(x, x,) = 0 asn — oo,
Therefore {x,} converges to x.

Cauchy sequence: . Let d be a metric on a set X. A sequence {x,} in the
set X is said to

be a Cauchy sequence if, for every € > 0, there exists n, € N such that

d(xp, xy,) < € whenever n,m = n,

Example The sequence {x,} wherex, =1+ % + % + -+ % does not

satisfy Cauchy’s criterion of convergence.

Indeed,
1 1 1
on =2l = 5t Tt
1 1 1
<—+4—+ -+ —
2n 2n 2
_n_1
T on 2

So, |x, — x,,| is not tends to 0.
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Ex 12.1. Let C[0,1] be a set of continuous function, the sequence
fi,f2f3 . given by fn(x)zﬁand metric d is defined as

d: C[0,1] x €[0,1] — R such that d(x,y) = sup{|x — y|:x € [0,1]}.
Prove that the sequence f,, is cauchy sequence.

Proof. Form > n

mx nx mnx+mx2-mnx—nx> (m-n)x?
fm(x) _fn(x) = - = =

m+x  n+x (m+x)(n+x) T (m+0)(n+x)’
continuous in [0,1], let its maximum at some points x, € [0,1].

which is

Therefore,

A f) = sup {|fin () = fu(0)]: x € [0,1]} = 0" o %o

- (m+xg)(n+x9) — n+xy —

1
~= 0 for large m and n.

Moreover, the sequence {f,,} converges to some limit.

nx x2 1
For f(x) = x, |fn(x) — f(x)]| = m—x| =ESZ_)0 asn — o

Therefore, {f,,} converges to the limit f, where f (x) = x for all x €
[0, 1].

Theorem 12.8. A convergent sequence in a metric space is a Cauchy
sequence.

Proof. Let {x,,} be a sequence in a set X with metric d.
Let x be an element of X such that lim,,_,,, x,, = x.

Given any € > 0, there exists some natural number m such that
d(x,,x) < g = 2 whenever n = m.

Assume any natural numbers n and n' such that n > m and n’ > m.
Then d(x,, x) < gand d(x, ,x) < g.

Hence d(x,,, x,") < d(xp, x) + d(x,,x) < §+ % = ¢
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Complete metric space: A metric space (X,d) is said to be complete if
every Cauchy sequence in X is convergent.

Example:

d(x,y) = |x —y| forx,y € R; iscomplete metric space.

d(z,w) = |z, — z,| for zy — z, € C is complete metric space.

1
dix,y) = Cri(x;—yDHz  and  x = (x, x5 .., X,) and y=
(Y1, V2, -, V) INR™ is complete metric space.

Subsequence: Let {x,} be a given sequence in a metric space (X,d) and
let {n, }x>1 be a sequence of positive integers such that n; < n, <
nz <.... Then the sequence {x,, } is called a subsequence of {x,}.

Subsequential limit: If {x, }  converges, its limit is called a
subsequential limit of {x,,}.

NOTE: A sequence {x,} in X converges to x if and only if every
subsequence of it converges to x.

Theorem 12.9. If a Cauchy sequence of points in a metric space (X, d)
contains a convergent subsequence, then the sequence converges to
the same limit as the subsequence.

Proof. Let {x,,} be a Cauchy sequence in (X, d).

Then for every positive number ¢ there exists an integer m(¢) such that
d(x,, x,1) < & whenever n,n’ = m(g)).

Let {xnk} be a convergent subsequence of {x,,} and its limit by x.

It implies that d(xnn,,xn) < & whenever n,n’ = m(¢)).

As {n,} is astrictly increasing sequence of positive integers.

Now, d(x,x,) <d (x, xnn,) +d (xnn,,xn)

<d (x, Xn ,) + &£ whenever n,n’ = m(g)).
n
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Taking n" — oo we get
d(x,x,) < € whenever n,n' = m(g)).
Therefore, the sequence {x,,} converges to x.

Ex. 12.2. Prove that a metric space X = R" with the metric given by

1
dpy(x,y) = Qizalxi —y:lP)»,  p=1

where x = (x1,%x3,...,x,) and ¥y = (y1,¥2,...,¥n) are in R" is a
complete metric space.

Proof. Let {x® }, x® = (xfk) ,xF ,...,x,ﬁ")) be a Cauchy sequence in
(X, d),

i.e.,dp(x(k) ,x™M S 0ask,m - .

Then, for a given € > 0 there exists an integer n,(¢) such that

kil —yiP)P < e forall k,m = ny(e)

Therefore, x/%k) - xim) < eforallk,m=ny(e)and k = 1,2,...,n.

Using Cauchy’s principle of convergence, we get

(k) _

xﬁk) converges to a limit x; for each k = 1,2,...,n. ie. lim,x; =

X)-
Letx = (x1,%3,...,x,) and k = ny(e)

From (1), we conclude that

(510~ o <o porattm =

Taking m — oo in inequality(2), we get

n |0 _ P _
i=1]%; x| <eP forallk =ny(e)
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Therefore x®) — x in (X, d).

Ex.12.3. Let X = C[a,b]and d(f,g) = sup{lf(x) —gx)|:a<x <
b} be the metric. Then prove that (X, d) is a complete metric space.

Proof. Let {f,,} be a Cauchy sequence in C[a, b].\

Then for every € > 0 there exists an integer ny(e) such that m,n >
no(€)

=>d(fi, fm) = sup{lfi(x) — fin(x)| suchthat a < x < b} < ¢

Precisely, for every x € [a, b], the sequence {f, } is a Cauchy sequence of
numbers.

Using Cauchy’s principle of convergence, we have

fu(x) = f(x)asn —» oo

Now we will prove that f € CJa, b] and that lim,,_,.. d(fn, f) = O.
As we know that

lfi(x) — fn(x)| < € for every x € [a, b]such that m,n = ny(¢)
Taking m — oo, we get

|fi(x) — f(x)| < € such that m,n = ny(e) and for all x € [a, b].

Let a € [a, b] and p > 0, hence there exists an integer k,(p) such that
Ifi 00 — F(0)] < § for every x € [a, bland k = ky(p)
Choose n = ky(p), then

fi() = ()| <5 for every x € [a, b]

It is given that f;, is continuous, there exists § > 0 such that

fie() = fu(xo)l <% for every |x —x,| < &
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Now
If () = f o)l = 1f (x) = fi ) + fie(x) — fu(x0) + fr(x0) — f(x0)]

< 1fG) = fir GOl + 1fie () — fu(xo) | + 1 (xo) — f(x0)]
Using inequality (2) and (3), we get

If (%) = f(xo)] <§+§+§< p whenever |x — x,| < 8.

Hence, f € C|a, b]. Also from inequality (1), we have

limy e d(f, f) =0
Cantor’s Intersection theorem

Theorem 12.10. Let (X, d) be a metric space. Then (X, d) is complete
iff, for every nested sequence {4,,} of nonempty closed subsets of X
ie.Ay;2A,2A45;...24, 2--.suchthatd(A,) > 0asn - o
then the intersection n,_; F, contains one and only one point.

Proof. Let (X, d) be a complete metric space.

Assume for each positive integer n, x,, be any point in 4,,.
Itisgiventhat A, 2 Apiq 2 Apgy -

Hence x,, X1, Xp42, v oo o all lie in A,,.

As lim,,_,, d(4,) = 0

Forany & > 0, there exists some integer m such that d(4,,) < e.
NOW, Xy, Xma1r X 2s eon en oo Al 1€ TN Ay,

For k,n = m,we then have d(xy, x,) < d(4,) < &

Hence the sequence {x,} is a Cauchy sequence in the complete metric
space X.

= It is convergent.

Let x € X be such that lim,,_,, x, = x.

Now for any given n, we have the sequence x,,, X, 11,..-€ Ap.

Hence x = lim,_,, x,, lieon 4,,. i.e x € A4, (because A4,, is closed)
Therefore x en;_; A,

Letye Xandy # x,thend(y,x) =t > 0.

There exists n large enough so that d(4,) <t = d(y,x) =y & A,..
Hence, y €n;_, 4,.

It implies that the intersection N;_; F, contains one and only one point.
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Converse
let {x,,} be any Cauchy sequence in X.
Foreachn € N, let
Ap = {Xp,: m= n}h:
Then {4,,} is a nested sequence of closed sets
{x,} is a Cauchy sequence =lim,,_,., d(4,) =0
Let Ny, 4, = {x}
If & > 0, then there exists a natural number m such that d(F,, ) < .
Butx € A,, and hence n > m implies d(x,,x) < e.
Therefore (X, d) is a metric space.

Theorem 12.11. If Y is a nonempty subset of a metric space (X, d) and
Y is subspace of X. Then (Y, d") is complete iff Y is closed in X.

Proof. Let Y be a complete subspace of X.
Now we will prove that Y is closed in X.

Let c € X be a cluster point of Y.

Then for every natural number n, the open sphere S(c, %) must contain a
point a,, ofY.

We can easily see that {a,,} converges to c.

As we know every convergent sequence is a Cauchy sequence.
Therefore, {a,} is a Cauchy sequence in Y.

Y is complete= c €Y.

Therefore Y contains all its limit points which implies Y is closed.
Converse

Let Y be closed

Now we will prove that (Y, d*) is complete.

Let {x, } be any Cauchy sequence in X.
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It is given that X is complete.

Therefore

{x,} must converges to a point x which lie on X.

Now we try to prove that x, € Y.

If the range set of x consists finite number of distinct points, then
{xn} = {x1, x5, oo X, X0, X0, ...} nis finite

If the range set of x consists infinite number of distinct points, then
X, is limit point of range set of x.

(because in a metric space (X,d) if x is a limit point of subset Y, then
there exits a sequence {x,}, contains all distincts point of Y from x,
converges to x,)

Hence x, is also limit point of of Y.
Yisclosed= x, € Y.
Cauhy sequence {x,,} convergesto x, € Y.

Hence Y is complete metric space.

CHECK YOUR PROGRESS

(CQ 3) State and Prove Cantor’s intersection theorem
(CQ 4) Give one example of incomplete metric space

12.6 BAIRE’S CATEGORY THEOREM

Nowhere dense: Let (X,d) be a metric space. A subset Y of X is said to
be nowhere dense if int(Y) is empty, i.e., Y contains no interior point.

Category I: A subset F of X is said to be of category I if it is a countable
union of nowhere dense subsets.

Category I1: Subsets that are not of category | are said to be of category
.
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Baire’s Category Theorem

Theorem 12.12. Any complete metric space is of category Il.
Proof. Let (X, d) be a complete metric space and
X =U;_; A, where each of the 4,, is nowhere dense.
As each A,, is nowhere dense, each (4,,)¢ is everywhere dense.
Hence there atleast one point in in each of these sets (4,,)°¢ .
Letx; € (4,)°.
Let (A,)€ is open, there exists 7 > 0 such that S(x;,) € (4,)°.
Fore; < r,we have

S(x1,6) € S(xy,1) € (A)D° S A;°
=S (x,e))NA; =0
Using induction hypothesis, we get
there exist balls S (x,,, &,,) form = 1,2, .......n — 1 such that
S (Xm »&Em ) N Ay, where x,, € (4,,)¢ and
Em < %Sm_l fork=12,...,.n— 1.

Similarly, we can construct the nt" ball with the above properties.

Now we choose

Xn € S(xn—lugm - 1) n (A_l)c
Given element must exist,otherwise S(x,,_1,,&m — 1) € A,
= x, € int (4;), contradic the fact that int (4,) is empty.
Because the intersection S(x,_;,€,-1) N (4;)is open, there exists
€ > 0 such that
S (Xn,€) S S(Xn—1,84-1) N (A1)°
Now we choose a positive &, < min {s, % 8n-1} . Then
S_(xn, gn) €s (xn: 5) < S(xn—lien—l) N (A_n)c
It implies S(x,,&,) N A, = Q.
Also
&n < %En—l

Hence we can construct nt* ball with the required properties has been
constructed.
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As S(x,,&,) € S(x,_1,&,-1), the balls S(x,, ,)form a nested sequence
of nonempty closed balls in a complete metric space with diameters
tending to 0.

As we know if (X, d) be a metric space. Then (X, d) is complete iff, for
every nested sequence {F,} of nonempty closed subsets of
Xand d(E,)) > 0asn —> o

Then the intersection N;_; F, contains one and only one point.

Hence there exists x, €N, S(x,, £,)

Now S(x,,&,)NA4, =0

=for every n, we have x, € A4,, for any n,

I.e., xo €AY foralln.

Although, Nn;_, A5, = @., acontradiction .

Hence X is not of category I.

12.7 SUMMARY

In this unit we discussed about bases, Cauchy sequence and completeness.
We illustrate some examples of complete metric space.

12.8 GLOSSARY

1. Space- a set with some added structure.
2. metric- a notion of distance between its elements
3. Completeness- no "points missing™ from it
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12.11 TERMINAL QUESTION

Long Answer Questions
(TQ 1) Define Subspace of metric space.

(TQ 2) Define bases and subspaces
(TQ 3) Prove Baier’s Category theorem.

(TQ 4) Define Cauchy sequence and completeness.

(TQ 5) Prove that If a Cauchy sequence of points in a metric space (X, d)
contains a convergent subsequence, then the sequence converges to the
same limit as the subsequence..

Fill in the blanks

(TQ 6) The space Q of rational numbers, with the standard metric given
by the absolute value of the difference, is
(TQ 7) Let (X,d) be a complete metric space. IfAC Xis a closed set,
then A is also

12.12 ANSWERS

(TQ 6) not complete (TQ 7) complete
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UNIT 13: CONTINUOUS FUNCTION AND
COMPACTNESS
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13.10 Glossary

13.11 References

13.12 Suggested Readings
13.13 Terminal Questions

13.14 Answers

13.1 INTRODUCTION

The concept of compactness is an abstraction of a crucial quality held by
some subsets of real numbers, which is of immense significance in the
study of metric spaces or more generally in analysis. Every open cover of
a closed and bounded subset of R, according to the property in question,
has a finite subcover and analysis is greatly affected by this.

In previous unit we studied completeness in metric space. In this unit we
analyze continuous function and compactness.
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Mikhael Leonidovich Gromov, a
Russian-French  mathematician
best known for his work in
geometry, analysis, and group
theory, is also known by the
names Mikhail Gromov, Michael
Gromov, or Misha Gromov. He
was born on December 23, 1943.
He teaches mathematics at New
York University and is a
permanent member of France's
Institut des Hautes Etudes
Scientifiques.

The Gromov-Hausdorff metric,
which was developed in 1981,
gives the set of all metric spaces
a metric space-like structure. In a
brqadgr sense, the choice of a Fig.13.1. Mikhael
point in each space can be used
to determine the Gromov-
Hausdorff distance between two
metric spaces.

Leonidovich

Gromov
(Reference:https://en.wikipedia.org/wik
i/Mikhael_Gromov_(mathematician)#/
media/File:Mikhael _Gromov.jpg)

13.2 OBJECTIVES

In this Unit, we will
1. analyze about Compactness
2. Understand about Continuity
3. Prove some theorems based on compactness and continuity

13.3 CONNECTEDNESS

Seperated sets: Let (X, d) be a metric space. Two non empty subsets X;
and X, are said to be d-seperated if

X_10X2=Q)anXmﬂX_2=Q)
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Example:

Consider a metric space (R,d) and let X; =(0,3),X, = (3,4) and
X;=1[34]. The sets X; and X, are separated because
X, =[0,3]and X, = [3,4] and X; N X, = @ and X; N X, = @ but X; and
X5 are not separated.

d —disconnected: Let (X, d) be a metric space. A subsets Y of X are said
to be d —disconnected if it is the union of two non empty d-seperated
sets.

I.e. if there exists two set W and Z such that
Y=WUuZandWnZ=0andWnZ=0

d —connected: A set Y is said to be d —connected if it is not
d —disconneted.

Theorem 13.1. Let (X,d) be a metric space. Then the following
statements are equivalent:

(1) (X, d) is disconnected;

(ii) there exist two nonempty disjoint subsets X; and X5, both open in
X, such that X = X; U X,.

(iii) there exist two nonempty disjoint subsets X; and X, both closed
in X, such that X = X; U X,

(iv) there exists a proper subset of X that is both open and closed in X.

Proof. (i)=(ii)
Let X = X; U X,, where X; and X, are nonempty .

ThenX; = X — X,.

Although, X, € X - X, € X — X, = X;.

Thus X; is open in X.

Similarly, X; is open in X.

Because X; and X,are disjoint,

=X; and X, are disjoint, which proves (ii) statement.
(i1) and (iii) are equivalent is trivial.

(iii)=(iv)

X, = X — X, is open. Hence A is closed as well as open proper subset of
X, hence (iv) condition is proved.
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(iv)=(i)

Let X, be a proper subset of X which is closed as well as open in X and let
XZ =X—X1ThenX= X1UX2 anXmﬂXZ = Q)

X_1isclosed implies X; = X;
>5X,NX,=0¢

Similarly, X; n X, = 0.

hence (i) condition is proved.

Theorem 13.2. Let (X, d) be a metric space and let X; be a connected
subset of X. If X, is a subset of X such that X; € X, € X,, then X, is
connected.

Proof. We assume X, is disconnected.

Then there exists Y3, Y, # @ such that
VUuYL,=X,andY;nY, =@and¥; nY; = @.
Itis giventhat X; € X,,thenX; C Y; UY,

We can see that connected set X; is contained in union of two separated
setY; and Y,.

Also if (X, d) be a metric space and Y be connected subset of X such that
Y C Y, UY, where Y;,Y, is separated then either Y € Y,orY C Y,.

Hence X; C Yjor X; € Y,.
LetX, €Y,
>X, €Y =X, nY,cV, nY,=X; nY, € Q.

Since @ is a smallest subset

Again X, =Y, UY,and X, =Y,
>Y,CX,CcX;

Therefore
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From (1) and (2), we get

Y, = @, contradiction as Y, is non empty.

Thus X, is connected.

Theorem 13.3. Closure of connected set is connected
Proof. Let (X, d) be a metric space and let X; be a connected subset of X.
Now we prove that X, is connected.

In contrary, we assume X; is disconnected.

Then there exists Y3, Y, # @ such that

U, =X,andY,nY,=0and¥; nY, = Q.

As we know that X; € X,

Thus X; SV, UY,

if (X,d) be a metric space and Y be connected subset of X such that
Y C Y, UY, whereY,,Y, is separated then either Y C Y,orY C Y,.

Hence X; C Y;or X; C Y,.
LetX,; € Y;
>X, €Y =X, nY,cV, nY,=X; nY, € Q.

Since @ is a smallest subset

AgainX; =Y, uY,>Y,Cc X,

Therefore

D ONaD 2D AT (2)
From (1) and (2), we get

Y, = @, contradiction as Y, is non empty.

Thus X, is connected.
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Locally connected at point: Let (X, d) be a metric space then it is locally
connected at x € X iff every open neighbourhood of x contains a
connected open neighbourhood of x.

i.e. the collection of all connected open neighbourhood of x forms a local
base at x.

Locally connected spaces: The metric space (X, d) is said to be locally
connected if its locally connected at each of its points.

Ex 13.1. Every discrete space (X, d) is locally connected.
Sol. Let x be any point of X.

Therefore {x} must be connected neighbourhood of x.

As we know every neighbourhood of x must contain {x}.
Thus (X, d) is locally conneceted.

CHECK YOUR PROGRESS
(CQ 1) Define disconnected set

ANSWER

(CQ 2) Give one example of separated set.

ANSWER

13.4 COMPACT SET

First we recall the definition of cover and subcover.

Open cover of set: Let (X,d) be a metric space and G be a collection of
open sets in X.If for each x € X there is a member G; S G such that
X € G;, then G is called an open cover of X.

Subcover of set: A subcollection of G which is itself an open cover of X
is called a subcover (or subcovering).

Now we define compact set as
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Compact Set: A a metric space (X, d) is said to be compact if every open
covering G of X has a finite subcovering, i.e., there is a finite subcollection
{G,G;,...,G,} € GsuchthatX =U2, G;.

NOTE:

> A nonempty subset Y of X is said to be compact if it is a compact
metric space with the metric induced on it by d.

» A nonempty subset Y is compact if every covering G of Y by relatively
open sets of Y has a finite subcovering.

Example:

» The interval (0,1) in the metric space (R, d), where d denotes the
usual metric, is not compact. Now we will try to find an open covering
such that given cover has no subcover. Consider the open covering

{(% 1) n= 2,3,.. } of (0,1) . We observed there is no subcover for
open cover. Mathematically U;_, S (0,1 — %) 2 5(0,1). But no finite

subcollection of {S (0,1 - %) n=23,... } covers open ball $(0,1).
> LetY be afinite subset of a metric space (X, d). Then Y is compact.

Theorem 13.4. Closed subsets of compact sets are compact.

Proof. Let Y be compact subset of metric space X.

Let A € Y closed relative to Y and closed relative to X.

Now we will try to prove that A is compact

Let G = {G,: A € A} be an oper cover of A.

Then the collection

M = {Gy: A € A} U {X — A} forms an open cover of Y.

Y is compact=there is a finite sub-collection M* of M which covers Y.

Therefore it also covers A.
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If X— A is a member of M*,so we can remove it from M* and it still
remain open cover of A.

Thus Finite subcollection of G covers A.
Therefore A is compact.

Finite intersection property (F.I1.P): . A collection F of sets in X is said
to have the finite intersection property if every finite subcollection of F
has a nonempty intersection.

Theorem 13.5. Let (Y,d*) be a subspace of metric space (X, d). Prove
that Y is compact w.r.t metric d* iff Y is compact w.r.t metric d on X.
Proof. Let F, is d* — open cover of Y.

=Y EUA F/l-

Again F, is d* — open cover

=there exists d-open G, suchthat i, =G, NY € G,

=there exists d-open G, such that U, F; CU, G,

ButY cu; F;and Y CuU; G;

={G;} is d-open cover of Y.

It is compact and therefore the cover G; must have finite reducible
subcover.

Let {Gy,: k = 1,2,3, ... } be subcover of G;.

=Y QU/?ll:l G)Lk

where

YNy cyn(nie, G) =Nk, (ANG, ) =UF,

=Y S F,, isad" — open cover of A

=F is d* —compact.

Converse

Let (Y,d") is a subspace of (X,d) and Y is d* —compact

Now we prove that Y is d-compact.

Let G, is d — open cover of Y=Y CU, G;.

ThereforeY NnY € Y n (U, Gy)

It impliesthat Y cu (Y N G;)

LetF, =Gy nYthenY CU G,

=G, isd —open =G, = G, NY isd* —open.

Therefore F; isa d* —open cover of Y but F; is d* — compact.
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Hence given cover is reducible to finite subcover. i.e. {F;,:1 < k < n}
SY CUp-y Fyy, =Uk=q (F, NY)

=Y CUR_, (G, NY) =UR, Gy,

=Y CU}_, G,

=@, is finite subcover of the cover G;.

Therefore Y is d —compact.

Bolzanno Weierstrass property (BWP): A space X is said to have
Bolzanno weierstrass property(BWP) if every finite set in X has a limit
point.

NOTE:
A space with BWP is also said to be Frechet compact.

Theorem 13.6. Let (X, d) be a metric space and Y a subset of X. If Y is
a compact subset of (X, d), then Y is closed and bounded.
Proof. Let Y be a compact subset of (X,d) and y € Y, x € Y°. .

For some positive real number e(y) such that e(y) < %d(x,y)), there

exist open balls S(y,e(y)) and S(x,e(y)) with centres at y and
x, respectively, such that

S(r,e() N S(x, () = 0.

AlsoY S Uyey S(y, ()

It is given that Y is compact,

Hence there exist y;,y,,..., ¥, such that

Y S Uyey S(yvi, e(n).

For each of the y;,i = 1,2,...,n, the open balls S(x, e(yl-)) satisfy
S(yue(y)) n S(x, e(y)) = 0.

LetZ =nit; S(x,e()).T

Therefore Z is an open subset of X containing € Y*..

Now we will try to prove thatY n Z = @.

Let tevnZ thent €S(y,e(y)) for some k in the set
{1,2,...,n}and t € S(x,e(yk)).

Hence, S(yi, e(n)) N S(x,e(y,)) =@ andcontradicts the way we
choose e(yy).
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Therefore, no point of Y can be a limit point of Y.

Thus, all the limit points of Y belongto Y, i.e., Y is closed.

Now we will show that Y is bounded.

Let Y be not bounded, then there exist x and y in Y such that for any for
some positive real number K, d(x,y) > K.
Assume the open balls centred at the points of Y, each of radius 1.

Hence,

Y gUyEY S(y, 1)

Y is compact= there exist y;, y,, ..., yn, such that

Y cuil, SO D

Letk =max{d(y;,yx):i,k= 1,2,...,n}.
There exist x and y in Y such that

d(x,y)> k+2
As x,y € Y = there exist y; and y,, such that

x€ Sy, Handy € S(yx, 1)
Therefore,

dx,y) < d,y) + dWkye) + d(ye,y) < k+ 2, contradict our
assumption for x and y.

Hence, Y is bounded.

Theorem 13.7. Let (R, d) be a metric space and Y a subset of R. Then
Y is a compact subset of (X, d)iff Y is closed and bounded.

Proof. Let Y be a closed and boundedt subset of (X, d).

Y is a bounded= there exist points x,y € R such that x <y and
Y € [x,y]

As we know that every closed and bounded interval on R is compact.
Hence [x, y] is compact.

Again, Y is closed in R=Y =Y N [x,y] is closed

Hence Y is closed in [x, y].

Now we know that closed subsets of compact sets are compact.

Hence Y is compact.

Converse

Let Y be compact. Now we will prove that Y is closed and bounded.

Let G = {G,:x € Y} where G, = (x — 1,x + 1) be an open cover of Y.
Y be compact

=there exists finite number of points x4, x,, x3, .... x,, € Y such that
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Y € Gy UGy, UGy, U....UGy,

Let K = max{xy, x,, X3, .... X, } and k = min {xq, x5, X3, .... X, }, then

Gy, UGy,UGy,U...UG, S[k—1,K+1]=>Y < [k—-1,K+1]
Hence Y is bounded.

Again Y be compact subset of (R, d) and we know that Every compact
subset Y of metric space (X, d) is closed

Y is closed.

NOTE:
The converse of the above theorem need not be true.
Let X be an infinite set with the discrete metric d such that

_(Oifx=y
d(x’y)_{lifx;ty

We can easily see that the open ball S(x, %) is the set {x} contain only x

and d(x,y) < 1, forall x,yin X =each subset of X is both closed
and bounded. Therefore the open cover {{x}:x € X} has no finite
subcover. X is not compact.

CHECK YOUR PROGRESS

(CQ 3) Let (R,d) be a metric space and Y a subset of R. Then Y is a
compact subset of (X, d)iff Y is closed and bounded. (T/F)

(CQ 4) Closed subsets of compact sets need not be compact. (T/F)

(CQ 5) A space X is said to have if every finite set in X has a
limit point.

(CQ 6) A subcollection of G which is itself an open cover of X is called a

13.5 € —-NET AND TOTALLY BOUNDED

Countably compact spaces: A metric space X is said to be countably
compact if every countable open cover of X has a finite subcover.
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Sequentially compact spaces: A metric space (X,d) is known as
sequentially compact if every sequence on X has a convergent
subsequence.

Theorem 13.8. A metric space X is sequentially compact iff it has a
B.W.P.

Proof. Let X be sequentially compact metric space.

Let A be any infinite subset of X.

Let {x,} be any sequence distinct points of A.

As X is sequentially compact

= {x,} contains convergent subsequence {x;. } whose limit is x.

It implies that x is a limit point of A.

Therefore X has BWP.

Converse

Let X has BWP.

Let {x,,} be any sequence in X.

Let the range set be A = {x4, x5, ...., X, } is finite.

=one of the point x;, such that x; = x;, for infinitely many i € N.

It follows that {x_ko,xg,,...,xx,} is a subsequence of {x,} which
converges to x;, in X.

Let the range set of A is infinite.

As we know X has a BWP = 4 has a limit point say x.

Hence we can easy say that {x, } has a subsequence which converges to x.
Therefore X is sequentially compact.

& —net: Let (X, d) be a metric space and € be an arbitrary positive number.
Then a subset A € X is said to be an € —net for X, for any given x € X,
there exists a point y € A such that d(x,y) < ¢, i.e.,, Ais an e —net for
XifX =U {S(y,e):y € A}.

Finite € —net: A finite subset of X that is an e-net for X is called a finite
& — net for X.

Lebesgue number for covers: Let (X,d) be a metric space and let
G = {G;: A € A} be an open cover of X. A real number [ > 0 is said to be
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lebesgue number for G iff every subset of X with diameter less than [ is
contained in atleast one of G;.

Lebesque covering lemma

Theorem 13.9. Every open cover of sequentially compact metric space
has a lebesgue number.

Proof. Let (X, d) be a sequentially compact metric space.

Assume G = {G;: A € A} be an oper cover of X.

Now we will try to prove that G has a lebesgue number.

In contrary, let G has no lebesgue number.

Hence for any natural number n, there exists a subset L,, of X such that

0<8(Ly) < % and L, & Gy FOr QLA € Aueveeeeeeeeeeeeeeeeeeenn, 1)

Now we choose a point [,, € L,, for each n € N and let a sequence {L,,}.

As X is sequentially compact, it should have a subsequence
{li;» liys e .. } CONVErGES tO @ pOINt [ € X

In view of the fact that G is cover of X, there exists an open set G, €
G suchthat!l € Gy,.

As Gy, is open, there exists an open sphere S(I, ) with centre [ and radius
€ such that

S(LE) S Gpy veverervecrrnerssueessunensunne ()

Now {1, } converges to !
= there exists a natural number m such that k, > m .

>0, =S (lg) ................................ 3)

Now we choose a natural number k, = m such that

From condition (3), we conclude that

e, €5(L5)

Also I, € Ly,

Therefore [, € S (l%) N Ly eeveeennereeeneeaeeanen (5)
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From conditions (1) and (4), we get
&

0 < 8(Liy) <= < (6)

From Condition (5) and (60, we conclude that L, is a set of diameter
which is less than %

&
Thus Ly, €S (c, 5)
= Ly, € S(c, &)
From conditions (2) and (7), we see that Ly < G, , a contradiction.

Hence G has a lebesgue number.

Totally bounded: The metric space (X, d) is said to be totally bounded if,
forany € > 0, there exists a finite £ —net for (X, d).

A nonempty subset Y of X is said to be totally bounded if the subspace Y
is totally bounded.

Example:

A bounded interval in R is a totally bounded metric space. Let the
endpoints of the interval be a and b (a < b) and & be an arbitrary

positive number. Take an integer n > b%a and divide the interval into n

equal subintervals each of length b;—a.

The points

{a + W k= 2,. n} contain the required e-net for the interval
with endpoints a and b.

Let x be any point in the interval. Thena < x < b.

Then there exists an integer A € {1, 2,...,n} such that

a+ —(A_l)rfb_a) <x<a<a+ Mbn_a)

Accordingly, the distance of x from each of the endpoints of the interval

[a + QA-1)(b-a) a+ l(b—a)]
n n
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is less than or equal to b%a, which is strictly less than & in view of the way
in which n has been selected.

=any set containing at least one endpoint of each of the preceding
subintervals, k = 1,2,...,n, forms an & —net, the collection of points
constitute the set.

Theorem 13.10. Every sequentially compact metric space (X,d) is
totally bounded.

Proof. Let X be not totally bounded.

Then there exists € > 0 such that X has no € — net.

Therefore if x; € X then there should be exists a point x, € X such that
d(xq,x,) = € (otherwise {x;} will be an € — netfor X)

Again there must exists x; € X such that d(x,,x3) = €. (otherwise
{x1, x5} will be an € — netfor X).

Continuing this process, we get sequence {x,,x,,xs3,....} such that
d(x;,x;) =€ fori#j.

Hence sequence {x,} cannot contain any convergent subsequence.
Therefore X is not sequentially compact.

Theorem 13.11. A metric space X is compact if and only if it is
sequentially compact.

Proof. Let X be compact.

As we know that Compact space has Bolzano weierstrass property (BWP).
Then X has a BWP.

As we know that A metric space X is sequentially compact if it has a
B.W.P.

Hence X is sequentially compact.

Converse

Let X is sequentially compact then by Lebesgue covering lemma

the cover G has a lebesgue number [ > 0.

As we know that every sequentially compact metric space (X, d) is totally
bounded.

X is totally bounded.

By the definition of total boundness for ¢ = % there exists an € —net
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A = {x;, %3, ..., xn} Wherex; €N fori =1,2,...,nsuch that

X =U{SO, €)X €A} oo (D)
By the definition of Lebesue number for each i there exists an A, € G
such that

S €) S A, covieiii 2)

From condition (1) and (2), we conclude that

X=U{4;:i=12,..,n}.

Therefore X is compact.

Theorem 13.12. Every compact metric space is complete.

Proof. Let X be a compact metric space and let {x,} be a Cauchy
sequence in X.

As we know that compact metric space is sequentially compact

Hence X is sequentially compact

Therefore sequence {x,} has a subsequence {x,, .} converges to some x in
X.

Now we will try to prove that sequence {x,,} also converge to x.

Assume & > 0 be given.

As {x,} is Cauchy sequence = there exists n, € N such that

d(xy, x,) < % when k,n = n,

Again since {x,, } converges to , there exists m, € N such that

d(Xn,y x) < = when m = m,

Now we choose m; = m, such that n,,, > n.

Then by condition (1) and (2), we get

d (xn, xnml) < g wheren = n,,, and

d(xp,x) < 2 where n = n,,,

Using triangle inequality property, we get

& €&
d(xn’ X) <= d(xni xnml) + d(xnml; X) < E + E =¢

For every n = n;,, we get
lim,_ X, = X.
Therefore X is complete.
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Theorem 13.13. A metric space is compact if and only if it is complete
and totally bounded.

Proof. Let (X, d) be a compact metric space.

As we know that every compact space is complete

Hence (X, d) is complete.

Also every compact space is sequentially compact.

Thus (X, d) is space is sequentially compact

As every sequentially compact is totally bounded

Hence (X, d) is totally bounded.

i.e. (X, d) is complete and totally bounded.

Converse

Let (X, d) be complete and totally bounded.

Now we fist prove that (X, d) is sequentially compact.
Consider an arbitrary sequence s = {x;, X5, X3, ..., Xp,, .. } in X.
(X, d) is totally bounded.

= there exists an € —net for X such that € > 0.

Assume ¢ = 1, then if S(y;, 1) be the open sphere of radius 1.
Then X cuUlL, S(y;, 1), y; € X.

Now one of the sphere say S(y,, 1) must contain a subsequence
s = (e, L, x M, LY of sequence {s).

The distance between any two points of s, is less than 2.
Similarly, for e = % we obtain a subsequence

S, = {xfz),xgz), ...... ,x,(lz), v}

S(yl,z),yz € X.
Also the distance between any two points of s, is less than 1.

of sequence {s} such that x® €

Proceeding by induction, for € = 3 we get a subsequence

Sk = {xik),xgk), ...... (k) wen ) Such that x(k) €S (y, ) yeEXandi=
1,2,..n.

The distance between any two points of s; is less than %

Now we try to prove that the diagonal sequence

S = {xfl), xf), e X } is a Cauchy subsequence of sequence {s}.
Now we see that

2 €S (m) € (Vno1 =) € € SGLD) coovieieie (1)
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For each ¢ > 0, we choose m € N, such that% > €.
Thus for k,n = m, from condition (1), we conclude that
>x,xM e s (am, %)
(k) 2
=>d(xn ) Xp ) <—
:d(xfln),x,((k)) <e.
Hence s, is a cauchy subsequence of s.
As X is complete, hence s; converges to a point in X.
Thus every sequence in X has a subsequence which converges to a
point in X.

Therefore X is sequentially compact.
Every sequentially compact is compact space.

CHECK YOUR PROGRESS
(CQ 7) Define compact set

ANSWER

(CQ 8) What do you understand by FIP.
ANSWER

13.6 CONTINUITY

Limit at a point: Let (X,d) and (Y,d*) be two metric spaces and let
f:X =Y be a function of X into Y. Assume [ € X and [* € Y Then f(x)
tends to limit [* as x tends | if for every € > 0, there exists § > 0 such that
d(f(x),l") <e whenever 0 < d(x,1) < §.

Continuity at a point: Let (X,d) and (Y, d") be two metric spaces and let
f:X =Y be afunction of X into Y. F is continuous at a point [ € X if for
every € > 0, there exists § > 0 such that

d*(f(x), f(D)) < e whenever 0 < d(x,1) < 6.
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Continuous map: A function f of a metric space (X,d) into another
metric space (Y,d") is said to be continuous if it is continuous at every
point of X.

Theorem 13.14. Let (X,d) and (Y, d") be metric spacesand A <€ X. A
function f : A — Y is continuous at 1l € A if and only if whenever a
sequence {x,} in A converges to [, the sequence {f (x,)} converges to
f.

Proof. Assume the function f : A — Y is continuous at [ € X.

Let {x,} be a sequence in A converging tol

Now we will try to prove that {f (x,)} converges to f(1).

Let ¢ be any positive real number.

f is continuous at [

= there exists some § > 0 such that [ € X and

d*(f(x), f(D)) <e whenever 0 < d(x,1) < 6.

Now

lim,,_,, X, = [, there exists some € N such that

d(x,1) <8 when m>n

Therefore

d*(f(x),f(D))<e when m>=n

Hence lim,,_o, f (x,) = f(D).

Converse

Assume that every sequence {x,} in A converging to [ has the property
lim,, o f (%) = F(D.

Now we will try to prove that that f is continuous at L.

In contrary, let f is not continuous at L.

Then there must exists € > 0 for which no § >0 can satisfy the
condition for [ € X that

d*(f(x), f(D)) <e whenever 0 < d(x,1) < 6.

i.e. for every § > 0 there must exits x € X such that

0<dx,)<d =2d"(f),f(D)) =¢ .

Now for every natural number n, the number % > 0.

Thus there exists x,, € A such that

d(xp,x) < 1/nbut d*(f(xn), f(D) 2 €.
i.e. the sequence {x,} converges to | but sequence {f (x,)} not converges

to £ (D).
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But this contradict our assumption that every sequence {x,} converges to
[ has condition that lim,,_,., f (x;,) = f(D).
Hence f is continuous at L.

Theorem 13.15. A function f of a metric space (X,d) into a metric
space (Y,d") is continuous at a point I € X if and only if for every
£ > 0, there exists § > Osuch that S(a,8) < f~1 (S(f (D), €)), where
S(x, 1) denotes the open ball of radius r with centre x.

Proof. The mapping f : X — Y is continuous at [ € X if and only if for
every € > 0 there exists § > 0 such that forall x € X

d* (f (x),f (1)) < & whenever 0 < d(x,l) <3,

e, x € S(,6))=> f(x) € S(f(D,9)

Therefore £ (S(,8)) < S(f (1), ).

Hence S(1,8) < f~1(S(f (1), )

Theorem 13.16. Let (X,d) and (Y,d") be metric spacesand f: X —
Y be a function. Then f is continuous on X iff f~1(G) is open in X for
all open subsets G < Y.

Proof. Let f is continuous on X and consider G be an open subset of Y.
Now we prove that f~1 (G) is open in X.

As @ and X are open, we assume that =1 (G) =@ and f~1(G) # X
Letx € f71(G) =f (x) € G.

Now G is open = there exists € > 0 such that S(f (x),&) € G.

f is continuous at x,

From previous theorem, we conclude that

For given ¢ there exists § > 0 such that

S(,8) S fH(SUF (0,0) € FHE).

Hence, every point x of f~1(G) is interior point,

Therefore f~1(G) is open in X.

Converse

Let f~1(G) is open in X for all open subsets G of Y.

Let x € X. As we know that eeach open ball is open set set in metric
space.

Hence for each € > 0, the set S(f (x), €) is open in X.

= 7L (S(f (x),€)) isopenin X.

Now x € f~* (S(f (x),€)),
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=exists § > 0 suchthat S(x,8) € 71 (S(f (x),¢))
From previous theorem, we conclude that
f is continuous at x.

Arbitrary close: A point x € X is said to be arbitrary close to X; € X iff
x is a limit point of X;.

Theorem 13.17. A function f from a metric space (X, d) into another
space (Y, d") is continuous iff for every subset X, of X,

fIX1] € fTX4]

f:X - Y is continuous iff for any x € X and any x arbitrary close to
X, implies f(X) ai arbitrary close to f[X,].

Proof. Let f be continuous.

As we know that f[X;] is closed in Y.

As we know that if f is continuous function from a metric space (X, d)
into another space (Y,d*), then inverse image under f of every
d* —closed set is d —closed.

fYHf[X.1} is closed in X.

Hence

fH XD = FHF XD

Now f(X;) € f[X1]

=X S fHfXD] < f_l{m}

=X € fHf D] = FFH XD

Hence f[X;] € f[X1]

Converse

Let f[X1] € F[X1]

For every subset X; of X, let Y; be any closed subset in Y .

HenceY, €Y

Now f~1[Y;] is a sunbset of X implies
fiffnllen

Hence f~1[Y;] € f~[V1] = f (1]

Butf7' vyl & fI[N]
Therefore f~1[v;] = f-1[Y;]
ftY1] is closed in X.
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If £ is function from a metric space (X, d) into another space (Y,d"), such
that inverse image under f of every d* —closed set is d —closed then f is
continuous.

Thus f is continuous.

13.7 HOMEOMORPHISM

Open Mapping: Let (X,d) and (Y,d") be two metric space. A mapping
f:X = Y is said to be open mapping if f[G]is d*-open whenever G is
d —open.

Closed Mapping: Let (X,d) and (Y, d") be two metric space. A mapping
f:X - Y is said to be closed mapping if f[F] is d*-open whenever F is
d —closed.

Bicontinuous mapping: Let (X,d) and (Y,d") be two metric space. A
mapping f:X — Y is said to be bicontinuous mapping if f is open and
continuous.

Homeomorphism: Let (X,d) and (Y,d*) be two metric space. A
mapping f: X — Y is said to be homeomorphism if

(i) f is one-one and onto i.e. f is bijective.

(it) f is continuous

(iii) £~ is continuous.

Homeomorphic spaces: A metric space (X,d) is said to be
homeomorphic to another space (Y,d") if there exists homeomorphism
f:X > Y. Itisdenoted by X = Y.

Y is said to be homomorphic image of X.

Example:
In complex variable theory the mapping w = % where 0 < |a| < 1 of
the closed disc |z| < 1 onto the closed disc [w| < 1 is a homeomorphism.

Topological Property: Let (X,d) and (Y,d") be two metric space. Then
the metric d and d* is equivalent if the identity mapping i.e.
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I:X - X: I(x) = x for all x in X is homemorphism.

Theorem 13.18. Homeomorphism is an equivalence relation in the
collection of all metric spaces.
Proof. Reflexive: Let (X, d) be any metric space
Let I be identity map defined as
I: (X,d) » (X,d)such that I(x) = x for all x € X.
then easily we can say that I is homeomorphism.
Thus (X,d) = (X, d).
Symmetry: Let (X,d) = (Y,d").
There exists homeomorphism f defined as
f:(X,d) - (v, d").
Thus f is continuous and one-one onto and f ~1is contionuous..
Now we prove that f~! is homeomorphism which defined as
(v, d*) » (X,d)
(i) f is one-one and onto= £~ is one-one and onto.
(i) f~1 is continuous
(iii) (f~H~1 = f is continuous.
Hence £~ is homeomorphism.
Thus (Y,d*) = (X, d).
Transitivity: Let (X,d) = (Y,d*) and (Y,d") = (Z,d').
Let f and g be two homeomorphism defined as
f:(X,d) - (Y,d*)and g: (Y,d*) - (Z,d").
Now we will show that (X,d) = (Z,d")
Now we define a composite mapping gof: (X,d) — (Z,d").
Q) f and g are one-one onto= gof is one-one onto
(ii) f and g are continuous= gof is continuous.
(iii) f~* and g~? are continuous
=f"1o g~1 are continuous
=(gof)~1! are continuous.
Hence gof is homeomorphism=(X,d) = (Z,d").
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13.8 CONTINUITY AND CONNECTEDNESS AND
COMPACTNESS

Theorem 13.19. A continuous image of a connected space is connected.

Proof. Let (X,d) and (X, d™) be two metric spaces and f be a continuous
mapping of X onto Y.

Let X is connected, we prove that Y is connected.

In contrary, assume that Y is disconnected.

Then there exists subset Y; # @ of Y such that Y; is open and closed.

It is given that f is open mapping and Y; is proper subset of Y.

=f~1[Y,] is proper subset of X.

f is continuous = f~1[Y;] is open and closed.

= (X, d) is discoonected, a contradiction.

Thus Y is connected.

NOTE:
Connectedness is a topological property.

Theorem 13.20. A continuous image of compact space is compact.
Proof. Let (X,d) and (X, d") be two metric spaces and f be a continuous
mapping of X onto Y.

We prove that f[X] is compact i.e. closed and bounded.

Let {G;: 4 € A} be an open cover of f[X].

f is continuous = {f~1(G;):1 € A} is an open cover of f[X].

X is compact

= there exist finitely many indices 44, 4,, ..., 4,, such that
X=Ff"YG,)Vf Gy ..uf(Gy,)

=X =[G, VG;....UGy,)

Hence

fIX1=f[f (G, VG, .....U Gy )]

Thus f[X] is compact or f[X] is closed and bounded.
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NOTE:
Compactness is a topological property.

13.9 SUMMARY

In this unit we discussed about compactness, connectedness and
continuity. We illustrate some examples and proved some important
theorems.

13.10 GLOSSARY

Space- a set with some added structure.

metric- a notion of distance between its elements

Completeness- no "points missing"” from it

Compact- open covering has a finite subcovering

Connectedness- cannot be represented as the union of two or more
disjoint

Ok 0w e
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13.13 TERMINAL QUESTION

Long Answer Questions

(TQ 1) Define Compact metric space
(TQ 2) Define locally connected

(TQ 3) Prove a continuous image of compact space is compact.
(TQ 4) Define disconnected metric space.
(TQ 5) Prove that closure of connected set is connected

.Fill in the blanks

(TQ 6) A continuous image of a connected space is

(TQ 7) Every discrete space (X, d) is

13.14 ANSWERS

(CR3 T (CQ4F
(CQ5) BWP (CQ 6) subcover
(TQ 6) connected (TQ7) locally connected
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UNIT 14: FIXED POINT THEORY

CONTENTS

14.1 Introduction

14.2  Obijectives

14.3 Banach contraction principle

14.4  Further extension of contraction principle
14.5 Converse to the banach contraction principle
14.6  Sequences of maps and fixed points

14.7 Fixed points of non-expansive maps

14.8 Summary

14.9 Glossary

14.10 References

14.11 Suggested Readings

14.12 Terminal Questions

14.13 Answers

14.1 INTRODUCTION

A fixed point of a function is a point that the function mappings to itself
and maintains as fixed. Let f: X — X be a single-valued mapping and X be
a non-empty set. When y remains unchanged under the mapping f, a point
is said to be a fixed point of T if fy = y. A fixed point is, in terms of
graphics, the intersection of the graph of the curve y = fx with the line

y = Xx.

For instance, if f(x) = x? —5x + 9 defines a function f on the real
numbers, then 3 is a fixed point of f.
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A mapping may have a single fixed point, many fixed points, an unlimited
number of fixed points, or even no fixed points at all. The study of
sufficient conditions on X or f that ensure that f always has at least one
fixed point is included in fixed point theory. Mappings (single or multi-
valued) have solutions when certain conditions are met, according to fixed
point theorems.

The Topological Fixed Point Theory and the Metric Fixed Point Theory
are two subcategories of fixed point theory. However, because of the
proving strategies used, the two classes are not truly mutually exclusive.
While the latter mainly entails the study of fixed points depending on the
mapping conditions and the spaces under examination, the former
primarily involves the research of spaces with the fixed point property.

In previous unit we analyze compactness and continuity in metric space.
In this unit we define fixed point in metric space and proved some
important theorems based on fixed point theory.
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Stefan Banach was a Polish
mathematician who lived from 30
March 1892 to 31 August 1945. He is
regarded as one of the most significant
and influential mathematicians of the
20th century. He was a founding
member of the Lwow School of
Mathematics and the creator of
contemporary functional analysis.

The idea of a complete normed vector
space was formally axiomatized by
Banach in his dissertation, which was
finished in 1920 and published in 1922.
It also lay the groundwork for the field
of functional analysis.

His dissertation contained Banach's
fixed point theorem, which was later

Fig 14.2. Stephan Banach
(Source: https://the-genius-of-
autism.fandom.com/wiki/Stefa

n_Banach?file=Stefan- expanded by his students and was based
banach.jpg) on earlier techniques created by Charles
Emile Picard.

14.2 OBJECTIVES

In this Unit, we will

1. analyze about fixed point
2. Prove some important fixed point theorems.

14.3 BANACH CONTRACTION PRINCIPLE

The fundamental Banach Contraction Theorem (1922), developed by
Polish mathematician Stephan Banach (1882-1945), is the simplest and
most often used method in nonlinear analysis.

The fixed point of a self-mapping is guaranteed to exist and be unique by
this theorem, which is the first fixed point result in metric fixed point
theory. It also provides a method to find the fixed points of these
mappings.

First we defined some important terms.
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Lipschitzian mapping: A mapping f on a metric space (X,d) Vx,y €
X is a Lipschitzian mapping if there exists a real number @ > 0 such
that d(Tx, Ty) < d(x,y).

Contraction mapping A mapping f on a metric space (X,d),V x,y €
X is a Contraction Mapping if there exists a real number o, 0 < a <
1, such that d(Tx,Ty) < ad(x,y).

Non-expensive mapping A mapping f on a metric space (X,d),Vx,y €
X is a Non-expensive mapping ifd (Tx,Ty) < d(x,y).

Contractive Mapping: A mapping f on a metric space (X,d) ,Vx,y €
X is a contractive mapping if d (Tx,Ty) < d(x,y).

It is important to note that

contraction = non — expansive = Lipschitz = Contractive,
While the opposite of what it implies is untrue.

Example:

e The identity mapping I: X — X, is non-expansive but not contractive
as Vx,y€ X,d(x,ly) < d(x,y).

e Mapping f:X— X defined by f(x)= x +§,Vx EX is a
contractive mapping while f is not a contraction.

e Mapping f:X — X defined by f(x)=3x, T is a Lipschitzian
mapping for M = 3, while f is not a contraction.

Banach Contraction Principle

Theorem 14.1. Let f be a contraction on a complete metric space
(X, d). Then f has a unique fixed pointu € X.

Proof. Notice first that if u;,u, € X are fixed points of f,
then d(uy, uz) = d(f(u1), f(u2)) < Ad(uy,up)
hence u; = u,.

We choose any u, € X, and define the iterate sequence
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Uns1 = f(Un).

By induction on n,

A(Uns,Up) < A" d(F(Ug),UQ) v, (D
Ifn € Nandm > 1,

d(Unsm Un) < dUnm Unsm-1) + -+ + dUns1, Un)

<A™ 4 A (Ug), Ug) e (2)

< 2 d(f (), o).
Hence {u,} is a Cauchy sequence,
X is complete =lim,,_,, u,, = u in X.
f is continuous then
f@) =limp e f(up) = liMpeo Upyq = U
Thus u is a unique fixed point.
Corollary Let X be a complete metric space and Y be a topological space.

Let f: X X Y - Xbe a continuous function. Consider that f is a
contraction on X uniformly in , i.e.,

d(f(upv);f(uzlv)) < Ad(uy,up),Vu,u, € X,vv €Y

for some A < 1. Then, for every fixed y € Y, the mapping x = f(x,y)
has a unique fixed point ¢(y). Moreover, the function y — ¢(y) is
continuous from Y to X.

Proof . Using Banach contraction principle we only have to prove the
continuity of ¢.

If v,v, € Y, we have
d(p(), (o)) = d(f(¢(), V), f(P(vo) Vo))
< d(f (@), v), f(@(Wo), V) + d(f(P(Wo), V), f(¢(Vo), Vo))
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< Ad(9(), ¢(vo)) + d(f(@(vo), V), f(@(vo), Vo))
=d(¢©), d(vo)) = ﬁd(f@(vo),v),f(cb(vo),vo))-

As the above right-hand tends to zero as v — v,, we have require
condition of continuity.

Example:

X

Let X = (0, 1] with the usual distance. Define f : X - Xas f(x) = =

CHECK YOUR PROGRESS
(CQ 1) State and Prove Banach Contraction theorem

ANSWER

(CQ 2) What is fixed point?

ANSWER

(CQ 3) Explain Lipshitz map?

ANSWER

14.4 FURTHER EXTENSION OF CONTRACTION
PRINCIPLE

Numerous mathematicians, scientists, and researchers have used,
generalized, and expanded the banach contraction Principle in numerous
ways for single-valued and multi-valued mappings under various
contractive conditions in diverse spaces. A significant advancement has
been made in this area, which has a profound effect on all fields of
mathematics.

Here, we highlight a few outcomes.
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Boyd-Wong’s Fixed point theorem

Theorem 14.2. Let X be a complete metric space, and f: X — X be
a mapping. Let there exists a right-continuous function ¢ : [0, ) —
[0,0) such that () < r if r > 0,and d(f(uqy), f(uy)) <
d(d(uq,uy)),vuq,u; € X.

Then f has a unique fixed pointu € X.

Moreover, for any uy, € X the sequence f™(ugy) converges to u.

Proof. Ifu,,u, € X are fixed points of f, then d(u,u,) =
d(f(u1), f(u2)) < ¢(d(uy,uz)

Hence u; = u,

For the existence, we fix any u, € X,

Now we define the iterate sequence u, .1 = f(u,).

Now we will try to prove that u,, is a Cauchy sequence.

Forn > 1, we define a positive sequence {x,} such that

Xn = d(Up, Up-1)-

Clearly, xp,11 < ¢(x) < x5

Hence sequence {x,,} an converges monotonically to some x > 0.

From the right-continuity of ¢, we conclude

x < ¢(x), which imply x = 0.

If {x,,} is not a Cauchy sequence, there exists ¢ > 0 and integers
m; > n; = iforeveryi > 1 such that

di = d(upm,, Uy, ) = Vi 2 1

Now we choose the smallest possible m;, such that

d(Um, , yun,) < eforlargei. (because u,, = 0).

Therefore, for for large i,

€ < dg < dUm um_, ) + d(Um_,  Xn,) < Xy, + €

=>d; > €ask — oo,

Also,d; < dijyq + dp,,, +Xp,,, < &d) + X, +Xn,,,

Taking the limitas i — oo we get

e < ¢(¢), which is a contradiction because € > 0.

{x,} is a Cauchy sequence

X be a complete metric space

lim,,Xx, =x € X.

= f is continuous then
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f(x) =limy o f(xy) = limy o0 Xp41 = X,

Thus x is a unique fixed point.

Caristi Fixed point theorem

Theorem 14.3. Let X be a complete metric space, and let f : X - X.
Assume there exists a lower semicontinuous function ¥ : X -
[0, ) such thatd(x, f(x)) < Y(x) — P(f(x)),Vx € X.Then f has
(at least) a fixed point in X.

Proof. We introduce a partial ordering on X, such that

x 2 yifandonlyifd(x,y) < ¢(x) — Y ().

Let® = Y < X be totally ordered, and consider a sequence x,, € Y such
that Y (x,,) is decreasing to a := inf{yp(x): x € Y}.

Ifn € Nandm > 1,

d(un+m:un) < Zﬁald(xn+i+1fxn+i)

= Zﬁallp(unﬂ) —PUnrir) = P(Ups1) — P(Upim).

Hence {u,} is a Cauchy sequence, and having a limit u € X, for X is
complete.

Since ¥ can only decreases (being lower semicontinuous), we also have
YY) = a.

Ifu € Yandd(u,v) > 0, thenitmustbeu < u, for largen.

Also, lim,, Y (u,,) = Y () < Y(u).

= v is an upper bound for Y, and by the Zorn lemma

there exists a maximal element .

On the other hand, u 2 f (&)

Hence due to the maximality of & we conclude that u = f ().

We get to a Ciric’s fixed point theorem by asserting the extension of
Banach’s contraction theorem.
Let X be a complete metric space, and letf: X — X be such that

d(f(u1)’f(u2)) <
Amax{ d(uy, up),d(uy, f(u1)), d(uy, f(u2)), d(uy, f(u2)), d(ug, f(u1))}

for some 4 < 1 and every u;,u, € X. Then f has a unique fixed point
u € X.
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We now focus on maps on metric spaces that are contraction-like without
actually being contractions.

Weak contractions : Let (X,d) be a metric space with a distance d. A
mapping f : X — X isaweak contraction if

d(f(w), f(up)) < d(uy,up),Vu, #u, € X.

The following straightforward example demonstrates that f need not
always be a weak contraction in order to have a fixed point.

Example
Assume the complete metric space X = [1,+), and consider f : X —

X be defined as f(x) = x + %

Easily we observe that f is a weak contraction with no fixed points.
However, when X is compact, the requirement proves to be sufficient.

Theorem 14.4. Let f be a weak contraction on a compact metric
space X. Then f has a unique fixed point u € X. Moreover, for any
uy € X the sequence f™ (uq) converges to u.

Proof. X is compact

= the continuous function x — d(x, f(x)) attains its minimum at some
pointu € X.

Ifu= f(u), we get

d(u, f(w) = mingey d(, f(v)) =< d(f(w),f(f(w)) < d(u f(u))
which is not possible.

Hence u is the unique fixed point of f.

Now consider v, = u be given, and we define

dn = d(f" (vp), w).

We see that

dpsr = d(f (W), f(W) < d(f™ (wo),w) =
Thus d,, is strictly decreasing, and have a limit [ >
Now assume f™ (v,) be a subsequence of f™ (v,) converging to some
pointw € X.

Then

d,.
0.
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L =dw,u) =limg,,dy, = limg,,dy,,,
= limy, d(f™ (vo),u) = d(f(w),u),
ifw #u, thend(f(w),u) = d(f(w), f(w)) < d(w,u).
Thus convergent subsequence of f™ (v,) has limitv,,
Now X is compact
= " (vy) converges to v.
The uniqueness is proved exactly as in the Banach contraction theorem.

14.5 CONVERSE T0 THE BANACH
CONTRACTION PRINCIPLE

Assume we are given a mappiing f : X — X together with a set X. We
are looking for a metric d on X such that f is a contraction on X
and (X,d)is a complete metric space. A required requirement is
undoubtedly that each iterate f,, has a distinct fixed point in view of
Banach’s Contraction principle. Surprisingly, the circumstance also proves
to be adequate.

Bessaga Fixed point theorem

Theorem 14.5. Let X be an arbitrary set, and letf: X - Xbe a
mapping such that f* has a unique fixed point u € X for every
n > 1. Then for every € € (0, 1), there is a metricd = d_ on X that
makes X a complete metric space, and f is a contraction on X with
Lipschitz constant equal to «.

Proof First we choosing ¢ € (0,1).

Let Y be the subset of X consisting of all elements v such that

f™(v) = uforsomen € N.

Now we define the corresponding equivalence relation on X \ Y

u~ wifandonlyif f* (u) = f™(v) for somen,m € N.

We observe that

if M = fmw)and YW = fY@)then M (x) =
f n'+m (x)

Butsincex € Y,=>n+m'=n"+m,ie,n —m=n"—m'".

We now choose a member of each equivalence class.
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We define the distance of u froma x € X such that
dlu,u) = 0,d(x,u)= ¢ ™ ifx € Z with x # uwhere n =
minfm € N: f™(x) = u}, and d(x,u) = "™ if x &€ Z, where
n,m € N such that f™(x*) = f™(x*), where x*be the selected
representative of the equivalence class [x].
The discussion above has made the term clear.
Thus, for any v,w € X, we have
dlv,u) +dw,u) ifv+w,

d(x'y):{o( ( i]]:vzw,
It is simple to confirm that d is a metric. Observe that the only Cauchy
sequences that do not eventually converge to v are constants to
demonstrate that d is complete.
The only thing left to do is proof that f is a contraction with a Lipschitz
constant ¢.
Letv € X, v+ w. Ifv € Y we have
d(f(), fw) = d(f(w),u) < e = ™D = gd(v,u).
IfveY then
d(f), f(w) = d(f(w),w) = e"™ = g™ ™D = gd(v,u)
Asv ~ f(v).
Hence that f is a contraction with a Lipschitz constant ¢.

14.6 SEQUENCES OF MAPS AND FIXED POINTS

Assume (X,d) be a complete metric space. We assume problem of
convergence of fixed points for a sequence of mappings f,, : X - X.

Theorem 14.5. Let each f,, has at least a fixed point v,, = fn,(v,).
Assume f: X — X be a uniformly continuous mapping such that f*
is a contraction for some k > 1. If f,, converges uniformly to f, then
v, convergesto u = f(u).

Proof Let f is a contraction.
Let A < 1 be the Lipschitz constant of f.
For given ¢ > 0, we choose n, = ny(&) such that
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d(fu(v),f(v)) < (1 — 1),Vn = n,, Vv € X.

Then, forn > n,,

d(vp,u) = d(f(vn), fW) < d(f(vn), f(vn)) + d(f(vn), fF(W))
< e - A1) + Ad(xn,x).

Hence d(v,, u) < & =convergence.

We can observe that if

d(f @), few)) < 2*d(v, w)

for some 1 < 1, we may define a new metric d* on X equivalent to d by
taking

d*(v,w) = T3 = d (Fi), fi(w))

Also, as f is uniformly continuous, f, converges uniformly to f with

respect to d*.

Eventually, f is a contraction with respect to d*.

Infact, d*(v,w) = 5= d (F+1 (), F+1 (w))
= 23553 = d (FL ), £ ) + e d(F4 ), £ )
<ATEY = d(Fiw), fiw)) = Ad” (v, w).

So the problem is reduced to case k = 1.

Theorem 14.6. Let X be locally compact. Consider that for each

n € N there is k,, = 1 such that fﬁ" is a contraction. Consider
f: X - X be a mapping such that f¥is a contraction for some
k > 1. If f,, converges pointwise to f, and f, is an equicontinuous
family, then v,, = f,(v,) convergestou = f(u).

Proof Let € > 0 be sufficiently small such that
M(u,e)={x € X: d(v,u) < ¢ c X iscompact.
According to the Ascoli theorem,

frn converges to f uniformly on M (u, €).

As it is equicontinuous and pointwise convergent.

We choose n, = nq(¢) such that

d(fn" (x),fk(x)) <&l -2, Vn =ny,Vx € M(u,¢)
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where A < 1 is the Lipschitz constant of f*.
Then, forn > ngandv € M(u, ).
Now

d(fe @)w) = d(fE @), @)

< d(f¥ @), f* @) + d(f* @), ffw)
<el -1+ Adw,u) < e
Therefore £¥ (M(u,€)) © M(u,¢) foralln > n,.
As the mappings fnk" are contractions,
=forn > n,, the fixed points v, of f,, € M(u, €),
e, d(v,,u) < e

14.7 FIXED POINTS OF NON-EXPANSIVE MAPS

First we understand some terms used in theorem which we discussed later.
A normed linear space, often known as a "normed space,” is a real or
complex vector space E where each vector X is connected to a real number
|x] known as its absolute value or norm, and holds following properties
|x| = 0;

(ND)|x| =0

(N2)|x| =0 iffx=0

(N3) | kx| = |k||x[;

(N4)|x + y| < |x| + |y| (triangle inequality).

Banach space: A Banach space is a complete normed linear space.
Let X be a Banach space, C < X nonvoid, closed, bounded and convex,

and let f: C — C be a non-expansive map. Whether f admits a fixed
point in C is the problem. In general, the response is untrue.
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Browder-Kirk fixed point theorem

Theorem 14.7. Let X be a uniformly convex Banach space and
C c X be nonvoid, closed, bounded and convex. If f: € — Cis a
non-expansive map, then f has a fixed point in C.

Proof. Let u* € C be fixed, and assume a sequence x, € (0,1)
converging to 1.

Foreachn € N, we define mapping f,: C — C as

fa@) = x,f (W) + (1 — xp)u’.

We observe that f,, is a contractions on C,

therefore there is a unique u,, € C such that f,,(u,) = u,.

Since C is weakly compact, u,, has a subsequence weakly convergent to
someu € C.

We shall prove u that is a fixed point of f.

Clearly limy,.oo (|| (@) — wal|* = 17— wal|") = |If@ — 7|
As f is non-expansive we have
If @ = unl| < |IfF@ = ful] + |If wn) = unl|

< ||E_un|| + ||f(un)_un||

= [[@—unl| + (1 = x)IIf () — w'|I.
Asx, —» lasn — ooand C is bounded,

Hence

. —_ 2 _ 2
hmn—mosup(“f(u)_unll - ||u_un|| ) <0
=>f(u) =u.

14.8 SUMMARY

In this unit we discussed about some important theorems based on fixed
point theory.

14.9 GLOSSARY

1. Space- a setwith some added structure.
2. metric- a notion of distance between its elements
3. Completeness- no "points missing™ from it
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4. Fixed point-point that does not change upon application of a map,
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14.12 TERMINAL QUESTION

Long Answer Questions

(TQ 1) Define fixed point with example
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(TQ 2) State and Prove Banach Contraction Principle

Fill in the blanks

(TQ 3) A mapping f on a metric space (X,d) Vx,y € Xis a
if there exists a real number a > 0 such that
d(Tx,Ty) < d(x,y).

(TQ 4) Let (X,d) be a metric space with a distance d. A mapping
f+ X = Xisaweak contraction if Yu #u, € X.

14.13 ANSWERS

(TQ 3) Lipschitzian mapping (TQ4) d(f(uy), f(uy) < d(uq,uy),
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