
i

Title Digital Electronics

Adaption and Typesetting Dr. Jeetendra Pande,

Assistant Professor- School

of CS & IT, Uttarakhand

Open University, Haldwani

ISBN:

Acknowledgement

The University acknowledges with thanks to NPTEL, KKHSOU and the author

for providing the study material on NPTEL and KKHSOU portals under

Creative Commons Attribution-ShareAlike - CC BY-SA.

 Uttarakhand Open University, 2020

This work by Uttarakhand Open University is licensed under a Creative Commons

Attribution-Noncommercial-Share Alike 3.0 United States License. It is attributed

to the sources marked in the References, Article Sources and Contributors section.

Published By: Uttarakhand Open University

http://creativecommons.org/licenses/by-sa/4.0/

ii

DIGITAL ELECTRONICS

iii

Index

BLOCK I ... 3

1.0 Learning Objectives .. 5

1.1 Introduction ... 5

1.2 Weighted-Position Number System .. 6

1.3 Number System Conversions .. 8

Check Your Progress I .. 10

1.4 Representation of Negative Numbers ... 11

1.4.1 One’s Complement Representation ... 12

1.4.2 Two’s Complement Representation ... 13

Check Your progress II ... 15

1.6 Model Question ... 15

2.0 Learning Objectives .. 17

2.1 Introduction ... 17

2.2 Binary Coded Decimal Codes ... 19

2.3 Unit Distance Codes ... 22

2.4 Alphanumeric Codes ... 26

2.5 Error Detection and Correcting Codes .. 27

Check Your Progress .. 29

2.5 Model Questions ... 30

Answers to Check Your Progress ... 31

3.0 Learning Objectives .. 33

3.1 What is Boolean Algebra? .. 33

3.2 Boolean Algebra and Huntington Postulates .. 36

3.2.1 Propositions from Huntington’s Postulates ... 38

3.3 Boolean Operators .. 44

Check Your Progress .. 50

3.4 Model Questions ... 51

Answers to Check Your Progress ... 52

iv

4.0 Learning Objectives .. 55

4.1 Introduction ... 55

4.2 Logic Functions in Algebraic Form .. 56

4.3 Truth Table Description of Logic Functions .. 57

Check Your Progress .. 59

4.4 Conversion of English Sentences to Logic Functions .. 59

4.5 Minterms and Maxterms ... 61

4.6 Circuit Representation of Logic Functions ... 63

Check Your Progress II ... 64

4.7 Model Questions ... 64

Answers to Check your Progress I .. 65

Answers to Check your Progress II .. 65

BLOCK II ... 67

5.0 Learning Objectives .. 69

5.1 Karnaugh-Map .. 69

5.1.1 Three-Variable Karnaugh Map .. 72

5.1.2 Four-variable Karnaugh Map ... 74

5.1.3 Five-variable Karnaugh Map ... 75

5.1.4 Boolean functions in POS form ... 77

5.2 Minimization with Karnaugh Map ... 79

5.3 Standard POS form from Karnaugh Map ... 85

5.4 Simplification of Incompletely Specified Functions .. 87

Check Your Progress .. 91

Model Question ... 92

Answers to Check Your Progress ... 92

6.0 Learning Objectives .. 95

6.1 Introduction ... 95

6.2 Principle of Quine-McClusky Method ... 95

6.2.1 Generation of Prime Implicants ... 96

6.2.2 Determination of the Minimal Set of Prime Implicants... 98

6.2.3 Simplification of Incompletely Specified functions .. 104

v

Check Your Progress .. 105

6.3 Model Question ... 106

Answers to Check Your Progress ... 106

7.0 Learning Objectives .. 111

7.1 Introduction ... 111

7.2 Logic Gates ... 111

7.3 Truth Table ... 113

7.4 AND Gate ... 114

7.5 OR-Gate .. 115

7.6 NOT Gate .. 116

7.7 NAND Gate .. 117

7.8 NOR Gate ... 118

7.9 X-OR Gate .. 119

7.10 X-NOR Gate ... 120

7.11 Summary ... 120

Check Your Progress .. 122

7.12 Model Questions ... 122

Answers to Check Your Progress ... 122

8.0 Learning Objectives .. 123

8.1 Combinational Circuit ... 123

8.2 Multiplexer and Demultiplexer ... 124

8.2.1 Multiplexer ... 124

8.2.2 Demultiplexer .. 126

8.3 Encoder and Decoder .. 127

8.3.1 Encoder .. 127

8.3.2 Decoder .. 129

8.4 Half adder and Full adder ... 130

8.4.1 Half Adder ... 130

8.4.2 Full adder ... 132

8.5 Summary ... 134

Check Your Progress .. 135

vi

8.6 Model Questions ... 136

Answers to Check Your Progress ... 136

BLOCK III .. 137

9.0 Learning Objectives .. 139

9.1 Sequential Circuit ... 139

9.2 Flip Flops .. 141

9.2.1 RS Flip-Flop... 143

9.2.2 D Flip-Flop... 145

9.2.3 JK Flip-Flop ... 146

9.2.4 T Flip-Flop ... 148

9.2.5 Master-Slave Flip-Flop .. 149

9.2.6 JK Master-Slave Flip-Flop ... 150

9.3 Summary ... 151

Check Your Progress .. 152

9.4 Model Questions ... 153

Answers to Check Your Progress ... 153

10.0 Learning Outcomes ... 155

10.1 Introduction ... 155

10.2 Shift registers .. 156

10.3 Types of shift registers .. 156

10.3.1 Serial Input, Serial Output (SISO) Shift Register .. 157

10.3.2 Serial Input, Parallel Output (SIPO) Shift Register ... 159

10.3.3 Parallel Input, Serial Output (PISO) Shift Register ... 159

10.3.4 Parallel Input, Parallel Output (PIPO) Shift Register .. 160

10.4 Application of Shift register ... 161

Check Your Progress .. 162

10.5 Summary ... 162

10.6 Model Questions ... 162

Answers to Check Your Progress ... 163

11.0 Learning Objectives .. 165

11.1 Introduction ... 165

vii

11.2 Asynchronous (ripple) counter ... 166

11.3 Synchronous counter ... 167

11.3.1 Working of a three-stage synchronous counter ... 168

11.4 Decade counter (MOD 10 Counter) .. 170

11.5 Ring Counter ... 171

11.6 Johnson counter .. 172

Check Your Progress .. 172

11.7 Summary ... 172

11.8 Model Questions ... 173

Answers to Check Your Progress ... 173

12.0 Learning Objectives .. 175

12.1 Introduction to Semiconductor Memories .. 175

12.2 Read Only Memory (ROM) .. 176

12.2.1 ROM Size... 176

12.3 Random Access Memory(RAM) .. 179

12.3.1 SRAM vs DRAM ... 179

12.3.2 How to read from and write to a RAM? .. 179

12.3.3 READ Operation in RAM ... 179

12.3.4 WRITE Operation in RAM .. 180

12.4 Flash Memory ... 181

12.5 Memory Expansion ... 181

Check Your Progress .. 183

12.6 Summary ... 184

12.7 Model Questions ... 184

Answers to Check Your Progress ... 185

References ... 187

viii

1

DIGITAL SYSTEMS: MOTIVATION

A digital circuit is one that is built with devices with two well-defined states. Such

circuits can process information represented in binary form. Systems based on digital

circuits touch all aspects our present day lives. The present-day home products including

electronic games and appliances, communication and office automation products,

computers with a wide range of capabilities, and industrial instrumentation and control

systems, electromedical equipment, and defense and aerospace systems are heavily

dependent on digital circuits. Many fields that emerged later to digital electronics have

peaked and levelled off, but the application of digital concepts appears to be still

growing exponentially. This unprecedented growth is powered by the semiconductor

technology, which enables the introduction of more and complex integrated circuits. The

complexity of an integrated circuit is measured in terms of the number of transistors that

can be integrated into a single unit. The number of transistors in a single integrated

circuit has been doubling every eighteen months (Moore’ Law) for several decades and

reached the figure of almost one billion transistors per chip. This allowed the circuit

designers to provide more and more complex functions in a single unit.

The introduction of programmable integrated circuits in the form of microprocessors in

70s completely transformed every facet of electronics. While fixed function integrated

circuits and microprocessors coexisted for considerable time, the need to make the

equipment smaller and portable lead to replacement of fixed function devices with

programmable devices. With the all pervasive presence of the microprocessor and the

increasing usage of other programmable circuits like PLDs (Programmable Logic

devices), FPGAs (Field Programmable Gate Arrays) and ASICs (Application Specific

Integrated Circuits), the very nature of digital systems is continuously changing.

The central role of digital circuits in all our professional and personal lives makes it

imperative that every electrical and electronics engineer acquire good knowledge of

relevant basic concepts and ability to work with digital circuits. At present many of the

undergraduate programmers offer two to four courses in the area of digital systems, with

at least two of them being core courses. The course under consideration constitutes the

2

first course in the area of digital systems. The rate of obsolescence of knowledge, design

methods, and design tools is uncomfortably high. Even the first level course in digital

electronics is not exempt from this obsolescence.

Any course in electronics should enable the students to design circuits to meet some

stated requirements as encountered in real life situations. However, the design

approaches should be based on a sound understanding of the underlying principles. The

basic feature of all design problems is that all of them admit multiple solutions. The

selection of the final solution depends on a variety of criteria that could include the size

and cost of the substrate on which the components are assembled, the cost of

components, manufacturability, reliability, speed etc.

The course contents are designed to enable the students to design digital circuits of

medium level of complexity taking the functional and hardware aspects in an integrated

manner within the context of commercial and manufacturing constraints. However, no

compromises are made with regard to theoretical aspects of the subject.

3

BLOCK I

4

5

Unit I: Number Systems

1.0 Learning Objectives

After the completion of this unit, you will be able to:

• Know Binary, octal and hexadecimal number systems.

• Perform conversion of number with one radix to another.

• Summarize the advantages of using different number systems.

• Interpret the arithmetic operations of binary numbers.

• Convert a given number from one system to an equivalent number in another

system.

1.1 Introduction

We all use numbers to communicate and perform several tasks in our daily lives. Our

present-day world is characterized by measurements and numbers associated with

everything. In fact, many consider if we cannot express something in terms of numbers

is not worth knowing. While this is an extreme view that is difficult to justify, there is

no doubt that quantification and measurement, and consequently usage of numbers, are

desirable whenever possible. Manipulation of numbers is one of the early skills that the

present-day child is trained to acquire. The present-day technology and the way of life

require the usage of several number systems. Usage of decimal numbers starts very early

in one’s life. Therefore, when one is confronted with number systems other than

decimal, some time during the high-school years, it calls for a fundamental change in

one’s framework of thinking.

There have been two types of numbering systems in use throughout the world. One type

is symbolic in nature. Most important example of this symbolic numbering system is the

one based on Roman numerals

I = 1, V = 5, X = 10, L = 50, C = 100, D = 500 and M = 1000

6

IIMVII - 2007

While this system was in use for several centuries in Europe it is completely superseded

by the weighted-position system based on Indian numerals. The Roman number system

is still used in some places like watches and release dates of movies.

The weighted-positional system based on the use of radix 10 is the most commonly used

numbering system in most of the transactions and activities of today’s world. However,

the advent of computers and the convenience of using devices that have two well

defined states brought the binary system, using the radix 2, into extensive use. The use

of binary number system in the field of computers and electronics also lead to the use of

octal (based on radix 8) and hex-decimal system (based on radix16). The usage of

binary numbers at various levels has become so essential that it is also necessary to have

a good understanding of all the binary arithmetic operations. Here we explore the

weighted-position number systems and conversion from one system to the other.

1.2 Weighted-Position Number System

In a weighted-position numbering system using Indian numerals the value associated

with a digit is dependent on its position. The value of a number is weighted sum of its

digits.

Consider the decimal number 2357. It can be expressed as

2357 = 2 x 103 + 3 x 102 + 5 x 101 + 7 x 100

Each weight is a power of 10 corresponding to the digit’s position. A decimal point

allows negative as well as positive powers of 10 to be used;

526.47 = 5 x 102 +2 x 101 + 6 x 100 + 4 x 10-1 + 7 x 10-2

7

Here, 10 is called the base or radix of the number system. In a general positional

number system, the radix may be any integer r ≥ 2, and a digit position i has weight ri.

The general form of a number in such a system is

dp-1 dp-2, d1, d0 . d-1d-2 d-n

where there are p digits to the left of the point (called radix point) and n digits to the

right of the point. The value of the number is the sum of each digit multiplied by the

corresponding power of the radix.

𝐷 = ∑ 𝑑𝑖𝑟𝑖

𝑝−1

𝑖=−𝑛

Except for possible leading and trailing zeros, the representation of a number in

positional system is unique (00256.230 is the same as 256.23). Obviously, the values

di’s can take are limited by the radix value. For example, a number like (356)5, where

the suffix 5 represents the radix will be incorrect, as there can not be a digit like 5 or 6 in

a weighted position number system with radix 5.

If the radix point is not shown in the number, then it is assumed to be located near the

last right digit to its immediate right. The symbol used for the radix point is a point (.).

However, a comma is used in some countries. For example, 7,6 is used, instead of 7.6,

to represent a number having seven as its integer component and six as its fractional.

As much of the present-day electronic hardware is dependent on devices that work

reliably in two well defined states, a numbering system using 2 as its radix has become

necessary and popular. With the radix value of 2, the binary number system will have

only two numerals, namely 0 and 1.

Consider the number (N)2 = (11100110)2.

It is an eight-digit binary number. The binary digits are also known as bits.

Consequently, the above number would be referred to as an 8-bit number. Its decimal

value is given by

(N)2 = 1 x 27 + 1 x 26 + 1 x 25 + 0 x 24 + 0 x 23 + 1 x 22 + 1 x 21 + 0 x 20

 = 128 + 64 + 32 + 0 + 0 + 4 + 2 + 0

 = (230)10

Consider a binary fractional number (N)2 = 101.101.

8

Its decimal value is given by

(N)2 = 1 x 22 + 0 x 21 + 1 x 20 + 1 x 2-1 + 0 x 2-2 + 1 x 2-3

 = 4 + 0 + 1 +
1

2
 + 0 +

1

8

 = 5 + 0.5 + 0.125 = (5.625)10

From here on we consider any number without its radix specifically mentioned, as a

decimal number.

With the radix value of 2, the binary number system requires very long strings of 1s and

0s to represent a given number. Some of the problems associated with handling large

strings of binary digits may be eased by grouping them into three digits or four digits.

We can use the following groupings.

• Octal (radix 8 to group three binary digits)

• Hexadecimal (radix 16 to group four binary digits)

In the octal number system, the digits will have one of the following eight values 0, 1, 2,

3, 4, 5, 6 and 7. In the hexadecimal system we have one of the sixteen values 0 through

15. However, the decimal values from 10 to 15 will be represented by alphabet A (=10),

B (=11), C (=12), D (=13), E (=14) and F (=15).

Conversion of a binary number to an octal number or a hexadecimal number is very

simple, as it requires simple grouping of the binary digits into groups of three or four.

Consider the binary number 11011011. It may be converted into octal or hexadecimal

numbers as

(11011001)2 = (011) (011) (001) = (331)8

 = (1101) (1001) = (D9)16

Note that adding a leading zero does not alter the value of the number. Similarly, for

grouping the digits in the fractional part of a binary number, trailing zeros may be added

without changing the value of the number.

1.3 Number System Conversions

In general, conversion between numbers with different radices cannot be done by simple

substitutions. Such conversions would involve arithmetic operations. Let us work out

9

procedures for converting a number in any radix to radix 10, and vice versa. The

decimal equivalent value of a number in any radix is given by the formula

𝐷 = ∑ 𝑑𝑖𝑟𝑖

𝑝−1

𝑖=−𝑛

where r is the radix of the number and there are p digits to the left of the radix point and

n digits to the right. Decimal value of the number is determined by converting each digit

of the number to its radix-10 equivalent and expanding the formula using radix-10

arithmetic.

Some examples are:

(331)8 = 3 x 82 + 3 x 81 + 1 x 80 = 192 + 24 + 1 = (217)10

(D9)16 = 13 x 161 + 9 x 160 = 208 + 9 = (217)10

(33.56)8 = 3 x 81 + 3 x 80 + 5 x 8-1 + 6 x 8-2 = (27.69875)10

(E5.A)16 = 14 x 161 + 5 x 160 + 10 x 16-1 = (304.625)10

The conversion formula can be rewritten as

D = ((... ((dn-1).r + dn-2) r +).r + d1).r + d0

This forms the basis for converting a decimal number D to a number with radix r. If we

divide the right-hand side of the above formula by r, the remainder will be d0, and the

quotient will be

Q = ((... ((dn-1).r + dn-2) r +).r + d1

Thus, d0 can be computed as the remainder of the long division of D by the radix r. As

the quotient Q has the same form as D, another long division by r will give d1 as the

remainder. This process can continue to produce all the digits of the number with radix

r. Consider the following examples.

Quotient Remainder

156 ÷ 2 78 0

78 ÷ 2 39 0

39 ÷ 2 19 1

19 ÷ 2 9 1

10

9 ÷ 2 4 1

4 ÷ 2 2 0

2 ÷ 2 1 0

1 ÷ 2 0 1

(156)10 = (10011100)2

Quotient Remainder

678 ÷ 8 84 6

84 ÷ 8 10 4

10 ÷ 8 1 2

1 ÷ 8 0 1

(678)10 = (1246)8

Quotient Remainder

678 ÷ 16 42 6

42 ÷ 16 2 A

2 ÷ 16 0 2

(678)10 = (2A6)16

Check Your Progress I

Multiple Choice Questions

1. Which number system is understood easily by the computer?

(a) Binary (b) Decimal (c) Octal (d) Hexadecimal

2. How many symbols are used in the decimal number system?

(a) 2 (b) 8 (c) 10 (d) 16

3. How are number systems generally classified?

a. Conditional or non conditional

b. Positional or non positional

c. Real or imaginary

d. Literal or numerical

11

4. What does (10)16 represent in decimal number system?

(a) 10 (b) 0A (c) 16 (d) 15

1.4 Representation of Negative Numbers

In our traditional arithmetic we use the “+” sign before a number to indicate it as a

positive number and a “-” sign to indicate it as a negative number. We usually omit the

sign before the number if it is positive. This method of representation of numbers is

called “sign-magnitude” representation. But using “+” and “-” signs on a computer is

not convenient, and it becomes necessary to have some other convention to represent the

signed numbers. We replace “+” sign with “0” and “-” with “1”. These two symbols

already exist in the binary system. Consider the following examples:

(+1100101)2 → (01100101)2

(+101.001)2 → (0101.001)2

(-10010)2 → (110010)2

(-110.101)2 → (1110.101)2

In the sign-magnitude representation of binary numbers the first digit is always treated

separately. Therefore, in working with the signed binary numbers in sign-magnitude

form the leading zeros should not be ignored. However, the leading zeros can be ignored

after the sign bit is separated. For example,

1000101.11 = - 101.11

While the sign-magnitude representation of signed numbers appears to be natural

extension of the traditional arithmetic, the arithmetic operations with signed numbers in

this form are not that very convenient, either for implementation on the computer or for

hardware implementation. There are two other methods of representing signed numbers.

• Diminished Radix Complement (DRC) or (r-1)-complement

• Radix Complement (RX) or r-complement

When the numbers are in binary form

• Diminished Radix Complement will be known as “one’s-complement”

12

• Radix complement will be known as “two’s-complement”.

If this representation is extended to the decimal numbers they will be known as

9’scomplement and 10’s-complement respectively.

1.4.1 One’s Complement Representation

Let A be an n-bit signed binary number in one’s complement form. The most significant

bit represents the sign. If it is a “0” the number is positive and if it is a “1” the number is

negative. The remaining (n-1) bits represent the magnitude, but not necessarily as a

simple weighted number.

Consider the following one’s complement numbers and their decimal equivalents:

0111111 + 63

0000110 --> + 6

0000000 --> + 0

1111111 --> + 0

1111001 --> - 6

1000000 --> - 63

There are two representations of “0”, namely 000....0 and 111....1. From these

illustrations we observe

• If the most significant bit (MSD) is zero the remaining (n-1) bits directly indicate

the magnitude.

• If the MSD is 1, the magnitude of the number is obtained by taking the

complement of all the remaining (n-1) bits.

For example, consider one’s complement representation of -6 as given above.

• Leaving the first bit ‘1’ for the sign, the remaining bits 111001 do not directly

represent the magnitude of the number -6.

• Take the complement of 111001, which becomes 000110 to determine the

magnitude.

In the example shown above a 7-bit number can cover the range from +63 to -63. In

general, an n-bit number has a range from +(2n-1 - 1) to -(2n-1 - 1) with two

13

representations for zero. The representation also suggests that if A is an integer in one’s

complement form, then

one’s complement of A = -A

One’s complement of a number is obtained by merely complementing all the digits.

This relationship can be extended to fractions as well.

For example, if A = 0.101 (+0.625)10, then the one’s complement of A is 1.010, which is

one’s complement representation of (-0.625)10. Similarly consider the case of a mixed

number.

A = 010011.0101 (+19.3125)10

One’s complement of A = 101100.1010 (- 19.3125)10

This relationship can be used to determine one’s complement representation of negative

decimal numbers.

Example 1: What is one’s complement binary representation of decimal number -75?

Decimal number 75 requires 7 bits to represent its magnitude in the binary form. One

additional bit is needed to represent the sign. Therefore, one’s complement

representation of 75 = 01001011 one’s complement representation of -75 = 10110100

1.4.2 Two’s Complement Representation

Let A be an n-bit signed binary number in two’s complement form.

• The most significant bit represents the sign. If it is a “0”, the number is positive,

and if it is “1” the number is negative.

• The remaining (n-1) bits represent the magnitude, but not as a simple weighted

number.

Consider the following two’s complement numbers and their decimal equivalents:

0111111 → + 63

0000110 → + 6

0000000 → + 0

1111010 → - 6

1000001 → - 63

1000000 → - 64

There is only one representation of “0”, namely 000....0.

14

From these illustrations we observe:

If most significant bit (MSD) is zero the remaining (n-1) bits directly indicate the

magnitude.

If the MSD is 1, the magnitude of the number is obtained by taking the complement of

all the remaining (n-1) bits and adding a 1.

Consider the two’s complement representation of -6.

• We assume we are representing it as a 7-bit number.

• Leave the sign bit.

• The remaining bits are 111010. These have to be complemented (that is 000101)

and a 1 has to be added (that is 000101 + 1 = 000110 = 6).

In the example shown above a 7-bit number can cover the range from +63 to -64. In

general, an n-bit number has a range from + (2n-1 - 1) to - (2n-1) with one representation

for zero. The representation also suggests that if A is an integer in two’s complement

form, then

Two’s complement of A = -A

Two’s complement of a number is obtained by complementing all the digits and adding

‘1’ to the LSB.

This relationship can be extended to fractions as well. If A = 0.101 (+0.625)10, then the

two’s complement of A is 1.011, which is two’s complement representation of (-

0.625)10.

Similarly consider the case of a mixed number.

A = 010011.0101 (+19.3125)10

Two’s complement of A = 101100.1011 (- 19.3125)10

This relationship can be used to determine two’s complement representation of negative

decimal numbers.

Example 2: What is two’s complement binary representation of decimal number -75?

Decimal number 75 requires 7 bits to represent its magnitude in the binary form. One

additional bit is needed to represent the sign. Therefore,

Two’s complement representation of 75 = 01001011

Two’s complement representation of -75 = 10110101

15

Check Your progress II

1. How many bits have to be grouped together to convert the binary number to its

corresponding octal number?

(a) 2 (b) 3 (c) 4 (d) 5

2. Which bit represents the sign bit in a signed number system?

a. Left most bit

b. Right most bit

c. Left centre

d. Right centre

3. The ones complement of 1010 is

(a) 1100 (b) 0101 (c) 0111 (d) 1011

4. How many bits are required to cover the numbers from +63 to -63 in one’s

complement representation?

(a) 6 (b) 7 (c) 8 (d) 9

1.6 Model Question

1. Perform the following number system conversions:

(a) 101101112 = ?10 (b) 567410 = ?2

(c) 100111002 = ?8 (d) 24538 = ?2

(e) 1111000102 = ?16 (f) 6893410 = ?2

(g) 10101.0012 = ?10 (h) 6FAB716 = ?10

(i) 11101.1012 = ?8 (j) 5623816 = ?2

2. Convert the following hexadecimal numbers into binary and octal numbers

(a) 78AD (b) DA643 (c) EDC8

(d) 3245 (e) 68912 (f) AF4D

3. Convert the following octal numbers into binary and hexadecimal numbers

(a) 7643 (b) 2643 (c) 1034

(d) 3245 (e) 6712 (f) 7512

4. Convert the following numbers into binary:

(a) 123610 (b) 234910 (c) 345.27510

16

(d) 45678 (e) 45.658 (f) 145.238

(g) ADF516 (h) AD.F316 (i) 12.DA16

5. What is the range of unsigned decimal values that can be represented by 8 bits?

6. What is the range of signed decimal values that can be represented by 8 bits?

7. How many bits are required to represent decimal values ranging from 75 to -75?

8. Represent each of the following values as a 6-bit signed binary number in one’s

complement and two’s complement forms.

(a) 28 (b) -21 (c) -5 (d) -13

9. Determine the decimal equivalent of two’s complement numbers given below:

(a) 1010101 (b) 0111011 (c) 11100010

17

UNIT II: CODES

2.0 Learning Objectives

After the completion of this unit, you will be able to:

• Know various binary codes

• Explain the usefulness of different coding schemes.

• Explain how errors are detected and/or corrected using different codes.

• Illustrate the construction of a weighted code.

2.1 Introduction

When we wish to send information over long distances unambiguously it becomes

necessary to modify (encoding) the information into some form before sending, and

convert (decode) at the receiving end to get back the original information. This process

of encoding and decoding is necessary because the channel through which the

information is sent may distort the transmitted information. Much of the information is

sent as numbers. While these numbers are created using simple weighted-positional

numbering systems, they need to be encoded before transmission. The modifications to

numbers were based on changing the weights, but predominantly on some form of

binary encoding. There are several codes in use in the context of present day

information technology, and more and more new codes are being generated to meet the

new demands.

Coding is the process of altering the characteristics of information to make it more

suitable for intended application

By assigning each item of information a unique combination of 1s and 0s we transform

some given information into binary coded form. The bit combinations are referred to as

“words” or “code words”. In the field of digital systems and computers different bit

combinations have different designations.

Bit - a binary digit 0 or 1

Nibble - a group of four bits

Byte - a group of eight bits

18

Word - a group of sixteen bits;

 a word has two bytes or four nibbles

Sometimes ‘word’ is used to designate a larger group of bits also, for example 32 bit or

64 bit words.

We need and use coding of information for a variety of reasons

• to increase efficiency of transmission,

• to make it error free,

• to enable us to correct it if errors occurred,

• to inform the sender if an error occurred in the received information etc.

• for security reasons to limit the accessibility of information

• to standardize a universal code that can be used by all

Coding schemes have to be designed to suit the security requirements and the

complexity of the medium over which information is transmitted.

Decoding is the process of reconstructing source information from the encoded

information.

Decoding process can be more complex than coding if we do not have prior knowledge

of coding schemes. In view of the modern day requirements of efficient, error free and

secure information transmission coding theory is an extremely important subject.

However, at this stage of learning digital systems we confine ourselves to familiarising

with a few commonly used codes and their properties.

We will be mainly concerned with binary codes. In binary coding we use binary digits

or bits (0 and 1) to code the elements of an information set. Let n be the number of bits

in the code word and x be the number of unique words.

If n = 1, then x = 2 (0, 1)

n = 2, then x = 4 (00, 01, 10, 11)

n = 3, then x = 8 (000,001,010 ...111)

n = j, then x = 2j

From this we can conclude that if we are given elements of information to code into

binary coded format,

x ≤ 2j

or j ≥log2x

19

≥3.32 log10x

where j is the number of bits in a code word.

For example, if we want to code alphanumeric information (26 alphabetic characters +

10 decimals digits = 36 elements of information), we require

j ≥ 3.32 log1036

j ≥ 5.16 bits

Since bits are not defined as fractional parts, we take j = 6. In other words a minimum

six-bit code would be required to code 36 alphanumeric elements of information.

However, with a six-bit code only 36 code words are used out of the 64 code words

possible.

In this Learning Unit we consider a few commonly used codes including

1 Binary coded decimal codes

2 Unit distance codes

3 Error detection codes

4 Alphanumeric codes

2.2 Binary Coded Decimal Codes

The main motivation for binary number system is that there are only two elements in the

binary set, namely 0 and 1. While it is advantageous to perform all computations on

hardware in binary forms, human beings still prefer to work with decimal numbers. Any

electronic system should then be able to accept decimal numbers, and make its output

available in the decimal form.

One method, therefore, would be to

• convert decimal number inputs into binary form

• manipulate these binary numbers as per the required functions, and

• convert the resultant binary numbers into the decimal form

However, this kind of conversion requires more hardware, and in some cases

considerably slows down the system. Faster systems can afford the additional circuitry,

but the delays associated with the conversions would not be acceptable. In case of

20

smaller systems, the speed may not be the main criterion, but the additional circuitry

may make the system more expensive.

We can solve this problem by encoding decimal numbers as binary strings, and use them

for subsequent manipulations. There are ten different symbols in the decimal number

system: 0, 1, 2, . . ., 9. As there are ten symbols we require at least four bits to represent

them in the binary form. Such a representation of decimal numbers is called binary

coding of decimal numbers.

As four bits are required to encode one decimal digit, there are sixteen four-bit groups to

select ten groups. This would lead to nearly 30 x 1010 (16C10.10!) possible codes.

However, most of them will not have any special properties that would be useful in

hardware design. We wish to choose codes that have some desirable properties like

• ease of coding

• ease in arithmetic operations

• minimum use of hardware

• error detection property

• ability to prevent wrong output during transitions

In a weighted code the decimal value of a code is the algebraic sum of the weights of 1s

appearing in the number. Let (A)10 be a decimal number encoded in the binary form as

a3a2a1a0. Then

(A)10 = w3a3 + w2a2 + w1a1 +w0a0

where w3, w2, w1 and w0 are the weights selected for a given code, and a3,a2,a1and

a0 are either 0s or 1s. The more popularly used codes have the weights as

w3 w2 w1 w0

8 4 2 1

2 4 2 1

8 4 -2 -1

The decimal numbers in these three codes are

21

In all the cases only ten combinations are utilized to represent the decimal digits. The

remaining six combinations are illegal. However, they may be utilized for error

detection purposes. Consider, for example, the representation of the decimal number

16.85 in Natural Binary Coded Decimal code (NBCD)

(16.85)10 = (0001 0110 . 1000 0101)NBCD

 1 6 8 5

There are many possible weights to write a number in BCD code. Some codes have

desirable properties, which make them suitable for specific applications. Two such

desirable properties are:

1 Self-complementing codes

2 Reflective codes

When we perform arithmetic operations, it is often required to take the “complement” of

a given number. If the logical complement of a coded number is also its arithmetic

complement, it will be convenient from hardware point of view. In a self-

complementing coded decimal number, (A)10, if the individual bits of a number are

complemented it will result in (9 - A)10.

Example: Consider the 2421 code.

• The 2421 code of (4)10 is 0100.

• Its complement is 1011 which is 2421 code for (5)10 = (9 - 4)10.

Therefore, 2421 code may be considered as a self-complementing code. A necessary

condition for a self-complimenting code is that the sum of its weights should be 9. A

self-complementing code, which is not weighted, is excess-3 code. It is derived from

22

8421 code by adding 0011 to all the 8421 coded numbers. Another self-complementing

code is 631-1 weighted code. Three self-complementing codes are:

A reflective code is characterized by the fact that it is imaged about the centre entries

with one bit changed. For example, the 9’s complement of a reflected BCD code word is

formed by changing only one its bits. Two such examples of reflective BCD codes are:

The BCD codes are widely used and the reader should become familiar with reasons for

using them and their application. The most common application of NBCD codes is in

the calculator.

2.3 Unit Distance Codes

There are many applications in which it is desirable to have a code in which the adjacent

codes differ only in one bit. Such codes are called Unit distance Codes.

23

“Gray code” is the most popular example of unit distance code. The 3-bit and 4-bitGray

codes are:

These Gray codes listed here have also the reflective properties. Some additional

examples of unit distance codes are:

The most popular use of Gray codes is in the position sensing transducer known as shaft

encoder. A shaft encoder consists of a disk in which concentric circles have alternate

sectors with reflective surfaces while the other sectors have non-reflective surfaces. The

position is sensed by the reflected light from a light emitting diode. However, there is

choice in arranging the reflective and non-reflective sectors. A 3- bit binary coded disk

will be as shown in the figure 1.

24

FIG.1: 3-bit binary coded shaft encoder

From this figure we see that straight binary code can lead to errors because of

mechanical imperfections. When the code is transiting from 001 to 010, a slight

misalignment can cause a transient code of 011 to appear. The electronic circuitry

associated with the encoder will receive 001 --> 011 -> 010. If the disk is patterned to

give Gray code output, the possibilities of wrong transient codes will not arise.

This is because the adjacent codes will differ in only one bit. For example the adjacent

code for 001 is 011. Even if there is a mechanical imperfection, the transient code will

be either 001 or 011. The shaft encoder using 3-bit Gray code is shown in the figure 2.

FIG. 2: Shaft encoder disk using a 3-bit Gray code

There are two convenient methods to construct Gray code with any number of desired

bits. The first method is based on the fact that Gray code is also a reflective code. The

following rule may be used to construct Gray code:

• A one-bit Gray code had code words, 0 and 1

25

• The first 2n code words of an (n+1)-bit Gray code equal the code words of an n-

bit Gray code, written in order with a leading 0 appended.

• The last 2n code words of a (n+1)-bit Gray code equal the code words of an n-bit

Gray code, written in reverse order with a leading 1 appended.

However, this method requires Gray codes with all bit lengths less than ‘n’ also be

generated as a part of generating n-bit Gray code. The second method allows us to

derive an n-bit Gray code word directly from the corresponding n-bit binary code word:

• The bits of an n-bit binary code or Gray code words are numbered from right to

left, from 0 to n-1.

• Bit i of a Gray-code word is 0 if bits i and i+1 of the corresponding binary code

word are the same, else bit i is 1. When i+1 = n, bit n of the binary code word is

considered to be 0.

Example: Consider the decimal number 68.

(68)10 = (1000100)2

Binary code: 1 0 0 0 1 0 0

Gray code : 1 1 0 0 1 1 0

The following rules can be followed to convert a Gray coded number to a straight binary

number:

• Scan the Gray code word from left to right. All the bits of the binary code are the

same as those of the Gray code until the first 1 is encountered, including the first

1.

• 1’s are written until the next 1 is encountered, in which case a 0 is written.

• 0’s are written until the next 1 is encountered, in which case a 1 is written.

Consider the following examples of Gray code numbers converted to binary numbers

Gray code : 1 1 0 1 1 0 1 0 0 0 1 0 1 1

Binary code: 1 0 0 1 0 0 1 1 1 1 0 0 1 0

26

2.4 Alphanumeric Codes

When information to be encoded includes entities other than numerical values, an

expanded code is required. For example, alphabetic characters (A, B,Z) and special

operation symbols like +, -, /, *, (,) and other special symbols are used in digital

systems. Codes that include alphabetic characters are commonly referred to as

Alphanumeric Codes. However, we require adequate number of bits to encode all the

characters. As there was a need for alphanumeric codes in a wide variety of applications

in the early era of computers, like teletype, punched tape and punched cards, there has

always been a need for evolving a standard for these codes.

Alphanumeric keyboard has become ubiquitous with the popularization of personal

computers and notebook computers. These keyboards use ASCII (American Standard

Code for Information Interchange) code:

Alphanumeric codes like EBCDIC (Extended Binary Coded Decimal Interchange Code)

and 12-bit Hollerith code are in use for some applications. However, ASCII code is now

the standard code for most data communication networks. Therefore, the reader is urged

to become familiar with the ASCII code.

27

2.5 Error Detection and Correcting Codes

When data is transmitted in digital form from one place to another through a

transmission channel/medium, some data bits may be lost or modified. This loss of data

integrity occurs due to a variety of electrical phenomena in the transmission channel. As

there are needs to transmit millions of bits per second, the data integrity should be very

high. The error rate cannot be reduced to zero. Then we would like to ideally have a

mechanism of correcting the errors that occur. If this is not possible or proves to be

expensive, we would like to know if an error occurred.

If an occurrence of error is known, appropriate action, like retransmitting the data, can

be taken. One of the methods of improving data integrity is to encode the data in a

suitable manner. This encoding may be done for error correction or merely for error

detection.

A simple process of adding a special code bit to a data word can improve its integrity.

This extra bit will allow detection of a single error in a given code word in which it is

used, and is called the ‘Parity Bit’. This parity bit can be added on an odd or even basis.

The odd or even designation of a code word may be determined by actual number of 1’s

in the data (including the added parity bit) to which the parity bit is added. For example,

the S in ASCII code is

(S) = (1010011)ASCII

S, when coded for odd parity, would be shown as

(S) = (11010011)ASCII with odd parity

In this encoded ‘S’ the number of 1’s is five, which is odd.

When S is encoded for even parity

(S) = (01010011)ASCII with even parity.

In this case the coded word has even number (four) of ones. Thus, the parity encoding

scheme is a simple one and requires only one extra bit. If the system is using even parity

and we find odd number of ones in the received data word we know that an error has

28

occurred. However, this scheme is meaningful only for single errors. If two bits in a data

word were received incorrectly the parity bit scheme will not detect the faults. Then the

question arises as to the level of improvement in the data integrity if occurrence of only

one-bit error is detectable.

The improvement in the reliability can be mathematically determined. Adding a parity

bit allows us only to detect the presence of one-bit error in a group of bits. But it does

not enable us to exactly locate the bit that changed. Therefore, addition of one parity bit

may be called an error detecting coding scheme. In a digital system detection of error

alone is not sufficient. It has to be corrected as well. Parity bit scheme can be extended

to locate the faulty bit in a block of information. The information bits are conceptually

arranged in a two-dimensional array, and parity bits are provided to check both the rows

and the columns.

If we can identify the code word that has an error with the parity bit, and the column in

which that error occurs by a way of change in the column parity bit, we can both detect

and correct the wrong bit of information. Hence such a scheme is single error detecting

and single error correcting coding scheme.

This method of using parity bits can be generalized for detecting and correcting more

than one-bit error. Such codes are called parity-check block codes. In this class known

as (n, k) codes, r (= n-k) parity check bits, formed by linear operations on the k data bits,

are appended to each block of k bits to generate an n-bit code word.

An encoder outputs a unique n-bit code word for each of the 2k possible input k-bit

blocks. For example a (15, 11) code has r = 4 parity-check bits for every 11 data bits. As

r increases it should be possible to correct more and more errors. With r = 1 error

correction is not possible, as such a code will only detect an odd number of errors.

29

It can also be established that as k increases the overall probability of error should also

decrease. Long codes with a relatively large number of parity-check bits should thus

provide better performance. Consider the case of (7, 3) code:

A close look at these indicates that they differ in at least three positions. Any one error

should then be correctable since the resultant code word will still be closer to the correct

one, in the sense of the number of bit positions in which they agree, than to any other.

This is an example of single-error-correcting-code. The difference in the number of

positions between any two code words is called the Hamming distance, named after

R.W. Hamming who, in 1950, described a general method for constructing codes with a

minimum distance of 3. The Hamming distance plays a key role in assessing the error-

correcting capability of codes. For two errors to be correctable, the Hamming distance d

should be at least 5. In general, for t errors to be correctable, d ≥ 2t+1 or t = [(d-1)/2],

where the [x] notation refers to the integer less than or equal to x.

Innumerable varieties of codes exist, with different properties. There are various types

of codes for correcting independently occurring errors, for correcting burst errors, for

providing relatively error-free synchronization of binary data etc. The theory of these

codes, methods of generating the codes and decoding the coded data, is a very important

subject of communication systems, and need to be studied as a separate discipline.

Check Your Progress

1. _____ is a group of four bits.

2. _____ is a group of sixteen bits.

30

3. ____________ is the process of reconstructing source information from the

encoded information.

4. In a ___________ code the decimal value of a code is the algebraic sum of the

weights of 1s appearing in the number.

5. A ______ code is characterized by the fact that it is imaged about the centre

entries with one bit changed.

2.5 Model Questions

1. Write the following decimal number in Excess-3, 2421, 84-2-2 BCD codes:

(a) 563 (b) 678 (c) 1465

2. What is the use of self-complementing property? Demonstrate 631-1 BCD code is

 self-complementary.

3. Develop two different 4-bit unit distance codes.

4. Prove that Gray code is both a reflective and unit distance code?

5. Determine the Gray code for (a) 3710 and (b) 9710.

6. Write your address in ASCII code.

7. Write 8-bit ASCII code sequence of the name of your town/city with even parity.

8. (a) Write the following statements in ASCII

A = 4.5 x B

X = 75/Y

(b) Attach an even parity bit to each code word of the ASCII strings written for the

above statements

9. Find and correct the error in the following code sequence

0 1 0 1 0

0 1 1 0 0

1 1 0 1 1

1 0 1 1 0

1 0 0 0 1

31

0 0 0 1 1

1 1 0 0 0

0 1 0 0 1

0 1 0 1 0 --- Parity word

|__________ Parity bit

9. Why we use coding of information? Explain.

10. What is decoding? Explain.

11. What is binary coding of decimal numbers?

12. What are the desirable properties of codes?

13. What is a refractive code?

14. Explain unit distance codes.

Answers to Check Your Progress

1. Nibble

2. Word

3. Decoding

4. weighted

5. reflective

32

33

UNIT III: BOOLEAN ALGEBRA

3.0 Learning Objectives

After the completion of this unit, you will be able to:

• Explain Boolean algebra and Boolean operators

• Perform Logic Functions

• Perform Minimization of logic functions using Karnaugh –map

• Implement Quine-McClausky method of minimization of logic functions

3.1 What is Boolean Algebra?

Consider the electrical circuit that controls the lighting of a bulb. Four switches control

the operation of the bulb.

The manner in which the operation of the bulb is controlled can be stated as:

The bulb switches on if the switches S1 and S2 are closed, and S3 or S4 is also

closed, otherwise the bulb will not switch on.

From this statement one can make the following observations:

• Any switch has two states: “closed” or “open”

• The bulb is switched on only when the switches are in some well-defined combination

of states.

• The possible combinations are expressed through two types of relationships: “and” and

“or”.

• The two possible combinations are

“S1 and S2 and S3 are closed”

“S1 and S2 and S4 are closed”

34

There are many situations of engineering interest where the variables take only a small

number of possible values.

Some examples:

• Relay network used in telephone exchanges of earlier era

• Testing through multiple choice questions

• Mechanical display boards in airports and railway stations

• Choices available at road junctions.

Can you identify a situation of significance where the variables can take only a small

number of distinctly defined states?

How do we implement functions similar to the example shown above? We need devices

that have finite number states. It seems to be easy to create devices with two well

defined states. It is more difficult and more expensive to create devices with more than

two states.

Let us consider devices with two well defined states. We should also have the ability to

switch the state of the device from one state to the other. We call devices having two

well defined states as “two-valued switching devices”.

Some examples of devices with two states

• A bipolar transistor in either fully-off or fully-on state

• A MOS transistor in either fully off or fully on state

• Simple relays

• Electromechanical switch

If we learn to work with two-valued variables, we acquire the ability to implement

functions of such variables using two-state devices. We call them “binary variables”.

Very complex functions can be represented using several binary variables. As we can

also build systems using millions of electronic two-state devices at very low costs, the

mathematics of binary variables becomes very important.

An English mathematician, George Boole, introduced the idea of examining the truth or

falsehood of language statements through a special algebra of logic. His work was

35

published in 1854, in a book entitled “An Investigation of the Laws of Thought”.

Boole's algebra was applied to statements that are either completely correct or

completely false.

A value 1 is assigned to those statements that are completely correct and a value 0 is

assigned to statements that are completely false. As these statements are given

numerical values 1 or 0, they are referred to as digital variables. In our study of digital

systems, we use the words switching variables, logical variables, and digital variables

interchangeably.

Boole's algebra is referred to as Boolean algebra. Originally Boolean algebra was

mainly applied to establish the validity or falsehood of logical statements. In 1938,

Claude Shannon of Department of Electrical Engineering at Massachusetts Institute of

Technology in (his master's thesis) provided the first applications of the principles of

Boolean algebra to the design of electrical switching circuits. The title of the paper,

which was an abstract of his thesis, is “A Symbolic Analysis of Relay and Switching

Circuits”. Shannon established Boole's algebra to switching circuits is what ordinary

algebra is to analogue circuits.

Logic designers of today use Boolean algebra to functionally design a large variety of

electronic equipment such as

• hand-held calculators,

• traffic light controllers,

• personal computers,

• super computers,

• communication systems

• aerospace equipment

• etc.

We next explore Boolean algebra at the axiomatic level. However, we do not worry

about the devices that would be used to implement them and their limitations.

36

3.2 Boolean Algebra and Huntington Postulates

Any branch of mathematics starts with a set of self-evident statements known as

postulates, axioms or maxims. These are stated without any proof. Boolean algebra is a

specific instance of Algebra of Propositional Logic. E.V. Huntington presented basic

postulates of Boolean Algebra in 1904 in his paper “Sets of Independent Postulates for

the Algebra of Logic”. He defined a multi-valued Boolean algebra on a set of finite

number of elements.

In Boolean algebra as applied to the switching circuits, all variables and relations are

two-valued. The two values are normally chosen as 0 and 1, with 0 representing false

and 1 representing true. If x is a Boolean variable, then

x = 1 means x is true

x = 0 means x is false

When we apply Boolean algebra to digital circuits we will find that the qualifications

“asserted” and “not-asserted” are better names than “true” and “false”. That is when x

= 1 we say x is asserted, and when x = 0 we say x is not-asserted.

You are expected to be familiar with

• Concept of a set

• Meaning of equivalence relation

• The principle of substitution

Definition: A Boolean algebra consists of a finite set of elements BS subject to

• Equivalence relation "=",

• One unary operator “not” (symbolised by an over bar),

• Two binary operators "." and "+",

• For every element x and y ∈ BS the operations 𝑥̅(not x), x.y and x +y are

uniquely defined.

The unary operator ‘not’ is defined by the relation

1̅= 0; 0̅ = 1

37

The not operator is also called the complement, and consequently 𝑥̅ is the complement

of x. The binary operator ‘and’ is symbolized by a dot. The ‘and’ operator is defined by

the relations:

0 . 0 = 0

0 . 1 = 0

1 . 0 = 0

1 . 1 = 1

The binary operator ‘or’ is represented by a plus (+) sign. The ‘or’ operator is

defined by the relations

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 1

Huntington's postulates apply to the Boolean operations

P1. The operations are closed.

For all x and y ∈ BS,

a. x + y ∈ BS

b. x . y ∈ BS

P2. For each operation there exists an identity element.

a. There exists an element 0 ∈ BS such that for all x ∈ BS, x + 0 = x

b. There exists an element 1 ∈ BS such that for all x ∈ BS, x . 1 = x

P3. The operations are commutative.

For all x and y ∈ BS,

a. x + y = y + x

b. x . y = y . x

P4. The operations are distributive.

For all x, y and z ∈ BS,

a. x + (y . z) = (x + y) . (x + z)

b. x . (y + z) = (x . y) + (x . z)

P5. For every element x ∈ BS there exists an element 𝑥̅ ∈ BS (called the complement of

x) such that x + 𝑥̅ = 1 and x . 𝑥̅ = 0

38

P6. There exist at least two elements x and y ∈ BS such that x ≠ y.

3.2.1 Propositions from Huntington’s Postulates

We derive several new propositions using the basic Huntington’s postulates. Through

these propositions we will be able to explore the structures and implications of that

branch of mathematics. Such propositions are called theorems. A theorem gives a

relationship among the variables.

Definition: A Boolean expression is a constant, 1 or 0, a single Boolean variable or its

complement, or several constants and/or Boolean variables and/or their complements

used in combination with one or more binary operators.

According to this definition 0, 1, x and 𝑥̅ are Boolean expressions. If A and B are

Boolean expressions, then 𝐴̅ , 𝐵̅, A+B and A.B are also Boolean expressions.

Duality: Many of the Huntington’s postulates are given as pairs, and differ only by the

simultaneous interchange of operators "+" and "." and the elements "0" and "1".

This special property is called duality.

The property of duality can be utilized effectively to establish many useful properties of

Boolean algebra.vThe duality principle:

“If two expressions can be proven equivalent by applying a sequence of basic postulates,

then the dual expressions can be proven equivalent by simply applying the sequence of

dual postulates”

This implies that for each Boolean property, which we establish, the dual property is

also valid without needing additional proof.

Let us derive some useful properties:

Property 1: Special law of 0 and 1

For all x ∈ BS,

a. x . 0 = 0

b. x + 1 = 1

Proof: x . 0 = (x . 0) + 0 (postulate 2a)

= (x . 0) + (x . 𝑥̅) (postulate 5b)

= x . (0 + 𝑥̅) (postulate 4b)

= x . 𝑥̅ (postulate 2a)

39

= 0 (postulate 5b)

Property: b can be proved by applying the law of duality, that is, by interchanging "."

and "+", and "1" and "0".

Property 2:

a. The element 0 is unique.

b. The element 1 is unique.

Proof for Part b by contradiction: Let us assume that there are two 1s denoted 11 and 12.

Postulate 2b states that

x. 11 = x and y. 12 = y

Applying the postulate 3b on commutativity to the second relationship, we get

11 . x = x and 12 . y = y

Letting x = 12 and y = 11, we obtain

11 . 12 = 12 and 12 . 11 = 11

Using the transitivity property of any equivalence relationship we obtain 11 = 12, which

becomes a contradiction of our initial assumption.

Property a can be established by applying the principle of duality.

Property 3

a. The complement of 0 is 0̅ = 1.

b. The complement of 1 is 1̅ = 0.

Proof: x + 0 = x (postulate 2a)

0 + 0̅ = 0

0 + 0̅ = 1 (postulate 5a)

0̅ = 1

Part b is valid by the application of principle of duality.

Property 4: Idempotency law

For all x ∈ BS,

a. x + x = x

b. x . x = x

Proof: x + x = (x + x) . 1 (postulate 2b)

= (x + x) . (x + 𝑥̅) (postulate 5a)

= x + (x . 𝑥̅) (postulate 4a)

40

= x + 0 (postulate 5b)

= x (postulate 2a)

x . x = x (by duality)

Property 5: Adjacency law

For all x and y ∈ BS,

a. x . y + x . 𝑦̅ = x

b. (x + y) . (x + 𝑦̅) = x

Proof: x . y + x . 𝑦̅ = x . (y + 𝑦̅) (postulate 4b)

= x . 1 (postulate 5a)

= x (postulate 2b)

(x + y) . (x + 𝑦̅) = x (by duality)

The adjacency law is very useful in simplifying logical expressions encountered in the

design of digital circuits. This property will be extensively used in later learning

units.

Property 6: First law of absorption

For all x and y ∈ BS,

a. x + (x . y) = x

b. x . (x + y) = x

Proof x . (x + y) = (x + 0) . (x + y) (postulate 2a)

= x + (0 . y) (postulate 4a)

= x + 0 (property 2.1a)

= x (postulate 2a)

x + (x . y) = x (by duality)

Property 7: Second law of absorption

For all x and y ∈ BS,

a. x + (𝑥̅ . y) = x + y

b. x . (𝑥̅ + y) = x . y

Proof: x + (𝑥̅ . y) = (x + 𝑥̅) . (x + y) (postulate 4a)

= 1. (x + y) (postulate 5a)

= x + y (postulate 2b)

x . (𝑥̅ + y) = x . y (by duality)

41

Property 8: Consensus law

For all x, y and z ∈ BS,

a. x . y +𝑥̅. z + y . z = x . y + 𝑥̅ . z

b. (x + y) . (𝑥̅ + z) . (y + z) = (x + y) . (𝑥̅ + z)

Proof: x . y + 𝑥̅ . z + y . z

= x . y + 𝑥̅ . z + 1 . y . z (postulate 2b)

= x . y + x . z + (x + 𝑥̅) . y . z (postulate 5a)

= x . y + 𝑥̅ . z + x . y . z + 𝑥̅. y . z (postulate 4b)

= x . y + x . y . z + 𝑥̅ . z + 𝑥̅ . y . z (postulate 3a)

= x . y . (1 + z) + 𝑥̅ . z . (1 + y) (postulate 4b)

= x . y . 1 + 𝑥̅ . z . 1 (property 2.1b)

= x . y + 𝑥̅ . z (postulate 2b)

(x + y) . (𝑥̅ + z) . (y + z) = (x + y) . (𝑥̅ + z) (by duality)

Property 9: Law of identity

For all x and y ε BS, if

a. x + y = y

b. x . y = y, then x = y

Proof: Substituting (a) into the left-hand side of (b), we have

x . (x + y) = y

However by the first law of absorption

x . (x + y) = x (property 6)

Therefore, by transitivity x = y

Property 10: The law of involution

For all x ∈ BS, 𝑥̿ = x

Proof: We need to show that the law of identity (property 2.9) holds, that is,

(𝑥̿ + x) = 𝑥̿ and 𝑥̿ . x = 𝑥̿

𝑥̿ = 𝑥̿ + 0 (postulate 2a)

= 𝑥̿ + (x. 𝑥̅) (postulate 5b)

= (𝑥̿ + x).(𝑥̿ + x) (postulate 4a)

= (𝑥̿ + x).1 (postulate 5a)

Thus 𝑥̿ = 𝑥̿ + x

42

Also 𝑥̿ = 𝑥̿.1 (postulate 2b)

= 𝑥̿.(x + 𝑥̅) (postulate 5a)

= 𝑥̿.x + 𝑥̿. 𝑥̅ (postulate 4b)

= 𝑥̿.x + 0 (postulate 5b)

= x.x (postulate 2a)

Therefore by the law of identity, we have 𝑥̿ = x

Property 11: DeMorgan's Law

For all x, y ∈ BS,

a. 𝑥 + 𝑦̅̅ ̅̅ ̅̅ ̅ = 𝑥̅ . 𝑦̅

b. 𝑥. 𝑦̅̅ ̅̅̅ = 𝑥̅ + 𝑦̅

Proof: (x + y).(𝑥̅ . 𝑦̅) = (x. 𝑥̅ . 𝑦̅) + (y. 𝑥̅ . 𝑦̅) (postulate 4b)

= 0 + 0

= 0 (postulate 2a)

(x + y) + (𝑥̅ . 𝑦̅) = (x + 𝑥̅ . 𝑦̅) + y (postulate 3a)

= x + 𝑦̅ + y (property 2.7a)

= x + 1 (postulate 5a)

= 1 (property 2.16)

Therefore, (𝑥̅ . 𝑦̅) is the complement of (x + y).

𝑥. 𝑦̅̅ ̅̅̅ = 𝑥̅ + 𝑦̅ (by duality)

DeMorgan's law bridges the AND and OR operations, and establishes a method for

converting one form of a Boolean function into another. More particularly it gives a

method to form complements of expressions involving more than one variable. By

employing the property of substitution, DeMorgan's law can be extended to expressions

of any number of variables. Consider the following example:

𝑥 + 𝑦 + 𝑧̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑥̅ . 𝑦̅ . 𝑧̅

Let y + z = w, then x + y + z = x + w.

𝑥 + 𝑤̅̅ ̅̅ ̅̅ ̅̅ = 𝑥̅ . 𝑤̅ (by DeMorgan's law)

𝑥 + 𝑤̅̅ ̅̅ ̅̅ ̅̅ = 𝑥 + 𝑦 + 𝑧 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(by substitution)

= 𝑥̅ . 𝑦 + 𝑧̅̅ ̅̅ ̅̅ ̅ (by DeMorgan's law)

= 𝑥̅ . 𝑦̅ . 𝑧 (by DeMorgan's law)

43

At the end of this Section the reader should remind himself that all the postulates and

properties of Boolean algebra are valid when the number of elements in the BS is finite.

The case of the set BS having only two elements is of more interest here and in the

topics that follow in this course on Design of Digital systems.

All the identities derived in this Section are listed in the Table 1 to serve as a ready

reference.

TABLE: Useful Identities of Boolean Algebra

44

The properties of Boolean algebra when the set BS has two elements, namely 0 and 1,

will be explored next.

3.3 Boolean Operators

Recall that Boolean Algebra is defined over a set (BS) with finite number of elements. If

the set BS is restricted to two elements {0, 1} then the Boolean variables can take only

one of the two possible values. As all switches take only two possible positions, for

example ON and OFF, Boolean Algebra with two elements is more suited to working

with switching circuits. In all the switching circuits encountered in electronics, the

variables take only one of the two possible values.

Definition: A binary variable is one that can assume one of the two values, 0 or 1. These

two values, however, are meant to express two exactly opposite states. It means, if a

binary variable A ≠ 0 then A = 1. Similarly if A ≠ 1, then A = 0.

Note that it agrees with our intuitive understanding of electrical switches we are familiar

with.

a. if switch A is not open then it is closed

b. if switch A is not closed then it is open

The values 0 and 1 should not be treated numerically, such as to say "0 is less than 1" or

" 1 is greater than 0".

45

Definition: The Boolean operator NOT, also known as complement operator

represented by "− " (overbar) on the variable, or " / " (a superscript slash) after the

variable, is defined by the following table.

Though it is more popular to use the symbol "− " (overbar) in most of the text-books, we

will adopt the " / " to represent the complement of a variable, for convenience of typing.

The circuit representation of the NOT operator is shown in the following:

Definition: The Boolean operator "+" known as OR operator is defined by the table

given in the following.

The circuit symbol for logical OR operation is given in the following.

Definition: The Boolean operator "." known as AND operator is defined by the table

given below:

46

The circuit symbol for the logical AND operation is given in the following.

The relationship of these operators to the electrical switching circuits can be seen from

the equivalent circuits given in the following.

Consider the NOT operator

Consider the OR and AND operators:

We can define several other logic operations besides these three basic logic operations.

These include

• NAND

• NOR

• Exclusive-OR (Ex-OR for short)

• Exclusive-NOR (Ex-NOR)

47

These are defined in terms of different combinations of values the variables assume, as

indicated in the following table:

Observe the following:

• NAND operation is just the complement of AND operation

• NOR operation is the complement of OR operation.

• Exclusive-OR operation is similar to OR operation except that EX-OR operation

leads to 0, when the two variables take the value of 1.

• Exclusive-NOR is the complement of Exclusive-OR operation.

These functions can also be represented graphically as shown in the figure.

A set of Boolean operations is called functionally complete set if all Boolean

expressions can be expressed by that set of operations. AND, OR and NOT constitute a

functionally complete set. However, it is possible to have several combinations of

Boolean operations as functionally complete sets.

- OR, AND and NOT

- OR and NOT

- AND and NOT

- NAND

- NOR

The completeness of these combinations is shown in the following.

All Boolean functions through AND and NOT operations

48

All Boolean functions through OR and NOT operations

All Boolean functions through NAND function

49

All Boolean functions through NOR function

50

Check Your Progress

1 1. Identify each of these logic gates by name, and complete their respective truth

tables:

2 Write the Boolean expression for each of these logic gates, showing how the

output (Q) algebraically relates to the inputs (A and B):

51

3 Convert the following logic gate circuit into a Boolean expression, writing

Boolean sub-expressions next to each gate output in the diagram:

3.4 Model Questions

4 What is a postulates?

5 What is Boolean algebra?

6 What are Huntington's postulates?

7 What are the several new propositions derived using the basic Huntington’s

postulates?

52

8 What is DeMorgan's Law?

9 Explain different types of Boolean operators.

Answers to Check Your Progress

1.

53

2.

3.

54

55

UNIT IV: LOGIC FUNCTIONS

4.0 Learning Objectives

After reading this chapter, you will be able to:

• Explain the characteristics and features of logic families.

• Know noise immunity

• Measure the noise immunity

• Know AC and DC noise margin

• Create a logic circuit if its description is given in terms of a truth-table or as a

logic function.

• Convert a given truth-table into a logic function into minterm or maxterm forms.

• Explain the nature and role of “don’t care” terms

4.1 Introduction

Many types of electrical and electronic circuits can be built with devices that have two

possible states. We are, therefore interested in working with variables, which can take

only two values. Such two valued variables are called Logic variables or Switching

variables.

We defined several Boolean operators, which can also be called Logic operators. We

will find that it is possible to describe a wide variety of situations and problems using

logic variables and logic operators. This is done through defining a “logic function” of

logic variables. We can describe logic functions in several ways. These include:

• Algebraic

• Truth-table

• Logic circuit

• Hardware description language

• Maps

We use all these forms to express logic functions in working with digital circuits. Each

form of representation is convenient in some context. Initially we will work with

56

algebraic, truth-table, and logic circuit representation of logic functions. The objectives

of this learning unit are:

1 Writing the output of a logic network, whose word description is given, as a

function of the input variables either as a logic function, a truth-table, or a logic

circuit.

2 Create a truth-table if the description of a logic circuit is given in terms of a logic

function or as a logic circuit.

3 Write a logic function if the description of a logic circuit is given in terms of a

truth-table or as a logic circuit.

4 Create a logic circuit if its description is given in terms of a truth-table or as a

logic function.

5 Expand a given logic function in terms of its minterms or maxterms.

6 Convert a given truth-table into a logic function into minterm or maxterm forms.

7 Explain the nature and role of “don’t care” terms

4.2 Logic Functions in Algebraic Form

Let A1, A2, . . . An be logic variables defined on the set BS = {0,1}. A logic function of n

variables associates a value 0 or 1 to every one of the possible 2n combinations of the n

variables. Let us consider a few examples of such functions.

F1 = A1.A2’.A3.A4 + A1’.A2.A3’.A4 + A1.A2’.A3.A4’

F1 is a function of 4 variables. You notice that all terms in the function have all the four

variables. It is not necessary to have all the variables in all the terms. Consider the

following example.

F2 = A1.A2 + A1’.A2.A3’ + A1’.A2.A4’.A5

F2 happens to be simplified version of a function, which has a much larger number of

terms, where each term has all the variables. We will explore ways and means to

generate such simplifications from a given logic expression. The logic functions have

the following properties:

57

1 If F1(A1, A2, ... An) is a logic function, then (F1(A1, A2, ... An))’ is also a

Boolean function.

2 If F1 and F2 are two logic functions, then F1+F2 and F1.F2 are also Boolean

functions.

3 Any function that is generated by the finite application of the above two rules is

also a logic function

Try to understand the meaning of these properties by solving the following examples.

If F1 = A.B.C + A.B/.C + A.B.C/ what is the logic function that represents F1/ ?

If F1 = A.B + A/.C and F2 = A.B/ + B.C write the logic functions F1 + F2 and F1.F2?

As each one of the combinations can take value of 0 or 1, there are a total of 22𝑛
 distinct

logic functions of n variables. It is necessary to introduce a few terms at this stage.

"Literal" is a not-complemented or complemented version of a variable. A and A’ are

literals

"Product term" or "product" refers to a series of literals related to one another through

an AND operator. Examples of product terms are A.B’.D, A.B.D’.E, etc.

"Sum term" or "sum" refers to a series of literals related to one another through an OR

operator. Examples of sum terms are A+B’+D, A+B+D’+E, etc.

The choice of terms "product" and "sum" is possibly due to the similarity of OR and

AND operator symbols "+" and "." to the traditional arithmetic addition and

multiplication operations.

4.3 Truth Table Description of Logic Functions

The truth table is a tabular representation of a logic function. It gives the value of the

function for all possible combinations of values of the variables. If there are three

variables in a given function, there are 23 = 8 combinations of these variables. For each

combination, the function takes either 1 or 0. These combinations are listed in a table,

which constitutes the truth table for the given function. Consider the expression,

F (A, B) = A.B + A.B’

The truth table for this function is given by,

58

The information contained in the truth table and in the algebraic representation of the

function are the same. The term ‘truth table’ came into usage long before Boolean

algebra came to be associated with digital electronics. Boolean functions were originally

used to establish truth or falsehood of statements. When statement is true the symbol "1"

is associated with it, and when it is false "0" is associated. This usage got extended to

the variables associated with digital circuits. However, this usage of adjectives "true"

and "false" is not appropriate when associated with variables encountered in digital

systems. All variables in digital systems are indicative of actions. Typical examples of

such signals are "CLEAR", "LOAD", "SHIFT", "ENABLE", and "COUNT". These are

suggestive of actions. Therefore, it is appropriate to state that a variable is ASSERTED

or NOT ASSERTED than to say that a variable is TRUE or FALSE. When a variable is

asserted, the intended action takes place, and when it is not asserted the intended action

does not take place. In this context we associate "1" with the assertion of a variable, and

"0" with the non-assertion of that variable. Consider the logic function,

F = A.B + A.B’

It should now be read as "F is asserted when A and B are asserted or A is asserted and

B is not asserted". This convention of using "assertion” and “non-assertion" with the

logic variables will be used in all the Learning Units of this course on Digital Systems.

The term ‘truth table’ will continue to be used for historical reasons. But we understand

it as an input-output table associated with a logic function, but not as something that is

concerned with the establishment of truth.

As the number of variables in a given function increases, the number of entries in the

truth table increases exponentially. For example, a five variable expression would

require 32 entries and a six-variable function would require 64 entries. It, therefore,

becomes inconvenient to prepare the truth table if the number of variables increases

59

beyond four. However, a simple artefact may be adopted. A truth table can have entries

only for those terms for which the value of the function is "1", without loss of any

information. This is particularly effective when the function has only a small number of

terms. Consider the Boolean function with six variables

F = A.B.C.D’.E’ + A.B’.C.D’.E + A’.B’.C.D.E + A.B’.C’.D.E

The truth table will have only four entries rather than 64, and the representation of this

function is

Truth table is a very effective tool in working with digital circuits, especially when the

number of variables in a function is small, less than or equal to five.

Check Your Progress

1. ________ is a not-complemented or complemented version of a variable.

2. The ______________is a tabular representation of a logic function.

4.4 Conversion of English Sentences to Logic Functions

Some of the problems that can be solved using digital circuits are expressed through one

or more sentences. For example,

• At the traffic junction the amber light should come on 60 seconds after the red

light, and get witched off after 5 seconds.

• If the number of coins put into the vending machine exceed five rupees it should

dispense a Thums Up bottle.

• The lift should start moving only if the doors are closed and a floor number is

chosen.

These sentences should initially be translated into logic equations. This is done through

breaking each sentence into phrases and associating a logic variable with each phrase.

60

As stated earlier many of these phrases will be indicative of actions or directly represent

actions. We first mark each action related phrase in the sentence. Then we associate a

logic variable with it. Consider the following sentence, which has three phrases:

Anil freaks out with his friends if it is Saturday and he completed his assignments.

We will now associate logic variables with each phrase. The words “if” and “and” are

not included in any phrase and they show the relationship among the phrases.

F = 1 if “Anil freaks out with his friends”; otherwise F = 0

A = 1 if “it is Saturday”; otherwise A = 0

B = 1 if “he completed his assignments”; otherwise B = 0

F is asserted if A is asserted and B is asserted. The sentence, therefore, can be translated

into a logic equation as

F = A.B

For simple problems it may be possible to directly write the logic function from the

word description. In more complex cases it is necessary to properly define the variables

and draw a truth-table before the logic function is prepared. Sometimes the given

sentences may have some vagueness, in which case clarifications need to be sought from

the source of the sentence. Let us consider another sentence with more number of

phrases.

Rahul will attend the Networks class if and only if his friend Shaila is attending the class

and the topic being covered in class is important from examination point of view or

there

is no interesting matinee show in the city and the assignment is to be submitted. Let us

associate different logic variables with different phrases.

Rahul will attend the Networks class if and only if his friend Shaila is attending the class

 F A

and the topic being covered in class is important from examination point of view or

 B

there is no interesting matinee show in the city and the assignment is to be

submitted .

 C’ D

With the above assigned variables the logic function can be written as

61

F = A.B + C’.D

4.5 Minterms and Maxterms

A logic function has product terms. Product terms that consist of all the variables of a

function are called "canonical product terms", "fundamental product terms" or

"minterms". For example the logic term A.B.C' is a minterm in a three variable logic

function, but will be a non-minterm in a four variable logic function. Sum terms which

contain all the variables of a Boolean function are called "canonical sum terms",

"fundamental sum terms" or "maxterms". (A+B’+C) is an example of a maxterm in a

three variable logic function.

Consider the Table which lists all the minterms and maxterms of three variables. The

minterms are designated as m0, m1, . . . m7, and maxterms are designated as M0, M1, . ..

M7.

A logic function can be written as a sum of minterms. Consider F, which is a function of

three variables.

F = m0 + m3 + m5 + m6

This is equivalent to

F = A’B’C’ + A’BC + AB’C + ABC’

A logic function that is expressed as an OR of several product terms is considered to be

in "sum-of-products" or SOP form. If it is expressed as an AND of several sum terms, it

62

is considered to be in "product-of-sums" or POS form. Examples of these two forms are

given in the following:

F1 = A.B + A.B’.C + A’.B.C (SOP form)

F2 = (A+B+C’) . (A+B’+C’) . (A’+B’+C) (POS form)

If all the terms in an expression or function are canonical in nature, that is, as minterms

in the case of SOP form, and maxterms in the case of POS form, then it is considered to

be in canonical form. For example, the function in the equation (1) is not in canonical

form. However it can be converted into its canonical form by expanding the term A.B as

A.B = A . B . 1 (postulate 2b)

 = A . B . (C + C’) (postulate 5a)

 = A . B . C + A . B . C’ (postulate 4b)

The canonical version of F1 is,

F1 = A.B.C + A.B.C’ + A.B’.C + A’.B.C

The Boolean function F2 is in canonical form, as all the sum terms are in the form of

maxterms.

The SOP and POS forms are also referred to as two-level forms. In the SOP form, AND

operation is performed on the variables at the first level, and OR operation is performed

at the second level on the product terms generated at the first level. Similarly, in the

POS form, OR operation is performed at the first level to generate sum terms, and AND

operation is performed at the second level on these sum terms. In any logical expression,

the right-hand side of a logic function, there are certain priorities in performing the

logical operations.

• NOT (‘) operation has the highest priority,

• AND (.) has the next priority

• OR (+) has the last priority.

In the expression for F1 the operations are to be performed in the following sequence

• NOT operation on B and A

• AND terms: A.B, A.B’.C, A’.B.C

• OR operation on AB, AB’C and A’BC

63

However, the order of priority can be modified through using parentheses. It is also

common to express logic functions through multi-level expressions using parentheses. A

simple example is shown in the following.

F1 = A.(B+C’) + A’.(C+D)

These expressions can be brought into the SOP form by applying the distributive law.

More detailed manipulation of algebraic form of logic functions will be explored in

another Learning Unit.

4.6 Circuit Representation of Logic Functions

Representation of basic Boolean operators through circuits was already presented in the

earlier Learning Unit. A logic function can be represented in a circuit form using these

circuit symbols. Consider the logic function

F1 = A.B + A.B’

Its circuit form is

Consider another example of a Boolean function given in POS form.

F2 = (A+B+C) . (A+B’+C’)

The circuit form of the logical expression F2 is

F1 can also be represented in terms of other functionally complete set of logical

operations. NAND is one such functionally complete set. NAND representation of logic

expression F2 is

64

NOR is another functionally complete set. NOR representation of the same function F1

is:

 Check Your Progress II

1. Write any valid Boolean expression for Q as a function of the input variables.

a.

.

b.

c.

4.7 Model Questions

1. What is Boolean algebra?

2. How can we describe logic functions?

3. What do you mean by tautology?

65

4. What is a binary decision?

5. How to represent logic functions in algebraic form?

6. What is a truth table? Why it is used?

7. What are canonical product terms?

Answers to Check your Progress I

1. Literal

2. truth table

Answers to Check your Progress II

a. Q = A +B

 b CBAQ ++=

 BAAQ ++=

66

67

BLOCK II

68

69

UNIT V: KARNAUGH-MAP

5.0 Learning Objectives

After the completion of this unit, you will be able to:

• Explain K-Map

• Realize Three-variable K-Map

• Realize Four variable K-Map

• Realize Five variable K-Map

• Implement Boolean functions in POS form

• Perform Minimization with Karnaugh Map

5.1 Karnaugh-Map

The expressions for a logical function (right hand side of a function) can be very long

and have many terms and each term many literals. Such logical expressions can be

simplified using different properties of Boolean algebra. This method of minimization

requires our ability to identify the patterns among the terms. These patterns should

conform to one of the four laws of Boolean algebra. However, it is not always very

convenient to identify such patterns in a given expression. If we can represent the same

logic function in a graphic form that allows us to identify the inherent patterns, then the

simplification can be performed more conveniently.

Karnaugh Map is one such graphic representation of a Boolean function in the form of a

map. Karnaugh Map is due to M. Karnaugh, who introduced (1953) his version of the

map in his paper "The Map Method for Synthesis of Combinational Logic Circuits".

Karnaugh Map, abbreviated as K-map, is actually pictorial form of the truth-table. This

Learning Unit is devoted to the Karnaugh map and its method of simplification of logic

functions.

Karnaugh map of a Boolean function is graphical arrangement of minterms, for which

the function is asserted. We can begin by considering a two-variable logic function,

F = A’B + AB

70

Any two-variable function has 22 = 4 minterms. The truth table of this function is

It can be seen that the values of the variables are arranged in the ascending order (in the

numerical decimal sense).

We consider that any two terms are logically adjacent if they differ only with respect

any one variable. For example ABC is logically adjacent to A’BC, AB’C and ABC’. But

it is not logically adjacent to A’B’C, A’BC’, A’B’C’, AB’C’.

The entries in the truth-table that are positionally adjacent are not logically adjacent. For

example A’B (01) and AB’ (10) are postionally adjacent but are not logically adjacent.

The combination of 00 is logically adjacent to 01 and 10. Similarly 11 is adjacent to 10

and 01. Karnaugh map is a method of arranging the truth-table entries so that the

logically adjacent terms are also physically adjacent.

The K-map of a two-variable function is shown in the figure. There are two popular

ways of representing the map, both of which are shown in the figure. The representation,

where the variable above the column or on the side of the row in which it is asserted,

will be followed in this and the associated units.

• There are four cells (squares) in this map.

• The cells labelled as 0, 1, 2 and 3 represent the four minterms m0, m1, m2 and m3.

71

• The numbering of the cells is chosen to ensure that the logically adjacent

minterms are positionally adjacent.

• Cell 1 is adjacent to cell 0 and cell 3, indicating the minterm m1 (01) is logically

adjacent to the minterm m0 (00) and the minterm m3 (11).

• The second column, above which the variable A is indicated, has the cells 2 and

3 representing the minterms m2 and m3. The variable A is asserted in these two

minterms.

Let us define the concept of position adjacency. Position adjacency means two adjacent

cells sharing one side. Such an adjacency is called simple adjacency. Cell 0 is

positionally adjacent to cell 1 and cell 2, because cell 0 shares one side with each of

them. Similarly, cell 1 is positionally adjacent to cell 0 and cell 3, as cell 2 is adjacent to

cell 0 and cell 3, and cell 3 is adjacent to cell 1 and cell 2.

There are other kinds of positional adjacencies, which become relevant when the

number of variables is more than 3. We will explore them at a later time. The main

feature of the K-map is that by merely looking at the position of a cell, it is possible to

find immediately all the logically adjacent combinations in a function.

The function F = (A/B + AB) can now be incorporated into the K-map by entering "1"

in cells represented by the minterms for which the function is asserted. A "0" is entered

in all other cells. K-map for the function F is

You will notice that the two cells in which "1" is entered are not positionally adjacent.

Therefore, they are not logically adjacent.

72

Consider another function of two variables.

F = A’B + AB

The K-map for this function is

You will notice that the cells in which "1" is entered are positionally adjacent and hence

are logically adjacent.

5.1.1 Three-Variable Karnaugh Map

K-map for three variables will have 23 = 8 cells as shown in the figure.

The cells are labelled 0,1,..,7, which stand for combinations 000, 001,...,111

respectively. Notice that cells in two columns are associated with assertion of A, two

columns with the assertion of B and one row with the assertion of C.

Let us consider the logic adjacency and position adjacency in the map.

• Cell 7 (111) is adjacent to the cells 3 (011), 5 (101) and 6 (110).

• Cell 2 (010) is adjacent to the cell 0 (000), cell 6 (110) and cell 3 (011).

• We know from logical adjacency the cell 0 (000) and the cell 4 (100) should also

be adjacent. But we do not find them positionally adjacent. Therefore, a new

adjacency called "cyclic adjacency" is defined to bring the boundaries of a row

or a column adjacent to each other. In a three-variable map cells 4 (100) and 0

(000), and cells 1 (001) and 5 (101) are adjacent. The boundaries on the opposite

sides of a K-map are considered to be one common side for the associated two

cells.

73

Adjacency is not merely between two cells. Consider the following function:

F = Σ (1, 3, 5, 7)

= m1 + m3 + m5 + m7

= A'B'C + A'BC + AB'C + ABC

= A'C(B'+B) + AC(B'+B)

= A'C + AC

= (A'+A)C

= C

The K-map of the function F is

It is shown clearly that although there is no logic adjacency between some pairs of the

terms, we are able to simplify a group of terms. For example, A’B’C, ABC, A’BC and

AB’C are simplified to result in an expression "C". A cyclic relationship among the cells

1, 3, 5 and 7 can be observed on the map in the form 1 → 3 → 7 → 5 → 1

("→" indicating "adjacent to"). When a group of cells, always 2i (i < n) in number, are

adjacent to one another in a sequential manner those cells are considered be cyclically

adjacent.

Other groups of cells with ‘cyclic adjacency’

• 0, 1, 3 and 2

• 2, 3, 7 and 6

• 6, 7, 5 and 4

• 4, 5, 1 and 0

• 0, 2, 6 and 4

So far we noticed two kinds of positional adjacencies:

• Simple adjacency

74

• Cyclic adjacency (It has two cases, one is between two cells, and the other

among a group of 2i cells)

5.1.2 Four-variable Karnaugh Map

 A four-variable (A, B, C and D) K-map will have 24

= 16 cells.

These cells are labelled 0, 1,..., 15, which stand for combinations 0000, 0001,...1111

respectively. Notice that the two sets of columns are associated with assertion of A and

B, and two sets of rows are associated with the assertion of C and D.

We will be able to observe both simple and cyclic adjacencies in a four-variable map

also. 4, 8 and 16 cells can form groups with cyclic adjacency. Some examples of such

groups are

• 0, 1, 5 and 4

• 0, 1, 3 and 2

• 10, 11, 9 and 8

• 14, 12,13 and15

• 14, 6, 7 and 15

• 3, 7, 15, 11, 10, 14, 6 and 2

Consider a function of four variables

F = Σ (2, 3, 8, 9, 11, 12)

The K-map of this function is

75

5.1.3 Five-variable Karnaugh Map

Karnaugh map for five variables

• It has 25 = 32 cells labelled as 0,1, 2 ...,31, corresponding to the 32 combinations

from 00000 to 11111.

• The map is divided vertically into two symmetrical parts. Variable A is

notasserted on the left side, and is asserted on the right side. The two parts of the

map, except for the assertion or non-assertion of the variable A are identical with

respect to the remaining four variables B, C, D and E.

• Simple and cyclic adjacencies are applicable to this map, but they need to be

applied separately to the two sections of the map. For example cell 8 and cell 0

are adjacent. The largest number of cells coming under cyclic adjacency can go

up to 25 = 32.

76

• Another type of adjacency, called ‘symmetric adjacency’, exists because of the

division of the map into two symmetrical sections. Taking the assertion and

nonassertion of A into account, we find that cell 0 and cell 16 are adjacent.

Similarly, there are 15 more adjacent cell pairs (4-20, 12-28, 8-24, 1-17, 5-21,

13-29, 9- 25, 3-19, 7-23, 15-31, 11-27, 2-18, 6-22, 14-30, and 10-26).

Consider a function of five-variable

F = A’BC’DE’ + A’BCDE’ + A’BC’DE + ABCDE + A’BC’D’E + ABC’DE’ +

ABCDE’

+ ABC’DE + ABC’D’E + ABC’D’E’

From the study of two-, three-, four- and five-variable Karnaugh maps, we can

summaries the following properties:

1 Every Karnaugh map has 2n cells corresponding to 2n minterms.

2 The main feature of a Karnaugh Map is to convert logic adjacency into

positional adjacency.

3 There are three kinds of positional adjacency, namely simple, cyclic and

symmetric.

We have already seen how a K-map can be prepared provided the Boolean function is

available in the canonical SOP form.

A "1" is entered in all those cells representing the minterms of the expression, and "0" in

all the other cells.

77

However, the Boolean functions are not always available to us in the canonical form.

One method is to convert the non-canonical form into canonical SOP form and prepare

the K-map. The other method is to convert the function into the standard SOP form and

directly prepare the K-map.

Consider the function

F = A’B + A’B’C’ + ABC’D + ABCD’

We notice that there are four variables in the expression. The first term, A’B, containing

two variables actually represents four minterms, and the term A’B’C’ represents two

minterms. The K-map for this function is

Notice that the second column represents A’B, and similarly A’B’C’ represents the two

top cells in the first column. With a little practice it is always possible to fill the K-map

with 1s representing a function given in the standard SOP form.

5.1.4 Boolean functions in POS form

Boolean functions, sometimes, are also available in POS form. Let us assume that the

function is available in the canonical POS form. Consider an example of such a function

F = Π (0, 4, 6, 7, 11, 12, 14, 15)

In preparing the K-map for the function given in POS form, 0s are filled in the cells

represented by the maxterms. The K-map of the above function is

78

Sometimes the function may be given in the standard POS form. In such situations we

can initially convert the standard POS form of the expression into its canonical form,

and enter 0s in the cells representing the maxterms. Another procedure is to enter 0s

directly into the map by observing the sum terms one after the other.

Consider an example of a Boolean function given in the POS form.

F = (A+B+D’).(A’+B+C’+D).(B’+C)

This may be converted into its canonical form as

F = (A+B+C+D’).(A+B+C’+D’)(A’+B+C’+D).(A+B’+C+D). (A’+B’+C+D).

(A+B’+C+D’).(A’+B’+C+D’)

= M1 . M3 . M10 . M4 . M12 . M5 . M13

The cells 1, 3, 4, 5, 10, 12 and 13 can have 0s entered in them while the remaining cells

are filled with 1s.

The second method is through direct observation. To determine the maxterms associated

with a sum term we follow the procedure of associating a 0 with those variables which

appear in their asserted form, and a 1 with the variables that appear in their non-asserted

form. For example the first term (A+B+D’) has A and B asserted and D non-asserted.

Therefore the two maxterms associated with this sum term are 0001 (M1) and 0011

(M3). The second term is in its canonical form and the maxterm associated with is 1010

(M10). Similarly the maxterms associated with the third sum term are 0100 (M4), 1100

(M12), 0101 (M5) and 1101 (M13). The resultant K-map is

79

We learnt in this Learning Unit

• The logic adjacency is captured as positional adjacency in a Karnaugh Map

• How to translate logic expressions given in SOP or POS forms into K-maps

• There are three types of logical adjacency, namely, simple, cyclic and symmetric

adjacencies

5.2 Minimization with Karnaugh Map

Implicants: A Karnaugh map not only includes all the minterms that represent a

Boolean function, but also arranges the logically adjacent terms in positionally adjacent

cells. As the information is pictorial in nature, it becomes easier to identify any patterns

(relations) that exist among the 1-entered cells (minterms). These patterns or relations

are referred to as implicants.

Definition 1: An implicant is a group of 2i (i = 0, 1n) minterms (1-entered cells) that

are logically (positionally) adjacent.

A study of implicants enables us to use the K-map effectively for simplifying a Boolean

function. Consider the K-map

80

• There are four implicants: 1, 2, 3 and 4.

• The implicant 4 is a single cell implicant. A single cell implicant is a 1-entered

cell that is not positionally adjacent to any of the other cells in map.

• The four implicants account for all groupings of 1-entered cells. This also means

that the four implicants describe the Boolean function completely.

An implicant represents a product term, with the number of variables appearing in the

term inversely proportional to the number of 1-entered cells it represents.

• Implicant 1 in the figure represents the product term AC’

• Implicant 2 represents ABD

• Implicant 3 represents BCD

• Implicant 4 represents A’B’CD’

The smaller the number of implicants, and the larger the number of cells that each

implicant represents, the smaller the number of product terms in the simplified Boolean

expression.

In this example we notice that there are different ways of identifying the implicants.

81

Five implicants are identified in the figure (a) and three implicants in the figure (b) for

the same K-map (Boolean function). It is then necessary to have a procedure to identify

the minimum number of implicants to represent a Boolean function.

We identify three types of implicants: "prime implicant", "essential implicant" and

"redundant implicant".

A prime implicant is one that is not a subset of any one of the other implicant. An

essential prime implicant is a prime implicant which includes a 1-entered cell that is

not included in any other prime implicant.

A redundant implicant is one in which all the 1-entered cells are covered by other

implicants. A redundant implicant represents a redundant term in an expression.

Implicants 2, 3, 4 and 5 in the figure (a), and 1, 2 and 3 in the figure (b) are prime

implicants. Implicants 2, 4 and 5 in the figure (a), and 1, 2 and 3 in the figure (b) are

essential prime implicants.

Implicants 1 and 3 in the figure (a) are redundant implicants. Figure (b) does not have

any redundant implicants. Now the method of K-map minimisation can be stated as

"find the smallest set of prime implicants that includes all the essential prime

implicants accounting for all the 1-entered cells of the K-map".

82

If there is a choice, the simpler prime implicant should be chosen. The minimization

procedure is best understood through examples.

Example 1: Find the minimised expression for the function given by the K-map in the

figure.

Fifteen implicants of the K-map are:

X1 = C’D’ X2 = B’C’ X3 = BD’ X4 = ACD

X5 = AB’C’ X6 = BCD’ X7 = A’B’C’ X8 = BC’D’

X9 = B’C’D’ X10 = A’C’D’ X11 = AC’D’ X12 = AB’D

X13 = ABC X14 = A’BD’ X15 = ABD’ X16 = B’C’D

Obviously all these implicants are not prime implicants and there are several redundant

implicants. Several combinations of prime implicants can be worked out to represent the

function. Some of them are listed in the following.

F1 = X1 + X4 + X6 + X16

 = X4 + X5 + X6 + X7 + X8

 = X2 + X3 + X4

 = X10 + X11 + X8 + X4 + X6

The k-maps with these four combinations are

83

Among the prime implicants listed in the figure there are three implicants X1, X2 and

X3 that group four 1-entered cells. Selecting the smallest number of implicants we

obtain the simplified expression as:

F = X2 + X3 + X4

= B’C’ + BD’ + ACD

It may be noticed that X2, X3 and X4 are essential prime implicants.

Example 2: Minimise the Boolean function represented by the K-map shown in the

figure.

84

Three sets of prime implicants are:

(a) X1 = B’D’ X2 = A’B X3 = BD X4 = ACD

(b) X4 = ACD X5 = AB’D’ X6 = A’B’D’ X7 = ABD

 X8 = A’BC X9 = A’BC’

(c) X7 = ABD X10 = B’C’D’ X11 = A’C’D’ X12 = A’BD

 X13 = A’C’D’ X14 = AB’C

Some of the simplified expressions are shown in the following:

F = X1 + X2 + X3 + X4

= X4 + X6 + X7 + X8 + X9

= X7 + X10 + X11 + X12 + X13 + X14

85

5.3 Standard POS form from Karnaugh Map

As mentioned earlier, POS form always follows some kind of duality, yet different from

the principle of duality. The implicants are defined as groups of sums or maxterms

which in the map representation are the positionally adjacent 0-entered cells rather then

1- entered cells as in the SOP case. When converting an implicant covering some 0-

entered cells into a sum, a variable appears in complemented form in the sum if it is

always 1 in value in the combinations corresponding to that implicant, a variable

appears in uncomplimented form if it is always 0 in value, and the variable does not

appear at all if it changes its values in the combinations corresponding to the implicant.

We obtain a standard POS form of expression from the map representation by ANDing

all the sums converted from implicants.

Example 3: Consider a Boolean function in the POS form represented in the K-map

shown in the figure

• Initially four implicants are identified (1, 2, 3 and 4).

• Implicant 1: B is asserted and A is not-asserted in all the cells of implicant 1,

where as the variables C and D change their values from 0 to 1. It is represented

by the sum term (A + B’).

• Implicant 2: It is represented by the sum term (B’ + D’).

• Implicant 3: It is represented by (B + D).

• Implicant 4: It is represented by (A’ + C’ + D’).

86

The simplified expression in the POS form is given by;

F = (A + B’) . (B’ + D’) . (B + D) . (A’ + C’ + D’)

If we choose the implicant 5 (shown by the dotted line in the figure 19) instead of 4, the

simplified expression gets modified as:

F = (A + B’) . (B’ + D’).(B + D).(A’ + B +C')

We may summarise the procedure for minimization of a Boolean function through a K-

map as follows:

1 Draw the K-map with 2n cells, where n is the number of variables in a Boolean

function.

2 Fill in the K-map with 1s and 0s as per the function given in the algebraic form

(SOP or POS) or truth-table form.

3 Determine the set of prime implicants that consist of all the essential prime

implicants as per the following criteria:

• All the 1-entered or 0-entered cells are covered by the set of implicants,

while

making the number of cells covered by each implicant as large as

possible.

• Eliminate the redundant implicants.

• Identify all the essential prime implicants.

• Whenever there is a choice among the prime implicants select the prime

implicant with the smaller number of literals.

4 If the final expression is to be generated in SOP form, the prime implicants

should be identified by suitably grouping the positionally adjacent 1-entered

cells, and converting each of the prime implicant into a product term. The final

SOP expression is the OR of the identified product terms.

5 If the final simplified expression is to be given in the POS form, the prime

implicants should be identified by suitably grouping the positionally adjacent 0-

entered cells, and converting each of the prime implicant into a sum term. The

final POS expression is the AND of the identified sum terms.

87

5.4 Simplification of Incompletely Specified Functions

So far we assumed that the Boolean functions are always completely specified, which

means a given function assumes strictly a specific value, 1 or 0, for each of its 2n input

combinations. This, however, is not always the case. Consider the example is the BCD

decoders

• The ten outputs are decoded from sixteen possible input combinations produced

by four inputs representing BCD codes.

• An encoding scheme chooses ten valid codes.

• Irrespective of the encoding scheme there are always six combinations of the

inputs that would be considered as invalid codes.

• If the input unit to the BCD decoder works in a functionally correct way, then

the six invalid combinations of the inputs should never occur.

In such a case, it does not matter what the output of the decoder is for these six

combinations. As we do not mind what the values of the outputs are in such situations,

we call them "don’t-care" situations. These don’t-care situations can be used

advantageously in generating a simpler Boolean expression than without taking that

advantage. Such don’t-care combinations of the variables are represented by an "X" in

the appropriate cell of the K-map.

Example: This example shows how an incompletely specified function can be

represented in truth-table, Karnaugh map and canonical forms.

The decoder has three inputs A, B and C representing three bit codes and an output F.

Out

of the 23 = 8 possible combinations of the inputs, only five are described and hence

constitute the valid codes. F is not specified for the remaining three input codes, namely,

000, 110 and 111.

Functional description of a decoder

88

Treating these three combinations as the don’t-care conditions, the truth-table may be

written as:

The K-map for this function is

The function in the SOP and POS forms may be written as

F = Σ(4, 5) + d (0, 6, 7)

F = Π (1, 2, 3) . d (0, 6, 7)

The term d (0, 6, 7) represents the collection of don’t-care terms.

The don’t-cares bring some advantages to the simplification of Boolean functions. The

Xs can be treated either as 0s or as 1s depending on the convenience. For example the

above map can be redrawn in two different ways as

89

The simplification can be done, therefore, in two different ways. The resulting

expressions for the function F are:

F = A

F = AB’

We can generate a simpler expression for a given function by utilizing some of the don’t

care conditions as 1s.

Example: Simplify F = Σ (0,1,4,8,10,11,12) + d(2,3,6,9,15)

The K-map of this function is

The simplified expression taking the full advantage of the don’t cares is,

F = B’ + C’D’

Simplification of several functions of the same set of variables

As there could be several product terms that could be made common to more than one

function, special attention needs to be paid to the simplification process.

Example: Consider the following set of functions defined on the same set of variables:

F1 (A, B, C) = Σ (0, 3, 4, 5, 6)

F2 (A, B, C) = Σ (1, 2, 4, 6, 7)

90

F3 (A, B, C) = Σ (1, 3, 4, 5, 6)

Let us first consider the simplification process independently for each of the functions.

The

K-maps for the three functions and the groupings are

The resultant minimal expressions are:

F1 = B’C’ + AC’ + AB’ + A’BC

F2 = BC’ + AC’ + AB + A’B’C

F3 = AC’ + B’C + A’C

These three functions have nine product terms and twenty one literals.

If the groupings can be done to increase the number of product terms that can be shared

among the three functions, a more cost effective realisation of these functions can be

achieved. One may consider, at least as a first approximation, cost of realising a function

is proportional to the number of product terms and the total number of literals present in

the expression. Consider the minimisation shown in the figure

The resultant minimal expressions are;

F1 = B’C’ + AC’ + AB’ + A’BC

F2 = BC’ + AC’ + AB + A’B’C

F3 = AC’ + AB’ + A’BC + A’B’C

This simplification leads to seven product terms and sixteen literals.

91

Check Your Progress

1. Identify each of these logic gates by name, and complete their respective truth tables:

2. Minimise the following problems using the Karnaugh maps method.

Z = f(A,B,C) = + B + AB + AC

Z = f(A,B,C) = B + B + BC + A

92

Model Question

1. What is a Karnaugh-map? Why it is used?

2. Explain 3-varialble K-map with the help of an example.

3. What is POS form of representation of Boolean functions?

Answers to Check Your Progress

1.

2. Z = f(A,B,C) = + B + AB + AC

93

By using the rules of simplification and ringing of adjacent cells in order to

make as many variables redundant, the minimised result obtained is B +

AC+

Z = f(A,B,C) = B + B + BC + A

By using the rules of simplification and ringing of adjacent cells in order to

make as many variables redundant, the minimised result obtained is B + A

http://www.ee.surrey.ac.uk/Projects/Labview/minimisation/karrules.html
http://www.ee.surrey.ac.uk/Projects/Labview/common/glossary.html#Adj

94

95

UNIT VI: QUINE-MCCLUSKEY METHOD OF

MINIMIZATION

6.0 Learning Objectives

After the completion of this unit, you will be able to:

• Explain the Principle of Quine-McClusky Method

• Perform Generation of Prime Implicants

• Determine of the Minimal Set of Prime Implicants

• Perform simplification of Incompletely Specified functions

6.1 Introduction

Karnaugh Map provides a good method of minimizing a logic function. However, it

depends on our ability to observe appropriate patterns and identify the necessary

implicants. If the number of variables increases beyond five, K-map or its variant

Variable Entered Map can become very messy and there is every possibility of

committing a mistake. What we require is a method that is more suitable for

implementation on a computer, even if it is inconvenient for paper-and-pencil

procedures. The concept of tabular minimisation was originally formulated by Quine in

1952. This method was later improved upon by McClusky in 1956, hence the name

Quine-McClusky.

This Learning Unit is concerned with the Quine-McClusky method of minimisation.

This method is tedious, time-consuming and subject to error when performed by hand.

But it is better suited to implementation on a digital computer.

6.2 Principle of Quine-McClusky Method

The Quine-McClusky method is a two stage simplification process.

• Generate prime implicants of the given Boolean function by a special tabulation

process.

96

• Determine the minimal set of implicants is determined from the set of implicants

generated in the first stage.

The tabulation process starts with a listing of the specified minterms for the 1s (or 0s) of

a function and don’t-cares (the unspecified minterms) in a particular format. All the

prime implicants are generated from them using the simple logical adjacency theorem,

namely, AB’ + AB = A. The main feature of this stage is that we work with the

equivalent binary number of the product terms. For example in a four variable case, the

minterms A’BCD’ and A’BC’D’ are entered as 0110 and 0100. As the two logically

adjacent minterms A/BCD/ and A/BC/D/ can be combined to form a product term

A/BD/,the two binary terms 0110 and 0100 are combined to form a term represented as

"01-0", where ‘-‘ (dash) indicates the position where the combination took place.

Stage two involves creating a prime implicant table. This table provides a means of

identifying, by a special procedure, the smallest number of prime implicants that

represents the original Boolean function. The selected prime implicants are combined to

form the simplified expression in the SOP form. While we confine our discussion to the

creation of minimal SOP expression of a Boolean function in the canonical form, it is

easy to extend the procedure to functions that are given in the standard or any other

forms.

6.2.1 Generation of Prime Implicants

The process of generating prime implicants is best presented through an example.

Example 1: F = Σ (1,2,5,6,7,9,10,11,14)

All the minterms are tabulated as binary numbers in sectionalised format, so that each

section consists of the equivalent binary numbers containing the same number of 1s, and

the number of 1s in the equivalent binary numbers of each section is always more than

that in its previous section. This process is illustrated in the table as below.

97

The next step is to look for all possible combinations between the equivalent binary

numbers in the adjacent sections by comparing every binary number in each section

with every binary number in the next section. The combination of two terms in the

adjacent sections is possible only if the two numbers differ from each other with respect

to only one bit. For example 0001 (1) in section 1 can be combined with 0101 (5) in

section 2 to result in 0-01 (1, 5). Notice that combinations cannot occur among the

numbers belonging to the same section. The results of such combinations are entered

into another column, sequentially along with their decimal equivalents indicating the

binary equivalents from which the result of combination came, like (1, 5) as mentioned

above. The second column also will get sectionalised based on the number of 1s. The

entries of one section in the second column can again be combined together with entries

in the next section, in a similar manner. These combinations are illustrated in the Table

below

98

All the entries in the column which are paired with entries in the next section are

checked off. Column 2 is again sectionalised with respect t the number of 1s. Column 3

is generated by pairing off entries in the first section of the column 2 with those items in

the second section. In principle this pairing could continue until no further combinations

can take place. All those entries that are paired can be checked off. It may be noted that

combination of entries in column 2 can only take place if the corresponding entries have

the dashes at the same place. This rule is applicable for generating all other columns as

well.

After the tabulation is completed, all those terms which are not checked off constitute

the set of prime implicants of the given function. The repeated terms, like --10 in the

column 3, should be eliminated. Therefore, from the above tabulation procedure, we

obtain seven prime implicants (denoted by their decimal equivalents) as (1,5), (1,9),

(5,7), (6,7), (9,11), (10,11), (2,6,10,14). The next stage is to determine the minimal set

of prime implicants.

6.2.2 Determination of the Minimal Set of Prime Implicants

The prime implicants generated through the tabular method do not constitute the

minimal set. The prime implicants are represented in so called "prime implicant table".

Each column in the table represents a decimal equivalent of the minterm. A row is

placed for each prime implicant with its corresponding product appearing to the left and

the decimal group to the right side. Asterisks are entered at those intersections where

the columns of binary equivalents intersect the row that covers them. The prime

implicant table for the function under consideration is shown in the figure.

99

In the selection of minimal set of implicants, similar to that in a K-map, essential

implicants should be determined first. An essential prime implicant in a prime implicant

table is one that covers (at least one) minterms which are not covered by any other prime

implicant. This can be done by looking for that column that has only one asterisk. For

example, the columns 2 and 14 have only one asterisk each. The associated row,

indicated by the prime implicant CD/, is an essential prime implicant. CD/ is selected as

a member of the minimal set (mark that row by an asterisk). The corresponding

columns, namely 2, 6, 10, 14, are also removed from the prime implicant table, and a

new table is construction as shown in the figure.

100

We then select dominating prime implicants, which are the rows that have more

asterisks than others. For example, the row A’BD includes the minterm 7, which is the

only one included in the row represented by A’BC. A’BD is dominant implicant over

A’BC, and hence A’BC can be eliminated. Mark A’BD by an asterisk and check off the

column 5 and 7.

We then choose AB’D as the dominating row over the row represented by AB’C.

Consequently, we mark the row AB’D by an asterisk, and eliminate the row AB’C and

the columns 9 and 11 by checking them off. Similarly, we select A’C’D as the

dominating one over B’C’D. However, B’C’D can also be chosen as the dominating

prime implicant and eliminate the implicant A’C’D.

Retaining A’C’D as the dominant prime implicant the minimal set of prime implicants is

{CD’, A’C’D, A’BD and AB’D). The corresponding minimal SOP expression for the

Boolean function is:

F = CD’ + A’C/D + A’BD + AB’D

If we choose B’C’D instead of A’C’D, then the minimal SOP expression for the

Boolean function is:

F = CD’ + B’C’D + A’BD + AB’D

This indicates that if the selection of the minimal set of prime implicants is not unique,

then the minimal expression is also not unique. There are two types of implicant tables

that have some special properties. One is referred to as cyclic prime implicant table, and

the other as semi-cyclic prime implicant table. A prime implicant table is considered to

be cyclic if

1 it does not have any essential implicants which implies that there are at least two

asterisks in every column, and

2 There are no dominating implicants, which implies that there are same number

of asterisks in every row.

Example 2: A Boolean function with a cyclic prime implicant table is shown in the

figure 3.

The function is given by

F = Σ (0, 1, 3, 4, 7, 12, 14, 15)

All possible prime implicants of the function are:

101

a = A’B’C’ (0,1) e = ABC (14,15)

b = A’B’D (1,3) f = ABD’ (12,14)

c = A’CD (3,7) g = BC’D’ (4,12)

d = BCD (7,15) h = A’C’D’ (0,4)

As it may be noticed from the prime implicant table in the figure that all columns have

two asterisks and there are no essential prime implicants. In such a case we can choose

any one of the prime implicants to start with. If we start with prime implicant a, it can be

marked with asterisk and the corresponding columns, 0 and 1, can be deleted from the

table. After their removal, row c becomes dominant over row b, so that row c is selected

and hence row b is can be eliminated. The columns 3 and 7 can now be deleted. We

observe then that the row e dominates row d, and row d can be eliminated. Selection of

row e enables us to delete columns 14 and 15.

102

If, from the reduced prime implicant table shown in the figure, we choose row g it

covers the remaining asterisks associated with rows h and f. That covers the entire prime

implicant table. The minimal set for the Boolean function is given by:

F = a + c + e + g

= A'B'C' + A'CD + ABC + BC'D'

The K-map of the simplified function is shown in the following figure

103

A semi-cyclic prime implicant table differs from a cyclic prime implicant table in one

respect. In the cyclic case the number of minterms covered by each prime implicant is

identical. In a semi-cyclic function this is not necessarily true.

Example 3: Consider a semi-cyclic prime implicant table of a five variable Boolean

function shown in the figure.

Examination of the prime-implicant table reveals that rows a, b, c and d contain four

minterms each. The remaining rows in the table contain two asterisks each. Several

minimal sets of prime implicants can be selected. Based on the procedures presented

through the earlier examples, we find the following candidates for the minimal set:

F = a + c + d + e + h + j

or F = a + c + d + g + h + j

or F = a + c + d + g + j + i

or F = a + c + d + g + i + k

Based on the examples presented we may summarise the procedure for determination of

the minimal set of implicants:

1 Find, if any, all the essential prime implicants, mark them with *, and remove the

corresponding rows and columns covered by them from the prime implicant

table.

104

2 Find, if any, all the dominating prime implicants, and remove all dominated

prime implicants from the table marking the dominating implicants with *s.

Remove the corresponding rows and columns covered by the dominating

implicants.

3 For cyclic or semi-cyclic prime implicant table, select any one prime implicant

as the dominating one, and follow the procedure until the table is no longer

cyclic or semicyclic.

4 After covering all the columns, collect all the * marked prime implicants

together to form the minimal set, and convert them to form the minimal

expression for the function.

6.2.3 Simplification of Incompletely Specified functions

The simplification procedure for completely specified functions presented in the earlier

sections can easily be extended to incompletely specified functions. The initial

tabulation is drawn up including the dont-cares. However, when the prime implicant

table is constructed, columns associated with dont-cares need not be included because

they do not necessarily have to be covered. The remaining part of the simplification is

similar to that for completely specified functions.

Example 4: Simplify the following function:

F(A,B,C,D,E) =Σ(1,4,6,10,20,22,24,26) + d(0,11,16,27)

Tabulation of the implicants

105

Pay attention to the don’t-care terms as well as to the combinations among themselves,

by marking them with (d).

Six binary equivalents are obtained from the procedure. These are 0000- (0,1), 1-000

(16,24), 110-0 (24,26), -0-00 (0,4,16,20), -01-0 (4,6,20,22) and -101- (10,11,26,27) and

they correspond to the following prime implicants:

a = A’B’C’D’/ b = AC’D’E’ c = ABC’E’

d = B’D’E’ e = B’CE’ g = BC’D

The prime implicant table is plotted as shown in the figure.

It may be noted that the don’t-cares are not included.

The minimal expression is given by:

F(A,B,C,D,E) = a + c + e + g

 = A'B'C'D' + ABC'E' + B'CE' + BC'D

Check Your Progress

1. Minimise the function below using the tabular method of

simplification:

Z = f(A,B,C,D) = + C + A CD + A C + BCD +

BC + CD

2. Using the tabular method of simplification, find all equally minimal

solutions for the function below.

Z = f(A,B,C,D) = (1,4,5,10,12,14

106

3. Minimize the function f(A, B, C, D) = (0,1,2,3,5,7,8,10,12,13,15),

using tabular method.

6.3 Model Question

1. What is are the limitations of K-map?

2. Describe the Principle of Quine-McClusky Method.

3. Explain the process of generating prime implicants through an example.

Answers to Check Your Progress

1. Consider the function: Z = f(A,B,C,D) = + C + A CD + A

C + BCD + BC + CD

Convert to decimal and binary equivalents:-

Z = f(A,B,C,D) = (0,2,4,5,8,9,12) - decimal equivalent

Z = f(A,B,C,D) = (0000,0010,0100,0101,1000,1001,1100) - binary

equivalent

(0, 1, 1, 2, 1, 2, 2) - index values

107

The simplified answer is: Z = + B + A +

2

Note that the remaining term 12 is covered by B and AB

One simplified answer is: Z = + AC + B

Another answer is: Z = + AC + AB

3 Note that this is in decimal form.

 (0000,0001,0010,0011,0101,0111,1000,1010,1100,1101,1111) in binary

form.

(0,1,1,2,2,3,1,2,2,3,4) in the index form.

108

The prime implicants are: + + D + BD + A + AB

The chart is used to remove redundant prime implicants. A grid is prepared

having all the prime implicants listed at the left and all the minterms of the

function along the top. Each minterm covered by a given prime implicant is

marked in the appropriate position.

From the above chart, BD is an essential prime implicant. It is the only prime

implicant that covers the minterm decimal 15 and it also includes 5, 7 and

13. is also an essential prime implicant. It is the only prime implicant that

covers the minterm denoted by decimal 10 and it also includes the terms 0, 2

and 8. The other minterms of the function are 1, 3 and 12. Minterm 1 is

present in and D. Similarly for minterm 3. We can therefore use either

109

of these prime implicants for these minterms. Minterm 12 is present in A

 and AB , so again either can be used.

Thus, one minimal solution is: Z = + BD + + A

110

111

UNIT VII: LOGIC GATES

7.0 Learning Objectives

After the completion of this unit, you will be able to:

• learn about logic gates.

• draw different logic gates like AND, OR, NOT, NAND, NOR, XOR, XNOR.

• represent the output of logic gates in truth table.

• describe the DeMorgan’s theorem.

• learn about the conversion of logic gates.

7.1 Introduction

This unit provides a description of logic gates and defines a few of the common logic

gates found in simple digital circuits1. Computers work on an electrical flow where a

high voltage is considered a 1 and a low voltage is considered a 0. Using these highs and

lows, data are represented. Electronic circuits must be designed to manipulate these

positive and negative pulses into meaningful logic. Logic gates are the building blocks

of digital circuits. Combinations of logic gates form circuits designed with specific tasks

in mind. For example, logic gates are combined to form circuits to add binary numbers

(adders), set and reset bits of memory (flip-flops), multiplex multiple inputs, etc.

7.2 Logic Gates

A gate is an electronic circuit which produces a typical output signal depending on its

input signal. The output signal of a gate is single Boolean operation of its input signal.

Gates are the basic logic elements. Any boolean function can be represented in the form

of gates.

In general, we can represent gates in three ways. These are:

1 Adopted from http://m.kkhsou.in/EBIDYA/CSC/MODIFY_logic_gates.html

112

• Graphical symbols

• Algebraic notation

• Truth table

Different types of logic gates with their graphical symbol, algebraic notion and their

truth table are summarized below:

113

7.3 Truth Table

A truth table is a good way to show the behavior of logic gates. It shows the output

states for every possible combination of input states. The symbols 0 (false) and 1 (true)

are usually used in truth tables. They show how the input(s) of a logic gate relate to its

output(s).

A truth table for two input of an OR gate is shown below, but it can b extended to any

number of inputs. The gate input(s) are shown in the left column(s) of the table with all

the different possible input combinations. This is normally done by making the inputs

count up in binary. The gate output(s) are shown in the right-hand side column.

Example: Draw the truth table for the following logic circuit and find the output

expression Q.

Solution: The above logic circuit gives the following truth table and output expression

(A/.B)+(A.B/)

114

7.4 AND Gate

An AND gate has two or more inputs but it has only one output. An input signal applied

to a gate has only two stable states, either 1 (HIGH) or 0 (LOW). There is no

intermediate state. In case of a 2-input AND gate the output is 1 (high) only if both

inputs are 1 (high), otherwise the output is 0 (low). The logical operation of an AND

gate is called the AND operation (or AND function).

The logical AND operation can easily be explained with the help of two switches

connected in series, Figure 2 The current will flow in the circuit only when both

switches, A and B, are closed. A switch has two stable states, ON and OFF. The ON

state is taken as logic 1, the OFF as logic 0. When both switches are ON, i.e., A and B

both have logic1, the output is 1. When any one of the swithces is OFF, there is no

output (no current in the circuit). The output is taken as 0.

Figure 1: AND Gate

Figure 2: A circuit containing two switches in series

Figure 1 shows standard graphical symbol for a two-input AND gate. It shows only two

inputs, A and B. If there are more than two inputs, they will be shown on input side.

Table 1 shows the truth table for a two-input AND gate. The output of an AND gate is 1

only when all the inputs are 1. If any one of the inputs is 0, the output will be 0.

Therefore, the output of an AND gate is equal to the product of inputs i.e., the output Y

= A.B. The symbol ^ is also used to denote AND operation. A ^ B denotes AND

operations of A and B.

115

Table 1: Truth table for AND gate

INPUT OUTPUT

A B Y=A.B

0 0 0

0 1 0

1 0 0

1 1 1

The output of an AND gate is Y = A.B. In this case A and B (inputs) are independent

variables. Y (output) is a dependent variable. The table which shows the values of

dependent variable for all possible values of independent variables is called truth table.

7.5 OR-Gate

An OR gate is also known as INCLUSIVE-OR gate. It has two or more inputs, but only

one output. The output of an OR gate will be high if at least any one of the inputs is

high. The output will be 0 only when all inputs are 0. This logical operation will be

called OR operation (or OR function). Figure 3 shows a two input OR gate. Its truth

table has been shown in Table 3.2. Its output is given by Y = A + B. The logical OR

operation can easily be explained taking an example of two switches connected in

parallel as shown in Figure 4. The current will flow in the circuit when either switch is

in ON position (i.e., logic 1). The current will not flow at all when both switches are in

OFF position (i.e. logic 0). The ^(DOWN) symbol denotes OR operation. A ^(DOWN)

B denotes OR operation of A and B.

Figure 3: Graphical symbol for OR gate

116

Figure 4: A circuit containing two switches in parallel

Table 2: Truth table of OR gate

INPUT OUTPUT

A B Y=A+B

0 0 0

0 1 1

1 0 1

1 1 1

7.6 NOT Gate

A NOT gate has only one input, and only one input signal. It is also called INVERTER .

Its output is the complement of the input signal. The output is 1 (HIGH) if the input is 0

(Low). The output is 0 when input is 1.Its output is given by Y = A. NOT gate are used

to invert the logic levels i.e. from LOW to HIGH or HIGH to LOW when required.

Figure 5 shows standard symbol for a NOT gate.

Figure 5: NOT Gate

117

Table 3: Truth table of NOT gate

INPUT OUTPUT

A Y=A̅

0 1

1 0

7.7 NAND Gate

A NAND gate has two or more inputs but only one output Figure 6vshows a two-input

NAND gate in two different ways. The NAND function is the complement of the AND

function. An AND gate can be combined with an INVERTER to form a NAND gate.

The abbreviation NAND is the short form of NOT-AND. Its output is given by Y = A.B

. Table 4 shows the truth table for a 2-input NAND gate.

Figure 6: Graphical symbol of NAND gate

Table 4: Truth table of NAND gate

INPUT OUTPUT

A B Y= A̅.̅B̅

0 0 1

0 1 1

1 0 1

1 1 0

The NAND operations is sometimes called universal operations because other logic

operation can be realized by using only NAND gates. A universal operation is one that

can be used to implement the three basic logic operations AND, OR and NOT. It is

easier to fabricate NAND and NOR gates employing modern IC technology compared

118

to AND and OR gates. NAND and NOR gates also consume less power. Therefore,

combinational logic networks are realized by using only NAND gates . NAND gates are

used as basic building blocks in fabricating a digital circuit.

7.8 NOR Gate

A NOR gate has two or more inputs but only one output. Figure 7 shows a two input

NOR gate. The NOR function is the complement of OR function. An OR gate can be

combined with an INVERTER to form a NOR gate as shown in the figure. The

abbreviation NOR is the short form of NOT- OR. Its output is given by Y = A + B.

Table 5 shows the truth table for a 2-input NOR gate.

Figure 7: NOR gate

The NOR operation is also a Universal operation. Other logic gates such as AND, OR

and NOT can be realized using NOR gates. Combinational logic network can be realized

by using only NOR gates. NOR gates are used as building blocks in fabricating a digital

network. NOR gates are available in IC forms.

Table 5: Truth Table for NOR Gate

INPUT OUTPUT

A B

0 0 1

0 1 0

1 0 0

1 1 0

119

7.9 X-OR Gate

The output of Exclusive-OR (XOR) gate is high only when its inputs are different. Its

output is low when both inputs A and B are same i.e., either both are high or both are

low. Its output is given by:

Figure 8: Exclusive-OR Gate

Figure 9: Logic diagram for 2 input Exclusive-OR gate

The XOR operation is also called Modulo-2-Sum operation. Figure 8 and Figure 9

shows the graphical symbol and logic diagram for a 2-input XOR gate. Table 6 shows

its truth table.

Table 6: Truth table for XOR gate

INPUT OUTPUT

A B

0 0 0

0 1 1

1 0 1

1 1 0

An XOR operation can be distinguished from OR functions as follows: A OR B means

A or B, or both, whereas A XOR B means A or B but not both.

120

7.10 X-NOR Gate

The Exclusive-NOR (XNOR) operation is the complement of XOR operation. The

output of XNOR is high only when the logic values of both inputs A and B are same i.e.,

either both are1 or both are 0. Its output is 0 when its inputs are different. Table 7 shows

its truth table. The output is given by:

Figure 10: Graphical symbol for XNOR gate

Figure 10 shows a two-input XNOR gate. The 74135 is an XOR/XNOR gate. It has

three inputs A .B and C. If C input is low it operates as an XOR gate. If C input is high

it operates as XNOR gate.

Table 7: Truth Table for XNOR Gate

INPUT OUTPUT

A B

0 0 1

0 1 0

1 0 0

1 1 1

7.11 Summary

• A logic gate is an electronic circuit that operates on one or more input signals to

produce standard output signals. These logic gates are the building blocks of all

electronic circuits in computer.

121

• To represent different logic gates, specific shapes are assigned.These are called

graphical symbols.

• Logic gates are operated with binay numbers ‘0’ and ‘1’. In analog terminology,

‘0’ is termed as ‘LOW’ (ground) voltage and ‘1’ is termed as ‘HIGH’ voltage

(>= 4.5 volt.)

• A truth table is a good way to show the behaviour of logic gates. It shows the

output states for every possible combination of input states.

• An AND gate is the physical realization of logical multiplication (AND)

operation. It is an electronic .circuit that generates an output signal of 1, only if

all input signals are also 1.

• An OR gate is the physical realization of logical addition (OR) operation. It is an

electronic circuit that generates an output signal of 1, if any of the l input signals

is also 1.

• An NOT gate is the physical realization of complementation operation. It is an

electronic circuit that generates the reverse of the input signal as output signal. It

is also known as an inverter because it inverts the input.

• A NAND gate is a complemented AND gate. That is, the output of NAND gate

will be 1 if any one of the inputs is a 0, and will be 0 only when all inputs are 1.

• A NOR gate is a complemented OR gate. That is, the output of NOR gate will be

1only when all inputs are 0, and it will be 0 if any input is a 1.

• Exclusive-OR and Exclusive -NOR are two important logic component.

• DeMorgan’s theorem states that the complement of a sum of variables is equal to

the product of the complements of the variables.

and the complement of a product of variables is equal to the sum of the

complements of the variables.

122

Check Your Progress

1. A ______ is an electronic circuit which produces a typical output signal

depending on its input signal.

2. An OR gate is also known as ___________ gate.

3. A NOT gate is also called ___________________.

7.12 Model Questions

1. What is logic gates? Draw the block diagram of a 3-input AND gate. Give its

truth table.

2. Draw the graphical symbol and truth table for a 2-input XOR gate.

3. Draw the logic diagram and graphic symbol of a 2-input Exclusive- OR gate.

4. Define and describe DeMorgan’s Theorem.

Answers to Check Your Progress

1. gate

2. INCLUSIVE-OR

3. INVERTER

123

UNIT VIII: COMBINATIONAL CIRCUITS

8.0 Learning Objectives

After reading this chapter, you will be able to:

• Define a combinational circuit

• Explain the functioning of a multiplexer and a demultiplexer.

• Explain the functioning of an Encoder and a Decoder.

• Simplify a given Boolean expression using Karnaugh map

• Explain the working an a half-adder and a full-adder.

8.1 Combinational Circuit

A combinational circuit is a collection of some interconnected set of logic gates whose

outputs at any time are determined directly from the present combination of inputs

without regard to previous inputs2.

A combinational circuit consists of input variables, logic gates, and output variables.

The logic gates accept binary signals from the inputs and generate some binary signals

to the outputs. Here binary signals mean only two possible values, one representing

logic-1 and the other logic-0. A combinational circuit can be represented as a network of

gates and, therefore, can be expressed by a truth table or boolean expression. A block

diagram of combinational circuit is shown below:

Figure 11: Block diagram of combinational circuit

2 Adapted from http://m.kkhsou.in/EBIDYA/CSC/MODIFY_combinational_sequential.html

124

Here n input binary variables come from an external source and the m output variables

go to an external destination. For n input variables, there are 2n possible combinations of

binary input values. For each possible input combination, there is one and only one

possible output combination. A combinational circuit can be described by m Boolean

functions, one for each output variable. Each output function is expressed in terms of the

n input variables.

The basic design issue related to combinational circuits is: the minimization of number

of gates. The normal circuit constraints for combinational circuit design are:

1. The depth of the circuit should not exceed a specific level.

2. Number of inputs to a gate and to how many gates its output can be fed.

8.2 Multiplexer and Demultiplexer

8.2.1 Multiplexer

The multiplexer is a circuit whose output is one of several inputs, depending on the

value given by some other selection inputs. In a circuit, a multiplexer is drawn as a

trapezoid as follows.

Figure 12: Multiplexer

This is a 4-to-1 multiplexer. On the left side, you can see four data inputs, which we'll

call d00, d01, d10, and d11. On the bottom, you can see two selection inputs, which we'll call

s1 and s0. And on the right, you can see the multiplexer's output. The truth table of

multiplexer is shown below:

125

Table 8: Truth table for multiplexer

Select

Lines

Output

S1 S0 O

0 0 d00

0 1 d01

1 0 d10

1 1 d11

What does a multiplexer do? It routes one of the data inputs to the multiplexer's output;

which of the data inputs goes out is determined based on the select inputs. For example,

if s1 is 1 and s0 is 0, then the d10 input is routed to the output. If instead s1 is 0 and s0 is 1,

then the circuit's output would be d01 instead. It's helpful to think of this a multiplexer as

a railroad switch, connecting one input to an output; the selection inputs control the

angle of the switch.

Figure 13: Path selection using line select

While a railroad switch is helpful in thinking about how a multiplexer works, circuits

don't actually have moving parts. If we're going to build a multiplexer, then we can only

use wires and logic gates to build it. Our solution will be to include an AND gate for

each of the data inputs, and to have each of the AND gates feed into an OR gate. The

AND gate corresponding to a data input will be 0 whenever the selection inputs don't

correspond to the data input; that way, the AND gate corresponding to an unselected

data input doesn't affect the OR gate's output, and so the OR gate's output will match the

output of the AND gate whose data input is selected. We include the data input on each

126

corresponding AND gate so that this AND gate's output will match the data input when

that data input is selected. Here's the circuit diagram.

Figure 14: Circuit diagram of 4X1 multiplexer

This particular multiplexer is a 4-to-1 multiplexer, so called because it routes one of four

inputs to a single output. Other common multiplexer ratios are 2-to-1, which would have

one selection bit; 8-to-1, with three selection bits; a 16-to-1, with four selection bits; and

even 32-to-1, with five selection bits.

8.2.2 Demultiplexer

The demultiplexer reverses the process of a multiplexer: It routes a single input into

one of several outputs, while the unselected outputs should emit a value of 0. We

represent it in a larger circuit as follows.

Figure 15: Demultiplexer

Internally, its circuit is similar to that of a multiplexer's, though it is simpler because

each output is treated independently. The truth table for the 1X4 demultiplexer is shown

below:

127

Table 9: Truth table for 1x4 demultiplexer

Data

Input

Select

Inputs

Outputs

d S1 S0 O11 O10 O01 O00

d 0 0 0 0 0 d

d 0 1 0 0 d 0

d 1 0 0 d 0 0

d 1 1 d 0 0 0

Below is an implementation diagram.

Figure 16: Circuit diagram of 1x4 demultiplexer

This is a 1-to-4 demultiplexer. Other common ratios are 1-to-2, 1-to-8, 1-to-16, and 1-

to-32; the number of selection bits will vary depending on how many are required to

indicate which output to use.

8.3 Encoder and Decoder

8.3.1 Encoder

An encoder is a combinational circuit that produces the reverse function from that of a

decoder. An encoder consists of 2n(or less) input lines and n output lines. The output

lines generate the binary code for the 2n input variables.

128

Figure 17: Logic diagram of octal to binary encoder

An octal to binary encoder logic circuit is shown in Figure 17. It has eight inputs, one

for each of the eight digits, and three outputs that generate the corresponding binary

number. It is constructed with OR gates and its inputs can be determined from the truth

table given in Table 10.

Table 10: Truth table of octal to binary encoder

Octal

Number

Inputs Outputs

 D0 D1 D2 D3 D4 D5 D6 D7 A B C

0 1 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 1

2 0 0 1 0 0 0 0 0 0 1 0

3 0 0 0 1 0 0 0 0 0 1 1

4 0 0 0 0 1 0 0 0 1 0 0

5 0 0 0 0 0 1 0 0 1 0 1

6 0 0 0 0 0 0 1 0 1 1 0

7 0 0 0 0 0 0 0 1 1 1 1

Here we assume that only one input line can be equal to 1 at any time. In this case the

circuit has eight inputs and could have 28 = 256 possible input combinations. Only eight

of these combinations have any meaning. The other input combinations are “don’t care

conditions”. The type of encoder available in Integrated Circuits form is called a priority

encoder. In these types of encoders, only the highest priority input line is encoded and

so an input priority is established.

129

8.3.2 Decoder

A decoder is a combinational logic circuit that receives coded information on n input

lines and feeds them to maximum of 2n unique output lines after conversion. But the

decoder output will have less than 2n outputs when the n-bit decoded information is

unused or don’t care combinations.

Figure 18: Logic diagram of 3-to-8 decoder

A 3-to-8 line decoder is shown in Figure 18. Here there are 3 input lines and 8 output

lines. The 3 inputs are decoded into eight outputs, each output representing one of the

minterms of the 3 input variables. The three inverters provide the complement of the

inputs, and each one of the eight AND gate generates one of minterms. A 3-to-8 line

decoder can be used for decoding any 3-bit code to provide eight outputs, one for each

element of the code.

The decoder is used in some code converters, for example BCD- to- seven segment

decoder. A 3-to-8 line decoder can be used in binary to octal conversion. Another use of

a decoder is that it can be used to implement any combinational circuit.

130

Table 11: Truth table for 3-to-8 decoder

A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1 0 0

0 1 1 0 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0

8.4 Half adder and Full adder

8.4.1 Half Adder

Let's begin the discussion by considering the basic adding process — how would we add

two numbers? Of course, you already know how to add base-10 numbers from your

studies in grade school: You start from the rightmost column (the 1's digits), add them

together, write the result in the rightmost column of the result and possibly carry a 1 into

the next column. You proceed column by column, leftward.

We can add binary numbers using a similar approach. The illustration below shows of

the process of adding the two four-bit numbers 1110(2) = 14(10) and 0111(2) = 7(10).

We'll want to build a circuit that follows this process. For the moment, let's worry about

just the first step: adding the rightmost bit from each number. What we'll want is a

circuit that takes two input bits — we'll call them a and b — and computes the sum of

131

these two bits. Since the sum could possibly be a two-bit number, this circuit will have

two outputs: sum will be the sum's 1's-bit, and cout will be the sum's 2's-bit. We'll call this

circuit a half adder.

We can design our half adder circuit by building a truth table that enumerates each

possible combination of the two inputs along with the appropriate value for cout and sum

in each case.

Table 12: Truth table for half adder

a b cout sum

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

To interpret this table, let's look at the last row, where a and b are both 1. In this case the

output is based on the sum of 1 and 1, which is 10(2). We'd place the 1's bit of this sum

(which is 0) into the bottom of the rightmost column, so this row of the truth table says

that sum should be 0. And we'd carry the two's bit of the sum (which is 1) into the next

column, so the truth table says that cout should be 1.

To build a circuit corresponding to this truth table, we need to determine how each

output relates to its inputs. We first notice that the cout output is the AND function on a

and b. The sum output, on the other hand, is 1 if a is 1 or b is 1, but not both. This is the

exclusive-or function on a and b; it is often abbreviated as the XOR of a and b. We

draw a XOR gate as an OR gate with a shield on its inputs.

Figure 19: X-OR gate

132

However, if we insist on drawing the circuit with just AND, OR, and NOT gates, we can

derive the sum-of-products expression for sum: ̅a b + a b̅. The resulting circuit is

equivalent to the XOR gate.

With a XOR gate built, we can now put together our half adder: sum will be the

exclusive OR of a and b, while cout will be the AND of a and b.

We'll employ this circuit in other circuits that we build. Even though the diagram is

rather simple, we'll prefer instead to draw an even simpler box labeled half adder to

represent this circuit:

8.4.2 Full adder

Now let's consider the subsequent steps in our addition procedure, where we add later

columns. In each of these later columns, there is a possibility that we have a carry

133

coming in from the preceding column. Thus, we'll now want to build a circuit with three

input bits and produces the sum of these inputs as its output. We'll use a and b to

represent the bit from each of the numbers in the column; but there will be a third input

which we'll call cin corresponding to the potential carry from the preceding column. Our

circuit will again have two output bits, since the sum of three 0/1 values can be a two-bit

output; the bit placed as the result for the column will again be called sum, and the

number carried into the next column will again be cout.

We've already seen how we to build a circuit for adding the two input bits a and b

together: We can simply use a half adder for that. But we also want to add cin to this

sum. To accomplish this, we can use an additional half adder, whose inputs would be the

sum from the first half adder and cin.

But we'll be left with two values of cout from these two half adders. What should we do

to them? We essentially want to add them together, so we could use yet another half

adder to accomplish that. But in fact we can guarantee that at least one of these two cout

values will be 0: After all, if cout happens to be 1 from the first half adder, then that half

adder's sum output must necessarily be 0 — and with a 0 as one of the inputs into the

second half adder, its cout would be 0. Since at most one of these cout values will be 1, we

can add them together using a simple OR gate. That's a better choice than a third full

adder because it requires fewer gates.

This leads to the following circuit.

Figure 20: Full adder

The circuit diagram of full adder is shown below:

134

Figure 21: Full adder circuit

As with the half adder, we'll want to reuse this circuit again. We'll feel free to draw a

box labeled full adder that represents this circuit.

Figure 22: Block diagram of full adder

8.5 Summary

1. A Boolean algebra is an algebraic structure, supplied with two binary operators

+, . and a set of elements A , such that, for all elements of the set A, the

postulates formulated by E.V. Huntington are satisfied.

2. In case of two valued Boolean algebra, the set of elements contains only two

elements 0 and 1.

3. Duality principle states that every algebraic expression deducible from the

postulates of Boolean algebra remains valid if the operators and identity

elements are interchanged.

4. Theorems of Boolean Algebra are

135

5. A Boolean expression is an algebraic expression formed with binary variables,

two binary operators OR(+) and AND (.) , the unary operator NOT(´) and

parentheses. A binary variable can take only two values 0 or 1.

6. A Boolean expression can be simplified using the theorems and postulates of

boolean algebra and Karnaugh map.

7. A combinational circuit is consists of some interconnected set of logic gates with

some input variables and output variables.

8. A multiplexer is a combinational circuit where binary information is selected

from one of 2n input lines and transmitted to a single output line. Here n is the

number of selection lines.

9. An encoder is a combinational circuit which generates the binary code for the 2n

input variables.

10. A decoder is a combinational circuit that receives coded information on n input

lines and transmits them to maximum of 2n unique output lines after conversion.

11. A half-adder is a combinational circuit that add two bits.

12. A full-adder is combinational circuits that add three bits.

13. A sequential circuit is the circuit whose the output is depended on the present

inputs as well as past output.

Check Your Progress

1. A __________________ is a collection of some interconnected set of logic gates

whose outputs at any time are determined directly from the present combination

of inputs without regard to previous inputs.

2. The ____________is a circuit whose output is one of several inputs, depending

on the value given by some other selection inputs.

3. The _________________ reverses the process of a multiplexer.

136

8.6 Model Questions

1. Define a combinational circuit.

2. Explain the functioning of a multiplexer and a demultiplexer.

3. Explain the functioning of an Encoder and a Decoder.

4. Explain the working an a half-adder and a full-adder.

5. Simplify the following Boolean expression using Karnaugh map.

a. A.B.C.D + A.B´.C.D + A´.B.C.D + A´.B´.C.D

b. A´.C + A´.B + A.B´.C + B.C

6. Simplify x.(x + y) + y.(x´ + y) using Algebraic Method

7. Prove that

a. x.x = x

b. x + xy = x

8. Explain the function of a multiplexer . Draw the logic diagram of 4 -to-1

multiplexer.

9. Explain full-adder with logic diagram.

10. What do you mean by Sum-of-Product (SOP) of Boolean Expression. Explain

with example.

Answers to Check Your Progress

1. combinational circuit

2. multiplexer

3. demultiplexer

137

BLOCK III

138

139

UNIT IX: SEQUENTIAL CIRCUITS

9.0 Learning Objectives

After the completion of this unit, you will be able to:

• Define sequential circuit

• Understand the working of a flip-flop

• Differentiate between various types of filp-flop and understand their working

• Convert D flip-flop to JK flip-flop

• Differentiate between a latch and a flip-flop

• Draw the logic diagram of a clocked RS flip-flop with four NAND gates.

• Define acre around condition

• Know the applications of JK flip-flop

9.1 Sequential Circuit

A circuit is said to be sequential circuit if its output is the function of present input and

past output. The basic element used in sequential circuits is a flip-flop, which can be

made using logic gates and is available in IC (Integrated Circuit) form. A block diagram

of a sequential circuit is in Figure 23. It consists of a combinational circuit to which

memory elements are connected to form a feedback path. The memory elements are

devices capable of storing binary information within them. These circuits store and

remember information. The sequential circuit receives binary information from external

inputs. Classification of sequential circuits depends on the timing of their signals. They

are classified as follows: (i) synchronous sequential circuits and (ii) asynchronous

sequential circuits.

Figure 23: Block diagram of sequential circuit

140

Synchronous sequential circuits use flip-flops and their status can change only at

discrete instants. The synchronization in sequential circuits can be achieved using a

clock pulse generator. It synchronizes the effect of input over output. It presents signal

of the following form (Figure 24).

Figure 24: Clock signal of a clock pulse generator

From the diagram we can see that the clock pulse is the time between successive

transitions in the same direction, that is, between two rising or two falling edges. State

transitions in synchronous sequential circuits are made to take place at times when the

clock is making a transition from 0 to 1 (rising edge) or from 1 to 0 (falling edge).

Between successive clock pulses there is no change in the information stored in

memory.

The behavior of asynchronous sequential circuits depends upon the order in which its

input signals change and can be affected at any instant of time. Asynchronous sequential

circuits:

1. Do not use clock pulses. The change of internal state occurs when there is a

change in the input variable.

2. Their memory elements are either unclocked flip-flops(FF) or time delay-

elements.

3. They often resemble combinational circuits with feedback.

4. They are used when speed of operation is important

141

9.2 Flip Flops

Flip-Flops are the basic building blocks of sequential circuits. A flip-flop is a binary cell

which can store a bit of information. A basic function of flip-flop is storage, which

means memory. A flip-flop (FF) is capable of storing 1 (one) bit of binary data. It has

two stable states either ’1’ or ‘0’. A flip-flop maintains any one of the two stable states

which can be treated as zero or one depending on presence and absence of output

signals.

A flip-flop circuit has two outputs, one for the normal value and other for the

complement value of the bit stored in it. A basic flip-flop circuit can be constructed from

two NAND gates (Figure 26) or two NOR gates (Figure 25). The flip-flop in the figure

have, two inputs R (reset) and S (set) and two outputs Q and Q’.

Figure 25: Basic flip-flop circuit with NOR gates

Figure 26: Basic flip-flop circuit using NAND gates

In normal mode of operation both the flip-flop inputs are at 0 i.e., S=0 and R=0. This

flip-flop can show two states: either the value of Q is 1 (i.e., set state) or the value of Q

142

is 0. We call it clear state. Let us see how the S and R input can be used to set and clear

the state of the flip-flop. Suppose the flip-flop was in set state i.e., Q=1 and Q’=0 and as

S=0 and R=0, the output of ‘a’ NOR gate will be 1 since both its input Q’ and R are zero

and ‘b’ NOR gate will show output 0 as one of its input Q is 1. Similarly if flip-flop was

in clear state then Q’ =1 and R=0, therefore, output of ‘a’ gate will be ‘0’ and ‘b’ gate 1.

Thus, flip-flop maintains a stable state at S=0 and R=0.

The flip-flop is taken to set if the S input momentarily goes to 1 and then goes back to 0.

R remains at zero during this time. Suppose initially, the flip-flop was in state 0, i.e., the

value of Q was 0. As soon as S become 1 the output of NOR gate ‘b’ goes to ‘0’ i.e., Q’

becomes 0 and immediately Q becomes 1 as both the input (Q’ and R) to NOR gate ‘a’

become 0. The change in the value of S back to 0 does not change the value of Q again

as the input to NOR gate ‘b’ now are Q=1 and S=0. Thus, the flip-flop stays in set state

1 even after S returns to zero.

If the flip-flop was in state 1 then, when S goes to 1 there is no change in value of Q’ as

both the input to NOR gate ‘b’ are 1 at this time. Thus, Q’ remains in state 0 or in other

words flip-flop stays in set state.

If R input goes to value 1 then flip-flop acquires the clear state. In changing

momentarily the value of R to 1 the Q output changes to 0 irrespective of the sate of

flip-flop and as Q is 0 and S is 0 the Q’ becomes 1. Even after R comes back to value 0,

Q remains 0 i.e., flip-flop comes to the clear state.

When both S and R goes to 1 at the same time, well this is the situation which may

create a set or clear state depending on which of the S and R stays longer in zero state.

But meanwhile both of them are 1 the value of Q and Q’ becomes 1 which implies that

Q and its complement both are one, an impossible situation. Therefore, the transition of

both S and R to 1 simultaneously is an undesirable condition for this basic circuit. There

are many types of flip-flops. They are:

1. RS Flip-Flop (Reset-Set Flip-Flop)

2. D type Flip-Flop (Data Latch)

143

3. JK Flip-Flop

4. T type Flip-Flop (Triggered Flip-Flop)

5. Master-Slave Flip-Flop

6. JK Master Slave Flip-Flop

9.2.1 RS Flip-Flop

The main feature in RS flip-flop is the addition of a clock pulse input. In this flip-flop,

change in the value of R or S will change the state of the flip-flop only if the clock pulse

at that moment is 1(one). It is denoted as:

Figure 27: Graphic symbol of RS flip-flop

Here two inputs are Set (S) and Reset (R). The two outputs are Q (Normal) and Q’

(Complement of Q). If Q is 1 Q’ is 0 and vice versa.

Figure 28: Logic diagram of clocked RS flip-flop using NAND gates

We can construct a flip-flop circuit from two NOR gates(Figure 29) or two NAND

gates(Figure 30). The cross-coupled connection from the output of one gate to the input

of other gate constitutes a feedback path. Each flip-flop has two outputs, Q and Q̅, and

144

two inputs, set and reset. This type of flip-flop is sometimes called a direct-coupled RS

flip-flop or SR latch.

Figure 29: Basic flip-flop circuit with NOR gates

Figure 30: Basic flip-flop circuit with NAND gates

In both the circuits, the output of one gate feeds into the input of the other.

A 0(low) at set S of gate 1 gives an output 1 (high) at Q. This output 1 is fed to gate 2

along with 1 at R. The output of 2nd gate is 0 (low) at Q/. So the output at Q and Q/ are

1 and 0 for inputs of 0 and 1 at R and S respectively. This is the Set condition and

remain in that until cleared. To clear the Set Condition, we operate the Reset and the

Operation is reverse of Set. R is activated by 0 (low). The output of 2nd gate at Q/ is 1

(high). The 1 (high) output of 2nd gate is fed to 1st gate along with 1 at S. The two 1’s

give a 0 output at Q. This state also is a stable one. Thus we see the normal output at Q

145

is either 1 or 0, which is one bit of information in binary, Hence a flip-flop can store one

bit of information.

If both R and S are 1 (high) no change can occur in the output from the previous state.

This is known as hold state.

If both S and R are 0 (low), both outputs are driven to 1 (high). This is a prohibited state

giving rise to racing condition.

The truth table for the RS flip flop is as follows:

Table 13: Truth table of a RS flip-flop

Mode of

Operation

Input Output

R S Q Q’

Hold 1 1 No change Inactive

Set 1 1 1 0

Reset 1 1 0 1

Race 1 1 1 1

9.2.2 D Flip-Flop

D flip flop is actually a slight modification of the above explained clocked SR flip-flop3.

From the figure you can see that the D input is connected to the S input and the

complement of the D input is connected to the R input. The D input is passed on to the

flip flop when the value of CP is ‘1’. When CP is HIGH, the flip flop moves to the SET

state. If it is ’0′, the flip flop switches to the CLEAR state. The circuit diagram and truth

table is given below.

Figure 31: D- flip flop implemented through NAND gate

3 Adapted from http://todayscircuits.blogspot.com/2011/06/flip-flops.html#.WCGARclgSpp

146

Figure 32: Graphical symbol

Table 14: Transition table

Q D Q(t+1)

0 0 0

0 1 1

1 0 0

1 1 1

9.2.3 JK Flip-Flop

A J-K flip flop can also be defined as a modification of the S-R flip flop. The only

difference is that the intermediate state is more refined and precise than that of a S-R flip

flop.

Figure 33: Logic diagram of JK flip-flop

147

Figure 34: Graphical symbol of JK flip-flop

Table 15: Transition table of JK flip-flop

Q J K Q(t+1)

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

The behavior of inputs J and K is same as the S and R inputs of the S-R flip flop. The

letter J stands for SET and the letter K stands for CLEAR.

When both the inputs J and K have a HIGH state, the flip-flop switch to the complement

state. So, for a value of Q = 1, it switches to Q=0 and for a value of Q = 0, it switches to

Q=1.

The circuit includes two 3-input AND gates. The output Q of the flip flop is returned

back as a feedback to the input of the AND along with other inputs like K and clock

pulse [CP]. So, if the value of CP is ’1′, the flip flop gets a CLEAR signal and with the

condition that the value of Q was earlier 1. Similarly output Q’ of the flip flop is given

as a feedback to the input of the AND along with other inputs like J and clock pulse

[CP]. So the output becomes SET when the value of CP is 1 only if the value of Q’ was

earlier 1.

148

The output may be repeated in transitions once they have been complimented for J=K=1

because of the feedback connection in the JK flip-flop. This can be avoided by setting a

time duration lesser than the propagation delay through the flip-flop. The restriction on

the pulse width can be eliminated with a master-slave or edge-triggered construction.

9.2.4 T Flip-Flop

This is a much simpler version of the J-K flip flop. Both the J and K inputs are

connected together and thus are also called a single input J-K flip flop. When clock

pulse is given to the flip flop, the output begins to toggle. Here also the restriction on the

pulse width can be eliminated with a master-slave or edge-triggered construction. Take a

look at the circuit and truth table below.

Figure 35: Logic diagram of T flip-flop

Figure 36: Graphical symbol of T flip-flop

Table 16: Transition table of T flip-flop

Q T Q(T+1)

0 0 0

0 1 1

1 0 1

1 1 0

149

9.2.5 Master-Slave Flip-Flop

Consider the circuit given in Figure 37. It gives the logic diagram for master-slave D

flip-flop4. It has two flip-flops (called master and slave respectively) and an inverter.

The slave section is basically the same as the master section except that it is clocked on

the inverted clock pulse and is controlled by the outputs of the master section rather than

by the external inputs. The D input is sampled to change the output Q only at the

negative edge of the clock pulse CP. The output of the NOT gate is 1 when the CP is 0.

This enables slave flip-flop and its output Q is equal to the output Y of master flip-flop.

The master flip-flop is disabled when CP is at logic 0 level. When the CP goes 1, the

data from the external D input is given to the master. As long as the CP stays at the 1

level, the slave is disabled because the output of the inverter is equal to 0. Any input

change affects the master output Y. However, it cannot affect the slave output.

Figure 37: Master slave flip-flop

4 Adapted from http://vle.du.ac.in/mod/book/view.php?id=11685&chapterid=22699

150

9.2.6 JK Master-Slave Flip-Flop

Master-slave flip flop is designed using two separate flip flops5. Out of these, one acts as

the master and the other as a slave. The figure of a master-slave J-K flip flop is shown

below.

Figure 38: JK Master-Slave flip flop

From the above figure you can see that both the J-K flip flops are presented in a series

connection. The output of the master J-K flip flop is fed to the input of the slave J-K flip

flop. The output of the slave J-K flip flop is given as a feedback to the input of the

master J-K flip flop. The clock pulse [Clk] is given to the master J-K flip flop and it is

sent through a NOT Gate and thus inverted before passing it to the slave J-K flip flop.

When Clk=1, the master J-K flip flop gets disabled. The Clk input of the master input

will be the opposite of the slave input. So the master flip flop output will be recognized

by the slave flip flop only when the Clk value becomes 0. Thus, when the clock pulse

males a transition from 1 to 0, the locked outputs of the master flip flop are fed through

to the inputs of the slave flip-flop making this flip flop edge or pulse-triggered. To

understand better take a look at the timing diagram illustrated below.

5Adapted from

http://eduladder.com/viewquestions.php?questionid=766&title=working%20of%20master-

slave%20JK%20flip%20flop

151

Figure 39: Timing diagram of JK Master-Slave flip flop

Thus, the circuit accepts the value in the input when the clock is HIGH, and passes the

data to the output on the falling-edge of the clock signal. This makes the Master-Slave J-

K flip flop a Synchronous device as it only passes data with the timing of the clock

signal.

9.3 Summary

1. The output state of a “sequential logic circuit” is a function of the following

three states, the “present input”, the “past input” and/or the “past output”.

2. Sequential logic circuits are generally termed as two state or Bistable devices

which can have their output or outputs set in one of two basic states, a logic level

“1” or a logic level “0” and will remain “latched” (hence the name latch)

indefinitely in this current state or condition until some other input trigger pulse

or signal is applied which will cause the bistable to change its state once again.

3. Sequential logic circuits can be divided into the following three main categories:

a. Event Driven – asynchronous circuits that change state immediately

when enabled.

b. Clock Driven – synchronous circuits that are synchronised to a specific

clock signal.

c. Pulse Driven – which is a combination of the two that responds to

triggering pulses.

4. The SR flip-flop, also known as a SR Latch, can be considered as one of the

most basic sequential logic circuit possible.

152

5. It is basically S-R latch using NAND gates with an additional enable input. It is

also called as level triggered SR-FF.

6. Master slave JK FF is a cascade of two S-R FF with feedback from the output of

second to input of first. Master is a positive level triggered. But due to the

presence of the inverter in the clock line, the slave will respond to the negative

level.

7. Delay Flip Flop or D Flip Flop is the simple gated S-R latch with a NAND

inverter connected between S and R inputs. It has only one input. The input data

is appearing at the output after some time. Due to this data delay between i/p and

o/p, it is called delay flip flop.

8. Toggle flip flop is basically a JK flip flop with J and K terminals permanently

connected together.

Check Your Progress

A. Multiple choice questions

1. How is a J-K flip-flop made to toggle?

a. J = 0, K = 0

b. J = 1, K = 0

c. J = 0, K = 1

d. J = 1, K = 1

2. With regard to a D latch, ________.

a. the Q output follows the D input when EN is LOW

b. the Q output is opposite the D input when EN is LOW

c. the Q output follows the D input when EN is HIGH

d. the Q output is HIGH regardless of EN's input state

3. Two cross coupled NAND gates make

a. SR Latch

b. RS flipflop

c. D flipflop

d. master slave flipflop

4. D flipflop is constructed with

a. AND gates

b. OR gates

c. NAND gates

d. NOR gates

5. Mater slave flipflop can be constructed with

a. SR Latch

b. Adder

c. JK flipflop

d. multiplier

153

9.4 Model Questions

1. Define sequential circuit.

2. Define Flip Flop. Give the difference between Latch and Flip Flop.

3. What is sequential circuit ? How it differ from combinational circuit?

4. What is flip-flop? Explain RS flip-flop.

5. Draw the logic diagram of a clocked RS flip-flop with four NAND gates.

6. With the help of logic diagram and truth table explain the working of clocked RS

Flip Flop.

7. What is “race around condition” in JK Flip flop?

8. What are the applications of JK F/F?

9. Show how a D Flip-Flop can be converted into JK-Flip Flop.

Answers to Check Your Progress

A. Multiple choice questions

1. A

2. C

3. A

4. C

5.C

154

155

CHAPTER 10: REGISTERS

10.0 Learning Outcomes

After the completion of this unit, you will be able to:

• Define and understand the functions of a register

• Demonstrate the working of a sift register

• Explain different types of shift registers

• Know the applications of shift registers

• Design 3-bit Parallel Input, Serial Output shift register

10.1 Introduction

With flip-flop we can store data bitwise but usually data does not appear as single bit.

Instead it is common to store data words of n bit with typical word lengths of 4, 8, 16,

32 or 64 bits. Thus, several flip-flops are combined to form a register to store whole data

words. Registers are synchronous circuits thus all flip-flops are controlled by a common

clock line. A group of flip-flops constitutes a register as each flip-flop is a binary cell

capable of storing one bit of information. An n - bit register has a group of n flip-flops

and is capable of storing any binary information containing n bits.

Figure 40 shows a register constructed with four D flip-flops and a common clock

pulse(CP) input. The CP enables all flip-flops so that information presently available at

the four inputs can be transferred into the 4-bit register. The four outputs can be sampled

to obtain the information presently stored in the register.

Figure 40: 4-bit register

156

10.2 Shift registers

Shift registers are a type of sequential logic circuit, mainly for storage of digital data. A

register capable of shifting its binary information either to the right or to the left at a

time, when one clock pulse is applied is called a shift register. The logical configuration

of a shift register consist of a chain of flip-flops connected in cascade, with the output of

one flip-flop connected to the input of the next flip-flop. All flip-flops receive a

common clock pulse which causes the shift from one stage to the next.

Figure 41: Shift register

The Q output of a given flip-flop is connected to the D input of flip-flop at its right.

Each clock pulse shifts the contents of the register one-bit position to the right. The

serial input determines what goes into the leftmost flip-flop during the shift. The serial

output is taken from the output of the rightmost flip-flop prior to the application of a

pulse. Although this register shifts the contents to the right, if we turn the page upside

down, we find that the register shifts its content to the left. Thus, a unidirectional shift

register can function either as shift-right or as a shift-left register.

10.3 Types of shift registers

A Shift Register can be used in four different configurations depending upon the way in

which the data is entered into and take out of it. These four configurations are:

i. Serial input, serial output (SISO): In this type of Shift Register data can be

moved in and out of the register, one bit at a time.

157

ii. Parallel input, serial output (PISO): Here data can be loaded simultaneously. But

the data can be removed from the register one bit at a time by the clock pulse.

iii. Serial input, parallel output (SIPO): In this case data is loaded serially one bit at

a time but the data stored can be read simultaneously.

iv. Parallel input, parallel output (PIPO): In this type of shift register the data can be

loaded into the storage simultaneously and can also be taken out or read

simultaneously.

10.3.1 Serial Input, Serial Output (SISO) Shift Register

A serial-in serial-out(SISO) shift register6 enters and removes binary data in serial form.

The diagram below shows an SISO shift register with four J-K flip-flops. The diagram

below shows an SISO shift register with four J-K flip-flops. Four clock pulses are

required to serially shift a 4-bit binary number. The number is transferred into the first

flip-flop(FFA) of the register one bit at a time. As each new bit is entered, all of the bits

that are in the register are simultaneously shifted one position to the right.

Figure 42: Serial-in serial-out(SISO) shift register

One shift occurs as the clock pulse is applied simultaneously to each flip-flop. The

binary bit that is shifted into each flip-flop (a 0 or a 1) is determined by the mode that it

is in before the net clock pulse arrives. The mode is determined by whether a 0 or a 1 is

applied to the J and K inputs.

6 Adopted from https://www.wisc-online.com/learn/career-clusters/manufacturing/dig3903/serial-in-

serial-out-shift-register

158

Figure 43: SET and RESET mode in JK flip-flop

For flip-flops B,C and D, the logic state applied to the inputs is determined by the Q and

Q̅ outputs of the previous flip-flop. For flip-flop A, the mode is determined by the logic

state that is applied to its J input and the opposite inverted logic state at the K input.

The diagram below shows the flip-flops with contents stored in them.

Sometimes it is desirable to clear the register. This function is achieved by applying a

momentary logic 0 to all of the flip-flops simultaneously.

159

10.3.2 Serial Input, Parallel Output (SIPO) Shift Register

A Serial-In Parallel-Out shift register is a shift register that converts serial data to

parallel data and all the internal stages of the SIPO are available as outputs. If four data

bits are shifted in by four clock pulses via a single wire at data-in, below, the data

becomes available simultaneously on the four Outputs out[0] to out[3] after the fourth

clock pulse.

Figure 44: SIPO shift register

10.3.3 Parallel Input, Serial Output (PISO) Shift Register

Parallel-Input Serial-Output shift registers provides input data to all stages

simultaneously. It stores data, shifts it on a clock by clock basis, and delays it by the

number of stages times the clock period. In addition, parallel-in/ serial-out really means

that we can load data in parallel into all stages before any shifting ever begins. This is a

way to convert data from a parallel format to a serial format. By parallel format we

mean that the data bits are present simultaneously on individual wires, one for each data

bit as shown below. By serial format we mean that the data bits are presented

160

sequentially in time on a single wire or circuit as in the case of the “data out” on the

block diagram below.

Figure 45: PISO shift register

10.3.4 Parallel Input, Parallel Output (PIPO) Shift Register

The purpose of the parallel-in/ parallel-out shift register is to take in parallel data, shift

it, then output it as shown below. A universal shift register is a do-everything device in

addition to the parallel-in/ parallel-out function.

Figure 46: PIPO shift register

Above we apply four bit of data to a parallel-in/ parallel-out shift register at in[0] in[1]

in[2] in[3]. The mode control, which may be multiple inputs, controls parallel loading vs

shifting. The mode control may also control the direction of shifting in some real

161

devices. The data will be shifted one bit position for each clock pulse. The shifted data is

available at the outputs out[0] out[1] out[2] out[3]. The “data in” and “data out” are

provided for cascading of multiple stages. Though, above, we can only cascade data for

right shifting. We could accommodate cascading of left-shift data by adding a pair of

left pointing signals, “data in” and “data out”, above.

The internal details of a right shifting parallel-in/ parallel-out shift register are shown

below. The tri-state buffers are not strictly necessary to the parallel-in/ parallel-out shift

register, but are part of the real-world device shown below.

10.4 Application of Shift register

Shift registers can be found in many applications. Here is a list of a few.

i. To produce time delay: The serial in -serial out shift register can be used as a

time delay device. The amount of delay can be controlled by the number of

stages in the register or by the clock frequency.

ii. To simplify combinational logic: A major problem in the realization of

sequential circuits is the assignment of binary codes to the internal states of the

circuit in order to reduce the complexity of circuits required. By assigning one

flip-flop to one internal state, it is possible to simplify the combinational logic

required to realize the complete sequential circuit. When the circuit is in a

162

particular state, the flip-flop corresponding to that state is set to HIGH and all

other flip-flops remain LOW.

iii. To convert serial data to parallel data: A computer or microprocessor-based

system commonly requires incoming data to be in parallel format. But

frequently, these systems must communicate with external devices that send or

receive serial data. So, serial-to-parallel conversion is required.

Check Your Progress

1. _______________ are a type of sequential logic circuit, mainly for storage of

digital data.

2. A ____________ shift register enters and removes binary data in serial form.

10.5 Summary

1. A register is made out of multiple flip-flops connected to each other used to store

multiple bits of data.

2. A shift register is able to shift the data it contains by one bit either to the left or

to the right. They are used to transform serial data to parallel, and parallel to

serial data.

3. The Shift Register is another type of sequential logic circuit that can be used for

the storage or the transfer of data in the form of binary numbers.

4. Serial-in/Serial-out Shift Register delays the input data by one clock cycle for

each stage.

5. Serial-in/Parallel-out Shift Register is similar to the Serial-in/Serial-out shift

registers in that it also shifts data with each clock cycle. However, the difference

is that the internal stages are all made available at the output, thus converting the

serial input data into parallel output data format.

10.6 Model Questions

1. What is register?

2. Define shift register?

3. Explain the four configurations of shift registers.

4. Explain the working of serial-in serial-out(SISO) shift register in details.

163

5. Write down the different types of shift registers and its functions.

6. What are the different applications of a shift register.

7. Design 3-bit PISO (Use D –Flip Flop).

Answers to Check Your Progress

1. Shift registers

2. serial-in serial-out(SISO)

164

165

CHAPTER 11: COUNTER

11.0 Learning Objectives

After the completion of this unit, you will be able to:

• Differentiate between synchronous and asynchronous counter

• Classify various types of counters

• Explain the working of Asynchronous (ripple) counter

• Define the working of Synchronous counter

• Define the working of an asynchronous counter

• Explain the working of Decade counter (MOD 10 Counter)

• Explain the working of Ring Counter

• Explain the working of Johnson counter

11.1 Introduction

In digital logic and computing, a counter is a device which stores (and sometimes

displays) the number of times a particular event or process has occurred, often in

relationship to a clock signal7. The most common type is a sequential digital logic

circuit with an input line called the "clock" and multiple output lines. The values on the

output lines represent a number in the binary or BCD number system. Each pulse

applied to the clock input increments or decrements the number in the counter.

A counter circuit is usually constructed of a number of flip-flops connected in cascade.

Counters are a very widely used component in digital circuits, and are manufactured as

separate integrated circuits and also incorporated as parts of larger integrated circuits.

In electronics, counters can be implemented quite easily using register-type circuits such

as the flip-flop, and a wide variety of classifications exist:

1. Asynchronous (ripple) counter – changing state bits are used as clocks to

subsequent state flip-flops

2. Synchronous counter – all state bits change under control of a single clock

7 Adopted from http://wikivisually.com/wiki/Counter_(digital)

166

3. Decade counter – counts through ten states per stage

4. Ring counter – formed by a shift register with feedback connection in a ring

5. Johnson counter – a twisted ring counter

Each is useful for different applications. Usually, counter circuits are digital in nature,

and count in natural binary. Many types of counter circuits are available as digital

building blocks, for example a number of chips in the 4000 series implement different

counters.

Occasionally there are advantages to using a counting sequence other than the natural

binary sequence—such as the binary coded decimal counter, a linear feedback shift

register counter, or a Gray-code counter. Counters are useful for digital clocks and

timers, and in oven timers, VCR clocks, etc.

11.2 Asynchronous (ripple) counter

An asynchronous (ripple) counter is a single d-type flip-flop, with its J (data) input fed

from its own inverted output. This circuit can store one bit, and hence can count from

zero to one before it overflows (starts over from 0). This counter will increment once for

every clock cycle and takes two clock cycles to overflow, so every cycle it will alternate

between a transition from 0 to 1 and a transition from 1 to 0.

Figure 47: Asynchronous counter created from two JK flip flop

Notice that this creates a new clock with a 50% duty cycle at exactly half the frequency

of the input clock. If this output is then used as the clock signal for a similarly arranged

D flip-flop (remembering to invert the output to the input), one will get another 1 bit

counter that counts half as fast. Putting them together yields a two-bit counter:

167

Cycle Q1 Q0 (Q1:Q0)dec

0 0 0 0

1 0 1 1

2 1 0 2

3 1 1 3

4 0 0 0

You can continue to add additional flip-flops, always inverting the output to its own

input, and using the output from the previous flip-flop as the clock signal. The result is

called a ripple counter, which can count to 2n - 1 where n is the number of bits (flip-flop

stages) in the counter. Ripple counters suffer from unstable outputs as the overflows

"ripple" from stage to stage, but they do find frequent application as dividers for clock

signals, where the instantaneous count is unimportant, but the division ratio overall is (to

clarify this, a 1-bit counter is exactly equivalent to a divide by two circuit; the output

frequency is exactly half that of the input when fed with a regular train of clock pulses).

The use of flip-flop outputs as clocks leads to timing skew between the count data bits,

making this ripple technique incompatible with normal synchronous circuit design

styles.

11.3 Synchronous counter

The term synchronous refers to the events that have a fixed time relationship with each

other. With respect to counter operation, synchronous means that all the flip-flops in the

counter are clocked at the same time by a common clock pulse. In this type of counter

the clock pulse are applied to the CP inputs of all flip-flops. The common pulse trigger

all the flip-flops simultaneously, rather than one at a time in succession as in the ripple

counter. This increases the speed of operation of the counters. The pulse to be counted

are applied at the clock input terminal.

High-frequency operations require that all the flip-flops of a counter be triggered at the

same time to prevent errors. We use a Synchronous counter for this type of operation.

The synchronous counter is similar to a ripple counter with two exceptions: The clock

168

pulses are applied to each flip-flop, and additional gates are added to ensure that the flip-

flops toggle in the proper sequence.

11.3.1 Working of a three-stage synchronous counter

A logic diagram of a three-stage synchronous counter is shown in Figure 48. Pulse

sequence is shown in Error! Reference source not found.. The clock input is wired to

each of the flip-flops(FF) to prevent possible errors in the count. A HIGH is wired to the

J and K inputs of FF1 to make the FF toggle. The output of FF1 is wired to the J and K

inputs of FF2, one input of the AND gate, and indicator A. The output of FF2 is wired to

the other input of the AND gate and indicator B. The AND output is connected to the J

and K inputs of FF3. The C indicator is the only output of FF3.

Figure 48: Logic diagram of three stage synchronous counter

Let us assume the following initial conditions: The outputs of all FFs, the clock, and the

AND gate are 0; the J and K inputs to FF1 are HIGH.

Clock pulse 1 causes FF1 to set. This HIGH lights lamp A, indicating a binary count of

001. The HIGH is also applied to the J and K inputs of FF2 and one input of the AND

gate. FF2 and FF3 are unaffected by the first clock pulse because the J and K inputs

were LOW when the clock pulse was applied.

169

Figure 49: Timing diagram with pulse sequence

As clock pulse 2 goes LOW, FF1 resets, turning off lamp A. In turn, FF2 will set,

lighting lamp B and showing a count of 010. The HIGH from FF2 is also felt by the

AND gate. The AND gate is not activated at this time because the signal from FF1 is

now a LOW. A LOW is present on the J and K inputs of FF3, so it is not toggled by the

clock. Clock pulse 3 toggles FF1 again and lights lamp A. Since the J and K inputs to

FF2 were LOW when pulse 3 occurred, FF2 does not toggle but remains set. Lamps A

and B are lit, indicating a count of 011. With both FF1 and FF2 set, HIGHs are input to

both inputs of the AND gate, resulting in HIGHs to J and K of FF3. No change occurred

in the output of FF3 on clock pulse 3 because the J and K inputs were LOW at the time.

Just before clock pulse 4 occurs, we have the following conditions: FF1 and FF2 are set,

and the AND gate is outputting a HIGH to the J and K inputs of FF3. With these

conditions all of the FFs will toggle with the next clock pulse. At clock pulse 4, FF1 and

FF2 are reset, and FF3 sets. The output of the AND gate goes to 0, and we have a count

of 100.

170

It appears that the clock pulse and the AND output both go to 0 at the same time, but the

clock pulse arrives at FF3 before the AND gate goes LOW because of the transit time of

the signal through FF1, FF2, and the AND gate.

Between pulses 4 and 8, FF3 remains set because the J and K inputs are LOW. FF1 and

FF2 toggle in the same sequence as they did on clock pulses 1, 2, and 3.

Clock pulse 7 results in all of the FFs being set and the AND gate output being HIGH.

Clock pulse 8 causes all the FFs to reset and all the lamps to turn off, indicating a count

of 000 . The next clock pulse (9) will restart the count sequence.

11.4 Decade counter (MOD 10 Counter)

A Mod 10 counter has 10 possible states i.e. it counts from 0 to 9 and roll over8.

Looking at the truth table, the counter should run from 00002 to 10012.

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

Since the counter has to display 10012, the next number (10102) will be used to reset the

counter to zero. Since the asynchronous inputs are active high, an AND gate will be

used. The two flip-flops where a “1” occurs will be tied to an AND gate, and the output

will be tied to the ‘clear’ input.

When the counter goes to 10102, the AND gate will have a 1 on its output and will

activate the “clear” inputs. This will reset the counter to 00002.The 10102 will never be

displayed. In essence, the counter counted/displayed from 00002 to 10012.

8 https://www.wisc-online.com/learn/career-clusters/manufacturing/dig4603/the-mod-10-counter

171

Figure 50: Mod 10 counter

11.5 Ring Counter

A ring counter is a circular shift register which is initiated such that only one of its flip-

flops is the state one while others are in their zero states. A ring counter is a shift

register (a cascade connection of flip-flops) with the output of the last one connected to

the input of the first, that is, in a ring. Typically, a pattern consisting of a single bit is

circulated so the state repeats every n clock cycles if n flip-flops are used.

Figure 51: Ring counter

172

11.6 Johnson counter

A Johnson counter (or switch-tail ring counter, twisted ring counter, walking ring

counter, or Möbius counter) is a modified ring counter, where the output from the last

stage is inverted and fed back as input to the first stage. The register cycles through a

sequence of bit-patterns, whose length is equal to twice the length of the shift register,

continuing indefinitely. These counters find specialist applications, including those

similar to the decade counter, digital-to-analog conversion, etc. They can be

implemented easily using D- or JK-type flip-flops. It is also known as twisted ring

counter.

Figure 52: Johnson counter

Check Your Progress

1. A digital circuit which is used for a counting pulses is known as ___________.

2. High-frequency operations require that all the flip-flops of a counter be triggered

at the ________ time to prevent errors.

3. A counter is a circular shift register which is initiated such that only one of its

flip-flops is the state one while others are in their zero states.

4. A ___________ counter is a modified ring counter, where the output from the

last stage is inverted and fed back as input to the first stage.

11.7 Summary

1. Counter is a sequential circuit. A digital circuit which is used for a counting

pulses is known counter.

2. Counters are of two types: Asynchronous or ripple counters and Synchronous

counters.

173

3. If the "clock" pulses are applied to all the flip-flops in a counter simultaneously,

then such a counter is called as synchronous counter.

4. An asynchronous (ripple) counter is a single d-type flip-flop, with its J (data)

input fed from its own inverted output.

5. A Mod 10 counter has 10 possible states i.e. it counts from 0 to 9 and roll over.

6. A ring counter is a circular shift register which is initiated such that only one of

its flip-flops is the state one while others are in their zero states.

7. A Johnson counter (or switch-tail ring counter, twisted ring counter, walking

ring counter, or Möbius counter) is a modified ring counter, where the output

from the last stage is inverted and fed back as input to the first stage.

11.8 Model Questions

1. What is a counter?

2. What are the different types of counters?

3. Explain Asynchronous(ripple) counter.

4. Explain the working of Johnson counter.

5. Explain the working of Decade counter.

6. Explain Synchronous counter.

Answers to Check Your Progress

1. Counter

2. Same

3. Ring

4. Johnson

174

175

CHAPTER 12: MEMORY

12.0 Learning Objectives

After reading this chapter, you will be able to:

• Define semiconductor memories

• Define ROM

• Explain Basic ROM construction

• Define RAM

• Differentiate Static and Dynamic RAM

• Explain READ and WRITE operation in RAM

• Perform memory expansion.

12.1 Introduction to Semiconductor Memories

Semiconductor memories are made from silicon, unlike hard-disk drive memory which

are magnetic and optics9.

Figure 53: Semiconductor memories

Main difference between memory technologies:

• RAM: Data can be read and written but data stored is volatile, i.e. need power to

retain data.

9 Adopted from http://ocw.utm.my/course/view.php?id=48

176

• ROM: Data can only be read, and the data stored is not volatile, i.e. don’t need

power to retain data.

• Flash: Data can be read and written, and data stored is not volatile, i.e. don’t

need power to retain data.

12.2 Read Only Memory (ROM)

ROM is used to store data that never (or rarely) changed. The main advantage of ROM

is data in ROMs are retained even when power is not supplied. Data in ROMs are

typically pre-configured using specialized equipments. There are three commonly used

ROMs:

• Mask ROM: Data is permanently stored in the memory during the manufacturing

process. Once the memory array is programmed, it cannot be changed – Uses

MOS transistor for memory cells.

• PROM: Uses some type of fusing process to store bits. The fusion process is

irreversible, one programmed, it cannot be changed – Uses MOS transistor with

fusible links for memory cells

• EEPROM: Unlike PROM, EEPROM can be reprogrammed if an existing

program in the memory array is erased. EEPROM is erased and programmed

using electrical pulses. Therefore, EEPROM can be rapidly programmed and

erased in-circuit for reprogramming. It uses either floating gate MOS or MNOS

transistors for memory cells.

12.2.1 ROM Size

Size of semiconductor memories is represented in bits. For example, an 8x4 ROM is

capable of storing 32 bits. 8x4 ROM has 3 address lines (23 = 8) and 4 data lines.

177

Figure 54: Basic ROM construction

Design a ROM based on the following truth table:

We need a 2X4 decoder for 4x4 ROM configured according to the above truth table.

178

ROM IC has Chip Select (CS) and Output Enable (OE) pins. Output data is valid only

when CS = 0 and OE = 0, else data = z (high impedance, i.e. not ‘0’ and not ‘1’).

Assume Data[7:0] = 0011 0101 at location A[1:0] = 10. To read the data at location 10,

Set A1A0 = 10 Set CS = 0, OE = 0 output Data[7:0] = 0011 0101.

If CS = 1 or OE = 1, data [7:0] = zzzz zzzz(high impedance), Regardless of the address

input A1A0

179

12.3 Random Access Memory(RAM)

RAM is a temporary data storage and it does not retain its stored data when no power is

applied. When a data unit is written into a given address in the RAM, the data unit

previously stored at that address is replaced by the new unit. When a data unit is read at

a given address, the data unit that is read remains there.

There are two types of RAM:

• Static RAM(SRAM)

• Dynamic RAM(DRAM)

12.3.1 SRAM vs DRAM

1. SRAM uses a latch to store 1 bit in cell while DRAM uses a capacitor to store 1

bit in a cell.

2. SRAM is more expensive to implement, i.e. requires more logic gates per cell

compared to DRAM.

3. Because SRAM uses a latch, it works faster than DRAM that requires the

capacitor to be periodically refreshed.

4. SRAM is typically implemented in high speed CPU cache memory, while

DRAM is implemented in main memory.

12.3.2 How to read from and write to a RAM?

The first step is to provide the address and data we want to read or write. We also need a

few enable signals to control when we want to enable the memory, read, and write

operation. The Chip Select signal (CS) is used to enable the memory. The Write Enable

signal (WE) is used to enable the write operation. The Output Enable signal (OE) is used

to enable the read operation.

12.3.3 READ Operation in RAM

The figure below demonstrates the Read operation. This example explains the Read one

byte at location A[1:0] = 10 from a 4x8 RAM.

180

Figure 55: READ operation in RAM

Step 1: Supply address A[1:0] = 10 to Read location 10

Step 2: Set CS = 0 to enable the memory

Step 3: Set OE = 0 to enable read

Step 4: Set WE = 1 to disable write

Step 5: Get the data at location 10

12.3.4 WRITE Operation in RAM

The figure below demonstrates the Read operation. This example explains the Read one

byte at location A[1:0] = 10 from a 4x8 RAM.

Figure 56: WRITE operation in RAM

Step 1: Supply address A[1:0] = 10 to write location 10

Step 2: Supply the Data[7:0] to write

181

Step 2: Set CS = 0 to enable the memory

Step 3: Set OE = 1 to disable read

Step 4: Set WE = 0 to enable write

Step 5: data[7:0] is written at location 10

12.4 Flash Memory

Flash memory is the closest to the ideal memory. It is capable of high storage capacity

and retains data when power off. It has an ability to erase and reprogram at will. It also

has a fast operation and is comparatively cheap. Flash memory cell is designed using

stacked gate MOS transistor (floating gate transistor).

12.5 Memory Expansion

Memory can be expanded on its storage capacity or data length. First we will explain the

concept of Memory storage capacity expansion with a help of an example. Suppose we

have two 16x4 memory and we want to expands it to 32x4 Capacity expansion. The

figure below demonstrates how two 16x4 memory are combined to obtain a 32x4

memory.

182

Figure 57: Memory expansion

Now we will demonstrate Memory Data length expansion with a help of an example.

Suppose we have two 16x4 RAM and we want to produce a 16x8 RAM. The figure

below demonstrates how two 16x4 memory are combined to obtain a 16x8 memory.

Figure 58: Data length expansion of memory

183

Check Your Progress

1. How many storage locations are available when a memory device has twelve

address lines?

a. 144

b. 512

c. 2048

d. 4096

2. Which of the following best describes nonvolatile memory?

a. memory that retains stored information when electrical power is

removed

b. memory that loses stored information when electrical power is removed

c. magnetic memory

d. nonmagnetic memory

3. Select the best description of read-only memory (ROM).

a. nonvolatile, used to store information that changes during system

operation

b. nonvolatile, used to store information that does not change during

system operation

c. volatile, used to store information that changes during system operation

d. volatile, used to store information that does not change during system

operation

4. Memory that loses its contents when power is lost is:

a. Nonvolatile

b. Volatile

c. Random

d. Static

5. Which of the following best describes static memory devices?

a. memory devices that are magnetic in nature and do not require constant

refreshing

b. semiconductor memory devices in which stored data is retained as long

as power is applied

c. memory devices that are magnetic in nature and require constant

refreshing

d. semiconductor memory devices in which stored data will not be retained

with the power applied unless constantly refreshed

184

12.6 Summary

1. Semiconductor memory is a device for storing digital information that is

fabricated by using integrated circuit technology.

2. Electronic semiconductor memory technology can be split into two main

types or categories, according to the way in which the memory operates.

3. Random Access Memory (RAM)is the best known form of computer memory.

The Read and write (R/W) memory of a computer is called RAM. The User can

write information to it and read information from it.

4. The RAM is a volatile memory, it means information written to it can be

accessed as long as power is on. As soon as the power is off, it can not be

accessed.

5. ROM is a class of storage medium used in computers and other electronic

devices. Read Only Memory (ROM), also known as firmware, is an integrated

circuit programmed with specific data when it is manufactured.

6. Read only memory (ROM) is an example of nonvolatile memory.

12.7 Model Questions

1. With example define memory size, word length and memory address.

2. Specify the important characteristics of semiconductor memories.

3. What is volatile memory?

4. What is non-volatile memory?

5. List any five secondary storage devices/memory. When we use the secondary

memory?

6. What is the meaning of PROM?

7. What is EEPROM?

8. What is EPROM?

9. What is Rom? Describe it’s various types.

10. Describe, how information is written in memory cell.

11. Describe, how information is Read in memory cell.

12. What is the difference between a Primary memory and Secondary memory?

13. Draw a block diagram of a memory which has 4 word 3 bit per word memory

and explain it.

185

Answers to Check Your Progress

1. a

2. a

3. b

4. b

5. b

186

187

References

Burch, C. (n.d.). Components of digital circuits. Retrieved Oct. 28, 2016, from

http://www.toves.org/books/comps/ available under Creative Commons Attribution-

Share Alike 3.0 United States License.

Eduladder. (n.d.). Working of master-slave JK flip flop. Retrieved Nov. 09, 2016, from

http://eduladder.com/viewquestions.php?questionid=766&title=working%20of%20mast

er-slave%20JK%20flip%20flop available under CC by sa 3.0 license.

ILLL. (n.d.). Flip-flops and Counters. Retrieved Nov. 09, 2016, from

http://vle.du.ac.in/mod/book/view.php?id=11685&chapterid=22699 available under

Creative Commons Attribution-NonCommercial-ShareAlike 2.5 India License.

Introduction to Combinational and Sequential Circuits. (n.d.). Retrieved Nov. 02, 2016,

from http://m.kkhsou.in/EBIDYA/CSC/MODIFY_combinational_sequential.html

avaible under creative commons license

Rao, N. (2009, Dec. 31). Digital Electronics. Retrieved 15 June, 2016, from NPTEL:

http://nptel.ac.in/courses/106108099/1 available under Creative Commons Attribution-

ShareAlike - CC BY-SA

Yewale, J. (n.d.). Flip Flops. Retrieved Nov. 8, 2016, from

http://todayscircuits.blogspot.com/2011/06/flip-flops.html#.WCGARclgSpp available

under a Creative Commons Attribution-ShareAlike 2.5 India License.

Yusof, Z. M. (2012, Feb. 18). Digital Electronics. Retrieved Dec. 02, 2016, from

Adopted from http://ocw.utm.my/course/view.php?id=48

The University acknowledges with thanks to NPTEL and KKHSOU and the author for

providing the study material on NPTEL and KKHSOU portals under Creative Commons

Attribution-ShareAlike - CC BY-SA.

