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DIGITAL SYSTEMS: MOTIVATION 

A digital circuit is one that is built with devices with two well-defined states. Such 

circuits can process information represented in binary form. Systems based on digital 

circuits touch all aspects our present day lives. The present-day home products including 

electronic games and appliances, communication and office automation products, 

computers with a wide range of capabilities, and industrial instrumentation and control 

systems, electromedical equipment, and defense and aerospace systems are heavily 

dependent on digital circuits. Many fields that emerged later to digital electronics have 

peaked and levelled off, but the application of digital concepts appears to be still 

growing exponentially. This unprecedented growth is powered by the semiconductor 

technology, which enables the introduction of more and complex integrated circuits. The 

complexity of an integrated circuit is measured in terms of the number of transistors that 

can be integrated into a single unit. The number of transistors in a single integrated 

circuit has been doubling every eighteen months (Moore’ Law) for several decades and 

reached the figure of almost one billion transistors per chip. This allowed the circuit 

designers to provide more and more complex functions in a single unit. 

 

The introduction of programmable integrated circuits in the form of microprocessors in 

70s completely transformed every facet of electronics. While fixed function integrated 

circuits and microprocessors coexisted for considerable time, the need to make the 

equipment smaller and portable lead to replacement of fixed function devices with 

programmable devices. With the all pervasive presence of the microprocessor and the 

increasing usage of other programmable circuits like PLDs (Programmable Logic 

devices), FPGAs (Field Programmable Gate Arrays) and ASICs (Application Specific 

Integrated Circuits), the very nature of digital systems is continuously changing. 

 

The central role of digital circuits in all our professional and personal lives makes it 

imperative that every electrical and electronics engineer acquire good knowledge of 

relevant basic concepts and ability to work with digital circuits. At present many of the 

undergraduate programmers offer two to four courses in the area of digital systems, with 

at least two of them being core courses. The course under consideration constitutes the 
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first course in the area of digital systems. The rate of obsolescence of knowledge, design 

methods, and design tools is uncomfortably high. Even the first level course in digital 

electronics is not exempt from this obsolescence. 

 

Any course in electronics should enable the students to design circuits to meet some 

stated requirements as encountered in real life situations. However, the design 

approaches should be based on a sound understanding of the underlying principles. The 

basic feature of all design problems is that all of them admit multiple solutions. The 

selection of the final solution depends on a variety of criteria that could include the size 

and cost of the substrate on which the components are assembled, the cost of 

components, manufacturability, reliability, speed etc. 

 

The course contents are designed to enable the students to design digital circuits of 

medium level of complexity taking the functional and hardware aspects in an integrated 

manner within the context of commercial and manufacturing constraints. However, no 

compromises are made with regard to theoretical aspects of the subject. 
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Unit I: Number Systems 

1.0 Learning Objectives 

After the completion of this unit, you will be able to: 

• Know Binary, octal and hexadecimal number systems. 

• Perform conversion of number with one radix to another. 

• Summarize the advantages of using different number systems. 

• Interpret the arithmetic operations of binary numbers. 

• Convert a given number from one system to an equivalent number in another 

system. 

1.1 Introduction 

We all use numbers to communicate and perform several tasks in our daily lives. Our 

present-day world is characterized by measurements and numbers associated with 

everything. In fact, many consider if we cannot express something in terms of numbers 

is not worth knowing. While this is an extreme view that is difficult to justify, there is 

no doubt that quantification and measurement, and consequently usage of numbers, are 

desirable whenever possible. Manipulation of numbers is one of the early skills that the 

present-day child is trained to acquire. The present-day technology and the way of life 

require the usage of several number systems. Usage of decimal numbers starts very early 

in one’s life. Therefore, when one is confronted with number systems other than 

decimal, some time during the high-school years, it calls for a fundamental change in 

one’s framework of thinking. 

 

There have been two types of numbering systems in use throughout the world. One type 

is symbolic in nature. Most important example of this symbolic numbering system is the 

one based on Roman numerals 

 

I = 1, V = 5, X = 10, L = 50, C = 100, D = 500 and M = 1000 
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While this system was in use for several centuries in Europe it is completely superseded 

by the weighted-position system based on Indian numerals. The Roman number system 

is still used in some places like watches and release dates of movies. 

 

The weighted-positional system based on the use of radix 10 is the most commonly used 

numbering system in most of the transactions and activities of today’s world. However, 

the advent of computers and the convenience of using devices that have two well 

defined states brought the binary system, using the radix 2, into extensive use. The use 

of binary number system in the field of computers and electronics also lead to the use of 

octal (based on radix 8) and hex-decimal system (based on radix16). The usage of 

binary numbers at various levels has become so essential that it is also necessary to have 

a good understanding of all the binary arithmetic operations. Here we explore the 

weighted-position number systems and conversion from one system to the other. 

1.2 Weighted-Position Number System 

In a weighted-position numbering system using Indian numerals the value associated 

with a digit is dependent on its position. The value of a number is weighted sum of its 

digits. 

Consider the decimal number 2357. It can be expressed as 

 

2357 = 2 x 103 + 3 x 102 + 5 x 101 + 7 x 100 

 

Each weight is a power of 10 corresponding to the digit’s position. A decimal point 

allows negative as well as positive powers of 10 to be used; 

 

526.47 = 5 x 102 +2 x 101 + 6 x 100 + 4 x 10-1 + 7 x 10-2 

 



7 

 

Here, 10 is called the base or radix of the number system. In a general positional 

number system, the radix may be any integer r ≥ 2, and a digit position i has weight ri. 

The general form of a number in such a system is 

 

dp-1 dp-2, .... d1, d0 . d-1d-2 .... d-n 

where there are p digits to the left of the point (called radix point) and n digits to the 

right of the point. The value of the number is the sum of each digit multiplied by the 

corresponding power of the radix. 

𝐷 = ∑ 𝑑𝑖𝑟𝑖

𝑝−1

𝑖=−𝑛

 

Except for possible leading and trailing zeros, the representation of a number in 

positional system is unique (00256.230 is the same as 256.23). Obviously, the values 

di’s can take are limited by the radix value. For example, a number like (356)5, where 

the suffix 5 represents the radix will be incorrect, as there can not be a digit like 5 or 6 in 

a weighted position number system with radix 5. 

If the radix point is not shown in the number, then it is assumed to be located near the 

last right digit to its immediate right. The symbol used for the radix point is a point (.). 

However, a comma is used in some countries. For example, 7,6 is used, instead of 7.6, 

to represent a number having seven as its integer component and six as its fractional. 

As much of the present-day electronic hardware is dependent on devices that work 

reliably in two well defined states, a numbering system using 2 as its radix has become 

necessary and popular. With the radix value of 2, the binary number system will have 

only two numerals, namely 0 and 1. 

Consider the number (N)2 = (11100110)2. 

It is an eight-digit binary number. The binary digits are also known as bits. 

Consequently, the above number would be referred to as an 8-bit number. Its decimal 

value is given by 

(N)2 = 1 x 27 + 1 x 26 + 1 x 25 + 0 x 24 + 0 x 23 + 1 x 22 + 1 x 21 + 0 x 20 

        = 128 + 64 + 32 + 0 + 0 + 4 + 2 + 0  

        = (230)10 

Consider a binary fractional number (N)2 = 101.101. 
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Its decimal value is given by 

(N)2 = 1 x 22 + 0 x 21 + 1 x 20 + 1 x 2-1 + 0 x 2-2 + 1 x 2-3 

        = 4 + 0 + 1 + 
1

2
 + 0 + 

1

8
 

        = 5 + 0.5 + 0.125 = (5.625)10 

From here on we consider any number without its radix specifically mentioned, as a 

decimal number. 

With the radix value of 2, the binary number system requires very long strings of 1s and 

0s to represent a given number. Some of the problems associated with handling large 

strings of binary digits may be eased by grouping them into three digits or four digits. 

We can use the following groupings. 

• Octal (radix 8 to group three binary digits) 

• Hexadecimal (radix 16 to group four binary digits) 

In the octal number system, the digits will have one of the following eight values 0, 1, 2, 

3, 4, 5, 6 and 7. In the hexadecimal system we have one of the sixteen values 0 through 

15. However, the decimal values from 10 to 15 will be represented by alphabet A (=10), 

B (=11), C (=12), D (=13), E (=14) and F (=15). 

Conversion of a binary number to an octal number or a hexadecimal number is very 

simple, as it requires simple grouping of the binary digits into groups of three or four. 

Consider the binary number 11011011. It may be converted into octal or hexadecimal 

numbers as 

(11011001)2 = (011) (011) (001) = (331)8 

                     = (1101) (1001) = (D9)16 

Note that adding a leading zero does not alter the value of the number. Similarly, for 

grouping the digits in the fractional part of a binary number, trailing zeros may be added 

without changing the value of the number. 

1.3 Number System Conversions 

In general, conversion between numbers with different radices cannot be done by simple 

substitutions. Such conversions would involve arithmetic operations. Let us work out 
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procedures for converting a number in any radix to radix 10, and vice versa. The 

decimal equivalent value of a number in any radix is given by the formula 

𝐷 = ∑ 𝑑𝑖𝑟𝑖

𝑝−1

𝑖=−𝑛

 

where r is the radix of the number and there are p digits to the left of the radix point and 

n digits to the right. Decimal value of the number is determined by converting each digit 

of the number to its radix-10 equivalent and expanding the formula using radix-10 

arithmetic. 

Some examples are: 

(331)8 = 3 x 82 + 3 x 81 + 1 x 80 = 192 + 24 + 1 = (217)10 

(D9)16 = 13 x 161 + 9 x 160 = 208 + 9 = (217)10 

(33.56)8 = 3 x 81 + 3 x 80 + 5 x 8-1 + 6 x 8-2 = (27.69875)10 

(E5.A)16 = 14 x 161 + 5 x 160 + 10 x 16-1 = (304.625)10 

 

The conversion formula can be rewritten as 

D = ((... ((dn-1).r + dn-2) r + ....).r + d1).r + d0 

 

This forms the basis for converting a decimal number D to a number with radix r. If we 

divide the right-hand side of the above formula by r, the remainder will be d0, and the 

quotient will be 

Q = ((... ((dn-1).r + dn-2) r + ....).r + d1 

Thus, d0 can be computed as the remainder of the long division of D by the radix r. As 

the quotient Q has the same form as D, another long division by r will give d1 as the 

remainder. This process can continue to produce all the digits of the number with radix 

r. Consider the following examples. 

                  

Quotient       Remainder 

156 ÷ 2             78   0 

78 ÷ 2       39   0 

39 ÷ 2       19   1 

19 ÷ 2         9   1 
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9 ÷ 2         4   1 

4 ÷ 2         2   0 

2 ÷ 2         1   0 

1 ÷ 2         0   1 

(156)10 = (10011100)2 

 

Quotient Remainder 

678 ÷ 8   84   6 

84 ÷ 8    10   4 

10 ÷ 8    1   2 

1 ÷ 8    0   1 

(678)10 = (1246)8 

 

Quotient Remainder 

678 ÷ 16   42   6 

42 ÷ 16   2   A 

2 ÷ 16    0   2 

(678)10 = (2A6)16 

 

Check Your Progress I 

Multiple Choice Questions 

1. Which number system is understood easily by the computer? 

(a) Binary (b) Decimal (c) Octal (d) Hexadecimal 

2. How many symbols are used in the decimal number system? 

(a) 2 (b) 8 (c) 10 (d) 16 

3. How are number systems generally classified? 

a. Conditional or non conditional 

b. Positional or non positional 

c. Real or imaginary 

d. Literal or numerical 
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4. What does (10)16 represent in decimal number system? 

(a) 10 (b) 0A (c) 16 (d) 15 

1.4 Representation of Negative Numbers 

In our traditional arithmetic we use the “+” sign before a number to indicate it as a 

positive number and a “-” sign to indicate it as a negative number. We usually omit the 

sign before the number if it is positive. This method of representation of numbers is 

called “sign-magnitude” representation. But using “+” and “-” signs on a computer is 

not convenient, and it becomes necessary to have some other convention to represent the 

signed numbers. We replace “+” sign with “0” and “-” with “1”. These two symbols 

already exist in the binary system. Consider the following examples: 

(+1100101)2   →  (01100101)2 

(+101.001)2  → (0101.001)2 

(-10010)2   →  (110010)2 

(-110.101)2  → (1110.101)2 

 

In the sign-magnitude representation of binary numbers the first digit is always treated 

separately. Therefore, in working with the signed binary numbers in sign-magnitude 

form the leading zeros should not be ignored. However, the leading zeros can be ignored 

after the sign bit is separated. For example, 

1000101.11 = - 101.11 

 

While the sign-magnitude representation of signed numbers appears to be natural 

extension of the traditional arithmetic, the arithmetic operations with signed numbers in 

this form are not that very convenient, either for implementation on the computer or for 

hardware implementation. There are two other methods of representing signed numbers. 

• Diminished Radix Complement (DRC) or (r-1)-complement 

• Radix Complement (RX) or r-complement 

When the numbers are in binary form 

• Diminished Radix Complement will be known as “one’s-complement” 
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• Radix complement will be known as “two’s-complement”. 

If this representation is extended to the decimal numbers they will be known as 

9’scomplement and 10’s-complement respectively. 

1.4.1 One’s Complement Representation 

Let A be an n-bit signed binary number in one’s complement form. The most significant 

bit represents the sign. If it is a “0” the number is positive and if it is a “1” the number is 

negative. The remaining (n-1) bits represent the magnitude, but not necessarily as a 

simple weighted number. 

Consider the following one’s complement numbers and their decimal equivalents: 

0111111   + 63 

0000110  -->  + 6 

0000000  -->  + 0 

1111111  -->  + 0 

1111001  -->  - 6 

1000000  -->  - 63 

 

There are two representations of “0”, namely 000....0 and 111....1. From these 

illustrations we observe 

• If the most significant bit (MSD) is zero the remaining (n-1) bits directly indicate 

the magnitude. 

• If the MSD is 1, the magnitude of the number is obtained by taking the 

complement of all the remaining (n-1) bits. 

For example, consider one’s complement representation of -6 as given above. 

• Leaving the first bit ‘1’ for the sign, the remaining bits 111001 do not directly 

represent the magnitude of the number -6. 

• Take the complement of 111001, which becomes 000110 to determine the 

magnitude. 

 

In the example shown above a 7-bit number can cover the range from +63 to -63. In 

general, an n-bit number has a range from +(2n-1 - 1) to -(2n-1 - 1) with two 
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representations for zero. The representation also suggests that if A is an integer in one’s 

complement form, then 

one’s complement of A = -A 

One’s complement of a number is obtained by merely complementing all the digits. 

This relationship can be extended to fractions as well. 

For example, if A = 0.101 (+0.625)10, then the one’s complement of A is 1.010, which is 

one’s complement representation of (-0.625)10. Similarly consider the case of a mixed 

number. 

A = 010011.0101 (+19.3125)10 

One’s complement of A = 101100.1010 (- 19.3125)10 

This relationship can be used to determine one’s complement representation of negative 

decimal numbers. 

Example 1: What is one’s complement binary representation of decimal number -75? 

Decimal number 75 requires 7 bits to represent its magnitude in the binary form. One 

additional bit is needed to represent the sign. Therefore, one’s complement 

representation of 75 = 01001011 one’s complement representation of -75 = 10110100 

1.4.2 Two’s Complement Representation 

Let A be an n-bit signed binary number in two’s complement form. 

• The most significant bit represents the sign. If it is a “0”, the number is positive, 

and if it is “1” the number is negative. 

• The remaining (n-1) bits represent the magnitude, but not as a simple weighted 

number. 

Consider the following two’s complement numbers and their decimal equivalents: 

0111111  →  + 63 

0000110  →  + 6 

0000000  →  + 0 

1111010  →  - 6 

1000001  →  - 63 

1000000  →  - 64 

There is only one representation of “0”, namely 000....0. 
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From these illustrations we observe: 

If most significant bit (MSD) is zero the remaining (n-1) bits directly indicate the 

magnitude. 

If the MSD is 1, the magnitude of the number is obtained by taking the complement of 

all the remaining (n-1) bits and adding a 1. 

Consider the two’s complement representation of -6. 

• We assume we are representing it as a 7-bit number. 

• Leave the sign bit. 

• The remaining bits are 111010. These have to be complemented (that is 000101) 

and a 1 has to be added (that is 000101 + 1 = 000110 = 6). 

In the example shown above a 7-bit number can cover the range from +63 to -64. In 

general, an n-bit number has a range from + (2n-1 - 1) to - (2n-1) with one representation 

for zero. The representation also suggests that if A is an integer in two’s complement 

form, then 

Two’s complement of A = -A 

 

Two’s complement of a number is obtained by complementing all the digits and adding 

‘1’ to the LSB. 

This relationship can be extended to fractions as well. If A = 0.101 (+0.625)10, then the 

two’s complement of A is 1.011, which is two’s complement representation of (-

0.625)10. 

Similarly consider the case of a mixed number. 

A = 010011.0101 (+19.3125)10 

Two’s complement of A = 101100.1011 (- 19.3125)10 

This relationship can be used to determine two’s complement representation of negative 

decimal numbers. 

Example 2: What is two’s complement binary representation of decimal number -75? 

Decimal number 75 requires 7 bits to represent its magnitude in the binary form. One 

additional bit is needed to represent the sign. Therefore, 

Two’s complement representation of 75 = 01001011 

Two’s complement representation of -75 = 10110101 
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Check Your progress II 

1. How many bits have to be grouped together to convert the binary number to its 

corresponding octal number? 

(a) 2 (b) 3 (c) 4 (d) 5 

2. Which bit represents the sign bit in a signed number system? 

a. Left most bit 

b. Right most bit 

c. Left centre 

d. Right centre 

3. The ones complement of 1010 is 

(a) 1100 (b) 0101 (c) 0111 (d) 1011 

4. How many bits are required to cover the numbers from +63 to -63 in one’s 

complement representation? 

(a) 6 (b) 7 (c) 8 (d) 9 

1.6 Model Question 

1. Perform the following number system conversions: 

(a) 101101112 = ?10   (b) 567410 = ?2 

(c) 100111002 = ?8   (d) 24538 = ?2 

(e) 1111000102 = ?16   (f) 6893410 = ?2 

(g) 10101.0012 = ?10   (h) 6FAB716 = ?10 

(i) 11101.1012 = ?8   (j) 5623816 = ?2 

2. Convert the following hexadecimal numbers into binary and octal numbers 

(a) 78AD  (b) DA643  (c) EDC8 

(d) 3245  (e) 68912  (f) AF4D 

3. Convert the following octal numbers into binary and hexadecimal numbers 

(a) 7643  (b) 2643  (c) 1034 

(d) 3245  (e) 6712  (f) 7512 

4. Convert the following numbers into binary: 

(a) 123610  (b) 234910  (c) 345.27510 
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(d) 45678  (e) 45.658  (f) 145.238 

(g) ADF516  (h) AD.F316  (i) 12.DA16 

5. What is the range of unsigned decimal values that can be represented by 8 bits? 

6. What is the range of signed decimal values that can be represented by 8 bits? 

7. How many bits are required to represent decimal values ranging from 75 to -75? 

8. Represent each of the following values as a 6-bit signed binary number in one’s 

complement and two’s complement forms. 

(a) 28 (b) -21 (c) -5 (d) -13 

9. Determine the decimal equivalent of two’s complement numbers given below: 

(a) 1010101 (b) 0111011 (c) 11100010 
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UNIT II: CODES 

2.0 Learning Objectives 

After the completion of this unit, you will be able to: 

• Know various binary codes 

• Explain the usefulness of different coding schemes. 

• Explain how errors are detected and/or corrected using different codes. 

• Illustrate the construction of a weighted code. 

2.1 Introduction 

When we wish to send information over long distances unambiguously it becomes 

necessary to modify (encoding) the information into some form before sending, and 

convert (decode) at the receiving end to get back the original information. This process 

of encoding and decoding is necessary because the channel through which the 

information is sent may distort the transmitted information. Much of the information is 

sent as numbers. While these numbers are created using simple weighted-positional 

numbering systems, they need to be encoded before transmission. The modifications to 

numbers were based on changing the weights, but predominantly on some form of 

binary encoding. There are several codes in use in the context of present day 

information technology, and more and more new codes are being generated to meet the 

new demands. 

Coding is the process of altering the characteristics of information to make it more 

suitable for intended application 

By assigning each item of information a unique combination of 1s and 0s we transform 

some given information into binary coded form. The bit combinations are referred to as 

“words” or “code words”. In the field of digital systems and computers different bit 

combinations have different designations. 

Bit - a binary digit 0 or 1 

Nibble - a group of four bits 

Byte - a group of eight bits 
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Word - a group of sixteen bits; 

            a word has two bytes or four nibbles 

Sometimes ‘word’ is used to designate a larger group of bits also, for example 32 bit or 

64 bit words. 

We need and use coding of information for a variety of reasons 

• to increase efficiency of transmission, 

• to make it error free, 

• to enable us to correct it if errors occurred, 

• to inform the sender if an error occurred in the received information etc. 

• for security reasons to limit the accessibility of information 

• to standardize a universal code that can be used by all 

Coding schemes have to be designed to suit the security requirements and the 

complexity of the medium over which information is transmitted. 

Decoding is the process of reconstructing source information from the encoded 

information.  

Decoding process can be more complex than coding if we do not have prior knowledge 

of coding schemes. In view of the modern day requirements of efficient, error free and 

secure information transmission coding theory is an extremely important subject. 

However, at this stage of learning digital systems we confine ourselves to familiarising 

with a few commonly used codes and their properties. 

We will be mainly concerned with binary codes. In binary coding we use binary digits 

or bits (0 and 1) to code the elements of an information set. Let n be the number of bits 

in the code word and x be the number of unique words. 

If n = 1, then x = 2 (0, 1) 

n = 2, then x = 4 (00, 01, 10, 11) 

n = 3, then x = 8 (000,001,010 ...111) 

n = j, then x = 2j 

From this we can conclude that if we are given elements of information to code into 

binary coded format, 

x ≤ 2j 

or j  ≥log2x 
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≥3.32 log10x 

where j is the number of bits in a code word. 

For example, if we want to code alphanumeric information (26 alphabetic characters + 

10 decimals digits = 36 elements of information), we require 

j ≥ 3.32 log1036 

j ≥ 5.16 bits 

Since bits are not defined as fractional parts, we take j = 6. In other words a minimum 

six-bit code would be required to code 36 alphanumeric elements of information. 

However, with a six-bit code only 36 code words are used out of the 64 code words 

possible. 

In this Learning Unit we consider a few commonly used codes including 

1 Binary coded decimal codes 

2 Unit distance codes 

3 Error detection codes 

4 Alphanumeric codes 

2.2 Binary Coded Decimal Codes 

The main motivation for binary number system is that there are only two elements in the 

binary set, namely 0 and 1. While it is advantageous to perform all computations on 

hardware in binary forms, human beings still prefer to work with decimal numbers. Any 

electronic system should then be able to accept decimal numbers, and make its output 

available in the decimal form. 

One method, therefore, would be to 

• convert decimal number inputs into binary form 

• manipulate these binary numbers as per the required functions, and 

• convert the resultant binary numbers into the decimal form 

However, this kind of conversion requires more hardware, and in some cases 

considerably slows down the system. Faster systems can afford the additional circuitry, 

but the delays associated with the conversions would not be acceptable. In case of 
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smaller systems, the speed may not be the main criterion, but the additional circuitry 

may make the system more expensive. 

 

We can solve this problem by encoding decimal numbers as binary strings, and use them 

for subsequent manipulations. There are ten different symbols in the decimal number 

system: 0, 1, 2, . . ., 9. As there are ten symbols we require at least four bits to represent 

them in the binary form. Such a representation of decimal numbers is called binary 

coding of decimal numbers. 

As four bits are required to encode one decimal digit, there are sixteen four-bit groups to 

select ten groups. This would lead to nearly 30 x 1010 (16C10.10!) possible codes. 

However, most of them will not have any special properties that would be useful in 

hardware design. We wish to choose codes that have some desirable properties like 

• ease of coding 

• ease in arithmetic operations 

• minimum use of hardware 

• error detection property 

• ability to prevent wrong output during transitions 

 

In a weighted code the decimal value of a code is the algebraic sum of the weights of 1s 

appearing in the number. Let (A)10 be a decimal number encoded in the binary form as 

a3a2a1a0. Then 

(A)10 = w3a3 + w2a2 + w1a1 +w0a0 

where w3, w2, w1 and w0 are the weights selected for a given code, and a3,a2,a1and 

a0 are either 0s or 1s. The more popularly used codes have the weights as 

w3  w2  w1  w0 

8  4  2  1 

2  4 2  1 

8  4 -2  -1 

The decimal numbers in these three codes are 
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In all the cases only ten combinations are utilized to represent the decimal digits. The 

remaining six combinations are illegal. However, they may be utilized for error 

detection purposes. Consider, for example, the representation of the decimal number 

16.85 in Natural Binary Coded Decimal code (NBCD) 

(16.85)10 = (0001 0110 . 1000 0101)NBCD 

                      1       6          8       5 

 

There are many possible weights to write a number in BCD code. Some codes have 

desirable properties, which make them suitable for specific applications. Two such 

desirable properties are: 

1 Self-complementing codes 

2 Reflective codes 

When we perform arithmetic operations, it is often required to take the “complement” of 

a given number. If the logical complement of a coded number is also its arithmetic 

complement, it will be convenient from hardware point of view. In a self-

complementing coded decimal number, (A)10, if the individual bits of a number are 

complemented it will result in (9 - A)10. 

Example: Consider the 2421 code. 

• The 2421 code of (4)10 is 0100. 

• Its complement is 1011 which is 2421 code for (5)10 = (9 - 4)10. 

Therefore, 2421 code may be considered as a self-complementing code. A necessary 

condition for a self-complimenting code is that the sum of its weights should be 9. A 

self-complementing code, which is not weighted, is excess-3 code. It is derived from 



22 

 

8421 code by adding 0011 to all the 8421 coded numbers. Another self-complementing 

code is 631-1 weighted code. Three self-complementing codes are:  

 

A reflective code is characterized by the fact that it is imaged about the centre entries 

with one bit changed. For example, the 9’s complement of a reflected BCD code word is 

formed by changing only one its bits. Two such examples of reflective BCD codes are:  

 

The BCD codes are widely used and the reader should become familiar with reasons for 

using them and their application. The most common application of NBCD codes is in 

the calculator. 

2.3 Unit Distance Codes 

There are many applications in which it is desirable to have a code in which the adjacent 

codes differ only in one bit. Such codes are called Unit distance Codes. 
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“Gray code” is the most popular example of unit distance code. The 3-bit and 4-bitGray 

codes are:  

 

These Gray codes listed here have also the reflective properties. Some additional 

examples of unit distance codes are: 

 

The most popular use of Gray codes is in the position sensing transducer known as shaft 

encoder. A shaft encoder consists of a disk in which concentric circles have alternate 

sectors with reflective surfaces while the other sectors have non-reflective surfaces. The 

position is sensed by the reflected light from a light emitting diode. However, there is 

choice in arranging the reflective and non-reflective sectors. A 3- bit binary coded disk 

will be as shown in the figure 1. 
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FIG.1: 3-bit binary coded shaft encoder 

From this figure we see that straight binary code can lead to errors because of 

mechanical imperfections. When the code is transiting from 001 to 010, a slight 

misalignment can cause a transient code of 011 to appear. The electronic circuitry 

associated with the encoder will receive 001 --> 011 -> 010. If the disk is patterned to 

give Gray code output, the possibilities of wrong transient codes will not arise. 

 

This is because the adjacent codes will differ in only one bit. For example the adjacent 

code for 001 is 011. Even if there is a mechanical imperfection, the transient code will 

be either 001 or 011. The shaft encoder using 3-bit Gray code is shown in the figure 2. 

 

FIG. 2: Shaft encoder disk using a 3-bit Gray code 

There are two convenient methods to construct Gray code with any number of desired 

bits. The first method is based on the fact that Gray code is also a reflective code. The 

following rule may be used to construct Gray code: 

• A one-bit Gray code had code words, 0 and 1 
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• The first 2n code words of an (n+1)-bit Gray code equal the code words of an n-

bit Gray code, written in order with a leading 0 appended. 

• The last 2n code words of a (n+1)-bit Gray code equal the code words of an n-bit 

Gray code, written in reverse order with a leading 1 appended.  

However, this method requires Gray codes with all bit lengths less than ‘n’ also be 

generated as a part of generating n-bit Gray code. The second method allows us to 

derive an n-bit Gray code word directly from the corresponding n-bit binary code word: 

• The bits of an n-bit binary code or Gray code words are numbered from right to 

left, from 0 to n-1. 

• Bit i of a Gray-code word is 0 if bits i and i+1 of the corresponding binary code 

word are the same, else bit i is 1. When i+1 = n, bit n of the binary code word is 

considered to be 0. 

Example: Consider the decimal number 68. 

(68)10 = (1000100)2 

Binary code: 1 0 0 0 1 0 0 

Gray code : 1 1 0 0 1 1 0 

The following rules can be followed to convert a Gray coded number to a straight binary 

number: 

• Scan the Gray code word from left to right. All the bits of the binary code are the 

same as those of the Gray code until the first 1 is encountered, including the first 

1. 

• 1’s are written until the next 1 is encountered, in which case a 0 is written. 

• 0’s are written until the next 1 is encountered, in which case a 1 is written. 

 

Consider the following examples of Gray code numbers converted to binary numbers 

Gray code : 1 1 0 1 1 0               1 0 0 0 1 0 1 1 

Binary code: 1 0 0 1 0 0              1 1 1 1 0 0 1 0 
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2.4 Alphanumeric Codes 

When information to be encoded includes entities other than numerical values, an 

expanded code is required. For example, alphabetic characters (A, B, ....Z) and special 

operation symbols like +, -, /, *, (, ) and other special symbols are used in digital 

systems. Codes that include alphabetic characters are commonly referred to as 

Alphanumeric Codes. However, we require adequate number of bits to encode all the 

characters. As there was a need for alphanumeric codes in a wide variety of applications 

in the early era of computers, like teletype, punched tape and punched cards, there has 

always been a need for evolving a standard for these codes. 

 

Alphanumeric keyboard has become ubiquitous with the popularization of personal 

computers and notebook computers. These keyboards use ASCII (American Standard 

Code for Information Interchange) code: 

 

 

Alphanumeric codes like EBCDIC (Extended Binary Coded Decimal Interchange Code) 

and 12-bit Hollerith code are in use for some applications. However, ASCII code is now 

the standard code for most data communication networks. Therefore, the reader is urged 

to become familiar with the ASCII code. 



27 

 

2.5 Error Detection and Correcting Codes 

When data is transmitted in digital form from one place to another through a 

transmission channel/medium, some data bits may be lost or modified. This loss of data 

integrity occurs due to a variety of electrical phenomena in the transmission channel. As 

there are needs to transmit millions of bits per second, the data integrity should be very 

high. The error rate cannot be reduced to zero. Then we would like to ideally have a 

mechanism of correcting the errors that occur. If this is not possible or proves to be 

expensive, we would like to know if an error occurred. 

 

If an occurrence of error is known, appropriate action, like retransmitting the data, can 

be taken. One of the methods of improving data integrity is to encode the data in a 

suitable manner. This encoding may be done for error correction or merely for error 

detection. 

 

A simple process of adding a special code bit to a data word can improve its integrity. 

This extra bit will allow detection of a single error in a given code word in which it is 

used, and is called the ‘Parity Bit’. This parity bit can be added on an odd or even basis. 

The odd or even designation of a code word may be determined by actual number of 1’s 

in the data (including the added parity bit) to which the parity bit is added. For example, 

the S in ASCII code is 

 

(S) = (1010011)ASCII 

S, when coded for odd parity, would be shown as 

(S) = (11010011)ASCII with odd parity 

In this encoded ‘S’ the number of 1’s is five, which is odd. 

 

When S is encoded for even parity 

(S) = (01010011)ASCII with even parity. 

In this case the coded word has even number (four) of ones. Thus, the parity encoding 

scheme is a simple one and requires only one extra bit. If the system is using even parity 

and we find odd number of ones in the received data word we know that an error has 
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occurred. However, this scheme is meaningful only for single errors. If two bits in a data 

word were received incorrectly the parity bit scheme will not detect the faults. Then the 

question arises as to the level of improvement in the data integrity if occurrence of only 

one-bit error is detectable. 

 

The improvement in the reliability can be mathematically determined. Adding a parity 

bit allows us only to detect the presence of one-bit error in a group of bits. But it does 

not enable us to exactly locate the bit that changed. Therefore, addition of one parity bit 

may be called an error detecting coding scheme. In a digital system detection of error 

alone is not sufficient. It has to be corrected as well. Parity bit scheme can be extended 

to locate the faulty bit in a block of information. The information bits are conceptually 

arranged in a two-dimensional array, and parity bits are provided to check both the rows 

and the columns. 

 

If we can identify the code word that has an error with the parity bit, and the column in 

which that error occurs by a way of change in the column parity bit, we can both detect 

and correct the wrong bit of information. Hence such a scheme is single error detecting 

and single error correcting coding scheme. 

 

This method of using parity bits can be generalized for detecting and correcting more 

than one-bit error. Such codes are called parity-check block codes. In this class known 

as (n, k) codes, r (= n-k) parity check bits, formed by linear operations on the k data bits, 

are appended to each block of k bits to generate an n-bit code word. 

 

An encoder outputs a unique n-bit code word for each of the 2k possible input k-bit 

blocks. For example a (15, 11) code has r = 4 parity-check bits for every 11 data bits. As 

r increases it should be possible to correct more and more errors. With r = 1 error 

correction is not possible, as such a code will only detect an odd number of errors. 
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It can also be established that as k increases the overall probability of error should also 

decrease. Long codes with a relatively large number of parity-check bits should thus 

provide better performance. Consider the case of (7, 3) code: 

 

A close look at these indicates that they differ in at least three positions. Any one error 

should then be correctable since the resultant code word will still be closer to the correct 

one, in the sense of the number of bit positions in which they agree, than to any other. 

This is an example of single-error-correcting-code. The difference in the number of 

positions between any two code words is called the Hamming distance, named after 

R.W. Hamming who, in 1950, described a general method for constructing codes with a 

minimum distance of 3. The Hamming distance plays a key role in assessing the error-

correcting capability of codes. For two errors to be correctable, the Hamming distance d 

should be at least 5. In general, for t errors to be correctable, d ≥ 2t+1 or t = [(d-1)/2], 

where the [x] notation refers to the integer less than or equal to x. 

 

Innumerable varieties of codes exist, with different properties. There are various types 

of codes for correcting independently occurring errors, for correcting burst errors, for 

providing relatively error-free synchronization of binary data etc. The theory of these 

codes, methods of generating the codes and decoding the coded data, is a very important 

subject of communication systems, and need to be studied as a separate discipline. 

Check Your Progress 

1. _____ is a group of four bits. 

2. _____ is a group of sixteen bits. 
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3. ____________ is the process of reconstructing source information from the 

encoded information. 

4. In a ___________ code the decimal value of a code is the algebraic sum of the 

weights of 1s appearing in the number. 

5. A ______ code is characterized by the fact that it is imaged about the centre 

entries with one bit changed. 

 

 

2.5 Model Questions 

  

1. Write the following decimal number in Excess-3, 2421, 84-2-2 BCD codes: 

(a) 563  (b) 678  (c) 1465 

2. What is the use of self-complementing property? Demonstrate 631-1 BCD code is   

     self-complementary. 

3. Develop two different 4-bit unit distance codes. 

4. Prove that Gray code is both a reflective and unit distance code? 

5. Determine the Gray code for (a) 3710 and (b) 9710. 

6. Write your address in ASCII code. 

7. Write 8-bit ASCII code sequence of the name of your town/city with even parity. 

8. (a) Write the following statements in ASCII 

A = 4.5 x B 

X = 75/Y 

(b) Attach an even parity bit to each code word of the ASCII strings written for the 

above statements 

9. Find and correct the error in the following code sequence 

0 1 0 1 0 

0 1 1 0 0 

1 1 0 1 1 

1 0 1 1 0 

1 0 0 0 1 
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0 0 0 1 1 

1 1 0 0 0 

0 1 0 0 1 

0 1 0 1 0 --- Parity word 

|__________ Parity bit 

9. Why we use coding of information? Explain. 

10. What is decoding? Explain. 

11. What is binary coding of decimal numbers? 

12. What are the desirable properties of codes? 

13. What is a refractive code? 

14. Explain unit distance codes. 

 

Answers to Check Your Progress 

1. Nibble 

2. Word 

3. Decoding  

4. weighted 

5. reflective 



32 

 

  



33 

 

UNIT III: BOOLEAN ALGEBRA 

3.0 Learning Objectives 

After the completion of this unit, you will be able to: 

• Explain Boolean algebra and Boolean operators 

• Perform Logic Functions 

• Perform Minimization of logic functions using Karnaugh –map 

• Implement Quine-McClausky method of minimization of logic functions 

3.1 What is Boolean Algebra? 

Consider the electrical circuit that controls the lighting of a bulb. Four switches control 

the operation of the bulb.  

 

The manner in which the operation of the bulb is controlled can be stated as:  

The bulb switches on if the switches S1 and S2 are closed, and S3 or S4 is also 

closed, otherwise the bulb will not switch on. 

 

From this statement one can make the following observations: 

• Any switch has two states: “closed” or “open” 

• The bulb is switched on only when the switches are in some well-defined combination 

of states. 

• The possible combinations are expressed through two types of relationships: “and” and 

“or”. 

• The two possible combinations are 

“S1 and S2 and S3 are closed” 

“S1 and S2 and S4 are closed” 
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There are many situations of engineering interest where the variables take only a small 

number of possible values. 

Some examples: 

• Relay network used in telephone exchanges of earlier era 

• Testing through multiple choice questions 

• Mechanical display boards in airports and railway stations 

• Choices available at road junctions. 

Can you identify a situation of significance where the variables can take only a small 

number of distinctly defined states? 

How do we implement functions similar to the example shown above? We need devices 

that have finite number states. It seems to be easy to create devices with two well 

defined states. It is more difficult and more expensive to create devices with more than 

two states. 

 

Let us consider devices with two well defined states. We should also have the ability to 

switch the state of the device from one state to the other. We call devices having two 

well defined states as “two-valued switching devices”. 

Some examples of devices with two states 

• A bipolar transistor in either fully-off or fully-on state 

• A MOS transistor in either fully off or fully on state 

• Simple relays 

• Electromechanical switch 

 

If we learn to work with two-valued variables, we acquire the ability to implement 

functions of such variables using two-state devices. We call them “binary variables”. 

Very complex functions can be represented using several binary variables. As we can 

also build systems using millions of electronic two-state devices at very low costs, the 

mathematics of binary variables becomes very important. 

 

An English mathematician, George Boole, introduced the idea of examining the truth or 

falsehood of language statements through a special algebra of logic. His work was 
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published in 1854, in a book entitled “An Investigation of the Laws of Thought”. 

Boole's algebra was applied to statements that are either completely correct or 

completely false. 

 

A value 1 is assigned to those statements that are completely correct and a value 0 is 

assigned to statements that are completely false. As these statements are given 

numerical values 1 or 0, they are referred to as digital variables. In our study of digital 

systems, we use the words switching variables, logical variables, and digital variables 

interchangeably. 

 

Boole's algebra is referred to as Boolean algebra. Originally Boolean algebra was 

mainly applied to establish the validity or falsehood of logical statements. In 1938, 

Claude Shannon of Department of Electrical Engineering at Massachusetts Institute of 

Technology in (his master's thesis) provided the first applications of the principles of 

Boolean algebra to the design of electrical switching circuits. The title of the paper, 

which was an abstract of his thesis, is “A Symbolic Analysis of Relay and Switching 

Circuits”. Shannon established Boole's algebra to switching circuits is what ordinary 

algebra is to analogue circuits. 

 

Logic designers of today use Boolean algebra to functionally design a large variety of 

electronic equipment such as 

• hand-held calculators, 

• traffic light controllers, 

• personal computers, 

• super computers, 

• communication systems 

• aerospace equipment 

• etc. 

We next explore Boolean algebra at the axiomatic level. However, we do not worry 

about the devices that would be used to implement them and their limitations. 
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3.2 Boolean Algebra and Huntington Postulates 

Any branch of mathematics starts with a set of self-evident statements known as 

postulates, axioms or maxims. These are stated without any proof. Boolean algebra is a 

specific instance of Algebra of Propositional Logic. E.V. Huntington presented basic 

postulates of Boolean Algebra in 1904 in his paper “Sets of Independent Postulates for 

the Algebra of Logic”. He defined a multi-valued Boolean algebra on a set of finite 

number of elements. 

 

In Boolean algebra as applied to the switching circuits, all variables and relations are 

two-valued. The two values are normally chosen as 0 and 1, with 0 representing false 

and 1 representing true. If x is a Boolean variable, then 

x = 1 means x is true 

x = 0 means x is false 

When we apply Boolean algebra to digital circuits we will find that the qualifications 

“asserted” and “not-asserted” are better names than “true” and “false”. That is when x 

= 1 we say x is asserted, and when x = 0 we say x is not-asserted. 

You are expected to be familiar with 

• Concept of a set 

• Meaning of equivalence relation 

• The principle of substitution 

Definition: A Boolean algebra consists of a finite set of elements BS subject to 

• Equivalence relation "=", 

• One unary operator “not” (symbolised by an over bar), 

• Two binary operators "." and "+", 

• For every element x and y ∈ BS the operations 𝑥̅(not x), x.y and x +y are 

uniquely defined. 

The unary operator ‘not’ is defined by the relation 

1̅= 0; 0̅ = 1 
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The not operator is also called the complement, and consequently 𝑥̅ is the complement 

of x. The binary operator ‘and’ is symbolized by a dot. The ‘and’ operator is defined by 

the relations: 

0 . 0 = 0 

0 . 1 = 0 

1 . 0 = 0 

1 . 1 = 1 

The binary operator ‘or’ is represented by a plus (+) sign. The ‘or’ operator is 

defined by the relations 

0 + 0 = 0 

0 + 1 = 1 

1 + 0 = 1 

1 + 1 = 1 

Huntington's postulates apply to the Boolean operations 

P1. The operations are closed. 

For all x and y ∈ BS, 

a. x + y ∈ BS 

b. x . y ∈ BS 

P2. For each operation there exists an identity element. 

a. There exists an element 0 ∈ BS such that for all x ∈ BS, x + 0 = x 

b. There exists an element 1 ∈ BS such that for all x ∈ BS, x . 1 = x 

P3. The operations are commutative. 

For all x and y ∈ BS, 

a. x + y = y + x 

b. x . y = y . x 

P4. The operations are distributive. 

For all x, y and z ∈ BS, 

a. x + (y . z) = (x + y) . (x + z) 

b. x . (y + z) = (x . y) + (x . z) 

P5. For every element x ∈ BS there exists an element 𝑥̅  ∈ BS (called the complement of 

x) such that x + 𝑥̅  = 1 and x . 𝑥̅  = 0 
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P6. There exist at least two elements x and y ∈ BS such that x ≠ y. 

3.2.1 Propositions from Huntington’s Postulates 

We derive several new propositions using the basic Huntington’s postulates. Through 

these propositions we will be able to explore the structures and implications of that 

branch of mathematics. Such propositions are called theorems. A theorem gives a 

relationship among the variables. 

Definition: A Boolean expression is a constant, 1 or 0, a single Boolean variable or its 

complement, or several constants and/or Boolean variables and/or their complements 

used in combination with one or more binary operators. 

According to this definition 0, 1, x and 𝑥̅  are Boolean expressions. If A and B are 

Boolean expressions, then 𝐴̅  , 𝐵̅, A+B and A.B are also Boolean expressions. 

Duality: Many of the Huntington’s postulates are given as pairs, and differ only by the 

simultaneous interchange of operators "+" and "." and the elements "0" and "1". 

This special property is called duality. 

The property of duality can be utilized effectively to establish many useful properties of 

Boolean algebra.vThe duality principle: 

“If two expressions can be proven equivalent by applying a sequence of basic postulates, 

then the dual expressions can be proven equivalent by simply applying the sequence of 

dual postulates” 

This implies that for each Boolean property, which we establish, the dual property is 

also valid without needing additional proof. 

Let us derive some useful properties: 

Property 1: Special law of 0 and 1 

For all x ∈ BS, 

a. x . 0 = 0 

b. x + 1 = 1 

Proof: x . 0 = (x . 0) + 0 (postulate 2a) 

= (x . 0) + (x . 𝑥̅  ) (postulate 5b) 

= x . (0 + 𝑥̅  ) (postulate 4b) 

= x . 𝑥̅  (postulate 2a) 
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= 0 (postulate 5b) 

Property: b can be proved by applying the law of duality, that is, by interchanging "." 

and "+", and "1" and "0". 

Property 2: 

a. The element 0 is unique. 

b. The element 1 is unique. 

Proof for Part b by contradiction: Let us assume that there are two 1s denoted 11 and 12. 

Postulate 2b states that 

x. 11 = x and y. 12 = y 

Applying the postulate 3b on commutativity to the second relationship, we get 

11 . x = x and 12 . y = y 

Letting x = 12 and y = 11, we obtain 

11 . 12 = 12 and 12 . 11 = 11 

Using the transitivity property of any equivalence relationship we obtain 11 = 12, which 

becomes a contradiction of our initial assumption. 

Property a can be established by applying the principle of duality. 

Property 3 

a. The complement of 0 is 0̅ = 1. 

b. The complement of 1 is 1̅  = 0. 

Proof: x + 0 = x (postulate 2a) 

0 + 0̅  = 0 

0 + 0̅  = 1 (postulate 5a) 

0̅  = 1 

Part b is valid by the application of principle of duality. 

Property 4: Idempotency law 

For all x ∈ BS, 

a. x + x = x 

b. x . x = x 

Proof: x + x = (x + x) . 1 (postulate 2b) 

= (x + x) . (x + 𝑥̅  ) (postulate 5a) 

= x + (x . 𝑥̅  ) (postulate 4a) 
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= x + 0 (postulate 5b) 

= x (postulate 2a) 

x . x = x (by duality) 

Property 5: Adjacency law 

For all x and y ∈ BS, 

a. x . y + x . 𝑦̅  = x 

b. (x + y) . (x + 𝑦̅  ) = x 

Proof: x . y + x . 𝑦̅  = x . (y + 𝑦̅  ) (postulate 4b) 

= x . 1 (postulate 5a) 

= x (postulate 2b) 

(x + y) . (x + 𝑦̅  ) = x (by duality) 

The adjacency law is very useful in simplifying logical expressions encountered in the 

design of digital circuits. This property will be extensively used in later learning 

units. 

Property 6: First law of absorption 

For all x and y ∈ BS, 

a. x + (x . y) = x 

b. x . (x + y) = x 

Proof x . (x + y) = (x + 0) . (x + y) (postulate 2a) 

= x + (0 . y) (postulate 4a) 

= x + 0 (property 2.1a) 

= x (postulate 2a) 

x + (x . y) = x (by duality) 

Property 7: Second law of absorption 

For all x and y ∈ BS, 

a. x + (𝑥̅  . y) = x + y 

b. x . (𝑥̅ + y) = x . y 

Proof: x + (𝑥̅  . y) = (x + 𝑥̅  ) . (x + y) (postulate 4a) 

= 1. (x + y) (postulate 5a) 

= x + y (postulate 2b) 

x . (𝑥̅  + y) = x . y (by duality) 
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Property 8: Consensus law 

For all x, y and z ∈ BS, 

a. x . y +𝑥̅. z + y . z = x . y + 𝑥̅  . z 

b. (x + y) . (𝑥̅  + z) . (y + z) = (x + y) . (𝑥̅  + z) 

Proof: x . y + 𝑥̅  . z + y . z 

= x . y + 𝑥̅  . z + 1 . y . z (postulate 2b) 

= x . y + x . z + (x + 𝑥̅  ) . y . z (postulate 5a) 

= x . y + 𝑥̅  . z + x . y . z + 𝑥̅. y . z (postulate 4b) 

= x . y + x . y . z + 𝑥̅  . z + 𝑥̅  . y . z (postulate 3a) 

= x . y . (1 + z) + 𝑥̅  . z . ( 1 + y) (postulate 4b) 

= x . y . 1 + 𝑥̅  . z . 1 (property 2.1b) 

= x . y + 𝑥̅  . z (postulate 2b) 

(x + y) . (𝑥̅  + z) . (y + z) = (x + y) . (𝑥̅  + z) (by duality) 

Property 9: Law of identity 

For all x and y ε BS, if 

a. x + y = y 

b. x . y = y, then x = y 

Proof: Substituting (a) into the left-hand side of (b), we have 

x . (x + y) = y 

However by the first law of absorption 

x . (x + y) = x (property 6) 

Therefore, by transitivity x = y 

Property 10: The law of involution 

For all x ∈ BS, 𝑥̿ = x 

Proof: We need to show that the law of identity (property 2.9) holds, that is, 

(𝑥̿ + x) = 𝑥̿ and 𝑥̿ . x = 𝑥̿ 

𝑥̿ = 𝑥̿ + 0 (postulate 2a) 

= 𝑥̿ + (x. 𝑥̅  ) (postulate 5b) 

= (𝑥̿ + x).( 𝑥̿ + x) (postulate 4a) 

= (𝑥̿ + x).1 (postulate 5a) 

Thus 𝑥̿ = 𝑥̿ + x 



42 

 

Also 𝑥̿ = 𝑥̿.1 (postulate 2b) 

= 𝑥̿.(x + 𝑥̅  ) (postulate 5a) 

= 𝑥̿.x + 𝑥̿. 𝑥̅   (postulate 4b) 

= 𝑥̿.x + 0 (postulate 5b) 

= x.x (postulate 2a) 

Therefore by the law of identity, we have 𝑥̿ = x 

Property 11: DeMorgan's Law 

For all x, y ∈ BS, 

a. 𝑥 + 𝑦̅̅ ̅̅ ̅̅ ̅  = 𝑥̅  . 𝑦̅   

b. 𝑥. 𝑦̅̅ ̅̅̅  = 𝑥̅   + 𝑦̅   

Proof: (x + y).( 𝑥̅ . 𝑦̅  ) = (x. 𝑥̅ . 𝑦̅  ) + (y. 𝑥̅ . 𝑦̅  ) (postulate 4b) 

= 0 + 0 

= 0 (postulate 2a) 

(x + y) + (𝑥̅ . 𝑦̅  ) = (x + 𝑥̅ . 𝑦̅  ) + y (postulate 3a) 

= x + 𝑦̅   + y (property 2.7a) 

= x + 1 (postulate 5a) 

= 1 (property 2.16) 

Therefore, (𝑥̅ . 𝑦̅ ) is the complement of (x + y). 

𝑥. 𝑦̅̅ ̅̅̅  = 𝑥̅ + 𝑦̅   (by duality) 

DeMorgan's law bridges the AND and OR operations, and establishes a method for 

converting one form of a Boolean function into another. More particularly it gives a 

method to form complements of expressions involving more than one variable. By 

employing the property of substitution, DeMorgan's law can be extended to expressions 

of any number of variables. Consider the following example: 

𝑥 + 𝑦 + 𝑧̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   = 𝑥̅ . 𝑦̅ . 𝑧̅   

Let y + z = w, then x + y + z = x + w. 

𝑥 + 𝑤̅̅ ̅̅ ̅̅ ̅̅   = 𝑥̅ . 𝑤̅   (by DeMorgan's law) 

𝑥 + 𝑤̅̅ ̅̅ ̅̅ ̅̅   = 𝑥 + 𝑦 + 𝑧 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(by substitution) 

= 𝑥̅  . 𝑦 + 𝑧̅̅ ̅̅ ̅̅ ̅  (by DeMorgan's law) 

= 𝑥̅ . 𝑦̅ . 𝑧   (by DeMorgan's law) 
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At the end of this Section the reader should remind himself that all the postulates and 

properties of Boolean algebra are valid when the number of elements in the BS is finite. 

The case of the set BS having only two elements is of more interest here and in the 

topics that follow in this course on Design of Digital systems. 

All the identities derived in this Section are listed in the Table 1 to serve as a ready 

reference. 

TABLE: Useful Identities of Boolean Algebra 
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The properties of Boolean algebra when the set BS has two elements, namely 0 and 1, 

will be explored next. 

3.3 Boolean Operators 

Recall that Boolean Algebra is defined over a set (BS) with finite number of elements. If 

the set BS is restricted to two elements {0, 1} then the Boolean variables can take only 

one of the two possible values. As all switches take only two possible positions, for 

example ON and OFF, Boolean Algebra with two elements is more suited to working 

with switching circuits. In all the switching circuits encountered in electronics, the 

variables take only one of the two possible values. 

Definition: A binary variable is one that can assume one of the two values, 0 or 1. These 

two values, however, are meant to express two exactly opposite states. It means, if a 

binary variable A ≠ 0 then A = 1. Similarly if A ≠ 1, then A = 0. 

Note that it agrees with our intuitive understanding of electrical switches we are familiar 

with. 

a. if switch A is not open then it is closed 

b. if switch A is not closed then it is open 

The values 0 and 1 should not be treated numerically, such as to say "0 is less than 1" or 

" 1 is greater than 0". 
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Definition: The Boolean operator NOT, also known as complement operator 

represented by "− " (overbar) on the variable, or " / " (a superscript slash) after the 

variable, is defined by the following table. 

 

Though it is more popular to use the symbol "− " (overbar) in most of the text-books, we 

will adopt the " / " to represent the complement of a variable, for convenience of typing. 

The circuit representation of the NOT operator is shown in the following: 

 

 

Definition: The Boolean operator "+" known as OR operator is defined by the table 

given in the following. 

 

The circuit symbol for logical OR operation is given in the following. 

 

Definition: The Boolean operator "." known as AND operator is defined by the table 

given below:  
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The circuit symbol for the logical AND operation is given in the following. 

 

The relationship of these operators to the electrical switching circuits can be seen from 

the equivalent circuits given in the following. 

Consider the NOT operator 

 

Consider the OR and AND operators:  

 

We can define several other logic operations besides these three basic logic operations. 

These include 

• NAND 

• NOR 

• Exclusive-OR (Ex-OR for short) 

• Exclusive-NOR (Ex-NOR) 
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These are defined in terms of different combinations of values the variables assume, as 

indicated in the following table: 

 

Observe the following: 

• NAND operation is just the complement of AND operation 

• NOR operation is the complement of OR operation. 

• Exclusive-OR operation is similar to OR operation except that EX-OR operation 

leads to 0, when the two variables take the value of 1. 

• Exclusive-NOR is the complement of Exclusive-OR operation. 

These functions can also be represented graphically as shown in the figure. 

 

A set of Boolean operations is called functionally complete set if all Boolean 

expressions can be expressed by that set of operations. AND, OR and NOT constitute a 

functionally complete set. However, it is possible to have several combinations of 

Boolean operations as functionally complete sets. 

- OR, AND and NOT 

- OR and NOT 

- AND and NOT 

- NAND 

- NOR 

The completeness of these combinations is shown in the following. 

All Boolean functions through AND and NOT operations 
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All Boolean functions through OR and NOT operations 

 

 

All Boolean functions through NAND function 
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All Boolean functions through NOR function 
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Check Your Progress 

1 1. Identify each of these logic gates by name, and complete their respective truth 

tables: 

 

 

2 Write the Boolean expression for each of these logic gates, showing how the 

output (Q) algebraically relates to the inputs (A and B): 
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3 Convert the following logic gate circuit into a Boolean expression, writing 

Boolean sub-expressions next to each gate output in the diagram: 

 

3.4 Model Questions 

4 What is a postulates? 

5 What is Boolean algebra? 

6 What are Huntington's postulates? 

7 What are the several new propositions derived  using the basic Huntington’s 

postulates? 
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8 What is DeMorgan's Law? 

9 Explain different types of Boolean operators. 

Answers to Check Your Progress 

1.  
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2.  

 

 

 

3.  
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UNIT IV: LOGIC FUNCTIONS 

4.0 Learning Objectives 

After reading this chapter, you will be able to: 

• Explain the characteristics and features  of logic families. 

• Know noise immunity 

• Measure the noise immunity 

• Know AC and DC noise margin 

• Create a logic circuit if its description is given in terms of a truth-table or as a 

logic function. 

• Convert a given truth-table into a logic function into minterm or maxterm forms. 

• Explain the nature and role of “don’t care” terms 

4.1 Introduction 

Many types of electrical and electronic circuits can be built with devices that have two 

possible states. We are, therefore interested in working with variables, which can take 

only two values. Such two valued variables are called Logic variables or Switching 

variables. 

 

We defined several Boolean operators, which can also be called Logic operators. We 

will find that it is possible to describe a wide variety of situations and problems using 

logic variables and logic operators. This is done through defining a “logic function” of 

logic variables. We can describe logic functions in several ways. These include: 

• Algebraic 

• Truth-table 

• Logic circuit 

• Hardware description language 

• Maps 

We use all these forms to express logic functions in working with digital circuits. Each 

form of representation is convenient in some context. Initially we will work with 
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algebraic, truth-table, and logic circuit representation of logic functions. The objectives 

of this learning unit are:  

1 Writing the output of a logic network, whose word description is given, as a 

function of the input variables either as a logic function, a truth-table, or a logic 

circuit. 

2 Create a truth-table if the description of a logic circuit is given in terms of a logic 

function or as a logic circuit. 

3 Write a logic function if the description of a logic circuit is given in terms of a 

truth-table or as a logic circuit. 

4 Create a logic circuit if its description is given in terms of a truth-table or as a 

logic function. 

5 Expand a given logic function in terms of its minterms or maxterms. 

6 Convert a given truth-table into a logic function into minterm or maxterm forms. 

7 Explain the nature and role of “don’t care” terms 

4.2 Logic Functions in Algebraic Form 

Let A1, A2, . . . An be logic variables defined on the set BS = {0,1}. A logic function of n 

variables associates a value 0 or 1 to every one of the possible 2n combinations of the n 

variables. Let us consider a few examples of such functions. 

F1 = A1.A2’.A3.A4 + A1’.A2.A3’.A4 + A1.A2’.A3.A4’ 

 

F1 is a function of 4 variables. You notice that all terms in the function have all the four 

variables. It is not necessary to have all the variables in all the terms. Consider the 

following example. 

F2 = A1.A2 + A1’.A2.A3’ + A1’.A2.A4’.A5 

 

F2 happens to be simplified version of a function, which has a much larger number of 

terms, where each term has all the variables. We will explore ways and means to 

generate such simplifications from a given logic expression. The logic functions have 

the following properties: 
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1 If F1(A1, A2, ... An ) is a logic function, then (F1(A1, A2, ... An))’ is also a 

Boolean function. 

2 If F1 and F2 are two logic functions, then F1+F2 and F1.F2 are also Boolean 

functions. 

3 Any function that is generated by the finite application of the above two rules is 

also a logic function 

Try to understand the meaning of these properties by solving the following examples. 

If F1 = A.B.C + A.B/.C + A.B.C/ what is the logic function that represents F1/ ? 

If F1 = A.B + A/.C and F2 = A.B/ + B.C write the logic functions F1 + F2 and F1.F2? 

As each one of the combinations can take value of 0 or 1, there are a total of 22𝑛
 distinct 

logic functions of n variables. It is necessary to introduce a few terms at this stage. 

"Literal" is a not-complemented or complemented version of a variable. A and A’ are 

literals 

"Product term" or "product" refers to a series of literals related to one another through 

an AND operator. Examples of product terms are A.B’.D, A.B.D’.E, etc. 

"Sum term" or "sum" refers to a series of literals related to one another through an OR 

operator. Examples of sum terms are A+B’+D, A+B+D’+E, etc. 

The choice of terms "product" and "sum" is possibly due to the similarity of OR and 

AND operator symbols "+" and "." to the traditional arithmetic addition and 

multiplication operations. 

4.3 Truth Table Description of Logic Functions 

The truth table is a tabular representation of a logic function. It gives the value of the 

function for all possible combinations of values of the variables. If there are three 

variables in a given function, there are 23 = 8 combinations of these variables. For each 

combination, the function takes either 1 or 0. These combinations are listed in a table, 

which constitutes the truth table for the given function. Consider the expression, 

F (A, B) = A.B + A.B’ 

The truth table for this function is given by, 
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The information contained in the truth table and in the algebraic representation of the 

function are the same. The term ‘truth table’ came into usage long before Boolean 

algebra came to be associated with digital electronics. Boolean functions were originally 

used to establish truth or falsehood of statements. When statement is true the symbol "1" 

is associated with it, and when it is false "0" is associated. This usage got extended to 

the variables associated with digital circuits. However, this usage of adjectives "true" 

and "false" is not appropriate when associated with variables encountered in digital 

systems. All variables in digital systems are indicative of actions. Typical examples of 

such signals are "CLEAR", "LOAD", "SHIFT", "ENABLE", and "COUNT". These are 

suggestive of actions. Therefore, it is appropriate to state that a variable is ASSERTED 

or NOT ASSERTED than to say that a variable is TRUE or FALSE. When a variable is 

asserted, the intended action takes place, and when it is not asserted the intended action 

does not take place. In this context we associate "1" with the assertion of a variable, and 

"0" with the non-assertion of that variable. Consider the logic function, 

F = A.B + A.B’ 

It should now be read as "F is asserted when A and B are asserted or A is asserted and 

B is not asserted". This convention of using "assertion” and “non-assertion" with the 

logic variables will be used in all the Learning Units of this course on Digital Systems. 

 

The term ‘truth table’ will continue to be used for historical reasons. But we understand 

it as an input-output table associated with a logic function, but not as something that is 

concerned with the establishment of truth. 

 

As the number of variables in a given function increases, the number of entries in the 

truth table increases exponentially. For example, a five variable expression would 

require 32 entries and a six-variable function would require 64 entries. It, therefore, 

becomes inconvenient to prepare the truth table if the number of variables increases 
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beyond four. However, a simple artefact may be adopted. A truth table can have entries 

only for those terms for which the value of the function is "1", without loss of any 

information. This is particularly effective when the function has only a small number of 

terms. Consider the Boolean function with six variables 

F = A.B.C.D’.E’ + A.B’.C.D’.E + A’.B’.C.D.E + A.B’.C’.D.E 

The truth table will have only four entries rather than 64, and the representation of this 

function is 

 

Truth table is a very effective tool in working with digital circuits, especially when the 

number of variables in a function is small, less than or equal to five. 

Check Your Progress 

1. ________ is a not-complemented or complemented version of a variable. 

2. The ______________is a tabular representation of a logic function. 

4.4 Conversion of English Sentences to Logic Functions 

Some of the problems that can be solved using digital circuits are expressed through one 

or more sentences. For example, 

• At the traffic junction the amber light should come on 60 seconds after the red 

light, and get witched off after 5 seconds. 

• If the number of coins put into the vending machine exceed five rupees it should 

dispense a Thums Up bottle. 

• The lift should start moving only if the doors are closed and a floor number is 

chosen. 

These sentences should initially be translated into logic equations. This is done through 

breaking each sentence into phrases and associating a logic variable with each phrase. 
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As stated earlier many of these phrases will be indicative of actions or directly represent 

actions. We first mark each action related phrase in the sentence. Then we associate a 

logic variable with it. Consider the following sentence, which has three phrases: 

Anil freaks out with his friends if it is Saturday and he completed his assignments. 

We will now associate logic variables with each phrase. The words “if” and “and” are 

not included in any phrase and they show the relationship among the phrases. 

F = 1 if “Anil freaks out with his friends”; otherwise F = 0 

A = 1 if “it is Saturday”; otherwise A = 0 

B = 1 if “he completed his assignments”; otherwise B = 0 

F is asserted if A is asserted and B is asserted. The sentence, therefore, can be translated 

into a logic equation as 

F = A.B 

For simple problems it may be possible to directly write the logic function from the 

word description. In more complex cases it is necessary to properly define the variables 

and draw a truth-table before the logic function is prepared. Sometimes the given 

sentences may have some vagueness, in which case clarifications need to be sought from 

the source of the sentence. Let us consider another sentence with more number of 

phrases. 

Rahul will attend the Networks class if and only if his friend Shaila is attending the class 

and the topic being covered in class is important from examination point of view or 

there 

is no interesting matinee show in the city and the assignment is to be submitted. Let us 

associate different logic variables with different phrases. 

Rahul will attend the Networks class if and only if his friend Shaila is attending the class 

                               F                                                                              A 

and the topic being covered in class is important from examination point of view or 

                                                                                      B 

there is no interesting matinee show in the city                     and the assignment is to be 

submitted                                                           .                                                                  

                                       C’                                                              D 

With the above assigned variables the logic function can be written as 
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F = A.B + C’.D 

4.5 Minterms and Maxterms 

A logic function has product terms. Product terms that consist of all the variables of a 

function are called "canonical product terms", "fundamental product terms" or 

"minterms". For example the logic term A.B.C' is a minterm in a three variable logic 

function, but will be a non-minterm in a four variable logic function. Sum terms which 

contain all the variables of a Boolean function are called "canonical sum terms", 

"fundamental sum terms" or "maxterms". (A+B’+C) is an example of a maxterm in a 

three variable logic function. 

Consider the Table which lists all the minterms and maxterms of three variables. The 

minterms are designated as m0, m1, . . . m7, and maxterms are designated as M0, M1, . .. 

M7. 

 

A logic function can be written as a sum of minterms. Consider F, which is a function of 

three variables. 

F = m0 + m3 + m5 + m6 

This is equivalent to 

F = A’B’C’ + A’BC + AB’C + ABC’ 

A logic function that is expressed as an OR of several product terms is considered to be 

in "sum-of-products" or SOP form. If it is expressed as an AND of several sum terms, it 
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is considered to be in "product-of-sums" or POS form. Examples of these two forms are 

given in the following: 

F1 = A.B + A.B’.C + A’.B.C (SOP form) 

F2 = (A+B+C’) . (A+B’+C’) . (A’+B’+C) (POS form) 

If all the terms in an expression or function are canonical in nature, that is, as minterms 

in the case of SOP form, and maxterms in the case of POS form, then it is considered to 

be in canonical form. For example, the function in the equation (1) is not in canonical 

form. However it can be converted into its canonical form by expanding the term A.B as 

A.B = A . B . 1 (postulate 2b) 

                  = A . B . (C + C’) (postulate 5a) 

                           = A . B . C + A . B . C’ (postulate 4b) 

The canonical version of F1 is, 

F1 = A.B.C + A.B.C’ + A.B’.C + A’.B.C 

The Boolean function F2 is in canonical form, as all the sum terms are in the form of 

maxterms. 

 

The SOP and POS forms are also referred to as two-level forms. In the SOP form, AND 

operation is performed on the variables at the first level, and OR operation is performed 

at the second level on the product terms generated at the first level. Similarly, in the 

POS form, OR operation is performed at the first level to generate sum terms, and AND 

operation is performed at the second level on these sum terms. In any logical expression, 

the right-hand side of a logic function, there are certain priorities in performing the 

logical operations. 

• NOT (‘) operation has the highest priority, 

• AND (.) has the next priority 

• OR (+) has the last priority. 

In the expression for F1 the operations are to be performed in the following sequence 

• NOT operation on B and A 

• AND terms: A.B, A.B’.C, A’.B.C 

• OR operation on AB, AB’C and A’BC 
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However, the order of priority can be modified through using parentheses. It is also 

common to express logic functions through multi-level expressions using parentheses. A 

simple example is shown in the following. 

F1 = A.(B+C’) + A’.(C+D) 

These expressions can be brought into the SOP form by applying the distributive law. 

More detailed manipulation of algebraic form of logic functions will be explored in 

another Learning Unit. 

4.6 Circuit Representation of Logic Functions 

Representation of basic Boolean operators through circuits was already presented in the 

earlier Learning Unit. A logic function can be represented in a circuit form using these 

circuit symbols. Consider the logic function 

F1 = A.B + A.B’ 

Its circuit form is 

 

Consider another example of a Boolean function given in POS form. 

F2 = (A+B+C) . (A+B’+C’) 

The circuit form of the logical expression F2 is 

 

F1 can also be represented in terms of other functionally complete set of logical 

operations. NAND is one such functionally complete set. NAND representation of logic 

expression F2 is 
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NOR is another functionally complete set. NOR representation of the same function F1 

is: 

 

 Check Your Progress II 

1. Write any valid Boolean expression for Q as a function of the input variables.  

a.  

.  

b.  

 

c.  

 

4.7 Model Questions 

1. What is Boolean algebra? 

2. How can we describe logic functions? 

3. What do you mean by tautology? 
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4. What is a binary decision? 

5. How to represent logic functions in algebraic form? 

6. What is a truth table? Why it is used? 

7. What are canonical product terms? 

 

Answers to Check your Progress I 

1. Literal 

2. truth table 

 

Answers to Check your Progress II 

a. Q = A +B  

            b CBAQ ++=  

       BAAQ ++=  
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BLOCK II 
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UNIT V: KARNAUGH-MAP 

5.0 Learning Objectives 

After the completion of this unit, you will be able to: 

• Explain K-Map 

• Realize Three-variable K-Map 

• Realize Four variable K-Map 

• Realize Five variable K-Map 

• Implement Boolean functions in POS form 

• Perform Minimization with Karnaugh Map 

5.1 Karnaugh-Map 

The expressions for a logical function (right hand side of a function) can be very long 

and have many terms and each term many literals. Such logical expressions can be 

simplified using different properties of Boolean algebra. This method of minimization 

requires our ability to identify the patterns among the terms. These patterns should 

conform to one of the four laws of Boolean algebra. However, it is not always very 

convenient to identify such patterns in a given expression. If we can represent the same 

logic function in a graphic form that allows us to identify the inherent patterns, then the 

simplification can be performed more conveniently. 

 

Karnaugh Map is one such graphic representation of a Boolean function in the form of a 

map. Karnaugh Map is due to M. Karnaugh, who introduced (1953) his version of the 

map in his paper "The Map Method for Synthesis of Combinational Logic Circuits". 

Karnaugh Map, abbreviated as K-map, is actually pictorial form of the truth-table. This 

Learning Unit is devoted to the Karnaugh map and its method of simplification of logic 

functions. 

 

Karnaugh map of a Boolean function is graphical arrangement of minterms, for which 

the function is asserted. We can begin by considering a two-variable logic function, 

F = A’B + AB 



70 

 

Any two-variable function has 22 = 4 minterms. The truth table of this function is 

 

 

It can be seen that the values of the variables are arranged in the ascending order (in the 

numerical decimal sense). 

 

We consider that any two terms are logically adjacent if they differ only with respect 

any one variable. For example ABC is logically adjacent to A’BC, AB’C and ABC’. But 

it is not logically adjacent to A’B’C, A’BC’, A’B’C’, AB’C’. 

The entries in the truth-table that are positionally adjacent are not logically adjacent. For 

example A’B (01) and AB’ (10) are postionally adjacent but are not logically adjacent. 

The combination of 00 is logically adjacent to 01 and 10. Similarly 11 is adjacent to 10 

and 01. Karnaugh map is a method of arranging the truth-table entries so that the 

logically adjacent terms are also physically adjacent. 

The K-map of a two-variable function is shown in the figure. There are two popular 

ways of representing the map, both of which are shown in the figure. The representation, 

where the variable above the column or on the side of the row in which it is asserted, 

will be followed in this and the associated units. 

 

• There are four cells (squares) in this map. 

• The cells labelled as 0, 1, 2 and 3 represent the four minterms m0, m1, m2 and m3. 
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• The numbering of the cells is chosen to ensure that the logically adjacent 

minterms are positionally adjacent. 

• Cell 1 is adjacent to cell 0 and cell 3, indicating the minterm m1 (01) is logically 

adjacent to the minterm m0 (00) and the minterm m3 (11). 

• The second column, above which the variable A is indicated, has the cells 2 and 

3 representing the minterms m2 and m3. The variable A is asserted in these two 

minterms. 

 

Let us define the concept of position adjacency. Position adjacency means two adjacent 

cells sharing one side. Such an adjacency is called simple adjacency. Cell 0 is 

positionally adjacent to cell 1 and cell 2, because cell 0 shares one side with each of 

them. Similarly, cell 1 is positionally adjacent to cell 0 and cell 3, as cell 2 is adjacent to 

cell 0 and cell 3, and cell 3 is adjacent to cell 1 and cell 2. 

 

There are other kinds of positional adjacencies, which become relevant when the 

number of variables is more than 3. We will explore them at a later time. The main 

feature of the K-map is that by merely looking at the position of a cell, it is possible to 

find immediately all the logically adjacent combinations in a function. 

 

The function F = (A/B + AB) can now be incorporated into the K-map by entering "1" 

in cells represented by the minterms for which the function is asserted. A "0" is entered 

in all other cells. K-map for the function F is 

 

 

You will notice that the two cells in which "1" is entered are not positionally adjacent. 

Therefore, they are not logically adjacent. 
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Consider another function of two variables. 

F = A’B + AB 

The K-map for this function is 

 

You will notice that the cells in which "1" is entered are positionally adjacent and hence 

are logically adjacent. 

5.1.1 Three-Variable Karnaugh Map 

K-map for three variables will have 23 = 8 cells as shown in the figure. 

 

The cells are labelled 0,1,..,7, which stand for combinations 000, 001,...,111 

respectively. Notice that cells in two columns are associated with assertion of A, two 

columns with the assertion of B and one row with the assertion of C. 

Let us consider the logic adjacency and position adjacency in the map. 

• Cell 7 (111) is adjacent to the cells 3 (011), 5 (101) and 6 (110). 

• Cell 2 (010) is adjacent to the cell 0 (000), cell 6 (110) and cell 3 (011). 

• We know from logical adjacency the cell 0 (000) and the cell 4 (100) should also 

be adjacent. But we do not find them positionally adjacent. Therefore, a new 

adjacency called "cyclic adjacency" is defined to bring the boundaries of a row 

or a column adjacent to each other. In a three-variable map cells 4 (100) and 0 

(000), and cells 1 (001) and 5 (101) are adjacent. The boundaries on the opposite 

sides of a K-map are considered to be one common side for the associated two 

cells. 
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Adjacency is not merely between two cells. Consider the following function: 

F = Σ (1, 3, 5, 7) 

= m1 + m3 + m5 + m7 

= A'B'C + A'BC + AB'C + ABC 

= A'C(B'+B) + AC(B'+B) 

= A'C + AC 

= (A'+A)C 

= C 

The K-map of the function F is 

 

It is shown clearly that although there is no logic adjacency between some pairs of the 

terms, we are able to simplify a group of terms. For example, A’B’C, ABC, A’BC and 

AB’C are simplified to result in an expression "C". A cyclic relationship among the cells 

1, 3, 5 and 7 can be observed on the map in the form 1 → 3 → 7 → 5 → 1 

("→" indicating "adjacent to"). When a group of cells, always 2i (i < n) in number, are 

adjacent to one another in a sequential manner those cells are considered be cyclically 

adjacent. 

Other groups of cells with ‘cyclic adjacency’ 

•  0, 1, 3 and 2 

•  2, 3, 7 and 6 

•  6, 7, 5 and 4 

•  4, 5, 1 and 0 

•  0, 2, 6 and 4 

So far we noticed two kinds of positional adjacencies: 

• Simple adjacency 
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• Cyclic adjacency (It has two cases, one is between two cells, and the other 

among a group of 2i cells) 

5.1.2 Four-variable Karnaugh Map 

 A four-variable (A, B, C and D) K-map will have 24 

= 16 cells. 

 

These cells are labelled 0, 1,..., 15, which stand for combinations 0000, 0001,...1111 

respectively. Notice that the two sets of columns are associated with assertion of A and 

B, and two sets of rows are associated with the assertion of C and D. 

We will be able to observe both simple and cyclic adjacencies in a four-variable map 

also. 4, 8 and 16 cells can form groups with cyclic adjacency. Some examples of such 

groups are 

•  0, 1, 5 and 4 

•  0, 1, 3 and 2 

•  10, 11, 9 and 8 

•  14, 12,13 and15 

•  14, 6, 7 and 15 

•  3, 7, 15, 11, 10, 14, 6 and 2 

Consider a function of four variables 

F = Σ (2, 3, 8, 9, 11, 12) 

The K-map of this function is 
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5.1.3 Five-variable Karnaugh Map 

Karnaugh map for five variables 

 

• It has 25 = 32 cells labelled as 0,1, 2 ...,31, corresponding to the 32 combinations 

from 00000 to 11111. 

• The map is divided vertically into two symmetrical parts. Variable A is 

notasserted on the left side, and is asserted on the right side. The two parts of the 

map, except for the assertion or non-assertion of the variable A are identical with 

respect to the remaining four variables B, C, D and E. 

• Simple and cyclic adjacencies are applicable to this map, but they need to be 

applied separately to the two sections of the map. For example cell 8 and cell 0 

are adjacent. The largest number of cells coming under cyclic adjacency can go 

up to 25 = 32. 
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• Another type of adjacency, called ‘symmetric adjacency’, exists because of the 

division of the map into two symmetrical sections. Taking the assertion and 

nonassertion of A into account, we find that cell 0 and cell 16 are adjacent. 

Similarly, there are 15 more adjacent cell pairs (4-20, 12-28, 8-24, 1-17, 5-21, 

13-29, 9- 25, 3-19, 7-23, 15-31, 11-27, 2-18, 6-22, 14-30, and 10-26). 

Consider a function of five-variable 

F = A’BC’DE’ + A’BCDE’ + A’BC’DE + ABCDE + A’BC’D’E + ABC’DE’ + 

ABCDE’ 

+ ABC’DE + ABC’D’E + ABC’D’E’ 

 

 

From the study of two-, three-, four- and five-variable Karnaugh maps, we can 

summaries the following properties: 

1 Every Karnaugh map has 2n cells corresponding to 2n minterms. 

2 The main feature of a Karnaugh Map is to convert logic adjacency into 

positional adjacency. 

3 There are three kinds of positional adjacency, namely simple, cyclic and 

symmetric. 

 

We have already seen how a K-map can be prepared provided the Boolean function is 

available in the canonical SOP form. 

A "1" is entered in all those cells representing the minterms of the expression, and "0" in 

all the other cells. 
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However, the Boolean functions are not always available to us in the canonical form. 

One method is to convert the non-canonical form into canonical SOP form and prepare 

the K-map. The other method is to convert the function into the standard SOP form and 

directly prepare the K-map. 

Consider the function 

F = A’B + A’B’C’ + ABC’D + ABCD’ 

We notice that there are four variables in the expression. The first term, A’B, containing 

two variables actually represents four minterms, and the term A’B’C’ represents two 

minterms. The K-map for this function is 

 

Notice that the second column represents A’B, and similarly A’B’C’ represents the two 

top cells in the first column. With a little practice it is always possible to fill the K-map 

with 1s representing a function given in the standard SOP form. 

5.1.4 Boolean functions in POS form 

Boolean functions, sometimes, are also available in POS form. Let us assume that the 

function is available in the canonical POS form. Consider an example of such a function 

F = Π (0, 4, 6, 7, 11, 12, 14, 15) 

In preparing the K-map for the function given in POS form, 0s are filled in the cells 

represented by the maxterms. The K-map of the above function is 
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Sometimes the function may be given in the standard POS form. In such situations we 

can initially convert the standard POS form of the expression into its canonical form, 

and enter 0s in the cells representing the maxterms. Another procedure is to enter 0s 

directly into the map by observing the sum terms one after the other. 

 

Consider an example of a Boolean function given in the POS form. 

F = (A+B+D’).(A’+B+C’+D).(B’+C) 

This may be converted into its canonical form as 

F = (A+B+C+D’).(A+B+C’+D’)(A’+B+C’+D).(A+B’+C+D). (A’+B’+C+D). 

(A+B’+C+D’).(A’+B’+C+D’) 

= M1 . M3 . M10 . M4 . M12 . M5 . M13 

The cells 1, 3, 4, 5, 10, 12 and 13 can have 0s entered in them while the remaining cells 

are filled with 1s. 

The second method is through direct observation. To determine the maxterms associated 

with a sum term we follow the procedure of associating a 0 with those variables which 

appear in their asserted form, and a 1 with the variables that appear in their non-asserted 

form. For example the first term (A+B+D’) has A and B asserted and D non-asserted. 

Therefore the two maxterms associated with this sum term are 0001 (M1) and 0011 

(M3). The second term is in its canonical form and the maxterm associated with is 1010 

(M10). Similarly the maxterms associated with the third sum term are 0100 (M4), 1100 

(M12), 0101 (M5) and 1101 (M13). The resultant K-map is 
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We learnt in this Learning Unit 

• The logic adjacency is captured as positional adjacency in a Karnaugh Map 

• How to translate logic expressions given in SOP or POS forms into K-maps 

• There are three types of logical adjacency, namely, simple, cyclic and symmetric 

adjacencies 

5.2 Minimization with Karnaugh Map 

Implicants: A Karnaugh map not only includes all the minterms that represent a 

Boolean function, but also arranges the logically adjacent terms in positionally adjacent 

cells. As the information is pictorial in nature, it becomes easier to identify any patterns 

(relations) that exist among the 1-entered cells (minterms). These patterns or relations 

are referred to as implicants. 

Definition 1: An implicant is a group of 2i (i = 0, 1 ....n) minterms (1-entered cells) that 

are logically (positionally) adjacent. 

A study of implicants enables us to use the K-map effectively for simplifying a Boolean 

function. Consider the K-map 
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• There are four implicants: 1, 2, 3 and 4. 

• The implicant 4 is a single cell implicant. A single cell implicant is a 1-entered 

cell that is not positionally adjacent to any of the other cells in map. 

• The four implicants account for all groupings of 1-entered cells. This also means 

that the four implicants describe the Boolean function completely. 

 

An implicant represents a product term, with the number of variables appearing in the 

term inversely proportional to the number of 1-entered cells it represents. 

• Implicant 1 in the figure represents the product term AC’ 

• Implicant 2 represents ABD 

• Implicant 3 represents BCD 

• Implicant 4 represents A’B’CD’ 

The smaller the number of implicants, and the larger the number of cells that each 

implicant represents, the smaller the number of product terms in the simplified Boolean 

expression. 

In this example we notice that there are different ways of identifying the implicants. 



81 

 

 

Five implicants are identified in the figure (a) and three implicants in the figure (b) for 

the same K-map (Boolean function). It is then necessary to have a procedure to identify 

the minimum number of implicants to represent a Boolean function. 

 

We identify three types of implicants: "prime implicant", "essential implicant" and 

"redundant implicant". 

 

A prime implicant is one that is not a subset of any one of the other implicant. An 

essential prime implicant is a prime implicant which includes a 1-entered cell that is 

not included in any other prime implicant. 

 

A redundant implicant is one in which all the 1-entered cells are covered by other 

implicants. A redundant implicant represents a redundant term in an expression. 

Implicants 2, 3, 4 and 5 in the figure (a), and 1, 2 and 3 in the figure (b) are prime 

implicants. Implicants 2, 4 and 5 in the figure (a), and 1, 2 and 3 in the figure (b) are 

essential prime implicants. 

Implicants 1 and 3 in the figure (a) are redundant implicants. Figure (b) does not have 

any redundant implicants. Now the method of K-map minimisation can be stated as 

"find the smallest set of prime implicants that includes all the essential prime 

implicants accounting for all the 1-entered cells of the K-map". 
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If there is a choice, the simpler prime implicant should be chosen. The minimization 

procedure is best understood through examples. 

Example 1: Find the minimised expression for the function given by the K-map in the 

figure. 

 

Fifteen implicants of the K-map are: 

X1 = C’D’   X2 = B’C’   X3 = BD’   X4 = ACD 

X5 = AB’C’   X6 = BCD’   X7 = A’B’C’   X8 = BC’D’ 

X9 = B’C’D’   X10 = A’C’D’  X11 = AC’D’   X12 = AB’D 

X13 = ABC   X14 = A’BD’   X15 = ABD’   X16 = B’C’D 

Obviously all these implicants are not prime implicants and there are several redundant 

implicants. Several combinations of prime implicants can be worked out to represent the 

function. Some of them are listed in the following. 

F1 = X1 + X4 + X6 + X16 

     = X4 + X5 + X6 + X7 + X8 

     = X2 + X3 + X4 

     = X10 + X11 + X8 + X4 + X6 

The k-maps with these four combinations are 
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Among the prime implicants listed in the figure there are three implicants X1, X2 and 

X3 that group four 1-entered cells. Selecting the smallest number of implicants we 

obtain the simplified expression as: 

F = X2 + X3 + X4 

= B’C’ + BD’ + ACD 

It may be noticed that X2, X3 and X4 are essential prime implicants. 

Example 2: Minimise the Boolean function represented by the K-map shown in the 

figure. 
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Three sets of prime implicants are: 

(a) X1 = B’D’   X2 = A’B   X3 = BD   X4 = ACD 

(b) X4 = ACD  X5 = AB’D’   X6 = A’B’D’   X7 = ABD 

      X8 = A’BC  X9 = A’BC’ 

(c) X7 = ABD  X10 = B’C’D’  X11 = A’C’D’  X12 = A’BD 

     X13 = A’C’D’  X14 = AB’C 

 

Some of the simplified expressions are shown in the following: 

F = X1 + X2 + X3 + X4 

= X4 + X6 + X7 + X8 + X9 

= X7 + X10 + X11 + X12 + X13 + X14 
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5.3 Standard POS form from Karnaugh Map 

As mentioned earlier, POS form always follows some kind of duality, yet different from 

the principle of duality. The implicants are defined as groups of sums or maxterms 

which in the map representation are the positionally adjacent 0-entered cells rather then 

1- entered cells as in the SOP case. When converting an implicant covering some 0-

entered cells into a sum, a variable appears in complemented form in the sum if it is 

always 1 in value in the combinations corresponding to that implicant, a variable 

appears in uncomplimented form if it is always 0 in value, and the variable does not 

appear at all if it changes its values in the combinations corresponding to the implicant. 

We obtain a standard POS form of expression from the map representation by ANDing 

all the sums converted from implicants. 

Example 3: Consider a Boolean function in the POS form represented in the K-map 

shown in the figure 

 

• Initially four implicants are identified (1, 2, 3 and 4). 

• Implicant 1: B is asserted and A is not-asserted in all the cells of implicant 1, 

where as the variables C and D change their values from 0 to 1. It is represented 

by the sum term (A + B’). 

• Implicant 2: It is represented by the sum term (B’ + D’). 

• Implicant 3: It is represented by (B + D). 

• Implicant 4: It is represented by (A’ + C’ + D’). 
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The simplified expression in the POS form is given by; 

F = (A + B’) . (B’ + D’) . (B + D) . (A’ + C’ + D’) 

If we choose the implicant 5 (shown by the dotted line in the figure 19) instead of 4, the 

simplified expression gets modified as: 

F = (A + B’) . (B’ + D’).(B + D).(A’ + B +C') 

We may summarise the procedure for minimization of a Boolean function through a K-

map as follows: 

1 Draw the K-map with 2n cells, where n is the number of variables in a Boolean 

function. 

2 Fill in the K-map with 1s and 0s as per the function given in the algebraic form 

(SOP or POS) or truth-table form. 

3 Determine the set of prime implicants that consist of all the essential prime 

implicants as per the following criteria: 

• All the 1-entered or 0-entered cells are covered by the set of implicants, 

while 

making the number of cells covered by each implicant as large as 

possible. 

• Eliminate the redundant implicants. 

• Identify all the essential prime implicants. 

• Whenever there is a choice among the prime implicants select the prime 

implicant with the smaller number of literals. 

4 If the final expression is to be generated in SOP form, the prime implicants 

should be identified by suitably grouping the positionally adjacent 1-entered 

cells, and converting each of the prime implicant into a product term. The final 

SOP expression is the OR of the identified product terms. 

5 If the final simplified expression is to be given in the POS form, the prime 

implicants should be identified by suitably grouping the positionally adjacent 0-

entered cells, and converting each of the prime implicant into a sum term. The 

final POS expression is the AND of the identified sum terms. 



87 

 

5.4 Simplification of Incompletely Specified Functions 

So far we assumed that the Boolean functions are always completely specified, which 

means a given function assumes strictly a specific value, 1 or 0, for each of its 2n input 

combinations. This, however, is not always the case. Consider the example is the BCD 

decoders 

• The ten outputs are decoded from sixteen possible input combinations produced 

by four inputs representing BCD codes. 

• An encoding scheme chooses ten valid codes. 

• Irrespective of the encoding scheme there are always six combinations of the 

inputs that would be considered as invalid codes. 

• If the input unit to the BCD decoder works in a functionally correct way, then 

the six invalid combinations of the inputs should never occur. 

 

In such a case, it does not matter what the output of the decoder is for these six 

combinations. As we do not mind what the values of the outputs are in such situations, 

we call them "don’t-care" situations. These don’t-care situations can be used 

advantageously in generating a simpler Boolean expression than without taking that 

advantage. Such don’t-care combinations of the variables are represented by an "X" in 

the appropriate cell of the K-map. 

Example: This example shows how an incompletely specified function can be 

represented in truth-table, Karnaugh map and canonical forms. 

 

The decoder has three inputs A, B and C representing three bit codes and an output F. 

Out 

of the 23 = 8 possible combinations of the inputs, only five are described and hence 

constitute the valid codes. F is not specified for the remaining three input codes, namely, 

000, 110 and 111. 

 

Functional description of a decoder 
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Treating these three combinations as the don’t-care conditions, the truth-table may be 

written as: 

 

The K-map for this function is 

 

The function in the SOP and POS forms may be written as 

F = Σ(4, 5) + d (0, 6, 7) 

F = Π (1, 2, 3) . d (0, 6, 7) 

The term d (0, 6, 7) represents the collection of don’t-care terms. 

The don’t-cares bring some advantages to the simplification of Boolean functions. The 

Xs can be treated either as 0s or as 1s depending on the convenience. For example the 

above map can be redrawn in two different ways as 
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The simplification can be done, therefore, in two different ways. The resulting 

expressions for the function F are: 

F = A 

F = AB’ 

We can generate a simpler expression for a given function by utilizing some of the don’t 

care conditions as 1s. 

Example: Simplify F = Σ (0,1,4,8,10,11,12) + d(2,3,6,9,15) 

The K-map of this function is 

 

The simplified expression taking the full advantage of the don’t cares is, 

F = B’ + C’D’ 

Simplification of several functions of the same set of variables 

As there could be several product terms that could be made common to more than one 

function, special attention needs to be paid to the simplification process. 

Example: Consider the following set of functions defined on the same set of variables: 

F1 (A, B, C) = Σ (0, 3, 4, 5, 6) 

F2 (A, B, C) = Σ (1, 2, 4, 6, 7) 
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F3 (A, B, C) = Σ (1, 3, 4, 5, 6) 

Let us first consider the simplification process independently for each of the functions. 

The 

K-maps for the three functions and the groupings are 

 

The resultant minimal expressions are: 

F1 = B’C’ + AC’ + AB’ + A’BC 

F2 = BC’ + AC’ + AB + A’B’C 

F3 = AC’ + B’C + A’C 

These three functions have nine product terms and twenty one literals. 

If the groupings can be done to increase the number of product terms that can be shared 

among the three functions, a more cost effective realisation of these functions can be 

achieved. One may consider, at least as a first approximation, cost of realising a function 

is proportional to the number of product terms and the total number of literals present in 

the expression. Consider the minimisation shown in the figure 

 

The resultant minimal expressions are; 

F1 = B’C’ + AC’ + AB’ + A’BC 

F2 = BC’ + AC’ + AB + A’B’C 

F3 = AC’ + AB’ + A’BC + A’B’C 

This simplification leads to seven product terms and sixteen literals. 
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Check Your Progress 

1. Identify each of these logic gates by name, and complete their respective truth tables: 

  

 

2. Minimise the following problems using the Karnaugh maps method. 

Z = f(A,B,C) =   + B + AB  + AC 

Z = f(A,B,C) = B + B  + BC + A  
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Model Question 

1. What is a Karnaugh-map? Why it is used? 

2. Explain 3-varialble K-map with the help of an example. 

3. What is POS form of representation of Boolean functions? 

 

 

Answers to Check Your Progress 

1.  

 

2.  Z = f(A,B,C) =   + B + AB  + AC 
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By using the rules of simplification and ringing of adjacent cells in order to 

make as many variables redundant, the minimised result obtained is B + 

AC+  

Z = f(A,B,C) = B + B  + BC + A  

  

By using the rules of simplification and ringing of adjacent cells in order to 

make as many variables redundant, the minimised result obtained is B + A

 
 
 

 
  

http://www.ee.surrey.ac.uk/Projects/Labview/minimisation/karrules.html
http://www.ee.surrey.ac.uk/Projects/Labview/common/glossary.html#Adj
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UNIT VI: QUINE-MCCLUSKEY METHOD OF 

MINIMIZATION 

6.0 Learning Objectives 

After the completion of this unit, you will be able to: 

• Explain the Principle of Quine-McClusky Method 

• Perform Generation of Prime Implicants 

• Determine of the Minimal Set of Prime Implicants 

• Perform simplification of Incompletely Specified functions 

6.1 Introduction 

Karnaugh Map provides a good method of minimizing a logic function. However, it 

depends on our ability to observe appropriate patterns and identify the necessary 

implicants. If the number of variables increases beyond five, K-map or its variant 

Variable Entered Map can become very messy and there is every possibility of 

committing a mistake. What we require is a method that is more suitable for 

implementation on a computer, even if it is inconvenient for paper-and-pencil 

procedures. The concept of tabular minimisation was originally formulated by Quine in 

1952. This method was later improved upon by McClusky in 1956, hence the name 

Quine-McClusky. 

 

This Learning Unit is concerned with the Quine-McClusky method of minimisation. 

This method is tedious, time-consuming and subject to error when performed by hand. 

But it is better suited to implementation on a digital computer. 

6.2 Principle of Quine-McClusky Method 

The Quine-McClusky method is a two stage simplification process. 

• Generate prime implicants of the given Boolean function by a special tabulation 

process. 
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• Determine the minimal set of implicants is determined from the set of implicants 

generated in the first stage. 

 

The tabulation process starts with a listing of the specified minterms for the 1s (or 0s) of 

a function and don’t-cares (the unspecified minterms) in a particular format. All the 

prime implicants are generated from them using the simple logical adjacency theorem, 

namely, AB’ + AB = A. The main feature of this stage is that we work with the 

equivalent binary number of the product terms. For example in a four variable case, the 

minterms A’BCD’ and A’BC’D’ are entered as 0110 and 0100. As the two logically 

adjacent minterms A/BCD/ and A/BC/D/ can be combined to form a product term 

A/BD/,the two binary terms 0110 and 0100 are combined to form a term represented as 

"01-0", where ‘-‘ (dash) indicates the position where the combination took place. 

Stage two involves creating a prime implicant table. This table provides a means of 

identifying, by a special procedure, the smallest number of prime implicants that 

represents the original Boolean function. The selected prime implicants are combined to 

form the simplified expression in the SOP form. While we confine our discussion to the 

creation of minimal SOP expression of a Boolean function in the canonical form, it is 

easy to extend the procedure to functions that are given in the standard or any other 

forms. 

6.2.1 Generation of Prime Implicants 

The process of generating prime implicants is best presented through an example. 

Example 1: F = Σ (1,2,5,6,7,9,10,11,14) 

All the minterms are tabulated as binary numbers in sectionalised format, so that each 

section consists of the equivalent binary numbers containing the same number of 1s, and 

the number of 1s in the equivalent binary numbers of each section is always more than 

that in its previous section. This process is illustrated in the table as below. 
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The next step is to look for all possible combinations between the equivalent binary 

numbers in the adjacent sections by comparing every binary number in each section 

with every binary number in the next section. The combination of two terms in the 

adjacent sections is possible only if the two numbers differ from each other with respect 

to only one bit. For example 0001 (1) in section 1 can be combined with 0101 (5) in 

section 2 to result in 0-01 (1, 5). Notice that combinations cannot occur among the 

numbers belonging to the same section. The results of such combinations are entered 

into another column, sequentially along with their decimal equivalents indicating the 

binary equivalents from which the result of combination came, like (1, 5) as mentioned 

above. The second column also will get sectionalised based on the number of 1s. The 

entries of one section in the second column can again be combined together with entries 

in the next section, in a similar manner. These combinations are illustrated in the Table 

below 
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All the entries in the column which are paired with entries in the next section are 

checked off. Column 2 is again sectionalised with respect t the number of 1s. Column 3 

is generated by pairing off entries in the first section of the column 2 with those items in 

the second section. In principle this pairing could continue until no further combinations 

can take place. All those entries that are paired can be checked off. It may be noted that 

combination of entries in column 2 can only take place if the corresponding entries have 

the dashes at the same place. This rule is applicable for generating all other columns as 

well. 

 

After the tabulation is completed, all those terms which are not checked off constitute 

the set of prime implicants of the given function. The repeated terms, like --10 in the 

column 3, should be eliminated. Therefore, from the above tabulation procedure, we 

obtain seven prime implicants (denoted by their decimal equivalents) as (1,5), (1,9), 

(5,7), (6,7), (9,11), (10,11), (2,6,10,14). The next stage is to determine the minimal set 

of prime implicants. 

6.2.2 Determination of the Minimal Set of Prime Implicants 

The prime implicants generated through the tabular method do not constitute the 

minimal set. The prime implicants are represented in so called "prime implicant table". 

Each column in the table represents a decimal equivalent of the minterm. A row is 

placed for each prime implicant with its corresponding product appearing to the left and 

the decimal group to the right side.  Asterisks are entered at those intersections where 

the columns of binary equivalents intersect the row that covers them. The prime 

implicant table for the function under consideration is shown in the figure. 
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In the selection of minimal set of implicants, similar to that in a K-map, essential 

implicants should be determined first. An essential prime implicant in a prime implicant 

table is one that covers (at least one) minterms which are not covered by any other prime 

implicant. This can be done by looking for that column that has only one asterisk. For 

example, the columns 2 and 14 have only one asterisk each. The associated row, 

indicated by the prime implicant CD/, is an essential prime implicant. CD/ is selected as 

a member of the minimal set (mark that row by an asterisk). The corresponding 

columns, namely 2, 6, 10, 14, are also removed from the prime implicant table, and a 

new table is construction as shown in the figure. 
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We then select dominating prime implicants, which are the rows that have more 

asterisks than others. For example, the row A’BD includes the minterm 7, which is the 

only one included in the row represented by A’BC. A’BD is dominant implicant over 

A’BC, and hence A’BC can be eliminated. Mark A’BD by an asterisk and check off the 

column 5 and 7. 

We then choose AB’D as the dominating row over the row represented by AB’C. 

Consequently, we mark the row AB’D by an asterisk, and eliminate the row AB’C and 

the columns 9 and 11 by checking them off. Similarly, we select A’C’D as the 

dominating one over B’C’D. However, B’C’D can also be chosen as the dominating 

prime implicant and eliminate the implicant A’C’D. 

Retaining A’C’D as the dominant prime implicant the minimal set of prime implicants is 

{CD’, A’C’D, A’BD and AB’D). The corresponding minimal SOP expression for the 

Boolean function is: 

F = CD’ + A’C/D + A’BD + AB’D 

If we choose B’C’D instead of A’C’D, then the minimal SOP expression for the 

Boolean function is: 

F = CD’ + B’C’D + A’BD + AB’D 

This indicates that if the selection of the minimal set of prime implicants is not unique, 

then the minimal expression is also not unique. There are two types of implicant tables 

that have some special properties. One is referred to as cyclic prime implicant table, and 

the other as semi-cyclic prime implicant table. A prime implicant table is considered to 

be cyclic if 

1 it does not have any essential implicants which implies that there are at least two 

asterisks in every column, and 

2 There are no dominating implicants, which implies that there are same number 

of asterisks in every row. 

Example 2: A Boolean function with a cyclic prime implicant table is shown in the 

figure 3. 

The function is given by 

F = Σ (0, 1, 3, 4, 7, 12, 14, 15) 

All possible prime implicants of the function are: 
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a = A’B’C’ (0,1)     e = ABC (14,15) 

b = A’B’D (1,3)     f = ABD’ (12,14) 

c = A’CD (3,7)     g = BC’D’ (4,12) 

d = BCD (7,15)     h = A’C’D’ (0,4) 

 

As it may be noticed from the prime implicant table in the figure that all columns have 

two asterisks and there are no essential prime implicants. In such a case we can choose 

any one of the prime implicants to start with. If we start with prime implicant a, it can be 

marked with asterisk and the corresponding columns, 0 and 1, can be deleted from the 

table. After their removal, row c becomes dominant over row b, so that row c is selected 

and hence row b is can be eliminated. The columns 3 and 7 can now be deleted. We 

observe then that the row e dominates row d, and row d can be eliminated. Selection of 

row e enables us to delete columns 14 and 15. 
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If, from the reduced prime implicant table shown in the figure, we choose row g it 

covers the remaining asterisks associated with rows h and f. That covers the entire prime 

implicant table. The minimal set for the Boolean function is given by: 

 

F = a + c + e + g 

= A'B'C' + A'CD + ABC + BC'D' 

The K-map of the simplified function is shown in the following figure 
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A semi-cyclic prime implicant table differs from a cyclic prime implicant table in one 

respect. In the cyclic case the number of minterms covered by each prime implicant is 

identical. In a semi-cyclic function this is not necessarily true. 

Example 3: Consider a semi-cyclic prime implicant table of a five variable Boolean 

function shown in the figure. 

 

Examination of the prime-implicant table reveals that rows a, b, c and d contain four 

minterms each. The remaining rows in the table contain two asterisks each. Several 

minimal sets of prime implicants can be selected. Based on the procedures presented 

through the earlier examples, we find the following candidates for the minimal set: 

F = a + c + d + e + h + j 

or F = a + c + d + g + h + j 

or F = a + c + d + g + j + i 

or F = a + c + d + g + i + k 

Based on the examples presented we may summarise the procedure for determination of 

the minimal set of implicants: 

1 Find, if any, all the essential prime implicants, mark them with *, and remove the 

corresponding rows and columns covered by them from the prime implicant 

table. 
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2 Find, if any, all the dominating prime implicants, and remove all dominated 

prime implicants from the table marking the dominating implicants with *s. 

Remove the corresponding rows and columns covered by the dominating 

implicants. 

3 For cyclic or semi-cyclic prime implicant table, select any one prime implicant 

as the dominating one, and follow the procedure until the table is no longer 

cyclic or semicyclic. 

4 After covering all the columns, collect all the * marked prime implicants 

together to form the minimal set, and convert them to form the minimal 

expression for the function. 

6.2.3 Simplification of Incompletely Specified functions 

The simplification procedure for completely specified functions presented in the earlier 

sections can easily be extended to incompletely specified functions. The initial 

tabulation is drawn up including the dont-cares. However, when the prime implicant 

table is constructed, columns associated with dont-cares need not be included because 

they do not necessarily have to be covered. The remaining part of the simplification is 

similar to that for completely specified functions. 

Example 4: Simplify the following function: 

F(A,B,C,D,E) =Σ(1,4,6,10,20,22,24,26) + d(0,11,16,27) 

Tabulation of the implicants 
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Pay attention to the don’t-care terms as well as to the combinations among themselves, 

by marking them with (d). 

 

Six binary equivalents are obtained from the procedure. These are 0000- (0,1), 1-000 

(16,24), 110-0 (24,26), -0-00 (0,4,16,20), -01-0 (4,6,20,22) and -101- (10,11,26,27) and 

they correspond to the following prime implicants: 

a = A’B’C’D’/   b = AC’D’E’   c = ABC’E’ 

d = B’D’E’    e = B’CE’   g = BC’D 

The prime implicant table is plotted as shown in the figure. 

 

It may be noted that the don’t-cares are not included. 

The minimal expression is given by: 

F(A,B,C,D,E) = a + c + e + g 

                      = A'B'C'D' + ABC'E' + B'CE' + BC'D 

Check Your Progress 

1. Minimise the function below using the tabular method of 

simplification:  

Z = f(A,B,C,D) =  + C  + A CD + A C  + BCD + 

BC  + CD 

2. Using the tabular method of simplification, find all equally minimal 

solutions for the function below.  

Z = f(A,B,C,D) =  (1,4,5,10,12,14 
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3. Minimize the function f(A, B, C, D) =  (0,1,2,3,5,7,8,10,12,13,15), 

using tabular method. 

6.3 Model Question  

1. What is are the limitations of K-map? 

2. Describe the Principle of Quine-McClusky Method. 

3. Explain the process of generating prime implicants through an example. 

Answers to Check Your Progress 

1. Consider the function: Z = f(A,B,C,D) =  + C  + A CD + A

C  + BCD + BC  + CD 

Convert to decimal and binary equivalents:- 

Z = f(A,B,C,D) =  (0,2,4,5,8,9,12) - decimal equivalent 

Z = f(A,B,C,D) =  (0000,0010,0100,0101,1000,1001,1100) - binary 

equivalent 

(0, 1, 1, 2, 1, 2, 2) - index values 
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The simplified answer is: Z =  + B  + A  +  

2  

 

  

  

Note that the remaining term 12 is covered by B  and AB  

One simplified answer is: Z =  + AC  + B   

Another answer is: Z =  + AC  + AB  

 

3 Note that this is in decimal form. 

 (0000,0001,0010,0011,0101,0111,1000,1010,1100,1101,1111) in binary 

form. 

(0,1,1,2,2,3,1,2,2,3,4) in the index form. 



108 

 

  

The prime implicants are:  +  + D + BD + A  + AB  

The chart is used to remove redundant prime implicants. A grid is prepared 

having all the prime implicants listed at the left and all the minterms of the 

function along the top. Each minterm covered by a given prime implicant is 

marked in the appropriate position.  

  

From the above chart, BD is an essential prime implicant. It is the only prime 

implicant that covers the minterm decimal 15 and it also includes 5, 7 and 

13.  is also an essential prime implicant. It is the only prime implicant that 

covers the minterm denoted by decimal 10 and it also includes the terms 0, 2 

and 8. The other minterms of the function are 1, 3 and 12. Minterm 1 is 

present in  and D. Similarly for minterm 3. We can therefore use either 
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of these prime implicants for these minterms. Minterm 12 is present in A

 and AB , so again either can be used. 

Thus, one minimal solution is: Z =  + BD +  + A  
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UNIT VII: LOGIC GATES 

7.0 Learning Objectives 

After the completion of this unit, you will be able to: 

• learn about logic gates. 

• draw different logic gates like AND, OR, NOT, NAND, NOR, XOR, XNOR. 

• represent the output of logic gates in truth table. 

• describe the DeMorgan’s theorem. 

• learn about the conversion of logic gates. 

7.1 Introduction 

This unit provides a description of logic gates and defines a few of the common logic 

gates found in simple digital circuits1. Computers work on an electrical flow where a 

high voltage is considered a 1 and a low voltage is considered a 0. Using these highs and 

lows, data are represented. Electronic circuits must be designed to manipulate these 

positive and negative pulses into meaningful logic. Logic gates are the building blocks 

of digital circuits. Combinations of logic gates form circuits designed with specific tasks 

in mind. For example, logic gates are combined to form circuits to add binary numbers 

(adders), set and reset bits of memory (flip-flops), multiplex multiple inputs, etc. 

7.2 Logic Gates 

A gate is an electronic circuit which produces a typical output signal depending on its 

input signal. The output signal of a gate is single Boolean operation of its input signal. 

Gates are the basic logic elements. Any boolean function can be represented in the form 

of gates.       

In general, we can represent gates in three ways. These are: 

 
1 Adopted from http://m.kkhsou.in/EBIDYA/CSC/MODIFY_logic_gates.html 
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• Graphical symbols 

• Algebraic notation 

• Truth table 

Different types of logic gates with their graphical symbol, algebraic notion and their 

truth table are summarized below: 
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7.3 Truth Table 

A truth table is a good way to show the behavior of logic gates. It shows the output 

states for every possible combination of input states. The symbols 0 (false) and 1 (true) 

are usually used in truth tables. They show how the input(s) of a logic gate relate to its 

output(s).  

A truth table for two input of an OR gate is shown below, but it can b extended to any 

number of inputs. The gate input(s) are shown in the left column(s) of the table with all 

the different possible input combinations. This is normally done by making the inputs 

count up in binary. The gate output(s) are shown in the right-hand side column.  

 

                                                            

Example: Draw the truth table for the following logic circuit and find the output 

expression Q. 

 

 

Solution: The above logic circuit gives the following truth table and output expression  

( A/.B)+( A.B/)  
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7.4 AND Gate 

An AND gate has two or more inputs but it has only one output. An input signal applied 

to a gate has only two stable states, either 1 (HIGH) or 0 (LOW). There is no 

intermediate state. In case of a 2-input AND gate the output is 1 (high) only if both 

inputs are 1 (high), otherwise the output is 0 (low). The logical operation of an AND 

gate is called the AND operation (or AND function).  

The logical AND operation can easily be explained with the help of two switches 

connected in series, Figure 2 The current will flow in the circuit only when both 

switches, A and B, are closed. A switch has two stable states, ON and OFF. The ON 

state is taken as logic 1, the OFF as logic 0. When both switches are ON, i.e., A and B 

both have logic1, the output is 1. When any one of the swithces is OFF, there is no 

output (no current in the circuit). The output is taken as 0. 

 

Figure 1: AND Gate 

 

Figure 2: A circuit containing two switches in series 

Figure 1 shows standard graphical symbol for a two-input AND gate. It shows only two 

inputs, A and B. If there are more than two inputs, they will be shown on input side. 

Table 1 shows the truth table for a two-input AND gate. The output of an AND gate is 1 

only when all the inputs are 1. If any one of the inputs is 0, the output will be 0. 

Therefore, the output of an AND gate is equal to the product of inputs i.e., the output Y 

= A.B. The symbol ^ is also used to denote AND operation. A ^ B denotes AND 

operations of A and B.  
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Table 1: Truth table for AND gate 

INPUT OUTPUT 

A B Y=A.B 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

 

The output of an AND gate is Y = A.B. In this case A and B (inputs) are independent 

variables. Y (output) is a dependent variable. The table which shows the values of 

dependent variable for all possible values of independent variables is called truth table.  

7.5 OR-Gate 

An OR gate is also known as INCLUSIVE-OR gate. It has two or more inputs, but only 

one output. The output of an OR gate will be high if at least any one of the inputs is 

high. The output will be 0 only when all inputs are 0. This logical operation will be 

called OR operation (or OR function). Figure 3 shows a two input OR gate. Its truth 

table has been shown in Table 3.2. Its output is given by Y = A + B. The logical OR 

operation can easily be explained taking an example of two switches connected in 

parallel as shown in Figure 4. The current will flow in the circuit when either switch is 

in ON position (i.e., logic 1). The current will not flow at all when both switches are in 

OFF position (i.e. logic 0). The ^(DOWN) symbol denotes OR operation. A ^(DOWN) 

B denotes OR operation of A and B. 

 

Figure 3: Graphical symbol for OR gate 
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Figure 4: A circuit containing two switches in parallel 

 

Table 2: Truth table of OR gate 

INPUT OUTPUT 

A B Y=A+B 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

7.6 NOT Gate 

A NOT gate has only one input, and only one input signal. It is also called INVERTER . 

Its output is the complement of the input signal. The output is 1 (HIGH) if the input is 0 

(Low). The output is 0 when input is 1.Its output is given by Y = A. NOT gate are used 

to invert the logic levels i.e. from LOW to HIGH or HIGH to LOW when required. 

Figure 5 shows standard symbol for a NOT gate.  

 

Figure 5: NOT Gate 
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Table 3: Truth table of NOT gate 

INPUT OUTPUT 

A Y=A̅ 

0 1 

1 0 

 

7.7 NAND Gate 

A NAND gate has two or more inputs but only one output Figure 6vshows a two-input 

NAND gate in two different ways. The NAND function is the complement of the AND 

function. An AND gate can be combined with an INVERTER to form a NAND gate. 

The abbreviation NAND is the short form of NOT-AND. Its output is given by Y = A.B 

. Table 4 shows the truth table for a 2-input NAND gate.  

 

Figure 6: Graphical symbol of NAND gate 

Table 4: Truth table of NAND gate 

INPUT OUTPUT 

A B Y= A̅.̅B̅ 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

 

The NAND operations is sometimes called universal operations because other logic 

operation can be realized by using only NAND gates. A universal operation is one that 

can be used to implement the three basic logic operations AND, OR and NOT. It is 

easier to fabricate NAND and NOR gates employing modern IC technology compared 
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to AND and OR gates. NAND and NOR gates also consume less power. Therefore, 

combinational logic networks are realized by using only NAND gates . NAND gates are 

used as basic building blocks in fabricating a digital circuit. 

7.8 NOR Gate 

A NOR gate has two or more inputs but only one output. Figure 7 shows a two input 

NOR gate. The NOR function is the complement of OR function. An OR gate can be 

combined with an INVERTER to form a NOR gate as shown in the figure. The 

abbreviation NOR is the short form of NOT- OR. Its output is given by Y = A + B. 

Table 5 shows the truth table for a 2-input NOR gate.  

 

Figure 7: NOR gate 

The NOR operation is also a Universal operation. Other logic gates such as AND, OR 

and NOT can be realized using NOR gates. Combinational logic network can be realized 

by using only NOR gates.  NOR gates are used as building blocks in fabricating a digital 

network. NOR gates are available in IC forms.  

Table 5: Truth Table for NOR Gate 

INPUT OUTPUT 

A B  

0 0 1 

0 1 0 

1 0 0 

1 1 0 
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7.9 X-OR Gate 

The output of Exclusive-OR (XOR) gate is high only when its inputs are different. Its 

output is low when both inputs A and B are same i.e., either both are high or both are 

low. Its output is given by: 

 

Figure 8: Exclusive-OR Gate 

 

 

Figure 9: Logic diagram for 2 input Exclusive-OR gate 

The XOR operation is also called Modulo-2-Sum operation. Figure 8 and Figure 9 

shows the graphical symbol and logic diagram for a 2-input XOR gate. Table 6 shows 

its truth table.  

Table 6: Truth table for XOR gate 

INPUT OUTPUT 

A B 
 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 

An XOR operation can be distinguished from OR functions as follows: A OR B means 

A or B, or both, whereas A XOR B means A or B but not both. 
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7.10 X-NOR Gate 

The Exclusive-NOR (XNOR) operation is the complement of XOR operation. The 

output of XNOR is high only when the logic values of both inputs A and B are same i.e., 

either both are1 or both are 0. Its output is 0 when its inputs are different. Table 7 shows 

its truth table. The output is given by:  

 

Figure 10: Graphical symbol for XNOR gate 

 

Figure 10 shows a two-input XNOR gate. The 74135 is an XOR/XNOR gate. It has 

three inputs A .B and C. If C input is low it operates as an XOR gate. If C input is high 

it operates as XNOR gate. 

Table 7: Truth Table for XNOR Gate 

INPUT OUTPUT 

A B 
 

0 0 1 

0 1 0 

1 0 0 

1 1 1 

7.11 Summary 

• A logic gate is an electronic circuit that operates on one or more input signals to 

produce standard output signals. These logic gates are the building blocks of all 

electronic circuits in computer.  
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• To represent different logic gates, specific shapes are assigned.These are called 

graphical symbols. 

• Logic gates are operated with binay numbers ‘0’ and ‘1’. In analog terminology, 

‘0’ is termed as ‘LOW’ (ground) voltage and ‘1’ is termed as ‘HIGH’ voltage 

(>= 4.5 volt.)  

• A truth table is a good way to show the behaviour of logic gates. It shows the 

output states for every possible combination of input states.  

• An AND gate is the physical realization of logical multiplication (AND) 

operation. It is an electronic .circuit that generates an output signal of 1, only if 

all input signals are also 1.  

• An OR gate is the physical realization of logical addition (OR) operation. It is an 

electronic circuit that generates an output signal of 1, if any of the l input signals 

is also 1.  

• An NOT gate is the physical realization of complementation operation. It is an 

electronic circuit that generates the reverse of the input signal as output signal. It 

is also known as an inverter because it inverts the input.  

• A NAND gate is a complemented AND gate. That is, the output of NAND gate 

will be 1 if any one of the inputs is a 0, and will be 0 only when all inputs are 1.  

• A NOR gate is a complemented OR gate. That is, the output of NOR gate will be 

1only when all inputs are 0, and it will be 0 if any input is a 1.  

• Exclusive-OR and Exclusive -NOR are two important logic component.  

• DeMorgan’s theorem states that the complement of a sum of variables is equal to 

the product of the complements of the variables. 

 

and the complement of a product of variables is equal to the sum of the 

complements of the variables. 
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Check Your Progress 

1. A ______ is an electronic circuit which produces a typical output signal 

depending on its input signal. 

2. An OR gate is also known as ___________ gate. 

3. A NOT gate is also called ___________________. 

7.12 Model Questions 

1. What is logic gates? Draw the block diagram of a 3-input AND gate. Give its 

truth table. 

2. Draw the graphical symbol and truth table for a 2-input XOR gate. 

3. Draw the logic diagram and graphic symbol of a 2-input Exclusive- OR gate. 

4. Define and describe DeMorgan’s Theorem. 

Answers to Check Your Progress 

1. gate 

2. INCLUSIVE-OR 

3. INVERTER 
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UNIT VIII: COMBINATIONAL CIRCUITS 

8.0 Learning Objectives 

After reading this chapter, you will be able to: 

• Define a combinational circuit 

• Explain the functioning of a multiplexer and a demultiplexer. 

• Explain the functioning of an Encoder and a Decoder. 

• Simplify a given Boolean expression using Karnaugh map 

• Explain the working an a half-adder and a full-adder. 

8.1 Combinational Circuit 

A combinational circuit is a collection of some interconnected set of logic gates whose 

outputs at any time are determined directly from the present combination of inputs 

without regard to previous inputs2.  

A combinational circuit consists of input variables, logic gates, and output variables. 

The logic gates accept binary signals from the inputs and generate some binary signals 

to the outputs. Here binary signals mean only two possible values, one representing 

logic-1 and the other logic-0. A combinational circuit can be represented as a network of 

gates and, therefore, can be expressed by a truth table or boolean expression. A block 

diagram of combinational circuit is shown below: 

 

Figure 11: Block diagram of combinational circuit 

 
2 Adapted from http://m.kkhsou.in/EBIDYA/CSC/MODIFY_combinational_sequential.html 
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Here n input binary variables come from an external source and the m output variables 

go to an external destination. For n input variables, there are 2n possible combinations of 

binary input values. For each possible input combination, there is one and only one 

possible output combination. A combinational circuit can be described by m Boolean 

functions, one for each output variable. Each output function is expressed in terms of the 

n input variables. 

The basic design issue related to combinational circuits is: the minimization of number 

of gates. The normal circuit constraints for combinational circuit design are: 

 

1. The depth of the circuit should not exceed a specific level. 

2. Number of inputs to a gate and to how many gates its output can be fed. 

8.2 Multiplexer and Demultiplexer 

8.2.1 Multiplexer 

The multiplexer is a circuit whose output is one of several inputs, depending on the 

value given by some other selection inputs. In a circuit, a multiplexer is drawn as a 

trapezoid as follows. 

 

Figure 12: Multiplexer 

This is a 4-to-1 multiplexer. On the left side, you can see four data inputs, which we'll 

call d00, d01, d10, and d11. On the bottom, you can see two selection inputs, which we'll call 

s1 and s0. And on the right, you can see the multiplexer's output. The truth table of 

multiplexer is shown below: 



125 

 

Table 8: Truth table for multiplexer 

Select 

Lines 

Output 

S1 S0 O 

0 0 d00 

0 1 d01 

1 0 d10 

1 1 d11 

What does a multiplexer do? It routes one of the data inputs to the multiplexer's output; 

which of the data inputs goes out is determined based on the select inputs. For example, 

if s1 is 1 and s0 is 0, then the d10 input is routed to the output. If instead s1 is 0 and s0 is 1, 

then the circuit's output would be d01 instead. It's helpful to think of this a multiplexer as 

a railroad switch, connecting one input to an output; the selection inputs control the 

angle of the switch. 

 

Figure 13: Path selection using line select 

While a railroad switch is helpful in thinking about how a multiplexer works, circuits 

don't actually have moving parts. If we're going to build a multiplexer, then we can only 

use wires and logic gates to build it. Our solution will be to include an AND gate for 

each of the data inputs, and to have each of the AND gates feed into an OR gate. The 

AND gate corresponding to a data input will be 0 whenever the selection inputs don't 

correspond to the data input; that way, the AND gate corresponding to an unselected 

data input doesn't affect the OR gate's output, and so the OR gate's output will match the 

output of the AND gate whose data input is selected. We include the data input on each 
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corresponding AND gate so that this AND gate's output will match the data input when 

that data input is selected. Here's the circuit diagram. 

 

Figure 14: Circuit diagram of 4X1 multiplexer 

This particular multiplexer is a 4-to-1 multiplexer, so called because it routes one of four 

inputs to a single output. Other common multiplexer ratios are 2-to-1, which would have 

one selection bit; 8-to-1, with three selection bits; a 16-to-1, with four selection bits; and 

even 32-to-1, with five selection bits. 

8.2.2 Demultiplexer 

The demultiplexer reverses the process of a multiplexer: It routes a single input into 

one of several outputs, while the unselected outputs should emit a value of 0. We 

represent it in a larger circuit as follows. 

 

Figure 15: Demultiplexer 

Internally, its circuit is similar to that of a multiplexer's, though it is simpler because 

each output is treated independently. The truth table for the 1X4 demultiplexer is shown 

below: 
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Table 9: Truth table for 1x4 demultiplexer 

Data 

Input 

Select 

Inputs 

Outputs 

d S1 S0 O11 O10 O01 O00 

d 0 0 0 0 0 d 

d 0 1 0 0 d 0 

d 1 0 0 d 0 0 

d 1 1 d 0 0 0 

Below is an implementation diagram. 

 

Figure 16: Circuit diagram of 1x4 demultiplexer 

This is a 1-to-4 demultiplexer. Other common ratios are 1-to-2, 1-to-8, 1-to-16, and 1-

to-32; the number of selection bits will vary depending on how many are required to 

indicate which output to use. 

8.3 Encoder and Decoder 

8.3.1 Encoder 

An encoder is a combinational circuit that produces the reverse function from that of a 

decoder. An encoder consists of 2n(or less) input lines and n output lines. The output 

lines generate the binary code for the 2n input variables. 
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Figure 17: Logic diagram of octal to binary encoder 

An octal to binary encoder logic circuit is shown in Figure 17. It has eight inputs, one 

for each of the eight digits, and three outputs that generate the corresponding binary 

number. It is constructed with OR gates and its inputs can be determined from the truth 

table given in Table 10. 

Table 10: Truth table of octal to binary encoder 

Octal 

Number 

Inputs Outputs 

 D0 D1 D2 D3 D4 D5 D6 D7 A B C 

0 1 0 0 0 0 0 0 0 0 0 0 

1 0 1 0 0 0 0 0 0 0 0 1 

2 0 0 1 0 0 0 0 0 0 1 0 

3 0 0 0 1 0 0 0 0 0 1 1 

4 0 0 0 0 1 0 0 0 1 0 0 

5 0 0 0 0 0 1 0 0 1 0 1 

6 0 0 0 0 0 0 1 0 1 1 0 

7 0 0 0 0 0 0 0 1 1 1 1 

Here we assume that only one input line can be equal to 1 at any time. In this case the 

circuit has eight inputs and could have 28 = 256 possible input combinations. Only eight 

of these combinations have any meaning. The other input combinations are “don’t care 

conditions”. The type of encoder available in Integrated Circuits form is called a priority 

encoder. In these types of encoders, only the highest priority input line is encoded and 

so an input priority is established. 
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8.3.2 Decoder 

A decoder is a combinational logic circuit that receives coded information on n input 

lines and feeds them to maximum of 2n unique output lines after conversion. But the 

decoder output will have less than 2n outputs when the n-bit decoded information is 

unused or don’t care combinations. 

 

Figure 18: Logic diagram of 3-to-8 decoder 

A 3-to-8 line decoder is shown in Figure 18. Here there are 3 input lines and 8 output 

lines. The 3 inputs are decoded into eight outputs, each output representing one of the 

minterms of the 3 input variables. The three inverters provide the complement of the 

inputs, and each one of the eight AND gate generates one of minterms. A 3-to-8 line 

decoder can be used for decoding any 3-bit code to provide eight outputs, one for each 

element of the code. 

The decoder is used in some code converters, for example BCD- to- seven segment 

decoder. A 3-to-8 line decoder can be used in binary to octal conversion. Another use of 

a decoder is that it can be used to implement any combinational circuit.  
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Table 11: Truth table for 3-to-8 decoder 

A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 

0 0 0 0 0 0 0 0 0 0 1 

0 0 1 0 0 0 0 0 0 1 0 

0 1 0 0 0 0 0 0 1 0 0 

0 1 1 0 0 0 0 1 0 0 0 

1 0 0 0 0 0 1 0 0 0 0 

1 0 1 0 0 1 0 0 0 0 0 

1 1 0 0 1 0 0 0 0 0 0 

1 1 1 1 0 0 0 0 0 0 0 

8.4 Half adder and Full adder  

8.4.1 Half Adder 

Let's begin the discussion by considering the basic adding process — how would we add 

two numbers? Of course, you already know how to add base-10 numbers from your 

studies in grade school: You start from the rightmost column (the 1's digits), add them 

together, write the result in the rightmost column of the result and possibly carry a 1 into 

the next column. You proceed column by column, leftward. 

We can add binary numbers using a similar approach. The illustration below shows of 

the process of adding the two four-bit numbers 1110(2) = 14(10) and 0111(2) = 7(10). 

 

We'll want to build a circuit that follows this process. For the moment, let's worry about 

just the first step: adding the rightmost bit from each number. What we'll want is a 

circuit that takes two input bits — we'll call them a and b — and computes the sum of 
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these two bits. Since the sum could possibly be a two-bit number, this circuit will have 

two outputs: sum will be the sum's 1's-bit, and cout will be the sum's 2's-bit. We'll call this 

circuit a half adder. 

We can design our half adder circuit by building a truth table that enumerates each 

possible combination of the two inputs along with the appropriate value for cout and sum 

in each case. 

Table 12: Truth table for half adder 

a b cout sum 

0 0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 0 

To interpret this table, let's look at the last row, where a and b are both 1. In this case the 

output is based on the sum of 1 and 1, which is 10(2). We'd place the 1's bit of this sum 

(which is 0) into the bottom of the rightmost column, so this row of the truth table says 

that sum should be 0. And we'd carry the two's bit of the sum (which is 1) into the next 

column, so the truth table says that cout should be 1. 

To build a circuit corresponding to this truth table, we need to determine how each 

output relates to its inputs. We first notice that the cout output is the AND function on a 

and b. The sum output, on the other hand, is 1 if a is 1 or b is 1, but not both. This is the 

exclusive-or function on a and b; it is often abbreviated as the XOR of a and b. We 

draw a XOR gate as an OR gate with a shield on its inputs. 

 

Figure 19: X-OR gate 
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However, if we insist on drawing the circuit with just AND, OR, and NOT gates, we can 

derive the sum-of-products expression for sum: ̅a b + a b̅. The resulting circuit is 

equivalent to the XOR gate. 

 

With a XOR gate built, we can now put together our half adder: sum will be the 

exclusive OR of a and b, while cout will be the AND of a and b. 

 

We'll employ this circuit in other circuits that we build. Even though the diagram is 

rather simple, we'll prefer instead to draw an even simpler box labeled half adder to 

represent this circuit: 

 

8.4.2 Full adder 

Now let's consider the subsequent steps in our addition procedure, where we add later 

columns. In each of these later columns, there is a possibility that we have a carry 
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coming in from the preceding column. Thus, we'll now want to build a circuit with three 

input bits and produces the sum of these inputs as its output. We'll use a and b to 

represent the bit from each of the numbers in the column; but there will be a third input 

which we'll call cin corresponding to the potential carry from the preceding column. Our 

circuit will again have two output bits, since the sum of three 0/1 values can be a two-bit 

output; the bit placed as the result for the column will again be called sum, and the 

number carried into the next column will again be cout. 

We've already seen how we to build a circuit for adding the two input bits a and b 

together: We can simply use a half adder for that. But we also want to add cin to this 

sum. To accomplish this, we can use an additional half adder, whose inputs would be the 

sum from the first half adder and cin. 

But we'll be left with two values of cout from these two half adders. What should we do 

to them? We essentially want to add them together, so we could use yet another half 

adder to accomplish that. But in fact we can guarantee that at least one of these two cout 

values will be 0: After all, if cout happens to be 1 from the first half adder, then that half 

adder's sum output must necessarily be 0 — and with a 0 as one of the inputs into the 

second half adder, its cout would be 0. Since at most one of these cout values will be 1, we 

can add them together using a simple OR gate. That's a better choice than a third full 

adder because it requires fewer gates. 

This leads to the following circuit. 

 

Figure 20: Full adder 

The circuit diagram of full adder is shown below: 
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Figure 21: Full adder circuit 

As with the half adder, we'll want to reuse this circuit again. We'll feel free to draw a 

box labeled full adder that represents this circuit. 

 

Figure 22: Block diagram of full adder 

8.5 Summary 

1. A Boolean algebra is an algebraic structure, supplied with two binary operators 

+, . and a set of elements A , such that, for all elements of the set A, the 

postulates formulated by E.V. Huntington are satisfied.  

2. In case of two valued Boolean algebra, the set of elements contains only two 

elements 0 and 1.  

3. Duality principle states that every algebraic expression deducible from the 

postulates of Boolean algebra remains valid if the operators and identity 

elements are interchanged.  

4. Theorems of Boolean Algebra are  
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5. A Boolean expression is an algebraic expression formed with binary variables, 

two binary operators OR(+) and AND (.) , the unary operator NOT(´) and 

parentheses. A binary variable can take only two values 0 or 1. 

6. A Boolean expression can be simplified using the theorems and postulates of 

boolean algebra and Karnaugh map.  

7. A combinational circuit is consists of some interconnected set of logic gates with 

some input variables and output variables.  

8. A multiplexer is a combinational circuit where binary information is selected 

from one of 2n input lines and transmitted to a single output line. Here n is the 

number of selection lines.  

9. An encoder is a combinational circuit which generates the binary code for the 2n 

input variables.  

10. A decoder is a combinational circuit that receives coded information on n input 

lines and transmits them to maximum of 2n unique output lines after conversion.  

11. A half-adder is a combinational circuit that add two bits.  

12. A full-adder is combinational circuits that add three bits.  

13. A sequential circuit is the circuit whose the output is depended on the present 

inputs as well as past output. 

Check Your Progress 

1. A __________________ is a collection of some interconnected set of logic gates 

whose outputs at any time are determined directly from the present combination 

of inputs without regard to previous inputs. 

2. The ____________is a circuit whose output is one of several inputs, depending 

on the value given by some other selection inputs. 

3. The _________________ reverses the process of a multiplexer. 
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8.6 Model Questions 

1. Define a combinational circuit. 

2. Explain the functioning of a multiplexer and a demultiplexer. 

3. Explain the functioning of an Encoder and a Decoder. 

 

4. Explain the working an a half-adder and a full-adder. 

5. Simplify the following Boolean expression using Karnaugh map. 

a. A.B.C.D + A.B´.C.D + A´.B.C.D + A´.B´.C.D 

b.  A´.C + A´.B + A.B´.C + B.C 

6. Simplify x.(x + y) + y.(x´ + y) using Algebraic Method 

7. Prove that  

a. x.x = x  

b. x + xy = x 

8. Explain the function of a multiplexer . Draw the logic diagram of 4 -to-1 

multiplexer. 

9. Explain full-adder with logic diagram.  

10. What do you mean by Sum-of-Product (SOP) of Boolean Expression. Explain 

with example. 

 

Answers to Check Your Progress 

1. combinational circuit  

2. multiplexer 

3. demultiplexer 
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UNIT IX: SEQUENTIAL CIRCUITS 

9.0 Learning Objectives 

After the completion of this unit, you will be able to: 

• Define sequential circuit 

• Understand the working of a flip-flop 

• Differentiate between various types of filp-flop and understand their working 

• Convert D flip-flop to JK flip-flop 

• Differentiate between a latch and a flip-flop 

• Draw the logic diagram of a clocked RS flip-flop with four NAND gates. 

• Define acre around condition 

• Know the applications of JK flip-flop 

9.1 Sequential Circuit 

A circuit is said to be sequential circuit if its output is the function of present input and 

past output. The basic element used in sequential circuits is a flip-flop, which can be 

made using logic gates and is available in IC (Integrated Circuit) form. A block diagram 

of a sequential circuit is in Figure 23. It consists of a combinational circuit to which 

memory elements are connected to form a feedback path. The memory elements are 

devices capable of storing binary information within them. These circuits store and 

remember information. The sequential circuit receives binary information from external 

inputs. Classification of sequential circuits depends on the timing of their signals. They 

are classified as follows: (i) synchronous sequential circuits and (ii) asynchronous 

sequential circuits. 

 

Figure 23: Block diagram of sequential circuit 
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Synchronous sequential circuits use flip-flops and their status can change only at 

discrete instants. The synchronization in sequential circuits can be achieved using a 

clock pulse generator. It synchronizes the effect of input over output. It presents signal 

of the following form (Figure 24). 

 

 

Figure 24: Clock signal of a clock pulse generator 

From the diagram we can see that the clock pulse is the time between successive 

transitions in the same direction, that is, between two rising or two falling edges. State 

transitions in synchronous sequential circuits are made to take place at times when the 

clock is making a transition from 0 to 1 (rising edge) or from 1 to 0 (falling edge). 

Between successive clock pulses there is no change in the information stored in 

memory. 

The behavior of asynchronous sequential circuits depends upon the order in which its 

input signals change and can be affected at any instant of time. Asynchronous sequential 

circuits: 

 

1. Do not use clock pulses. The change of internal state occurs when there is a 

change in the input variable. 

2. Their memory elements are either unclocked flip-flops(FF) or time delay-

elements. 

3. They often resemble combinational circuits with feedback. 

4. They are used when speed of operation is important 
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9.2 Flip Flops 

Flip-Flops are the basic building blocks of sequential circuits. A flip-flop is a binary cell 

which can store a bit of information. A basic function of flip-flop is storage, which 

means memory. A flip-flop (FF) is capable of storing 1 (one) bit of binary data. It has 

two stable states either ’1’ or ‘0’. A flip-flop maintains any one of the two stable states 

which can be treated as zero or one depending on presence and absence of output 

signals.  

A flip-flop circuit has two outputs, one for the normal value and other for the 

complement value of the bit stored in it. A basic flip-flop circuit can be constructed from 

two NAND gates (Figure 26) or two NOR gates (Figure 25). The flip-flop in the figure 

have, two inputs R (reset) and S (set) and two outputs Q and Q’. 

 

Figure 25: Basic flip-flop circuit with NOR gates 

 

 

Figure 26: Basic flip-flop circuit using NAND gates 

 

In normal mode of operation both the flip-flop inputs are at 0 i.e., S=0 and R=0. This 

flip-flop can show two states: either the value of Q is 1 (i.e., set state) or the value of Q 
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is 0. We call it clear state. Let us see how the S and R input can be used to set and clear 

the state of the flip-flop. Suppose the flip-flop was in set state i.e., Q=1 and Q’=0 and as 

S=0 and R=0, the output of ‘a’ NOR gate will be 1 since both its input Q’ and R are zero 

and ‘b’ NOR gate will show output 0 as one of its input Q is 1. Similarly if flip-flop was 

in clear state then Q’ =1 and R=0, therefore, output of ‘a’ gate will be ‘0’ and ‘b’ gate 1. 

Thus, flip-flop maintains a stable state at S=0 and R=0. 

 

The flip-flop is taken to set if the S input momentarily goes to 1 and then goes back to 0. 

R remains at zero during this time. Suppose initially, the flip-flop was in state 0, i.e., the 

value of Q was 0. As soon as S become 1 the output of NOR gate ‘b’ goes to ‘0’ i.e., Q’ 

becomes 0 and immediately Q becomes 1 as both the input (Q’ and R ) to NOR gate ‘a’ 

become 0. The change in the value of S back to 0 does not change the value of Q again 

as the input to NOR gate ‘b’ now are Q=1 and S=0. Thus, the flip-flop stays in set state 

1 even after S returns to zero.  

If the flip-flop was in state 1 then, when S goes to 1 there is no change in value of Q’ as 

both the input to NOR gate ‘b’ are 1 at this time. Thus, Q’ remains in state 0 or in other 

words flip-flop stays in set state.  

If R input goes to value 1 then flip-flop acquires the clear state. In changing 

momentarily the value of R to 1 the Q output changes to 0 irrespective of the sate of 

flip-flop and as Q is 0 and S is 0 the Q’ becomes 1. Even after R comes back to value 0, 

Q remains 0 i.e., flip-flop comes to the clear state. 

When both S and R goes to 1 at the same time, well this is the situation which may 

create a set or clear state depending on which of the S and R stays longer in zero state. 

But meanwhile both of them are 1 the value of Q and Q’ becomes 1 which implies that 

Q and its complement both are one, an impossible situation. Therefore, the transition of 

both S and R to 1 simultaneously is an undesirable condition for this basic circuit. There 

are many types of flip-flops. They are: 

1. RS Flip-Flop ( Reset-Set Flip-Flop) 

2. D type Flip-Flop ( Data Latch) 
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3. JK Flip-Flop 

4. T type Flip-Flop (Triggered Flip-Flop) 

5. Master-Slave Flip-Flop 

6. JK Master Slave Flip-Flop 

9.2.1 RS Flip-Flop 

The main feature in RS flip-flop is the addition of a clock pulse input. In this flip-flop, 

change in the value of R or S will change the state of the flip-flop only if the clock pulse 

at that moment is 1(one). It is denoted as: 

 

Figure 27: Graphic symbol of RS flip-flop 

Here two inputs are Set (S) and Reset (R). The two outputs are Q (Normal) and Q’ 

(Complement of Q). If Q is 1 Q’ is 0 and vice versa. 

 

Figure 28: Logic diagram of clocked RS flip-flop using NAND gates 

We can construct a flip-flop circuit from two NOR gates(Figure 29) or two NAND 

gates(Figure 30). The cross-coupled connection from the output of one gate to the input 

of other gate constitutes a feedback path. Each flip-flop has two outputs, Q and Q̅, and 
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two inputs, set and reset. This type of flip-flop is sometimes called a direct-coupled RS 

flip-flop or SR latch. 

 

Figure 29: Basic flip-flop circuit with NOR gates 

 

Figure 30: Basic flip-flop circuit with NAND gates 

In both the circuits, the output of one gate feeds into the input of the other. 

 

A 0( low) at set S of gate 1 gives an output 1 (high) at Q. This output 1 is fed to gate 2 

along with 1 at R. The output of 2nd gate is 0 (low) at Q/. So the output at Q and Q/ are 

1 and 0 for inputs of 0 and 1 at R and S respectively. This is the Set condition and 

remain in that until cleared. To clear the Set Condition, we operate the Reset and the 

Operation is reverse of Set. R is activated by 0 (low). The output of 2nd gate at Q/ is 1 

(high). The 1 (high) output of 2nd gate is fed to 1st gate along with 1 at S. The two 1’s 

give a 0 output at Q. This state also is a stable one. Thus we see the normal output at Q 
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is either 1 or 0, which is one bit of information in binary, Hence a flip-flop can store one 

bit of information. 

If both R and S are 1 (high) no change can occur in the output from the previous state. 

This is known as hold state. 

If both S and R are 0 (low), both outputs are driven to 1 (high). This is a prohibited state 

giving rise to racing condition. 

The truth table for the RS flip flop is as follows: 

Table 13: Truth table of a RS flip-flop 

Mode of 

Operation 

Input Output 

R S Q Q’ 

Hold 1 1 No change Inactive 

Set 1 1 1 0 

Reset 1 1 0 1 

Race 1 1 1 1 

 

9.2.2 D Flip-Flop 

D flip flop is actually a slight modification of the above explained clocked SR flip-flop3. 

From the figure you can see that the D input is connected to the S input and the 

complement of the D input is connected to the R input. The D input is passed on to the 

flip flop when the value of CP is ‘1’. When CP is HIGH, the flip flop moves to the SET 

state. If it is ’0′, the flip flop switches to the CLEAR state. The circuit diagram and truth 

table is given below. 

 

Figure 31: D- flip flop implemented through NAND gate 

 
3 Adapted from http://todayscircuits.blogspot.com/2011/06/flip-flops.html#.WCGARclgSpp 
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Figure 32: Graphical symbol 

Table 14: Transition table 

Q D Q(t+1) 

0 0 0 

0 1 1 

1 0 0 

1 1 1 

 

9.2.3 JK Flip-Flop 

A J-K flip flop can also be defined as a modification of the S-R flip flop. The only 

difference is that the intermediate state is more refined and precise than that of a S-R flip 

flop. 

 

Figure 33: Logic diagram of JK flip-flop 
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Figure 34: Graphical symbol of JK flip-flop 

 

Table 15: Transition table of JK flip-flop 

Q J K Q(t+1) 

0 0 0 0 

0 0 1 0 

0 1 0 1 

0 1 1 1 

1 0 0 1 

1 0 1 0 

1 1 0 1 

1 1 1 0 

 

The behavior of  inputs J and K is same as the S and R inputs of the S-R flip flop. The 

letter J stands for SET and the letter K stands for CLEAR. 

When both the inputs J and K have a HIGH state, the flip-flop switch to the complement 

state. So, for a value of Q = 1, it switches to Q=0 and for a value of Q = 0, it switches to 

Q=1. 

The circuit includes two 3-input AND gates. The output Q of the flip flop is returned 

back as a feedback to the input of the AND along with other inputs like K and clock 

pulse [CP]. So,  if the value of CP is ’1′, the flip flop gets a CLEAR signal and with the 

condition that the value of Q was earlier 1. Similarly output Q’ of the flip flop is given 

as a feedback to the input of the AND along with other inputs like J and clock pulse 

[CP]. So the output becomes SET when the value of CP is 1 only if the value of Q’ was 

earlier 1. 
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The output may be repeated in transitions once they have been complimented for J=K=1 

because of the feedback connection in the JK flip-flop. This can be avoided by setting a 

time duration lesser than the propagation delay through the flip-flop. The restriction on 

the pulse width can be eliminated with a master-slave or edge-triggered construction. 

9.2.4 T Flip-Flop 

This is a much simpler version of the J-K flip flop. Both the J and K inputs are 

connected together and thus are also called a single input J-K flip flop. When clock 

pulse is given to the flip flop, the output begins to toggle. Here also the restriction on the 

pulse width can be eliminated with a master-slave or edge-triggered construction. Take a 

look at the circuit and truth table below. 

Figure 35: Logic diagram of T flip-flop 

 

Figure 36: Graphical symbol of T flip-flop 

 

Table 16: Transition table of T flip-flop 

Q T Q(T+1) 

0 0 0 

0 1 1 

1 0 1 

1 1 0 
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9.2.5 Master-Slave Flip-Flop 

Consider the circuit given in Figure 37. It gives the logic diagram for master-slave D 

flip-flop4. It has two flip-flops (called master and slave respectively) and an inverter. 

The slave section is basically the same as the master section except that it is clocked on 

the inverted clock pulse and is controlled by the outputs of the master section rather than 

by the external inputs. The D input is sampled to change the output Q only at the 

negative edge of the clock pulse CP. The output of the NOT gate is 1 when the CP is 0. 

This enables slave flip-flop and its output Q is equal to the output Y of master flip-flop. 

The master flip-flop is disabled when CP is at logic 0 level. When the CP goes 1, the 

data from the external D input is given to the master. As long as the CP stays at the 1 

level, the slave is disabled because the output of the inverter is equal to 0. Any input 

change affects the master output Y. However, it cannot affect the slave output. 

 

Figure 37: Master slave flip-flop 

 
4 Adapted from http://vle.du.ac.in/mod/book/view.php?id=11685&chapterid=22699 
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9.2.6 JK Master-Slave Flip-Flop 

Master-slave flip flop is designed using two separate flip flops5. Out of these, one acts as 

the master and the other as a slave. The figure of a master-slave J-K flip flop is shown 

below. 

 

Figure 38: JK Master-Slave flip flop 

From the above figure you can see that both the J-K flip flops are presented in a series 

connection. The output of the master J-K flip flop is fed to the input of the slave J-K flip 

flop. The output of the slave J-K flip flop is given as a feedback to the input of the 

master J-K flip flop. The clock pulse [Clk] is given to the master J-K flip flop and it is 

sent through a NOT Gate and thus inverted before passing it to the slave J-K flip flop. 

When Clk=1, the master J-K flip flop gets disabled. The Clk input of the master input 

will be the opposite of the slave input. So the master flip flop output will be recognized 

by the slave flip flop only when the Clk value becomes 0. Thus, when the clock pulse 

males a transition from 1 to 0, the locked outputs of the master flip flop are fed through 

to the inputs of the slave flip-flop making this flip flop edge or pulse-triggered. To 

understand better take a look at the timing diagram illustrated below. 

 
5Adapted from  

http://eduladder.com/viewquestions.php?questionid=766&title=working%20of%20master-

slave%20JK%20flip%20flop 
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Figure 39: Timing diagram of JK Master-Slave flip flop 

 

Thus, the circuit accepts the value in the input when the clock is HIGH, and passes the 

data to the output on the falling-edge of the clock signal. This makes the Master-Slave J-

K flip flop a Synchronous device as it only passes data with the timing of the clock 

signal. 

9.3 Summary 

1. The output state of a “sequential logic circuit” is a function of the following 

three states, the “present input”, the “past input” and/or the “past output”. 

2. Sequential logic circuits are generally termed as two state or Bistable devices 

which can have their output or outputs set in one of two basic states, a logic level 

“1” or a logic level “0” and will remain “latched” (hence the name latch) 

indefinitely in this current state or condition until some other input trigger pulse 

or signal is applied which will cause the bistable to change its state once again. 

3. Sequential logic circuits can be divided into the following three main categories: 

a. Event Driven – asynchronous circuits that change state immediately 

when enabled. 

b. Clock Driven – synchronous circuits that are synchronised to a specific 

clock signal. 

c. Pulse Driven – which is a combination of the two that responds to 

triggering pulses. 

4. The SR flip-flop, also known as a SR Latch, can be considered as one of the 

most basic sequential logic circuit possible. 
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5. It is basically S-R latch using NAND gates with an additional enable input. It is 

also called as level triggered SR-FF. 

6. Master slave JK FF is a cascade of two S-R FF with feedback from the output of 

second to input of first. Master is a positive level triggered. But due to the 

presence of the inverter in the clock line, the slave will respond to the negative 

level. 

7. Delay Flip Flop or D Flip Flop is the simple gated S-R latch with a NAND 

inverter connected between S and R inputs. It has only one input. The input data 

is appearing at the output after some time. Due to this data delay between i/p and 

o/p, it is called delay flip flop. 

8. Toggle flip flop is basically a JK flip flop with J and K terminals permanently 

connected together. 

Check Your Progress 

A. Multiple choice questions 

1. How is a J-K flip-flop made to toggle? 

a. J = 0, K = 0 

b. J = 1, K = 0 

c. J = 0, K = 1 

d. J = 1, K = 1 

2. With regard to a D latch, ________. 

a. the Q output follows the D input when EN is LOW 

b. the Q output is opposite the D input when EN is LOW 

c. the Q output follows the D input when EN is HIGH 

d. the Q output is HIGH regardless of EN's input state 

3. Two cross coupled NAND gates make 

a. SR Latch 

b.  RS flipflop 

c. D flipflop 

d. master slave flipflop 

4. D flipflop is constructed with 

a. AND gates 

b. OR gates 

c. NAND gates 

d. NOR gates 

5. Mater slave flipflop can be constructed with 

a. SR Latch 

b. Adder 

c. JK flipflop 

d. multiplier 
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9.4 Model Questions 

1. Define sequential circuit. 

2. Define Flip Flop. Give the difference between Latch and Flip Flop. 

3. What is sequential circuit ? How it differ from combinational circuit? 

4. What is flip-flop? Explain RS flip-flop. 

5. Draw the logic diagram of a clocked RS flip-flop with four NAND gates. 

6. With the help of logic diagram and truth table explain the working of clocked RS 

Flip Flop. 

7. What is “race  around condition” in JK Flip flop? 

8. What are the applications of JK F/F? 

9. Show how a D Flip-Flop can be converted into JK-Flip Flop. 

 

Answers to Check Your Progress 

A. Multiple choice questions 

1. A 

2. C 

3. A 

4. C 

5.C 
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CHAPTER 10: REGISTERS 

10.0 Learning Outcomes 

After the completion of this unit, you will be able to: 

• Define and understand the functions of a register 

• Demonstrate the working of a sift register 

• Explain different types of shift registers 

• Know the applications of shift registers 

• Design 3-bit Parallel Input, Serial Output shift register 

10.1 Introduction 

With flip-flop we can store data bitwise but usually data does not appear as single bit. 

Instead it is common to store data words of n bit with typical word lengths of 4, 8, 16, 

32 or 64 bits. Thus, several flip-flops are combined to form a register to store whole data 

words. Registers are synchronous circuits thus all flip-flops are controlled by a common 

clock line. A group of flip-flops constitutes a register as each flip-flop is a binary cell 

capable of storing one bit of information. An n - bit register has a group of n flip-flops 

and is capable of storing any binary information containing n bits.  

Figure 40 shows a register constructed with four D flip-flops and a common clock 

pulse(CP) input. The CP enables all flip-flops so that information presently available at 

the four inputs can be transferred into the 4-bit register. The four outputs can be sampled 

to obtain the information presently stored in the register. 

 

Figure 40: 4-bit register 
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10.2 Shift registers 

Shift registers are a type of sequential logic circuit, mainly for storage of digital data. A 

register capable of shifting its binary information either to the right or to the left at a 

time, when one clock pulse is applied is called a shift register. The logical configuration 

of a shift register consist of a chain of flip-flops connected in cascade, with the output of 

one flip-flop connected to the input of the next flip-flop. All flip-flops receive a 

common clock pulse which causes the shift from one stage to the next. 

 

Figure 41: Shift register 

The Q output of a given flip-flop is connected to the D input of flip-flop at its right. 

Each clock pulse shifts the contents of the register one-bit position to the right. The 

serial input determines what goes into the leftmost flip-flop during the shift. The serial 

output is taken from the output of the rightmost flip-flop prior to the application of a 

pulse. Although this register shifts the contents to the right, if we turn the page upside 

down, we find that the register shifts its content to the left. Thus, a unidirectional shift 

register can function either as shift-right or as a shift-left register. 

10.3 Types of shift registers 

A Shift Register can be used in four different configurations depending upon the way in 

which the data is entered into and take out of it. These four configurations are: 

i. Serial input, serial output (SISO): In this type of Shift Register data can be 

moved in and out of the register, one bit at a time. 
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ii. Parallel input, serial output (PISO):  Here data can be loaded simultaneously. But 

the data can be removed from the register one bit at a time by the clock pulse. 

iii. Serial input, parallel output (SIPO): In this case data is loaded serially one bit at 

a time but the data stored can be read simultaneously. 

iv. Parallel input, parallel output (PIPO): In this type of shift register the data can be 

loaded into the storage simultaneously and can also be taken out or read 

simultaneously. 

10.3.1 Serial Input, Serial Output (SISO) Shift Register 

A serial-in serial-out(SISO) shift register6 enters and removes binary data in serial form. 

The diagram below shows an SISO shift register with four J-K flip-flops. The diagram 

below shows an SISO shift register with four J-K flip-flops. Four clock pulses are 

required to serially shift a 4-bit binary number. The number is transferred into the first 

flip-flop(FFA) of the register one bit at a time. As each new bit is entered, all of the bits 

that are in the register are simultaneously shifted one position to the right. 

 

Figure 42: Serial-in serial-out(SISO) shift register 

One shift occurs as the clock pulse is applied simultaneously to each flip-flop. The 

binary bit that is shifted into each flip-flop ( a 0 or a 1) is determined by the mode that it 

is in before the net clock pulse arrives. The mode is determined by whether a 0 or a 1 is 

applied to the J and K inputs. 

 
6 Adopted from https://www.wisc-online.com/learn/career-clusters/manufacturing/dig3903/serial-in-

serial-out-shift-register 
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Figure 43: SET and RESET mode in JK flip-flop 

For flip-flops B,C and D, the logic state applied to the inputs is determined by the Q and 

Q̅  outputs of the previous flip-flop. For flip-flop A, the mode is determined by the logic 

state that is applied to its J input and the opposite inverted logic state at the K input. 

 

The diagram below shows the flip-flops with contents stored in them. 

 

Sometimes it is desirable to clear the register. This function is achieved by applying a 

momentary logic 0 to all of the flip-flops simultaneously. 
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10.3.2 Serial Input, Parallel Output (SIPO) Shift Register 

A Serial-In Parallel-Out shift register is a shift register that converts serial data to 

parallel data and all the internal stages of the SIPO are available as outputs. If four data 

bits are shifted in by four clock pulses via a single wire at data-in, below, the data 

becomes available simultaneously on the four Outputs out[0] to out[3] after the fourth 

clock pulse. 

 

Figure 44: SIPO shift register 

10.3.3 Parallel Input, Serial Output (PISO) Shift Register 

Parallel-Input Serial-Output shift registers provides input data to all stages 

simultaneously. It stores data, shifts it on a clock by clock basis, and delays it by the 

number of stages times the clock period. In addition, parallel-in/ serial-out really means 

that we can load data in parallel into all stages before any shifting ever begins. This is a 

way to convert data from a parallel format to a serial format. By parallel format we 

mean that the data bits are present simultaneously on individual wires, one for each data 

bit as shown below. By serial format we mean that the data bits are presented 
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sequentially in time on a single wire or circuit as in the case of the “data out” on the 

block diagram below. 

 

Figure 45: PISO shift register 

 

10.3.4 Parallel Input, Parallel Output (PIPO) Shift Register 

The purpose of the parallel-in/ parallel-out shift register is to take in parallel data, shift 

it, then output it as shown below. A universal shift register is a do-everything device in 

addition to the parallel-in/ parallel-out function. 

 

Figure 46: PIPO shift register 

Above we apply four bit of data to a parallel-in/ parallel-out shift register at in[0] in[1] 

in[2] in[3]. The mode control, which may be multiple inputs, controls parallel loading vs 

shifting. The mode control may also control the direction of shifting in some real 
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devices. The data will be shifted one bit position for each clock pulse. The shifted data is 

available at the outputs out[0] out[1] out[2] out[3]. The “data in” and “data out” are 

provided for cascading of multiple stages. Though, above, we can only cascade data for 

right shifting. We could accommodate cascading of left-shift data by adding a pair of 

left pointing signals, “data in” and “data out”, above. 

The internal details of a right shifting parallel-in/ parallel-out shift register are shown 

below. The tri-state buffers are not strictly necessary to the parallel-in/ parallel-out shift 

register, but are part of the real-world device shown below. 

 

10.4 Application of Shift register 

Shift registers can be found in many applications. Here is a list of a few. 

i. To produce time delay: The serial in -serial out shift register can be used as a 

time delay device. The amount of delay can be controlled by the number of 

stages in the register or by the clock frequency.  

ii. To simplify combinational logic: A major problem in the realization of 

sequential circuits is the assignment of binary codes to the internal states of the 

circuit in order to reduce the complexity of circuits required. By assigning one 

flip-flop to one internal state, it is possible to simplify the combinational logic 

required to realize the complete sequential circuit. When the circuit is in a 
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particular state, the flip-flop corresponding to that state is set to HIGH and all 

other flip-flops remain LOW.  

iii. To convert serial data to parallel data: A computer or microprocessor-based 

system commonly requires incoming data to be in parallel format. But 

frequently, these systems must communicate with external devices that send or 

receive serial data. So, serial-to-parallel conversion is required.  

Check Your Progress 

1. _______________ are a type of sequential logic circuit, mainly for storage of 

digital data. 

2. A ____________ shift register enters and removes binary data in serial form. 

10.5 Summary 

1. A register is made out of multiple flip-flops connected to each other used to store 

multiple bits of data. 

2. A shift register is able to shift the data it contains by one bit either to the left or 

to the right. They are used to transform serial data to parallel, and parallel to 

serial data. 

3. The Shift Register is another type of sequential logic circuit that can be used for 

the storage or the transfer of data in the form of binary numbers. 

4. Serial-in/Serial-out Shift Register delays the input data by one clock cycle for 

each stage. 

5. Serial-in/Parallel-out Shift Register is similar to the Serial-in/Serial-out shift 

registers in that it also shifts data with each clock cycle. However, the difference 

is that the internal stages are all made available at the output, thus converting the 

serial input data into parallel output data format. 

10.6 Model Questions 

1. What is register?  

2. Define shift register? 

3. Explain the four configurations of shift registers. 

4. Explain the working of serial-in serial-out(SISO) shift register in details. 
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5. Write down the different types of shift registers and its functions. 

6. What are the different applications of a shift register. 

7. Design 3-bit PISO (Use D –Flip Flop). 

 

Answers to Check Your Progress 

 

1. Shift registers  

2. serial-in serial-out(SISO) 
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CHAPTER 11: COUNTER 

11.0 Learning Objectives 

After the completion of this unit, you will be able to: 

• Differentiate between synchronous and asynchronous counter 

• Classify various types of counters 

• Explain the working of Asynchronous (ripple) counter 

• Define the working of Synchronous counter 

• Define the working of an asynchronous counter 

• Explain the working of Decade counter (MOD 10 Counter) 

• Explain the working of Ring Counter 

• Explain the working of Johnson counter 

11.1 Introduction 

In digital logic and computing, a counter is a device which stores (and sometimes 

displays) the number of times a particular event or process has occurred, often in 

relationship to a clock signal7. The most common type is a sequential digital logic 

circuit with an input line called the "clock" and multiple output lines. The values on the 

output lines represent a number in the binary or BCD number system. Each pulse 

applied to the clock input increments or decrements the number in the counter. 

A counter circuit is usually constructed of a number of flip-flops connected in cascade. 

Counters are a very widely used component in digital circuits, and are manufactured as 

separate integrated circuits and also incorporated as parts of larger integrated circuits. 

In electronics, counters can be implemented quite easily using register-type circuits such 

as the flip-flop, and a wide variety of classifications exist: 

1. Asynchronous (ripple) counter – changing state bits are used as clocks to 

subsequent state flip-flops 

2. Synchronous counter – all state bits change under control of a single clock 

 
7 Adopted from http://wikivisually.com/wiki/Counter_(digital) 
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3. Decade counter – counts through ten states per stage 

4. Ring counter – formed by a shift register with feedback connection in a ring 

5. Johnson counter – a twisted ring counter 

Each is useful for different applications. Usually, counter circuits are digital in nature, 

and count in natural binary. Many types of counter circuits are available as digital 

building blocks, for example a number of chips in the 4000 series implement different 

counters. 

Occasionally there are advantages to using a counting sequence other than the natural 

binary sequence—such as the binary coded decimal counter, a linear feedback shift 

register counter, or a Gray-code counter. Counters are useful for digital clocks and 

timers, and in oven timers, VCR clocks, etc. 

11.2 Asynchronous (ripple) counter 

An asynchronous (ripple) counter is a single d-type flip-flop, with its J (data) input fed 

from its own inverted output. This circuit can store one bit, and hence can count from 

zero to one before it overflows (starts over from 0). This counter will increment once for 

every clock cycle and takes two clock cycles to overflow, so every cycle it will alternate 

between a transition from 0 to 1 and a transition from 1 to 0.  

 

Figure 47: Asynchronous counter created from two JK flip flop 

Notice that this creates a new clock with a 50% duty cycle at exactly half the frequency 

of the input clock. If this output is then used as the clock signal for a similarly arranged 

D flip-flop (remembering to invert the output to the input), one will get another 1 bit 

counter that counts half as fast. Putting them together yields a two-bit counter: 
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Cycle Q1 Q0 (Q1:Q0)dec 

0 0 0 0 

1 0 1 1 

2 1 0 2 

3 1 1 3 

4 0 0 0 

 

You can continue to add additional flip-flops, always inverting the output to its own 

input, and using the output from the previous flip-flop as the clock signal. The result is 

called a ripple counter, which can count to 2n - 1 where n is the number of bits (flip-flop 

stages) in the counter. Ripple counters suffer from unstable outputs as the overflows 

"ripple" from stage to stage, but they do find frequent application as dividers for clock 

signals, where the instantaneous count is unimportant, but the division ratio overall is (to 

clarify this, a 1-bit counter is exactly equivalent to a divide by two circuit; the output 

frequency is exactly half that of the input when fed with a regular train of clock pulses). 

The use of flip-flop outputs as clocks leads to timing skew between the count data bits, 

making this ripple technique incompatible with normal synchronous circuit design 

styles. 

11.3 Synchronous counter 

The term synchronous refers to the events that have a fixed time relationship with each 

other. With respect to counter operation, synchronous means that all the flip-flops in the 

counter are clocked at the same time by a common clock pulse. In this type of counter 

the clock pulse are applied to the CP inputs of all flip-flops. The common pulse trigger 

all the flip-flops simultaneously, rather than one at a time in succession as in the ripple 

counter. This increases the speed of operation of the counters. The pulse to be counted 

are applied at the clock input terminal. 

High-frequency operations require that all the flip-flops of a counter be triggered at the 

same time to prevent errors. We use a Synchronous counter for this type of operation. 

The synchronous counter is similar to a ripple counter with two exceptions: The clock 
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pulses are applied to each flip-flop, and additional gates are added to ensure that the flip-

flops toggle in the proper sequence. 

11.3.1 Working of a three-stage synchronous counter 

A logic diagram of a three-stage synchronous counter is shown in Figure 48. Pulse 

sequence is shown in Error! Reference source not found.. The clock input is wired to 

each of the flip-flops(FF) to prevent possible errors in the count. A HIGH is wired to the 

J and K inputs of FF1 to make the FF toggle. The output of FF1 is wired to the J and K 

inputs of FF2, one input of the AND gate, and indicator A. The output of FF2 is wired to 

the other input of the AND gate and indicator B. The AND output is connected to the J 

and K inputs of FF3. The C indicator is the only output of FF3. 

 

Figure 48: Logic diagram of three stage synchronous counter 

Let us assume the following initial conditions: The outputs of all FFs, the clock, and the 

AND gate are 0; the J and K inputs to FF1 are HIGH.  

Clock pulse 1 causes FF1 to set. This HIGH lights lamp A, indicating a binary count of 

001. The HIGH is also applied to the J and K inputs of FF2 and one input of the AND 

gate. FF2 and FF3 are unaffected by the first clock pulse because the J and K inputs 

were LOW when the clock pulse was applied.  
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Figure 49: Timing diagram with pulse sequence 

As clock pulse 2 goes LOW, FF1 resets, turning off lamp A. In turn, FF2 will set, 

lighting lamp B and showing a count of 010. The HIGH from FF2 is also felt by the 

AND gate. The AND gate is not activated at this time because the signal from FF1 is 

now a LOW. A LOW is present on the J and K inputs of FF3, so it is not toggled by the 

clock. Clock pulse 3 toggles FF1 again and lights lamp A. Since the J and K inputs to 

FF2 were LOW when pulse 3 occurred, FF2 does not toggle but remains set. Lamps A 

and B are lit, indicating a count of 011. With both FF1 and FF2 set, HIGHs are input to 

both inputs of the AND gate, resulting in HIGHs to J and K of FF3. No change occurred 

in the output of FF3 on clock pulse 3 because the J and K inputs were LOW at the time.  

Just before clock pulse 4 occurs, we have the following conditions: FF1 and FF2 are set, 

and the AND gate is outputting a HIGH to the J and K inputs of FF3. With these 

conditions all of the FFs will toggle with the next clock pulse. At clock pulse 4, FF1 and 

FF2 are reset, and FF3 sets. The output of the AND gate goes to 0, and we have a count 

of 100.  
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It appears that the clock pulse and the AND output both go to 0 at the same time, but the 

clock pulse arrives at FF3 before the AND gate goes LOW because of the transit time of 

the signal through FF1, FF2, and the AND gate.  

Between pulses 4 and 8, FF3 remains set because the J and K inputs are LOW. FF1 and 

FF2 toggle in the same sequence as they did on clock pulses 1, 2, and 3.  

Clock pulse 7 results in all of the FFs being set and the AND gate output being HIGH.  

Clock pulse 8 causes all the FFs to reset and all the lamps to turn off, indicating a count 

of 000 . The next clock pulse (9) will restart the count sequence. 

11.4 Decade counter (MOD 10 Counter) 

A Mod 10 counter has 10 possible states i.e. it counts from 0 to 9 and roll over8. 

Looking at the truth table, the counter should run from 00002 to 10012. 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

 

Since the counter has to display 10012, the next number (10102) will be used to reset the 

counter to zero. Since the asynchronous inputs are active high, an AND gate will be 

used. The two flip-flops where a “1” occurs will be tied to an AND gate, and the output 

will be tied to the ‘clear’ input. 

 

When the counter goes to 10102, the AND gate will have a 1 on its output and will 

activate the “clear” inputs. This will reset the counter to 00002.The 10102 will never be 

displayed. In essence, the counter counted/displayed from 00002 to 10012. 

 
8 https://www.wisc-online.com/learn/career-clusters/manufacturing/dig4603/the-mod-10-counter 
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Figure 50: Mod 10 counter 

11.5 Ring Counter 

A ring counter is a circular shift register which is initiated such that only one of its flip-

flops is the state one while others are in their zero states. A ring counter is a shift 

register (a cascade connection of flip-flops) with the output of the last one connected to 

the input of the first, that is, in a ring. Typically, a pattern consisting of a single bit is 

circulated so the state repeats every n clock cycles if n flip-flops are used. 

 

Figure 51: Ring counter 
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11.6 Johnson counter 

A Johnson counter (or switch-tail ring counter, twisted ring counter, walking ring 

counter, or Möbius counter) is a modified ring counter, where the output from the last 

stage is inverted and fed back as input to the first stage. The register cycles through a 

sequence of bit-patterns, whose length is equal to twice the length of the shift register, 

continuing indefinitely. These counters find specialist applications, including those 

similar to the decade counter, digital-to-analog conversion, etc. They can be 

implemented easily using D- or JK-type flip-flops. It is also known as twisted ring 

counter. 

 

Figure 52: Johnson counter 

 

Check Your Progress 

1. A digital circuit which is used for a counting pulses is known as ___________. 

2. High-frequency operations require that all the flip-flops of a counter be triggered 

at the ________ time to prevent errors. 

3. A counter is a circular shift register which is initiated such that only one of its 

flip-flops is the state one while others are in their zero states. 

4. A ___________ counter is a modified ring counter, where the output from the 

last stage is inverted and fed back as input to the first stage. 

11.7 Summary 

1. Counter is a sequential circuit. A digital circuit which is used for a counting 

pulses is known counter. 

2. Counters are of two types: Asynchronous or ripple counters and Synchronous 

counters. 
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3. If the "clock" pulses are applied to all the flip-flops in a counter simultaneously, 

then such a counter is called as synchronous counter. 

4. An asynchronous (ripple) counter is a single d-type flip-flop, with its J (data) 

input fed from its own inverted output. 

5. A Mod 10 counter has 10 possible states i.e. it counts from 0 to 9 and roll over. 

6. A ring counter is a circular shift register which is initiated such that only one of 

its flip-flops is the state one while others are in their zero states. 

7. A Johnson counter (or switch-tail ring counter, twisted ring counter, walking 

ring counter, or Möbius counter) is a modified ring counter, where the output 

from the last stage is inverted and fed back as input to the first stage. 

11.8 Model Questions 

1. What is a counter? 

2. What are the different types of counters? 

3. Explain Asynchronous(ripple) counter. 

4. Explain the working of Johnson counter. 

5. Explain the working of Decade counter. 

6. Explain Synchronous counter. 

 

Answers to Check Your Progress 

1. Counter 

2. Same 

3. Ring 

4. Johnson 
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CHAPTER 12: MEMORY 

12.0 Learning Objectives 

After reading this chapter, you will be able to: 

• Define semiconductor memories 

• Define ROM 

• Explain Basic ROM construction 

• Define RAM 

• Differentiate Static and Dynamic RAM 

• Explain READ and WRITE operation in RAM 

• Perform memory expansion.  

12.1 Introduction to Semiconductor Memories 

Semiconductor memories are made from silicon, unlike hard-disk drive memory which 

are magnetic and optics9. 

 

Figure 53: Semiconductor memories 

Main difference between memory technologies:  

• RAM: Data can be read and written but data stored is volatile, i.e. need power to 

retain data. 

 
9 Adopted from http://ocw.utm.my/course/view.php?id=48 
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• ROM: Data can only be read, and the data stored is not volatile, i.e. don’t need 

power to retain data. 

• Flash: Data can be read and written, and data stored is not volatile, i.e. don’t 

need power to retain data. 

12.2 Read Only Memory (ROM) 

ROM is used to store data that never (or rarely) changed. The main advantage of ROM 

is data in ROMs are retained even when power is not supplied. Data in ROMs are 

typically pre-configured using specialized equipments. There are three commonly used 

ROMs:  

• Mask ROM: Data is permanently stored in the memory during the manufacturing 

process. Once the memory array is programmed, it cannot be changed – Uses 

MOS transistor for memory cells. 

• PROM: Uses some type of fusing process to store bits. The fusion process is 

irreversible, one programmed, it cannot be changed – Uses MOS transistor with 

fusible links for memory cells    

• EEPROM: Unlike PROM, EEPROM can be reprogrammed if an existing 

program in the memory array is erased. EEPROM is erased and programmed 

using electrical pulses. Therefore, EEPROM can be rapidly programmed and 

erased in-circuit for reprogramming. It uses either floating gate MOS or MNOS 

transistors for memory cells. 

12.2.1 ROM Size 

Size of semiconductor memories is represented in bits. For example, an 8x4 ROM is 

capable of storing 32 bits. 8x4 ROM has 3 address lines (23 = 8) and 4 data lines.  
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Figure 54: Basic ROM construction 

Design a ROM based on the following truth table: 

 

We need a 2X4 decoder for 4x4 ROM configured according to the above truth table. 
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ROM IC has Chip Select (CS) and Output Enable (OE) pins. Output data is valid only 

when CS = 0 and OE = 0, else data = z (high impedance, i.e. not ‘0’ and not ‘1’).  

 

 

Assume Data[7:0] = 0011 0101  at location  A[1:0] = 10. To read the data at location 10, 

Set A1A0 = 10     Set CS = 0, OE = 0     output Data[7:0] = 0011 0101. 

If CS = 1 or OE = 1, data [7:0] = zzzz zzzz(high impedance), Regardless of the address 

input A1A0 
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12.3 Random Access Memory(RAM) 

RAM is a temporary data storage and it does not retain its stored data when no power is 

applied. When a data unit is written into a given address in the RAM, the data unit 

previously stored at that address is replaced by the new unit. When a data unit is read at 

a given address, the data unit that is read remains there.  

There are two types of RAM: 

• Static RAM(SRAM) 

• Dynamic RAM(DRAM) 

12.3.1 SRAM vs DRAM 

1. SRAM uses a latch to store 1 bit in cell while DRAM uses a capacitor to store 1 

bit in a cell. 

2. SRAM is more expensive to implement, i.e. requires more logic gates per cell 

compared to DRAM. 

3. Because SRAM uses a latch, it works faster than DRAM that requires the 

capacitor to be periodically refreshed. 

4. SRAM is typically implemented in high speed CPU cache memory, while 

DRAM is implemented in main memory. 

12.3.2 How to read from and write to a RAM?  

The first step is to provide the address and data we want to read or write. We also need a 

few enable signals to control when we want to enable the memory, read, and write 

operation. The Chip Select signal (CS) is used to enable the memory. The Write Enable 

signal (WE) is used to enable the write operation. The Output Enable signal (OE) is used 

to enable the read operation. 

12.3.3 READ Operation in RAM 

The figure below demonstrates the Read operation. This example explains the Read one 

byte at location A[1:0] = 10 from a 4x8 RAM. 
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Figure 55: READ operation in RAM 

Step 1: Supply address A[1:0] = 10 to Read location 10   

Step 2: Set CS = 0 to enable the memory   

Step 3: Set OE = 0 to enable read   

Step 4: Set WE = 1 to disable write   

Step 5: Get the data at location 10 

12.3.4 WRITE Operation in RAM 

The figure below demonstrates the Read operation. This example explains the Read one 

byte at location A[1:0] = 10 from a 4x8 RAM. 

 

Figure 56: WRITE operation in RAM 

Step 1: Supply address A[1:0] = 10 to write location 10   

Step 2: Supply the Data[7:0] to write   
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Step 2: Set CS = 0 to enable the memory   

Step 3: Set OE = 1 to disable read   

Step 4: Set WE = 0 to enable write   

Step 5: data[7:0] is written at location 10 

12.4 Flash Memory  

Flash memory is the closest to the ideal memory. It is capable of high storage capacity 

and retains data when power off. It has an ability to erase and reprogram at will. It also 

has a fast operation and is comparatively cheap. Flash memory cell is designed using 

stacked gate MOS transistor (floating gate transistor). 

12.5 Memory Expansion  

Memory can be expanded on its storage capacity or data length. First we will explain the 

concept of Memory storage capacity expansion with a help of an example. Suppose we 

have two 16x4 memory and we want to expands it to 32x4 Capacity expansion. The 

figure below demonstrates how two 16x4 memory are combined to obtain a 32x4 

memory. 
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Figure 57: Memory expansion 

Now we will demonstrate Memory Data length expansion with a help of an example. 

Suppose we have two 16x4 RAM and we want to produce a 16x8 RAM. The figure 

below demonstrates how two 16x4 memory are combined to obtain a 16x8 memory. 

 

 

Figure 58: Data length expansion of memory 
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Check Your Progress 

1. How many storage locations are available when a memory device has twelve 

address lines? 

a. 144 

b. 512 

c. 2048 

d. 4096 

2. Which of the following best describes nonvolatile memory? 

a. memory that retains stored information when electrical power is 

removed 

b. memory that loses stored information when electrical power is removed 

c. magnetic memory 

d. nonmagnetic memory 

3. Select the best description of read-only memory (ROM). 

a. nonvolatile, used to store information that changes during system 

operation 

b. nonvolatile, used to store information that does not change during 

system operation 

c. volatile, used to store information that changes during system operation 

d. volatile, used to store information that does not change during system 

operation 

4. Memory that loses its contents when power is lost is: 

a. Nonvolatile 

b. Volatile 

c. Random 

d. Static 

5. Which of the following best describes static memory devices? 

a. memory devices that are magnetic in nature and do not require constant 

refreshing 

b. semiconductor memory devices in which stored data is retained as long 

as power is applied 

c. memory devices that are magnetic in nature and require constant 

refreshing 

d. semiconductor memory devices in which stored data will not be retained 

with the power applied unless constantly refreshed 
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12.6 Summary 

1. Semiconductor memory is a device for storing digital information that is 

fabricated by using integrated circuit technology. 

2. Electronic semiconductor memory technology can be split into two main 

types or categories, according to the way in which the memory operates. 

3. Random Access Memory (RAM)is the best known form of computer memory. 

The Read and write (R/W) memory of a computer is called RAM. The User can 

write information to it and read information from it. 

4. The RAM is a volatile memory, it means information written to it can be 

accessed as long as power is on. As soon as the power is off, it can not be 

accessed. 

5. ROM is a class of storage medium used in computers and other electronic 

devices. Read Only Memory (ROM), also known as firmware, is an integrated 

circuit programmed with specific data when it is manufactured. 

6. Read only memory (ROM) is an example of nonvolatile memory. 

 

12.7 Model Questions 

1. With example define memory size, word length and memory address. 

2. Specify the important characteristics of semiconductor memories. 

3. What is volatile memory? 

4. What is non-volatile memory? 

5. List any five secondary storage devices/memory. When we use the secondary 

memory? 

6. What is the meaning of PROM? 

7. What is EEPROM? 

8. What is EPROM? 

9. What is Rom? Describe it’s various types. 

10. Describe, how information is written in memory cell. 

11. Describe, how information is Read in memory cell. 

12. What is the difference between a Primary memory and Secondary memory? 

13. Draw a block diagram of a memory which has 4 word 3 bit per word memory 

and explain it. 
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Answers to Check Your Progress 

1.  a 

2.  a 

3.  b 

4.  b 

5.  b  
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