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Note :

This paper is of Thirty Five (35) marks divided into
two (02) Sections A and B. Attempt the questions
contained in these sections according to the detailed
instructions given therein. Candidates should limit their
answer to the questions on the given answer sheet. No

additional (B) answer sheet will be issued.

TE YT U@ (35) SRl w1 ® W& (02)
@uel % qu1 @ § fawiia B g @ve § i
MU foga el % AR E WAl Rl BA I
21wl oyl & S @ W sw-gfaw
T 1 Hitga @ &k Afae () I gien
SR & W SR

P-130/MT-08 [P.T.O.



SECTION-A/( @US- )
(Long Answer Type Questions)/(Sd 3T el W9 )

Note : Section 'A' contains Five (05) long answer type
questions of Nine and Half (9%2) marks each. Learners
are required to answer any Two (02) questions only.

(2x9%2=19)
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1. Show that the function f(z) = /| xy| is not regular at the

origin, although Cauchy-Riemann equations are satisfied at
the point.
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2. Show that transformation w :[ ) , transform the

upper half of the z-plane into the interior of a semicircle in
the z-plane.
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3. Find the value of
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4. Discuss the singularities of the following functions
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5. Prove that:

SECTION-B/( ©@US-@)
(Short Answer Type Questions)/( g I AT Y9T)
Note : Section 'B' contains Eight (08) short answer type

questions of Four (04) marks each. Learners are required
to answer any Four (04) questions only.  (4x4=16)
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1. Find the modulus of -
341
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2.

Define

(a) Bounded set.
(b) Closed set.
qiteifed IS
(%) &y qY==g|
(@) Hg9 Hg=|

Prove that f(z) = z2 is uniformly continuous in the domain
|| < 1.
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Prove that the series e* =1+ z + z + z + ... is absolutely

21 3!
and uniformly convergent.
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Define following maps :
(a) Translation.
(b) Rotation.

(c) Magnification.
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State and prove Cauchy integral theorem.
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State and Prove Liouville theorem.

Ee Wi w R s fag s

3
<

(z-D*(z-2)(z-3)

Find the residue of at z=1 and 2.
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