Total Pages : 7

Roll No.

PHY-553

Memory Devices and Microprocessors

M.Sc. PHYSICS (MSCPHY-12/13/16/17)

Second Year Examination, 2019 (June)

Time : 3 Hours]

Max. Marks : 80

Note : This paper is of Eighty (80) marks divided into three (03) sections A, B and C. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A

(Long Answer Type Questions)

Note : Section 'A' contains four (04) long answer type questions of Nineteen (19) marks each. Learners are required to answer any two (02) questions only.

 $(2 \times 19 = 38)$

1. (a) What is computer memory ? Discuss primary and secondary memory. 10

S-498-PHY-553

[P.T.O.

	(b)	Discuss EPROM, EEPROM and Flash memory.	9
2.	(a)	Write a short note on CMOS logic family.	10
	(b)	Discuss Emitter coupled logic.	9
3.	(a)	Discuss the programming model of $80386 \ \mu p$.	10
	(b)	Using D latch, make a four bit register and explain its	
		working.	9
4.	(a)	Explain the generation of control signals in 8085 μ p.	
			10
	(b)	Discuss the requirement of 8259 interrupt controlle	r.
			- 9

SECTION-B

(Short Answer Type Questions)

- **Note :** Section 'B' contains eight (08) short answer type questions of eight (08) marks each. Learners are required to answer any four (04) questions only. (4×8=32)
- 1. Discuss memory operations.

S-498-PHY-553 [2]

- 2. Explain the following parameters :
 - (a) Propagation delay.
 - (b) Fan out.
 - (c) Noise margin.
 - (d) Power dissipation.
- **3.** What is RS flip-flop ? And what is its short comings ? How it can be removed.
- 4. Make a timing diagram of memory read instruction.
- 5. Make a bus diagram of 8085 μ p bus organization and elaborate different bases.
- 6. Discuss the programming model of $8086 \mu p$.
- 7. Explain RISC and CISC processors.
- 8. Explain the following assembly language program and find its output
 - MVI A 04H
 - MVI B 05H
- S-498-PHY-553

MVI C	06H
ADD B	
ADD C	
STA	200AH
OUT	03H
HLT.	

SECTION-C

(Objective Type Questions)

- Note : Section 'C' contains ten (10) objective type questions of one (01) mark each. All the questions of this section are compulsory. (10×1=10)
- Four memory chips of 16 × 4 size have their address bus connected together. The system will be of size :
 - (a) 64×64
 - (b) 16 × 16
 - (c) 32×8
 - (d) 256×1 .
- S-498-PHY-553 [4]

- 2. Which of the following is an example of volatile memory ?
 - (a) ROM
 - (b) RAM
 - (c) PROM
 - (d) Hard-disc.
- **3.** 8 to 3 encoder has :
 - (a) 3 inputs 8 outputs
 - (b) 3 inputs 3 outputs
 - (c) 8 inputs 3 outputs
 - (d) 8 inputs 8 outputs.
- 4. According to word size the types of instruction in 8085 μp are :
 - (a) 3
 - (b) 2
 - (c) 1
 - (d) 5.

S-498-PHY-553

5. MVI A 32H is an instruction :

- (a) 4 byte
- (b) 2 byte
- (c) 1 byte
- (d) 3 byte.
- 6. Data bus of 8086 μ p is of :
 - (a) 8 bit
 - (b) 16 bit
 - (c) 32 bit
 - (d) 24 bit.
- 7. Data bus of $8085 \mu p$ is of :
 - (a) 16 bit
 - (b) 24 bit
 - (c) 8 bit
 - (d) 32 bit.

S-498-PHY-553

[6]

- 8. Address bus and data bus in any microprocessor are :
 - (a) address bus in unidirectional and data bus is bidirectional
 - (b) both are unidirectional
 - (c) both are bi directional
 - (d) none of the above.
- 9. Which input condition is forbidden in RS flip-flop.
 - (a) R = 0, S = 0
 - (b) R = 1, S = 1
 - (c) R = 0, S = 1
 - (d) R = 1, S = 0.
- **10.** Hexadecimal equivalent of $(100)_{10}$ is :
 - (a) (64)₁₆
 - (b) (74)₁₆
 - (c) (54)₁₆
 - (d) (84)₁₆.

S-498-PHY-553