Roll No.

MCA-18

Formal Language and Automata

Master of Computer Application (MCA–11/16/17) Fifth Semester, Examination, 2018

Time : 3 Hours

Max. Marks: 80

Note: This paper is of eighty (80) marks containing three
(03) Sections A, B and C. Attempt the questions contained in these Sections according to the detailed instructions given therein.

Section-A

(Long Answer Type Questions)

- **Note :** Section 'A' contains four (04) long answer type questions of nineteen (19) marks each. Learners are required to answer *two* (02) questions only.
- 1. Design an NFA for the following languages :
 - (i) $L = \{abab^n : n \ge 0\} \cup \{aba^n : n \ge 0\}$
 - (ii) $L = \{a^n : n \ge 0\} \cup \{b^n a : n \ge 1\}$
 - (iii) $L = collection of \{0, 1\}$ which end with 1 but does not contain the substring 00.
 - (iv) L is a language that accepts the language {ab, abc}*

(v)
$$L = (bb^* (a + b))$$

- 2. Construct a finite automata equivalent to the following regular expression is :
 - (i) $R = (1 \ (00)^* \ 1 + 01^* \ 0)^*$
 - (ii) $R = (a + b)^* (abb)$
 - (iii) $(ab | ba)^* aa (ab | ba)^*$
- 3. What are the limitations of finite automata ? How can we overcome from these limitations ? Design a PDA for language $L = \{a^n b^n \mid n \ge 1\}$.
- 4. What do you mean by CFG ? Write a CFG for the following languages :
 - (i) $L = \{WW^R : W \in \{0,1\}^*\}$
 - (ii) $L = \{W \subset W^R : W \in (a, b)^*\}$
 - (iii) $L = \{a^{2n} b^m : n \ge 0, m \ge 0\}$

Section-B

(Short Answer Type Questions)

- **Note :** Section 'B' contains eight (08) short answer type questions of eight (8) marks each. Learners are required to answer *four* (04) questions only.
- 1. (i) If $L_1 = \{ab, aa, baa\}$ and $L_2 = \{a, b\}$. Find $L_1.L_2, L_1 \cup L_2, L_1^*$ and L_2^* .
 - (ii) If $L_1 = \{x, xy, x^2\}$ and $L_2 = \{y^2, xyx\}$ over $\{x, y\}$. Find L_1L_2, L_2^2 and L_2^{-2} .
- 2. What do you mean by DFA and NDFA ? Design a DFA that recognizes language :

 $\mathbf{L} = \{ b^{m} a b^{n} : m, n > 0 \}$

- 3. Find the regular expression for the following languages :
 - (i) $L_1 = \{a^n b^m : n \ge 1, m \ge 1, nm \ge 3\}$
 - (ii) $L_2 = \{ab^n w : n \ge 3, w \in \{a, b\}^+\}$

- 4. Derivate Arden's theorem.
- 5. What is the relation between CFG and PDA ? Write the rules to convert the CFG into PDA.
- 6. What do you mean by decidable and undecidable language ?
- 7. What do you mean by derivation tree and the parse tree ? How many types of derivation are there ? Derivate the string 00110101 implementing all the methods of derivation using the following grammar :

 $S \rightarrow 0B | 1 A$ $A \rightarrow 0 | 0 S | 1 A A$ $B \rightarrow 1 | 1 S | 1 B B$

8. Design a Turing machine for acceptance of string $0^n 1^n$, where n > 0.

Section-C

(Objective Type Questions)

- **Note :** Section 'C' contains ten (10) objective type questions of one (01) mark each. All the questions of this section are compulsory.
- 1. Regular grammar is :
 - (a) Context free grammar
 - (b) Non-context free grammar
 - (c) Context sensitive grammar
 - (d) None of these

- 2. The transition function of NFA is :
 - (a) δ (delta) : $\theta \times \Sigma \rightarrow \theta$
 - (b) δ (delta) : $\theta \times \Sigma \rightarrow \theta^n$
 - (c) δ (delta) : $\theta \times \Sigma \rightarrow 2^{\theta}$
 - (d) None of these
- 3. The finite automata can accept a language $L = \{a^n b^n \mid n \ge 1\}.$
 - (a) True
 - (b) False
- 4. Turing machine is an abstract model of computers.
 - (a) True
 - (b) False
- 5. Which of the following conversion is not possible (algorithmically)?
 - (a) Regular grammar to CFG
 - (b) NDFA to DFA
 - (c) NPDA to DPDA
 - (d) Non-deterministic TM to deterministic TM
- 6. Pumping lemma is used to test whether a grammar is regular or not.
 - (a) True
 - (b) False
- 7. Recursively enumerable languages are not closed under :
 - (a) Union

- (b) Intersection
- (c) Complementation
- (d) Concatenation
- 8. Who did invert the Turing machine ?
 - (a) G. M. Turing
 - (b) Fred Turing
 - (c) Alosco Turing
 - (d) Alan Turing
- 9. If L is a regular language, then L^C is also alanguage.
 - (a) Regular
 - (b) Non-regular
 - (c) Finite language
 - (d) None of these
- 10. Left hand side of a production in CFG consists of :
 - (a) One terminal
 - (b) One non-terminal
 - (c) More than one terminal
 - (d) Terminal and non-terminal