Roll No.

CHE-501

Inorganic Chemistry

M.Sc. Chemistry (MSCCH-12/13/16/17) First Year, Examination, 2018

Time : 3 Hours

Max. Marks : 80

Note: This paper is of eighty (80) marks containing three (03) Sections A, B, C. Attempt the questions contained in these Sections according to the detailed instructions given therein.

Section-A

(Long Answer Type Questions)

- **Note :** Section 'A' contains four (04) long answer type questions of nineteen (19) marks each. Learners are required to answer *two* (02) questions only.
- 1. State Grand Orthogonality Theorem (GOT) and derive the character table for C_{3v} point group.
- 2. Discuss the salient features of molecular orbital theory. Draw the molecular orbital diagrams of an octahedral complex involving :
 - (a) Only σ -bonding
 - (b) Both σ and π -bonding
- 3. What do you mean by overall stability and stepwise stability constants ? Prove that the overall stability constant is equal to the product of stepwise stability constants.

4. What are electron transfer reactions ? Give examples. Discuss the mechanism of electron transfer in $Fe(CN)^{4-} - Fe(CN)^{3-}_{6}$ system.

Section-B

(Short Answer Type Questions)

- **Note :** Section 'B' contains eight (08) short answer type questions of eight (08) marks each. Learners are required to answer *four* (04) questions only.
- 1. Discuss applications of Group Theory.
- 2. Describe factors affecting crystal field splitting energy with reference to metal ion.
- 3. Draw Orgel energy diagrams in octahedral field for d^1 and d^9 electronic system.
- 4. How can stability constant of a complex be measured by potentiometry ? Explain in detail.
- 5. Define the term haem. What are the main functions of myoglobin ?
- 6. What is trans effect ? How does it influence substitution in square planar complexes ?
- 7. Give evidences in favour of conjugate base mechanism.
- 8. Explain how the nature of ligand affects the stability of metal complexes.

Section-C

(Objective Type Questions)

Note : Section 'C' contains ten (10) objective type questions of one (1) mark each. All the questions of this Section are compulsory.

Choose the right answer :

- 1. H₂O belongs to point group symmetry :
 - (a) D_2h

- (b) C_{2V}
- (c) C₂
- (d) C_s
- 2. The least stable complex is :
 - (a) $[C_4 (NH_3)_4]^{2+}$
 - (b) $[C_4 (en)_2]^{2+}$
 - (c) $[C_4 (dien)_2]^{2+}$
 - (d) $[C_4 (trien)_2]^{2+}$
- 3. Minimum trans effect is shown by :
 - (a) CN⁻
 - (b) H₂O
 - (c) NH₃
 - (d) C₂H₄
- 4. If two complexes form a bridged intermediate, the mechanism of the reaction will be :
 - (a) Outer sphere
 - (b) Inner sphere
 - (c) SN1
 - (d) SN2
- 5. Which one of the following complexes has a magnetic moment of 5.9 BM ?
 - (a) Ni (CO)₄
 - (b) $[Fe (H_2O)_6]^{2+}$
 - (c) $[Co (NH_3)_6]^{2+}$
 - (d) $[Mn (Br)_4]^{2+}$

- 6. Ground state term for d^2 metal ion is :
 - (a) ${}^{3}P$
 - (b) ${}^{3}F$
 - (c) ${}^{1}G$
 - (d) ${}^{1}S$
- 7. The CFSE of complex ion, $[CoCl_4]^{2-}$ is :
 - (a) 0.6 Δt
 - (b) 1.2 Δt
 - (c) 1.8 Δt
 - (d) 2.4 Δt
- 8. The most common pathway for the decomposition of transition metal alkyls is :
 - (a) Fluoride elimination
 - (b) β -elimination
 - (c) Reductive elimination
 - (d) None of these
- 9. Fe(II) containing metalloporphyrin complex is known as :
 - (a) Haemoglobin
 - (b) Chlorophyll
 - (c) Hemocyanin
 - (d) Calmodulin
- 10. Which one of the following produces strong ligand field ?
 - (a) NO $_{2}^{-}$
 - (b) CO
 - (c) NH₃
 - (d) en

S-119

570