BCA-05

Discrete Mathematics

Bachelor of Computer Applications (BCA-11/16/17)

Second Semester, Examination, 2018

Time: 3 Hours Max. Marks: 80

Note: This paper is of eighty (80) marks containing three (03) Sections A, B and C. Learners are required to attempt the questions contained in these sections according to the detailed instructions given therein.

Section-A

(Long Answer Type Questions)

Note: Section 'A' contains four (04) long answer type questions of nineteen (19) marks each. Learners are required to answer *two* (02) questions only.

- 1. (a) Explain Cramer's Theorem. What are normal random variables?
 - (b) Solve by Cramer's rule:

$$x + y + z = 7$$

$$2x - 2y + 3z = 14$$

$$-x - y + z = 1$$

$$(x, y, z) = (2, 1, 4)$$

[2] S-597

(a) Find the number of words, with or without meaning, that can be formed with the letters of the word 'SWIMMING.

(b) If
$$f(x) = -15x + 12$$
 and $g(x) = 12x^2 + 12x + 15$, find $f(3) - g(3)$.

- (c) Let $f(x) = \sqrt{x} 3$ and $g(x) = \frac{3}{x}$. Find $f \circ g$, $g \circ f$, $f \circ f$ and $g \circ g$.
- 3. (a) Explain the basic properties of ring.
 - (b) Prove that ring R is commutative ring if and only if:

$$(a + b^2) = a^2 + 2ab + b^2$$
 for all $a, b \in R$

- 4. (a) What is the difference between integral domains and fields?
 - (b) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by the function f(x) = 3x 6. Find the formula for the inverse function $f^{-1}: \mathbb{R} \to \mathbb{R}$.

Section-B

(Short Answer Type Questions)

Note: Section 'B' contains eight (08) short answer type questions of eight (8) marks each. Learners are required to answer *four* (04) questions only.

- 1. Prove that if a relation R on a set S is transitive and irreflexive, then it is asymmetric.
- 2. Use mathematical induction to show that 5 divides n^5 -n, whenever n is a non-negative number.

[3] S-597

- 3. Define Groups. Explain the various properties of groups.
- 4. What is a ring? Explain with suitable example.
- 5. Prove that:
 - (a) $A \cap B = B \cap A$
 - (b) $A \cup A = A$
- 6. Explain Gaussian Elimination Scheme using a suitable examples.
- 7. Show that a function $f : \mathbb{R} \to \mathbb{R}$ defined as f(x) = 2x + 3 for all $x \in \mathbb{R}$ is both injective and surjective function.
- 8. Define tautology and contradiction with suitable example.

Section-C

(Objective Type Questions)

Note: Section 'C' contains ten (10) objective type questions of one (01) mark each. All the questions of this section are compulsory.

- 1. A is an ordered collection of objects.
 - (a) Relation
 - (b) Function
 - (c) Set
 - (d) Proposition
- 2. The set O of odd positive integers less than 10 can be expressed by
 - (a) $\{1, 2, 3\}$
 - (b) $\{1, 3, 5, 7, 9\}$
 - (c) $\{1, 2, 5, 9\}$
 - (d) $\{1, 5, 7, 9, 11\}$

- 3. Power set of empty set has exactlysubset.
 - (a) One
 - (b) Two
 - (c) Zero
 - (d) Three
- 4. What is the Cartesian product of $A = \{1, 2\}$ and $B = \{a, b\}$?
 - (a) $\{(1, a), (1, b), (2, a), (b, b)\}$
 - (b) $\{(1, 1), (2, 2), (a, a), (b, b)\}$
 - (c) $\{(1, a), (2, a), (1, b), (2, b)\}$
 - (d) $\{(1, 1), (a, a), (2, a), (1, b)\}$
- 5. The Cartesian product of $B \times A$ is equal to the Cartesian product of $A \times B$. Is it true or false?
 - (a) True
 - (b) False
- 6. Which is the cardinality of the set of odd positive integers less than 10?
 - (a) 10
 - (b) 5
 - (c) 3
 - (d) 20
- 7. Which of the following two sets are equal?
 - (a) $A = \{1, 2\}$ and $B = \{1\}$
 - (b) $A = \{1, 2\}$ and $B = \{1, 2, 3\}$
 - (c) $A = \{1, 2, 3\}$ and $B = \{2, 1, 3\}$
 - (d) $A = \{1, 2, 4\}$ and $B = \{1, 2, 3\}$

8. The set of positive integers is (a) Infinite Finite (b) (c) Subset (d) Empty 9. What is the cardinality of the power set of the set $\{0, 1, 2\}$? (a) 8 (b) 6 (c) 7 (d) 9 10. A partial ordered relation is transitive, reflexive and Antisymmetric (a) (b) Bisymmetric

(c) Antireflexive

(d) Asymmetric

S-597 160