BCA-01

Computer Fundamental and Introduction to Digital Logic

Bachelor of Computer Application (BCA-11/16/17)

First Semester, Examination, 2018

Time : 3 Hours

Max. Marks: 80

Note: This paper is of eighty (80) marks containing three (03) Sections A, B and C. Learners are required to attempt the questions contained in these Sections according to the detailed instructions given therein.

Section-A

(Long Answer Type Questions)

- **Note :** Section 'A' contains four (04) long answer type questions of nineteen (19) marks each. Learners are required to answer *two* (02) questions only.
- 1. Answer the following questions :
 - (a) Convert $(272.25)_{10}$ to its binary, octal and hexadecimal equivalent. 5
 - (b) Describe the construction and working of a fulladder. 5

(c) Perform the following operations : 5

(i) Subtract $(10111001.11)_2$ from $(110011110001.01)_2$

		(ii)	Find the 9's complement of $(564610)_{10}$)
		(iii)	Find the l's complement of (10110110)	2
		(iv)	Find the 10's complement of (1012398)10
		(v)	Find the 2's complement of (0110111) ₂	2
	(d)	Expla XOR they u	ain the working of AND, OR, NOT gate with truth table and diagram. How useful ?	and are 4
2.	Answer the following questions :			
	(a)	Expla	ain functions of Memory.	4
	(b)	Explain types of Memory. 5		
	(c)	Explain the following :		
		(i)	Bus	
		(ii)	Optical Disk	
		(iii)	LAN	
		(iv)	Volatile memory	
		(v)	Non-Volatile Memory	
	(d)	Discuss Universal Gates. Create NAND Gateusing NOR Gates only. Create NOR Gate usingNAND Gates only.5		
3.	Answer the following questions :			
	(a)	Draw the circuit diagram and show with the help of truth table the following : 5		
		(i)	(A + B . C) + (A . B + C) . (A . B)	
		(ii)	(A . B + C) . (A . B + C) + (A . B)	

(b) Explain De-Morgan's theorem with example and truth table. 5

- (c) Explain ROM. Also explain PROM, EPROM, EEPROM and examples of each type of ROM. 4
- (d) Explain Encoder and Decoder with working and block diagram. 5
- 4. Answer the following questions :
 - (a) Explain all the Generations of Computers with technology used. 9
 - (b) Explain Synchronous and Asynchronous Counter. 5
 - (c) Implement the following with a multiplexor : 5

 $F(A, B, C, D) = \Sigma(0, 1, 3, 4, 8, 9, 15)$

Section-B

(Short Answer Type Questions)

- **Note :** Section 'B' contains eight (08) short answer type questions of eight (08) marks each. Learners are required to answer *four* (04) questions only.
- 1. What are registers ? Explain any register with functioning and diagram.
- 2. What is a shift register ? Explain its working with diagram.
- 3. What is Flip-Flop ? Why is it used ? Explain any kind of flip-flop with diagram.
- 4. Discuss the construction and working of half adder with logic diagram and truth table.
- 5. Explain working and functions of various types of RAM and ROM.
- 6. What are input devices and output devices ? Explain any *three* input devices and any *three* output devices.

- 7. Explain the working and functions of various components of CPU.
- 8. Discuss Universal Gates. Create NAND Gate using NOR Gates only and verify using truth table. Create NOR Gate using NAND Gates only and verify using truth table.

Section-C

(Objective Type Questions)

- **Note :** Section 'C' contains ten (10) objective type questions of one (01) mark each. All the questions of this Section are compulsory.
- 1. AND operation is equivalent to :
 - (a) Division
 - (b) Union
 - (c) Intersection
 - (d) Both (b) and (c)
- 2. In Boolean algebra, OR is represented by :
 - (a) +
 - (b) –
 - (c) /
 - (d) ×
- 3. LSI means :
 - (a) Large Symbol Integration
 - (b) Large Scale Integration
 - (c) Large Symbol Invertor
 - (d) Large Scale Invertor

- 4. The half adder performs :
 - (a) Decimal addition operation for 2 decimal inputs
 - (b) Binary addition operation for 2 binary inputs
 - (c) Decimal addition operation for 2 binary inputs
 - (d) Binary addition operation for 2 decimal inputs
- 5. Complement of NOR and OR gate is _____ and ____ respectively.
 - (a) AND, NAND
 - (b) NAND, AND
 - (c) OR, NOR
 - (d) NOR, OR
- 6. A binary number system is of base _____.
 - (a) 1
 - (b) 2
 - (c) 4
 - (d) 10
- 7. How many inputs will a decimal-to-BCD encoder have ?
 - (a) 4
 - (b) 8
 - (c) 10
 - (d) 16
- 8. A 64-bit word consists of _____.
 - (a) 4 bytes
 - (b) 8 bytes
 - (c) 10 bytes
 - (d) 12 bytes

- 9. 1's complement of 11001010 is :
 - (a) 11001011
 - (b) 11001001
 - (c) 00110101
 - (d) 00110111
- 10. 2's complement of 10101011 is :
 - (a) 01010101
 - (b) 00111100
 - (c) 10101011
 - (d) 10101100