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Note : This paper is of thirty (30) marks containing three
(3) sections A, B and C. Learners are required to
attempt the questions contained in these sections
according to the detailed instructions given therein.
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Section-A / Vs—dh

(Long Answer Type Questions) / (€78 IR T2
Note : Section ‘A’ contains four (04) long answer type
questions of seven and half 7% marks each.

Learners are required to answer two (02) questions
only.
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Prove that a permutation cannot be both even or odd.
HhdT |

Find the solution of the equation abxax = cbx in a
group G, where a, b and c are given elements of G.

U6 9§98 G # FHIARYT abxax = cbx &l & Maiferd,
el a,b 3R ¢ W8 G & 9T & |

Show that the infinite set S = {1, x, x%,x3,.....,x",..}

is a basic of the vector space F(X) of poynomial of the
field F.

feargy & SR Tz S = {1, x, x2, %3, ..., x", ..}
87 F &1 9gU¢ T Afew FAfe F(X) & MR 2|
Prove that every independent subset of a finitely

generated vector space V(F) is either a basis or can be
expressed to form a basis of V.
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Section-B / Yls—g

(Short Answer Type Questions) / (g STRIT U%)

Note : Section ‘B’ contains eight (08) short answer type
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questions of two and half 2% marks each.

Learners are required to answer four (04) questions
only.
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Prove that if for every element a in a group G, a% = e,
then G is an Abelian group.
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Define  Homomorphism and Isomorphism with
example.
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Let R be the ring of integers under ordinary addition
and multiplication. Let R’ be the set of all even
integers. Let us define multiplication in R’to be
denoted * by the relation a*b = ab/2. Prove that R is
isomorphicto R’.

R Uh QU Gl &1 qod & R Gis 3R 0
& 3| R TP Q0 G ARl B 99l © | R’ A
T > ¥ 3R FREE a*b=ab/2 ¥ @R AT |
Rrg DIRT 6 R 3R R’ TSGR FT T 2 |

Show that a field has no proper homomorphic image.
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If S, T are subset of VV(F), then prove that :
LSEuUT)=L(S)+L(T)
A S, T, V(F) & STaT= &, dl g I fob -
LSUT)=L(S)+L(T

Prove that the kernel of a homomorphism is a
subspace.
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Prove that every n-dimensional vector space V(F) is
isomorphic to V,,(F).
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Prove that a system consisting of vectors :
e, =(10,0,...,0)
e, = (0,1,0,....,0) ,......
e, = (0,0,0,.....,)

is a basis of V,(F).
e = (1,0,0,....,0)
e, =(0,1,0,...,0) ...
e, =(0,0,0,....,1)
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Section-C / GUvs—1T
(Objective Type Questions) / (@IS J-)

Note : Section ‘C’ contains ten (10) objective type
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questions of half % mark each. All the questions

of this section are compulsory.
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Every group of prime order is ...........
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The identity element of the quotient group G/H is ........
fRAT W8 G/H &7 3%TE 31999 BT © |

Any subgroup H of a group G is normal if for all
X € G, we have :

(@ Hx=xH

(b) Hx = xH

(c) Hx=H

(d) xHxt=xH
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() Hx =xH

) Hx = xH

) Hx=H

) xHx!=xH
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If G is finite group and H is a normal subgroup of G,
then o(G/H) is equal to :

(@ o(G)

(b) o(H)

(c) o(G)o(H)

(d) None of these

A G @ (9T g & T H SHE M STHE
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Every subgroup of an abelian group is normal.
(True/False)

A9 T FT YIS SUTE T Bl 2 |
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A subring of any field is a field. (True/False)

fRil & o1 SUdery &5 Bl B | (1 / 1)

In a field F, if ab = 0, then we must have ba = 0.
(True/False)

A fel &3 F 4 ab =0, @ ba =0 IS 3|
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A ring R is commutative ring if a + b = b + a, for all

a,binR. (True/False)
UH I AR 9o BN IS AP a, b o R #
g forl afd a+b=b+a BN (T / 1)

In a ring of 2 x 2 matrices over the field of a real
number, the zero element of the ring of matrices is the
matrix :

0[]
o [5 9]
021
o [3¢]
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10. In the ring ({0,1,2,3,4),+5,x5), the additive inverse
of 2is:

(@ 1
(b) 4
(c) 3
(d) 2
Tord ({0,1,2,3,4), +5,x5) H 2 BT AT Ui &RTI :
(@) 1
@ 4
() 3
(|) 2
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