Roll No	
---------	--

MAT-501

Advanced Algebra

M. Sc. MATHEMATICS (MSCMAT-12)

First Year, Examination, 2017

Time: 3 Hours Max. Marks: 60

Note: This paper is of **sixty** (60) marks containing **three** (03) sections A, B and C. Learners are required to attempt the questions contained in these sections according to the detailed instructions given therein.

Section-A

(Long Answer Type Questions)

Note: Section 'A' contains four (04) long answer type questions of fifteen (15) marks each. Learners are required to answer *two* (02) questions only.

1. Let H and N be two subgroups of G, such that N is normal in G. Then $H \cap N$ is a normal subgroup of H and

$$\frac{H}{H \cap N} \cong \frac{HN}{N}$$

2. Define Euclidean ring. Let R be Euclidean ring, then every non-zero element in R is either a unit or can be written as the product of finite number of prime elements of R.

A-67 **P. T. O.**

3. Define Field Extensions. If K is a finite field extension of a field F and L is a finite filed extension of K, then L is a finite field extension of F and

$$[L:F] = [L:K][K:F]$$

4. Define 'direct sum' of vector subspace. Let V be a finite dimensional inner product space and W be its subspace. Then V is direct sum of W and W^{\perp} symbolically $V = W \oplus W^{\perp}$.

Section-B

(Short Answer Type Questions)

Note: Section 'B' contains eight (08) short answer type questions of five (05) marks each. Learners are required to answer *four* (04) questions only.

- 1. Consider two groups $(z_2, +_2)$ and $(z_3, +_3)$, where $z_2 = \{0, 1\}$ and $z_3 = \{0, 1, 2\}$. Then show that $z_2 \times z_3$ will be a group order 6.
- 2. Show that 'conjugacy on a group G in an equivalence relation'.
- 3. Define subnormal series. Show that symmetric group S_4 is solvable.
- 4. Define 'Modules'. Show that a ring R is an R-module over its subring.
- 5. If $B = e_1 = (0,1), e_2 = (0,1)$ is a usual basis \mathbb{R}^2 . Determine its dual basis.
- 6. If K is a finite extension of degree n = [K : F] over F, then show that every element u of K has over F a degree which is a divisor of n.
- 7. Show that any algebraic extension of a finite field F is a separable extension.

8. A linear transformation $t: V \rightarrow V$ is invertible iff matrix of t relative to some bases B of V is invertible.

Section-C

(Objective Type Questions)

Note: Section 'C' contains ten (10) objective type questions of one (01) mark each. All the questions of this section are compulsory.

Fill in the blanks:

- 1. A homorphism of a group G to a group G' is called if it is bijective.
- 2. Any two conjugate classes of a group are either disjoint or
- 3. The element $x^{-1}y^{-1}xy$ is called of x and y.
- 4. In a Euclidean ring R, 1 is an associate of
- 5. If $t: V \rightarrow V'$ be a linear transformation. If t is one-one, then ker $(t) = \dots$

Write T for True and F for False:

- 6. An $n \times n$ square matrix A over a field F is invertible then rank (A) = n.
- 7. If $\lambda \neq 0$ is an eigen value of A, then $\frac{1}{\lambda}$ is an eigen value of A^{T} .
- 8. In Euclidean space R^2 , angle θ between (5, 1) and (-2, 3) is $\frac{\pi}{2}$.
- 9. An orthogonal matrix is always singular.
- 10. An infinite abelian group does not have a composition series.

MAT-501 50