Roll No				
---------	--	--	--	--

CHE-501

Inorganic Chemistry

M. Sc. Chemistry (MSCCH-12/13/16)

First Year, Examination, 2017

Time: 3 Hours Max. Marks: 70

Note: This paper is of seventy (70) marks containing three (03) sections A, B and C. Attempt the questions contained in these sections according to the detailed instructions given therein.

Section-A

(Long Answer Type Questions)

Note: Section 'A' contains four (04) long answer type questions of fifteen (15) marks each. Learners are required to answer *two* (02) questions only.

- 1. Explain a Symmetry operation. Discuss various symmetry elements taking suitable examples.
- 2. Discuss Crystal Field Theory for coordination compounds.
- Explain the terms 'labile and 'inert' in reference to coordination compounds. Discuss how the CFT and VBT have interpreted liability and inertness of these compounds.
- 4. Discuss the structures of Low Nuclearity and High Nuclearity carbonyl clusters.

A-53 **P. T. O.**

Section-B

(Short Answer Type Questions)

Note: Section 'B' contains eight (08) short answer type questions of five (5) marks each. Learners are required to answer *six* (06) questions only.

- 1. Describe two evidence of presence of covalent bonding between metal and ligands.
- 2. Draw a character table for C_{3v} symmetry point group.
- 3. Describe the factors which influence the magnitude of Crystal Field Splitting.
- 4. Discuss the stereochemistry of reaction intermediates formed in S_{N^1} reactions of octahedral complexes.
- 5. Explain applications of group theory in spectroscopy.
- 6. Explain how an increase in steric overcrowding around the central metal ion favours dissociative $S_{\rm N^1}$ mechanism.
- 7. Give important properties and structure of Ferrocene.
- 8. Mention the reasons because of which the electronic spectra of co-ordination compounds comes out to be broad.

Section-C

(Objective Type Questions)

Note: Section 'C' contains ten (10) objective type questions of one (1) mark each. All the questions of this section are compulsory.

- 1. The ground term for d^6 configuration of metal ion is :
 - (a) ^{6}S
 - (b) ⁵D
 - (c) ${}^{4}F$
 - (d) ^{1}S

[3] CHE-501

- 2. When an oxygen molecule binds to the iron of the heme group through its coordination site, the iron becomes:
 - (a) Low spin and smaller in radius
 - (b) High spin and smaller in size
 - (c) Low spin and bigger in size
 - (d) High spin and bigger in size
- 3. The $Rh_6(CO)_{16}$ possess:
 - (a) Closo six vertex polyhedron structure
 - (b) Closo five vertex polyhedron
 - (c) Arachno five vertex polyhedron
 - (d) Arachno four vertex polyhedron structure
- 4. The frequency range of visible region 15400-12800 cm⁻¹ corresponds to :
 - (a) Green radiation
 - (b) Red radiation
 - (c) Blue radiation
 - (d) Yellow radiation
- 5. In visible part of electromagnetic radiation, which radiation is of smallest wavelength?
 - (a) Red
 - (b) Blue
 - (c) Violet
 - (d) Green

A-53 P. T. O.

6.		ch one of the followi	ng co	omplex ion you think				
	(a)	$[Cu(NH_3)_4(H_2O)_2]^{2+}$						
	(b)	$\left[Cu(trine)(H_2O)_2\right]^{2+}$						
	(c)	$\left[Cu(en)_2(H_2O)_2\right]^{2+}$						
	(d)	All are equally stable						
7.		The bonding between ligands and central metal ions is burely electrostatic is based on:						
	(a)	Werner's theory						
	(b)	Crystal Field theory						
	(c)	Ligand Field theory						
	(d)	Valance Bond theory						
8.		effective atomic nun	nber	of Mn in Mn ₂ (CO) ₁₀				
	(a)	86	(b)	54				
	(c)	36	(d)	18				
9.	Sym	metry point group for l	B_2H_6	should be :				
	(a)	D_{6h}	(b)	$\mathrm{D}_{5\mathrm{h}}$				
	(c)	D_{3h}	(d)	D_{2h}				
10.	hybr	$[Co(NH_3)_6]^{3+}$ ion, ridization. The calculates should be equal to	lated	undergoes d^2 sp^3 spin only magnetic				
	(a)	3.88 BM	(b)	2.83 BM				
	(c)	1.73 BM	(d)	None of the above				
CH	CHE-501 490							