Roll No.

BCA-05

Discrete Mathematics

Bachelor of Computer Application (BCA-11/16)

Second Semester, Examination, 2017

Time : 3 Hours

Max. Marks: 70

Note: This paper is of seventy (70) marks containing three (03) sections A, B, and C. Attempt the questions contained in these sections according to the detailed instructions given therein.

Section-A

(Long Answer Type Questions)

- **Note :** Section 'A' contains four (04) long answer type questions of fifteen (15) marks each. Learners are required to answer *two* (02) questions only.
- 1. If A be a square matrix, show that with the help of an appropriate example :
 - (a) AA' is a symmetric matrix.
 - (b) A + A' is a symmetric and A A' is skew symmetric.
 - (c) A is the sum of symmetric and skew symmetric matrix.
- 2. Prove that a ring R is commutative ring if and only if :

 $(a+b)^2 = a^2 + 2ab + b^2$ for all $a, b \in \mathbb{R}$

- 3. (a) In a class of 120 students numbered 1 to 120, all even numbered students opt all Physics, whose numbers are divisible by 5 opt for chemistry and those whose numbers are divisible by 7 opt for Math. How many opt for none of the three subjects ?
 - (b) Show that p→~q is a valid conclusion from the given p→q, r→~q.
- 4. Solve by Cramer's rule :

$$x + y - 2z = 1$$
$$2x - 7z = 3$$
$$x + y - z = 5$$

Section-B

(Short Answer Type Questions)

- **Note :** Section 'B' contains eight (08) short answer type questions of five (5) marks each. Learners are required to answer *six* (06) questions only.
- 1. Prove that :

$$A \cup A' = U$$
 and $A \cap A' = \phi$

- 2. Define Nilpotent matrix, idempotent matrix, scalar matrix and unit matrix with suitable example.
- 3. Define tautology and contradiction with suitable example.
- 4. Define a ring with suitable example.
- 5. State and prove pigeonhole principle.
- 6. Prove that :

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

- 7. If $f : A \to B$ and $g : B \to C$ be one onto function, then prove that $(g \circ f)$ is also one to one onto.
- 8. Prove by induction that the sum of thee cubes of 3 consecutive integers is divisible by 9.

Section-C

(Objective Type Questions)

- **Note :** Section 'C' contains ten (10) objective type questions of one (01) mark each. All the questions of this section are compulsory.
- 1. A is an ordered collection of objects.
 - (a) Relation
 - (b) Function
 - (c) Set
 - (d) Proposition
- 2. The set O of odd positive integers less than 10 can be expressed by
 - (a) $\{1, 2, 3\}$
 - (b) $\{1, 3, 5, 7, 9\}$
 - (c) $\{1, 2, 5, 9\}$
 - (d) $\{1, 5, 7, 9, 11\}$
- 3. Power set of empty set has exactly subset.
 - (a) One
 - (b) Two
 - (c) Zero
 - (d) Three

- 4. What is the Cartesian product of A ={1, 2} and B = {a, b} ?
 - (a) {(1, a), (1, b), (2, a), (b, b)}
 - (b) $\{(1, 1), (2, 2), (a, a), (b, b)\}$
 - (c) {(1, a), (2, a), (1, b), (2, b)}
 - (d) $\{(1, 1), (a, a), (2, a), (1, b)\}$
 - 5. The Cartesian product of $B \times A$ is equal to the Cartesian product $A \times B$. Is it true for false ?
 - (a) True
 - (b) False
 - 6. Which is the cardinality of the set of odd positive integers less than 10 ?
 - (a) 10
 - (b) 5
 - (c) 3
 - (d) 20
 - 7. Which of the following two sets are equal ?
 - (a) $A = \{1, 2\}$ and $B = \{1\}$
 - (b) $A = \{1, 2\}$ and $B = \{1, 2, 3\}$
 - (c) $A = \{1, 2, 3\}$ and $B = \{2, 1, 3\}$
 - (d) $A = \{1, 2, 4\}$ and $B = \{1, 2, 3\}$
 - 8. The set of positive integers is
 - (a) Infinite
 - (b) Finite
 - (c) Subset
 - (d) Empty

- 9. What is the cardinality of the power set of the set {0, 1, 2} ?
 - (a) 8
 - (b) 6
 - (c) 7
 - (d) 9
- 10. A partial ordered relation is transitive, reflexive and
 - (a) Antisymmetric
 - (b) Bisymmetric
 - (c) Antireflexive
 - (d) Asymmetric

BCA-05