- 8. Define the following :
 - (a) Lagrangian function
 - (b) Saddle point
 - (c) Convex programming problems
 - (d) Quadratic programming and Duality
 - (e) Separable function

Examination Session June-2022 (Fourth Semester) MT-610 M.A./M.Sc.MATHEMATICS (MSCMT/MAMT) [Mathematical Prgramming] Time : 2 Hours] [Max. Marks : 40 Note : This paper is of Forty (40) marks divided into two (02) Section A and B. Attempt the questions

Roll. No. :

contained in these sections according to the detailed

instructions given therein.

Total Pages : 6

SECTION—A

(Long-Answer-Type Questions)

Note : Section 'A' contains five (05) long-answer-type questions

of Ten (10) marks each. Learners are required to answer

any two (02) questions only. $2 \times 10=20$

(1)	[P.T.O.]
	(1)

1. Solve the following non-linear programming problem :

Min. $f(x_1, x_2) = (x_1 - 2)^2 + (x_1 - 1)^2$ Subject to $x_1^2 - x_2 \le 0$ $x_1 + x_2 \le 2$ $x_1, x_2 \ge 0$

 Solve the following quadratic programming problem by wolfe's method :

Min. $f(x_1, x_2) = 10x_1^2 + x_2^2 - 10x_1 - 25x_2 + 4x_1x_2$ Subject to $x_1 + 2x_2 \le 10$ $x_1 + x_2 \le 9$ $x_1, x_2 \ge 0$

3. Derive the dual of the quadratic programming problem :

Min. $f(X) = C^T X + \frac{1}{2} X^T G X$ Subject to $AX \ge b$

Where A is an $m \times n$ real matrix and G is an $n \times n$ real

positive semi-definite a symmetric matrix.

MT-610/6

(2)

5. Solve the following convex separable programming

problem :

Max. $z = x_1^2 - 2x_1 - x_2$ Such that $2x_1^2 + 3x_2^2 \le 6$ and $x_1, x_2 \ge 0$

- The set of all optimum solutions (global maximum) of the general convex programming problem is a convex set.
- 7. Use dynamic programming to solve the following problem :

Min.
$$(x_1^2 + x_2^2 + \dots + x_n^2)$$

Subject to $x_1, x_2, \dots + x_n = b$
and $x_1, x_2, \dots + x_n \ge 0$
MT-610/6 (5) [P.T.O.

4. Find the optimal solution of the following separable

programming problem :

Max. $z = 3x_1 + 2x_2$ Subject to $4x_1^2 + x_2^2 \le 16$ and $x_1, x_2 \ge 0$

5. Use dynamic programming to solve the following

 $z = 2x_1 + 5x_2$

L.P.P. :

Max.

Such that

and

SECTION—B

 $2x_1 + x_2 \leq 43$

 $2x_2 \le 46$

 $x_1, x_2 \ge 0$

(Short-Answer-Type Questions)

MT-610/6	(3)	[P.T.O.]
to answer ar	ny four (04) questions only.	4×5 = 20
questions of	Five (05) marks each. Learners	are required
Note : Section 'B'	contains eight (08) short-a	inswer-type

4. Find the optimal solution of the following separable programming problem :

Max.	$z = 3x_1 + 2x_2$
Subject to	$4x_1^2 + x_2^2 \le 16$
and	$x_1, x_2 \ge 0$

- 5. Use dynamic programming to solve the following L.P.P. :
 - Max. $z = 2x_1 + 5x_2$
Such that $2x_1 + x_2 \le 43$ $2x_2 \le 46$
and $x_1, x_2 \ge 0$

SECTION—B

(Short-Answer-Type Questions)

Note : Section 'B' contains eight (08) short-answer-type questions of Five (05) marks each. Learners are required to answer any four (04) questions only. $4 \times 5 = 20$ MT-610/6 (3) [P.T.O.] Determine the optimal solution of the following nonlinear programming problem, using the Khun– Tucker conditions :

Min. $f(x_1, x_2) = x_1^2 + 2x_2^2 - x_1x_2$ Subject to $x_1 + x_2 \ge 2$

2. Define general non-linear programming problem.

3. Solve the following quadratic programming problem

 $x_1, x_2 \ge 0$

by Beale's method :

Min. $f(x_1, x_2) = x_1 + x_2 - x_1^2 + x_1 x_2 - 2x_2^2$ Subject to $2x_1 + x_2 \le 1$

 $x_1, x_2 \ge 0$

4. Prove that every local maximum of the general convex

programming problem is its global maximum.

MT-610/6 (4)

 Determine the optimal solution of the following nonlinear programming problem, using the Khun– Tucker conditions :

Min. $f(x_1, x_2) = x_1^2 + 2x_2^2 - x_1 x_2$ Subject to $x_1 + x_2 \ge 2$ $x_1, x_2 \ge 0$

- 2. Define general non-linear programming problem.
- 3. Solve the following quadratic programming problem

by Beale's method :

- Min. $f(x_1, x_2) = x_1 + x_2 x_1^2 + x_1 x_2 2x_2^2$ Subject to $2x_1 + x_2 \le 1$ $x_1, x_2 \ge 0$
- 4. Prove that every local maximum of the general convex

programming problem is its global maximum.

MT-610/6 (4)