Examination Session June-2022

(Fourth Semester)

MT-608

M.A./M.Sc. MATHEMATICS (MSCMT/MAMT)

[Numerical Analysis - II]

Time : 2 Hours]
[Max. Marks : 40
Note : This paper is of Forty (40) marks divided into two
(02) Section A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

> SECTION-A
> (Long-Answer-Type Questions)

Note : Section 'A' contains five (05) long-answer-type questions of Ten (10) marks each. Learners are required to answer any two (02) questions only.
$2 \times 10=20$

1. Solve the BVP :

$$
\frac{d^{2} y}{d t^{2}} \quad y, y(0) \quad 0, y(1) \quad 1.1752
$$

by shooting method together with Runge-Kutta method.
2. Explain Gram-Schmidt Orthogonalizing Process.
3. Solve by Milne's method :

$$
\frac{d y}{d t} \quad \frac{t}{y}, y(1) \quad 2, t \quad[1,1.4]
$$

4. Solve the boundary value problem
$\frac{d^{2} y}{d x^{2}} \quad\left(1 \quad x^{2}\right) y \quad 1 \quad 0, x \quad[0,1]$
by a second order finite difference method with step
size $h=\frac{1}{4}$.
5. Fit a curve of the form $h=a x^{b}$ to the given data:

x	2	3	4	5	6
y	144	172.8	207.4	248.8	298.5

8. Solve the boundary value problem :
$\frac{d^{2} y}{d x^{2}} \quad y \quad y(0)=0, y(1)=1.2$
by employing shooting method, take $y^{\prime}(0)=0.85,0.95$
as initial guesses.

SECTION—B

(Short-Answer-Type Questions)

Note : Section 'B' contains eight (08) short-answer-type questions of Five (05) marks each. Learners are required to answer any four (04) questions only. $4 \times 5=20$

1. Solve the BVP by Numerov method :
$\frac{d^{2} y}{d x^{2}} \quad x \quad y \quad y(0)=0, y(1)=0$
with step size $h=\frac{1}{4}$.
2. Obtain a second degree polynomial approximation to the function $f(x)=\frac{1}{1 x^{2}}, x \in[1,1.2]$ using Taylor series expansion about $x=1$. Find a bound on the truncation error.

(Short-Answer-Type Questions)

Note : Section 'B' contains eight (08) short-answer-type questions of Five (05) marks each. Learners are required to answer any four (04) questions only. $\quad 4 \times 5=20$

1. Solve the BVP by Numerov method :
$\frac{d^{2} y}{d x^{2}} \quad x \quad y \quad y(0)=0, y(1)=0$ with step size $h=\frac{1}{4}$.
2. Obtain a second degree polynomial approximation to the function $f(x)=\frac{1}{1 x^{2}}, x \in[1,1.2]$ using Taylor series expansion about $x=1$. Find a bound on the truncation error.
3. Compute $y(0.2)$ by Taylor's series, where $y(t)$ is the solution of the IVP, $\frac{d y}{d t} \quad t \quad y, y(0) \quad 1$.
4. Explain Least Square Principle for Continuous functions.
5. Use Picard's method to compute $y(t)$ given that:
$\frac{d y}{d t} \quad \frac{e^{t}}{y}$
$y(0)=2$.
6. Solve the BVP :

$$
y^{\prime \prime}=2, y(0)=y^{\prime}(0)=y(1)=y^{\prime}(1)=0
$$

7. Explain stability analysis of :
(a) Euler's Method
(b) Runge-Kutta method of order two
8. Compute $y(0.2)$ by Taylor's series, where $y(t)$ is the solution of the IVP, $\frac{d y}{d t} \quad t \quad y, y(0) \quad 1$.
9. Explain Least Square Principle for Continuous functions.
10. Use Picard's method to compute $y(t)$ given that :

$$
\begin{aligned}
& \frac{d y}{d t} \frac{e^{t}}{y} \\
& y(0)=2
\end{aligned}
$$

6. Solve the BVP :

$$
y^{\prime \prime}=2, y(0)=y^{\prime}(0)=y(1)=y^{\prime}(1)=0
$$

7. Explain stability analysis of :
(a) Euler's Method
(b) Runge-Kutta method of order two
