Examination Session June-2022

(Fourth Semester)

MT-607

M.A. MATHEMATICS (MSCMT/MAMT)

[Viscous Fluid Dynamics - II]

Time : 2 Hours]	[Max. Marks : 40
------------------	-------------------

Note: This paper is of Forty (40) marks divided into two (02) Section A and B. Attempt the questions contained in these sections according to the detailed

instructions given therein.

SECTION—A

(Long-Answer-Type Questions)

Note : Section 'A' contains five (05) long-answer-type questions

of Ten (10) marks each. Learners are required to answer

any two (02) questions only.	2×10=20
------------------------------	---------

MT-607/3 (1) [P.T.O.]

- 1. Discuss the starting flow in plane Couette motion.
- 2. Discuss the temperature distribution in pipe :
 - (a) When the wall of the pipe is kept at a constant temperature.
 - (b) When the wall of the pipe is kept at a uniform temperature gradient.
- 3. Explain Stoke's flow past a sphere.
- 4. Explain Oseen's flow past a sphere.
- Discuss the Prandtl's leyer theory and also define the followings :
 - (a) Boundary layer thickness ' δ '
 - (b) Displacement thickness ' δ_1 '
 - (c) Momentum thickness ' δ_2 '
 - (d) Skin Friction

MT-607/3

(2)

SECTION—B

(Short-Answer-Type Questions)

- Note : Section 'B' contains Eight (08) short-answer-type questions of Five (05) marks each. Learners are required to answer any four (04) questions only. $4 \times 5 = 20$
- 1. Discuss the temperature distribution between two concentric rotating cylinders.
- 2. Write a note on boundary layer theory.
- 3. Derive two-dimensional boundary layer equation for the viscous incompressible fluid flow past a thin plate.
- 4. Discuss the boundary layer flow over a flat plate.
- Obtain an expression for the flow between two parallel Porous plates.
- 6. Discuss the temperature distribution of plane-Couette flow with transpiration cooling.
- 7. Obtain Croccos's first integral for $P_r = 1$.
- Explain velocity Boundary layer equation in two dimensional form.

*********** (3)

MT-607/3