Examination Session June-2022

(Fourth Semester)

MT-606

M.A./M.Sc. MATHEMATICS (MSCMT/MAMT)
[Analysis and Advanced Calculus - II]
Time : 2 Hours]
[Max. Marks : 40
Note : This paper is of Forty (40) marks divided into two
(02) Section A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

> SECTION-A
> (Long-Answer-Type Questions)

Note : Section 'A'contains five (05) long-answer-type questions of Ten (10) marks each. Learners are required to answer

$$
\text { any two (02) questions only. } \quad 2 \times 10=20
$$

1. Prove that if T be an operator on a Hilbert space H, then a unique linear operator T^{*} on H s.t.,

$$
(T x, y)=\left(x, T^{*} y\right) \quad x, y \quad H
$$

where T^{*} is the adjoint operator H.
2. Let X be a Banach space over the field K of scalars and let $f:[a, b] \rightarrow X$ and $g:[a, b] \rightarrow R$ be continuous and differentiable functions such that $\|D f(t)\| \quad D g(t)$ at each point $t \quad(a, b)$. Then prove that :
$\|f(b) \quad f(a)\| \quad g(b) \quad g(a)$
3. Prove that if T is an arbitrary operator on a finite dimensional Hilbert space H, then the eigenvalues of T constitute a non-empty finite subset of the complex plane. Furthermore, the number of points in this does not exceed the dimension n of the space H.
5. Let f be a continuous function on a compact interval
[a,b] of R into a Banach space X over K. Let F be the function $t \quad f$ on [a, b] into X. Let g be any a
differential function on $[a, b]$ into X such that $D g=f$.
Prove that F is differentiable, $D F=f$ and
b
$f \quad F(b) \quad F(a) \quad g(b) \quad g(a)$
a
6. Prove that an arbitrary operator T on a Hilbert space H can be uniquely expressed as $T=T_{1}+i T_{2}$ and $T^{*}=T_{1}-i T_{2}$, where T_{1} and T_{2} are self-adjoint operators.
7. Prove that if T_{1} and T_{2} are normal operators on H with the property that either commute with adjoint of the other, than $T_{1}+T_{2}$ and $T_{1} T_{2}$ are normal.
8. Prove that a closed linear subspace M of a Hilbert space H is invariant under an operator $T \quad M$ is invariant under T^{*}.
4. Prove that if f be a function defined on the interval $[a$, b] of R into R such that f is m times differentiable in $[a, b]$ and $(m+1$ times differentiable in interval (a, b). Then :

$$
\begin{array}{r}
f(b) \quad f(a) \quad\left(\begin{array}{ll}
b \quad a
\end{array}\right) D f(a) \quad \ldots \quad \frac{(b a)^{m}}{m!} D_{m} f(a) \\
\\
\\
\frac{(b a)^{m 1}}{(m \quad 1)!} D^{m 1} f(c)
\end{array}
$$

where $c \quad(a, b)$.
5. If P is the projection on a closed linear subspace M of
a Hilbert space H, then prove that :
(a) P is the projection on M of $H \Leftrightarrow I-P$ is the projection on M^{\perp}
(b) $x \quad M \quad P x \quad x \quad\left\|P_{x}\right\| \quad\|x\|$

SECTION—B

(Short-Answer-Type Questions)

4. Prove that if f be a function defined on the interval $[a$,
b] of R into R such that f is m times differentiable in
$[a, b]$ and $(m+1$ times differentiable in interval (a, b).
Then :

$$
\left.\begin{array}{r}
f(b) \quad f(a) \quad\left(\begin{array}{ll}
b \quad a
\end{array}\right) D f(a) \quad \ldots
\end{array} \begin{array}{r}
\left.\frac{(b a}{}\right)^{m} \\
m! \\
m
\end{array}\right) f(a)
$$

where $c \quad(a, b)$.
5. If P is the projection on a closed linear subspace M of
a Hilbert space H, then prove that :
(a) P is the projection on M of $H \Leftrightarrow I-P$ is the projection on M^{\perp}
(b) $x \quad M \quad P x \quad x \quad\left\|P_{x}\right\| \quad\|x\|$

SECTION—B

(Short-Answer-Type Questions)

Note : Section 'B' contains eight (08) short-answer-type questions of Five (05) marks each. Learners are required to answer any four (04) questions only. $4 \times 5=20$

1. Prove that if T is an operator on a Hilbert space H, then $(T x, x)=0 \quad x \quad H \quad$ iff $T=0$.
2. Prove that if T is an operator on a Hilbert space H, then T is normal iff its real and imaginary parts commute.
3. Prove that if T is normal operator on a Hilbert space H, then eigenspaces of T are pairwise orthogonal.
4. Prove that if P and Q are projections on closed linear subspaces M and N of a Hilbert space H, then $\begin{array}{llllll}M & N & P Q & 0 & Q P & 0\end{array}$

Note : Section 'B' contains eight (08) short-answer-type
questions of Five (05) marks each. Learners are required to answer any four (04) questions only. $\quad 4 \times 5=20$

1. Prove that if T is an operator on a Hilbert space H, then $(T x, x)=0 \quad x \quad H \quad$ iff $T=0$.
2. Prove that if T is an operator on a Hilbert space H, then T is normal iff its real and imaginary parts commute.
3. Prove that if T is normal operator on a Hilbert space H, then eigenspaces of T are pairwise orthogonal.
4. Prove that if P and Q are projections on closed linear subspaces M and N of a Hilbert space H, then
```
M N PQ 0
```

MT-606/5

