Examination Session June-2022

(Fourth Semester)

MT-606

M.A./M.Sc. MATHEMATICS (MSCMT/MAMT)

[Analysis and Advanced Calculus - II]

Time : 2 Hours]	[Max. Marks : 40
------------------	-------------------

Note: This paper is of Forty (40) marks divided into two

(02) Section A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION—A

(Long-Answer-Type Questions)

Note : Section 'A' contains five (05) long-answer-type questions

of Ten (10) marks each. Learners are required to answer

any two (02) questions only.	2×10=20
--------------------------------	---------

1. Prove that if *T* be an operator on a Hilbert space *H*,

then a unique linear operator T^* on H s.t.,

 $(Tx, y) = (x, T^*y) \quad x, y \quad H$

where T^* is the adjoint operator H.

2. Let X be a Banach space over the field K of scalars and let $f: [a, b] \to X$ and $g: [a, b] \to R$ be continuous and differentiable functions such that $||Df(t)|| \quad Dg(t)$ at each point $t \quad (a, b)$. Then prove that :

 $\|f(b) \quad f(a)\| \quad g(b) \quad g(a)$

3. Prove that if T is an arbitrary operator on a finite dimensional Hilbert space H, then the eigenvalues of T constitute a non-empty finite subset of the complex plane. Furthermore, the number of points in this does not exceed the dimension n of the space H.

MT-606/5

5. Let f be a continuous function on a compact interval [a, b] of R into a Banach space X over K. Let F be the function t f on [a, b] into X. Let g be any differential function on [a, b] into X such that Dg = f.
Prove that F is differentiable, DF = f and b f F(b) F(a) g(b) g(a) a
6. Prove that an arbitrary operator T on a Hilbert space

H can be uniquely expressed as $T = T_1 + iT_2$ and $T^* = T_1 - iT_2$, where T_1 and T_2 are self-adjoint operators.

- 7. Prove that if T_1 and T_2 are normal operators on H with the property that either commute with adjoint of the other, than $T_1 + T_2$ and T_1T_2 are normal.
- 8. Prove that a closed linear subspace M of a Hilbert space H is invariant under an operator T = M is invariant under T^* .

MT-606/5 (5)

4. Prove that if f be a function defined on the interval [a, b] of R into R such that f is m times differentiable in [a, b] and (m + 1 times differentiable in interval (a, b). Then :

$$f(b) \quad f(a) \quad (b \quad a)Df(a) \quad \dots \quad \frac{(b \quad a)^m}{m!}D_mf(a)$$
$$\frac{(b \quad a)^{m-1}}{(m \quad 1)!}D^{m-1}f(c)$$

where c (a,b).

5. If P is the projection on a closed linear subspace M of

a Hilbert space *H*, then prove that :

(a) P is the projection on M of $H \Leftrightarrow I - P$ is the

projection on M^{\perp}

(b)
$$x \ M \ Px \ x \ \|P_x\| \ \|x\|$$

SECTION—B

(Short-Answer-Type Questions)

MT-606/5

(3)

4. Prove that if f be a function defined on the interval [a, b] of R into R such that f is m times differentiable in [a, b] and (m + 1 times differentiable in interval (a, b). Then :

$$f(b) \quad f(a) \quad (b \quad a)Df(a) \quad \dots \quad \frac{(b \quad a)^m}{m!} D_m f(a)$$
$$\frac{(b \quad a)^{m-1}}{(m-1)!} D^{m-1} f(c)$$

where c (a,b).

5. If P is the projection on a closed linear subspace M of

a Hilbert space *H*, then prove that :

(a) P is the projection on M of $H \Leftrightarrow I - P$ is the

projection on M^{\perp}

(b) $x \quad M \quad Px \quad x \quad \|P_x\| \quad \|x\|$

SECTION—B

(Short-Answer-Type Questions)

Note: Section 'B' contains eight (08) short-answer-type

questions of Five (05) marks each. Learners are required

to answer any four (04) questions only. $4 \times 5 = 20$

1. Prove that if T is an operator on a Hilbert space H,

then (Tx, x) = 0 x H iff T = 0.

- Prove that if T is an operator on a Hilbert space H,
 then T is normal iff its real and imaginary parts
 commute.
- Prove that if *T* is normal operator on a Hilbert space
 H, then eigenspaces of *T* are pairwise orthogonal.
- 4. Prove that if P and Q are projections on closed linear
 - subspaces M and N of a Hilbert space H, then
 - M N PQ 0 QP 0

MT-606/5

(4)

Note: Section 'B' contains eight (08) short-answer-type

questions of Five (05) marks each. Learners are required

to answer any four (04) questions only. $4 \times 5 = 20$

1. Prove that if T is an operator on a Hilbert space H,

then (Tx, x) = 0 x H iff T = 0.

- Prove that if T is an operator on a Hilbert space H,
 then T is normal iff its real and imaginary parts commute.
- Prove that if *T* is normal operator on a Hilbert space
 H, then eigenspaces of *T* are pairwise orthogonal.
- 4. Prove that if *P* and *Q* are projections on closed linear

subspaces M and N of a Hilbert space H, then

$$M \quad N \quad PQ \quad 0 \quad QP \quad 0$$

MT-606/5 (4)