## C197

Total Pages : 5
Roll No.

## MT-605

## Mathematical Programming-I

MA/M.Sc. Mathmatics (MAMT/MSCMT-20)
3rd Semester Examination, 2022 (June)
Time : 2 Hours]
Max. Marks : 40

Note : This paper is of Forty (40) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

## SECTION-A <br> (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Ten (10) marks each. Learners are required to answer any Two (02) questions only.
$(2 \times 10=20)$

1. Using bounded variable technique, solve the following 1.P.P

Max $z=x_{1}+3 x_{2}$
s.t. $x_{1}+x_{2}+x_{3} \leq 10$

$$
\begin{gathered}
x_{1}-2 x_{3} \geq 0 \\
2 x_{2}-x_{3} \leq 10 \\
\text { and } 0 \leq x_{1} \leq 8,0 \leq x_{2} \leq 4, x_{3} \geq 0
\end{gathered}
$$

2. (a) Find the dimension of a rectangular parallelopiped with largest volume whose sides are parallel to the coordinate planets, to be inscribed in the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
(b) Obtain the necessary conditions for the optimum solution of the following non-linear programming problem :
$\operatorname{Min} . \mathrm{Z}=f\left(x_{1}, x_{2}\right)=3 e^{2 x_{1}+1}+2 e^{x_{2}+5}$
Subject to the constraints: $x_{1}+x_{2}=7$ and $x_{1}, x_{2}>0$
3. Solve the following non linear programming problem using the method of Lagrangian multipliers :

Minimize $\quad f(x)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$
Subject to $4 x_{1}+x_{1}^{2}+2 x_{3}=14$

$$
x_{1}, x_{2}, x_{3} \geq 0
$$

4. (a) Define with examples
(i) Closed and Open set.
(ii) Convex set.
(b) Prove that a semi definite quadratic form $f(x)=\mathrm{X}^{\mathrm{T}} \mathrm{AX}$ is a convex function over $\mathbb{R}^{n}$.
5. Find the optimum integer solution to the I.P.P
$\operatorname{Max} z=x_{1}+2 x_{2}$
s.t. $\quad 2 x_{2} \leq 7$

$$
\begin{aligned}
& x_{1}+x_{2} \leq 7 \\
& 2 x_{1} \leq 11
\end{aligned}
$$

$x_{1}, x_{2}$ are integers and greater than equal to 0 .

## SECTION-B <br> (Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Five (05) marks each. Learners are required to answer any Four ( 04 ) questions only. $\quad(4 \times 5=20)$

1. Show that $f(x)=x^{2}$ is a convex function.
2. Solve the following linear programming problem by revised simplex method

Max

$$
z=2 x_{1}+x_{2}
$$

s. t. $3 x_{1}+4 x_{2} \leq 6$

$$
\begin{array}{r}
6 x_{1}+x_{2} \leq 3 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

3. Explain All I.P.P. algorithm or cutting plane algorithm.
4. Solve the following I.P.P by branch and bound technique

$$
\begin{aligned}
& \operatorname{Max} \quad z=x_{1}+x_{2} \\
& \text { s.t. } 3 x_{1}+2 x_{2} \leq 12 \\
& x_{2} \leq 12 \\
& x_{1}, x_{2} \leq 0 \quad \text { and integers. }
\end{aligned}
$$

5. Determine the sign of definiteness for each of the following matrices.
(a) $\left[\begin{array}{lll}3 & 1 & 2 \\ 1 & 5 & 0 \\ 0 & 0 & 2\end{array}\right]$
(b) $\left[\begin{array}{rrr}2 & 1 & 2 \\ 1 & -3 & 3 \\ 2 & 0 & -5\end{array}\right]$
(c) $\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3\end{array}\right]$
(d) $\left[\begin{array}{rrr}-2 & 0 & 2 \\ 1 & -1 & 3 \\ 2 & 5 & -5\end{array}\right]$
6. Use method of Lagrangian multipliers to solve the following nonlinear programming problem:
Optimize $f(X)=2 x_{1}^{2}+x_{2}^{2}+3 x_{3}^{2}+10 x_{1}+8 x_{2}+6 x_{3}-100$ Subject to $x_{1}+x_{2}+x_{3}=20$
$x_{1}, x_{2}, x_{3} \geq 0$
Does the solution maximize or minimize the objective function?
7. Obtain the necessary and sufficient conditions for the optimum solution of the following NLPP
Minimize $\quad \mathrm{Z}=4 x_{1}^{2}+2 x_{2}^{2}+x_{3}^{2}-4 x_{1} x_{2}$
Subject to $x_{1}+x_{2}+x_{3}=15,2 x_{1}-x_{2}+2 x_{3}=30$

$$
x_{1}, x_{2}, 2 x_{3} \geq 0
$$

8. Prove that :
(a) A hyperplane is a convex set
(b) The closed half spaces $\mathrm{H}_{1}=\{\mathrm{X}: \mathrm{CX} \geq \mathrm{Z}\}$ and

$$
\mathrm{H}_{2}=[\mathrm{X}: \mathrm{CX} \leq \mathrm{Z}) \text { are convex sets. }
$$

