Total Pages : 5

Roll No.

MT-605

Mathematical Programming-I

MA/M.Sc. Mathmatics (MAMT/MSCMT-20)

3rd Semester Examination, 2022 (June)

Time : 2 Hours]

Max. Marks : 40

Note : This paper is of Forty (40) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A

(Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Ten (10) marks each. Learners are required to answer any Two (02) questions only.

 $(2 \times 10 = 20)$

1. Using bounded variable technique, solve the following l.P.P

Max $z = x_1 + 3x_2$

s.t. $x_1 + x_2 + x_3 \le 10$

C197/MT-605

[P.T.O.

$$x_1 - 2x_3 \ge 0$$
$$2x_2 - x_3 \le 10$$

and $0 \le x_1 \le 8, \ 0 \le x_2 \le 4, \ x_3 \ge 0$

2. (a) Find the dimension of a rectangular parallelopiped with largest volume whose sides are parallel to the coordinate planets, to be inscribed in the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

(b) Obtain the necessary conditions for the optimum solution of the following non-linear programming problem :

Min. $Z = f(x_1, x_2) = 3e^{2x_1 + 1} + 2e^{x_2 + 5}$

Subject to the constraints: $x_1 + x_2 = 7$ and $x_1, x_2 > 0$

3. Solve the following non linear programming problem using the method of Lagrangian multipliers :

Minimize $f(x) = x_1^2 + x_2^2 + x_3^2$ Subject to $4x_1 + x_1^2 + 2x_3 = 14$ $x_1, x_2, x_3 \ge 0$

- 4. (a) Define with examples
 - (i) Closed and Open set.
 - (ii) Convex set.
 - (b) Prove that a semi definite quadratic form $f(x) = X^{T}AX$ is a convex function over \mathbb{R}^{n} .

C197/MT-605

5. Find the optimum integer solution to the I.P.P

Max
$$z = x_1 + 2x_2$$

s.t. $2x_2 \le 7$
 $x_1 + x_2 \le 7$
 $2x_1 \le 11$

 x_1, x_2 are integers and greater than equal to 0.

SECTION-B

(Short Answer Type Questions)

- **Note :** Section 'B' contains Eight (08) short answer type questions of Five (05) marks each. Learners are required to answer any Four (04) questions only. (4×5=20)
- 1. Show that $f(x) = x^2$ is a convex function.
- 2. Solve the following linear programming problem by revised simplex method

Max $z = 2x_1 + x_2$ s. t. $3x_1 + 4x_2 \le 6$ $6x_1 + x_2 \le 3$ $x_1, x_2 \ge 0$

3. Explain All I.P.P. algorithm or cutting plane algorithm.

C197/MT-605

[P.T.O.

4. Solve the following I.P.P by branch and bound technique

Max
$$z = x_1 + x_2$$

s.t. $3x_1 + 2x_2 \le 12$
 $x_2 \le 12$
 $x_1, x_2 \le 0$ and integers.

5. Determine the sign of definiteness for each of the following matrices.

(a)
$$\begin{bmatrix} 3 & 1 & 2 \\ 1 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 2 & 1 & 2 \\ 1 & -3 & 3 \\ 2 & 0 & -5 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

(d)
$$\begin{bmatrix} -2 & 0 & 2 \\ 1 & -1 & 3 \\ 2 & 5 & -5 \end{bmatrix}$$

C197/MT-605

6. Use method of Lagrangian multipliers to solve the following nonlinear programming problem:

Optimize $f(X) = 2x_1^2 + x_2^2 + 3x_3^2 + 10x_1 + 8x_2 + 6x_3 - 100$ Subject to $x_1 + x_2 + x_3 = 20$

 $x_1,\,x_2,\,x_3\geq 0$

Does the solution maximize or minimize the objective function?

7. Obtain the necessary and sufficient conditions for the optimum solution of the following NLPP

Minimize $Z = 4x_1^2 + 2x_2^2 + x_3^2 - 4x_1x_2$ Subject to $x_1 + x_2 + x_3 = 15, 2x_1 - x_2 + 2x_3 = 30$ $x_1, x_2, 2x_3 \ge 0$

8. Prove that :

- (a) A hyperplane is a convex set
- (b) The closed half spaces $H_1 = \{X : CX \ge Z\}$ and

 $H_2 = [X: CX \le Z)$ are convex sets.

C197/MT-605