C196

Total Pages : 4
Roll No.

MT-604

Integral Transforms

MA/M.Sc. Mathematics (MAMT/MSCMT-20)
3rd Semester Examination, 2022 (June)
Time : 2 Hours]
Max. Marks : 40
Note : This paper is of Forty (40) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Ten (10) marks each. Learners are required to answer any Two (02) questions only.

1. If $f(t)$ is a periodic function with period $\mathrm{T}>0$ i.e., $f(u+\mathrm{T})$

$$
=f(u), f(u+2 \mathrm{~T})=f(u) \text {, etc. then prove that }
$$

$\mathrm{L}[f(t) ; p]=\frac{1}{1-e^{-p t}} \int_{0}^{\mathrm{T}} e^{-p t} f(t) d t$.
2. Define Mellin transform. If $\mathrm{M}\{f(x) ; p]-\mathrm{F}(p)$, then find the following :
(a) $\mathrm{M}\{f(a x) ; p\}$.
(b) $\mathrm{M}\left\{x^{a} f(x) ; p\right\}$.
(c) $\mathrm{M}\left\{f\left(x^{a}\right) ; p\right\}$.
(d) $\mathrm{M}\{\log x f(x) ; p\}$.
3. If $f(x)=\frac{e^{-a x}}{x}$ then find,
(a) The Hankel transform of order zero of the function

$$
\frac{d^{2} f}{d x^{2}}+\frac{1}{x} \frac{d f}{d x}
$$

(b) The Hankel transform of order one of $\frac{d f}{d x}$.
4. Use partial fractions to find the inverse Laplace transform

$$
\text { of } \frac{p^{2}}{p^{4}+4 a^{4}}
$$

5. Find $f(t)$, if its Fourier sine transform is $\frac{p}{\left(1+p^{2}\right)}$.

SECTION-B
 (Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Five (05) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 5=20)$

1. Find the Laplace transform of the function $f(t)=t^{2} e^{t} \sin 4 t$.
2. Apply convolution theorem to prove that

$$
\mathrm{B}(m, n)=\int_{0}^{1} u^{m-1}(1-u)^{n-1} d u=\frac{\sqrt{m} \sqrt{n}}{\Gamma(m+n)},(m>0, n>0)
$$

Hence deduce that

$$
\int_{0}^{\frac{\pi}{2}} \sin ^{2 m-1} \theta \cos ^{2 n-1} \theta d \theta=\frac{1}{2} B(m, n)=\frac{\sqrt{m}}{}{ }_{n}
$$

where $\mathrm{B}(m, n)$ is called Beta function.
3. If $\bar{f}(p)$ is the Laplace transform of $f(t)$ i.e., $\mathrm{L}[f(\mathrm{~T}) ; p]=$ $\bar{f}(p)$ then prove that $\mathrm{L}\left[t^{n} f(t) ; p\right]=(-1)^{n} \frac{d^{n}}{d p^{n}} \bar{f}(p)$.
4. Find the relation between Fourier transform and Laplace transform.
5. If $\mathrm{F}(p)$ is the Mellin transform of $f(x)$ i.e., $\mathrm{M}\{f(x) ; p\}=\mathrm{F}(p)$ then show that, $\mathrm{M}\left\{\int_{0}^{x} f(u) d u ; p\right\}=-\frac{1}{p} \mathrm{~F}(p+1)$.
6. Find the Hankel transform of following
(a) $\frac{\cos \alpha x}{x}$.
(b) $\frac{\sin \alpha x}{x}$.
taking $x \mathrm{~J}_{0}\left(p_{x}\right)$ as the kernel.
7. Solve the differential equation using Laplace transform

$$
\left(\mathrm{D}^{2}+9\right) y=\cos 2 t ; \text { if } y(0)=1, y\left(\frac{\pi}{2}\right)=-1 .
$$

8. Solve $\frac{\partial^{2} u}{\partial t^{2}}=9 \frac{\partial^{2} u}{\partial x^{2}}$ subject to the condition, $u(0, t)=0$,

$$
\begin{aligned}
& u(2, t)=0, u(x, 0)=20 \sin 2 \pi x-10 \sin 5 \pi x \text { and } \\
& u_{t}(x, 0)=0
\end{aligned}
$$

