Total Pages : 4

Roll No.

MT-603

Numerical Analysis-I

MA/M.Sc. Mathematics (MAMT/MSCMT-20)

3rd Semester Examination, 2022 (June)

Time : 2 Hours]

Max. Marks : 40

Note : This paper is of Forty (40) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A

(Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Ten (10) marks each. Learners are required to answer any Two (02) questions only.

 $(2 \times 10 = 20)$

1. Find all the roots of the equation $x^4 - 3x + 1 = 0$ using Graeffe's root squaring method. Use four squaring to estimate roots.

- 2. Find the root of the equation $x^3 2x 5 = 0$ by Muller's method. Take 1, 2 and 3 as initial approximations.
- 3. Find double root of the equation $x^3 0.75x + 0.25 = 0$ taking initial approximation $x_0 = 0.3$.
- **4.** Using Gauss Jordan method solve the following linear equations

$$10x + y + z = 12$$

 $2x + 10y + z = 13$
 $x + y + 5z = 7$

5. Find quotient and reminder on division of polynomial $x^4 - 5x^3 + 6x^2 + 4x - 18$ by a linear factor(x - 2). Also verify the result.

SECTION-B

(Short Answer Type Questions)

- **Note :** Section 'B' contains Eight (08) short answer type questions of Five (05) marks each. Learners are required to answer any Four (04) questions only. (4×5=20)
- 1. Find the root of the equation $4 \sin x + x^2 = 0$ by secant method.
- 2. Find all the derivatives of $x^4 4x^3 + 8x^2 8x + 4$ at x = 3, using synthetic division.

C195/MT-603

3. Solve the given system of the equations using the method of determinants.

$$3x + y + 2z = 3$$
$$2x - 3y - z = -3$$
$$x + 2y + z = 4$$

4. Solve the following system of equations by LU factorization method :

$$2x + 3y + z = 9$$
$$x + 2y + 3z = 6$$
$$3x + y + 2z = 8$$

5. Find all the Eigen values of the matrix

$$\begin{bmatrix} 2 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 2 \end{bmatrix}$$

- 6. Find the root of the equation $x^3 x^2 x 1 = 0$ using chebyshev method.
- 7. Transform the following matrix to tridiagonal forms by Given's method.

 $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & -1 \\ 3 & -1 & 1 \end{bmatrix}$

C195/MT-603

[P.T.O.

- **8.** Define the following :
 - (a) Hermitian Matrix.
 - (b) Unitary Matrix.
 - (c) Bisection Method.
 - (d) Partition Method.
 - (e) Complex Eigen Values.