C195

Total Pages : 4
Roll No.

MT-603

Numerical Analysis-I

MA/M.Sc. Mathematics (MAMT/MSCMT-20)
3rd Semester Examination, 2022 (June)
Time : 2 Hours]
Max. Marks : 40

Note : This paper is of Forty (40) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Ten (10) marks each. Learners are required to answer any Two (02) questions only.
$(2 \times 10=20)$

1. Find all the roots of the equation $x^{4}-3 x+1=0$ using Graeffe's root squaring method. Use four squaring to estimate roots.
2. Find the root of the equation $x^{3}-2 x-5=0$ by Muller's method. Take 1, 2 and 3 as initial approximations.
3. Find double root of the equation $x^{3}-0.75 x+0.25=0$ taking initial approximation $x_{0}=0.3$.
4. Using Gauss Jordan method solve the following linear equations

$$
\begin{aligned}
& 10 x+y+z=12 \\
& 2 x+10 y+z=13 \\
& x+y+5 z=7
\end{aligned}
$$

5. Find quotient and reminder on division of polynomial $x^{4}-5 x^{3}+6 x^{2}+4 x-18$ by a linear factor $(x-2)$. Also verify the result.

SECTION-B (Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Five (05) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 5=20)$

1. Find the root of the equation $4 \sin x+x^{2}=0$ by secant method.
2. Find all the derivatives of $x^{4}-4 x^{3}+8 x^{2}-8 x+4$ at $x=3$, using synthetic division.
3. Solve the given system of the equations using the method of determinants.

$$
\begin{aligned}
& 3 x+y+2 z=3 \\
& 2 x-3 y-z=-3 \\
& x+2 y+z=4
\end{aligned}
$$

4. Solve the following system of equations by LU factorization method :

$$
\begin{aligned}
& 2 x+3 y+z=9 \\
& x+2 y+3 z=6 \\
& 3 x+y+2 z=8
\end{aligned}
$$

5. Find all the Eigen values of the matrix

$$
\left[\begin{array}{rrr}
2 & -1 & 1 \\
1 & 0 & -1 \\
-1 & 1 & 2
\end{array}\right]
$$

6. Find the root of the equation $x^{3}-x^{2}-x-1=0$ using chebyshev method.
7. Transform the following matrix to tridiagonal forms by Given's method.

$$
\left[\begin{array}{rrr}
1 & 2 & 3 \\
2 & 1 & -1 \\
3 & -1 & 1
\end{array}\right]
$$

8. Define the following :
(a) Hermitian Matrix.
(b) Unitary Matrix.
(c) Bisection Method.
(d) Partition Method.
(e) Complex Eigen Values.
