Total Pages : 4

Roll No.

MT-601

Analysis and Advanced Calculus-I

MA/M.Sc. Mathematics (MAMT/MSCMT-20)

3rd Semester Examination, 2022 (June)

Time : 2 Hours]

Max. Marks : 40

Note : This paper is of Forty (40) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A

(Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Ten (10) marks each. Learners are required to answer any Two (02) questions only.

 $(2 \times 10 = 20)$

- 1. If T be a linear transformation from a normed linear space N into the normed space N', Then prove that the following statement are equivalent:
 - (a) T is continuous.

C193/MT-601

- (b) T is continuous at the origin i.e. $x_n \to 0 \Rightarrow T(x_n) \to 0$.
- (c) T is bounded i.e., \exists real K ≥ 0 s. t. $||T(x)|| \leq K ||x||$ for all $x \in N$.
- (d) If $S = \{x : ||x|| \le 1\}$ is the closed unit sphere in N, then its image T(S) is bounded set in N'.
- 2. Prove that if B and B' are Banach spaces and T is a linear transformation of B into B', then T is continuous iff its graph is closed.
- 3. Prove that if M be linear subspace of a normed linear space N and *f* is a functional defined on M, then *f* can be extended to a functional f_0 defined on the whole space N s.t. $||f_0|| = ||f||$.
- 4. If H be a Hilbert space and $\{e_i\}$ be an orthonormal set in H, then prove that the following statement are equivalent
 - (a) $\{e_i\}$ is complete.
 - (b) $x \perp \{e_i\} \Rightarrow x = 0.$
 - (c) If x is an arbitrary vector in H, then $x = \Sigma(x, e_i)e_i$.
 - (d) If x is an arbitrary vector in H, then $||x||^2 = \sum |(x, e_i)|^2$.
- **5.** (a) Define with example
 - (i) Inner product space.
 - (ii) Hilbert Space.
 - (b) Give an example of inner product space which is not Hilbert space.

C193/MT-601

SECTION-B (Short Answer Type Questions)

- **Note :** Section 'B' contains Eight (08) short answer type questions of Five (05) marks each. Learners are required to answer any Four (04) questions only. $(4 \times 5 = 20)$
- 1. Prove that Every normed linear space is a metric space.
- 2. Let N and N' be normed linear spaces over the same scalar field and let T be a linear transformation of N into N'. Then prove that T is bounded if it is continuous.
- **3.** Prove that If B and B' are Banach spaces. If T is a continuous linear transformation of B onto B', then T is an open mapping.
- 4. Prove that If M be a closed linear subspace of a normed linear space N and x_0 be a vector in N, but not in M with the property that the distance from x_0 to M i.e. $d(x_0, M) = d > 0$, then there exists a bounded linear functional $F \in N^*$ s. t. || F || = 1, $F(x_0) = d$ and $F(x) = 0 \forall x \in M$ i.e. $F(M) = \{0\}$.
- **5.** Define with example :
 - (a) Normed linear Space.
 - (b) Compactness.
 - (c) Banach Space.

C193/MT-601

- 6. If x and y are any two vectors in an inner product space X, then prove that $|\langle x, y \rangle| \le ||x|| ||y||$.
- 7. If M is a closed linear subspace of a Hilbert space H then prove that $H = M \oplus M^{\perp}$.
- **8.** State and Prove Pythagorean theorem.