C191

Total Pages : 4
Roll No.

MT-509

Differential Geometry and Tensor-II

MA/M.Sc. Mathematics (MAMT/MSCMT-20)
2nd Year Examination, 2022 (June)

Time : 2 Hours]

Max. Marks : 40

Note : This paper is of Forty (40) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Ten (10) marks each. Learners are required to answer any Two (02) questions only.
$(2 \times 10=20)$

1. Prove that the Christoffel symbols are not tensor quantities.
2. If $\mathrm{A}_{i j}$ is the $c u r l$ of a covariant vector, prove that $\mathrm{A}_{i j, k}+\mathrm{A}_{j k, i}$ $+\mathrm{A}_{k i, j}=0$.

Show further that this expression is equivalent to

$$
\frac{\partial \mathrm{A}_{i j}}{\partial x^{k}}+\frac{\partial \mathrm{A}_{j k}}{\partial x^{i}}+\frac{\partial \mathrm{A}_{k i}}{\partial x^{j}}=0 . \text { If } \mathrm{A}_{i j}=\mathrm{B}_{i, j}-\mathrm{B}_{j, i}
$$

Prove that $\mathrm{A}_{i j, k}+\mathrm{A}_{j k, i}+\mathrm{A}_{k i, j}=0$.
3. Show that the great circle on sphere are geodesic.

OR

Show that on the surface of a sphere, all great circles are geodesies while no other circle is a geodesic.
4. What is the Einstein Tensor? Prove that divergence of Einstein Tensor vanishes.
5. Define geodesic curvature. Find the geodesic curvature of the curve $u=$ constant, on the surface

$$
x=u \cos \theta, \quad y=u \sin \theta, \quad z=\frac{1}{2} \alpha u^{2}
$$

SECTION-B

(Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Five (05) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 5=20)$

1. On the general surface $\vec{r}=\vec{r}(u, v)$ what is the necessary and sufficient condition that the curve $v=c$ (constant) be a geodesic?
2. Drive the formula for geodesic curvature of the form $\mathrm{K}_{g}=\left[\hat{\mathrm{N}} \vec{r}^{\prime} \vec{r}^{\prime \prime}\right]$.
3. Prove that a symmetric tensor of second order has at most $\frac{\mathrm{N}(\mathrm{N}+1)}{2}$ different component in V_{N}.
4. If a metric of a V_{3} is given by $d s^{2}=5\left(d x^{1}\right)^{2}+3\left(d x^{2}\right)^{2}+$ $4\left(d x^{3}\right)^{2}-6\left(d x^{1}\right)\left(d x^{2}\right)+4\left(d x^{2}\right)\left(d x^{3}\right)$

Find
(a) $\left|g_{i j}\right|$
(b) $g^{i j}$.
5. Prove that $\frac{\partial g^{m k}}{\partial x^{l}}=-g^{m j}\left\{\begin{array}{c}k \\ j l\end{array}\right\}-g^{k i}\left\{\begin{array}{l}m \\ i l\end{array}\right\}$.
6. Prove that $k_{g}^{2}+k_{n}^{2}=k^{2}$.
7. Calculate the Christoffel symbols corresponding to the metric $d \mathrm{~S}^{2}=\left(d x^{1}\right)^{2}+\mathrm{G}\left(x^{1}, x^{2}\right)\left(d x^{2}\right)^{2}$ where G is a function of x^{1} and x^{2}.
8. Show that
(a) $g^{i j} g^{k l} d g_{i k}=-d g^{j l}$.
(b) $g_{i j} g_{k l} d g^{i k}=-d g_{i l}$.

