C190

Total Pages : 3

Roll No.

MT-508

Special Functions

MA/M.Sc. Mathematics (MAMT/MSCMT-20)

2nd Semester Examination, 2022 (June)

Time : 2 Hours]

Max. Marks : 40

Note : This paper is of Forty (40) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A

(Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Ten (10) marks each. Learners are required to answer any Two (02) questions only.

 $(2 \times 10 = 20)$

1. Solve the Legendre's equation

$$(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + n(n+1)y = 0$$

C190/MT-508

[P.T.O.

2. Show that
$$P_n(x) = \frac{1}{2^n n! dx^n} (x^2 - 1)^n$$
.

3. Prove that
$$J_{-n}(x) = (-1)^n J_n(x)$$
.

4. Show that
$$\frac{e^{-\frac{xt}{1-t}}}{1-t} = \sum_{n=0}^{\infty} L_n(x) \cdot t^n$$
.

5. Solve the differential equation in series $(1 - x^2)y_2 - xy_1 + 4y = 0$.

SECTION-B

(Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Five (05) marks each. Learners are required to answer any Four (04) questions only. (4×5=20)

1. Prove that
$$_{2}F_{1}\left[\frac{a}{2},\frac{a}{2}+\frac{1}{2};\frac{1}{2};z^{2}\right] = \frac{1}{2}\left[(1-z)^{-a}+(1-z)^{-a}\right].$$

2. Prove that
$$(2n + 1)P_n(x) = P'_{n+1}(x) - P'_{n-1}(x)n$$
.

- 3. Prove that $P_n(1) = 1$ and $P_n(-1) = (-1)^n$.
- 4. Show that $xJ'_{n}(x) = nJ_{n}(x) xJ_{n+1}(x)$. C190/MT-508 [2]

5. Prove that
$$J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cdot \sin x$$
.

- 6. Prove that $e^{2xt-t^2} = \sum_{n=0}^{\infty} \frac{t^n}{n!} H_n(x)$ valid for all finite x and t.
- 7. Show that $H'_{n}(x) = 2nH_{n-1}(x) + H_{n+1}(x)$.
- 8. Find the value of

(a)
$$\int_{0}^{\infty} e^{-x} L_{3}(x) L_{5}(x) dx.$$

(b)
$$\int_{0}^{\infty} e^{-x} [L_4(x)]^2 dx.$$