C190

Total Pages : 3
Roll No.

MT-508

Special Functions

MA/M.Sc. Mathematics (MAMT/MSCMT-20)
2nd Semester Examination, 2022 (June)
Time : 2 Hours]
Max. Marks : 40
Note : This paper is of Forty (40) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Ten (10) marks each. Learners are required to answer any Two (02) questions only.
$(2 \times 10=20)$

1. Solve the Legendre's equation

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+n(n+1) y=0
$$

2. Show that $\mathrm{P}_{n}(x)=\frac{1}{2^{n} n!d x^{n}}\left(x^{2}-1\right)^{n}$.
3. Prove that $\mathrm{J}_{-n}(x)=(-1)^{n} \mathrm{~J}_{n}(x)$.
4. Show that $\frac{e^{-\frac{x t}{1-t}}}{1-t}=\sum_{n=0}^{\infty} \mathrm{L}_{n}(x) \cdot t^{n}$.
5. Solve the differential equation in series $\left(1-x^{2}\right) y_{2}-x y_{1}+4 y$ $=0$.

SECTION-B
 (Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Five (05) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 5=20)$

1. Prove that ${ }_{2} \mathrm{~F}_{1}\left[\frac{a}{2}, \frac{a}{2}+\frac{1}{2} ; \frac{1}{2} ; z^{2}\right]=\frac{1}{2}\left[(1-z)^{-a}+(1-z)^{-a}\right]$.
2. Prove that $(2 n+1) \mathrm{P}_{n}(x)=\mathrm{P}_{n+1}^{\prime}(x)-\mathrm{P}_{n-1}^{\prime}(x) n$.
3. Prove that $\mathrm{P}_{n}(1)=1$ and $\mathrm{P}_{n}(-1)=(-1)^{n}$.
4. Show that $x \mathrm{~J}_{n}^{\prime}(x)=n \mathrm{~J}_{n}(x)-x \mathrm{~J}_{n+1}(x)$.

C190/MT-508
[2]
5. Prove that $\mathrm{J}_{\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \cdot \sin x$.
6. Prove that $e^{2 x t-t^{2}}=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} \mathrm{H}_{n}(x)$ valid for all finite x and t.
7. Show that $\mathrm{H}_{n}^{\prime}(x)=2 n \mathrm{H}_{n-1}(x)+\mathrm{H}_{n+1}(x)$.
8. Find the value of
(a) $\int_{0}^{\infty} e^{-x} \mathrm{~L}_{3}(x) \mathrm{L}_{5}(x) d x$.
(b) $\int_{0}^{\infty} e^{-x}\left[\mathrm{~L}_{4}(x)\right]^{2} d x$.

