C188

Total Pages : 5
Roll No.

MT-506

Advanced Algebra-II

MA/M.Sc. Mathematics (MAMT/MSCMT-20)

2nd Year Examination, 2022 (June)

Time : 2 Hours]

Max. Marks : 40
Note : This paper is of Forty (40) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Ten (10) marks each. Learners are required to answer any Two (02) questions only.
$(2 \times 10=20)$

1. Prove that if K be a Galois extension of a field F, Then there exists a one-to-one correspondence between the set of all subfields of K containing F and the set of all subgroups of $\mathrm{G}(\mathrm{KIF})$. Further, if E is any subfields of K which contains F , then
(a) $[\mathrm{K}: \mathrm{E}]=\mathrm{o}[\mathrm{G}(\mathrm{K} \backslash \mathrm{E})]$ and $[\mathrm{E}: \mathrm{F}]=$ index of $\mathrm{G}(\mathrm{K} \backslash \mathrm{E})$ in $\mathrm{G}(\mathrm{K} \backslash \mathrm{F})$.
(b) E is normal extension of F iff $\mathrm{G}(\mathrm{K} \backslash \mathrm{E})$ is normal subgroup of $\mathrm{G}(\mathrm{K} \backslash \mathrm{F})$.
(c) If E is a normal extension of F , then $\mathrm{G}(\mathrm{E} \backslash \mathrm{F}) \cong$ $\mathrm{G}(\mathrm{K} \backslash \mathrm{F}) \backslash \mathrm{G}(\mathrm{K} \backslash \mathrm{E})$.
2. If $\mathrm{A}=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ is any orthonormal set in any finite dimensional inner product space V, then prove that the following are equivalent
(a) Orthonormal set A is complete
(b) If $u \in \mathrm{~V}$ and $<u, u_{i}>=0$ for $1 \leq l \leq n$, then $u=0$.
(c) $\langle\mathrm{A}\rangle=\mathrm{V}$, i.e. A generates V .
(d) If $u \in \mathrm{~V}$ then $u=\sum_{i=1}^{n}<u, u_{i}>u_{i}$.
(e) If $u, \in \mathrm{~V}$ then $\left.\langle u, v\rangle=\sum_{i=1}^{n}<u, u_{i}\right\rangle\left\langle v, u_{i}\right\rangle$.
(f) If $u \in \mathrm{~V}$ then $\|u\|^{2}=\sum_{i=1}^{n}\left|<u, u_{i}>\right|^{2}$.
3. (a) Explain the Real inner product space with example.
(b) Prove that if V is an inner product space and $v \in \mathrm{~V}$, then
(i) $\|v\| \geq 0$ and $\|v\|=0$ if and only if $v=0$
(ii) $\|\alpha v\|=|\alpha|\|v\|$.
4. (a) Define
(i) Rank of a Matrix.
(ii) Similar matrices.
(iii) Eigen values and eigen vectors of linear transformation.
(b) Let A be an $n \times n$ matrix over field F . Then prove that a non-zero vector $X \in \mathrm{~F}^{n}$ (or a column vector X) iff there exists a scalar $\lambda \in \mathrm{F}$ such that $\mathrm{AX}=\mathrm{X} \lambda$.
5. (a) Prove that A linear transformation $t: \mathrm{V} \rightarrow \mathrm{V}$ is invertible iff matrix of t relative to some bases B of V invertible.
(b) Let V and V^{\prime} be finite dimensional vector spaces over a field F with the bases B and B^{\prime} respectively. If $t: \mathrm{V} \rightarrow \mathrm{V}^{\prime}$ be a linear transformation, then prove that $\mathbf{M}_{\mathrm{B}^{*}}^{\mathrm{B}^{\prime *}}\left(t^{*}\right)\left[\mathbf{M}_{\mathrm{B}^{\prime}}^{\mathrm{B}}(t)\right]^{\mathrm{T}}$, where t^{*} is the dual map of t and B^{*} and $\mathrm{B}^{* *}$ are the bases dual to B and B^{\prime} respectively.

SECTION-B

(Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Five (05) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 5=20)$

1. (a) Prove that if F is a finite field of characteristic p, then $a \rightarrow a^{p}$ is an automorphism of F .
(b) Prove that Every field of Characteristic zero is perfect.
2. (a) Define
(i) Galois Extension.
(ii) Galois group.
(b) Let K be a Galois Extension of a field F and let characteristic of F be zero. Then prove that fixed field under the Galois group $G(K \backslash F)$ is F itself.
3. (a) Let $t: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation defined by $t(a, b)=(2 a-3 b, a+b), \forall(a, b) \in \mathbb{R}^{2}$. Then find the matrix of t relative to the basis $\mathrm{B}=\{(1,0),(0,1)\}$, $B^{\prime}=\{(2,3),(1,2)\}$.
(b) Let $\mathrm{V}=\mathbb{R}^{3}$ and $t: \mathrm{V} \rightarrow \mathrm{V}$ be a linear transformation detlned by $t(x, y, z)=(x+z,-2 x+y,-x+2 y+z)$, $\forall(a, b) \in \mathbb{R}^{2}$. What is the matrix t relative to the basis $B=\{(1,0,1),(-1,1,1),(0,1,1)\}$.
4. (a) Let V be a vector space over a field F and B its basis. Then prove that a linear Transformation. $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ is invertible iff matrix off relative to basis B is invertible.
(b) Let A be an $n \times n$ matrix over a field F , has n distinct eigenvalues $\lambda_{i}, i=1,2, \ldots, n$. then prove that there exists an invertible matrix P such that $\mathrm{P}^{-1} \mathrm{AP}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right.$, \ldots, λ_{n}).
5. (a) Prove that a square matrix A of order n over a field F is invertible iff rank $(\mathrm{A})=n$.
(b) Find the characteristic roots and characteristic spaces
of the matrix $\left[\begin{array}{ccc}2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3\end{array}\right]$
6. State and prove Cayley Hamilton theorem.
7. Let V be an inner product space. Prove that for any two vectors $u, v \in \mathrm{~V}$.
(a) $\|u+v\|^{2}-\|u-v\|^{2}=4\langle u, v\rangle$.
(b) $\|u+v\|^{2}+\|u-v\|^{2}=2\left(\|u\|^{2}+\|v\|^{2}\right)$.
8. Prove that If $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ is any map from an inner-product space V to itself such that
(a) $\mathrm{T}(0)=0$
(b) $\quad\|\mathrm{T}(u)-\mathrm{T}(v)\|=\|u-v\|$.

Then T is an orthonormal linear transformation.

