MT-503

Differential Equation and Calculus of Variation

M.A/M/Sc. Mathematics (MAMT/MSCMT-20)

IstSemester, Examination, June 2022
Time : 2 Hours
Max. Marks :40
Note : This paper is of Forty (40) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

$$
\begin{gathered}
\text { SECTION - A } \\
\text { (Long-answer - type questions) }
\end{gathered}
$$

Note: Section 'A' contains Five (05) long-answer-type questions of ten (10) marks each. Learners are required to answer any Two (02) questions only.

$$
(2 \times 10=20)
$$

1. Solve : $3 r+4 s+t+\left(r t-s^{2}\right)=1$.
P.T.O.
2. Reduce the equation :

$$
\frac{\partial^{2} z}{\partial x^{2}}+2 \frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial^{2} z}{\partial y^{2}}=0
$$

to canonical form and hence solve it.
3. Find the eigenvalues and eigenfunctions for the following boundary value problem:
$y^{\prime \prime}-4 y^{\prime}+(4-9 \mu) y=0, y(0)=0, y(a)=0$,
Where ' a ' is a positive real constant.
4. Extremize $: I[y(x)]=\int_{1}^{e}\left(x e^{y}-y e^{x}\right) \mathrm{dx}, y(1)=1$, $y(e)=e$.
5. Obtain the surface of minimum area, stretched over a given closed curve C , enclosing the domain D in the xy plane.

SECTION - B

(Short - answer - type questions)
Note: Section 'B' contains Eight (08) short - answer type questions of five(05) marks each. Learners are required to answer any Four (04) questions only.
$(4 \times 5=20)$

> P.T.O.

1. Find the general solution of the Riccati's equation

$$
\frac{d y}{d x}=2-2 y+y^{2}
$$

Whose one particular solution is $(1+\tan x)$.
2. Solve: $\left(y^{2}+z^{2}-x^{2}\right) d x-2 x y d y-2 x z d z=0$
3. Solve:

$$
(2 x z-y z) d x+(2 y z-x z) d y-\left(x^{2}-x y+y^{2}\right) d z=0
$$

4. Solve: $2 y q+y^{2} t=1$
5. Find the characteristics of

$$
x^{2} r+2 x y s+y^{2} t=0
$$

6. Test for extremum of the functional

$$
F[y(x)]=\int_{a}^{b}[\cos y-x y \prime \sin \mathrm{y}] d x
$$

7. Find the extremals of the functional

$$
I[y, z]=\int_{0}^{\pi / 2}\left[y^{2}+z^{2}+2 y z\right] d t
$$

With the boundary condition $\mathrm{y}(0)=0, \mathrm{y}(\pi / 2)=-1$;
$z(0)=0, z(\pi / 2)=1$.
8. Prove that the extremal of $\int_{a}^{b} y\left(1+y^{\prime 2}\right)^{1 / 2} d x$ is the catenary $\mathrm{y}=\mathrm{a} \cosh (\mathrm{ax}+\mathrm{b})$.

