MT-501

Advanced Algebra-1

M.A./M.Sc. Mathematics (MAMT/MSCMT-20)
$1^{\text {st }}$ Semester Examination June 2022
Time : 2 Hours
Max. Marks : 40
Note: This Paper is of forty (40) marks divided into two (02) Section A and B. Attempt the questions contained in these sections according to the detailed instructions given there in.

Section-A
 (Long Answer-type questions)

Note: Section 'A' contains Five (05) Long-answer type questions of ten (10) marks each. Learners are required to answer any two (02) questions only.

$$
(2 \times 10=20)
$$

Q.1. Let G be a group. If H and K are two subgroup of G such that H and K are normal to G and $\mathrm{H} \cap \mathrm{K}=\{\mathrm{e}\}$, then prove that
(i) HK is the internal direct product of H and K .
(ii) $\mathrm{HK} \cong \mathrm{HxK}$.
P.T.O.
Q.2. Let G be a finite group, then show that $o(G)=\sum \frac{o(G)}{o(N(a))}$, where summation runs over one element a in each conjugate class.
Q.3. Define refinement of a subnormal series. Prove that any two subnormal series for the group G have equivalent refinements.
Q.4. Define Euclidean ring. Prove that the ring of Gaussian integers is a Euclidean ring.
Q.5. Let V be n -dimensional vector space over a field F and $B=\left\{b_{1}, b_{2}, \ldots \ldots . b_{n}\right\}$ be a basis for V , then prove that for any n scalars $\lambda_{1} \lambda_{2} \ldots \ldots, \lambda_{n} \in F$ there exists a unique linear functional $F \in V^{*}$ such that $f\left(b_{i}\right)=\lambda_{i}$.

Section-B

(Short Answer-type questions)
Note: Section 'B' contains Eight (08) Short-answer type questions of five (05) marks each. Learners are required to answer any four (04) questions.

$$
(4 \times 5=20)
$$

Q.1. Prove that conjugacy on a group G is an equivalence relation.
P.T.O.
Q.2. Define derived subgroup of a group G. Let $\mathrm{G}^{(1)}$ be the first derived subgroup of the group G, then prove that $\mathrm{G}^{(1)}$ is normal to G and quotient group $\mathrm{G} / \mathrm{G}^{(1)}$ is abelian.
Q.3. Define composition series. Show that every finite group has a composition series.
Q.4. State and prove Jordan-Holder theorem.
Q.5. Prove that every Euclidean ring is a Principal Ideal Domain.
Q.6. Define R-module. Prove that a ring R is an R-module over its subring.
Q.7. If $B=\left\{b_{1}=(-1,1,1), b_{1}=(1,-1,1), b_{1}=(1,1,-1)\right\}$ is a basis of $V_{3}(R)$, then find the basis dual to B.
Q.8. Let $F \subset K \subset L$ be three fields. If L is an algebraic extension of K and if K is an algebraic extension of F. then prove that L is an algebraic extension of F .

