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Time : 2 Hours] [Max. Marks : 40

Note : This paper is of Forty (40) marks divided into two (02)
Sections A and B. Attempt the questions contained in
these sections according to the detailed instructions given
therein.
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SECTION-A/( @US-%h )
(Long Answer Type Questions)/( €&l 3T a1 W9)

Note : Section 'A' contains Five (05) long answer type
questions of Ten (10) marks each. Learners are required
to answer any Two (02) questions only.

(2x10=20)
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State and prove Bolzano Weierstrass Theorem for sequence.
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State and prove Darboux Theorem.
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State and prove Rolle's Theorem.
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Find the value of
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Let (X, d) be any metric space and let k be a fixed positive
real number. For x, y, € X, defined d (x, y) = kd(x, y). Prove
that d" is a metric on X.
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SECTION-B/( ©@US-@)
(Short Answer Type Questions)/( g I AT Y9T)
Note : Section 'B' contains Eight (08) short answer type

questions of Five (05) marks each. Learners are required
to answer any Four (04) questions only.  (4x5=20)
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1. Write Archimedean property of real numbers and prove it.
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2. Prove that the sequence <—> converges to 0.
n
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3. Show that
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Show that the sequence < f, >, where f,(x)=——;
1+n°x

0 < x <1 is not uniformly convergent.
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Prove that in a metric space (X, d) every convergent
sequence is a Cauchy sequence.
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A set is closed iff its complement is open.

TF WY Fgd T AR SR haw TR [T fOgd T

If A and B any two non-empty subsets of a metric space X.
If AnB#, then d(A U B)<d(A)+d(B).
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Prove that the function f(x,y)= % is continuous
X +y

at origin, where (0, 0) = 0.
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. X+
g, W@l A0, 0) = 0.
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