C156

Total Pages : 3
Roll No.

MSCPH-501

Mathematical Physics

M.Sc. PHYSICS(MSCPH-21)

Ist Semester Examination, 2022 (June)

Time : 2 Hours]

Max. Marks : 80

Note : This paper is of Eighty (80) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Twenty (20) marks each. Learners are required to answer any Two (02) questions only.
($2 \times 20=40$)

1. What are curvilinear coordinates? Calculate (i) gradient (ii) divergence (iii) curl, for cylindrical coordinates system.
2. Calculate the value of integral $\int_{0}^{2 \pi} \frac{\cos 2 \theta}{5+4 \cos \theta} d \theta$.
3. What are Christofell's 3-index symbols? Establish relation between Christofell's symbols of first and second kind.
4. Find the Solution of $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=\frac{e^{x}}{x^{2}+1}$.
5. Find series solution of Legendre differential equation :

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0
$$

SECTION-B

(Short Answer Type Questions)
Note : Section 'B' contains Eight (08) short answer type questions of Ten (10) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 10=40)$

1. (a) Show that the matrix $\frac{1}{6}\left[\begin{array}{rrr}1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1\end{array}\right]$ is idempotent.
(b) Show that if A is idempotent, then

$$
(1+\mathrm{A})^{n}=1+\left(2^{n}-1\right) \mathrm{A} .
$$

2. Find Taylor Expansion of $f(z)=\frac{2 z^{3}+1}{z^{2}+z} \quad$ about the point $z=i$.
3. Show that the sum or difference of two tensors of the same rank and same type is also a tensor of the same rank and same type?
4. What do you understand by Contraction of tensors? Discuss it with an example.
5. Show that $(n+1) \mathrm{P}_{n+i}(x)=(2 n+1) x \mathrm{P}_{n}(x)-n \mathrm{P}_{n-1}(x)$.
6. Show that

$$
\lim _{z \rightarrow 0} \frac{d^{2}}{d z^{2}}\left[(1-z)^{-1} \exp \left(-\frac{x}{1-z}\right)\right]=\left(x^{2}-4 x+2\right) e^{-x}
$$

7. Find the Laplace transform of $\sin ^{3} 2 t$.
8. Using Gauss divergence theorem find out $\iint \vec{A} . d \vec{s}$ where,

$$
\begin{aligned}
& \mathrm{A}=x^{3} i+y^{3} j+z^{3} k \text { and } s \text { is a surface of a sphere defined by } \\
& x^{2}+y^{2}+z^{2}=a^{2} .
\end{aligned}
$$

