C152

Total Pages: 3 Roll No.

MPHY-601

Nuclear Analytical Technique

M.Sc. Physics (MSCPHY-20)

3rd Semester Examination, 2022 (June)

Time: 2 Hours] Max. Marks: 40

Note: This paper is of Forty (40) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A

(Long Answer Type Questions)

Note: Section 'A' contains Five (05) long answer type questions of Ten (10) marks each. Learners are required to answer any Two (02) questions only.

 $(2 \times 10 = 20)$

1. Discuss the Gamow theory of α - decay and how it explains the main features of α -particle emission process. Write the limitations of the theory.

- 2. State and explain the Fermi theory of β -decay. Discuss how it explains the features of β -spectrum and also discuss the selection rules for β -emission.
- **3.** Explain the following terms in reference with their importance in classification of elementary particles.
 - (a) Isospin.
 - (b) Strangeness.
 - (c) Hypercharge.
 - (d) Parity.
- **4.** Discuss how the interaction of light charged particles is different from that of heavy charged particles. Explain the emission of 'Bremsstrahlung radiation'.
- 5. Explain the principle and working of a scintillation detector with a diagram. How can γ -ray energies be determined with its help?

SECTION-B

(Short Answer Type Questions)

Note: Section 'B' contains Eight (08) short answer type questions of Five (05) marks each. Learners are required to answer any Four (04) questions only. (4×5=20)

1. Discuss the postulates of Pauli's neutrino hypothesis.

- **2.** Write a short note on 'radiative transitions' in nuclei.
- **3.** Check whether the following reactions are allowed or forbidden.
 - (a) $\pi^- + p^0 \to \lambda^0 + \pi^-$.
 - (b) $p^+ + p^0 \rightarrow 2\pi^+ + 2\pi^- + 2\pi^0$.
- **4.** Explain the Dirac's theory of Pair Production.
- **5.** Explain the numerical emulsion techniques to detect the charged particles.
- **6.** Write a short note on classification of elementary particles.
- **7.** Explain the fundamental interactions existing in nature?
- **8.** Define the term multipolarity in gamma transition and explain the selection rules.