Total Pages : 5	Roll. No. :
-----------------	-------------

Examination Session June-2022

(Fourth Semester)

MCH-608

M.Sc. CHEMISTRY (MSCCH)

[Heterocyclic Compounds and Spectroscopy III]

Time: 2 Hours [Max. Marks: 40

Note: This paper is of Forty (40) marks divided into two (02) Section A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

MCH-608/5 (1) [P.T.O.]

SECTION—A

(Long-Answer-Type Questions)

Note: Section 'A' contains five (05) long-answer-type questions of Ten (10) marks each. Learners are required to answer any two (02) questions only. $2\times10=20$

- (a) Outline two general methods of synthesis of 1, 2,
 4 oxadiazoles from nitriles.
 - (b) What are the products in the following reactions?
 - (i) 3-methyl-1, 2, 4-oxadiazole (i) $HgCl_2$ (ii) I_2 in aq. KI
 - (ii) 3-phenyl-5-chloro 1, 2, 4-oxadiazole NaOMe
- 2. Write a short note on:
 - (a) Sydnones
 - (b) Dimroth rearrangement
 - (c) Diels-Alder reaction
 - (d) Robinson-Gabiriel synthesis

- 4. Write detail note on:
 - (a) Dimroth Rearrangement
 - (b) Caffiene
- 5. Outline a method of synthesis for :
 - (a) An oxetane
 - (b) Thietane
 - (c) Aziridine
- 6. How do you distinguish carbonyl isomers of the molecular formula C_4H_8O by ^{13}C NMR?
- 7. Discuss briefly the various applications of ¹³C NMR Spectroscopy.
- 8. Write the applications of ³¹PNMR.

МСН-	608/5	3)	[P.T.O.]	MCH-60	508/5 (3) [P.T.O.]
	(e) Tri Methyl Saline ((TMS)		(e	e) Tri Methyl Saline (TMS)
	(d) Chemical Shift Equ	uivalence		(d	d) Chemical Shift Equivalence
	(c) Chemical Shift			(c	c) Chemical Shift
	(b) Off resonance deco	oupled ¹³ C NMR		(b	b) Off resonance decoupled ¹³ C NMR
	(a) Photon decoupled	¹³ C NMR		(a	a) Photon decoupled ¹³ C NMR
5.	Discuss the following spe	ectra with at least one e	xample :	5. Di	Discuss the following spectra with at least one example:
	(e) Cis-2-butene	СН₃СООН		(e	e) Cis-2-butene CH ₃ COOH
	(d) 2-phenyloxirane	Heat		(d	d) 2-phenyloxirane Heat
	(c) Thietane + acetyl c	chloride Heat		(c	c) Thietane + acetyl chloride Heat
	(b) 2-Phenyloxetane +	- HCl		(b	b) 2-Phenyloxetane + HCl
	(a) Azetidine HNO)3		(a	a) Azetidine HNO ₃
4.	What are the product in	the following reaction	ns?	4. W	What are the product in the following reactions?
	(c) Cytocine			(c	c) Cytocine
	(b) Thymine			(b	b) Thymine
	(a) Uracil			(a	a) Uracil
3.	Outline a method of synt	thesis for each of the fol	lowing:	3. Or	Outline a method of synthesis for each of the following:

SECTION—B

(Short-Answer-Type Questions)

Note : Section 'B' contains Eight (08) short-answer-type questions of Five (05) marks each. Learners are required to answer any four (04) questions only. $4 \times 5 = 20$

- Discuss about the advantage and dis-advantage of ¹³C
 NMR Spectroscopy.
- 2. Discuss briefly about the factors affecting Chemical shift of carbon in ¹³C NMR spectra by giving at least one example in each case.

(4)

- 3. Write a short note on:
 - (a) Homonuclear Coupling
 - (b) Claisen Rearrangement

SECTION—B

(Short-Answer-Type Questions)

Note : Section 'B' contains Eight (08) short-answer-type questions of Five (05) marks each. Learners are required to answer any four (04) questions only. $4 \times 5 = 20$

- Discuss about the advantage and dis-advantage of ¹³C
 NMR Spectroscopy.
- 2. Discuss briefly about the factors affecting Chemical shift of carbon in ¹³C NMR spectra by giving at least one example in each case.
- 3. Write a short note on:
 - (a) Homonuclear Coupling
 - (b) Claisen Rearrangement

MCH-608/5 (4)