MCH-501

Inorganic Chemistry-1

M.Sc. Chemistry (MSCCH-20)

$1^{\text {st }}$ Semester Examination June 2022
Time: 2 Hours
Max. Marks: 40
Note: This paper is of Forty (40) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

$$
\begin{gathered}
\text { Section }-\mathbf{A} \\
(\text { Long Answer }- \text { type questions) }
\end{gathered}
$$

Note: Section 'A' contains Five (05) long-answer-type questions of Ten (10) marks each. Learners are required to answer any two (02) questions only.

$$
[2 \times 10=20]
$$

Q.1. What is an Orgal diagram? Explain the electronic spectra of d^{1}, d^{9}, d^{2} and d^{8} octahedral and tetrahedral complexes with the help of orgel diagrams.
Q.2. State Hund's rule. Explain how they are useful in ordering of energy level by taking suitable example.
P.T.O.
Q.3. What is crystal field theory? Explain the spatial orientation of metal d- orbitals and their splitting in an octahedral geometry.
Q.4. Write down the all possible stereoisomers of $\mathrm{Ma}_{2} \mathrm{~b}_{2} \mathrm{c}_{2}$ complex and classify all these isomers for polarity and chirality.
Q.5. Write short note on
(a) Dihedral plane
(b) Molecules of high symmetry

Section - B

(Short-answer-type questions)

Note: Section 'B' contains Eight (08) short-answertype questions of Five (05) marks each. Learners are required to answer any Four (04) questions only.

$$
[4 \times 5=20]
$$

Q.1. Define symmetry elements and symmetry operations.
Q.2. What is character table? Draw a character table for $\mathrm{C}_{3} \mathrm{~V}$ point group.
P.T.O.
Q.3. Construct the molecular orbital diagram for $\left[\mathrm{CoCl}_{4}\right]^{2-}$.
Q.4. Determine the symmetry point group of the following.
(i) Benzene
(ii) $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}$ (trans)
(iii) P-Dichlorobenzene
(iv) BF_{3}
(v) Diborane
Q.5. What is crystal field stabilization energy (CFSE)? Calculate CFSE for high spin d^{4}, d^{5} and low spin d^{7}, d^{8}.
Q.6. Write about the electronic spectra given by transition metal complexes.
Q.7. Explain the composite ligand orbitals for σ - bonding in the case of octahedral complexes.
Q.8. The octahedral complexes formed by Cu^{2+} are distorted. Explain.

