Total Pages : 3

Roll No. -----

MCH-501

Inorganic Chemistry-1

M.Sc. Chemistry (MSCCH-20)

 1^{st} Semester Examination June 2022

Time: 2 Hours

Max. Marks: 40

Note : This paper is of Forty (40) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

Section – A

(Long Answer – type questions)

Note: Section 'A' contains Five (05) long-answer-type questions of Ten (10) marks each. Learners are required to answer any two (02) questions only.

 $[2 \times 10 = 20]$

- Q.1. What is an Orgal diagram? Explain the electronic spectra of d¹, d⁹, d² and d⁸ octahedral and tetrahedral complexes with the help of orgel diagrams.
- Q.2. State Hund's rule. Explain how they are useful in ordering of energy level by taking suitable example.

P.T.O.

C-098

- Q.3. What is crystal field theory? Explain the spatial orientation of metal d- orbitals and their splitting in an octahedral geometry.
- Q.4. Write down the all possible stereoisomers of Ma₂b₂c₂ complex and classify all these isomers for polarity and chirality.
- Q.5. Write short note on
 - (a) Dihedral plane
 - (b) Molecules of high symmetry

Section – B

(Short-answer-type questions)

Note: Section 'B' contains Eight (08) short-answertype questions of Five (05) marks each. Learners are required to answer any Four (04) questions only.

$$[4 \times 5 = 20]$$

- Q.1. Define symmetry elements and symmetry operations.
- Q.2. What is character table? Draw a character table for C₃V point group.

P.T.O.

C-098

- Q.3. Construct the molecular orbital diagram for [CoCl₄]²⁻.
- Q.4. Determine the symmetry point group of the following.
 - (i) Benzene
 - (ii) $Co(NH_3)_4Cl_2$ (trans)
 - (iii) P- Dichlorobenzene
 - (iv) BF₃
 - (v) Diborane
- Q.5. What is crystal field stabilization energy (CFSE)? Calculate CFSE for high spin d^4 , d^5 and low spin d^7 , d^8 .
- Q.6. Write about the electronic spectra given by transition metal complexes.
- Q.7. Explain the composite ligand orbitals for σ bonding in the case of octahedral complexes.
- Q.8. The octahedral complexes formed by Cu²⁺ are distorted. Explain.
