MCA-18

Formal Language and Automata
Master of Computer Application
(MCA-11/16/17)

$5^{\text {th }}$ Semester Examination June 2022

Time: 2 Hours
Max. Marks: 80
Note: This paper is of Eighty (80) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

Section - A
 (Long Answer - type questions)

Note: Section 'A' contains Five (05) long-answer-type questions of Twenty (20) marks each. Learners are required to answer any two (02) questions only.

$$
[2 \times 20=40]
$$

Q.1.
a. Design a Turing Machine to accept a language $\mathrm{L}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid \mathrm{n}>=1\right\}$
b. Explain the different types of representation of Turing machine.
P.T.O.
Q.2.
a. Differentiate with suitable example between recursive and recursively enumerable language.
b. Show that the set $\mathrm{L}=\left\{0^{\mathrm{n}}: \mathrm{n}\right.$ is prime number $\}$ is not regular using the pumping lemma.
Q.3.
a. What do you mean by PDA? Compare PDA with FA.
b. \quad Draw a PDA for the language $L=\left\{w^{2} w^{R} \mid w \in(0,1)^{*}\right\}$
Q.4.
a. What are the rules for conversion of regular expression into finite automata?
b. Construct an NFA for the regular expression (a + b)*ab.
Q.5. What do you mean by regular expression and regular language? Obtain the regular expression for the following language:
i. $\quad L=\left\{w \mid w \in\{0,1\}^{*}\right.$ and w has only one 0$\}$
ii. $\quad \mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mid \mathrm{n}\right.$ is divisible by 2 or 3 or 5$\}$

> Section - B
> (Short-answer-type questions)

Note: Section 'B' contains Eight (08) short-answertype questions of Ten (10) marks each. Learners are required to answer any Four (04) questions only. $[4 \times 10=40]$
Q.1. Write down the CFG generating the language accepted by the following PDA:

$\mathrm{M}=(\{\mathrm{q}$, $\left.\mathrm{Z}_{\mathrm{o}}, \phi\right)$
$\delta\left(\mathrm{q}_{\mathrm{o}}, 1, \mathrm{Z}_{\mathrm{o}}\right)=\left\{\left(\mathrm{q}_{\mathrm{o}}, \mathrm{Z}_{0}\right)\right\}$	$\delta\left(\mathrm{q}_{0}, \epsilon, \mathrm{Z}_{0}\right)=\left\{\left(\mathrm{q}_{0}, \epsilon\right)\right\}$
$\delta\left(\mathrm{q}_{\mathrm{o}}, 1, \mathrm{x}\right)=\left\{\left(\mathrm{q}_{\mathrm{o}}, \mathrm{xx}\right)\right\}$	$\delta\left(\mathrm{q}_{1}, 1, \mathrm{x}\right)=\left\{\left(\mathrm{q}_{1}, \epsilon\right)\right\}$
$\delta\left(\mathrm{q}_{0}, 0, \mathrm{x}\right)=\left\{\left(\mathrm{q}_{1}, \mathrm{x}\right)\right\}$	$\delta\left(\mathrm{q}_{1}, 0, \mathrm{z}_{0}\right)=\left\{\left(\mathrm{q}_{0}, \mathrm{z}_{0}\right)\right\}$

Q.2. Construct the NFA for the following regular expression

$$
10+(0+11)
$$

Q.3. Prove that $\mathrm{L}=\left\{0^{\mathrm{n}} 1^{2 \mathrm{n}} \mid \mathrm{n}>1\right\}$ is not a regular language.
Q.4. What do you mean by PCP? Obtain the solution for the following system of PCP
$A=\{b, b a b b b, b a\}$ and $B=\{b b b, b a, a\}$
Q.5. Design a DFA for the language $L=\left\{0^{m} 1^{n} \mid m, n>0\right\}$
Q.6. Find the union of the following languages:
a. $L_{1}=(0,01,001)$ and $L_{2}=\{1,11,1111\}$ over $\Sigma=\{0,1\}$
b. $\mathrm{L}_{1}=(\mathrm{a}, \mathrm{b}, \mathrm{ab})$ and $\mathrm{L}_{2}=\{\mathrm{a}, \mathrm{ab}, \mathrm{abb}, \mathrm{abbb}\}$ over $\Sigma=\{\mathrm{a}, \mathrm{b}\}$
Q.7. Define the term Automata with block diagram. what are the types of Automata?
Q.8. Explain the closure properties of CFL.

