MCA-09/M.Sc.IT-09

Discrete Mathematics

Master of Computer Application/Master of Science in Information Technology
 (MCA/M.Sc.IT-11/12/16/17)

$3^{\text {rd }}$ Semester Examination June 2022
Time : 2 Hours
Max. Marks : 80
Note: This Paper is of Eighty (80) marks divided into two (02) Section A and B. Attempt the questions contained in these sections according to the detailed instructions given there in.

Section-A
(Long Answer-type questions)
Note: Section 'A' contains Five (05) Long-answer type questions of Twenty (20) marks each. Learners are required to answer any two (02) questions only.

$$
(2 \times 20=40)
$$

Q.1. A. Let x, y and z be three sets. Prove that

$$
(x-y)-z=(x-z)-(y-z)
$$

B. Define one-one and onto functions.
Q. 2 Define a preposition and the connectives: disjunction, conjunction, conditional and bi-conditional.
Q. 3 A. Define pigeonhole principle. Find the minimum number of students in a class to be sure that 6 of them were born in the same month.
B. Define permutation and combination with the help of suitable examples.
Q. 4 Define group and subgroup. Prove that a non empty subset H of a group G is a subgroup of G if $a, b \in H \Rightarrow b^{-1} \in H$
Q. 5 Define the following terms :
i. Euler graph ii. Hamiltonian circuit
iii. Planar graph iv. Bipartite graph v. Tree

Section-B
(Short Answer-type questions)
Note: Section 'B' contains Eight (08) Short-answer type questions of ten (10) marks each. Learners are required to answer any four (04) questions.
$(4 \times 10=40)$
P.T.O.
Q. 1 If R and S are equivalence relations on a set x, Show $R \wedge . S$ is also an equivalence relation on x .
Q. 2 Define invertible functions. Let $\mathrm{f}: \mathrm{z} \rightarrow \mathrm{z}$ be a function defined as $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+1$. Determine whether the function is invertible or not. Give justification for your answer.
Q.3. Define disjunctive normal form. Find the disjunctive normal form of
$(\sim P \wedge Q) \wedge(P \rightarrow Q)$
Q.4. Write predicates for the following sentences:
(i) All students are tall.
(ii) Some cats are black.
Q.5(A) How many 4 digit numbers can be formed using the digits of the set $x=\{1,2,3,4,5,6\}$ if repetition is not allowed.
(B) How many ways are there to select a committee of three students from a group of 3 boys and 4 girls if the committee contains 1 boy and 2 girls.
Q.6. Show that the set $\mathrm{G}=\{1,-1, \mathrm{i},-\mathrm{i}\}$ is a group with respect to usual multiplication.
P.T.O.
Q.7. Define a partial order relation. Draw the Hasse diagram of $(\mathrm{p}(\mathrm{x}), \underline{c})$, where $\mathrm{x}=\{1,2,3\}$ and $\mathrm{p}(\mathrm{x})$ is the power set of x .
Q.8. Find the minimal spanning tree using Kruskal's algorithm for the graph given below:

