C182

Total Pages : 5
Roll No.

MAMT-10

Mathematical Programming

MA/M.Sc. Mathematics (MAMT/MSCMT)
2nd Year Examination, 2022 (June)

Time : 2 Hours]

Max. Marks : 80
Note : This paper is of Eighty (80) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Twenty (20) marks each. Learners are required to answer any Two (02) questions only.
$(2 \times 20=40)$

1. Using the bounded Variable technique, solve the following linear programming problem.

$$
\begin{array}{ll}
\text { Max. } & z=2 x_{1}+x_{2} \\
& \text { s. t. } x_{1}+2 x_{2} \leq 10 \\
& x_{1}+x_{2} \leq 6 \\
& x_{1}-x_{2} \leq 2 \\
& x_{1}-2 x_{2} \leq 1 \\
\text { and } 0 \leq & x_{1} \leq 3,0 \leq x_{2} \leq 2 .
\end{array}
$$

2. Using Lagrangian multiplier method to solve the following non-linear programming problem.
Min. $z=2 x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-24 x_{1}-8 x_{2}-12 x_{3}+10$
Subject to $x_{1}+2 x_{2}=11$
$x_{1}, x_{2}, x_{3} \geq 0$.
3. Solve the following quadratic programming problem by Wolfe's Method.

Max. $z=2 x_{1}+x_{2}-x_{1}^{2}$
s. t. $2 x_{1}+3 x_{2} \leq 06$
$2 x_{1}+x_{2} \leq 4$
$x_{1}, x_{2} \geq 0$.
4. Solve the following L.P.P. by using dynamic programming.

Max. $z=3 x_{1}+5 x_{2}-5 x_{2}$
s. t. $x_{1} \leq 4$

$$
x_{2} \leq 6
$$

$$
3 x_{1}+5 x_{2} \geq 18
$$

and $\quad x_{1}, x_{2} \geq 0$
5. Define the following with examples :
(a) Set of points.
(b) Neighborhood of a point.
(c) Interior and boundary points.
(d) Quadratic form.

SECTION-B

(Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Ten (10) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 10=40)$

1. Prove that a hyper plane is a convex set.
2. Using Branch and bound Method to solve the following I.P.P.:

Max. $\quad z=4 x_{1}+3 x_{2}$
Subject to $5 x_{1}+3 x_{2} \geq 30$

$$
\begin{aligned}
& x_{2} \leq 4 \\
& x_{2} \leq 6 \\
& 3 x_{1}+5 x_{2} \leq 18
\end{aligned}
$$

$x_{1}, x_{2} \geq 0$ and are integers.
3. Determine the sign of definiteness for each of the following matrices.
(a) $\left[\begin{array}{lll}3 & 1 & 2 \\ 1 & 5 & 0 \\ 2 & 0 & 2\end{array}\right]$
(b) $\left[\begin{array}{ccc}2 & 1 & 2 \\ 1 & -3 & 3 \\ 2 & 0 & -5\end{array}\right]$
(c) $\left[\begin{array}{lll}1 & 1 & 0 \\ 3 & 2 & 1 \\ 1 & 2 & 4\end{array}\right]$
(d) $\left[\begin{array}{ccc}1 & -2 & 1 \\ -4 & 2 & -1 \\ 1 & -1 & 0\end{array}\right]$
4. If $\left(\mathrm{X}_{0}, \lambda_{0}\right)$ is a saddle point of the function $\mathrm{F}=(\mathrm{X}, \lambda)$ $\forall \geq 0$, then prove that X_{0} is a minimal point of $f(x)$ subject to constraints $\mathrm{G}(\mathrm{X}) \leq 0$.
5. Define :
(a) General non-linear programming problem.
(b) Kunh-Tucker Conditions.
(c) Quadratic programming problem.
(d) Dynamic programming.
6. Use Kunh-Tucker Conditions to solve the following nonlinear programming problem:

Max.

$$
z=8 x_{1}+10 x_{2}-x_{1}^{2}-x_{2}^{2}
$$

Subject to $3 x_{1}+2 x_{2} \leq 0$

$$
x_{1}, x_{2} \geq 0
$$

7. Prove that the set of all optimum solutions (Global Maximum) of the general Convex programming problem is a convex set.
8. Find maximum value of the product of $x_{1}, x_{2}, \ldots \ldots \ldots x_{n}$ when $x_{1}+x_{2}+\ldots \ldots \ldots+x_{n}=b, x_{1}, x_{2}, \ldots \ldots \ldots x_{n} \geq 0$ using dynamic programming.
