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Note : This paper is of Eighty (80) marks divided into two
(02) Sections A and B. Attempt the questions contained
in these sections according to the detailed instructions
given therein.

SECTION–A
(Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type
questions of Twenty (20) marks each. Learners are
required to answer any Two (02) questions only.

(2×20=40)
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2. State and prove Parseval's Theorem for Hankel transform.

3. Find the eigenvalues and eigenfunction of the homogeneous

integral equation
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4. State and prove Hilbert-Schmidt Theorem.

5. Prove that
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, where a > 0.
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SECTION–B

(Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type

questions of Ten (10) marks each. Learners are required

to answer any Four (04) questions only. (4×10=40)

1. Explain

(a) Dirichlet's conditions.

(b) Convolution product of two functions.

(c) Kernel of the Mellin Transform.

(d) Hankel transform.

(e) Singular Integral equation.

2. Find the Laplace transform of :

(a) cosh2 4t.

(b) (1 + te–t)3.

(c) t2et sin 4t.

3. By means of resolvent kernel, find the solution of
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4. Solve 
4

4 1
d y

y
dx

� � , subject to conditions y(0) = y�(0) = y��(0)

= y���(0) = 0 using Laplace transform.

5. Prove that M{(1 + xa)–b; p} = 

p p
r r b

a a
arb

� � � ��� � � �� � � �
; 0 < Re (p)

< Re(ab).

6. Solve g(x) = ex + 
1

0

2 ( )x te e g t dt�� .

7. Find the resolvent kernels of K(x, t) = (1 + x)(1 – t),
a = –1, b = 0.

8. For the integral equation g(x) = f(x) + K( , ) ( )
b

a

x t g t dt�� .

Find D(�) and D(x, t: �) for the kernel k(x, t) = sin x; a = 0,
b = �.


