C181

Total Pages : 4
Roll No.

MAMT-09

Integral Transforms and Integral Equations

MA/M.Sc. Mathematics (MAMT/MSCMT)
2nd Year Examination, 2022 (June)
Time : 2 Hours]
Max. Marks : 80
Note : This paper is of Eighty (80) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Twenty (20) marks each. Learners are required to answer any Two (02) questions only.

1. Find fourier transform of $f(t)$ defined by $f(t)= \begin{cases}1, & |t|<a \\ 0, & |t|>a\end{cases}$ and hence prove that $\int_{0}^{\infty} \frac{\sin ^{2} \alpha t}{t^{2}} d t=\frac{\pi a}{2}$.
2. State and prove Parseval's Theorem for Hankel transform.
3. Find the eigenvalues and eigenfunction of the homogeneous integral equation

$$
g(x)=\lambda \int_{0}^{\pi}\left[\cos ^{2} x \cos 2 t+\cos 3 x \cos ^{3} t\right] g(t) d t
$$

4. State and prove Hilbert-Schmidt Theorem.
5. Prove that
(a) If $\mathrm{L}^{-1}\left\{\frac{p^{2}-1}{\left(p^{2}+1\right)^{2}} ; t\right\} \mathrm{t}$ cost, then
find $\mathrm{L}^{-1}\left\{\frac{9 p^{2}-1}{\left(9 p^{2}+1\right)^{2}} ; t\right\}$.
(b) $\mathrm{L}^{-1}\left\{\frac{e^{-\frac{1}{p}}}{\sqrt{p}} ; t\right\}=\frac{\cos 2 \sqrt{t}}{\sqrt{\pi t}}$ and hence deduce the value
of $\mathrm{L}^{-1}\left\{\frac{e^{-\frac{a}{p}}}{\sqrt{p}} ; t\right\}$, where $a>0$

SECTION-B

(Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Ten (10) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 10=40)$

1. Explain
(a) Dirichlet's conditions.
(b) Convolution product of two functions.
(c) Kernel of the Mellin Transform.
(d) Hankel transform.
(e) Singular Integral equation.
2. Find the Laplace transform of :
(a) $\cosh ^{2} 4 t$.
(b) $\left(1+t e^{-t}\right)^{3}$.
(c) $t^{2} e^{t} \sin 4 t$.
3. By means of resolvent kernel, find the solution of

$$
g(x)=1+x^{2}+\int_{0}^{x} \frac{1+x^{2}}{1+t^{2}} g(t) d t .
$$

4. Solve $\frac{d^{4} y}{d x^{4}}-y=1$, subject to conditions $y(0)=y^{\prime}(0)=y^{\prime \prime}(0)$ $=y^{\prime \prime \prime}(0)=0$ using Laplace transform.
5. Prove that $\mathrm{M}\left\{\left(1+x^{a}\right)^{-b} ; p\right\}=\frac{r\left(\frac{p}{a}\right) r\left(b-\frac{p}{a}\right)}{a r b} ; 0<\operatorname{Re}(p)$ $<\operatorname{Re}(a b)$.
6. Solve $g(x)=e^{x}+\lambda \int_{0}^{1} 2 e^{x} e^{t} g(t) d t$.
7. Find the resolvent kernels of $\mathrm{K}(x, t)=(1+x)(1-t)$, $a=-1, b=0$.
8. For the integral equation $g(x)=f(x)+\lambda \int_{a}^{b} \mathrm{~K}(x, t) g(t) d t$. Find $\mathrm{D}(\lambda)$ and $\mathrm{D}(x, t: \lambda)$ for the kernel $k(x, t)=\sin x ; a=0$, $b=\pi$.
