C180

Total Pages : 4
Roll No.

МАМТ-08

Numerical Analysis

MAM.Sc. Mathematics (MAMT/MSCMT)
2nd Year, Examination, 2022 (June)
Time : 2 Hours]
Max. Marks : 80

Note : This paper is of Eighty (80) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Twenty (20) marks each. Learners are required to answer any Two (02) questions only.
($2 \times 20=40$)

1. (a) Find the real root of the equation $x^{3}-2 x-5=0$ using Regula-Falsi method.
(b) Find the root of the equation $\sin x-x^{3}=1$ using Newton-Raphson method.
2. Find the eigenvalues and vectors of the following matrix

$$
\mathrm{A}=\left[\begin{array}{ccc}
5 & 0 & 1 \\
0 & -2 & 0 \\
1 & 0 & 5
\end{array}\right]
$$

3. Fit a curve of the form $y=a x^{b}$ to the given data:

x	2	3	4	5	6
y	144	172.8	207.4	248.8	298.5

4. (a) Solve the boundary value problem

$$
\frac{d^{2} y}{d x^{2}}+\left(1+x^{2}\right) y+1=0, x \in[0.1]
$$

by a second order finite difference method with step
size $h=\frac{1}{4}$.
(b) Solve the BVP by Numerov method

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=x+y \\
& y(0)=0, y(1)=0
\end{aligned}
$$

with step size $h=\frac{1}{4}$.
5. Define with example :
(a) Spectrum and spectral radius.
(b) Complex matrix and Hermitian matrix.
(c) Homogeneous boundary value problem.
(d) Minima property of Chebyshev polynomials.
(e) Eigenvalues and Eigenvectors.

SECTION-B

(Short Answer Type Questions)
Note : Section 'B' contains Eight (08) short answer type questions of Ten (10) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 10=40)$

1. Find the root of the equation $x^{3}-2 x-5=0$ by Muller's method. Take 1,2 and 3 as initial approximations.
2. Perform two iterations of Bristow-method to find two roots of the equation $x^{4}-3 x^{3}+20 x^{3}+44 x+54=0$ use $(2,2)$ as initial approximation.
3. Solve the following linear equations

$$
\begin{aligned}
& 2 x_{1}+8 x_{2}+2 x_{3}=14 \\
& 6 x_{1}+6 x_{2}-x_{3}=13 \\
& 2 x_{1}-x_{2}+2 x_{3}=5 \\
& \text { using Gauss-Jordan method. }
\end{aligned}
$$

4. Find the eigenvalues of the following Hermitian matrix

$$
\mathrm{A}=\left[\begin{array}{ccc}
2 & -4 i & 0 \\
4 i & 2 & 0 \\
0 & 0 & 4
\end{array}\right]
$$

5. (a) Express $2-x^{2}+3 x^{4}$ as a sum of chebyshev polynomials.
(b) Express $2 \mathrm{~T}_{0}(x)+\mathrm{T}_{1}(x)+2 \mathrm{~T}_{2}(x)$ as a polynomial in x.
6. Use Picard's method to compute $y(0.5)$, where $y(t)$ is the solution to the given IVP $\frac{d y}{d t}=1+y$

$$
y(0)=1 .
$$

7. Solve the following IVP by Milne's method, given that

$$
\frac{d y}{d t}=t+y, t \in[0,0.4], t_{0}=0, y_{0}=1 .
$$

8. Solve the boundary value problem $\frac{d^{2} y}{d x^{2}}=y$ $y(0)=0, y(1)=1.2$ by employing shooting method, take $y^{\prime}(0)=0.85,0.95$ as initial guesses.
