Total Pages : 4

Roll No.

MAMT-08

Numerical Analysis

MAM.Sc. Mathematics (MAMT/MSCMT)

2nd Year, Examination, 2022 (June)

Time : 2 Hours]

Max. Marks : 80

Note : This paper is of Eighty (80) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A

(Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Twenty (20) marks each. Learners are required to answer any Two (02) questions only.

 $(2 \times 20 = 40)$

- 1. (a) Find the real root of the equation $x^3 2x 5 = 0$ using Regula-Falsi method.
 - (b) Find the root of the equation $\sin x x^3 = 1$ using Newton-Raphson method.

C180/MAMT-08

[P.T.O.

2. Find the eigenvalues and vectors of the following matrix

$$\mathbf{A} = \begin{bmatrix} 5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5 \end{bmatrix}.$$

3. Fit a curve of the form $y = ax^b$ to the given data:

x	2	3	4	5	6
y	144	172.8	207.4	248.8	298.5

4. (a) Solve the boundary value problem

$$\frac{d^2y}{dx^2} + (1+x^2)y + 1 = 0, x \in [0.1]$$

by a second order finite difference method with step

size
$$h = \frac{1}{4}$$
.

(b) Solve the BVP by Numerov method

$$\frac{d^2y}{dx^2} = x + y$$

y(0) = 0, y(1) = 0
with step size $h = \frac{1}{4}$.

C180/MAMT-08

- **5.** Define with example :
 - (a) Spectrum and spectral radius.
 - (b) Complex matrix and Hermitian matrix.
 - (c) Homogeneous boundary value problem.
 - (d) Minima property of Chebyshev polynomials.
 - (e) Eigenvalues and Eigenvectors.

SECTION-B

(Short Answer Type Questions)

- **Note :** Section 'B' contains Eight (08) short answer type questions of Ten (10) marks each. Learners are required to answer any Four (04) questions only. (4×10=40)
- 1. Find the root of the equation $x^3 2x 5 = 0$ by Muller's method. Take 1, 2 and 3 as initial approximations.
- 2. Perform two iterations of Bristow-method to find two roots of the equation $x^4 3x^3 + 20x^3 + 44x + 54 = 0$ use (2,2) as initial approximation.
- 3. Solve the following linear equations

 $2x_1 + 8x_2 + 2x_3 = 14$ $6x_1 + 6x_2 - x_3 = 13$ $2x_1 - x_2 + 2x_3 = 5$ using Gauss-Jordan method.

C180/MAMT-08

4. Find the eigenvalues of the following Hermitian matrix

$$\mathbf{A} = \begin{bmatrix} 2 & -4i & 0 \\ 4i & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

- 5. (a) Express $2 x^2 + 3x^4$ as a sum of chebyshev polynomials.
 - (b) Express $2 T_0(x) + T_1(x) + 2T_2(x)$ as a polynomial in x.
- 6. Use Picard's method to compute y(0.5), where y(t) is the solution to the given IVP $\frac{dy}{dt} = 1 + y$ y(0) = 1.
- 7. Solve the following IVP by Milne's method, given that

$$\frac{dy}{dt} = t + y, t \in [0, 0.4], t_0 = 0, y_0 = 1.$$

8. Solve the boundary value problem $\frac{d^2y}{dx^2} = y$ y(0) = 0, y(1) = 1.2 by employing shooting method, take y'(0) = 0.85, 0.95 as initial guesses.