Total Pages : 3

Roll No.

MAMT-06

Analysis and Advanced Calculus

MA/M.Sc. Mathematics (MAMT/MSCMT-19)

2nd Year Examination, 2022 (June)

Time : 2 Hours]

Max. Marks : 80

Note : This paper is of Eighty (80) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION–A (Long Answer Type Questions)

- Note : Section 'A' contains Five (05) long answer type questions of Twenty (20) marks each. Learners are required to answer any Two (02) questions only. (2×20=40)
- 1. If T be a linear transformation from a normed linear space N into the normed space N, prove that the following statement are equivalent :
 - (a) T is continuous.

- (b) T is continuous at the origin i.e. $x_n \to 0 \Rightarrow T(x_n) \to 0$.
- (c) T is bounded i.e., \exists real $K \ge 0$ s.t. $||T(X)|| \le K ||x||$ for all $x \in N$.
- 2. State and prove the Minkowski's Inequality.
- 3. If $\{e_1, e_2, \dots, e_n\}$ be finite orthonormal set in a Hilbert space H, and x be any vector in H, then prove that

(a)
$$\sum_{i=1}^{n} |(x, e_j)|^2 \le |x|^2$$
 and

(b)
$$x - \sum_{i=1}^{n} (x, e_i) e_i \perp e_j \ \forall j$$

- 4. Let X be a Banach space over the field K of scalars and let $f : [a, b] \to X$ and $g : [a, b] \to R$ be continuous and differentiable functions such that $|| Df(t) || \le Dg(t)$ at each point $t \in (a, b)$. Then prove that $|| f(b) f(a) || \le g(b) g(a)$.
- 5. State and prove Hahn-Banach theorem.

SECTION-B

(Short Answer Type Questions)

- **Note :** Section 'B' contains Eight (08) short answer type questions of Ten (10) marks each. Learners are required to answer any Four (04) questions only. (4×10=40)
- 1. Prove that every normed linear space is a metric space.

C178/MAMT-06

- **2.** Prove that every compact subset of a normed linear space is complete.
- 3. Let N and N' be normed linear spaces and D be a subspace of N. Prove that a linear transformation $T : D \rightarrow N'$ is closed iff its graph T_G is closed.
- 4. If x and y are any two vectors in an inner product space X, then prove that $|(x, y)| \le ||x|| ||y||$.
- 5. The inner product in a Hilbert space is jointly continuous i.e., if $x_n \to x$ and $y_n \to y$, then prove that $(x_n, y_n) \to (x, y)$ as $n \to \infty$.
- 6. Prove that if S is a non-empty subset of a Hilbert space H, then S^{\perp} is a closed linear subspace of H and hence a Hilbert space.
- 7. If T is an operator on a Hilbert space H, then prove that the following conditions are equivalent :
 - (a) $T^*T = I$.
 - (b) $(Tx, Ty) = (x, y) \forall x, y \in H.$
 - (c) $\| \operatorname{T} x \| = \| x \| \forall x \in \operatorname{H}.$
- **8.** Prove that every convergent sequence in a normed linear space is a Cauchy sequence.

C178/MAMT-06