C176

Total Pages : 3

Roll No.

МАМТ-04

Differential Geometry and Tensors

M.Sc./M.A. Mathematics (MSCMT/MAMT-19)

Ist Year Examination, 2022 (June)

Time : 2 Hours]
Max. Marks : 80

Note : This paper is of Eighty (80) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Twenty (20) marks each. Learners are required to answer any Two (02) questions only.
$(2 \times 20=40)$

1. Show that when the curve is analytic, there exists a definite osculating plane at a point of inflection, provided the curve is not a straight line.
2. Find the Evoluate of the circular halix $x=a \cos \theta, y=a \sin \theta, z=a \theta \tan \alpha$.
3. Show there are two principal directions at every point on a surface which are mutually orthogonal.
4. Show that the metric of a Euclidean space, referred to spherical coordinates is given by $d s^{2}=(d r)^{2}+(r d \theta)^{2}+$ $(r \sin \theta d \varnothing)^{2}$. Determine its metric tensor and Conjugate metric tensor.
5. Show that the Christoffel symbols are not tensor quantities.

SECTION-B
 (Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Ten (10) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 10=40)$

1. Find the equation of the Osculating plane of the curve given by $\bar{r}=(a \sin t+b \cos t, a \operatorname{cost}+b \sin t, c \operatorname{stn} 2 t)$.
2. The necessary and sufficient condition for the curve to be straight line is that $\kappa=0$ at all points of the curve.
3. The torsion of the two Bertrand curve have the same sign and their product is constant.
4. Prove that $x y z=2$ is a developable surface.
5. Show that $e^{z} \cos x=\cos y$ is a minimal surface.
6. The necessary and sufficient condition that the parametric curves through a point to have conjugate directions is $\mathrm{M}=0$.
7. Show that $g^{i j} g^{k l} d g_{i k}=-d g^{j i}$.
8. An Einstein space $\mathrm{V}_{\mathrm{N}}(\mathrm{N}>2)$ has constant curvature.
