C175

Total Pages : 3
Roll No.

MAMT-03

Differential Equations, Calculus of Variations and Special Functions

M.Sc./M.A. Mathematics (MSCMT/MAMT-19)

Ist Year Examination, 2022 (June)

Time : 2 Hours]

Max. Marks : 80

Note : This paper is of Eighty (80) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Twenty (20) marks each. Learners are required to answer any Two (02) questions only.
$(2 \times 20=40)$

1. (a) Solve $y(1-\log y) \frac{d^{2} y}{d x^{2}}+(1+\log y)\left(\frac{d y}{d x}\right)^{2}=0$.
(b) Solve $(m z-n y) d x+(n x-l z) d y+(l y-m x) d z=0$.
2. Find the real eigenvalues and eigenfunctions for the boundary value problem : $y^{\prime \prime}+\mu y=0, y(0)=0, y^{\prime}(1)=0$.
3. Use the method of separation of variables to solve the partial differential equation $\frac{\partial^{2} u}{\partial x^{2}}-2 \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=0$.
4. Solve in series $\left(2-x^{2}\right) \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}-2 y=0$.
5. (a) Show : $x \mathrm{~J}_{n}^{\prime}(x)=n \mathrm{~J}_{n}(x)-x \mathrm{~J}_{n+1}(x)$.
(b) Expand x^{n} in a series of Hermite polynomial.

SECTION-B

(Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Ten (10) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 10=40)$

1. Solve : $y^{3} \frac{d^{2} y}{d x^{2}}=\mathrm{C}$.
2. Solve : $x d y-y d x-2 x^{2} z d z=0$.
3. Solve : $r=2 y^{2}$.
4. Show that to every eigenvalue of a Sterm-Liouville system there corresponds only one linearly independent eigenfunction.
5. Find the curve with fixed boundary revolves such that its rotation about x-axis generates minimal surface area.
6. Find the representation of $(1+z)^{n}$ in terms of Gauss hyper geometric function.
7. Show : $(2 n+1) x \mathrm{P}_{n}(x)=(n+1) \mathrm{P}_{n+1}(x)+n \mathrm{P}_{n-1}(x)$.
8. Show : $x \mathrm{~L}^{\prime}{ }_{n}(x)=n \mathrm{~L}_{n}(x)-n \mathrm{~L}_{n-1}(x)$.
