C174

МАМТ-02

Real Analysis and Topology
M.Sc./M.A. Mathematics (MSCMT/MAMT-19)

Ist Year Examination, 2022 (June)

Time : 2 Hours]

Max. Marks : 80

Note : This paper is of Eighty (80) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Twenty (20) marks each. Learners are required to answer any Two (02) questions only.
$(2 \times 20=40)$

1. Prove that the outer measure of an interval is its length.
2. Prove that the necessary and sufficient condition for a bounded function f defined on an interval $[a, b]$ to be

L - integrable over $[a, b]$ is that given $\in>0$, there exists a partition P of $[a, b]$ such that $\mathrm{U}(f, \mathrm{P})-\mathrm{L}(f, \mathrm{P})<\epsilon$.
3. Let U be a collection of all subsets $\mathrm{G} \subset \mathrm{R}$, having the property that to each $x \in \mathbf{R} \exists \delta>0$ such that open interval $(x-\delta, x$ $+\delta) \subset \mathrm{G} \forall x \varepsilon \mathrm{G}$. Prove that U is a topology on \mathbf{R}.
4. Prove that a second countable space is always a first countable space, but the converse is not true.
5. Let (X, τ) be a topological space and let A, B be non empty subsets of X then prove that
(a) $\varnothing^{\prime}=\varnothing$.
(b) $x \in \mathrm{~A}^{\prime} \Rightarrow x \in(\mathrm{~A}-\{x\})^{\prime}$.
(c) $\mathrm{A} \subset \mathrm{B} \Rightarrow \mathrm{A}^{\prime} \subset \mathrm{B}^{\prime}$.
(d) $(\mathrm{A} \cup \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}$.
(e) $(A \cap B)^{\prime} \subset\left(A^{\prime} \cap B^{\prime}\right)$.
where A^{\prime} means derived set of A .

SECTION-B

(Short Answer Type Questions)
Note : Section 'B' contains Eight (08) short answer type questions of Ten (10) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 10=40)$

1. If E is a countable set, the prove that $m^{*}(\mathrm{E})=0$.
2. If f is a bounded function defined on a measurable set E , and $m(\mathrm{E})=0$. Then prove that $\int_{\mathrm{E}} f(x) d x=0$.
3. Show that the L^{P} space is a metric space .
4. Give one example of a topology on $\mathrm{X}=\{a, b, c\}$ in which every open set is also a Closed set.
5. Define base for a topology.
6. Define Compact Topological Spaces.
7. For any two sets A and B if $m^{*}(\mathrm{~A})=0$, then prove that $\mathrm{m}^{*}(\mathrm{~A} \cup \mathrm{~B})=m^{*}(\mathrm{~B})$.
8. Define the following :
(a) Discrete Topology.
(b) Indiscrete Topology.
(c) Toplogical Space.
