Total Pages : 3

Roll No.

MAMT-02

Real Analysis and Topology

M.Sc./M.A. Mathematics (MSCMT/MAMT-19)

Ist Year Examination, 2022 (June)

Time : 2 Hours]

Max. Marks : 80

Note : This paper is of Eighty (80) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A

(Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Twenty (20) marks each. Learners are required to answer any Two (02) questions only.

 $(2 \times 20 = 40)$

- 1. Prove that the outer measure of an interval is its length.
- Prove that the necessary and sufficient condition for a bounded function *f* defined on an interval [*a*, *b*] to be
 C174/MAMT-02 [P.T.O.]

L - integrable over [a, b] is that given $\in > 0$, there exists a partition P of [a, b] such that U(f, P) – L(f, P) < \in .

- 3. Let U be a collection of all subsets $G \subset \mathbb{R}$, having the property that to each $x \in \mathbb{R} \exists \delta > 0$ such that open interval $(x \delta, x + \delta) \subset G \forall x \in G$. Prove that U is a topology on \mathbb{R} .
- 4. Prove that a second countable space is always a first countable space, but the converse is not true.
- 5. Let (X, τ) be a topological space and let A, B be non empty subsets of X then prove that

(a)
$$\emptyset' = \emptyset$$
.

- (b) $x \in A' \Rightarrow x \in (A \{x\})'$.
- (c) $A \subset B \Rightarrow A' \subset B'$.
- (d) $(A \cup B)' = A' \cup B'$.
- (e) $(A \cap B)' \subset (A' \cap B').$

where A' means derived set of A.

SECTION-B

(Short Answer Type Questions)

- **Note :** Section 'B' contains Eight (08) short answer type questions of Ten (10) marks each. Learners are required to answer any Four (04) questions only. $(4 \times 10 = 40)$
- 1. If E is a countable set, the prove that $m^*(E) = 0$.

C174/MAMT-02

[2]

- 2. If f is a bounded function defined on a measurable set E, and m(E) = 0. Then prove that $\int_{E} f(x) dx = 0$.
- 3. Show that the L^P space is a metric space .
- 4. Give one example of a topology on $X = \{a, b, c\}$ in which every open set is also a Closed set.
- **5.** Define base for a topology.
- 6. Define Compact Topological Spaces.
- 7. For any two sets A and B if $m^*(A) = 0$, then prove that $m^*(A \cup B) = m^*(B)$.
- **8.** Define the following :
 - (a) Discrete Topology.
 - (b) Indiscrete Topology.
 - (c) Toplogical Space.