C173

Total Pages : 3
Roll No.

MAMT-01
 Advanced Algebra

M.Sc./M.A. Mathematics (MSCMT/MAMT-19)

Ist Year Examination, 2022 (June)
Time : 2 Hours]
Max. Marks : 80

Note : This paper is of Eighty (80) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Twenty (20) marks each. Learners are required to answer any Two (02) questions only.
$(2 \times 20=40)$

1. Apply the Gram-Schmidt process to the vectors $e_{1}=(1,0,1)$, $e_{2}=(1,0,-1), e_{3}=(0,3,4)$, to obtain an orthonormal basis for $\mathrm{R}^{3}(\mathrm{R})$ with the standard inner product.
2. Let $\mathrm{T}: \mathrm{R}^{3} \rightarrow \mathrm{R}^{3}$ be a linear transformation such that $\mathrm{T}(a, b, c)=(3 a+c,-2 a+b,-a+2 b+4 c)$. What is the matrix of T in the ordered basis $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$, where $\alpha_{1}=(1,0,1), \alpha_{2}=\{-1,2,1), \alpha_{3}=(2,1,1)$.
3. Find the Galois group of the equation $x^{3}-2=0$ over the field Q of rational numbers.
4. Define field extension. If L is a finite extension of K and if K is a finite extension of F , then L is a finite extension of F and $[\mathrm{L}: F]=[\mathrm{L}: \mathrm{K}][\mathrm{K}: F]$.
5. Let H and N be two subgroups of G such that N is normal in G . Then prove that $\mathrm{H} \cap \mathrm{N}$ is normal subgroup of H and $\mathrm{H} / \mathrm{H} \cap \mathrm{N} \cong \mathrm{HN} / \mathrm{N}$

SECTION-B
 (Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Ten (10) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 10=40)$

1. Prove that every abelian group G is a module over the ring of integers I.
2. For any two vector u and v in an inner product space V prove that:
(a) $\|u+v\| \leq\|u\|+\|v\|$
(b) $\|u\|-\|v\| \leq\|u-v\|$
3. Let G_{1} and G_{2} be two groups. Let $\mathrm{G}=\mathrm{G}_{1} \times \mathrm{G}_{2}$ $\mathrm{H}_{1}=\left\{\left(a_{1} e_{2}\right) a \in \mathrm{G}_{1}\right\}=\mathrm{G}_{1} \times\left\{e_{2}\right\}$
$\mathrm{H}_{2}=\left\{\left(e_{1}, b\right), b \in \mathrm{G}_{2}\right\}=\left\{e_{1}\right\} \times \mathrm{G}_{2}$
Where e_{1} and e_{2} are identity elements of G_{1} and G_{2} respectively. Then prove that G is an internal direct product of H_{1} and H_{2}.
4. Prove that every finite group G has a composition series.
5. Prove that every ring of polynomials $f(x)$ over a field F is a Euclidean ring.
6. Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be a linear transformation. Then prove the following:
(a) $\operatorname{Ker}(\mathrm{T})$ is a vector subspace of V
(b) Range (T) is vector subspace of W
7. If c is a characterstic vector of T , then c can not correspond to more than one characterstic value of T .
8. Let V and W be inner product spaces. Then prove that a linear transformation $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ is orthogonal if and only if $\|\mathrm{T}(u)\|=\|u\|$ for all $u \in \mathrm{~V}$.
