Total Pages : 3

Roll No.

MAMT-01

Advanced Algebra

M.Sc./M.A. Mathematics (MSCMT/MAMT-19)

Ist Year Examination, 2022 (June)

Time : 2 Hours]

Max. Marks : 80

Note : This paper is of Eighty (80) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A

(Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Twenty (20) marks each. Learners are required to answer any Two (02) questions only.

 $(2 \times 20 = 40)$

1. Apply the Gram-Schmidt process to the vectors $e_1 = (1,0,1)$, $e_2 = (1,0,-1)$, $e_3 = (0,3,4)$, to obtain an orthonormal basis for R³(R) with the standard inner product.

C173/MAMT-01

- 2. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that T(a, b, c) = (3a + c, -2a + b, -a + 2b + 4c). What is the matrix of T in the ordered basis $\{\alpha_1, \alpha_2, \alpha_3\}$, where $\alpha_1 = (1,0,1), \alpha_2 = \{-1,2,1\}, \alpha_3 = (2,1,1)$.
- 3. Find the Galois group of the equation $x^3 2 = 0$ over the field Q of rational numbers.
- 4. Define field extension. If L is a finite extension of K and if K is a finite extension of F, then L is a finite extension of F and [L : F] = [L : K] [K : F].
- 5. Let H and N be two subgroups of G such that N is normal in G. Then prove that $H \cap N$ is normal subgroup of H and $H/H \cap N \cong HN/N$

SECTION-B

(Short Answer Type Questions)

- **Note :** Section 'B' contains Eight (08) short answer type questions of Ten (10) marks each. Learners are required to answer any Four (04) questions only. (4×10=40)
- **1.** Prove that every abelian group G is a module over the ring of integers I.
- 2. For any two vector *u* and *v* in an inner product space V prove that:
 - (a) $|| u + v || \le || u || + || v ||$
 - (b) $|| u || || v || \le || u v ||$

C173/MAMT-01

3. Let G₁ and G₂ be two groups. Let G = G₁ × G₂
H₁ = {(a₁ e₂) a ∈ G₁} = G₁ × {e₂}
H₂ = {(e₁, b), b ∈ G₂} = {e₁} × G₂
Where e₁ and e₂ are identity elements of G₁ and G₂

where e_1 and e_2 are identity elements of G_1 and G_2 respectively. Then prove that G is an internal direct product of H_1 and H_2 .

- 4. Prove that every finite group G has a composition series.
- 5. Prove that every ring of polynomials f(x) over a field F is a Euclidean ring.
- 6. Let $T : V \to W$ be a linear transformation. Then prove the following :
 - (a) Ker (T) is a vector subspace of V
 - (b) Range (T) is vector subspace of W
- 7. If *c* is a characteristic vector of T, then *c* can not correspond to more than one characteristic value of T.
- 8. Let V and W be inner product spaces. Then prove that a linear transformation $T : V \to W$ is orthogonal if and only if || T(u) || = || u || for all $u \in V$.

C173/MAMT-01