Total Pages: 4

Roll No. -----

PHY-551

Nuclear Physics and Analytical Techniques M.Sc. PHYSICS (MSCPHY-12/13/16/17)

Second Year, Examination 2021 (Winter)

Time: 2 Hours Max. Marks: 80

Note: This paper is of Eighty (80) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

Section – A

(Long Answer – type questions)

Note: Section 'A' contains Five (05) long-answer-type questions of Twenty (20) marks each. Learners are required to answer any two (02) questions only.

 $[2 \times 20 = 40]$

Q.1. Describe the construction and working of scintillation and solid state detectors with diagram.

P.T.O.

555 1

- Q.2. Explain different properties of nucleus in detail. Define terms Bohr magneton and magnetic dipole moment.
- Q.3. Describe the theory of shell model and give the difference between liquid drop model and shell model.
- Q.4. What is Q equation? Find out the solution of Q equation. Calculate the Q value of reaction ${}^{14}_{7}N(\alpha,p){}^{17}_{8}O$ which occurred in Rutherford's a range in nitrogen experiment.
- Q.5. Give the principle, theory and application of NMR and NMR spectrometers. Explain the NMR spectra of Ethyl alcohol.

Section - B

(Short-answer-type questions)

Note: Section 'B' contains Eight (08) short-answer-type questions of Ten (10) marks each. Learners are required to answer any Four (04) questions only.

$$[4 \times 10 = 40]$$

555 2

- Q.1. Explain Fermi theory of β decay and selection rule for β decay.
- Q.2. Define gamma emission and selection rule for gamma decay.
- Q.3. Give the classification of fundamental interactions and elementary particle.
- Q.4. What are the different mechanics by which gamma ray interacts with matter? Explain the Dirac's theory of Pair production.
- Q.5. Calculate the average binding energy per nucleon for $^{64}_{28}Ni$ having 63.9280u. Given that Z=28, A=64, m_p = 1.0007825u, m_n = 1.008665u.
- Q.6. Calculate the Q value of the following reactions. Which are endothermic and which are exothermic:
 - (i) C^{12} (d, n) N^{13}
 - (ii) 0^{16} (d, n) F^{17}
 - (iii) Be⁹ (p, α) Li⁶

P.T.O.

- Q.7. Give the principle, theory and application of phase contrast microscopy.
- Q.8. Give the principle Mossbauer effect. Explain the origin of magnetic hyperfine splitting of Mossbauer spectral line of Fe⁵⁷.

555 4