Total Pages: 5 Roll No.

MAMT-10

Mathematical Programming

MA/M.Sc. Mathematics (MAMT/MSCMT-19)

Second Year Examination, 2021 (Winter)

Time: 2 Hours] Max. Marks: 80

Note: This paper is of Eighty (80) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A

(Long Answer Type Questions)

Note: Section 'A' contains Five (05) long answer type questions of Twenty (20) marks each. Learners are required to answer any Two (02) questions only.

 $(2 \times 20 = 40)$

1. Using bounded variable technique, solve the following l.p.p

Max.
$$z = x_1 + 3x_2$$

s.t. $x_1 + x_2 + x_3 \le 10$

$$\begin{aligned} x_1 - 2x_3 &\ge 0 \\ 2x_2 - x_3 &\le 10 \\ 0 &\le x_1 &\le 8, \ 0 \le x_2 \le 4, \ x_3 \ge 0. \end{aligned}$$

2. Solve the following nonlinear programming problem using the method of Lagrangian multipliers :

Minimize
$$f(X) = x_1^2 + x_2^2 + x_3^2$$

s.t. $4x_1 + x_2^2 + 2x_3 = 14$
 $x_1, x_2, x_3 \ge 0$.

3. Solve the following quadratic programming problem using Wolfe's method

Minimize
$$f(x_1, x_2) = x_1^2 - x_1 x_2 + 2x_2^2 - x_1 - x_2$$

subject to $2x_1 + x_2 \le 1$
 $x_1, x_2 \ge 0$.

4. Use dynamic programming to solve the following L.P.P.:

Max.
$$Z = 2x_1 + 5x_2$$

subject to $2x_1 + x_2 \le 43$
 $2x_2 \le 46$
and $x_1, x_2 \ge 0$

- **5.** Define with examples :
 - (a) Closed and Open set.
 - (b) Convex set.
 - (c) Extreme point.
 - (d) Supporting Hyperplane.
 - (e) Quadratic form.

SECTION-B

(Short Answer Type Questions)

Note: Section 'B' contains Eight (08) short answer type questions of Ten (10) marks each. Learners are required to answer any Four (04) questions only. (4×10=40)

- 1. Prove that $f(x) = \frac{1}{x}$ is strictly convex for x > 0 and strictly concave for x < 0.
- **2.** Explain:
 - (a) Integer Programming Problem (I.P.P.).
 - (b) Mixed Integer Programming Problem.
 - (c) Fractional Cut.
 - (d) Cutting plane method.
- 3. Solve the following I.P.P by branch and bound technique

Max.
$$Z = x_1 + x_2$$

s.t. $3x_1 + 2x_2 \le 12$
 $x_2 \le 2$
 $x_1, x_2 \ge 0$ and integers.

4. Determine the sign of definiteness for each of the following matrices.

(a)
$$\begin{bmatrix} 2 & 1 & 4 \\ 6 & 0 & 1 \\ 1 & -1 & 2 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 2 & 1 & 2 \\ 1 & -3 & 3 \\ 2 & 0 & -5 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 & -1 & 2 \\ 0 & -3 & 3 \\ 0 & 0 & -5 \end{bmatrix}$$

(d)
$$\begin{bmatrix} -5 & 0 & 2 \\ 4 & -1 & 3 \\ 2 & 5 & -5 \end{bmatrix}$$

5. Use Kuhn-Tucker condition to solve the following non-linear programming problem :

Minimize
$$f(x) = 8x - x^2$$

subject to $x \le 3$
 $x \ge 0$

6. Derive the dual of the quadratic programming problem :

$$Min f(X) = C^{T}X + \frac{1}{2}X^{T}GX$$

Subject to $AX \ge b$

where A is $m \times n$ real matrix and G is an $n \times n$ real postive semidefinite symmetric matrix.

7. Prove that every local maximum of the general convex programming problem is its global maximum.

0	D C.	
×	Define	•
გ.		

- (a) Dynamic programming.
- (b) Bellman's Principal of Optimality.
- (c) Stage.
- (d) State.