570

Total Pages : 4
Roll No.

MAMT-09

Integral Transforms and Integral Equations

MA/M.Sc. Mathematics (MAMT/MSCMT-19)
Second Year Examination, 2021 (Winter)

Time : 2 Hours]
Max. Marks : 80

Note : This paper is of Eighty (80) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Twenty (20) marks each. Learners are required to answer any Two (02) questions only.
($2 \times 20=40$)

1. State and prove the Parseval's identity for Fourier transform.
2. Define Mellin transform. If $\mathrm{M}\{f(x) ; p\}=\mathrm{F}(p)$, then find the following :
(a) $\mathrm{M}\{f(a x) ; p\}$
(b) $\mathrm{M}\left\{x^{a} f(x) ; p\right\}$
(c) $\mathrm{M}\left\{f\left(x^{a}\right) ; p\right\}$
(d) $\mathrm{M}\left\{\frac{1}{x} f\left(\frac{1}{x}\right) ; p\right\}$
(e) $\mathrm{M}\{\log x f(x) ; p\}$
3. Solve $\frac{\partial \mathrm{U}}{\partial t}=\frac{\partial^{2} \mathrm{U}}{\partial x^{2}}, x>0, t>0$ subject to conditions :
(a) $\mathrm{U}(0, t)=0$
(b) $\mathrm{U}=\left\{\begin{array}{lc}1, & 0<x<1 \\ 0, & x \geq 1\end{array}\right.$ where $t=0$
(c) $\mathrm{U}(x, t)$ is bounded.
4. Find the Eigen values and there corresponding Eigen function of the homogeneous Fredholm integral equation of the second kind $g(x)=\lambda \int_{0}^{2 \pi} \sin (x+t) g(t) d t$.
5. Prove that $\mathrm{L}\left[\mathrm{J}_{0}(t) ; p\right]=\frac{1}{\sqrt{1+p^{2}}}$ and hence deduce that
(a) $\mathrm{L}\left[\mathrm{J}_{0}(a t) ; p\right]=\frac{1}{\sqrt{p^{2}+a^{2}}}$
(b) $\mathrm{L}\left[t \mathrm{~J}_{0}(a t) ; p\right]=\frac{p}{\left(p^{2}+a^{2}\right)^{3 / 2}}$

SECTION-B

(Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Ten (10) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 10=40)$

1. If $\bar{f}(p)$ is the Laplace transform of $f(t)$ i.e., $\mathrm{L}[f(\mathrm{~T}) ; p]=$ $\bar{f}(p)$, then prove the following property.
(a) $\mathrm{L}[f(a t) ; p]=\frac{1}{a} \bar{f}\left(\frac{p}{a}\right)$.
(b) $\mathrm{L}\left[e^{a t} f(t) ; p\right]=\bar{f}(p-a)$.
2. Apply convolution theorem to prove that

$$
\mathrm{B}(m, n)=\int_{0}^{1} u^{m-1}(1-u)^{n-1} d u=\frac{\Gamma m \Gamma n}{\Gamma(m+n)},(m>0, n>0) .
$$

Hence deduce that

$$
\int_{0}^{\frac{\pi}{2}} \sin ^{2 m-1} \theta \cos ^{2 n-1} \theta d \theta=\frac{1}{2} B(m, n)=\frac{\Gamma m \Gamma n}{2 \Gamma(m+n)}
$$

where $\mathrm{B}(m, n)$ is called Beta function.
3. Using Laplace transformation solve the following differential equation $\left(\mathrm{D}^{2}+1\right) y=t \cos 2 t, y=0, \frac{d y}{d t}=0$ when $t=0$.
4. Find the relation between Fourier transform and Laplace transform.
5. Define the Hankel transform. If $\mathrm{F}_{v}(p)$ and $\mathrm{G}_{v}(p)$ are the Hanel transform of the function $f(x)$ and $g(x)$ respectively, then prove that $\int_{0}^{\infty} x f(x) g(x) d x=\int_{0}^{\infty} p \mathrm{~F}_{v}(p) \mathrm{G}_{v}(p) d p$.
6. Show that the function $g(x)=x e^{x}$ is a solution of the Volterra integral equation $g(x)=\sin x+2 \int_{0}^{x} \cos (x-t) g(t) d t$.
7. Find the resolvent kernel of the kernel

$$
\mathrm{K}(x, t)=e^{(x+t)}, a=0, b=1
$$

8. Find the Laplace transform of $e^{-2 t}(3 \cos 6 t-5 \sin 6 t)$.
