Total Pages : 4

Roll No.

MAMT-09

Integral Transforms and Integral Equations

MA/M.Sc. Mathematics (MAMT/MSCMT-19)

Second Year Examination, 2021 (Winter)

Time : 2 Hours]

Max. Marks : 80

Note : This paper is of Eighty (80) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A

(Long Answer Type Questions)

- Note : Section 'A' contains Five (05) long answer type questions of Twenty (20) marks each. Learners are required to answer any Two (02) questions only. (2×20=40)
- 1. State and prove the Parseval's identity for Fourier transform.

- **2.** Define Mellin transform. If $M{f(x); p} = F(p)$, then find the following :
 - (a) $M{f(ax); p}$
 - (b) $M\{x^{a}f(x); p\}$
 - (c) $M{f(x^a); p}$

(d)
$$M\left\{\frac{1}{x}f\left(\frac{1}{x}\right);p\right\}$$

(e) $M\{\log x f(x); p\}$

3. Solve
$$\frac{\partial U}{\partial t} = \frac{\partial^2 U}{\partial x^2}$$
, $x > 0$, $t > 0$ subject to conditions :

(a)
$$U(0, t) = 0$$

(b)
$$U = \begin{cases} 1, & 0 < x < 1 \\ 0, & x \ge 1 \end{cases}$$
 where $t = 0$

- (c) U(x, t) is bounded.
- **4.** Find the Eigen values and there corresponding Eigen function of the homogeneous Fredholm integral equation of

the second kind
$$g(x) = \lambda \int_{0}^{2\pi} \sin(x+t) g(t) dt$$
.

570/MAMT-09

5. Prove that $L[J_0(t); p] = \frac{1}{\sqrt{1+p^2}}$ and hence deduce that

(a)
$$L[J_0(at); p] = \frac{1}{\sqrt{p^2 + a^2}}$$

(b)
$$L[tJ_0(at); p] = \frac{p}{(p^2 + a^2)^{3/2}}$$

SECTION-B

(Short Answer Type Questions)

- **Note :** Section 'B' contains Eight (08) short answer type questions of Ten (10) marks each. Learners are required to answer any Four (04) questions only. $(4 \times 10 = 40)$
- 1. If $\overline{f}(p)$ is the Laplace transform of f(t) i.e., $L[f(T); p] = \overline{f}(p)$, then prove the following property.

(a)
$$L[f(at); p] = \frac{1}{a} \overline{f}\left(\frac{p}{a}\right).$$

(b)
$$L[e^{at}f(t); p] = \overline{f}(p-a).$$

570/MAMT-09

[P.T.O.

2. Apply convolution theorem to prove that

$$B(m, n) = \int_{0}^{1} u^{m-1} (1-u)^{n-1} du = \frac{\Gamma m \Gamma n}{\Gamma(m+n)}, (m > 0, n > 0).$$

Hence deduce that
$$\int_{0}^{\frac{\pi}{2}} \sin^{2m-1} \theta \cos^{2n-1} \theta d\theta = \frac{1}{2} B(m, n) = \frac{\Gamma m \Gamma n}{2\Gamma(m+n)}$$

where B(m, n) is called Beta function.

- 3. Using Laplace transformation solve the following differential equation $(D^2 + 1)y = t \cos 2t$, y = 0, $\frac{dy}{dt} = 0$ when t = 0.
- **4.** Find the relation between Fourier transform and Laplace transform.
- 5. Define the Hankel transform. If $F_{\nu}(p)$ and $G_{\nu}(p)$ are the Hanel transform of the function f(x) and g(x) respectively,

then prove that
$$\int_{0}^{\infty} xf(x)g(x)dx = \int_{0}^{\infty} pF_{\nu}(p)G_{\nu}(p)dp.$$

- 6. Show that the function $g(x) = xe^x$ is a solution of the Volterra integral equation $g(x) = \sin x + 2 \int_{0}^{x} \cos(x-t) g(t) dt$.
- 7. Find the resolvent kernel of the kernel $K(x, t) = e^{(x + t)}, a = 0, b = 1.$
- 8. Find the Laplace transform of e^{-2t} (3 cos 6t 5 sin 6t).

570/MAMT-09