569

МАМТ-08

Numerical Analysis

MA/M.Sc. Mathematics (MAMT/MSCMT-19)

Second Year Examination, 2021 (Winter)

Time : 2 Hours]

Max. Marks : 80
Note : This paper is of Eighty (80) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Twenty (20) marks each. Learners are required to answer any Two (02) questions only.

1. Find all the roots of the equation $x^{3}-6 x^{2}+11 x-6=0$ using Graeffe's root squaring method.
2. Find double root of the equation $x^{3}-0.75 x+0.25=0$ taking initial approximation $x_{0}=0.3$.
3. Use fourth order Runge-Kutta method to compute $y(0.4)$, given that $\frac{d y}{d t}=-2 t-y, y(0)=-1($ take step size $h=0.1)$.
4. Use Picard's method to solve $y(0.1)$, given that $\frac{d y}{d t}=3 t+y^{2}, \quad y(0)=1$.
5. Solve $y(0.4)$ by Milne's method, given that $\frac{d y}{d t}=2 e^{t}-y$ $y(0)=2, y(0.1)=2.01, y(0.2)=2.04, y(0.3)=2.09$.

SECTION-B
 (Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Ten (10) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 10=40)$

1. Find the real root of equation $x^{3}-x-1=0$ using Bisection.
2. Find a real root of the equation $x^{4}+7 x^{3}+24 x^{2}-15=0$, using Birge-Vieta method.
3. Solve the following linear equations
$2 x_{1}+8 x_{2}+2 x_{3}=14$
$6 x_{1}+6 x_{2}-x_{3}=0$
$2 x_{2}+x_{2}+2 x_{3}=5$
Using Gauss-Jordan method.
4. Fit a exponential curve of the form $y=a e^{b x}$ to the given data.

x	1	2	3	4	5	6
y	1.6	4.5	13.8	40.2	125	300

Also find the value of y atx $=4.5$.
5. Obtain a second degree polynomial approximation to the function $f(x)=\frac{1}{1+x^{2}}, x \in[1,1.2]$. Using Taylor series expansion about $x=1$. Find a bound on the truncation error.
6. Find all the eigen values of the matrix $\left[\begin{array}{lll}4 & 1 & 1 \\ 2 & 4 & 1 \\ 0 & 1 & 4\end{array}\right]$.
7. Express $2 \mathrm{~T}_{0}(x)+\mathrm{T}_{1}(x)+2 \mathrm{~T}_{2}(x)$ as a polynomial in x.
8. Solve the BVP by Numerov method, $\frac{d^{2} y}{d x^{2}}=x+y$
$y(0)=0, y(1)=0$. With step size $h=\frac{1}{4}$.

